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Abstract

Performance evaluation of Local Features for Object Discovery

Object recognition is one of the most challenging tasks in computer vision. A common

approach in recognizing an object begins by detecting local features in image using a feature

detector and describing detected features in terms of feature vectors using a feature descrip-

tor. Many local feature detectors and feature descriptors have been proposed in literature.

This work evaluates performance of two successful feature detectors and five feature descrip-

tors on three datasets with unique characteristics. Based on the information content in a

given dataset we find general trends on the performance of local features. Our findings will

guild computer vision practitioners selecting between alternative local feature detector and

local feature descriptor to design highly accurate recognition systems.
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CHAPTER 1

Introduction

Object category recognition categorizes an image based on the presence of a particular

object or set of objects in that image. The challenges involved in object recognition are

to capture the variations in appearance, shape, viewpoint and texture of different objects

belonging to the same object category. People can generalize over instances of object classes

even if they have never seen the particular instance before. However, it is difficult for a

computer vision system to generalize across different viewpoints of a given object. For ex-

ample, it is not easy for a computer to learn how an airplane would appear from various

angles, hence recognizing a new instance of the same airplane from a different viewpoint

is difficult. A common approach for object category recognition is to extract important

feature point locations in an image and describe them using feature descriptors that helps

to classify the category of the image. Different combinations of image feature point detec-

tors, descriptors and classification techniques have been proposed to solve object category

recognition problems. Determining which technique to use for a given dataset is an open

problem. This thesis evaluates combinations of feature points detectors [41] [27] and feature

descriptors [34] [60] [57] [7] [46] on three datasets [43] [14] [11].

1.1. The Goals

Determining which feature detector and feature descriptor will work best depends upon

the type of information in the image data. There is a wide spectrum of datasets whose

content varies from localized information to globalized information. In order to measure

the impact of this factor on the choice of the feature detector and descriptor, we have used

three datasets. The datasets used for this thesis are Flowers [43], Caltech-256 [14] and 15

1



Flowers 

Caltech-256  

15 Scenes

Airplane

Windflower Daisy Bluebell Tigerlilly

Zebra Motorbike Kangaroo

Kitchen Office Mountain Street

Figure 1.1. Image Samples from Three Datasets used in this Thesis. Flow-
ers [43], Caltech-256 [14], 15 Scenes [11].

Scenes [11]. Image samples from these three datasets are shown in Figure 1.1. The first row

shows four images from Flowers dataset. The task is not to label images as flower but to

sub-categorize them as a specific class of flower e.g. Daisy or Windflower. In the middle

row, there are four images from the Caltech-256 object category dataset. Each image has a

central object and the image is assigned a label based on that object. The last row illustrates

four images from the 15 Scenes dataset. Each image is a collection of a few objects which

generalizes the image as a particular scene.

Image
Local 
Feature
Detection

Local 
Feature
Description

Classification

Figure 1.2. A High-level Overview of an Object Recognition System
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A high level description of an object recognition system is shown in Figure 1.2. First,

local feature points are extracted from an image. Local features can be points, edges or

blobs. Two commonly used local feature point representations are as follows:

• Interest Points: Interest points are the locations in an image whose local neigh-

bors have high variation in intensity values. The position of interest points can be

computed by an interest point detection algorithm [29] [41] [31].

• Grid Points: Grid Points are placed on image at regular or random spacing be-

tween them [57] [27]. Unlike interest points, Grid Points don’t use image content

information to determine location.

Interest points are key locations in an image that may possess invariance to scale, rota-

tion, viewpoint or illumination changes. On the other hand, a regular grid of points offers

better coverage over an image with a uniform number of feature points per unit image

area. Hessian-Laplace [41] and Grid Points based approaches are selected to evaluate in this

thesis. We have selected Hessian-Laplace as a representative of interest point detectors be-

cause it outperforms other commonly used interest points like Harris-Laplace, Difference of

Gaussian, Salient Regions and Maximally Stable Extremal Regions as per the performance

evaluations [39] [3] [55] [58]. Grid Points approach is selected as it is a recent technique that

has drawn attention from many researchers [44] [27]. Figure 1.3 shows location of the feature

points for both approaches on one image from each dataset mentioned in Figure 1.1.

The difference between both of these feature point selection methods can be noticed

in Figure 1.3. Looking at the motorbike and flower images, the Hessian-Laplace detector

determines location of feature points on the central object only and there are very few feature

points on the background. However, the Grid Points method locates nearly half of the feature

3



points on background and those points may not be useful to describe the image. For the

kitchen scene image, Hessian-Laplace finds most parts of the kitchen but misses cabinet and

kitchen roll. However, Grid Points covers all the essential parts to describe the kitchen scene.

Hence, the Hessian-Laplace is useful when the background or context is not important to

characterize an image and Grid Points can be useful when whole image describes its category.

Another popular approach for image representation is to use global image features instead

of extracting local patches. We have also considered a global feature based approach [46] to

compare it with the local feature based approach.

Hessian-Laplace Keypoints

Grid Points

Figure 1.3. Visual Comparison of Interest Points on One Image from Each
Dataset shown in Figure 1.1.

After extracting feature point locations using Hessian-Laplace or Grid Points over an

image, the next task is to represent local image area around those points. Local image

regions around feature points can be described by local feature descriptors. Many local

feature descriptors have been introduced in the literature [23] [62] [26] [25] [46] [34] in the

context of object recognition. Subsequent studies have compared of their performance on

different datasets [42] [48][2] [49] [9],

4



There is little knowledge on how these local feature descriptors perform on the other

type of datasets with unique recognition challenges. For this purpose, we have selected a few

local feature descriptors which have been shown to perform successfully on a specific type

of dataset, and evaluate how well they perform on different type of datasets. This thesis

evaluates performance of five local feature descriptors on the selected datasets. These local

feature descriptors are as follows:

• SIFT - Based on the image gradient orientation histogram in the local area around

feature points [34].

• DAISY - Similar to the SIFT but extracted over a circular pattern [57].

• LBP - A texture descriptor that works by comparing pixel intensity between a

central pixel and neighboring pixels [60].

• HOG - Counts occurrences of gradient orientation in localized portion and uses

overlapping local contrast normalization to improve accuracy [7].

• GIST - A global descriptor which captures the ”gist” of the image in a low dimen-

sional vector [46].

(a) SIFT Descriptors on Daisy Flower (b) DAISY Descriptor on Daisy Flower

Figure 1.4. Visualization of the Feature Descriptors.
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Visual representation of SIFT and DAISY descriptors is shown in Figure 1.4. It gives a

general idea on how they use a local neighborhood to describe feature points.

1.2. Evaluation Approach

Evaluating the performance of feature points and feature descriptors is a difficult task.

The results of classifying images tell us how good a detector and descriptor are describ-

ing categories in a dataset. There are two types of classification methods: a) supervised

classification and b) unsupervised classification or clustering. Use of a supervised classifier

introduces dependency on additional parameters compared to more general unsupervised

classification. For supervised classification, the evaluation results will depend on the partic-

ular choice of classifier and parameters for that classifier, for example using support vector

machine classifier and radial basis function. To avoid this problem the decision is made to

use unsupervised clustering method.

Clustering looks at how well images group into categories based upon the choice of image

feature detector and feature descriptor. In particular, hierarchical clustering is performed on

images. Hierarchical clustering generates many clusters and there is a challenge in deciding

on how many clusters to look at. The method taken here examines all clusters and a cluster

with the largest concentration of particular category is considered as representative cluster

of that category. Average performance of all categories is measured to decide the feature

detector and feature descriptor that performs better.

Chapter 2 presents a literature review on existing evaluation approaches for local feature

detectors and feature descriptors. Also, it provides a detailed description of selected feature

detectors and feature descriptors. Chapter 3 explains our image representation technique

and classification technique as well as the evaluation criteria. Implementation details on

6



evaluation framework are given in Chapter 4. Chapter 4 also presents useful findings of our

work in great detail. Finally, Chapter 5 draws conclusion from our results and mentions a

few points on future work.

7



CHAPTER 2

Literature Review

Object classification typically involves three distinct steps, as shown in Figure 2.1. First,

a local feature detector selects a set of feature points in an image. The feature detector

may use the image information to locate points, or it may use a pre-defined pattern of

points [41] [27]. Once the interest points are selected, the next task is to describe the

neighborhood around the point using a feature descriptor [34] [60] [57] [7] [46]. Feature

descriptors characterize the local visual appearance in terms of a feature vector. In the final

step, a classifier assigns a label to the image based on its feature vectors. This can be done

using supervised classification or unsupervised clustering.

