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ABSTRACT 

A linear t~eory is given for the case of steady thermal 

convection in a stratified fluid \\li th a general thermal 

boundary condition at the upper and lower limits of the 

system. The theory is applied to a number of fluid systems 

and the results are discussed in terms of the Rayleigh nun-

ber, the horizontal wave number and the vertical velocity 

and temperature perturbation profiles in the vertical. 
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I. INTRODUCTION 

The phenomenon of thermal convection was first recog­

nized by Count Rumford in 1797 when he noticed the motion of 

dust particles within the fluid contained in a large ther­

mometer he was using in an experiment. The vlord "convection" 

was suggested by William Prout in 1834 in accord with con­

duction and radiation to denote this mode of heat transfer. 

Among the earliest experiments performed in convection \vere 

those by Thompson (1882) and Benard (1900). Benard found 

that a certain critical vertical temperature gradient is 

necessary for convection to begin and that a regular array 

of hexagonal stationary cells becomes apparent with the on­

set of convection. The first analytical investigation of the 

problem was performed by Rayleigh (1916). Rayleigh showed 

that the stability or instability of the fluid is determined 

by a combination of parameters describing the fluid. A de­

finitive treatment of the linear convective theory is given 

by Pellow and Southwell (1940). Hore recently, an excellent 

presentation of the subject is given by Chandrasekhar (1961). 

Linear theories for two layer, homogeneous systems (Gribov 

and Gurevich, 1957, and Ogura and Kondo, 1970) and one layer 

systems with a general thermal boundary condition (Sparrow, 

Goldstein and Jonsson, 1964, and Sasaki, 1967) have been 
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developed. In this paper these two extensions of the class­

ical theory are combined into an N layer, inhomogeneous 

system with a general thermal boundary condition. 

In the classical Rayleigh theory, describing simple 

Benard convection, heating from below establishes a negative 

temperature gradient throughout the depth of a homogeneous 

fluid of infinite horizontal extent with perfectly conducting 

boundaries at the upper and lower surfaces. This produces a 

gravitatiopally unstable density configuration with fluid of 

higher density situated above fluid of lower density. Con­

vective overturning, hmvever, occurs only if the degree of 

instability is such that this adverse temperature gradient 

cannot be alleviated by conduction and the motions generated 

by the resulting buoyant force cannot be suppressed by vis­

cous dissipation. 

Thus, an important objective of the Rayleigh and other 

convection problems is to determine the critical set of 

parameters, describing the fluid system, for which convec­

tive motions can just be maintained. These critical parame­

ters are combined in one nondimensional number called the 

critical Rayleigh number. Besides the critical Rayleigh 

number, the linear convection theory also produces the rela­

tive values of vertical velocity, perturbation temperature, 

pressure, etc. at various heights in the fluid and the hori­

zontal extent, although not the specific form, of the con­

vective cells. 
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This investigation deals with steady thermal convection 

in a stratified fluid with general thermal boundary condi-

tions. It differs from the idealized B~nard system in two 

ways. Unlike the perfect conductor thermal boundary condi-

tion assumed for the Benard system, the thermal boundary 

condition in this case permits non-zero temperature pertur-

bations at the boundaries due to a specified heat exchange 

with the environment surrounding the system. The second 

difference is that the convective motion generated in an 

unstable layer is free to penetrate other layers in the 

system. An individual layer, layer i, is defined by its 

mean temperature, T ,temperature gradient, S., tllickness, 
TIl • ~ 
~ 

d i , thermometric conductivity, Ki , kinematic viscosity, vi' 

and mean density, p • m. 
~ 

Like the Rayleigh theory, only the 

case of marginal stability with steady convective motions is 

considered. 

It is necessary to specify for study a few of the many 

possible configurations of the system allowed by variations 

of the parameters descrlbing individual layers, the number 

of layers and variations of the thermal boundary condition 

at the upper and lower boundaries of the system. In this 

paper, convection is examined in the following systems: 

(1) In a three layer system, in one case, the thickness of 

the top layer is varied and, in a second case, the thickness 

of the middle layer, for three different temperature grad-

ients in the top layer, is varied; (2) In the thre0 layer 

system, the thermal boundary condition at the lower surface 
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is varied from a perfect insulator to perfect conductor; and 

(3) In a four layer system, the conductivity and viscosity 

of the second layer abcve the ground are varied. 

The theory described in this investigation was developed 

with the intent of gaining a better understanding of convec­

tion in the presence of a temperature inversion and the 

effect of certain fluid parameters upon steady convection. 

Its application to various systems described in this paper 

was motivated by interest in making the linear theory more 

relevant to actual geophysical phenomena--specifically, con­

vection in the lower atmosphere. In natural convective phe­

nomena, tIle region of convection is often stratified, with 

some layers being more stable than others. Also, in real 

convective systems, the upper and lower surfaces of the con­

vective region do not approach the condition of being per­

fect conductors. 



II. GOVERNING EQUATIONS 

The general equations governing this problem are the 

equations of conservation of momentum, mass and energy and 

an equation of state. The following development of the basic 

equations tollows closely that of Spiegal and Veronis (1960). 

The equations are given for a Cartesian coordinate system 

(x,y,z) in which gravity acts in the negative z direction. 

The three Navier-Stokes equations expressing conservation of 

momentum ~or a compressible viscous fluid are 

where the dynamic coefficient of viscosity, ~, is taken as . 

constant. Conservation of mass is given by the continuity 

equation 

(2 ) 

The energy equation is 

( 3 ) 

where Q is a radiational heat source ~nd k is the thermal 

conductivity, taken as constant. It is shown by Spicgal and 

Veronis that the viscous dissipation terms in the energy 

balance, ~[V' (~·V~) - ~(V.~)2] are negligible compared to 
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the convection of internal energy. The equation of state is 

of the form 

p = p (p ,T) (4 ) 

These equations form a closed set of six equations and six 

unknowns: the three components of V, P, T and p. 

Each of the dependent variables in equations (1)-(4) 

may be expressed in terms of a deviation from the correspond-

ing value in a quiescent, horizontally homogeneous reference 

atmosphere Hithout radiational heat sources. The reference 

atmosphere is necessarily polytropic with constant lapse 

rate of temperature in each layer (Calder, 1967). The state 

variables, in the presence of convective motions, may be 

expressed as 

f(x,y,z,t) = f + f (z) + f1 (x,y,z,t) 
m 0 

(5) 

where f is the constant space average of f, f is the ver-m 0 

tical variation in the reference atmosphere and f1 is a 

motion induced fluctuation. 

