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ABSTRACT OF THESIS 

 

A STIRPAT MODEL OF SECTORAL CO2 EMISSIONS AT THE COUNTY SCALE 

 

 

Background: The scientific community agrees that the principal cause of increased 

surface temperature globally is the accumulation of greenhouse gases (GHGs) in the 

atmosphere, with carbon dioxide (CO2) emissions from fossil fuel combustion being most 

important among GHGs.  

Objectives: To analyze the spatial correspondences between CO2 emissions and 

anthropogenic variables of population, affluence, and technology in the United States. 

Methods: Ordinary least squares regression and spatial analytical techniques are used 

to analyze variation in CO2 emissions based on a modified version of the STIRPAT 

model.  The unit of analysis is the county, with 3108 counties in the contiguous United 

States analyzed.  The CO2 emissions of multiple sectors are analyzed as a function of 

total county population, income per capita, and climatic variation. 

Results: Population has a proportional relationship, the strongest association, with CO2 

emissions.  Affluence has a positive relationship with CO2 emissions with an attainable 

Environmental Kuznets Curve for the residential sector and total CO2 emissions.  

Climate, including average winter and summer season temperature, has a positive 

relationship with total CO2 emissions, although it has a negative relationship with the 

residential and commercial sectors of CO2 emissions.  Technology acts as the residual 

in the model, accounting for net-positive and net-negative technology.
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Conclusion:  Population growth, and to a smaller extent economic growth, are the 

driving forces of CO2 at the local level.  These findings are consistent with global 

STIRPAT models.  An increase in winter or summer temperature further exacerbates 

CO2 emissions.  Understanding the relationships between these anthropogenic variables 

and environmental impacts at the local scale is a crucial step in the process of 

formulating mitigation strategies aimed at reducing CO2 emissions in the US. 

John Sztukowski 
Department of Sociology 

Colorado State University 
Fort Collins, CO 80523 

Fall 2010 
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I. Introduction 
 
 
 There is overarching consensus in the scientific community that the accumulation 

of greenhouse gases (GHGs) in the atmosphere is a primary contributor to the observed 

rise in global surface temperature (IPCC 2007).  The combustion of fossil fuels explains 

the increase and accumulation of GHGs in the Earth’s atmosphere. (Vitousek et al. 

1997).  Carbon dioxide (CO2) is the main GHG responsible for global warming and 

related changes in climate.  CO2 is at its highest level in 420,000 years at approximately 

380 parts per million (PPM) (Barnola et al. 2003).  Since the dawn of the Industrial 

Revolution in the mid-eighteenth century, the concentration of CO2 in the Earth’s 

atmosphere has risen approximately 30% (Vitousek et al. 1997).  The rate of growth for 

CO2 emissions continues to increase, with the rate much higher for the ten year period 

between 1995-2004 compared to the previous 24 year period of 1970-1994 (IPCC 

2007).  The carbon cycle owes this vast increase to CO2 emissions from energy usage, 

automotive transit, and mass production and consumption activities (Lebel 2004). 

 The United States is a leading contributor to global CO2 emissions, ranking 

second only to China, which accounts for 21.5% of global CO2 emissions (CDIAC 2007). 

As of 2006, the United States accounted for 20.2% of global CO2 emissions at 6.1 billion 

metric tons (CDIAC 2007).  The next closest industrialized nation is Japan at 

approximately 1.3 billion metric tons of CO2, accounting for 4.6% of global CO2 

emissions (CDIAC 2007).  In fact, the entire European Union, totaling 27 member states, 
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emits only 3.9 billion metric tons of CO2, accounting for 13.8% of the world’s total 

(CDIAC 2007).   

 Although extensive CO2 emissions data exist for the United States, there is 

currently no research using the STIRPAT model that analyzes the anthropogenic drivers 

that contribute to its disproportionately high CO2 emissions.  This presents a 

considerable gap in the literature, as an in-depth study can reveal the significant 

variables that account for spatial variation in CO2 emissions in the United States.     

The primary anthropogenic ―drivers‖ in general are population, economic activity, 

technology, political and economic institutions, and attitudes and beliefs, all of which are 

intrinsically linked to one another (Stern et al. 1992).  These drivers apply to all 

anthropogenic change including GHG or more precisely CO2 emissions (Dietz and Rosa 

1997).  For this thesis, the anthropogenic drivers, the independent variables, to be used 

cover dimensions of population, affluence, and technology.  Political and economic 

institutions, represented by the government and the marketplace, do have a strong 

influence on anthropogenic change and thus play an important role in mitigating 

environmental impact.  However, these terms cannot be easily operationalized within the 

model being used for this thesis, the SITRPAT model, and will thus be left out of the 

equation.  They will be picked up in the residual term in the model, as the residual 

consists of all unaccounted variables.  Attitudes and beliefs are also important in 

influencing the use of CO2, however expansive and objective data on this subject are not 

available, and thus will not be considered for this thesis.   

CO2 emissions serve as the impact, or dependent variable, for this thesis and 

encompass CO2 emissions from multiple sectors, including total CO2 emissions, thus 

enabling analysis of multiple impact equations.  The aforementioned independent 

variables used in this thesis, population, affluence, and technology, correspond to the 

variables used in the global model, STIRPAT.  STIRPAT, an interdisciplinary model 
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initially derived from ecology, was formulated to cross-nationally analyze the material 

driving forces of environmental degradation via anthropogenic factors (Dietz and Rosa 

1994).  A complete history and understanding of the STIRPAT model will be described in 

full in the models and frameworks section.  At this point it is first essential to understand 

the importance of downscaling analysis to a local level. 

   While the STIRPAT model was constructed for macro-level analysis of nations, it 

is possible to use this model at other scales.  Angel et al. (1998) identified three 

advantages to studying the driving forces of global warming at a local scale.  First, the 

mitigation activities for global warming will take place at the local level starting with 

individuals and local governments implementing actions.  Second, analyzing drivers and 

impact variables at the local scale may give unique insight that would otherwise be 

overlooked at a larger scale.  Third, local scales provide the opportunity to identify other 

causal linkages between socioeconomic characteristics and CO2 emissions that may 

exist outside of the STIRPAT model (Angel et al. 1998). 

My particular analysis of the STIRPAT model offers benefits in addition to Angel 

et al.’s (1998) advantages of operating on a spatially refined scale.  First, this model has 

never been applied in the US before, outside of a very small sample, and thus can 

provide valuable insight to the impact anthropogenic drivers have on CO2 emissions in 

the United States.  And second, my thesis will incorporate multiple impact variables by 

assessing different sectors of CO2 emissions.  This will provide the opportunity to 

evaluate the differences in population, affluence, and technology when using the 

different impact variables. 
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II. Models and Frameworks 
 
 

The model used for this thesis is derived primarily from Dietz and Rosa’s 

STIRPAT model (1997).  However, the use of models to describe and predict 

environmental impact based on socioeconomic variables is not a recent endeavor.  In 

fact, the STIRPAT model is a reformulation of an early 1970s ecological model IPAT 

(Ehrlich and Holdren 1971).  And even prior to this, Duncan formulated a similar 

ecological model known as POET (1959).  It is important to comprehend the basis of 

these models as well as their differences and similarities.  The following section will 

delineate these models in chronological order leading up to the current reformulated 

model, proposed by this thesis.  

 

POET:   

Otis Duncan (1959; Duncan et al. 1959) presented how Population (P), 

Organization (O), Environment (E), and Technology (T) variables interact.  This model 

was called POET.  It is the best known multivariate macro-ecological system (Bailey 

1990).  It serves as an archetype in the ecological realm, which has been evaluated, 

applied, and expanded upon for decades. 

Duncan’s most important contribution was his emphasis on the environment 

variable: a convention that had not been previously engaged upon in such detail in 

previous studies.  His purpose was to display the potential problems and research 

concerns of cause, influence, and response in an ecological complex.  Based on these 
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proposed terms, Duncan concluded that there are close interdependences between 

environmental modification and social change (1961).  He developed the notion that 

sociological inquiry can be derived from ecological concepts.   

The POET formulation is directly applicable to my thesis because it was the first 

model to formulate the possibility of an environmental variable as the response variable.  

This may not have been Duncan’s initial intention, but the POET model enables 

Environment to be treated as a dependent variable derived from demographic and 

economic outcomes.  This conception serves as the basis for this thesis using CO2 

emissions as the response variable, while treating all of the other variables as 

explanatory.   

 

IPAT: 

 Similar to POET, IPAT is a model that was established in the field of ecology to 

assess the intricacies of social, economic, and environmental variables (Commoner 

1971; Ehrlich and Holdren 1971).  The IPAT model was originally formulated in the early 

1970s by Ehrlich and Holdren to establish the principal forces of anthropogenic 

environmental impacts (York et al. 2003b).  It is a simple mathematical accounting 

equation:  

 

I=P*A*T 

 

I is environmental impact, P is population, A is affluence, and T is technology (Ehrlich 

and Holdren 1971).  Impact broadly encompasses all human activity on the environment, 

but can be examined on the basis of a single environmental impact, for example, CO2 

emissions. Population is determined by the total amount of people in a given region.  

Ehrlich and Holdren (1971) state that this term, population, is the driving force of 
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environmental impact.  Affluence is typically taken as the per capita gross domestic 

product (GDP).  Known values of I, P, and A are used to solve for technology, which 

ends up equating to the environmental impact per unit of economic activity (York et al. 

2003b).  Commoner (1971) states that the T term is the most significant driver of 

environmental impact but can also be used to have a positive effect on the environment.  

Technology within the IPAT realm has since been delineated further in the realm of 

industrial ecology.   

 Industrial ecology takes an optimistic view of technology in the IPAT equation.  

Technology in this sense can be used to reduce environmental impact and theoretically 

compensate for an increase in population and/or an increase in affluence (Chertow 

2000).  Nevertheless, there is still not an attempt to operationalize the T term in this sub-

discipline.   

 IPAT’s primary strength is that it specifies the key driving forces behind 

environmental change and identifies the relationship between those driving forces and 

impact variables (York et al. 2003c).  Furthermore, IPAT indicates that the driving forces 

of environmental impact are interdependent and that one factor alone cannot solely 

determine environmental impacts. 

IPAT was developed for cross-national analyses (Scholz 2006) and has been 

applied globally for CO2 emissions.  The IPAT model for CO2, with commonly used 

operationalizations of P, A, and T terms can be written as follows:  

 

CO2 emissions = (Population)*(GDP per Capita)*(CO2 emission per unit of GDP) 

 

 Research on CO2 using this model displayed that all three driving forces in this model 

importantly affect variation in CO2 emissions (Dietz and Rosa 1997).  Dietz and Rosa 

adjusted the model to account for variation in the drivers, generating a model currently 
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known as STIRPAT.  Their reassessment of the IPAT model was partly due to criticisms, 

which are discussed below. 

The criticisms of IPAT are multifaceted.  First, being based in an ecological 

identity, it only takes into consideration demographic and economic forces (Scholz 

2006).  Furthermore, based on its accounting principle, the model assumes 

proportionality in the relationship between factors.  York et al. explain this giving an 

example that if population were to double, impact would thus have to double with the 

other variables remaining constant (2003b).  Along these lines, IPAT being limited as an 

accounting equation, does not permit more extended hypothesis testing.  This restricts 

the development of social science theory that requires hypotheses about the relationship 

between the drivers and impacts be testable with empirical evidence (York et al. 2003b).   

 

STIRPAT: 

 Dietz and Rosa reformulated the IPAT model in stochastic terms that can be 

used empirically to test hypotheses (York et al. 2003b).  The name STIRPAT refers to 

STochastic Impacts by Regression on Population, Affluence, and Technology.  The 

actual equation looks similar to the IPAT equation, but with added variables.  The 

reformalized model is as follows: 

 

Ii=aPi
bAi

cTi
dei 

 

This includes a constant (a) to scale the model, exponents for the three drivers (b, c, and 

d), subscripts (i) for I, P, A, T to indicate that these quantities vary across observational 

units, and an error term (e), the residual, to denote variation across observational units 

(York et al. 2003a; York et al. 2003c).  T is usually included with e because there is no 

operational definition nor a corresponding indicator of T that is widely accepted (York et 
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al. 2003c).  Therefore under the STIRPAT model, the variable e incorporates T as the 

residual, what is left over between what is predicted and what is observed.   

 Based on the IPAT model, STIRPAT becomes an interdisciplinary model that 

links the natural sciences (an ecological accounting equation) with the social sciences 

(social science theory and methods) (Dietz and Rosa 1994).  In addition to allowing for 

hypothesis testing and allowing for variation of the drivers effects on the impact(s), 

STIRPAT can be expanded to incorporate any other relevant variables such as political, 

social, and cultural factors (Dietz and Rosa 1994).  This can be done by disaggregating 

T, as T represents all factors other than P and A (York et al. 2003b).  This has been 

done by York et al. (2003c) to examine indicators of industrialization, urbanization, and 

climate as well as by Fan et al. (2006) to assess ―energy intensity.‖ 

 

Existing STIRPAT Findings on CO2: 

 STIRPAT has been used to examine individual as well as a conglomerate of 

differing environmental impacts.  This thesis will primarily focus on the impact factors of 

CO2 emissions.  As previously mentioned, Dietz and Rosa analyzed the effects of P, A, 

and T on CO2 emissions at a global level with an adjusted IPAT model that would 

eventually become STIRPAT (1997).  They found that the impacts of population are 

roughly proportional to its size across the range of population sizes indicating that 

population is a driving force of environmental impacts (1997).  Thus a change in 

population is roughly proportional to a change in impact (York et al. 2003a).   