Image
Local 
Feature
Detection

Local 
Feature
Description

Classification

Figure 2.1. A High-level Overview of an Object Classification System

In the past two decades, several feature detectors and feature point descriptors have been

proposed [34] [60] [57] [7] [46] [41] [27]. This raises an important question - which feature

detector and feature descriptor should we use? As mentioned in Chapter 1, different object

class datasets possess different characteristics. For example, the information content in some

datasets is local while other datasets contain more global information. The question posed

by this thesis is how to pick the best feature detector and descriptor, given a vast dataset of

set of object classes.

Previous studies have tried to answer this question by evaluating feature detectors, fea-

ture descriptors, or both. For instance, Mikolajczyk et al. [39] compared feature detectors

8



and descriptors in the framework of an object recognition system. In the following sec-

tions, we present the relevant literature of feature detectors and feature descriptors, and also

discuss performance evaluation criteria and datasets. Section 2.1 presents feature detectors,

performance evaluation measures and previous feature detector evaluations. Section 2.2 does

the same for feature descriptors. Section 2.3 explains evaluation frameworks used in the lit-

erature and also describes the evaluation framework used in this thesis. Lastly, we present

three datasets used in this thesis in Section 2.4.

2.1. Local Feature Detectors

In Chapter 1, the task of detecting feature point locations was defined. Feature points are

key locations in an image that should ideally be scale, viewpoint and illumination invariant.

Mikolajzyk et al. [58] define six properties of an ideal feature point detector. The most

desirable property to evaluate a feature detector is repeatability. It is a measure of the

positional stability of a feature point under changes in scale, viewpoint and illumination.

Given two images of the same scene from different viewpoints, a good feature detector

should find the same feature points in both images. For example, Figure 2.2 shows feature

points extracted from two images of the same scene at different scales [58]. The center of

the circles are feature point locations and radius of the circle represents the scale used for

Gaussian smoothing. Repeatability, the ability to find the same points in both scenes, is one

criterion for evaluating feature detectors.

Another approach, and the one taken in this thesis, is to evaluate feature detectors in the

context of object recognition. This approach analyzes image clusters instead of individual

feature points. Based on the purity of image clusters, they can be compared. Section 3.2.2

presents detailed evaluation criterion for this approach.
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Figure 2.2. Hessian-Laplace Detector applied to Images with Change in
Scale. This Image is from the Work of Mikolajzyk [58].

Schmid et al. [52] compared local feature detectors [5] [16] [20] [19] [12] in the context of

image matching. For performance evaluation, they measured repeatability under changes in

scale, rotation and illumination. They concluded that among the detectors available at the

time, the Harris detector yielded the best results. It should be noted that their analysis was

based on only two scenes.

Mikolajczyk et al. [41] proposed a novel feature detector and compared it with existing

detectors [30] [32] based on repeatabilty. They found their proposed detector provided

excellent matching results. Subsequently, Mikolajczyk et al. [39] evaluated local feature

detectors [22] [36] [33] [41] [40] in the context of object recognition as described above.

They analyzed the Harris-Laplace, Difference-of-Gaussian, Hessian-Laplace, Salient Regions

and Maximally Scale Extremal Regions(MSER) detector, and reported high performance for

Hessian-Laplace keypoints [41] combined with SIFT descriptors [42].

Subsequent studies by Bauml et al. [2], Mikolajczyk et al. [58], Bhatia et al. [3], Lankinen

et al. [24] and Stark et al. [55] confirmed that the Hessian based detector outperforms other

detectors on various recognition problems. However, their results were limited to specific
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recognition frameworks and datasets available at the time. Hence, we have selected the

Hessian-Laplace keypoint detector as one option within our evaluation framework.

Chapter 1 described two methods for finding feature point locations. One is to use image

information to decide the location of feature points and the other is to lay feature points over

the image in a pre-defined pattern. Many researchers have used dense points on a regular

grid [27] [57] [44] [11] with promising results. Nowak et al. [44] showed that densely sampled

features outperform interest point detectors as a part of a Bag of Features [6] strategy.

The winners of recent PASCAL challenges [10] have also used grid points, reinforcing their

suitability for object recognition. Based on these references we focus on two methods for

finding feature points in images - The Hessian-Laplace detector and Grid Points.

2.1.1. Hessian-Laplace Keypoint Detector [3]. The Hessian-Laplace detector lo-

cates interest points on images and defines scales for those points. Hessian matrices are used

to find the locations of points, and a Laplacian function computes the scales for those points.

A Hessian matrix is composed of the second order partial derivatives of the image I, which

can be expressed as:

H(X;σD) =

Ixx(X;σD) Ixy(X;σD)

Iyx(X;σD) Iyy(X;σD)


where Ixx, Iyy and Ixy are second order derivatives of image I computed at point X using

Gaussian kernels with standard deviation σD.

To find the location of points, a scale-space representation of the image is built by con-

volving it with Gaussians of increasing standard deviations. The scale of an image within

the image pyramid is defined by the standard deviation of the Gaussian used to generate it.
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Once we have a scale-space image representation of the image, feature points are extracted

at each scale as follows:

(1) Calculate the determinant of the Hessian matrix at each pixel.

(2) Compare the determinant value at a pixel with determinant values at its adjacent

pixels in a 3× 3 neighborhood.

(3) If the value of the determinant at the current pixel is greater than value of the

determinant at its 8 neighboring pixels, and above a given threshold, then there is

a feature point associated with the given pixel location. The threshold is used to

eliminate points with weak maxima.

The locations of interest points are defined at different levels of the scale-space represen-

tation. Because of Gaussian smoothing, the location of an interest point varies according

to scale. To find the characteristic scales at which the interest points convey the most

information, Mikolajczyk et al. [38] concluded that the Laplacian is optimal for detecting

characteristic scales. As we need to compare responses of Laplacian function at different

scales, a scale normalized Laplacian function is used which can be expressed as

Laplacian(X;σD) = σD
2|Ixx(X;σD) + Iyy(X;σD)|

where Ixx and Iyy are second order derivatives of image I computed at point X using Gaussian

kernels with standard deviation σD.

To select the characteristic scale for feature points detected in a scale-space image, the

Laplacian function is calculated over all scales. The scale at which this Laplacian function

attains a local maxima is assigned as the characteristic scale. In the case of more than one

local maxima, the point is assigned multiple scales.
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2.1.2. Grid Points [59] [11]. Vogel et al. [59] used random 10 × 10 pixel patches to

represent scene content resulting in a high classification rate. Following Vogel, Fei-Fei et

al. [11] implemented an evenly sampled grid of interest points. They sampled a grid of

patches, spaced at 10 × 10 pixels in an image. The patches were randomly sampled in

sizes between 10 to 30 pixels. Subsequently, Lazebnik et al.[27] used 16 × 16 pixel patches

computed over a grid with spacing of 8 pixels to extract SIFT descriptors for each patch.

They combined Grid Points with a Spatial Pyramid Matching approach which used spatial

information of the image features in the recognition task. Lazebnik et al. partitioned images

into smaller and smaller sub-regions. For each sub-region, interest points were sampled at

uniform grid points and SIFT feature vectors were computed and histogrammed. The final

image representation was the concatenation of these histograms.

In this thesis, we evaluate feature points sampled at the center of 16×16 non-overlapping

image patches. Feature descriptors are then extracted at the center of these patches and

occurrence histogram of the feature descriptors are computed using Bag of Features approach.

The Bag of Feature approach is discussed in Section 3.1.

2.1.3. Hessian-Laplace vs Grid Points. In this section, advantages and disadvan-

tages of Hessian-Laplace and Grid Points over each other are discussed. The Hessian-Laplace

detector focuses on regions that can be localized easily and contain high information about

an image. Also, it yields a high repeatability rate. On the downside, as it uses image

information to find location of the feature points, the number of feature points extracted

using Hessian-Laplace detector varies a lot. It can go upto few thousands for a very high

contrast image, which makes it difficult to select important feature points. Sometimes, for
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low contrast images, it may fail to produce even a single feature point which results in no

useful image information.

On the other side, Grid Points yield very low repeatability compared to Hessian-Laplace.