The basic approximation to be applied, part of the 

Boussinesq approximation, is that the thickness, d, of any 

layer is much less than the smallest scale height of that 

layer. In terms of the density, this means that d « D 
p 

where D is the density scale height. Equivalently, the p 

maximum density variation across a layer is much less than 

the mean density. Th~n if Vp is the maximum density varia­
o 

tion across a given layer, 

'iJp 
__ 0 _ c « 1 

Pm 
(6) 
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An equation of state may be formulated by expanding p 

in a Taylor series about p. To the order £, p may be ex­
m 

pressed by 

p = 

= 

where 

This implies that 

and 

T-T p-p 
p [1 m m - --+ --J 
m T Pm m 

p [1 - a(T-T ) + K(p-p )] 
m m m 

a = 1 
T m 

1 and K = 

p = P (Kp - aT ) 
o moo 

(7 ) 

( 8) 

There are no motions in the basic state of this atmos-

pherc. From equation (1), with no motions present 

3p 
~zo = -g(p + p ) 
a m 0 

(9 ) 

Subtracting this from equation (1), in the presence of ther-

mally induced motions, 

dV - -- 1 1 - - 1 -peat + v·Vv) = Vp - gp k + ~[V?v + 3 V(V·v)] (10) 

Substituting equations (5) and (6) into the continuity 

equation, 

(11) 
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To the order £, equations (10) and (11) are, respec-

tively, 

dV at + v'Vv = (12 ) 

and 

V'v = 0 . (13 ) 

p' -
The term g£VP-k has been retained in spite of the factor £ 

o 
because convection could not occur without this buoyancy 

term. Inclusion of this term implies that characteristic 

accelerations within the fluid arc of a much smaller magni-

tude than the gravitational acceleration. 

The next approximation imposed, the second part of the 

Boussinesq approximation, is that density fluctuations are 

entirely the result of motion-induced temperature fluctua-

tions. The validity of this approximation is demonstrated 

by equation (12) where it is noted that p' is of O(E) com-

pared to the density fluctuation. Equation (8) may then be 

written 

p' -p aT' . 
m 

(14) 

The imrnediat(~ consequence of this approximation may be seen 

in the momentum equation, aquatio!l (12) which becomes 

(15 ) 

If there exist no radiative sources or sinks of energy with-

in the fluid, in the absence of motion 

(16) 
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The perturbation energy equation, neglecting the viscous 

dissipation terms, then becomes 

aT' 
P c ( + V·VT) + pV·V = kV 2 T' • m v at 

Here, although V·~=o, p is large enough that pV·~ is of 

(17) 

about the same magnitude as the other terms in the equation. 

Using equations (7), (II) and (14), pV·~ may be written 

approximately as 

which reduces to 

Pm 3 
pV·v = ~(at + v·V) (To + T') + w'gpm • 

m 

Incorporating this result in equation (17), 

or 

(18) 

where K = k/p C is the thermometric conductivity and g/C m p p 

is the adiabatic temperature gradient. 

In summary, the complete set of approximate equations 

governing thermal convection in a compressible fluid arc 

equations (12), (14), (IS) and (18). The equivalent equa-

tions for an incompressible fluid may be written by replac­

ing %~o + ~, Hhere ~;o is the temperature gradient excess 

p 9 aTo 
over the adiabatic lapse, C ' by 6 = -(jz ' \vhere B is the 

p 
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temperature lapse rate in an incompressible fluid and by 

replacing C with C. The equations for an incompressible 
p v 

fluid have been adopted here to facillitate comparison of 

this work to that done by other authors. 

Mihaljan (1962) suggests that the Boussinesq approxima-

tions probably have greater validity in the thermodynamic 

equations than the mechanical equations. He also demon-

strates that the Boussinesq system is incomplete for describ-

ing the energetics because it neglects the term necessary to 

describe the rate at which work is done by the hydrostatic 

pressure through the divergence field in the conversion of 

internal to potential energy. Thus, any discussion of the 

energetics of the linear stability theory is only of a heur-

istic nature. 



III. HETHOD OF SOLUTION 

Assuming that convection first occurs as an infinitesi-

mal perturbation on the initial, quiescent fluid, the per-

turbation equations describing the onset of convection are 

given by equations (13), (14), (15) and (18) after neglect-

ing produc~s of perturbation quantities. The perturbation 

equations relative to an incompressible fluid are then 

V·V = 0, (19) 

P' =-P aT', 
m 

(20) 

dV 1 Vp' + gaT'k + \1\7 2 \7, at = -
Pm 

(21) 

and 

(22) 

where all primed quantities are perturbations of infinitesi-

mal amplitude. 

From equations (19) and (21), eliminating pi, we obtai~ 

a n2 ,_ (3
2 

(
2
), nlf, 

at v W - ga dX 2 + 3y2 T + Vv w . (23) 

Taking the divergence of equation (21), results in 

1 n2 '+ aT' 0 --v p ga--- = 
Pm az (24) 

Differentiating the z component of equation (21) with re-

spect to z, produces 
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(25) 

Equations (22), (24) and (25) will be useful in deriving the 

boundary conditions at the interfaces between layers. Elim-

inating TI from equations (22) and (23) results in a sixth 

order differential equation in Wi 

aBo 2 I 
g-'I1\" kv 

(26) 

(j2 (l2 
where P in the Prantdl number, P = Kjv and '\/12 = ~X2 + dy2. 

The analysis is made by assuming horizontally periodic 

solutions of a specified \vave number and \d th an exponentiul 

time dependence. Including an unspecified z dependence, all 

perturbation quantities may be expressed by 

X(x,y,z,t) == X(z) exp[i(k x + k y) + at] (27) 
x './ 

where a is, in general, complex. However, for the case of 

marginal, or neutral, stability, in which convective motions 

are not damped out but just sustain themselves, the real 

part of a must be zero since the perturbation neither ampli-

fies nor dies in time. The imaginary part of cr may be 

either zero or non-zero. If it is not zero, the marginal 

state is said to be overstable and the convective motions 

are oscillatory. If the imaginary part of cr is zero, the 

principle of the exchange of stabilities is valid and the 

motions in the fluid are steady and take the form of sta-

tionary convective cells. The principle of the exchange of 
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stabilities is assumed here and thus the study is limited to 

that of steady convective motions. 

Assuming cr = 0, equation (27) becomes 

x = X(z) exp[i(k x + k y)] 
x Y 

In particular, the vertical velocity, Wi, and the tempera-

ture and pressure perturbations, T' and pi, may be written 

[ ~\T I (z) 1 
= T' (z) exp[i(kxx + k y)] 

pl(Z») y 

For functions with this dependence on x, y and t, 

0, V I -k 2 and Ii 2. 

where 

2. 