Dietz and Rosa’s study found that affluence has a measureable effect on CO2 

emissions but did level off and even declined at the highest levels of GDP, somewhat 

supporting an Environmental Kuznets Curve (EKC) (1997).  However this only occurred 

at a GDP per capita of above $10,000, which is a difficult threshold for the majority of 
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countries to attain.  York et al (2003c) did a similar study posing that an EKC effect was 

possible but unattainable for the majority of countries.   

The concept of the Environmental Kuznets Curve (EKC) is important, yet 

controversial in the STIRPAT model, and therefore needs to be addressed.  The EKC 

refers to an inverted U-shaped curve, where impacts increase initially, but level off at a 

maximum unit, at which point impacts decline.  The Environmental Kuznets Curve is 

coined after the economist Simon Kuznets (1955), who initially tested this type of 

relationship between economic growth and income inequality.  This proposes the 

argument that even though economic development may have ill effects on the 

environment, further economic development will eventually solve rather than exacerbate 

these problems (Grossman and Krueger 1995).  This type of relationship is the basis for 

the Ecological Modernization Theory (EMT), which posits that once certain levels of 

modernization are achieved via technology, innovation and capital, environmental 

degradation will begin to decrease, supporting an EKC (Mol and Spaargaren 2000).  The 

Environmental Kuznets Curve can be tested in the STIRPAT model by including a 

quadratic term in a regression model for the affluence term (Richmond and Kaufmann 

2006; Stern et al. 1996; Stern 2004; York et al. 2003b).  This has been done at the 

global scale with mixed reviews.  When affluence shows an EKC effect, it is at an almost 

unattainable level (Dietz and Rosa 1997; York et al. 2003c), with other studies showing 

that there is not an EKC effect at all (York et al. 2003a; York et al. 2003b).   

The technology term in the STIRPAT model poses somewhat of a conundrum as 

well.  Studies either leave it to represent the residual model or attempt to segregate it out 

and define it.  Dietz and Rosa’s (1997) study did not disaggregate T, leaving it to include 

all factors other than P and A such as physical infrastructure, social and economic 

organization, and culture.  York et al. (2003b) did unpack T into other variables in a later 

study and found that increases in urbanization correspond to increases in CO2 
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emissions.  Industrialization also increases CO2 emissions, but not as significantly as 

urbanization does (York et al. 2003c).  Globally, climate also has an effect on CO2 

emissions with nations that have cooler climates (non-tropical) having a greater impact 

on CO2 emissions compared to nations with warmer climates (tropical) (York et al. 

2003c).  This also reflects the fact that many of the wealthier nations in the world are 

located in the ―global North‖ where more energy is needed for heating (Shi 2003). 

 

Additional STIRPAT Findings on CO2: 

Shi (2003) and Fan et al. (2006) expanded the global study of CO2 emissions 

using the STIRPAT model.  They used the same basic format as Dietz and Rosa (1997) 

and York et al. (2003b; 2003c) but subdivided varying levels of economic development 

into four categories with high-income economies at the top, followed by upper-middle 

income, then lower-middle income, and finally with low-income economies at the bottom 

(Fan et al. 2006).  The grouping of countries into four income levels is in line with the 

World Bank’s classification scheme (Shi 2003).  This model allowed for analysis of the 

disparities between differing national economies.  They discovered that the impact of 

population, affluence, and technology on CO2 emissions does vary at different levels of 

development (Fan et al. 2006; Shi 2003).    

Interestingly, Fan et al. (2006) found that population (the percentage of 

population aged 15-64, constituting working age population) and urbanization (proportion 

of population living in urban areas) follow the same trends as before for the bottom three 

income economies, but that the effects of population via working age population and 

urbanization on CO2 emissions at the high income level are negative.  The impact of 

population change on emissions is much more pronounced in developing countries than 

developed countries (Shi 2003).  Fan et al. attribute this to ―subjective awareness‖ in that 
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the labor force at high-income levels is expected to reduce the use of cars and increase 

the use products that reduce environmental damage (2006).   

Subjective awareness is a possibility but there are also other explanations for 

their findings that were not addressed.  The negative impact for high-income nations 

could be attributed to variables that were left out of their STIRPAT formulation.  For 

instance, Fan et al. (2006) do not acknowledge climate as a driving factor and therefore 

fail to incorporate that most high-income nations reside in the Global North.  Moreover 

explanations can exist outside of the STIRPAT model completely.  The negative effect of 

population on CO2 may be attributed to the fact that high-income nations tend to have 

stricter governmental policies regarding emissions thus mitigating impact based on legal 

requirements.   

Another interesting finding, based on affluence, is that the GDP per capita’s 

effects on CO2 emissions followed a downward trend as countries became more 

developed until it reached the high-income level where it spiked back up (Fan et al. 

2006).  Fan et al. reasoned here that higher GDP per capita induces more energy 

consumption and therefore more CO2 emissions (2006).  I find this reasoning sounder as 

the US is a perfect example of this as a high-income level nation with high CO2 

emissions.  However, this should be further investigated as it contradicts the leveling off 

and even decline that Dietz and Rosa (1997) and York et al. (2003b, 2003c) find for 

affluence’s impact on CO2 emissions for nations at the highest level of GDP. 

Fan et al. (2006) took different variables to denote technology for their research.  

They used two variables: manufacturing output as a percentage of GDP and services 

output as a percentage of GDP to assess ―energy intensity.‖  They reasoned that the 

less energy intense a nation is, the higher its efficiency of economic activity will be and 

thus less CO2 emissions.  Other than at the lowest level of income, energy intensity had 

very little impact on CO2 emissions.   Fan et al. credited this to high investment, 
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maintenance costs, and long research and development cycles of technology resulting in 

a relatively slow improvement of environmental efficiency (2006). 

Fan et al.’s (2006) study may prove useful for applying the STIRPAT model to a 

specific nation (the US).  Their findings may be particularly valuable because I am 

seeking to analyze one high-income level nation of which they showed has the greatest 

disparity in the model.  It will be noteworthy to see if the same disparities hold true within 

a high-income nation comparing low-income counties to high-income counties and if an 

EKC effect is possible for US counties.  Furthermore, Fan et al. (2006) provide new and 

additional possible variables to consider for my model.  They introduce the percentage of 

population that is independent (those aged 15-64), thus those who would have the 

greatest CO2 emissions impact.  Fan et al. (2006) also provide a new technology factor 

by assessing energy intensity, which was considered but could not be operationalized 

effectively for US counties. 

 

Downscaling STIRPAT: 

 The STIRPAT model has been refined in other studies and applied at a local 

scale.  For example, Scholz (2006) used a STIRPAT approach to analyze the industrial 

CO2 emissions for eighteen Japanese cities.  For population, Scholz used population 

and population density.  He found city size in terms of mere population correlated to 

higher emissions while population density correlated to lower emissions.  However both 

of these variables turned out to be statistically insignificant (2006).  Scholz (2006) found 

that affluence (income per capita) was highly significant and that initial increases in 

income are associated with dramatic increases in CO2 emissions.  However, affluence 

does level off and the more efficient wealthier cities actually do have reductions in CO2 

emissions thus somewhat supporting the logic of the EKC (2006).  Scholz’s (2006) 

article proves beneficial for my thesis in that it downscales the STIRPAT model to a 
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national scale.  However whereas Scholz analyzed just eighteen units (cities) on a 

national scale (Japan), I am seeking to analyze 3,108 units (counties) on a national 

scale (the US).   

 The STIRPAT model has also been implemented in the US, also at a small scale, 

assessing CO2 emissions of twelve counties in northwestern North Carolina (Soule and 

DeHart 1998).  Not only does this study apply STIRPAT to the same scale I am seeking 

(at the county level), albeit a very small sample size (12 counties), they also incorporate 

CO2 emissions at varying sectors: commercial/industrial, residential, agricultural, and 

total (Soule and DeHart 1998).  DeHart and Soule (2000) were able to successfully 

apply the STIRPAT model to assess the driving forces behind multiple impacts at a finer 

spatial scale.  This as well is beneficial to my thesis as I also implement different sectors 

of CO2 emissions to evaluate possible differentiating results from applying the 

anthropogenic drivers to different impact variables. 

 

Restrictions of Applying STIRPAT at the County Scale in the US: 

 There are a couple limitations that need to be addressed for this thesis.  First, as 

noted in Scholz’s article (2006), operating on a national scale cannot take into account 

any industrial CO2 emissions that are outsourced to other countries via out of country 

manufacturing sites.  IPAT (or STIRPAT) ignores the impact of external forces when 

applied to regions or locales (Kasperson et al. 1995).  Scholz (2006) claims that dirty 

manufacturing can simply relocate to other areas of the world.  So while only analyzing 

CO2 emissions in the US may ignore some industrial CO2 emissions emitted by US 

companies in other parts of the world, analyzing different sectors of CO2 emissions will 

assist in assuaging this problem.  Scholz only evaluated industrial CO2 emissions, which 

is the sector most able to be outsourced.  I will be assessing other sectors such as 

residential, commercial, and mobile as well, all of which cannot be as easily outsourced.  
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Thus the majority of the sectors of CO2 emissions to be analyzed will remain in the 

United States. 

 Another foreseeable problem is that CO2 emissions represents just one of a 

multitude of energy impact variables.  Focusing just on CO2 emissions may come at a 

cost of ignoring other energy impact variables such as nuclear power or hydropower 

(York et al. 2003b).  However CO2 is by far the leading GHG and allows for the most 

adequate research given the extensive data available on it.  Furthermore, given the 

exorbitant and disproportional amount of CO2 emitted in the United States, it should 

remain as the primary focus to enact change. 

 

STIRPAT Modified (STIRPACT): 

 The STIRPAT model conceived by Dietz and Rosa serves as a sound basis to 

analyze CO2 emissions at the local scale; however, I believe it can be refined and 

extended.  I attempt to operationalize the T term for what it is, technology, rather than 

acting as a residual or encompassing displaced variables.  Technology should be 

examined on its own accord to assess potential drivers of CO2 emissions.  The 

technology variable that will be applied to this thesis is tech patents per capita. 

Technology in this sense is operationalized to capture human capital in accordance with 

Richard Florida’s (2002) creative capital theory.  In effect, this variable is introduced as 

an attempt to capture the net effect of technology.  Furthermore, it is an attempt to 

capture the positive effect of technology, similar to the concept of Chertow (2000) and 

the industrial ecology’s understanding of the T term, operationalizing technology as a 

critical factor in environmental improvement. 

 Climatic conditions are important to adjust for in the STIRPAT model as well.  

York et al. (2003c) note that more resources are required to sustain societies in cooler 

climates cross-nationally.  In previous studies the climate variable was bound up in the T 
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term; however, for this thesis it will be disaggregated from T and introduced on its own 

accord as C in the model.  The new model will read as STIRPACT.  Climate may have 

an important role for certain sectors of CO2 emissions, and to decipher this, the average 

annual temperatures in January, equating to winter climate, as well as the average 

annual July temperatures, summer climate, of each county will be used in models of 

local CO2 emissions.  Climatic variation is not exactly an anthropogenic variable; 

however, it can still be highly important in this model because rising temperatures are a 

result of global warming, which is a result of increased CO2 emissions.  Therefore 

climatic conditions can serve as a very interesting predictor of CO2 emissions due to its 

close relationship with global warming.   
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III.  Research Design  
 
 

CO2 emissions are analyzed using ordinary least squares regression and spatial 

analytical techniques.  A log-log regression model is used, which logs the response and 

explanatory variables to yield an equation that can be estimated using linear regression.  

The regression equation is specified as: 

 

log(Ii) = log(a) + b*log(Pi) + c*log(Ai
2) +d*log(Ai) + f*log(Ci) + g*log(Ti) + log(ei) 

 

I denotes a variety of response variables, P denotes the population variables, A denotes 

the affluence variables, C denotes the climatic variables, and T denotes the technology 

variables.  Weights are assigned to each response variable specified by b, c, d, f, and g 

with a serving as the constant and e as the error term.  Subscripts i are assigned to I, P, 

A, A2, C, T, and e to denote that these quantities vary across observational units.  A 

quadratic version of an affluence variable, A2, is also added to certain models to test the 

expectations of the EKC theory.   

The unit of analysis for this thesis is US counties for the contiguous US.  There 

are 3108 counties analyzed for this thesis.  Analyzing US counties is very pragmatic as 

most available data sources operate in county units.  Furthermore, the finer spatial scale 

offers insight in accordance with the advantages at the local scale advocated by Angel et 

al. (1998), which may be overlooked if operating on a larger spatial scale analyzing US 

states or US regions.   



 

 17 

 

A. Variable Operations 
 
Response Variables: 

 CO2 emissions per US county will be the impact (dependent) variable for my 

thesis.   I assess a number of impact CO2 emissions variables.  They are the sectors of 

residential, commercial, industrial, and mobile CO2 emissions, with the fifth and final 

dependent variable representing total CO2 emissions.  The unit of measurement for CO2 

emissions is measured in gigatons of carbon per year (GtC/yr).  These data are 

available via the Vulcan fossil fuel CO2 inventory, compiled for the year 2002.  The 

Vulcan inventory is a data product, based on a number of data sources, although greatly 

dependent upon data collection by the Environmental Protection Agency (EPA) (United 

States Environmental Protection Agency 2006), via the Clean Air Act legislation (Gurney 

et al. 2009).  CO2 measurements are collected in the US at spatial scales less than 100 

km2 and temporal scales as small as hours for the year 2002 (Gurney et al. 2009). 

 Residential CO2 measures heating, water heating, and cooking at residences.  

Commercial CO2 measures heating, engines, and other emitting processes at business 

locations.  Industrial CO2 represents all industrial processes, with the exception of 

agriculture and electricity production, which represent their own sectors, agriculture and 

utility respectively.  The explicit industrial processes that are measured are via industrial 

facilities in which emissions exit through a stack or another identifiable exhaust feature 

(Gurney et al. 2009). 