Higher repeatability can be achieved by making sampling density extremely high. However,

in this case the number of features will grow to be unacceptably large. As a trade-off,

overlapped patches of a predefined size can be used which may result in somewhat higher

repeatability. On the plus side, dense sampling of points on a regular grid results in good

coverage of the entire image and produces a constant number of features per image area. An

image or image parts with low and high contrast will contribute equally in this case. This is

very useful for scene interpretation tasks where the entire image describes the class of that

image.

2.2. Local Feature Descriptors

Once a set of feature points are extracted from an image, the next task is to encode

the local area around those feature points as a feature vector. Local feature descriptors

generate feature vectors based on the image patch around the feature points. Most feature

descriptors strive to be invariant to translation, rotation and scale. In chapter 1, we presented

five feature descriptors: SIFT [33], LBP [60], HOG [7], DAISY [56] and GIST [46]. In this

section, previous comparisons among feature descriptors are discussed.

It is important to know how to evaluate feature descriptor performance in various recog-

nition frameworks. A popular approach to evaluate descriptor is to use precision-recall

criterion. In this approach, first the images in a given dataset are represented in terms of

feature vectors. Once we have the feature vectors, each image is assigned a label using a

supervised classifier or an unsupervised clustering technique. Based on these assigned labels
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and true labels of images, precision is defined as the fraction of retrieved images that are

relevant, while recall means the fraction of relevant images that are retrieved. For example

if we are trying to label dog images, precision tells us how many images are dog out of the

images classified as dog, while recall tells us how many dogs are actually found out of the

total number of dogs. The same evaluation terminology can be applied to different recogni-

tion frameworks such as Scene Classification, Person Re-identification, Human Detection and

Face Recognition. Another criterion to evaluate feature descriptors will be computational

efficiency. Many real-time applications require local descriptors that are fast to compute and

result in a small length vector which make other tasks, such as classification, faster.

Mikolajczyk et al. [42] evaluated various local feature descriptors for the purpose of image

matching using the above mentioned precision-recall criteria. They demonstrated that SIFT

based descriptors are superior to other descriptors available at that time, in terms of invari-

ance to rotation, scale and affine transformations. Bauml et al. [2] selected prominent local

feature descriptors and evaluated them on the task of person re-indentification. They have

shown that SIFT based feature descriptors outperform SURF and Shape Context descrip-

tors. Pinto et al. [48] compared local image descriptors for invariant object recognition tasks.

However, they used synthetically generated image data to perform the experiments which

can’t be generalized to natural datasets. Gil et al. [13] evaluated state-of-the-art descriptors

for the problem of visual Simultaneous Localization and Mapping (SLAM). However, their

evaluation was focused on matching context and measuring how well similar landmarks in

different images of same category are grouped for the different descriptors. They have shown

that an extension of SIFT, Gradient Location and Orientation Histogram (GLOH), obtained
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the best results. Based on these various performance evaluations, our first choice of descrip-

tor for the evaluation is the SIFT descriptor so that it can be compared with newly available

descriptors.

Out of the many other available local feature descriptors, we wanted to test the better

performing and most commonly used descriptors. Ren et al. [49] demonstrated that His-

togram of Orientation Gradients (HOG), originally introduced for Human Detection [7] [66],

outperforms SIFT for the task of object recognition. A dense grid-based version of SIFT,

known as DAISY [56], is more robust to geometric and photometric transformations as com-

pared to SIFT [57]. Subsequently, DAISY has been evaluated for object recognition by Zhu

et al [65] and has been shown to perform better and faster than SIFT descriptor.

A popular texture based descriptor, Local Binary Pattern (LBP), has been shown to

perform excellently for face detection [1] [15]. Cevikalp et al. [4], Heikkila et al. [18] and

Satpathy et al. [51] evaluated Local Binary Patterns and its variants for object category

recognition and showed that Local Binary Patterns can be useful for invariant object cate-

gory recognition. Apart from the above mentioned local feature descriptors, a global image

representation, known as GIST [46] has been shown to be successful in retrieving relevant

images in a large scene dataset [9].

Taking these previous studies into account, we have decided to add Local Binary Patterns

(LBP), Histogram of Orientation Gradients (HOG), DAISY and GIST descriptors to our

evaluation list. In the following, the descriptors used in our work are discussed briefly.
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2.2.1. Scale Invariant Feature Transform [34]. The Scale Invariant Feature

Transform (SIFT) descriptor is useful to make interest point description partially invari-

ant to illumination and viewpoint changes [33]. Construction of the SIFT descriptors is as

follows:

(1) For each interest point, consider the 16× 16 pixel region centered at interest point

and compute the gradient orientation at each pixel in that region.

(2) Divide this 16 × 16 region into 16 sub-regions such that each sub-region is of size

4× 4.

(3) For each sub-region, construct an 8-bin histogram of gradient orientations. Gradient

orientation at a pixel varies between 0 to 360. So gradient orientation between 0 to

44 gets added to the first bin, between 45 to 89 gets added to the second bin and

so on. Also, the amount added to bins is weighted by a Gaussian function.

(4) Finally, the 8-bin histograms of all 16 sub-regions are concatenated to construct the

SIFT descriptor of length 128. The illustration of SIFT descriptor construction is

shown in Figure 2.3.

(a) Gradient Orientation (b) 8-bin Histogram Generation

Figure 2.3. An Illustration of SIFT Descriptor Construction. This Figure is
from the Work of Lowe et al. [33]
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Following this description construction, two more post-processing steps are performed to

make it less sensitive to illumination changes. First, for the linear illumination invariance or

uniform contrast, the 128 length vector is normalized to unit length. Second, to reduce the

effect of large gradient magnitudes resulting from non-linear sources like camera saturation,

any descriptor elements higher than 0.2 are cut off to 0.2 and descriptor is re-normalized to

unit length.

2.2.2. Local Binary Patterns [60]. Texture in an image has two important aspects,

a pattern and its strength or contrast. For any descriptor these two properties are an

interesting pair to get rotation and illumination invariance. Rotation affects spatial pattern

of the texture but not contrast while illumination affects contrast but not rotation. Based in

these assumptions Ojala et al. [45] introduced basic Local Binary Patterns(LBP) descriptor

which is capable of separating the texture’s pattern from contrast information.

The Local Binary Patterns operator is usually applied to the gray scale image and works

on a 3 × 3 pixel block. An illustration of the LBP extraction is shown in Figure 2.4. It

compares the gray-scale value of the center pixel with gray-scale values of its neighboring

pixels to generate a bit code. If the neighbor pixel has a larger value than the center pixel

then it generates 1. It generates 0 if the center pixel has larger value than the neighbor pixel.

For a 3 × 3 block, the 8 neighbors of the center can be represented with the 8-bit integer

value which is assigned to the center pixel. This 8 bit label is assigned to all the pixels in

an image and these values are histogrammed to 256 bins to represent the image texture.

Increasing the size of the neighborhood increases the length of feature vector exponen-

tially as 2P , where P is the number of neighbors. For example, if the block size is 5×5, length

of the feature vector will be 224 = 16777216. It is computationally inefficient to classify the
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Figure 2.4. Illustaration of Local Binary Pattern Construction. This Figure
is from the Work of Lindahl et al. [28].

images with such long feature vectors. To reduce the length of the feature vector, a uniform

binary pattern is used. The uniform binary patterns also exploits the fact that there are at

most two transitions from one to zero and zero to one in the majority of the LBP codes [45].

In a Uniform LBP the number of transitions from 0 to 1 and 1 to 0 are counted from

the bit code generated with the basic LBP. Based on the number of transitions, a new label

is assigned to the center pixel. If the numbers of transitions in the bit pattern are less than

2, the pattern is known as uniform. For example, the patterns 11111111 (0 transitions) and

00110000 (2 transition) are uniform patterns whereas the patterns 01101111 (3 transitions)

and 01010100 (6 transition) are non uniform patterns. In uniform LBP there is a sepa-

rate label for each uniform pattern and all the non-uniform patterns are assigned a single

label. Thus, there are a total of 58 uniform patterns for the 8 bit LBP as shown in Appen-

dix A. Considering one label for all the non-uniform patterns, a 59 dimensional histogram is

extracted for an image as a feature vector.