-k 

(28a) 
(28b) 
(28c) 

(29) 

substituting equations (28) and (29) into oquations (23) I 

(24), (25) and (26), we get 

(30) 

(31) 

1 () 2 P I d Tid 2 (\\1 I 
+ a + v( _k 2 );::-,_\_ - 0 (32) 

Pm 3z 2- 9 az- dZ2. jZ ' 

and 

where T' denotes T' (z). 

as 2. - g- k Wi 
Kv 

(33) 
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It is convenient to nondimenionalize equations (30)-(33), 

choosing for the unit of length the height of the lowest 

layer, hI. The nondimensiona1 height, t, vertical velocity, 

W, wave number, a, and differential operator, D2, may then 

be expressed by 

substituting these relations into equations (30}-(33) gives 

and 

(D 2 - a 7 ) 3 W _ - Ra 2 W 

where R is the Ra~llei~(ll number, R : g~~ hi. 

(34) 

(35) 

(36 ) 

(37) 

The solution to equation (37) in a given layer, layer 

i, may be written 

W. 
1 

3 
= E 

j=l 

q .. (r, -c. ) -q .. (l: -c. ) 
A .. e J1 1 + B .. e J1 1 

)1 )1 
(38) 

where the A .. and B .. must be determined from the boundary 
)1 J1 

conditions and c. is the average height of the layer for 
1 

which W. is a solution. The g .. are roots of the different-
1 )1 

ial equation, equation (37), and are given by 

= a (T. - 1) 1/2 , 
1 
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where 

T. = (R./al!)I/3, 
1 1 

Re(Q2.) 1 T~)1/2 + ~(1 + ~ )] 1/2 = a[i(l + T. + 2Ti ' 1 1 1 2 

and 

1m (q2 . ) 
1 T~)1/2 ~(l ~ )]1/2 = a ["2(1 + T. + - + 2Ti 1 1 1 2 

The supers,::::ript * denotes the complex conjugate. This par-

ticular form of solution (i.e., subtracting c. from ~) was 
, 1 

.chosen so that for layers of large ~ the exponent of e would 

not be extremely large, thus facilitating maximum computa-

tional accuracy. Equation (38) is applied to each layer in 

the N layer system and the solutions at the interfaces be-

tween layers are matched. A schematic diagram of the system 

and the parameters describing it is shown in Fig. 1. 

Six boundary conditions for each layer are necessary to 

solve for the A .. and B .. in all N layers. The boundary 
J1 J1 

conditions are all homogeneous and thus we have a homogeneous 

problem for which the solution is given by the R. and a 
1 

such that the determinant of the coefficient matrix of the 

A.. and B.. is zero. The R. are all related through the 
J1 J1 1 

parameters £1, £2 and E2 and therefore in designating Rl one 

specifies all R.. Thus, given an a, we have an eigenvalue 
1 

problem in RI. Physically, R is the ratio in a given layer 

of the rate of viscous dissipation of kinetic to the rate of 

buoyant release of internal energy in a unit vertical column. 

Convective overturning begins for the lowest mode of a at 
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( D2 - 0 2 
)3 W = - R 0 2 W 

N N N 

-------------------------- €~, €~ , €~ ---

( 02 
- 0

2
)3 WN_I= -RN_102WN_1 

1 
---------------____________ €I €2 E'3 __ _ 

N-I' N-I' N-I 

t 

----------------- ___________ €I €2 E'3 __ _ 
2, 2, 2 

7777777777777777777777777777777 

rigid 

Loyer N 

Interface N 

Loyer N-I 

Interface N-l 

Interface 2 

Loyer I 

Fig. 1. The N layer system with a characteristic equation 
for each laver. The first interface is arbitrarilv 
labeled "interface 2." '1'he upper surface is free:" 
the lower surface regid. Ratios of parameters be­
t\feen layers i and i+l are given by ci+l' cf+l and 
£i+1· 

the minimum value of R I • The minimum R and the value of a 

-corresponding to that R are the critical Rayleigh number and 

critical wave number, R and a . 
c c 

A description of the boundary conditions at the lower 

and upper surfaces and at each interface follo\oJ5. 



IV. BOUNDARY CONDITIONS 

A. Lower Surface--Rigid. 

At the lower surface u', v' and w' are required to be 

zero. Requiring u' and v' to be zero results in the rigid 

boundary condition. It implies, through the continuity 

equation, that m..;r. = O. Thus, at the lower surface 
1 

and 

w. = 0 
1 

DvJ. = 0 • 
1 

(39) 

(40) 

The thermal boundary condition is that the conductive heat 

flux, - KDT', and perturbation temperature, TI, are related 

by an arbitrary constant y~, 

or 

-KDT' 
-~ = y' 

B 

(D + Y ) T' = 0 B 

where YB is the so-called Biot number, YB/K. 

B. Upper Surface--Free. 

(41 ) 

Similarily, three boundary conditions exist at the upper 

surface. At the upper surface the vertical velocity and 

tangential stress are required to be zero. The zero tangen-

tial stress condition gives the free boundary condition 

D'W = O. Thus, we have 
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w = 0 (42) 

and 

(43) 

The thermal boundary condition at the upper surface has the 

same form as that at the lower surface however the Biot 

constant, denoted by YT here, may be different. We have 

(D + yT)T' = 0 (44) 

c. Interface Boundary. 

To satisfy the requirement of six N boundary conditions, 

it remains that there must be six boundary conditions at each 

interface between layers. These are continuity of vertical 

velocity, horizontal velocity, tangential stress, perturba-

tion pressure, temperature and conductive heat flux. Con-

tinuity of vertical velocity at the interface between layers 

i and i+l gives 

That the horizontal velocity be continuous across the inter-

face implies through the continuity equation that 

(46) 

Continuity of tangential stress yields 

(47) 

or 

(48) 

vlhere 
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V i + l 
V. 

1 

From equations (35) and (36), we obtain the condition of 

continuity pressure in terms of W 

(49) 

Equation (34) yields the condition for continuity of per-

turbation temperature 

where 

V i +l 
v. 

1 

(50) 

FinalJ.y, continuity of conductive and convective heat flux 

is given by 

-K.DT. I + P C (T - B.~hl)W' = 
11m. v. m. 1 1 

111 

-K 1·+ l DT1!+l + p C (T - Bl'+l~hl)W~+l 
rni +l v i +l mi +l ~ 

where (T - B.sh.) = (T - S;+lsh
1
.) is a property of the 

rn i l 1 mi +l ~ 

basic state and Wi = Wi+l" If P C = pC, which is 
mi + l Pi+l mi Pi 

assumed in this study, continuity of heat flux is givGn by 

or, differentiating equation (34), we have 

(D ' - a 2)2DW. -_ 2 3 (D 2 2)2DM 
1 Ei+lC i +l - a ~vi+l (52) 
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where 

The presence of the convective term in the perturbation heat 

flux boundary condition would require explicit inclusion of 

the mean state temperature field and the additional convec-

tive parameter, C . 
v 



v. DISCUSSION OF RESULTS 

Before beginning the discussion of the application to 

various stratified systems, some general things which apply 

to all systems tested must be pointed out. One is that the 

lowest layer in each' system has a gravitationally unstable 

density configuration resulting from a negative temperature 

gradient. In each case presented, the Rayleigh number dis-

cussed in the text ahlays refers to the Rayleigh number of 

the lowest layer, R
l

. The system being considered in a 

given section is defined in a table at the beginning of that 

section and is followed by a table of the more important 

critical Rayleigh and wave numbers versus the parameter 

being varied. 