 Mobile CO2 emissions represent on-road, non-road, and aircraft CO2 sources.  

On-road CO2 consists of mobile sources that operate on the twelve available road 

classes, such as cars, trucks, buses, etc.  Non-road CO2 consists of other mobile 

sources that do not travel on designated roadways such as trains, boats, snowmobiles, 
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etc.  Aircraft CO2 is comprised of airport taxiing, the takeoff and landing cycle, flight and 

idling, and other related aircraft emissions (Gurney et al. 2009).  On-road sources make 

up the majority of the mobile CO2 sector at 79.4%, followed by aircraft emissions at 

11.8%, with non-road emissions representing 8.8% of the mobile CO2 sector (Gurney et 

al. 2009). 

 Total CO2 emissions represent all of the emissions from these four sectors as 

well as additional sectors such as agriculture, utility, cement, and UNK CO2.   The four 

sectors chosen for this thesis were done so because they represent the majority of total 

CO2 emissions at 58.1%, and more importantly are represented in approximately all of 

the units of analysis, whereas the sectors left out of this thesis are congregated only in a 

select few counties.  The utility sector, comprised of electricity production from coal, oil 

and natural gas power plants, represents 40.4% of total CO2 emissions, however is 

present in only 38.5% of US counties and therefore does not represent an optimal 

response variable.  Nevertheless, the data captured in the utility sector will still be 

analyzed in sum with all of the other sectors in total CO2 emissions.   

 

Explanatory Variables: 

Two population terms will be used for this thesis.  The first population variable 

will be total population, taken as the total population size per county.  This will be the 

total head count per county.  In addition, population of independents, those aged 15-64, 

as in Fan et al.’s (2006) analysis of CO2 emissions, will be assessed to give a more 

accurate representation of the population that predominantly emits CO2.  These data are 

available via the 2000 US Census Bureau.   

The primary affluence variable will be income per capita, as in Scholz’s (2006) 

study at the local scale, available via the 2000 US Census Bureau.  A second affluence 
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variable will also be considered, US median home values, available via the Bureau of 

Labor Statistics. 

As discussed previously, the technology variable will consist of tech patents per 

capita.  A technology variable is important to the study because it delineates socio-

cultural aspects into an independent variable.  Technology can be likened to human 

capital, in that a county with more technology can be viewed as having more human 

capital.  Human capital is derived from Richard Florida’s (2002) creative capital theory in 

which he assesses technology, talent, and tolerance as the primary measuring tools for 

creative capital.  The technology variable applied to this thesis coincides with the 

assessment of technology for Richard Florida’s studies.   

Climatic conditions will be measured as temperature in degrees Fahrenheit as 

the mean temperature in January, representing winter climate, and the mean 

temperature in July, representing summer climate, for the climate period 1941-1970.  

These data are available via the United States Department of Agriculture Economic 

Research Service.  In the next section, hypotheses and the expected behavior of 

independent variables are explicitly stated.    

 

B. Hypotheses 
 
 
H1: An increase in total population size will significantly increase CO2 emissions, with all 

things held equal.  I expect a roughly proportional relationship, similar to the results 

found at the global scale (Dietz and Rosa 1997; York et al. 2003a; York et al. 2003b; 

York et al. 2003c).  The relationship between total population and CO2 emissions is 

expected to be greatest in the residential and mobile sector of CO2 emissions as these 

are the sectors where individuals have the greatest autonomy. 
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H2: An increase in population of independents will also significantly increase CO2 

emissions with all things held equal.  This relationship is expected to be greater than that 

of total population and CO2 emissions due to the age adjustment for those more likely to 

have an impact on the environment.  The impact of the population of independents is 

also expected to be greatest in the CO2 sectors of residential and mobile.   

 

H3: An increase in income per capita will significantly increase CO2 emissions, with all 

things held equal, similar to the findings of GDP per capita at the global scale (Dietz and 

Rosa 1997; Fan et al. 2006; Shi 2003; York et al. 2003a; York et al. 2003b; York et al. 

2003c).  As in Scholz’s (2006), Dietz and Rosa’s (1997), and York et al.’s (2003c) 

studies, CO2 emissions will level off and possibly decline for more affluent counties with 

all things held equal.  This supports an Environmental Kuznets Curve (EKC) for the 

wealthier counties.  Affluence will be most aptly represented in the residential sector of 

CO2, as this is the sector where individuals will most likely invest their income.   

 

H4: An increase in US median home values will increase CO2 emissions as well with all 

things held equal.  I believe US median home values to follow the same trends as 

income per capita as it is measuring the same explanatory variable, affluence. 

 

H5: An increase in tech patents per capita will decrease CO2 emissions, with all things 

held equal.  I expect a decrease in CO2 emissions because an increase in patents per 

capita represents greater technology and therefore more efficient technology with 

regards to pollution, in this case CO2 emissions.  This is similar to likening technology as 

human capital as in Florida’s (2002) creative capital theory.  Patents per capita will have 

the greatest impact in the commercial and industrial sector of CO2 emissions because 

these sectors are where patents will most aptly apply.   
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H6: An increase in January mean temperatures, winter climate, will decrease CO2 

emissions, with all things held equal.  An increase in winter temperatures will decrease 

the energy intensity needed to power buildings in the winter.  The impact of winter 

temperatures will best be represented in the commercial and residential sectors of CO2 

because these sectors encompass a reduction in the energy needed to heat businesses 

and homes respectively.   

  

H7: An increase in July mean temperatures, summer climate, will increase CO2 

emissions, with all things held equal.  An increase in summer temperatures corresponds 

to increased energy intensity.  The impact of summer temperatures will best be 

represented in the commercial, industrial, and residential sectors of CO2 emissions, as 

more energy will be expected to cool buildings in these sectors.   
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IV. Variable Analysis 
 
 
 The following section provides statistical analysis of univariate data, variable 

correlation, and bivariate relationships.  The univariate analysis focuses on the five 

response variables.  Each variable is analyzed on its own accord, followed by a brief 

discussion of the correlation between the five response variables.  This is followed by an 

analysis of correlations between the seven explanatory variables.  Univariate maps are 

provided for each variable, response and explanatory, to spatially illustrate the high and 

low impact areas in the U.S for each particular variable.  These univariate maps are not 

normalized so that the maps can fully represent its variable without distortion.  

 Bivariate relationships between the five response variables and seven 

explanatory variables are then examined, structured by the broader context of 

population, affluence, technology, and climate.  Bivariate maps are provided for key 

relationships between response variables and explanatory variables to illustrate the 

spatial distribution of CO2 emissions normalized by the explanatory variable in the 

relationship. 
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A. Univariate Analysis 
 
 

Table 1: Response Variable Summary Statistics 

 N Min Max Mean Std Dev Variance Skewness 

Total 3108 0.00 18.63 0.48 1.13 1.27 5.89 

Commercial 3108 0.00 1.98 0.02 0.07 0.01 15.21 

Industrial 3108 0.00 10.05 0.09 0.42 0.18 13.49 

Residential 3108 0.00 3.22 0.03 0.11 0.01 13.09 

Mobile 3108 0.00 10.30 0.14 0.36 0.13 12.11 

Carbon Emissions measured in gigatons of carbon per year (GtC/yr) 

 

Table 2: Top CO2 Emitters per Sector 

 Total Commercial Industrial Residential Mobile 

Top 10*  7.28% 17.15% 21.71% 13.27% 10.15% 

Top 25*  13.44% 26.28% 34.78% 22.35% 17.10% 

Top 100*  35.18% 50.54% 57.52% 46.66% 35.47% 

*The Top 10, 25, and 100 represent the top CO2 emitting counties in each sector, not percentages. 

 

 

Total CO2 

 The mean for total CO2 emissions is at 0.48 GtC/yr, with a range of 0.0009 to 

18.63 GtC/yr for the 3108 counties (representing the continental US) in this study as 

seen in table 1.  The skewness for total CO2 emissions is 5.89, indicating a significant 

positive asymmetric skew for this distribution.  The mean is in the 80th percentile of the 

distribution with all of the counties below it within one half of a standard deviation.  One 

standard deviation is equal to 1.13 GtC/yr, with the variance equating to 1.27.   

 CO2 emissions by county are rather top heavy.  The top 100 emitting counties of 

total CO2 emissions represent over 35% of total CO2 emissions for all of the 3108 

counties in this study, as represented in Table 2.  Harris County, TX, represents the high 
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end of total CO2 emitting counties, 18.63 GtC/yr, at over 16 standard deviations above 

the mean.  There are only three other counties with double digit GtC/yr.  They are Los 

Angeles County, CA, Cook County, IL, and Cuyahoga County, OH at 18.60, 13.21, and 

11.14 GtC/yr respectively.  All four of these counties encompass a major metropolitan 

area: Houston, Los Angeles, Chicago, and Cleveland respectively. 

 The univariate map of Total CO2 emissions (Figure 1) shows counties operating 

below and above the mean for total CO2 emissions at increments of one half standard 

deviation.  The most noticeable aspect of this map shows that the majority of the 

counties in the US are below the mean.  Spatially, there are regions of the US that have 

high and low concentrations of total CO2 emissions.  The areas clustered with low 

concentration of total CO2 emissions are in the Midwest, predominantly in the South 

Dakota, Nebraska, Kansas, Iowa region, with low emissions extending North into North 

Dakota, South into West Texas, and West into Missouri.  The Northwest is also 

represented with below mean CO2 emissions through most of Montana into Idaho and in 

Eastern Washington and Eastern Oregon.  There are additional areas of low CO2 

emitting counties in Eastern Kentucky and Tennessee, Northern Alabama, and in 

central/southern Georgia.   

 There are high concentration clusters of total CO2 emitting counties in 

Central/Southern California into all of Arizona, in Southeast Texas represented by the 

Dallas-Fort Worth, Houston, Austin triangle into Southern Louisiana, Central/Southern 

Florida, the greater Chicago area, the greater Detroit area, Eastern Ohio in conjunction 

with Western Pennsylvania represented by the greater Cleveland and Pittsburg area, 

and along the North East Coast represented by the greater area between the cities of 

Boston, New York, Philadelphia, and Washington D.C..  The commonality of these six 

high CO2 emitting regions captures either large population centers and/or large industrial 

centers.    
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Figure 1 
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Industrial CO2  

 Industrial CO2 emissions represent the second largest sector behind Mobile CO2 

emissions.  The mean for Industrial CO2 is 0.0890 GtC/yr, with a range of 0 to 10.0507 

GtC/yr.  There are 36 counties in the Continental US that do not emit any industrial CO2.  

The industrial sector has a skewness of 13.49, indicating an extremely large positive 

skew for this distribution, with a few heavy users congregated at the top.  Harris County, 

TX has the highest industrial CO2 emissions at 10.0507 GtC/yr.  The top 25 emitters of 

industrial CO2 represent approximately 35% of the total emissions for this sector, with 

the top 100 emitters representing over 57% of all industrial CO2 emissions.  

 The univariate map for Industrial CO2 emissions (Figure 2) depicts counties that 

are within 0.25 standard deviations from the mean, and then counties that are above 

0.25 standard deviations at 0.5 standard deviation increments.  The majority of the 

counties in the United States are represented within 0.25 standard deviations of the 

mean, illustrating that much of the industrial CO2 emissions are concentrated in select 

counties.   

 The most predominant regions of industrial CO2 emissions are located in the 

greater Los Angeles area into Southern California, the Southern tip of Texas extending 

through the greater Houston area and into Southern Louisiana and Southwest Alabama, 

the greater Chicago area, the greater Detroit area, and the greater Philadelphia area.  

Other pockets of industrial CO2 clustering are in West Texas, Northern Texas into the 

Oklahoma panhandle, Northwestern New Mexico, and Southern Wyoming.  This second 

grouping of clusters represents counties that are not highly populated but contribute a 

significant amount of CO2 to the total emissions.  The regions of Southern Texas, 

Louisiana, and Southwestern Alabama fall into this category as well. 
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Figure 2 
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Mobile CO2  

 Mobile CO2 emissions represent the largest contributor to total CO2 emissions of 

the five sectors.  This sector has a mean of 0.1409 GtC/yr, with a range of 0.0007 to 

10.3045 GtC/yr.  Los Angeles County, CA is isolated at the top of the list with 10.3045 

GtC/yr, nearly doubling the emissions of the second largest mobile emitting county, 

Cook County, IL, which emits 5.3844 GtC/yr.  There are only 18 counties in the 

Continental United States that emit over 2 GtC/yr.  These 18 counties account for 14% 

of the total mobile emissions for the Continental US.  This can be understood via the 

skewness for the 3108 counties, which is at 12.11, again having a significant positive 

skew.   

 The univariate map for Mobile CO2 emissions (Figure 3) illustrates that many of 

the counties in the Continental US are below or within 0.25 standard deviations from the 

mean.  This is most prominently noted in the middle of the country represented by the 

Midwest region form North Dakota south to Northern Texas, in the Southeast region 

encompassing Arkansas, Alabama, Tennessee, Kentucky, and Virginia, and the 

Northwestern region of Idaho and Montana.   