There are two main reasons for omitting non-uniform patterns. Ojala et al. [45] showed

that, in their experiments with texture images, uniform patterns account for nearly 90% of
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all patterns when using 8-bit LBP. Another reason to consider uniform patterns that they

are relatively more stable. Considering only uniform patterns reduces the number of labels

and makes it more reliable for better classification.

2.2.3. Histogram of Orientation Gradients [7]. Histogram of Orientation Gra-

dients(HOG) is similar to the gradient based descriptor SIFT where descriptor extraction

starts by calculating gradient orientation at each pixel. The original HOG was developed

for human detection and used a patch size of 64 × 128. However we have used a patch

size of 16 × 16 to extract descriptors at the local feature points. The patch is then divided

into a grid of cells and blocks for the normalization purpose. We have selected cell size as

4 × 4 and one cell per block, resulting in a total of 16 blocks. For each cell, the gradient

orientations are histogrammed into 8 bins in the range of 0 to 180 degrees. The magnitude

of the gradient vector determines the contributions added to the histogram. The next step is

block normalization which divides histogram for each cell by magnitude of the vector. Lastly,

block normalized histograms are concatenated to produce a 128 element feature descriptor.

2.2.4. DAISY [56]. The DAISY descriptor is a histogram of gradient orientations ex-

tracted on densely sampled feature points in an image. DAISY descriptor is similar to SIFT

descriptor but with two major differences:

• DAISY uses circular neighborhood instead of rectangle neighborhood used in SIFT

descriptor.

• SIFT descriptor is a histogram of gradient orientations weighted by the Gaussians

while DAISY uses convolution of gradient in a specific direction with several Gauss-

ian filters.
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To compute DAISY descriptors, a certain number of orientation maps Go, one for each

quantized direction o, are first computed. Convolved orientation maps are obtained by

convolving each orientation map with Gaussian kernel of different σ. Computation time of

DAISY is reduced by obtaining large Gaussian kernel from several small consecutive kernels.

Next, the neighborhood around each pixel is divided into circles on a series of rings

centered at a given pixel. At each circle, a vector is made by gathering the values of all

the convolved orientation maps with corresponding Gaussian smoothing. The final DAISY

descriptor is extracted by concatenating all the vectors from circles, after they are normalized

to unit form.

Figure 2.5. Illustration of DAISY Construction. This Figure is from the
Work of Tola et al. [57].

2.2.5. GIST [46]. The GIST feature is a global descriptor which characterizes important

statistics about a scene [46]. The idea behind GIST features is to capture a set of perceptual

dimensions like naturalness, openness, roughness, expansion and ruggedness, that represent

the dominant spatial structure of a scene. The GIST feature is computed by convolving an

oriented filter with the given image at several scales and orientations. This will measure
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the high-frequency and low-frequency repetitive gradient directions of an image. The scores

for the filter convolutions at each scale and orientation are used to calculate the final GIST

descriptor. In this work, GIST descriptors are calculated for gray scale image using a filters

at 8 orientations and 4 scales. This way the final descriptor of length 960 will be extracted

for an entire image.

2.3. Evaluation Approach

Performance evaluation of local feature detectors and descriptors is a challenging task.

Mikolaczyk et al. [40] evaluated feature detectors by matching a reference image with the

deformed image. Various deformations such as change in scale, blur and lighting condition

were present in the deformed images. The detectors were evaluated by their repeatability

ratios and total number of correspondences for the different viewpoints and deformations of

an image. Performance evaluation was done by comparing how well the detector can cope

with deformations. Similar approach was followed by Schmid et al. [52] for image matching,

Bauml et al. [2] for person re-identification problem and Bhatia [3] for feature matching.

For local feature descriptors, a similar evaluation approach was proposed by Mikolaczyk et

al. [42], where feature descriptors were matched on the object location. Later, Zhang et

al. [64] proposed comparison criteria for various detectors and descriptors using a mid-level

image representation method known as Bag of Features. Instead of evaluating detectors

and descriptors individually, combinations of the detector-descriptor were compared. They

showed that to achieve the best possible performance, it is necessary to use detectors and

descriptors in combination with a classifier.

We followed the above mentioned approach and compared the combinations of detector-

descriptor using the Bag of Features image representation. Feature detector-descriptor can
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be evaluated by comparing the classification results. In this thesis, we have used unsupervised

hierarchical clustering to classify or group the images into the categories. This approach is

chosen because of the simplicity and less number of input parameter compared to a supervised

classifier. Section 3.2 discusses specific details on unsupervised clustering technique and

evaluation criterion.

2.4. Dataset Selection

In this work we are evaluating two local feature detection approaches, Hessian-Laplace

and Grid Points. Furthermore, we are also evaluating five feature descriptors including four

local feature descriptors, SIFT, LBP, HOG and DAISY, and one global feature descriptor,

GIST. However, unlike previous comparison studies discussed in the above sections, our goal

is to eliminate dataset bias from our results. To elaborate, we will be using three datasets

which vary in terms of the information contained in their image categories. These datasets

are selected based on their inter-class and intra-class variability. From previous works,

the most popular dataset for the performance evaluation on object category recognition

is Caltech-101 [55] [65] [39] [24]. However, in this dataset objects are of similar size and

orientation and lack in rich background. This means that, it has a very low intra-class

variability as shown in the Figure 2.6. Because of these limitations of Caltech-101, we have

selected Caltech-256 [14], which is a very diverse dataset with 256 natural object categories

containing high intra-class variability and rich backgrounds.

To select other datasets, there is a wide range of available datasets from those with

very little inter-class variability to those having high amount of inter-class and intra-class

variability. We have selected Flowers dataset [43], with a very fine distinction between the
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Figure 2.6. The Caltech-101 average image. This image is from the work
by Zhang et al. [63]

categories, and 15 Scenes datasets [11], where each category is generalized by the set of

objects. A brief overview of the datasets used in our work is given in the Section 3.3.

This literature survey took us through various performance evaluation techniques used

to compare detectors and descriptors. It also provided us with a stable direction to pursue

our aim of updating the literature in object recognition with precise and reliable results for

independent and combined performances of detectors and descriptors. Our approach differs

from these previous works because we attempt to establish our results on more challenging

datasets which have diverse information content.
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CHAPTER 3

Methodology

The previous literature reviewed on the feature detectors and descriptors along with ways

to evaluate their performance. This chapter presents the methodology chosen here to perform

a series of experiments and evaluate the performance of feature detectors and descriptors.

As discussed in Section 1.1, object recognition is a three step process: a) Localize points on

images using a feature detector, b) Describe localized points using a feature descriptor and

c) Label the images using a classifier. To combine the first two steps, the Bag of Features [6]

approach is used that converts an image into a single feature vector. Once all images in a

dataset are represented in terms of feature vectors, unsupervised clustering is used to assign

labels to them. The performance of these feature detectors and descriptors is measured

and compared using a statistical measure, the F measure, is used. Section 3.1 describes

Bag of Features approach for image representation. Section 3.2 talks about clustering and

evaluation. Lastly, detailed information on datasets is presented in Section 3.3.

3.1. Image Representation

This section explains how an image is represented in terms of a vector which contains

meaningful information about that image. This representation helps to compare an image

with other images and measuring similarity. Bag of Features [6] technique is selected for

this representation. There are two main reason for selecting this technique: a) The Bag of

Features technique is very popular now-a-days owing to its good performance and simplicity.

b) It is an orderless collection of local features extracted using a feature detector and de-

scribed using a feature descriptor. These two steps of extracting and describing features are
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independent of each other which makes it easier to compare local feature detectors and local

feature descriptors. Also, as this approach discards spatial information, it is theoretically

easy to understand and efficient to compute.

The Bag of Features approach is analogous the to Bag of Words [17] approach used in

textual information retrieval. In Bag of Words, each document is represented as a normalized

histogram of word counts. As a first step, a dictionary is created using set of different words

obtained by merging all text documents of a collection. For each document, the frequency

of word occurrence in the document is calculated for all words in the dictionary. So each

document is represented as a sparse vector in which each element is a term(word) from

the dictionary and the value of that element is the frequency of occurrence of that term in

the document. This histogram is then divided by the total number of dictionary words in

the document. The Bag of Words approach is order-less because ordering of words in the

document has been lost. Similar to this, Bag of Features is used to represent images in

terms of vectors. In the following subsections, two essential steps, dictionary creation and

histogram representation, for the Bag of Features approach are explained.