A. The Classical, Rigid-free Problem. 

The model was first tested on the classical, rigid-free, 

Rayleigh problem and exact agreement was found. The classi-

cal values given by Chandrasekar (1961) are R = 1100.65 and c 

a = 2.682. The values found in the present case are R = c c 

1100.64961 and a = 2.68232. A graph of Wand T' versus ~ c 

is shown in Fig. 2 for the classical case. Since only rela-

tive values of Wand T' within a given profile can be ascer-

tained from this analysis (absolute values of Wand T' cannot 

be found) each profile has been normalized so that the maxi-

mum value of W is 1.00. 
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o 
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1.17 

Fig. 2. Vertical velocity (solid) and temperature perturba­
tion (dotted) profiles for the classical, rigid­
free, Rayleigh problem. 

B. In a Three Layer System, the Thickness of One Layer is 
Varied. 

The first investigation is an amplification of several 

studies by authors who have considered the problem of con-

vection in a two layer system. Gribov and Gurevich (1957) 

investigated the case of an unstable layer bordered either 

above or below by a stable layer of infinite vertical extent. 

Ogura and Kondo (1970) studied the effect of the stability 

and depth of an upper stable or neutral layer for rigid-

rigid, rigid-free, and free-free dynamic boundary conditions. 

Here the effect of a third layer is examined by first vary-

ing the thickness of the top layer (Part B.l.) and, second, 

by varying the thickness of the middle layer (Part B.2.) for 

three different stabilities of the top layer. A third layer 
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is important when convection exists in the presence of a 

temperature inversion because often fluid is distinguished 

by three distinct layers in that case. 

B.l. The Thickness of the Top Layer is Varied. 

Table 1. Parameters defining the system of Part B.l. 

Intert ace Ea. ED. EK E I 1--', i· Vi Layer 

2 
3 

-I 
-I 2 

3 

1.0 
1.5 

variable 

Thermal boundary condition: perfectly conducting boundar ies, y -+ 00 

Table 2. Critical Rayleigh number and wave nu.'1l.ber relative 
to the lO\vGst layer and critical wave number rela-
tive to the total depth, A . c 

h3 Rc °c Ac{ = ach~ 

1.50 399.147 1.8688 2.8032 

I. 52 397.982 1.8574 2.8232 

1.53 397.753 1.6584 2.8434 

1.54 397.556 1.8480 2.8459 

1.55 397.571 1.8441 2.8584 

\.64 401.561 1.8268 2.9960 
1.56 402.813 1.8263 3.0317 
\.158 404.027 1.8267 3.0688 

1.78 408.177 1.8316 3.2608 
1.80 408.490 1.8321 3.2978 
1.82 408.619 1.8319 3.3341 
1.84 408.564 1.8312 3.3694 
2.00 40 1.583 1.7980 3.5960 
2.20 360.222 1.5873 3.4920 
2.38 213.845 1.2339 2.9305 
2.50 129.070 1.1319 2.8297 
2.70 65.226 I. 0246 2.7664 



24 

In Part B.l., the height of the top layer is increased 

from 1.5 to 2.7. This corresponds to the thickness of the 

top layer increasing from 0 to 1.2. The system is homogen-

eous throughout except for temperature gradient. A tempera-

ture inversion exists in the second layer with its tempera-

ture gradient of equal magnitude but opposite sign as that 

in the other t"l0 layers. 

Additi.on of the third, unstable layer initially de-

creases the stability of the system as evidenced by decreas-

ing critical Hayleigh number in Fig. 3 for h3 = 1.50 to 

- 1.545. It is reasonable to expect that the system be more 

unstable when a larger proportion of it consists of unstable 

fluid. However, after h3 = 1.545, Rc begins to increase, 

reaching a maximum at about h3 = 1.82 and then decreases. 

An explanation of this behavior of Rc is provided by 

inspection of the Wand T' profiles for various values of h3 

and consideration of the effect of the upper boundary condi-

tion. Initially, R decreases because the restrictions im­c 

posed on the fluid motion in the lowest layer by the upper 

boundary condition are relaxed as the upper boundary moves 

away from the lowest layer. 

The increase in Rc at about h3 = 1.545 may be under­

stood after examination of the Wand T' profiles for h3 = 

1.50 and h3 = 1.54 (Figure 4 a and b) where it is noted that 

a small region of negative temperature perturbation occupies 

the upper part of the fluid. The area and intensity of this 



50 

•... 
......................................... 

40\.n-_-

300 

200 

100 

25 

\ 
\ 

\\ 
.......... 

..•.... 
.•...•.. 

•.... 

2.0 

1.8 

1.6 

1.4 

1.2 

" . 
.......... 

O+--------..------------.r----...::......---+I.O 
1.5 2.0 2.5 

height of the third layer, h, 

Fig. 3. Critical Rayleigh number (solid), Rc' and critical 
wave number (dotted), a c ' versus height of the 
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region increases for increasing h 3 . Coupled with a positive 

vertical velocity, this region of negative temperature per-

turbation constitutes a part of the fluid undergoing forced 

convection where fluid cooler than its surrounding~ is being 

forced upward and some of the kinetic energy from the lower 

part of the fluid is being stored as potential energy in the 

upper layers. As stated previously, the critical Rayleigh 

number is the ratio of internal energy released by buoyancy 

to kinetic energy dissipated by viscosity per unit column 

of a fluid layer such that convective motions neither damp 

out nor amplify in time. Also, it must be remembered that we 

refer only to the critical Rayleigh number of the lowest 

layer. With these facts in mind, it is easy to understand 

that R increases because a larger r.ate of release of inter­c 

nal energy in layer one becomes necessary to generate suf-

ficient kinetic energy to penetrate the entire depth of the 

system with increasing h
3

. The reason more kinetic energy 

is needed is that an increasing amount of the kinetic energy 

goes to potential energy in the upper layers. At the same 

time the amount of kinetic energy dissipated in the first 

layer increases only slightly, if at all. 

creases. 