 The high emitting mobile CO2 counties are located in highly populated counties, 

most notably on the coasts.  The regions that cluster the most mobile CO2 emissions are 

Central and Southern California into Western Arizona, Northwest Washington, the Texas 

triangle of Dallas-Fort Worth, Houston, and Austin, Florida with the exception of the 

panhandle, the greater Chicago area, the greater Detroit area into Northern Ohio and the 

North East Coast represented by the greater area between the cities of Boston, New 

York, Philadelphia, and Washington D.C.  The clustering of counties of high and low 

mobile CO2 emissions most aptly represents the clustering of counties for total CO2 

emissions. 
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Figure 3 
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Commercial CO2  

 Commercial CO2 emissions represent the smallest contributor to total CO2 

emissions of the sectors analyzed for this study.  The mean is 0.01836 GtC/yr with a 

range of approximately 0 (0.00000009) to 1.9783 GtC/yr.  This sector has the highest 

skewness of the five at 15.21, again indicating an extremely positive asymmetric skew 

for this distribution.  Only four counties emit more than 1 GtC/yr of commercial CO2.  

These counties are Middlesex County, MA (1.98 GtC/yr), New York County, NY (1.76 

GtC/yr), Cook County, IL (1.54 GtC/yr), and Jennings County, IN (1.02 GtC/yr).  These 

four counties represent 11% of all commercial CO2 emissions in the Continental US.  

The top 25 emitting counties in this sector account for 26% of the total commercial CO2 

emissions. 

 The univariate map for commercial CO2 emissions (Figure 4) shows that the 

majority of the counties in the Continental US operate under 0.25 standard deviations 

from the mean with respect to commercial CO2 emissions.  Spatially, this is most notable 

in the Midwest, the Northwest with the exception of the Seattle area, and in the 

Appalachian region primarily in Kentucky and Tennessee.  The higher emitting counties 

are sparse and congregate around high population centers.  The hotspots are most 

clustered in California leading into Southwest Arizona, the greater Chicago area, the 

greater Detroit area into Northern Ohio and Northwest Pennsylvania, and in the 

Northeast represented from the greater area of Boston south to Washington D.C. 
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Figure 4 
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Residential CO2  

 Residential CO2 emissions are the second smallest sector analyzed for the study 

behind commercial CO2 emissions.  The mean for this sector is 0.0318 GtC/yr, with a 

range of approximately 0 (0.000001) to 3.2186 GtC/yr.  Cook County, IL accounts for the 

high end of this range, nearly doubling the second highest emitting county in this sector, 

Los Angeles County, CA, which does 1.7727 GtC/yr of residential CO2 emissions.  Only 

seven counties emit more than 1 GtC/yr of residential CO2 emissions, with these seven 

accounting for approximately 11% of all of the residential CO2 emissions for the 

Continental US. 

 The univariate map for residential CO2 emissions (Figure 5) illustrates that the 

majority of the counties in the continental US operate less than 0.25 standard deviations 

below the mean.  These counties are clustered in the Midwest, the Northwest, the 

Appalachian region most notably in Kentucky, and in the Southeast region 

predominantly in Georgia. 

 Spatially, the hotspots for residential CO2 emissions best correlate with counties 

that have high population centers.  These high concentrations of residential CO2 are best 

illustrated in Central and Southern California, along the front range of Colorado, in the 

greater Atlanta area, the greater area between and around Chicago and Milwaukee, the 

greater area between and Detroit, Cleveland, and Pittsburg, and along the Northeast 

coast represented by the greater area between Boston, New York, Philadelphia, and 

Washington D.C. 
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Figure 5 
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Table 3: Response Variable Correlation Matrix 

 Total Commercial Industrial Residential Mobile 

Total 1.00     

Commercial 0.49 1.00    

Industrial 0.62 0.26 1.00   

Residential 0.59 0.74 0.28 1.00  

Mobile 0.69 0.57 0.38 0.75 1.00 

All response variable relationships are statistically significant at the alpha level 0.01.  

 

 All four sectors of CO2 emissions have a strong positive association to total CO2 

emissions with the mobile sector having the most prominent correlation at 0.69.  These 

high correlations are expected as all five of the response variables are measuring the 

same thing: CO2 emissions.  The most substantive significant correlation of all of the 

response variables happens between mobile CO2 emissions and residential CO2 

emissions at 0.75, with the association between residential CO2 emissions and 

commercial CO2 emissions a very close second at 0.73.  For example, this means that a 

county that is four standard deviations above the mean for residential CO2 emissions 

can be expected to be approximately three standard deviations above the mean for 

commercial CO2 emissions. 

 Industrial CO2 emissions stands out in the correlation matrix, although it has a 

strong positive relationship with total CO2 emissions at 0.61, it only has a moderate 

association with the other sectors.  Industrial CO2 emissions and commercial CO2 

emissions have the lowest correlation of all of the response variables, albeit still a 

moderate positive correlation at 0.26.   
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Table 4: Explanatory Variable Correlation Matrix 

 Population Pop of Indep Income PC Housing Patents PC Winter Clim Summer Clim 

Population 1.00       

Pop of Indep 0.15 1.00      

Income PC 0.32 0.33 1.00     

Housing  0.35 0.45 0.81 1.00    

Patents PC 0.19 0.20 0.48 0.43 1.00   

Winter Clim 0.11 0.16 -0.13 -0.07 -0.09 1.00  

Summer Clim -0.01* -0.09 -0.24 -0.38 -0.13 0.72 1.00 
*The relationship between population and July mean temperature is not statistically significant. 
All other explanatory variable relationships are statistically significant at alpha level 0.01. 
 
Population = total population variable 
Pop of Indep = percentage of the population that is independent variable 
Income PC = income per capita variable 
Housing = median housing value variable 
Patents PC = patents per capita variable 
Winter Clim = winter climate or mean January temperature variable 
Summer Clim = summer climate or mean July temperature variable 
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Population 

 The association between population and percentage of the population that are 

independents is 0.15, a modestly low positive correlation for two variables measuring 

different aspects of the same term, population.  This will prove beneficial in a multiple 

regression analysis because these two variables can capture different elements of 

population and how P relates to the response variables and other explanatory variables, 

with these population variables explaining minimal variance of each other.   

 Population of independents has a slightly higher correlation with all of the other 

explanatory variables than population.  The highest correlation for the population 

variables exists with the affluence variables, income per capita and median housing 

value.  These relationships are all moderate to strong positive relationships, ranging 

from 0.32 to 0.45, with the strongest occurring between population of independents and 

median housing value at 0.45. 

 The population variables have a moderate positive association with patents per 

capita, at approximately 0.20 for both population variables.  The associations of the 

population variables with winter climate have moderate to low positive correlations: 0.11 

for population and 0.16 for population of independents.  The association with summer 

climate is negligible for population at -.01, a correlation that is not even statistically 

significant, with a p-value of 0.65.  This is the only correlation between explanatory 

variables that is not statistically significant.  The association between population of 

independents and summer climate has a low negative correlation at -0.09.  This 

suggests that population of independents increases slightly as summer climate, 

referencing July mean temperatures, decreases. 
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Affluence 

 The association between income per capita and median housing value is 

exceptionally high at 0.81.  This means that if income per capita for a county is one 

standard deviation above the mean, it can be expected that the median housing value 

for that county would be 0.8 standard deviations above its mean.  This association can 

be problematic, as it appears that these two affluence variables are roughly capturing 

the same effect.  Given that income per capita is a more accepted affluence parameter, 

it will be the affluence term of focus in the multiple regression analysis. 

 The associations between the affluence variables have moderately strong 

positive correlations with patents per capita at 0.48 for income per capita and 0.42 for 

median housing values.  This implies that counties that are two standard deviations 

above the average in income per capita will be roughly one standard deviation above the 

average for patents per capita. 

 Affluence and climate have interesting associations.  All of the associations are 

negative, with the most notable being between median housing value and summer 

climate.  This correlation is moderate to strong at -0.38.  This implies that housing values 

tend to be higher the milder a climate is in the summer time.  Income per capita has 

similar results, however not as strong, with a -0.24 correlation with summer.  The 

associations of the affluence variables with winter climate both have low negative 

correlations.    

 

Technology 

 Technology, measured as patents per capita, has a low negative correlation with 

climate.  These figures are -0.09 for winter climate and -0.13 for summer climate.  These 

are the only explanatory variable correlations yet to be analyzed for patents per capita. 
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Climate 

 All correlations between climate and other explanatory variables have been 

examined except for the association with each other.  Winter climate has a strong 

positive correlation with summer climate at 0.72.  This finding is expected as both 

climate variables measure average county temperatures, just at opposing seasons.  

However unlike the affluence variables, which are also strongly correlated, each climate 

variable can still offer unique input to the multiple regression analysis because they may 

still have differing relationships with the response variables.  Nevertheless, due to high 

correlation, these two variables are not used in the same multiple regression models, 

leaving me to conduct a staggered regression method, substituting one climate variable 

for the other in multiple regression models. 

B. Bivariate Analysis 
 
 
 The natural log of both the response variables and explanatory variables are 

used in the analysis of the bivariate relationships.  This was done to comply with OLS 

regression requirements of normalization.  In addition, logging both sides obtains perfect 

elasticity in the bivariate relationships thus making the relationships easier to analyze 

and interpret.   

 

 

Population and CO2 emissions 

 

 This section analyzes the bivariate relationships between the two population variables, 

population and percentage of independents in the population, with the five response 

variables. 
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Table 5: Bivariate Regression Statistics for Population with 
Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 0.93 0.01 0.00 0.90 0.95 5895 0.65 0.65 

Commercial 1.14 0.01 0.00 1.11 1.16 11262 0.78 0.78 

Industrial* 1.30 0.03 0.00 1.24 1.36 1747 0.36 0.36 

Residential 1.03 0.01 0.00 1.01 1.05 11159 0.78 0.78 

Mobile 0.86 0.01 0.00 0.85 0.87 26275 0.89 0.89 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 

 

 Population has the closest fitting linear relationship with CO2 emissions of any 

other explanatory variable.  A 1% increase in population yields a 0.93% increase in total 

CO2 emissions, producing an almost perfectly proportional relationship.  This relationship 

is rather approximate as the lower and upper confidence intervals, 0.90 and 0.95 

respectively, have little variance from the coefficient.  This relationship is also statistically 

significant, as is the relationship of population with all sectors of CO2 emissions.  

Population serves as an exceptional explanatory variable, explaining 65% of the 

variance for total CO2 emissions. 

 Population has varying effects on the subsectors of CO2 emissions.  It has the 

strongest effect on industrial CO2 emissions, with a 1% increase in population yielding a 

1.30% increase in industrial CO2 emissions.  This is because industrial CO2 is emitted in 

less populated areas, thus giving population more of an effect when more people are 

added.  This concept can be understood by the comparably low variance, 36%, 

population explains of industrial CO2 emissions, compared to the other sectors of CO2 

emissions.  The inverse effect of this can be understood analyzing the relationship of 

population with mobile CO2 emissions.  A 1% increase in population yields a 0.86% 

increase in mobile CO2 emissions, the lowest yield of all of the sectors.  On the flip side, 
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population explains a very large amount of the variance of mobile CO2 emissions at 

89%.  Also noteworthy is the relationship between population and residential CO2 

emissions.  A 1% increase in population yields a 1.03% increase in residential CO2 

emissions, implying an almost perfect linear relationship.   

 The relationship of population and total CO2 emissions is captured spatially in 

Figure 6, illustrating the effects of CO2 emissions when normalized for population.   It is 

interesting to note that population serves as an equalizer for many of the high CO2 

emitting counties.  This can be understood by comparing this map (Figure 6) to the 

univariate map of total CO2 emissions (Figure 1).  For example, all of the high CO2 

emitting counties in California seen in Figure 1 can be explained away by population as 

seen in Figure 6. 

 The relationship between population and industrial CO2 emissions, as discussed 

above, can best be understood in this bivariate map, as many of the high industrial CO2 

emitting counties are captured in Figure 6.  This is because industrial CO2 emissions 

typically take place in less densely populated areas.  This effect can be grasped by 

comparing the bivariate map (Figure 6) with the univariate map for industrial CO2 

emissions (Figure 2).  Many of the same high CO2 emitting counties can be captured in 

both maps.  For example, the regions in Southern Texas, West Texas, Southern 

Wyoming, and Southern Louisiana are prominent industrial polluters on both maps. 
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Figure 6 

 



 

 42 

Table 6: Bivariate Regression Statistics for Population of 
Independents with Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 10.49 0.48 0.00 9.55 11.44 472 0.13 0.13 

Commercial 11.92 0.54 0.00 10.86 12.98 487 0.14 0.14 

Industrial* 14.97 0.94 0.00 13.12 16.81 252 0.08 0.07 

Residential 10.26 0.49 0.00 9.29 11.12 430 0.12 0.12 

Mobile 9.63 0.37 0.00 8.89 10.36 661 0.18 0.18 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 

 

 The effect of population on CO2 emissions is seemingly greater when population 

is assessed based on percentage of the independent population, measured as the 

percentage of population aged 15-64.  The coefficient values are bigger because the unit 

of measurement is different.  A 1% increase in the percentage of population of 

independents yields a 10.49% increase in total CO2 emissions.  This effect is similar for 

all CO2 sectors, again with the greatest effect on industrial CO2 emissions at 14.97% for 

a 1% increase in percentage of population of independents.  The effect of population of 

independents compared to population size generally appears to have a much greater 

impact on CO2 emissions because those aged 15-64 capture the segment of the 

population that most highly contributes to CO2 emitting behavior.  For example, this 

encompasses the majority of the automotive drivers in the population, greatly 

contributing to mobile CO2 emissions, as well as the majority of the working population, 

accounting for commercial CO2 emissions.  Those under 15 years of age have a 

comparably minimal effect on CO2 emissions, and while some people aged over 64 are 

just as active as independents in CO2 emitting activities, as a whole, the elder population 

does not contribute to CO2 emissions as significantly.   
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 While the population of independents has a greater effect on CO2 emissions than 

population, it does not explain the variance nearly as well.  For total CO2 emissions, the 

population of independents only explains 13.19% of the variance.  The variance is 

similar for all segments of CO2 emissions.  Given that total population serves as a better-

suited population parameter in terms of variance explained, it will be the primary 

population metric used in the multiple regression models.   