3.1.1. Bag of Features Vocabulary Construction. The Bag of Features repre-

sentation, similar to Bag of Words in textual information retrieval, can be used for the task

of object recognition. In this technique, documents are replaced by images and words are

replaced by local feature vectors. A dictionary, also known as a visual vocabulary, can be

constructed using these local feature vectors . As shown in Figure 3.1, local features are

localized in images using a feature point detector. These localized feature points are then

described using a feature descriptor. The next step is to create a visual vocabulary using

these feature descriptors.
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Figure 3.1. Bag of Features Vocabulary Construction

In the Bag of Words approach, only one word is used as a representative for a set of

similar words while creating dictionary. For example, words like ”messages”, ”message” and

”messaging” will be treated as a same word. Likewise, similar feature descriptors should be

grouped such that each group represents a local area of an object. To group similar feature

descriptors K-means[35] algorithm is used. K-means generates clusters of similar feature

descriptors, and average of all feature descriptors in a cluster can be used as a representative

of feature descriptors in that cluster. K-means algorithm works as follows:

Inputs to K-means are a set of descriptors and the value of k, where k is the number of

clusters to be generated. K-means clustering generate centers of k clusters as output. These

cluster centers are the words of the visual vocabulary. This visual vocabulary will be used

in the next step to extract Bag of Features histogram for any query image.
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Algorithm 1 K-means for Bag of Features

1: Extract the feature descriptors of all images and be the set of data points X =
{x1, x2, ..., xn}

2: Randomly select a set of k cluster centers C = {c1, c2...ck}
3: for all Data point do
4: Calculate the Euclidean distance between data point and cluster centers.
5: Data point is assigned to the cluster with minimum Euclidean distance.
6: end for
7: Recalculate new cluster centers using :

ci =
1

m

m∑
j=1

xj

where m represents number of data points in cluster ci.
8: Repeat steps 3 to 6 until no data point is reassigned to different cluster.

3.1.2. Bag of Features Histogram Representation. Once a visual vocabulary

is constructed using a set of images from all categories in a dataset, any image of those

categories can be converted into a k-length histogram vector using the visual vocabulary. K

is the number of clusters used as a input parameter to K-means algorithm. Figure 3.2 shows

steps to represent an image in terms of a histogram vector. Feature points are located in a

given image and feature descriptors are computed at those points. The feature detector and

feature descriptor should be the same as the ones used while creating the visual vocabulary.

Next, each feature descriptor is assigned to a nearest cluster center in the visual vocabulary

using a nearest neighbor algorithm. A K-length histogram of those feature descriptors’ count

is then extracted to represent that image. As number of feature descriptors varies per image,

the final histogram is normalized by dividing it with the number of feature descriptors. Once

images are represented in terms of Bag of Features histogram, they can be assigned a label

using a classifier. The classification approach used is discussed in Section 3.2.

3.1.3. Parameters for Bag of Features. One of the limitations of the K-means

algorithm is that it does not determine the value of k. We ran a few experiments to determine
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Figure 3.2. Bag of Features Vector Construction

the value of k for a given number of feature descriptors. Also, the value of k need not be

perfectly optimized as the goal of this thesis is to compare performance on categorization,

rather than comparing Bag of Features technique with other image representation techniques.

Some other parameters to consider while creating the visual vocabulary are the number

of images per class and number of descriptors per image. Only a few images of each category

should be sufficient to characterize that particular category for the Bag of Features approach.

For example, if the categories are car and zebra, a few images of both classes will be enough

to generate clusters of local parts such as wheels, headlights, zebra legs and nose. A feature

detector may detect large number of feature points. However, it is computationally inefficient

to use all feature descriptors extracted at the feature points for k-means clustering. For these

reasons, we have selected a limited number of images per class and feature points per image.
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Specific implementation details about the number of images, number of features per image

and value of k are given in Section 4.1.

Note: For global descriptor GIST, image representation is done by directly extracting

the GIST feature descriptor on images. One important property of the GIST descriptors is to

use spatial information for image representation. In contrast, the Bag of Features approach

discards spatial information.

3.2. Unsupervised Clustering

The previous section discussed on how to represent an image in terms of Bag of Features

histogram. Using this representation, each image can be assigned a label using a supervised

classifier, or images can be grouped into clusters of images using unsupervised clustering.

We are following the second approach of unsupervised clustering because of its simplicity,

speed and fewer number of input parameters.

Clustering is a task of grouping data points, images in this thesis, in such a way that

images in the same group are more similar to each other than to those in other groups.

These groups of images are called clusters. There are two families of clustering algorithms,

Flat Clustering and Hierarchical Clustering, depending on how they work. Flat Clustering

partitions given data such that all groups are independent of each other. The K-means

algorithm, discussed in 3.1.1, is an example of Flat Clustering. Hierarchical Clustering

partitions data into a hierarchy of clusters that can be visualized using a structure known as

dendrogram. Agglomerative Clustering and Divisive Clustering are two types of Hierarchical

Clustering. Agglomerative is bottom-up clustering which starts with each image as its own

cluster. At each iteration, it merges two most similar clusters until all the images are merged

into one cluster. On the other hand, Divisive Clustering is a top-down approach and starts
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with all images in one cluster. At each iteration it splits the cluster into two or more clusters

until all the images are singleton clusters. A dendogram generated using Agglomerative

Hierarchical clustering is shown in Figure 3.3.

Figure 3.3. Example of Dendrogram.

Various partitions can be achieved using Hierarchical Clustering. Because of this ad-

vantage of Hierarchical clustering over flat clustering, where only one partition of data is

possible, we have selected Hierarchical Clustering for classification. Now the question arises

as to which Hierarchical Clustering should be used, Agglomerative or Divisive. Divisive

Hierarchical Clustering starts with all images in a single cluster and splits the images into

two or more clusters at each iteration. To split a cluster, the global distribution of the data

should be known. For example, if the task is to segment an image by clustering pixel values,

we can find good splits by constructing histogram of RGB values. However, for classification

it is a bit difficult to find this kind of global distribution of data and decide the split. So to

make our approach simpler, we choose Agglomerative Hierarchical Clustering.
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3.2.1. Agglomerative Hierarchical Clustering. Agglomerative Hierarchical Clus-

tering is a bottom-up approach where each image is in its own cluster at the beginning, and

iteratively all images are merged into a single cluster. This approach generates a hierar-

chy of clusters known as dendrogram. The basic algorithm for Agglomerative Hierarchical

Clustering is as follows: Step 2 in the above algorithm is to find inter-similarity matrix

Algorithm 2 Agglomerative Hierarchical Clustering

1: Assign each image to a cluster of its own
2: Compute the inter-similarity matrix between all cluster
3: Merge the most similar pair of clusters, say i and j, to form a new cluster k
4: Update similarity matrix by removing entries for i and j and adding a entry for k
5: Go to step (3) until all of the clusters are merged into one cluster

between clusters. There are two cases while finding similarity between two clusters: a) Both

the clusters are singleton clusters having only one image in them. Similarity between two

singleton clusters is the similarity between images in those clusters. b) If even one of them

is not a singleton cluster, linkage criteria between them decides similarity between them. In

following sections, five different linkage criteria are defined and differences between four of

them are visually shown in Figure 3.4.

3.2.1.1. Single Linkage [53]. In the single linkage method, distance between two clusters

is the minimum distance between any image in the first cluster and any image in the second

image. It is defined as:

dAB = min
a∈A,b∈B

d(a, b)

where a and b belong to cluster A and B respectively.

3.2.1.2. Complete Linkage [8]. This method is contrary to the single linkage criterion

since it uses the pair of images which are least similar or at maximum distance to each other
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(a) Single Linkage (b) Complete Linkage

(c) Average Linkage (d) Centroid Linkage

Figure 3.4. Linkage critria to merge two clusters in Agglomerative Hierar-
chical Clustering

in two clusters. It can be expressed as

dAB = max
a∈A,b∈B

d(a, b)

where a and b belong to cluster A and B respectively.

3.2.1.3. Average Linkage [54]. The average linkage method calculates distance between

all pairs in two clusters, and averages these clusters. The equation to find the distance

between two cluster is as:

dAB =
1

m ∗ n

m∑
i=1

n∑
j=1

d(ai, bj)

where a and b belong to cluster A and B respectively, m is the size of cluster A and n is

the size of cluster B.
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3.2.1.4. Centroid Linkage [21]. Centroid linkage defines distance between two clusters as

the distance between centroids of those clusters.

dAB = d(a, b)

where a and b are centroids of the A and B respectively.