Thus, R in­
c 

A local Rc maximum occurs at h3 = 1.82 with the advent 

of a small region of free convection (WT'>O) at the top of 

the fluid (Fig. 4 c). Increasing the thickness of the third 

layer beyond this (Fig. 4 d, e and f) increases the relative 

magnitude of this new region of free convection and decreases 
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the region of forced convection. Rc decreases because an 

increasing amount of the internal energy, which generates 

the kinetic energy to drive the convective circulation of 

the entire system, is being released in the upper layer and 

therefore R , proportional to the rate of release of internal 
c 

energy in the lowest layer, decreases. Also, less kinetic 

energy is lost to potential energy. After h3 = 1.82, Rc 

decreases monotonically and, in the limit, Rc approaches 

zero as h3 goes to infinity. 

Physically, as the upper unstable layer occupies almost 

the entire depth of the system relative to layers one and 

two, the rates of release of internal energy in the lowest 

layer necessary to maintain the circulation there against 

viscous dissipation becomes very small because the circula-

tion is mainly being driven by the third layer. Mathematic-

ally, the decreasing R may be explained as follows. Since c 

the temperature gradients of the third and first layers are 

equal and since for large h3 we may ignore layer two, the 

system approaches the classical, homogeneous Benard system 

for large h 3 . We may assume, therefore, that for large 

values of h3 the critical Rayleigh number R~ relative to the 

total depth of the fluid, h
3

, is constant and equal to 

1100.65 which is the value for the classical, rigid-free 

Rayleigh problem. We have 

R' aRI I, = g- 1 3 = c kv 1100.65 
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However, if the system is now scaled by hI' equal to, for 
h 

example, a tenth h3 (hI = l~)' the critical Rayleigh number 

relative to the lowest layer is 

The reason for small Rc with h3 large compared to hI is 

clear. The trend toward the classical case (Fig. 2) can be 

seen in Fig. 4 f. 

Inspection of Table 1 and Fig. 3 shows that the criti-

cal horizontal wave number, act versus h3 has a response 

similar in form to that for Rc versus h 3 . However, it 

reaches a local minimum before R arrives at its first mini-c 

mum and a attains its maximum before R reaches its local c c 

maximum. 

The horizontal extent of the convective cell, 2uja, 

relative to the lowest layer, first increases, then decreases, 

and finally increases indefinitely as h3 goes to infinity. 

The reasons for the first minimum and then maximum of a are c 

not clear. Apparently the most effective cell size is only 

indirectly dependent upon the fluid's stability. The final 

decrease of a c may be explained by the fact that the system 

is essentially the classical, rigid-free system for large 

values of h
3

. The horizontal extent of the convective cell 

in the classical system is constant relative to the total 

depth of the system (the total depth is h3 in this case). 

NOW, considering the cell relative to the lo~est layer, 

which decreases in height relative to h3 as h3 illcreases, 
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the horizontal extent increases as h3 increases. Thus, a c 

decreases. Mathematically, A , the wave number relative to 
c 

the total depth, h
3

, for the classical case is 

For hI = h3/10, the corresponding wave number, 

to the lowest layer is 

a , relative 
c 

Table I and Fig. 5 shmv that A tends to the limit A c c 

2.682, suggested in the previous paragraph, as h3 inc~eoses 

beyond h3 = 2.07. Fig. 4 also demonstrates that A suddenly 
c 

begins to decrease at approximately the same value of h3 for 

which the height of maximum vertical velocity, htw ,be­
max 

gins to increase and penetrate the inversion layer. Thus, 

it appears that the cell size remains fairly constant rela-

tive to the lo~cst layer when the region of maximum velocity 

in the fluid is confined below the inversion. After the 

region of maximum velocity penetrates the inversion the cell 

size remains almost constant relative to the total depth. 
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B.2. The Thickness of the Middle Layer is Varied. 

Table 3. Parameters defining the system of Part B.2. 

-_._-- -----.---

Interface Ea. 1'i EK· E'II' EPi Layer h· 
1 1 1 I 

2 - 1.35 I 

3 (a ) .001 2 variable 

( b) .090 3 5 x h2 
( c) .180 

Thermal bOl1ndory condition: perfectly conducting boundaries, Y --+00, 
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Table 4. Critical Rayleigh and \'lave numbers, for var.ious 
values of £8 ' versus the thickness of the middle 
layer, d 2 • 3 

£{3 = 001 3 . £{33 = .090 E {3 = 180 3 . 

d2 Rc ac Rc a c Rc ac 

0 64.982 .6616 170.548 1.3138 
.100 146.237 .7530 283.846 1.5432 335.949 1.7050 

.129 229.071 1.0826 

.130 232.379 1.0986 

.131 235.691 1.1147 

.200 417.389 1.8299 440.635 1.9100 455.965 I . 95:.0 

.300 505.158 2.0455 508.795 2.0718 510.914 2. Ol89 

.400 511.880 2.0503 516.675 2. C893 518.478 2. IO'~ 

.500 517.701 2.0901 519.289 2.1020 520.920 2. 1038 

Part B.I. demonstrates the effect of the upper boundary 

and forced convection upon the stability of the fluid in a 

system where. the inversion is stable and the top layer is 

very unstable. HOIvever, in the atmosphere the fluid above 

the temperature inversion probably never has a temperature 

gradient as unstable as the layer bordering the ground. For 

this reason, in Part B.2., the third layer is made almost 

neutrally stable relative to layers one and two. The effect 

of the stability of the third layer is considered in this 

part and three different £63 are used: (63 = .001, 

.090 and .180. The gravitational stability of the second 

layer relative to the first is slightly greater in Part B.2. 

(£62 = -1.35) than in Part B.1. (£82 = -1.00). The system 

is homogeneous throughout except for variations in tempera-

ture gri1dient. 
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In Part B.2., the effect of increasing the thickness of 

the middle layer is examined. As the middle layer increases 

in thickness it expands into the lowest layer. In Fig. 7, 

the height of the second layer is shown as h2 = 1.00 for 

clarity, however, R and a are still scaled relative to the 
c c 

lowest layer: hI = 1.00. 

55 2.5 
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2.0 

350 

1.5 ao 

250 

150 / 1.0 

...... 

........... / 

OT------.-----,.-----,------.------.---+.5 
o .1 .2 .3 .4 .5 

thiclmess of the second layer d. , ~ 

Fig. 6. Critical Rayleigh number (solid), RC I and criticnl 
wave nurnbc'r (dottod), a c ' versus thickness of the 
middle layer, d 2 • 
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Fig. 6 shm'lS the critical Rayleigh and wave numbers 

versus d
2 

for the three values of C
Sa

' As expected, R in­
c 

creases as the middle stable layer gradually occupies a 

larger proportion of the fluid. At first R increases at an c 

increasing rate with increasing d
2 

but this trend reverses 

for larger d 2 with the inflection point at d 2 = .130 for 

c
Sa 

= .001. Inspection of the Wand T' profiles shows that 

the inflection point occurs as the height of maximum verti-

cal velocity approaches the top of the middle layer (Fig. 