 

 

Affluence and CO2 emissions 

 

This section dissects the bivariate relationships between the two affluence variables, 

income per capita and median housing value, with the five response variables. 

 

Table 7: Bivariate Regression Statistics for Income per Capita 
with Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 3.14 0.13 0.00 2.89 3.38 615 0.17 0.17 

Commercial 4.33 0.13 0.00 4.07 4.59 1042 0.25 0.25 

Industrial* 3.68 0.25 0.00 3.18 4.18 211 0.06 0.06 

Residential 4.02 0.12 0.00 3.78 4.25 1102 0.26 0.26 

Mobile 2.98 0.10 0.00 2.79 3.17 958 0.24 0.24 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 

 

 Income per capita has a positive relationship with all sectors of CO2 emissions, 

with total CO2 emissions serving as the median between the five sectors.  A 1% increase 

in income per capita yields a 3.14% increase in total CO2 emissions.  This relationship is 

quite approximate as the 95% confidence interval has little variance, ranging between 
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2.89 and 3.38.  This relationship is also statistically significant with a p-value of 0, as are 

all the bivariate relationships between income per capita and the other sectors of CO2 

emissions.  The variance explained by income per capita differs depending on the sector 

of CO2 emissions, with it explaining 16.54% of total CO2 emissions. 

 The strongest relationship with income per capita is with the residential sector of 

CO2 emissions, explaining 26.18% of the variance, followed closely by the commercial 

sector, explaining 25.13% of the variance.  These two sectors also have the highest 

increases associated with a 1% increase in income per capita, at 4.02% for the 

residential sector and 4.33% for the commercial sector.  This illustrates that an increase 

in income has the greatest effect on CO2 emissions where people live and where people 

work.  Income per capita has the weakest relationship with the industrial CO2 sector, 

explaining just 6.37% of the variance.   

 The relationship between income per capita and total CO2 emissions is captured 

spatially in Figure 7, illustrating the effects of CO2 emissions when normalized for 

income per capita.  The spatial distribution of this relationship closely reflects the 

distribution found in the univariate total CO2 emissions map (Figure 1).  When adjusting 

for income per capita, there are low concentrations of CO2 emissions clustered in the 

Midwest, particularly in North Dakota, South Dakota, Nebraska, Iowa, and Kansas, and 

in the Northwestern states of Idaho and Montana.   
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Figure 7 
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 The areas highly concentrated in CO2 emissions, when controlled for income per 

capita, are accentuated by counties either high in population or high in industrial CO2 

emissions.  This explains the latter because income per capita accounts for a minimal 

amount of variance for the CO2 emissions in the industrial sector.  Additionally the 

relationship between population and income may not be strong, accounting for some of 

the high CO2 emitting counties high in population even when normalizing for income per 

capita.  These regions are clustered in the densely populated areas of Northwestern 

Washington, Southern California, in Southeast Texas represented by the Dallas-Fort 

Worth, Houston, Austin triangle, in Central/Southern Florida, the greater Chicago area, 

the greater Detroit area, the greater Cleveland and Pittsburg area, and along the North 

East Coast represented by the area between the cities of Boston, New York, 

Philadelphia, and Washington D.C.  Industrial CO2 emissions may also account for some 

of these areas, and are more predominantly found in Southern Texas, Northern Arizona 

into Northwestern New Mexico, and in Southern Wyoming. 

 

Table 8: Bivariate Regression Statistics for Median Housing 
Values with Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 1.69 0.06 0.00 1.57 1.81 741 0.19 0.19 

Commercial 2.44 0.06 0.00 2.31 2.56 1461 0.32 0.32 

Industrial* 1.69 0.13 0.00 1.44 1.94 177 0.05 0.05 

Residential 2.24 0.06 0.00 2.13 2.35 1511 0.33 0.33 

Mobile 1.75 0.05 0.00 1.66 1.84 1504 0.33 0.33 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 
 

 

 The relationships for the other affluence variable, median housing value, with 

CO2 emissions is similar to the relationships found with income per capita and CO2 
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emissions.  The relationships are all positive and all statistically significant.  The increase 

in CO2 emissions for a 1% increase in median housing value is not as great compared to 

income per capita, but more variance is explained in these bivariate models.  For 

example, a 1% increase in median housing value yields a 1.69% increase in total CO2 

emissions, with 19.27% of the variance explained. 

 The residential and commercial sectors also have the strongest relationships and 

most variance explained by median housing values, similar to that of income per capita.  

A 1% increase in median housing values yields a 2.24% increase in residential CO2 

emissions and a 2.44% increase in commercial CO2 emissions with 32.73% and 31.99% 

variance explained respectively.  The weakest relationship is also with the industrial 

sector, explaining just 5.35% of the variance.   

 Spatially, the patterns for CO2 emissions when normalized by median housing 

value (Figure 8) are similar to those when normalized by income per capita.  This is 

illustrated by comparing the two maps (Figures 7 and 8).  The regions of low and high 

CO2 emissions are approximately the same (see above in the income per capita section 

for precise regional specifications).   

 The bivariate relationships between both affluence variables with CO2 emissions 

are so similar due to the high association between income per capita and median 

housing values.  As previously mentioned, they have a very strong positive correlation at 

0.82.  This indicates that using both of these affluence explanatory variables may not 

contribute much more to a multiple regression analysis than using just one of them.  As 

previously mentioned, income per capita will serve as the primary affluence metric in the 

multiple regression models. 
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Figure 8 
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Technology and CO2 Emissions 

 

Technology is measured via the variable patents per capita.  The following section 

provides statistics and analysis of the bivariate relationship between patents per capita 

and the five sectors of CO2 emissions for the continental US. 

 

Table 9: Bivariate Regression Statistics for Patents per Capita* 
with Response Variables  

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 0.13 0.00 0.00 0.12 0.14 813 0.21 0.21 

Commercial 0.17 0.00 0.00 0.16 0.18 1240 0.29 0.29 

Industrial* 0.18 0.00 0.00 0.17 0.20 397 0.11 0.11 

Residential 0.16 0.00 0.00 0.15 0.16 1233 0.28 0.28 

Mobile 0.12 0.00 0.00 0.11 0.13 1216 0.28 0.28 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for these variables was taken as the variable + 1e-10 to account for values of 0 in the recorded 
data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 

 

 Patents per capita have a positive relationship with all sectors of CO2 emissions.  

All of these bivariate relationships are also statistically significant, signified by a p-value 

of 0 for all sectors of CO2 emissions.   While all of these relationships are positive, the 

strength of the relationship is rather small compared to the other explanatory variables 

examined.  A 1% increase in patents per capita yields a 0.13% increase in total CO2 

emissions.  Three of the four subsectors have higher yields than this with the industrial 

sector having the greatest yield with a 0.18% increase for every 1% increase in patents 

per capita.  The commercial sector follows closely with a 0.17% increase for every 1% 

increase in patents per capita, with the mobile sector having the smallest increase at 

0.12%.   
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 The commercial sector has the greatest correlation with patents per capita, an 

expected outcome.  Patents typically take place in areas highly concentrated in 

business, which is represented by the commercial sector.  This attributes to the 

commercial sector having one of the highest yields with a 0.17% increase for every 1% 

increase in patents per capita.  While this figure is slightly smaller than the industrial 

sector, patents per capita explain much more variance for the commercial sector.  

Patents per capita explain 28.53% of variance for the commercial sector compared to 

just 11.30% for the industrial sector.  These figures can be compared to 20.74%: the 

variance explained by patents per capita for total CO2 emissions.   

 

 

Climate and CO2 Emissions 

 

Climate is operationalized via two variables for this study.  The variables are mean 

temperatures for the month of January and mean temperatures for the month of July 

over the climate period of 1940-1971, representing winter climate and summer climate 

respectively.  The bivariate relationship between winter climate and CO2 emissions will 

be analyzed first. 
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Table 10: Bivariate Regression Statistics for Winter Climate with 
Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 0.76 0.06 0.00 0.65 0.88 163 0.05 0.05 

Commercial -0.04 0.07 0.59 -0.17 0.10 0.29 0.00 0.00 

Industrial* 1.70 0.11 0.00 1.48 1.91 230 0.07 0.07 

Residential -0.16 0.06 0.01 -0.28 -0.04 6.57 0.00 0.00 

Mobile 0.61 0.05 0.00 0.52 0.70 164 0.05 0.05 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 

 

 The statistics in this relationship present two new properties in the bivariate 

relationship between an explanatory variable and the response variables.  The first to be 

addressed is that not all of the relationships here are statistically significant.  The 

bivariate relationship between winter climate and commercial CO2 emissions has a P-

value of 0.59, therefore deeming it not statistically significant.  This is the only sector of 

CO2 emissions that is not statistically significant; however, not the only one above a P-

value of 0.  Residential CO2 emissions have a P-value of 0.01, although still significant at 

a 99% confidence interval.  The other sectors, including total CO2 emissions, have a P-

value of 0, thus indicating statistical significance.   

 The second new finding with this bivariate analysis is that not all sectors of CO2 

emissions have a positive relationship with winter climate.  Both the residential and 

commercial sectors have a negative relationship with winter climate.  Because 

residential CO2 emissions is statistically significant, it will serve as the focus in this 

particular area of the analysis.  A 1% increase in January mean temperature yields a 

3.64% decrease in residential CO2 emissions.  This shows that as winter temperatures 

increase, CO2 emissions will actually decrease in the residential sector.  This is probably 

due to the fact that less energy will be needed to heat homes in the winter season as 
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temperatures rise, resulting in less CO2 emitted.  The relationship between winter 

climate and residential CO2 emissions can be understood as an unintended benefit of 

global warming, an increase in temperatures caused by increased CO2 emissions 

worldwide, can have an inverse effect on the residential sector, actually causing a 

reduction in overall CO2 emissions.  This is quite interesting and will be investigated 

further in the multiple regression analysis.   

 The other sectors of interest, industrial, mobile, and particularly total CO2 

emissions, all have positive relationships with winter climate.  The positive relationship 

with total CO2 emissions is worth noting because even though residential CO2 emissions 

may decrease with increased winter temperatures, the overall effect will still increase 

total CO2 emissions.  The precise relationship yields a 0.76% increase in total CO2 

emissions for a 1% increase in January mean temperatures.  The greatest positive effect 

of winter climate is on the industrial sector, yielding a 1.70% increase in industrial CO2 

emissions for a 1% increase in January mean temperatures.    

 Winter climate also explains more variance in the industrial sector than any other 

sector at 6.88%.  About 5% of variance is explained in total CO2 emissions as well as 

mobile CO2 emissions.  Winter climate explains minimal variance in the residential and 

commercial sectors of CO2 emissions at 0.02% and approximately 0.00% respectively.  

This is also important to note because while both of these sectors have a unique 

relationship with winter climate, a negative relationship, a negligible amount of variance 

is actually explained, minimizing the importance of these bivariate relationships. 
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Figure 9 
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 Spatially, total CO2 emissions normalized by winter climate (Figure 9), correlate 

very similarly to the univariate map of total CO2 emissions.  This is the case because 

winter climate explains low variance of CO2 emissions, thus predominantly capturing the 

existing patterns of total CO2 emissions without normalization.  These patterns can be 

found in the univariate analysis of total CO2 emissions.  Nevertheless there are unique 

patterns found in Figure 9 that should be noted.  Whereas most of the deviation in the 

map detailing the relationship between total CO2 emissions and winter climate does 

mimic the univariate map of total CO2 emissions (Figure 1), new findings do exist.  

Counties in parts of the Northern US follow trends of increased deviation from mean CO2 

emissions when controlled for winter climate. This is illustrated in the northernmost 

counties of the Midwest into the Northeast, particularly in North Dakota, Northern 

Minnesota, Michigan, Northern New York, Vermont, and New Hampshire.  Counties in 

Northern Montana also follow this trend.  These regions of the country all represent 

counties that have frigid January mean temperatures, correlating to higher energy use in 

the winter, and thus high CO2 emissions when controlling for winter climatic conditions.   

 

Table 11: Bivariate Regression Statistics for Summer Climate 
with Response Variables 

 Coef Std 

Error 

P-

Value 

Lower 

CI 

Upper 

CI 

F Test R
2 

Adj. R
2 

Total 2.12 0.40 0.00 1.34 2.90 28.4 0.01 0.01 

Commercial -2.90 0.44 0.00 -3.77 -2.03 42.6 0.01 0.01 

Industrial* 8.03 0.74 0.00 6.58 9.49 118 0.04 0.04 

Residential -3.64 0.40 0.00 -4.42 -2.85 82.3 0.03 0.03 

Mobile 0.67 0.32 0.03 0.05 1.30 4.50 0.00 0.00 

These statistics reflect the natural log of all variables, both response and explanatory. 
*The log for this variable was taken as the variable + 1e-10 to account for values of 0 in the recorded data. 
The Upper and Lower CI reflect a 95% Confidence Interval. 
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 Summer climate represents the second explanatory variable for climate.  Overall 

many of the trends found in the bivariate relationship between CO2 emissions and winter 

climate are similar to those with summer climate.  These will be discussed below.  

However, unlike winter climate, the summer climate variable has a statistically significant 

relationship with all sectors of CO2 emissions for a 95% confidence interval.  Mobile CO2 

emissions represents the only sector that does not align with a 99% confidence interval 

due to a p-value of 0.034.   