3.2.1.5. Ward’s Method [61]. Ward’s method does not define the distance between two

clusters. However, it says that the distance between them is proportional to the increase in

their variance when we merge those two clusters. If clusters A and B are merged into cluster

C, then the increase in their variance while will be defined as :

∆σ =
m+n∑
i=1

‖ci − c‖2 −
m∑
j=1

‖ai − a‖2 −
n∑

k=1

‖bk − b‖2

where m is the size of cluster A, n is the size of cluster B, a is the mean of cluster A, b is the

mean of cluster B and c is the mean of merged cluster C. ∆σ is known as merging cost, and

two clusters with minimum merging cost are merged at each iteration.

3.2.2. Interpretation and Evaluation of Dendrograms. The result of Agglom-

erative Hierarchical Clustering generates dendgrograms which represents a hierarchy of clus-

ters. Figure 3.5 shows a dendrogram generated using Agglomerative Hierarchical Clustering

on 15 images of three categories from the 15 Scenes dataset.

As shown in Figure 3.5, image sample labels are plotted against their distance at which

they are merged into clusters. For this example, we use Ward’s method for linkage between

clusters and euclidean distance for similarity between image samples. At the first iteration,

leaf nodes with images Forest2 and Forest3 are merged into one cluster. At second iteration,

34



Figure 3.5. Dendrogram Generated using Agglomerative Hierarchical Clus-
tering with Matlab [37]. Each Data Point is a GIST Descriptor of Images
shown in Appendix B. Images are from Three Scene Categories in the 15-
Scenes Dataset [11].

cluster which contains Forest4 is merged with cluster containing images Forest2 and Forest3.

Looking at the left side of the dendgorgram, Office1 and Office3 are merging into a cluster,

while Office2, Office4 and Office5 are merging into one cluster. However, the cluster con-

taining Office2, Office4 and Office5 merges with Livingroom1 and Livingroom4 successively.

This is because both the categories, Office and Living-room, are indoor scenes and can be

easily confused with each other. The images used to generate this dendrogram are shown in

Appendix B. If categories are totally separable then the dedrogram will look different.

Figure 3.6, shows dendrogram generated for Forest, Living-Room and MITCoast cate-

gories. It can be observed that three pure clusters are formed first and merged into one at

root level.

In Figure 3.5 and Figure 3.6, it should be noticed that hierarchical clustering produces

large number of clusters. Not all of these clusters contain useful groups and specific clusters
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Figure 3.6. Dendrogram Generated for Categories Forest, Living-Room and
MITCoast [11].

should be selected from the dendrogram. Common method to select clusters is to cut the

dendrogram at a constant height. For example, cutting dendrogram shown in Figure 3.6

at height 2.5 will result in three clusters. These three clusters are pure and each of them

contain 5 images from one class. However, for the dendrogram in Figure 3.5, such a cut will

not produce pure clusters. A question arises on how many clusters are really important and

how to select those clusters. In this thesis, we are going to select only one cluster for each

category. So total number of selected clusters will be equal to the number of categories in a

given dataset.

For each category, all the clusters are ranked by asking how well each cluster performs

at discovering that category. The best cluster among all the clusters will be selected as a

representative of that category. To select the dominant cluster, we are using F-measure which

is a harmonic mean of precision and recall. Before going for the formal definitions of these

terms, let’s assume the given task is to discover the category dog in Caltech-256 [14]which

has 100 images of dogs in it. So the goal is to find a single cluster, that has the maximum
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numbers of dog images and the minimum numbers of non-dog images. Consider a cluster in

dendrogram with total 50 images out of which 35 are dog images and 15 are non-dog images.

Now, precision is the number of correct results divided by the number of all returned results.

Recall is number of correct results divided by total number of labeled images of that category.

Thus for the above mentioned cluster and category dog, precision will be 35/(35 + 15) = 0.7

and recall will be 35/100 = 0.35. F measure, the harmonic mean of precision and recall, will

be (2 ∗ 0.7 ∗ 0.5)/(0.7 + 0.35) = 0.47. For the dog category, the F measure for all the clusters

will be calculated, and the clusters with highest F measure will be assigned to it. This cluster

is not removed from the dendrogram as it may be assigned to a different category or it can

be the child of the clusters which is assigned to a different category.

The criteria to select a cluster from dendrogram for any category can be formally defined

as follows:

Notations:

- H is a cluster tree or a dendrogram

- Lj is the object category j and its set of images

- Ci is the cluster contained by H and its set of images

- P is Precision, R is Recall and F is F measure

Given a cluster Ci and a category Lj, the precision and recall can be written as :

P (Ci, Lj) =
|Ci ∩ Lj|

Ci

(1)

R(Ci, Lj) =
|Ci ∩ Lj|

Lj

(2)
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Using Equation 1 and 2, F measure for the cluster Ci and the category Lj, can be written

as :

F (Ci, Lj) =
2 ∗ P (Ci, Lj) ∗R(Ci, Lj)

P (Ci, Lj) +R(Ci, Lj)
(3)

For the category Lj, a cluster with the highest F measure is obtained according to equation:

F (Lj) = max
Ci∈H

F (Ci, Lj)(4)

The F measure value ranges from 0 to 1. The higher the F measure, better is the

clustering. It indicates that the feature detector and feature descriptor used to represent

images are doing a better job of describing images. This approach of selecting one cluster

for each category using F measure addresses the following concerns:

• It ignores clusters with either higher precision or higher recall as compared to the

cluster that gets selected. F measure tries to maximize precision and recall instead

of selecting tiny pure clusters at the bottom level or large clusters at the top level

of the tree.

• Even if there is more than one cluster which represent a category with a similar F

measure, only one will get selected and others will be rejected. However, if these

clusters fall under a same parent, this approach will select the parent cluster for

that category.

Based on the F measure of the cluster selected for each category, our experiments can be

evaluated by averaging F measures over all the categories. Section 4.1 discusses more about

experimental evaluations.
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3.3. Datasets

Every available dataset is limited to specific visual appearance. For example, Caltech-

101 is an object class dataset in which each image contains only single object. To include

more variety, we have selected three well known datasets, Caltech-256 [14], 15-Scenes [11]

and Flowers [43], for experimental purpose. Each of these datasets is chosen because of its

unique characteristics. Summary of these datasets is as follows:

3.3.1. Caltech-256. Caltech-256 is an object dataset with 257 classes, 256 object

classes and a clutter class, totaling 30607 images. There are minimum 80 images per class.

Each of these classes has one central object in it which describes that particular class. It is a

highly complex dataset because of very high inter-class and intra-class similarity. Taxonomy

and average images of all classes are shown in Appendix C.

3.3.2. 15-Scenes. 15-Scenes [11] is one of the most diverse scenes dataset available in

literature. It contains 10 outdoor classes and 5 indoor classes. The number of images in

each class varies in between 200 to 400 and average image size is 300× 250 pixels. Example

images from all 15 categories are shown in Appendix C.2.

3.3.3. Flowers. Flowers [43] datasets has 17 classes of different species of flowers. Each

flower subcategory has 80 images, totaling 1380 images. As all the classes are species of

flowers, they have very low inter-class similarity. Each categoriy has very high intra-class

similarity due to large illumination, viewpoint and scale variations in images. Appendix C.3

shows example images from this dataset.
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CHAPTER 4

Results

A series of experiments are performed to achieve our goal of comparing the performance

of feature detectors and feature descriptors on three datasets. This chapter presents imple-

mentation details on experiments followed by a few useful findings. Implementation details

are discussed in Section 4.1. Section 4.2 compares feature detectors’ performance and de-

duces the type of information content supported by each detector. Pair wise performance

of detectors and descriptors is analyzed in section 4.3. Next, category level performance is

discusses in Section 4.4. Lastly, Section 4.5 shows how the GIST descriptor design is highly

influenced by the 15-Scene dataset.

4.1. Implementation Details

In this thesis, two local feature detectors and five feature descriptors are evaluated on

three datasets. Out of these five feature descriptors, four are local descriptors and one is

a global descriptor. There will be 8 combinations of 2 local feature detectors × 4 local

feature descriptors + 1 global feature descriptor to evaluate on each dataset. Each of these

9 combinations is run 12 times on each dataset by randomly selecting training and testing

sets.