7 a, b and c). As the region of maximum vertical velocity 

enters the stable layer and then is confined below it (Fig. 

7 d, e, f and g), Rc increases less rapidly with d
2 

and 

finally approaches a limit. A factor which continues to 

stabilize the system and thus increase Rc' after htw 
max 

falls below the temperature inversion, is the advent of 

forced convection. The effect of forced convection in the 

upper layers on Rc' the Rayleigh number of the lowest layer, 

has already been discussed in Part B.I. 

As d 2 continues to increase, a secondary cell of de­

scending fluid forms above the cell of ascending fluid (Fig. 

7 e, f and g). Convection in this secondary cell is free 

since Wand T' are positively correlated (WT'>O). The 

reason for the formation of a second cell in the vr..:rti';al J ,. 

unknmvn. r-Jo reason for this is cited in the lite:ralurr,. 
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Again, the dependence of the critical wave number upon 

the parameter being varied, d 2 , is very similar to that for 

R. In fact the inflection points for R and a both occur c c c 

at the same value of d
2

• As was observed in Part A, when 

the region of maximum vertical velocity is confined to the 

lO\'lest layer, below the temperature inversion, a c remains 

essentially constant. 

The effect of the stability of the third layer is evi-

dent in this second part of the investigation. Rc and a c 

are observed to be highly dependent upon the stability of 

third layer before the ·thickness of the third layer becomes 

a factor. However, as the middle layer becomes thicker, 

providing a stable barrier to convective motions from the 

lowest layer, the effect of the weak stability of the third 

layer becomes insignificant by comparison .. 

c. In a Three Layer System, the Thermal Boundary Condition 
at the Lower Surface is Varied. 

Table 5. Parameters defining the system of section 2. 

Interface 

2 
3 

Eai ~i 

-1.35 

.001 

EKi E 
Vi 

E Layer hi PI 

I 1.00 

2 1.43 
3 7.14 

Thermal boundary condition: . perfect conductor at top, Yr ---+ 00; 
perfect conductor to perfect insulator at bcttom,)s-.ooto )'8-0. 
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Table 6. Critical Rayleigh and wave numbers for various 
values of Biot number, YB, at the bottom boundary. 

Ys Rc Cc 

105 505.158 2.0454 
103 504.738 2.0449 
10 471.419 1.9850 
I 382.359 1.7395 

10- 1 332.033 1.5313 
10-2 323.984 1.4920 
10- 6 323.030 1.4872 

In the atmospher8, convective cells similar to those 

observed by Benard in liquids are often observed by meteor-

ological satellites over the ocean below subsidence inver-

sions (Kruger and Fritz, 1961). However, theory and actual 

observation do not agree in some respects. One difference 

is that the predicted horizontal dimension of this convec-

tive cell is about 1/10 that observed in the atmosphere. 

T\vo physical properties of the atmosphere, not included in 

classical convection theory, may cause this. One of these 

is the anisotropy of the eddy coefficients of viscocity and 

thermal conductivity in the atmosphere (Priestly, 1962, 

Palm, 1960, and Ray and Scorer, 1963). Further discussion 

of this phenomena is deferred to Part D. The second property 

involves the thermal boundary condition. The boundaries in 

the atmosphere are probably not perfect conductors of infi-

nite heat capacity as prescribed in the classical theory but 

are to some degree insulating (Sparrow, Goldstein and 
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Johnson, 1964, and Sasaki, 1970). The effect of the thermal 

boundary condition at the lower surface will be examined in 

this part. 

The fluid system being considered in this section is 

the same as one considered in the previous part, defined by 

Table 3, except for the thermal boundary condition, with 

d
2 

= .3, and shown in Fig. 7 e. The thermal boundary condi­

tion, given by equation (44), at the upper surface is that of 

a perfect conductor where YT -+ 00. At the Im.;er surface, the 

Biot number, Y
B

, in equation (41) ranges from 10-6 to 10 

which corresponds to the lower boundary going from a nearly 

perfect insulator to a nearly perfect conductor. 

To begin the discussion of this part, we consider the 

effect of YB on the critical Rayleigh and wave numbers. Fig. 

8 shmo]s that R and a are both fairly insensitive to chang-e c 

ing YB for very large or very small values of YB but changes 

rapidly as YB goes from 10- 2 to 10 2 . The same result was 

found by Sparrow et ale for a one layer fluid with rigid-

rigid, rigid-free, and free-free dynamic boundary conditions. 

The most stable situation occurs for large YB where both the 

upper and 10'ver boundaries approximate a perfect conductor 

of infinite heat capacity. This is expected, intuitively, 

since the conducting boundaries allow much of the heat in 

the lowest part of the system to be conducted away through 

the lower boundary and convection is not necessitated. The 

vertical velocity and temperature profiles for the most the 

stable situations, corresponding to Yn = 10 5 , 10 3 and 10, 
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are shown in Fig. 7 e and Fig. 9 a. and b. It is noted that 

the temperature perturbation is zero or very small at the 

lmver boundary for these cases because any temperature devi-

ation from the mean temperature at the boundary is largely 

conducted away by the boundary. 
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wave number (dotted), a c , versus Biot number'YB of 
the lower boundary. 



40 

That the system is more unstable when the lower bound-

ary is an insulator also seems reasonable since, for this 

case, a temperature deviation from the mean cannot be con-

ducted away through the boundary and the system must go to 

convection to dissipate this temperature excess. The more 

-2 -6 
unstable situations, for which YB = .It 10 and 10 ,are 

shown in Fig. 9 c, d, e and f. The temperature perturbation 

is seen to increase gradually as the lower bouridary becomes 

more insulating. 

A limiting value of R occurs for very large values of c 

Y
B 

because the lower boundary assumes the properties of a 

good conductor for YB ~ 10. Beyond that the conductivity of 

the boundary increases only slightly. For example, the tem­

perature perturbation at ~ = 0 for Y
B 

= 10
3 

(Fig. 9 a) is 

close to zero. 