 Akin to the bivariate relationship with winter climate, the commercial and 

residential sectors of CO2 have a negative relationship with summer climate.  A 1% 

increase in July mean temperatures corresponds to a 3.64% decrease in residential CO2 

emissions and a 2.90% decrease in commercial CO2 emissions.  These are the only two 

sectors that have a negative relationship with summer climate.  This finding in these 

bivariate relationships negates my hypothesis that increased summer temperatures 

should increase residential and commercial CO2 emissions because higher summer 

temperatures should induce higher energy use, thus emitting more CO2 into the 

atmosphere.  Explanation for a decrease in CO2 emissions in these sectors in correlation 

with higher summer temperatures needs to be examined further. 

 The other sectors of CO2 emissions, including total CO2 emissions have a 

positive relationship with summer climate.  A 1% increase in July mean temperatures 

yields a 2.12% increase in total CO2 emissions.  The largest impact of July mean 

temperatures, similar to that of January mean temperatures, is on the industrial sector.  

A 1% increase in July mean temperatures yields an 8.03% increase in industrial CO2 

emissions. 

 Variance for CO2 emissions explained by summer climatic conditions is not 

nearly as strong as the variance explained by winter climatic conditions, which was not 

that significant in itself.  Overall, summer climate explain 0.91% of total CO2 emissions.  
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Variance explained is slightly higher for three of the four subsectors, with mobile CO2 

emissions being the outcast at only 0.14% of variance explained by summer climate.   

Summer climate explains the most variance for the industrial sector at 3.65%, followed 

by the residential sector at 2.58%, and the commercial sector at 1.35%.   

 Spatially, adjusting for summer climatic conditions is negligible.  Total CO2 

emissions normalized for summer climate (Figure 10) illustrates very minimal difference 

to the univariate map of total CO2 emissions.  There are not any significant differences 

that can be noted spatially.  This is due to the fact of the low variance of CO2 emissions 

explained by summer climatic conditions, thus simply capturing the same patterns in the 

univariate map of CO2 emissions. 
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Figure 10 
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V. Multiple Regression Results 
 
 
 Ordinary least squares (OLS) regression is used for the following multiple 

regression models.  The natural log of both the response and explanatory variables are 

taken to comply with issues of normality in the distribution.  The explanatory variables 

are independent of the response variables creating exogenous results.  Furthermore, all 

models use a maximum of one variable to capture each parameter (population, 

affluence, climate) to reduce multicollinearity.  For example, this is why the climate 

variables are used in a staggered effect for the best-fit models.  Finally, the error terms 

in the below models were tested for auto-correlation via the Durbin-Watson test and 

evaluated for constant variance, producing homoscedastic results. 

 The multiple regression analyses begin with the most basic STIRPAT 

specifications, using one measure of population and one measure of affluence as the 

independent variables.  Total county population and income per capita are the metrics 

for population and affluence respectively for this first regression.  These are regressed 

with the five dependent variables creating five models for table 12.   
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Table 12: Basic STIRPAT Model  

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2 

 (log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Population (log) 0.93 *** 0.01 1.09 *** 0.01 1.37 *** 0.04 0.98 *** 0.01 0.85 *** 0.01 

Income (log) 0.01  0.09 0.66 *** 0.83 -0.95 *** 0.24 0.72 *** 0.08 0.093 * 0.04 

_Constant -11.65 *** 0.85 -23.29 *** 0.75 -9.62 *** 2.19 -21.87 *** 0.68 -12.52 *** 0.4 

F Test 2947 5778 885 5787 13157 

R
2 

0.66 0.79 0.36 0.79 0.89 

Adj. R
2 

0.66 0.79 0.36 0.79 0.89 

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed) 
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 In all five models, total county population is a positive determinant as well as 

statistically significant.  Also in each model, the value of the population coefficient has 

near perfect elasticity, indicating a proportional relationship between total county 

population and CO2 emissions.  Controlling for income, population has the greatest 

effect in the industrial sector of CO2, similar to the findings in the bivariate relationship 

between population and CO2 emissions.   

 Interestingly, affluence, measured as income per capita, is a significant predictor 

for all models of CO2 accept for total CO2 emissions.  Where income per capita is 

significant, the relationship with CO2 emissions depended greatly upon sector.  Income 

per capita has positive relationships with commercial, residential, and mobile carbon 

emissions, having the greatest effect on commercial CO2 emissions.  A 10 percent 

increase in income per capita results in an 8.2% increase in commercial CO2 emissions.  

Meanwhile, the relationship between industrial CO2 emissions and income produces a 

near perfectly negative unit elasticity.  A 10% increase in income per capita yields a 

9.5% decrease in industrial carbon emissions.  These findings suggest that as counties 

become more affluent, there is less dependency on the industrial sector in favor of the 

commercial sector for occupation.   

 The variance explained by these models again varies by sector.  Industrial CO2 

represents the low end at 36.3% percent, suggesting that additional explanatory 

variables need to be taken into account to clarify the relationship between industrial 

carbon emissions and anthropogenic variables.  The variance explained by the other 

models were more successful ranging from 65.5% for total CO2 emissions, to 78% for 

both commercial and residential CO2 emissions, to 89% for mobile CO2 emissions.  

Interestingly the variance explained in these models corresponds precisely to the 

variance explained in the bivariate relationships between population and CO2 emissions, 

suggesting that population is the primary determinant for CO2 emissions.   
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 The best-fit regression model analyzes one metric each for population and 

affluence, with staggered climate variables, all in an effort to reduce mulitcollinearity in 

the model.  Total county population is used for the population term as it explains much 

more variance than the percentage of population of independents.  (A model with the 

percentage of population of independents as the P term can be found in Appendix A.)  

Income per capita is used for the affluence term as it captures a similar effect as median 

housing per capita, but is more consistent with previous STIRPAT models.  (A model 

with the median housing value per capita as the A term can be found in Appendix B).  

The quadratic of income per capita is introduced in this model to test for an 

Environmental Kuznets Curve for income.  There is not a technology variable in this 

model as patents per capita did not do an adequate job in capturing the technology term 

due to an uneven distribution of patents in US counties with many counties not issuing 

any patents whatsoever.  Furthermore the patents per capita term is not statistically 

significant for any of the response variables in multiple regression.  The results using 

patents per capita as the T term can be found in Appendix C. 

 The final variable for this model is climate, represented by January mean 

temperatures, to capture winter climate.  July mean temperatures, representing summer 

climate, are also of interest and will be assessed using a staggered logic with January 

mean temperatures.  Staggering the climate variables allows for both variables to be 

analyzed in this model, without any corruption due to mulitcollinearity.  This method will 

be further explained in the climate section of this analysis.  The above independent 

variables are regressed with the five dependent variables of CO2 emissions, creating five 

models for tables 13 and 14.  The staggered models produce very similar results for the 

other explanatory variables, so for purposes of efficiency and avoiding redundancy, table 

13 will be the primary focus of analysis.     
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Table 13: Best-Fit STIRPAT Model with Winter Climate 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2  

(log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Population (log) 0.91 *** 0.02 1.17 *** 0.01 1.30 *** 0.04 1.07 *** 0.01 0.84 *** 0.01 

Income (log) 0.20 * 0.10 0.20 * 0.08 -0.01  0.24 0.24 ** 0.07 0.17 *** 0.04 

Income
2
 (log) -0.80 *** 0.20 -0.12  0.16 -5.72 *** 0.49 -0.44 ** 0.14 -0.13  0.09 

Winter Climate (log) 0.24 *** 0.04 -0.74 *** 0.03 0.98 *** 0.09 -0.79 *** 0.03 0.11 *** 0.02 

_Constant -12.11 *** 0.17 -15.21 *** 0.14 -21.21 *** 0.41 -13.15 *** 0.12 -11.86 *** 0.07 

F Test 1511 3573 534 3963 6677 

R
2 

0.66 0.82 0.41 0.84 0.90 

Adj. R
2 

0.66 0.82 0.41 0.84 0.90 

Income (log) and Income
2
 (log) are centered to reduce collinearity. 

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed) 
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Table 14: Best-Fit STIRPAT Model with Summer Climate 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2  

(log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Population (log) 0.91 *** 0.01 1.17 *** 0.01 1.34 *** 0.04 1.02 *** 0.01 0.85 *** 0.01 

Income (log) 0.29 ** 0.10 0.33 *** 0.08 0.26  0.24 0.31 *** 0.07 0.16 *** 0.04 

Income
2
 (log) -0.73 *** 0.19 -0.33 * 0.17 -5.45 *** 0.48 -0.66 ** 0.15 -0.10  0.09 

Summer Climate (log) 0.24 *** 0.24 -3.01 *** 0.21 7.64 *** 0.60 -3.74 *** 0.18 0.54 *** 0.11 

_Constant -20.18 *** 1.03 -4.15 *** 0.89 -51.32 *** 2.57 0.88  0.78 -13.88 *** 0.46 

F Test 1534 3138 555 3409 6636 

R
2 

0.66 0.80 0.42 0.81 0.90 

Adj. R
2 

0.66 0.80 0.42 0.81 0.90 

Income (log) and Income
2
 (log) are centered to reduce collinearity. 

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed) 
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 Total CO2 and residential CO2 emissions represent the only models where all of 

the explanatory variables and the constant are statistically significant.  However all of the 

explanatory variables and the constant are significant in the models for commercial CO2 

and mobile CO2 with the exception of the quadratic for income per capita.   

 In all five models, total county population is a positive determinant as well as 

statistically significant at the alpha level 0.001.  Also in each model, the value of the 

population coefficient is near perfect elasticity, indicating a proportional relationship 

between total county population and CO2 emissions.  A 10% increase in total population 

yields a 9% increase in total CO2 emissions, holding all other variables constant.  The 

almost perfect elasticity is best represented in the residential sector of CO2 where a 10% 

increase in total population yields a 10.7% increase in CO2, holding all other variables 

constant.  Controlling for the other variables, population has the greatest effect in the 

industrial sector of CO2, similar to the findings in the bivariate relationship between 

population and CO2 emissions.   

 Affluence, measured as income per capita, is a significant predictor for all models 

of CO2 except for industrial CO2 emissions.  Where income per capita is significant, the 

relationship with CO2 emissions is fairly stable with approximately a 2% increase in CO2 

emissions for a 10% increase in income per capita, holding all other variables constant.  

This is best represented in the model for total CO2 emissions where a 10% increase in 

income per capita yields a 2.01% increase in CO2 emissions, holding all other variables 

constant.  The low end is represented in mobile CO2 emissions where a 10% increase in 

income per capita yields a 1.7% increase in CO2 emissions, holding all other variables 

constant.  Affluence has the greatest effect in the residential sector of CO2 emissions 

where a 10% increase income per capita yields a 2.4% increase in CO2 emissions 

holding all other variables constant, suggesting that as people make more money, more 
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funds are invested in their homes, resulting in investments that contribute to additional 

carbon emissions. 

 To test whether there is an EKC for affluence, the quadratic of income per capita 

is included in the models.  This variable is statistically significant and negative for total 

CO2 emissions and the sectors of industrial CO2 and residential CO2 suggesting an EKC 

in these models.  However since income per capita itself is not significant in the 

industrial sector of CO2, this model cannot have an EKC.  Nevertheless, the findings for 

the two sectors that do show an EKC are startling due to the potential attainability in 

income.  The maximum dollar amount of the curve for total CO2 emissions is only 

$19,399, just $1,910 above the mean of income per capita.  The lower and upper bound 

for this, according to a 95% confidence interval, is $17,181 and $27,390 respectively.  

Therefore even taking a conservative estimate, using the upper bound of the interval, an 

income is still attainable that will mark a decrease in CO2 emissions once an income of 

$27,390 is reached.   

 The EKC for affluence in the residential sector of CO2 emissions tells a different 

story.  The max of the curve for this sector is $22,467, which is $4,978 above the mean 

for income per capita.  However there is more variance with regard to the range for this 

sector when taking a 95% confidence interval.  The lower bound is at $18,408, whereas 

the upper bound is at $52,241.  If taking a conservative estimate again using the upper 

bound, the income per capita is beyond reach as it is above the maximum county 

income per capita of $44,962.  Furthermore, the fact that an EKC exists for income with 

regards to the residential sector illustrates that above a certain income level CO2 does 

decline, suggesting that people may make their homes more energy efficient when a 

certain income level is attained.    
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Table 15: Maximum Dollar Amount of Income per Capita for the Environmental Kuznets Curve 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 (log) 

Model 3 
Industrial CO2 (log) 

 Lower Coef Upper Lower Coef Upper Lower Coef Upper 

Table 13 Figures 17180.55 19398.71 27390.41 log(income
2
) not significant log(income) not significant 

Table 14 Figures 17864.27 20823.85 33815.76 19315.3 27858.35 3.41E+17 log(income) not significant 

 

 Model 4 
Residential CO2 (log) 

Model 5 
Mobile CO2 (log) 

 

 Lower Coef Upper Lower Coef Upper 

Table 13 Figures 18407.59 22466.93 52241.39 log(income
2
) not significant 

Table 14 Figures 18669.87 21613.01 31258.25 log(income
2
) not significant 

 
Table 13 figures are in accordance with the best-fit model using the winter climate variable 
Table 14 figures are in accordance with the best-fit model using the summer climate variable 
Coef represents the maximum dollar amount using the coefficients for income and income

2 

Lower and Upper represent the lower and upper bounds of the 95% confidence interval for income and income
2
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 The winter climate variable, January mean temperatures, has an interesting 

effect on CO2 emissions.  It is significant at the alpha level 0.001 in all of the models; 

however, does not have a positive relationship with all of the sectors.  Similar to the 

bivariate relationship between climate and CO2 emissions, there is a negative 

relationship between winter climate and the sectors of commercial and residential CO2.  