To represent images using local feature detectors and local feature descriptors, we use

the Bag of Feature approach. For 8 of the above mentioned 9 experiments that include local

features, we need to create a visual vocabulary as a first step towards the Bag of Features.

The following choices are made while creating a visual vocabulary:
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• Number of categories: All the 15 and 17 categories are used for 15-Scenes and

Flowers datasets respectively. For Caltech-256, 20 categories are selected randomly

for each run.

• Number of images per category: 50 images for Caltech-256, 60 images for Flowers

and 65 images for 15-Scenes per category are selected randomly as training set. The

remaining images from each category are added to the testing set.

• Number of feature points: We compare two methods for locating feature points in

an image:

A) Hessian-Laplace detector may detect hundreds or thousands of feature points in

an image, depending on the image content. We limit the Hessian-Laplace operator

to 250 feature points per image in these experiments. If fewer feature points are

extracted, we use all of them.

B) For Grid Points, we place feature points at the center of 16×16 non overlapping

image patches. So number of feature points varies according to image size. However,

we resize the image to keep number of feature points around 250.

• Size of the visual vocabulary: For each experiment, there are 1000 images and

approximately 250 feature descriptors per image. So there are roughly 250,000

descriptor to cluster. We group them into 4000 clusters.

After obtaining a visual vocabulary, the images in the testing set are converted into 4000

dimensional feature vectors. This feature vector represents an image as a order-less histogram

of local image parts. For GIST descriptors, each image in the testing set is directly converted

into a 960 dimensional global feature vector (The Bag of Feature step isn’t required for GIST).
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These feature vectors are grouped using Agglomerative Hierarchical Clustering producing

a dendrogram. The most representative cluster for each category is identified from the

dendrogram using the F measure. Finally, the F score of the dendrogram is the overall sum

of weighted F measure of all the categories.

FH =
n∑

j=1

Lj

N
F (Lj)(5)

where n is number of categories in dataset, N is total number of images in training set and

Lj is the number of images in category j.

4.2. Feature Detectors’ Performance Comparison

The performance of the Hessian-Laplace detector is compared to Grid Points using the

F measure for the best selected clusters. For each dataset, 12 experiments are performed

and the F measure weighted across object categories for each experiment is calculated using

Equation 5. The overall performance is then calculated by averaging the weighted F measure

over all 12 experiments. Figure 4.1 compares performance between Hessian-Laplace and Grid

Points when used with the four local feature descriptors. This plot doesn’t contain results

for the GIST descriptor, as GIST is a global descriptor that does not need to localize feature

points. The Y axis on the bar plot is the delta (difference) value between the average F

measure for Grid Points and the average F measure of Hessian Points. The X axis is the

label combination of one of the datasets and one of the local descriptors. From the bar plot

in Figure 4.1, one can conclude that:
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Figure 4.1. Delta F measure - Difference between Hessian-Laplace and Grid
Points F measure.

(1) Grid Points outperform the Hessian-Laplace detector on the 15 Scenes dataset.

This behavior is not dependent on the choice of the feature descriptor. However, the

change in F measure varies between 0.15 to 0.3 for different local feature descriptors.

(2) The Hessian-Laplace detector outperforms Grid Points on the Flowers dataset by

a large difference in F measure when used in conjunction with SIFT descriptor. It

performed poorly on the 15 Scenes dataset.

(3) The other bars on the plot, which have an absolute difference in F measure less than

0.05, should be considered insignificant.

It appears that Grid Points on 15 Scenes performs well because they cover the whole

image area. The images in 15 Scene dataset, as shown in Appendix C.2, have more global

content. In other words, the images are defined by more than one objects or object parts.
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For example, images in the kitchen scene are defined by objects such as microwaves, stoves,

tables, cabinets and refrigerators. On the contrary, the images in the Caltech-256 and

Flowers datasets are more localized, with single dominant object that much of the image

area. Because of this, Grid Points failed to perform well on these datasets.

Hessian-Laplace performs poorly on the 15-Scenes dataset. It selects feature points in

image where there is a high variation in intensity values. Thus it may select few points and

miss some other important image locations. Incidentally, on the flowers dataset Hessian-

Laplace’s performs better as it successfully finds feature points on important flower parts

such as petal, sepal and pistil.

4.3. Feature Detector-Descriptor Performance

In this section we will discuss about how the different detector-descriptor combinations

perform on the Caltech-256, 15 Scene and Flowers. The feature detector-descriptor pair

performance is shown in Figure 4.2. On the bar plot, the X axis is the labels for the

experiments and the Y axis is value of weighted average F measure for all the experiments.

The first 8 bars on bar plot shows results for the 15-Scene dataset. It can be observed

that Grid Points with the HOG outperforms other detector-descriptor combinations on the

15-Scenes dataset. Grid Points combined with LBP is second highest performing combina-

tion. The HOG descriptor is less sensitive to the illumination change and 15-Scenes dataset

categories have very high variation in terms of illumination. Also, the outdoor categories in

15-Scenes dataset contain texture information that is supported by the LBP descriptor. On

the contrast, the Hessian-Laplace performs worst with all the feature descriptors. This is

because it fails to find useful feature point location on 15-Scene images.
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Figure 4.2. Feature Detector-Descriptor Performance

For the Caltech-256 dataset, there is no feature detector-descriptor combination that out-

performs other combinations by a significant amount of the F measure. Caltech-256 has very

high inter-class and intra-class variability. It contains the categories supported by individual

combination but overall there is no better performing detector-descriptor combination. The

category level results for the Caltech-256 is discussed in the the Section 4.4.

From the last 8 bars, it appears that the Hessian-Laplace with SIFT descriptor out-

performs other combinations on Flowers dataset. Hessian-Laplace with DAISY descriptor

is second best performing combination on the Flowers dataset. Hessian-Laplace finds fea-

ture points location on image where there is a very high intensity variation in local area.

The implementation of the Hessian-Laplace keypoint detector is very similar to the SIFT

keypoint detection technique. The SIFT descriptors computed over SIFT keypoints yields
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high recognition rate for the object categories. [33]. We also see the similar performance

with DAISY descriptor as DAISY is similar to SIFT descriptors except that it is faster to

compute DAISY.

4.4. Category level Localization information finding

To evaluate feature detectors at category level and see what kind of information content

particular detector is supporting, we have defined a localization score for each category.

We displayed the Hessian-Laplace keypoint locations on each image in Caltech-256 and

Flower dataset. Looking at particular images, we observed that not all the Hessian-Laplace

keypoints are on the object of interest (object which defines the label) in an image. There are

images in which many keypoints are on the background. This happens because of multiple

reasons such as low image contrast, very rich background or the object of interest is out of

focus. If the Hessian-Laplace finds majority number of feature points on object of interest in

image, we call that image a localized image. And if most of the feature points are not on the

object of interest in an image then we call that image a non-localized image. Some examples

of non-localized images from Caltech-256 and Flowers dataset are shown in Figure 4.3.

We hand labeled all the images in the Caltech-256 and Flowers dataset as either localized

image or non-localized image. Using those labels, for each category in both the datasets,

localization score is calculated as:

(6) localization score =
No. of localized images in the category

Total number of images in the category

We hypothesize that if all the images in the category are localized such that most of the

Hessian-Laplace points are on the object of interest, Hessian-Laplace detector should perform
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Figure 4.3. Non-Localized Image Samples from the Caltech-256 and Flowers
Datsets.

better compared to Grid Points. If more than half of the images are not localized then

Hessian-Laplace will perform similar or worse that Grid Points. So higher the localization

score better the performance of the Hessian-Laplace compared to Grid Points.
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4.4.1. Localization Results on the Flowers Dataset. To analyze our hypothe-

sis, we calculated the F measure ratio for Hessian-Laplace to Grid Points for each category

as per following:

(7) F measure Ratio =
F (HL)

F (HL) + F (GP )

where F(HL) is F measure for Hessian-Laplace and F(GP) is F measure for Grid Points.

Scatter plot in Figure 4.4 shows the relation between the localization score and the F

measure ratio for SIFT descriptors on individual categories from Flowers dataset. It can

be noticed that higher the localization score better is the F measure ratio. We calculate

the correlation coefficient and draw the regression line between data points on scatter plot.