(Fig. 7 e) at r, 

The temperature perturbation for Yn = 10 5 

3 = 0 may be half that for Yn = 10 but is 

still essentially zero with respect to characteristic values 

of temperature perturbations in the fluid. Similarly, for 

-1 
YB = 10 the lower boundary is a good insulator and DT', 

which is proportional to the perturbation heat flux, is al­

most zero. For YB<lO-l, DT' decreases but is still zero 

with respect to characteristic values of DT' within the 

fluid. 'I'he transition bebveen the bvo limiting values of R c 

occurs when the lower boundary is neither a good conductor 

nor a good insulator. 
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Fig. 9. Vertical velocity (solid), W, and temperature per­
turbation (dashed), TI, for various values of Biot 
number, "'(li' at the lm;er boundCiry. Interface arc 
shown by horizontal dashed lines. 
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Inspection of Fig. 10 provides further evidence of the 

fluid being more unstable for lower YB' Fig. 10 shows WT ' 

versus ~ for three values of Y
B 

when the rate of viscous 

dissipation of kinetic energy (~(D2_a2)w) integrated over 

the depth of the fluid is normalized for each YB. It can be 

-6 seen for the most unstable case, YB = 10 ,a smaller rate 

of release of internal energy in the lowest layer is neces-

sary for convective overturning to begin. This is expected 

since R c 
-6 3 

is smaller for YB = 10 then for YB = 1 or 10 . 

It can also be seen that ""hen the lower boundary is an insu-

lator the rate of release of internal energy in the lowest 

part of the fluid is greater and less kinetic energy is lost 

to forced convection. 

The less restrictive thermal bounoary condition does 

indeed result in flattening of the convective cells and thus 

probably better approximates the atmospheric thermal bound-

ary condition. However in the limit YB~O, for which the 

convective cells in the system being considered here attain 

their maximum horizontal extent, the ratio of the vertical 

to horizontal extent of the lowest cell is only ~1/4 which 

is still far from what is observed in the atmosphere (-1/10). 

The reason for this is that here we require the convective 

motion to penetrate not only the Im.,rest layer but the top 

two inversion layers while in the atmosphere convection is 

usually confined to the lowest unstable region. This means 

that a larger amount of energy must be released in the low-

est, unstable, layer here and transferred upward in order to 
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Fig. 10. Rate of release of internal energy (~WT') for 
various values of Biot number, YB. 

1.2 

penetrate the top two stable layers than in the atmospheric 

casc. It seems reasonable that this larger energy transfer 

from the bottom to the top of the fluid in the present case 

is more efficiently accomplished by a greater density per 

unit volume of weak cells than by a large, strong cell. 
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D. In a Four Layer System, the Conductivity and Viscosity 
of the Second Layer Above the Ground are Varied. 

Table 7. Parameters defining the system of Part D. 

Interface E 
a· I 

E 
Pi 

Layer i h. 
I 

2 

3 

4 

.005 -.001 

1.000 1.000 

1.003 20.000 

variable 

I/EK 
2 

.1 

.944 

1.000 

.921 

I 

2 

3 

4 

Thermal boundary condition: perfect conductor at top, Y
T 
----. 00 ; 

good insulator at bottom, Ys ---. 6.27 x 10-4 . 

1.00 

36.55 

148.00 

150.00 

Table 8. Critical Rayleigh and ,·.rave numbers versus EK 
(or c ). R in this case corresponds to 1 

VI C . 

the local minimum R occurring at the lowest a, 
a = a(R ). c C 

10 

25 

40 

55 

72 

Rc 

130.497 

130.148 

485.282 

934.390 

1419.912 

1969.449 

ae . 

.1102 

.1099 

.1048 

.1079 

.1145 

.1395 

In the third, and final part, the vertical anisotropy 

of the thermal conductivity and kinematic viscosity are 

modeled by stepwise vertical variation of fhese parameters. 

In the classical system, the fluid is homogeneous with re-

spect to the various convection parameters; the molecular 

coefficients of thermal conductivity and kinematic viscosity 
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are constant throughout the system. However, in the atmos­

phere, the Reynolds number is so high that molecular proces­

ses are of little importance and eddy transport processes 

must be considered. One would expect, therefore, the magni­

tude of these eddy diffusion coefficients to be roughly pro­

portional to the magnitude of the velocity field. In this 

section, these coefficients have been varied vertically in 

four steps according to the magnitude of the vertical veloc­

ity by using a four layer system. 

Four layers are the result of modeling the system after 

the trade wind inversion. One layer is required to simulate 

the shallow, unstable layer just above the ocean surface. 

It has a thickness of 10 to 100 m. l\bove this is a deep, 

slightly stable layer of approximately 1500 m with the 

stable trade wind inversion above it. Assuming the convec­

tive motion penetrates the lowest two layers and enters a 

small distance into the inversion, the system requires three 

layers to describe the convection. The vertical velocity 

profile was found for this three layer system and a fourth 

layer was introduced to contain the region of maximum verti­

cal velocity which occurred throughout approximately the 

lower one-third of the second layer. 

Maximum values of K and v are then assigned to this new 

layer. The actual values of the eddy diffusion coefficients 

for the atmosphere are not well established but it is thought 

they may bo one or two orders of magnitude larger in the 

region of maximum convection than in other parts of the 
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fluid (Faller and Kaylor, 1970 and Deardorff, 1967). The 

relative magnitudes of K and v in the first, third and fourth 

layers are held constant and the effect of varying K and v 

in the second layer is examined. In all cases the Prandtl 

number, P = Kjv, for each layer is equal to one. 

In an effort to model the real atmospheric mean 

turc and density structure, the values of a(=~ ) and 
m 

not held constant from one layer to another but given 

of a characteristic trade wind temperature inversion. 

tempera-

pare 
m 

values 

For 

example, since the 1m-lest layer is strongly heated it has a 

mean temperature greater than that of the layer above it and 

E = .985. Due to the compressibility of the atmosphere a2 

the lowest layer has the greatest density and E ~ .944. 
pz 

At the lower surface, the thermal boundary condition of YB = 

6.27 x 10-4 is used, as suggested by Sasaki. The thermal 

boundary condition at the upper boundary is that of a per-

fect conductor, YT~oo. 

Looking first at Fig. 11, it can be seen that R in­c 

creases monotonically with EK and E 
2 V2 

This is expected 

since larger viscosity in the second layer serves to increas-

ingly damp out the buoyant motions generated by the lowest 

layer. Also, larger conductivity of the second layer allows 

heat to be transferred to the upper part of the fluid by 

conduction and a larger temperature difference bet\-.)'een top 

and bottom of the system is required for convection. Thus, 

the fluid becomes more stable for higher values of E and 
K2 
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Fig. 11. Critical Rayleigh number (solid) I RCI and critical 
wave number (dotted) I aCI versus the ratio of 
thermometric conductivity (or equivalently the 
ratio of kinematic viscosity) between layers two 
and one. 