For example, a 10% increase in January mean temperatures yields a 7.4% and 7.9% 

decrease for the commercial and residential sectors respectively, holding all other 

variables constant.  This illustrates that as winter temperatures increase, CO2 emissions 

will actually decrease for these two sectors.  This reduction in CO2 emissions is most 

likely due to less energy being needed to heat homes and commercial buildings in the 

winter as temperatures rise, thus equating to less CO2 being emitted in these sectors.  

The analysis done in the bivariate relationship holds true for this relationship in multiple 

regression.  Therefore, the relationship between January mean temperatures and the 

sectors of commercial and residential CO2 emissions can be seen as an unexpected 

result because global warming can actually have an inverse effect on these two sectors, 

causing a reduction in CO2 emissions for the commercial and residential sectors. 

 Nevertheless, winter climate still has a positive relationship with total CO2 

emissions.  A 10% increase in January mean temperatures yields a 2.4% increase in 

total CO2 emissions holding all other variables constant.  Therefore, even though the 

commercial and residential sectors of CO2 have a negative relationship with winter 

temperatures, the overall effect is still positive.  The industrial and mobile sectors of CO2 

contribute to this with a 9.6% and 1.1% increase in CO2 emissions for a 10% increase in 

January mean temperatures, holding all other variables constant.  It is interesting to note 

that the relationship between winter climate and the industrial sector of CO2 emissions 

produces a near perfect linear relationship.   
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 Summer climate is regressed in separate models akin to the previous models; 

however, replacing winter climate in an attempt to capture the effect of summer 

temperatures on the different sectors of CO2.  Summer climate could not be added to the 

above models due to issues of collinearity with winter climate.  The confidence intervals 

for the other explanatory variables roughly overlap, indicating that there is a minimal 

effect on these variables when the temperatures are staggered as such.   

 Summer climate is statistically significant at alpha level 0.001 for all of the 

models.  The relationship of the summer temperatures with CO2 emissions are in 

accordance with that of winter temperatures, however to a much greater effect.  Summer 

climate has a negative relationship with the sectors of commercial and residential CO2 

emissions and are positive for total, industrial, and mobile CO2 emissions, just as with 

the winter climate variable.  However the effects are amplified.  A 10% increase in 

summer temperatures results in a 30.1% and 37.4% decrease in CO2 emissions for the 

commercial and residential sectors, holding all other variables constant.  This 

relationship is quite intriguing as I expected a positive relationship; suspecting more 

energy use in the home and commercial buildings with increased summer temperatures.  

 A plausible explanation for this is that CO2 in the residential and commercial 

sectors primarily measure emissions related to heating as specified in the collection 

measurement methods by Gurney et al. (2009).  Therefore, the effect of summer climate 

on the residential and commercial sectors may not accurately represent the energy 

intensity it takes to cool homes and businesses if the energy from cooling units is not 

aptly represented in the measurement techniques for these two sectors.  Instead, the 

additional energy, as well as the increased CO2 emissions, it takes to cool homes and 

businesses in warmer climates may be represented in the utility sector.  This is 

conceivable because total CO2 does increase with an increase in summer climate, which 

encompasses the utility sector, the largest sector represented in total CO2 emissions.  
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 Results show that rising summer temperatures increase total CO2 emissions.  A 

10% increase in July mean temperatures yields a 20.3% increase in total CO2 

emissions, holding all other variables constant, producing an effect of over two to one.  

This is particularly important as this relationship implies a spiral effect in which 

increasing temperatures, partly due to global warming, further increases CO2 emissions.   

 The positive relationship between summer climate and CO2 emissions is best 

captured in the industrial sector of CO2.  A 10% increase in July mean temperatures 

yields a 76.4% increase in CO2 emissions for the industrial sector, holding all other 

variables constant.  This produces an effect that is greater than seven to one.  This 

relationship illustrates the high-energy concentrations that go into the industrial sector, 

which are further amplified when temperature is increased, particularly in the summer.   

 The variance explained by these models again varies by sector.  Industrial CO2 

represents the low end at 40.1% percent, suggesting that additional explanatory 

variables need to be taken into account to clarify the relationship between industrial 

carbon emissions and anthropogenic variables.  The variance explained by the other 

models were more successful ranging from 66.1% for total CO2 emissions, to 82.2% for 

the commercial sector, 83.3% for the residential sector, to 89.6% for mobile CO2 

emissions.   

 A technology term was not included in the best-fit models due to insignificant 

results among other reasons that are to be mentioned in the conclusion section.  

Nevertheless, technology is still operationalized for this thesis, as the residual, similar to 

initial STIRPAT models (Dietz and Rosa 1997).  The new prediction equation for the 

best-fit regression models can be expressed as follows: 

 

log(Ii) = log(a) + b*log(Pi) + c*log(Ai) + d*log(A2
i) + f*log(Ci) + log(ei) 
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The T term is no longer needed in the model as it now represents the error term, or the 

residual.  T now represents what is left over in the model unexplained by the predictors: 

the explanatory variables of population, affluence, and climatic conditions.  This residual 

can represent a multitude of variables.  Technology as the residual still gives important 

insight to the best-fit regression models.  It can be understood as the observed value of 

CO2 emissions minus the predicted value of CO2 emissions, using the above equation to 

solve for the predicted value.  The observed value minus the predicted value represents 

the net effect of technology.  A spatial depiction of this can be seen in Figure 11.  This 

map is taken as the residuals for Total CO2 emissions. 

 The counties in shades of brown represent the units in which the observed value 

is more than the predicted value.  These counties have a positive residual equating to 

net negative technology, or brown technology.  On the other hand, there are counties 

with a negative residual in technology, equating to net positive technology or green 

technology.  This is represented spatially in Figure 11 by those counties in green, which 

have a lower observed value of CO2 than predicted.  Net technology, both positive and 

negative, is made up of variables outside of the predictors in the best-fit models, 

unexplained by population, affluence, and climate.      

 The reasons for net positive or negative technology are multifaceted and can 

vary from county to county.  Furthermore, the reasons are unknown.  The only thing that 

is known is that brown or green technology cannot be explained by population, 

affluence, or climatic conditions.  Nevertheless, taking an in-depth analysis of individual 

counties with net positive or net negative technology can give insight into possible 

explanations that go unaccounted for in the best-fit models. 
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Figure 11 
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 An example of a county with a large net negative technology is Loving County, 

TX.  Its observed value of CO2 is much larger than its predicted value.  In fact, Loving 

County has the second highest residual of any county in this study at 5.12.  This is much 

more than the model predicts for total CO2 emissions.  The reasons for this again can 

vary but taking a closer look at this case can give insight into the reasons for its brown 

technology.  For example, Loving County’s economy is based almost entirely on oil and 

natural gas drilling.  This means that Loving County produces much more utility CO2, the 

largest contributor to total CO2, than most counties.  This assists in explaining why 

Loving County’s observed value is so much higher that it’s observed value of CO2.   

 A final example of the possible explanations of net technology can be understood 

using the example of Poquoson City County, VA.  Poquoson City County represents a 

county with green technology.  Its observed value of CO2 is much less than its predicted 

value.  This county has the second lowest residual of any county in this study with a 

residual of -1.73.  Once again, the precise reasons for its low residual are unknown but 

can be speculated upon by understanding the intricacies of this specific county.  For 

example, Poquoson City County is a city that sits on a peninsula on the East Coast of 

Virginia.  Its economy is heavily reliant on its seafood industry, however this industry is 

only seasonal.  The seasonality of their economy is key to understanding their net 

positive technology.  The prediction equation is predicting CO2 over the course of an 

entire year, however this county only operates at its full CO2 emitting capacity during its 

seafood season, or roughly half of the year.  Therefore their observed value is less than 

their predicted value because the prediction equation is not adjusting for seasonality with 

respect to CO2 emissions.    
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VI. Conclusions 
 
 
 The rapid increase in CO2 emissions has caused serious concern among 

policymakers (Shi 2003).  Analyzing varying techniques of the STIRPAT model in 

assessing CO2 emissions has paved a path for addressing CO2 emissions at a different 

scale.  The STIRPAT model provides a very proficient and useful method to analyze 

anthropogenic forces on varying environmental threats, particularly that of CO2 

emissions and thus effects on global warming.  The greenhouse effect may be a global 

phenomenon but reduction of CO2 and the costs of technologies involved needs to be 

taken on by each country (Fan et al. 2006).  Breaking down and assessing CO2 

emissions on a smaller spatial scale assists in understanding this phenomenon at a local 

level.  Furthermore, efforts to mitigate or abate global warming will importantly take place 

at the local scale (Angel et al. 1998). 

 The aim of this thesis was multifaceted, with the primary focus on downscaling 

the STIRPAT model.  My analysis used all counties (3108 as of 2000) in the contiguous 

US to create a model at the local level to test the explanatory efficacy of the STIRPAT 

model.  Population, affluence, and technology are all driving forces at the local level.  In 

addition, I have sectored out the response variable, CO2, into total CO2 emissions with 

four subsectors to more accurately assess the relationship between the explanatory 

variables with multiple sectors of CO2 emissions.  A final contribution of this thesis was 

modifying the explanatory variables in the STIRPAT model to include a climate variable, 

a technology variable, an additional affluence variable, and a quadratic term for income.  
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The quadratic term was added to assess if there is an EKC effect of income per capita at 

the local level for any of the sectors of CO2 emissions. 

 The optimal regression models for this research did not incorporate all of the 

explanatory variables made available, primarily due to problems of mulitcollinearity, 

although proficient models were produced for analysis.  The best-fit model consists of 

total population, income per capita, the quadratic of income per capita, and a staggering 

of the winter and summer climate variables regressed with the five sectors of CO2 

emissions. 

 This thesis shows that population is a key driving force for CO2 emissions at the 

local level.  Population is significant for all regressions and has the greatest effect on 

CO2 emissions of all of the explanatory variables.  The relationship is almost perfectly 

linear as population yields approximately a 1% increase in CO2 for every 1% increase in 

population, with the highest yield at 1.3% in the industrial sector of CO2, holding all other 

variables constant.  The results for the population term, having a near linear relationship 

with CO2 emissions, are consistent with STIRPAT findings at the global level (Dietz and 

Rosa 1997; York et al. 2003a; York et al. 2003b; York et al. 2003c), as well as findings at 

the local level with smaller samples (DeHart and Soule 2000; Soule and DeHart 1998).   

 These results also closely align with my hypothesis that population will have a 

roughly proportional relationship with CO2 emissions.  However, I expected the 

relationships to be greatest in the residential and mobile sector, whereas it was the 

greatest in the industrial sector.  A plausible explanation for this is that counties high in 

industrial CO2 correspond to areas that are low in population.  Whereas the other 

sectors, mobile, residential, and commercial, all correlate to areas high in population.  

Therefore an increase in population will have a greater impact on industrial CO2 because 

a 1% increase in population for this sector is represented by a smaller amount of people, 

thus increasing the variability of a percentage increase. 
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 The results of this thesis do not contend that each person in the US contributes 

equally to CO2 emissions, but that each human has some impact on the environment, 

contingent on additional factors.  Nevertheless, given that CO2 emissions are principally 

driven by population growth, with an overall proportional relationship between population 

and CO2 emissions, the US should not be entirely complacent about population growth. 

 Affluence, measured as income per capita, was significant for all sectors of CO2 

at the local level with the exception of the industrial sector.  For the remaining sectors, 

increases in income per capita consistently led to increasing CO2 emissions, although 

not at a proportional rate.  Across significant sectors, affluence consistently yielded 

approximately a 2% increase in CO2 emissions for a 10% increase in income per capita, 

holding all other variables constant.  Income per capita had the greatest effect on the 

residential sector of CO2, yielding a 2.4% increase in CO2 for a 10% increase in income 

per capita, holding all other variables constant.  The results for the affluence term in 

relation to total CO2 are significant and positive, consistent with results for global 

STIRPAT models; however, the effect is much less at the local level for income per 

capita compared to a more proportional relationship found between GDP per capita and 

CO2 emissions at the global level (Dietz and Rosa 1997; Fan et al. 2006; Shi 2003; York 

et al. 2003a; York et al. 2003b; York et al. 2003c). 

 These results are consistent with my hypothesis in that affluence has a positive 

relationship with CO2 emissions.  However I did expect the relationship to be greater 

than it is, surmising it would be closer to the relationship found at the global level.  The 

relationship is probably not as strong at the local level because the US represents a 

high-income nation, high in CO2 emissions as well.  Therefore, a further increase in 

income does not have as great of an effect on CO2 emissions as it may in a country that 

has lower income per capita and/or lower total CO2 emissions.  I hypothesize that if this 

model were run at the local level for a low-income nation, income per capita would have 
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a greater observed effect on CO2 emissions.  This is a possible avenue for future 

research using the STIRPAT model at a reduced scale.   

 Also consistent with my hypothesis, affluence has the strongest relationship with 

the residential sector of CO2 emissions.  I stated this to be the case due to an increase in 

income per capita giving people more disposable income to spend in and on their 

homes.  Additional appliances in the home, additions onto homes, or an increase in 

home size all correlate to an increase in energy intensity to power or heat said 

residence.  Therefore this will yield a larger increase in CO2 emissions for the residential 

sector. 

 Including a quadratic of income per capita proved beneficial for this thesis, as it 

was significant and negative for two sectors, residential and total CO2 emissions.  This 

equates to an EKC effect in which CO2 emissions do decrease once a certain level of 

income per capita is attained.  For the residential sector, this income level maxed out at 

$22,467, with the possible range being between $18,408 and $52,241 for a 95% 

confidence interval.  These figures are attainable for some of the population in the US 

illustrating that people can make their homes less CO2 polluting, and thus more energy 

efficient, once a certain level of income is achieved.    