The critical wave number clearly behaves much differ-

ently in Fig. 11 than what we have seen in the previous two 

sections. R and a react almost independently to changing c c 

EK and E 
? V2 

R increases monotonically but a decreases 
c c 
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reaching a minimum at E:K2 = 22.5 (or equivalently E:\)2) and 

then goes asymptotic to E:K2 = 72. An explanation of this 

behavior of a can be found by examining Pig. 12 which shmll's 
c 

Rayleigh number versus wave number for increments of E:K2 of 

15. Fig. 11 is a plot of the first (left) local minimum R 

and the corresponding a. These appear to be the critical 

Rayleigh and \·!ave nu.rrtbers for the type of gravitation insta-

bility which was studied in the previous parts. Fig. 12 

ShOV1S that another minimum occurs for large values of €K
2 

and € at higher wave numbers. The unusual behavior of a c \)2 

in Fig. 11 is probably due to an interaction between the two 

instabilities. 

This second type of instability is probably similar to 

that discussed by Welander (1964) although some important 

differences exist between Welander's model and the present 

onc. Welander's two layer model demonstrates that a type of 

convective instability can exist, even when the fluid is 

heated from above, if the thermal expansion coefficient and 

conductivity are larger in one layer than in the layer bor-

dering it. Referral to Table 7 shows that this condition 

does exist at interfaces tvm and four. However, differences 

between the present model and Welander's should be noted. 

In Welander's system the interface is not deformed by the 

fluid motions since an interface boundary condition W. = 
~ 

Wi +l = 0 is assumed whereas the present model uses Wi = ~o.Ji+l 

\lI'here W. is not necessarily zero. Thus, the hlO models dif­
~ 

fer in this respect but it is still probable that the second 
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instability which occurs here is related to the discontinui-

ties in a and K at interfaces 2 and 4. 

2400 
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.5 

72 
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1.0 
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Q-

2.0 2.5 3.0 

Fig. 12. Rayleigh number versus wave number for various 
values of the ratio of thermometric conductivity 
beboJeen layers bJO and one. 

Fig. 13 shows the Wand T' profiles for several values 

of E
K2

• The vertical velocities have not been normalized 

because, graphically, no difference between the four profiles 

could then be seen. It can be seen that the maximum velocity 

field still occurs in the second layer--even for large values 

of (:1' .:1nd c 
\.? \J 2 

A weak second cell is observed to form just 
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above the second layer but it probably does not significantly 

affect the stability of the system since T' is essentially 

zero in this region and, thus, the magnitude of the rate of 

buoyant release of energy in this region is relatively small. 

Wand T' are both effectively zero above s = 50. It is in­

deed observed in the atmosphere (Malkus, 1952) that convec­

tive motion below a trade wind inversion does not usually 

penetrate to the height of the inversion unless the ascend­

ing fluid gains additional buoyancy due to condensation and 

the release of latent heat. Only dry convection is consid­

ered in this model. 
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by horizontal dashed lines. 



VI. SUI1t-1ARY AND COl\CLUSIONS 

An analytical model has been developed which describes 

convectj.on for the case of marginal stability in a fluid of 

N layers. In general, each layer may have a different ther­

mal expansion coefficient, temperature gradient, thermometric 

conductivity, kinematic viscosity, and density. The bound­

aries of the system may separately range from being a per­

fect conductor to a perfect insulator. 

Several problems occur in seeking the minimum Rayleigh 

number for the lowest mode \\7ave number, i. e., the critical 

Rayleigh nunilier, and in finding an eigenfunction which satis­

fies all boundary conditions. An eigenvalue, R, at a given 

wave number, a, is found by successive estimates of R such 

that the coefficient determinant of the solution is a mini­

mum. The eigenvalue, R, can be found to an accuracy of 10 

to 11 digits at a given "a" but this is sometimes not accurate 

enough to insure an eigenfunction which satisfies all the 

boundary conditions. The computer could be programmed to 

find R to b·d.ce this number of significant digi ts however 

such a program would require a large amount of computer time, 

holt.rever no other solution to this problem has been found. A 

second problem is that of finding the true critical Rayleigh 

number. The curve for R versus a is very broad in the 

region of the minimum Rayleigh nunilicr and, because of tllis, 
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it is difficult to find the true minimum R to more than 

+ 10- 70 - ~. 

The model is applied to a number of different fluid 

systems and several general properties of the free convcc-

tive mode become evident. If the configuration of the fluid 

is such that a second cell in the vertical forms, the sta-

bility of the systems tends to increase if in the region of 

the second cell the temperature perturbation is essentially 

zero. The reason for this is that the second cell supplies 

none of its own energy but must be driven by the primary 

cell. Thus an increased rate of release of internal energy 

in the lowest unstable part of the fluid is required for 

convective overturning to take place. The second cell may 

act to destabilize ~le fluid if the vertical velocity and 

temperature ~erturbation of the second layer are positively 

correlated. Internal energy is then also released in the 

second layor. This reduces the rate of release of internal 

energy in the lower part of the fluid necessary to produce 

convective motions which penetrate the fluid since the second 

cell, at least partially, drives itself. Forced convection 

(WT'<O) stabilizes the fluid because some of the internal 

energy released in the lower part of the fluid is stored in 

the form of potential energy in the region of forced convec-

tion. Thus, not all of the internal energy released goes to 

kinetic energy to penetrate the fluid and the rate of rolease 

of internal energy must increase for convection to occur. 
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The thermal boundary condition affects the stability of 

the system. If the lower boundary assumes the properti8s of 

a conductor, energy released in the lower part of the fluid 

can be conducted away through the lower boundary and the 

fluid is relatively stable. Conversely, if the lower bound­

ary is an insulator, the fluid is less stable and the transi­

tion from the conductive mode of heat transfer to convective 

occurs at a smaller temperature gradient since little energy 

goes out through the lower boundary. 

The usual type of convective instability does not occur 

when the fluid layers are not all of the same thermometric 

conductivity and thermal expansion coefficient. The insta­

bility which occurs in this case is probably similar to tllat 

found by Welander who showed that convective instability can 

occur even in a fluid heated from above when the thermal 

expansion coefficient and the conductivity are large in one 

layer and small in the other. 

In general, the horizontal wave number depends upon the 

stability of the fluid. For less unstable configurations of 

the fluid a small horizontal cell size is the most efficient 

in transferring energy from the lower part of the fluid. 

For more unstable configurations, the horizontal density of 

cells is greater. 

Several improvements over the present model could be 

made. Nondimensionalization of the mean state temperature 

field would allow a more complete heat flux interface bound­

ary condition. In the present model, the ratios of the 



55 

Rayleigh numbers at the interfaces bet\-leen layers, given by 

the E~, E~ and E~, are held fixed. However the Rayleigh 
].]. ]. 

numbers themselves are not fixed. For easier application to 

the atmosphere it would be useful to fix the Rayleigh num-

bers of the upper layers and vary only the Rayleigh number 

of the lowest layer. 
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