 Of even greater importance is that there is an EKC effect for total CO2 emissions 

at the local level.  This aligns with my hypothesis that CO2 emissions will level off and 

possibly decline for the more affluent counties in the US.  This is also consistent with 

Scholz’s (2006) research at the local level, albeit his study sampled only eighteen 

Japanese cities.  On the contrary, this finding is in disagreement with STIRPAT findings 

at the global level where research revealed that an EKC effect for affluence, measured 

as GDP per capita, is either at an unattainable level (Dietz and Rosa 1997; York et al. 

2003c), or that the curve does not even exist (York et al. 2003a; York et al. 2003b).  The 

EKC effect for total CO2 emissions at the local level begins to decline once an income 
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per capita of $19,399 is reached.  The range for this max is $17,181 to $27,390 for a 

95% confidence interval.  This finding is quite important as it shows that CO2 emissions 

do decline at an attainable income, even using the most conservative estimate of 

$27,390.     

 Based on these findings, modernization can eventually reduce environmental 

impact based on CO2 emissions.  A rise in income per capita can eventually have a 

positive effect, or at least a non-negative effect, on CO2 emissions once a certain 

threshold is attained.  However this threshold may still be too high for most citizens in 

the US to attain, and furthermore may contribute greatly to environmental impact en 

route to achieving said threshold.  Nevertheless these findings are an important 

contribution to analyzing the STIRPAT model at the local level and opens up pathways 

for future research regarding the EKC effect and modernization theory in the US. 

 Climatic conditions, measured as mean January temperatures, representing 

winter climate, and mean July temperatures, representing summer climate, had an 

interesting effect on CO2 emissions.  It is first worth noting again that these two 

variables, being highly correlated, prompted me to analyze regressions in a staggered 

effect so that each of these two variables could still be assessed without implicating the 

other.  Therefore the integrity, as well as the significance, of each variable could be 

preserved.  

 Climate is an important control variable that has typically been left out of other 

STIRPAT analysis (York et al. 2003c).  Furthermore, climate variables have not been 

implemented in the SITRPAT model to this extent before.  I modified the STIRPAT 

model at the local level to include climatic variation because increased temperatures are 

a byproduct of global warming, which is brought on by high CO2 emissions.  This makes 

for a very intriguing relationship regarding climate and CO2 emissions.   
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 Results at the global level show that nations with tropical climates have been 

tested against nations with non-tropical or temperate climates based on latitude, with 

results verifying that climate is significant in affecting CO2 emissions (York et al. 2003a; 

York et al. 2003b; York et al. 2003c).  However, this thesis delves further into climate, 

assessing the trends in seasonal temperature, via winter and summer temperatures, as 

opposed to geographic location.     

 The overall effect is that an increase in mean temperatures in January, or winter 

climate, increases CO2 emissions.  A 10% increase in winter temperatures yields a 2.4% 

increase in total CO2 emissions, with all other variables held constant.  However, 

analyzing winter temperatures by sector, the results show that an increase in winter 

temperatures yield a decrease in CO2 emissions for the commercial and residential 

sector.  This suggests that global warming, for these two sectors, has a positive outcome 

in the winter due to a reduction in energy intensity in the home and in the workplace.   

 These results are somewhat consistent with my hypothesis for winter climatic 

conditions.  I did state that the strongest inverse relationship of winter climate would be 

observed with the residential and commercial sectors of CO2 emissions for the rationale 

listed above.  However I also expected total CO2 emissions, as well as the other two 

sectors in this thesis, to have an inverse relationship for similar reasons.  This was not 

the case as total, industrial, and mobile CO2 emissions have a positive relationship with 

winter climate.  This is an important realization, as increased winter temperatures, a 

possible side effect of global warming, will increase CO2 emissions even further.    

 The effect of summer climate is consistent with my hypothesis.  Summer climate 

has a positive relationship with CO2 emissions.  The effect of July mean temperatures, 

summer climate, follows the same trends as winter temperatures, however with greater 

effects.  Overall, a 1% increase in summer temperatures yields a 2% increase in total 

CO2 emissions.  This relationship suggests that there may be an accelerating cycle with 
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global warming, as temperatures increase, CO2 emissions will increase even more 

dramatically.  This increase is most noted in the industrial sector where a 1% increase in 

summer temperatures results in a 7.6% increase in CO2 emissions, suggesting that 

much more energy is needed to produce industrial materials as temperatures rise.   

 Contrary to my hypothesis, stating that all sectors of CO2 emissions would 

increase with rising summer temperatures, the commercial and residential sectors of 

CO2 have an inverse relationship with increased summer temperatures.  A 1% increase 

in summer temperatures, yields a 3% and 3.7% decrease in CO2 emissions for the 

commercial and residential sectors respectively.  I hypothesized that an increase in 

summer temperatures would increase energy intensity, which I thought would apply to 

the home as well as the workplace, however this is not the case.  Further investigation is 

needed to explain the inverse relationship between summer temperatures and CO2 

emissions in these two sectors.   

 A plausible explanation for this, as stated in the results section, is that since the 

measurements of the residential and commercial sectors are primarily CO2 emissions 

pertaining to heating, they would not accurately capture the energy intensity related to 

cooling units that may drive up CO2 emissions when summer climate increases.  Instead 

these results may be picked up in the utility sector.  This is reasonable because an 

increase in summer climate does increase total CO2, which captures the utility CO2 

sector, the largest sector of total CO2 emissions. 

 Similar to previous research using the STIRPAT model, I have attempted to 

operationalize a technology variable, tech patents per capita, to capture the net effect of 

technology.  However this variable did not serve as a proficient driver of CO2 emissions 

nor encapsulate the technology term very effectively.  Patents per capita not only had no 

effect on CO2 emissions when incorporated into a multiple regression model, it was also 

insignificant in the regressions for all sectors of CO2 emissions.  Furthermore this 
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variable fails to incorporate technology in many of the units of analysis, as numerous 

counties do not produce any patents whatsoever.  Nevertheless, disaggregating 

technology terms can be important to the further understanding of the STIRPAT model 

at the local level and merits further investigation for future research.  

 Technology was nevertheless still operationalized for this thesis, as the residual, 

similar to initial STIRPAT models (Dietz and Rosa 1997).  As the residual, technology 

represents what is unexplained by the drivers of population, affluence and climatic 

conditions.  It equates to the observed value of CO2 minus its predicted value.  The 

result is each county’s net technology.   

 Counties with net negative technology, brown technology, are represented by  

counties with a positive residual, or a higher observed value than predicted.  This was 

the case for Loving County, TX, a county very high in brown technology, most likely due 

to an economy based almost solely on oil and natural gas drilling.  This can easily justify 

why Loving County’s total CO2 emissions was greater than predicted.  Furthermore, this 

went unexplained in the best-fit regression model and could only be deduced by 

additional factors based on in-depth research for this particular county.    

 There were also counties with a negative residual, meaning that those counties 

had a lower observed value of CO2 emissions than predicted.  These instances were 

deemed green technology, or net positive technology.  The example of Poquoson City 

County, VA was used to represent green technology as this county had one of the 

lowest residuals.  The plausible explanation for this case is that their primary economy, 

based on the seafood industry, is seasonal and thus emits less CO2 than predicted 

compared to if their economy functioned at full capacity throughout the entire year.   

 Understanding technology as the residual is important in the STIRPAT model 

because it illustrates that there is variance unexplained by the predictors within the 

model.  For this thesis, it is the variance unexplained by population, affluence, and 
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climatic conditions.  The rationale for brown and green technology for the above 

examples may not be consistent for other counties even with similar residuals.  However 

the point is that there are additional variables unaccounted for in the STIRPAT model 

that can further explain the variance.  This always leaves the possibility for future 

research to operationalize additional variables that may even further minimize variance 

unexplained in the model.   

 Regardless of this, the explanatory variables in the best-fit models are sufficient 

in explaining the amount of variance for the sectors of CO2 used in this thesis, with the 

exception of the industrial sector.  The variance explained for total CO2 emissions is 

66%, suggesting that the explanatory variables in this thesis provide adequate 

explanation of total CO2.  However for the industrial sector of CO2, only 41% of CO2 is 

explained, suggesting that additional variables are needed to explicate the relationship 

with industrial CO2 emissions.  On the other hand, the variables used for the best-fit 

model were proficient in explaining the variance in the sectors of commercial, residential, 

and mobile CO2 at 80%, 81%, and 90% respectively.  These numbers indicate that 

population, affluence, and climate are driving forces for these particular sectors of CO2 

emissions, as well as total CO2 emissions.    

 The current trends in the United States are exacerbating, rather than alleviating 

problems relating to environmental impacts.  Environmental threats to the United States 

are principally driven by population growth, and to a smaller extent economic growth.  

Furthermore, increased temperatures, a result of global warming, will only intensify the 

environmental impact of CO2 emissions.    

  As Soule and DeHart (1998) note: ―Understanding the connections between 

human activities and environmental impacts over various spatial scales is a crucial step 

in the process of formulating mitigation strategies aimed at reducing GHG emissions.‖  

Illustrating the anthropogenic drivers of varying impact for CO2 emissions at the county 
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level allows for analysis of what sections or perhaps regions of the US need 

improvement in curbing this impact by assessing what variables are significant and what 

variables are insignificant.  Gaining an understanding of these variables can lead to 

more efficient and effective policymaking for the United States battle against rising CO2 

emissions as well as global warming.   
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VII. Abbreviations 
 
 
A – Affluence 

C – Climate 

CO2 – Carbon Dioxide 

e  - error term in STIRPAT 

EKC – Environmental Kuznets Curve 

EMT – Ecological Modernization Theory 

EPA – Environmental Protection Agency 

GDP – Gross Domestic Product 

GHGs – Greenhouse Gases 

GtC/yr – Gigatons of Carbon per Year 

OLS – Ordinary Least Squares (Regression) 

P – Population 

PPM – Parts Per Million 

I – Impact 

IPAT – Impact = Population*Affluence*Technology 

STIRPAT – STochastic Impacts by Regression on Population, Affluence, and 

 Technology 

T – Technology 
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Appendix A 

 

STIRPAT Model with Population of Independents as the P term 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2  

(log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Pop of Indep (log) 5.84 *** 0.48 7.55 *** 0.53 8.77 *** 0.97 6.41 *** 0.48 5.34 *** 0.36 
Income (log) 2.84 *** 0.13 3.61 *** 0.14 3.75 *** 0.26 3.40 *** 0.13 2.63 *** 0.10 

Income
2
 (log) -0.07  0.29 0.82 ** 0.31 -4.70 *** 0.57 0.45  0.28 0.55 ** 0.21 

Summer Climate (log) 0.76 *** 0.05 -0.06  0.06 1.72 *** 0.11 -0.16 ** 0.05 0.60 *** 0.04 
_Constant -29.72 *** 1.39 -37.46 *** 1.52 -43.10 *** 2.78 -34.70 *** 1.38 -28.19 *** 1.03 

F Test 290 336 176 338 439 
R

2 
0.27 0.30 0.18 0.30 0.36 

Adj. R
2 

0.27 0.30 0.18 0.30 0.36 

Income (log) and Income
2
 (log) are centered to reduce collinearity. 

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed) 

 

 
 
 
 
 
 
 



 

 88 

 
 

Appendix B 

 

STIRPAT Model with Median Housing Value as the A term 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2  

(log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Population (log) 0.95 *** 0.02 1.18 *** 0.01 1.47 *** 0.04 1.08 *** 0.01 0.84 *** 0.01 
Med Housing Val (log) -0.22 *** 0.05 0.03  0.04 -1.23 *** 0.13 0.03  0.04 0.05 * 0.02 
Summer Climate (log) 0.18 *** 0.04 -0.75 *** 0.03 0.76 *** 0.09 -0.81 *** 0.03 0.10 *** 0.02 

_Constant -9.97 *** 0.53 -15.55 *** 0.43 -8.67 *** 1.33 -13.52 *** 0.37 -12.44 *** 0.23 
F Test 2014 4753 684 5247 8869 

R
2 

0.66 0.82 0.40 0.84 0.90 
Adj. R

2 
0.66 0.82 0.40 0.84 0.90 

 
     

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed) 
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Appendix C 

 

STIRPAT Model with Patents per Capita as the T term 

 Model 1 
Total CO2 (log) 

Model 2 
Commercial CO2 

(log) 

Model 3 
Industrial CO2  

(log) 

Model 4 
Residential CO2 

(log) 

Model 5 
Mobile CO2 (log) 

 Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Coef  Std 
Error 

Population (log) 0.90 *** 0.02 1.16 *** 0.01 1.29 *** 0.04 1.07 *** 0.01 0.84 *** 0.01 
Income (log) 0.20 * 0.10 0.18 * 0.08 -0.05  0.25 0.24 ** 0.07 0.17 *** 0.04 

Income
2
 (log) -0.79 *** 0.20 -0.10  0.16 -5.69 *** 0.49 -0.44 ** 0.14 -0.13  0.09 

Patents PC (log) 0.00  0.00 0.00  0.00 0.01  0.01 0.00  0.00 0.00  0.00 
Summer Climate (log) 0.24 *** 0.04 -0.73 *** 0.03 0.98 *** 0.09 -0.79 *** 0.03 0.11 *** 0.02 

_Constant -14.02 *** 0.97 -16.86 *** 0.79 -20.54 *** 2.42 -15.47 *** 0.68 -13.56 *** 0.43 
F Test 1208 2859 427 3169 5340 

R
2 

0.66 0.82 0.41 0.84 0.90 

Adj. R
2 

0.66 0.82 0.41 0.84 0.90 

Income (log) and Income
2
 (log) are centered to reduce collinearity. 

* P < 0.05 (two-tailed) 
** P < 0.01 (two-tailed) 
*** P < 0.001 (two-tailed)



 