Both, correlation coefficient and regression line strongly support our hypothesis. Similar

plots for other local descriptors are shown in Appendix D.2.

4.4.2. Localization Results on the Caltech-256 Dataset. For each category in

Caltech-256 dataset, we calculated localization score using Equation 6. We also observed

in Section 4.2 that neither Hessian-Laplace nor Grid Points outperforms on Caltech-256

dataset. However, if we analyze their performance at category level on Caltech-256, we

find few categories on which each of the detector performs better compared to the other

one. Those categories also support our hypothesis on relation between F measure ratio and

localization score.

Table 4.1 shows sample categories on which Hessian-Laplace outperforms Grid Points

and vice versa. Values in the 2nd to 5th column are difference in F measure between Hessian-

Laplace and Grid Points for the particular category. It is shown that higher the localization

48



30 40 50 60 70 80
Ratio of F-measure for Hessian to Grid

0

20

40

60

80

100
Lo

ca
liz

a
ti

o
n
 S

co
re

Correlation Coefficient = 0.79 

iris

bluebell

daffodil

tigerlily

sunflower

dandelion

buttercup

lillyValley

crocus

pansy

tulip

crowslip

windflower
daisy

fritillary

snowdrop

Figure 4.4. Localization Score vs F measure ratio between Hessian and Grid
for SIFT Descriptors on Flowers Dataset

score better the performance of Hessian-Laplace compared to Grid Points. If the localiza-

tion score is lower, Grid Points performs better than Hessian-Laplace indicated by negative

numbers in row 5 to 10. More such categories are shown in Appendix D.3

4.5. Performance of GIST descriptor

To summarize the performance of GIST descriptor on three datasets, Caltech-256, 15

Scenes and Flowers, a scatter plot is generated and shown in Figure 4.5. In this scatter plot,

the Y axis is the value of the F measure averaged over 12 experiments and the X axis is the

dataset labels. For each dataset in the scatter plot, there are five descriptor labels that show
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F(HL) - F(GP)
Localization Score SIFT Daisy HoG LBP

bonsai-101 82.79 0.13 0.04 0.13 0.01
zebra 76.04 0.42 0.07 0.22 0.20
mountain-bike 84.15 0.26 0.12 0.05 -0.03
ice-cream-cone 60.23 0.06 0.04 0.06 0.06
car-side-101 7.76 -0.18 -0.18 -0.26 -0.28
elephant-101 44.27 -0.11 -0.04 -0.17 -0.10
goldfish 27.96 -0.02 -0.09 -0.07 -0.10
iris 34.26 -0.14 -0.14 -0.29 -0.17
comet 27.27 -0.24 -0.42 -0.34 -0.20
kayak 31.07 -0.08 -0.17 -0.27 -0.09

Table 4.1. Category Level Localization Results on Caltech-256. F(HP) is F
measure for Hessian-Laplace and F(GP) is F measure for Grid Points

their performance (F measure values). In the case of local descriptors, the F measure for the

highest performing detector, Hessian-Laplace or Grid Points, is shown on plot. For all the

experiments we have used the experimental setup described in Section 4.1. The values of the

F measure in the scatter plot are shown in Table D.3. It can be noticed from the scatter

plot that the GIST descriptor outperforms other local descriptors on the 15-Scene dataset.

However, the GIST descriptor performs worst on the Caltech-256 and Flowers datasets. One

should take a moment to think about this behavior of the GIST descriptor. The GIST

descriptors was introduced to characterize important statistics about a scene and was shown

to perform best on 15-Scene datasets [46]. If spatial location of the objects and background

for an object category remains similar across images, GIST does a good job of describing

it. On the other hand, local feature descriptors perform better on categories where image

information varies a lot with changes in viewpoint, scale and background content. This

trend can be clearly noticed on the performance of local descriptors for Caltech-256 and
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Flowers dataset. However, there are few categories in Caltech-256 dataset where the GIST

has shown it’s dominance because of the scene like spatial structure of those categories.

These categories are highlighted in the table of category level performance for Caltech-256

in Appendix D.1.
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CHAPTER 5

Conclusion

This thesis compared the performance of two local feature detectors, four feature de-

scriptors and a global feature descriptor on the task of object recognition using the Bag of

Features technique. Experiments were conducted on three challenging datasets chosen to

evaluate their suitability on different object recognition problems. The contribution of this

thesis is that we provide the guidance to future object recognition developers as to which

feature detector and descriptor they should use, if they know property of the images in the

dataset.

In order to select the feature detector, one should look at the content of the images and

see, if they contain more of local or global information. If an image information content is

more localized, the quality of the image should be analyzed such as the presence of back-

ground with sharp edges, low image contrast or if the object of interest is out of focus. As

per our experimental results, we concluded that: a) Grid Points should be selected if the

categories are more globalized or defined by a set of objects. Grid Point are also successful

when the categories are localized but images in them have focused background content b)

The Hessian-Laplace should be selected if the categories are more localized and object of

interest in them is highly focused with majority of the sharp edges on it.

We have shown evidences for above two claims at the level of datasets and at the level

of category. As shown in Figure 4.1, Grid Points supports the 15 Scenes dataset which

contains global categories and the Hessian-Laplace best supports Flowers dataset which is

highly localized with little background information. As Caltech-256 is a diverse dataset,

it contains both localized and globalized categories, the evidence for detectors’ support to
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individual categories is shown in Table 4.1. As shown in Figure 4.4, category level analysis

on Flowers revealed that more the localized the categories are, the better the performance

of the Hessian-Laplace compared to Grid Points.

For the feature descriptors, we observed that HOG and LBP descriptors support natural

scene like categories when used with Grid Points. If the categories in an application require

high insensitivity to illumination and have more texture information, HOG or LBP can be

selected. On the other hand, SIFT and DAISY support localized object categories when

used with Hessian-Laplace detector. If the categories have high scale and rotation variation,

SIFT or DAISY can be useful. Figure 4.2 shows the influence of local feature descriptors to

the content of the categories. The performance of the global descriptor GIST is optimized for

distributed scenes in a specific spatial layout. This is not surprising, since it was introduced

for the 15-Scenes dataset.

To conclude this thesis, there is no single detector and descriptor that performs best on

all different recognition challenges. If one has the knowledge of the information content in

the categories, our results will help him/her select the feature detector and feature descriptor

to achieve higher classification rate. The results of this work will be useful for the computer

vision practitioner to design recognition system with higher accuracy.

As the future work, we plan to analyze feature descriptors performance at the category

level for all three datasets. In specific we will look for the image information content sup-

ported by each descriptor. Also, we will divide 15 Scenes dataset into two main categories as

indoor scenes and outdoor scenes. We hope that this type of categorization will help identify

feature detectors and descriptors influenced towards those categories.
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APPENDIX A

Uniform LBP

Figure A.1. The 58 different uniform patterns in (8,R) neighborhood. [47].
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APPENDIX B

Images used for dendrogram generation
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Figure B.1. Images used to generate dendrogram shown in Figure 3.3. All
the images are taked from 15-Scene dataset [11]
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APPENDIX C

More information on Datasets

C.1. Caltech-256

Figure C.1. Collection of average images of all the categories in Caltech-256 [50].
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Figure C.2. Taxonomy of Caltech-256 classes. Classes in green are taked
from Caltech-101. Classes in red are 6 pairs of overlapping categories such as
airplane-101 and fighter-jet. [14]
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C.2. 15 Scenes

Figure C.3. Example images of 15-Scenes dataset [11]
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C.3. Flowers

Figure C.4. Example images of Flowers dataset [11]
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APPENDIX D

Results Tables and Plots

D.1. Caltech-256 - Category Level F measure for all the categories

Table D.1. Category Level F measure on Caltech-256. GIST outperfoms All
other Local Descriptors on 15 highlighted Categories. HL - Hessian Laplace
keypoints, GL - Grid Points.

SIFT Daisy HOG LBP GIST

HL GP HL GP HL GP HL GP

airplanes-101 0.63 0.58 0.71 0.77 0.74 0.61 0.69 0.62 0.69

backpack 0.34 0.28 0.34 0.40 0.33 0.21 0.25 0.23 0.24

baseball-bat 0.29 0.39 0.25 0.41 0.23 0.44 0.27 0.41 0.32

basketball-hoop 0.25 0.16 0.22 0.12 0.15 0.12 0.14 0.13 0.09

bat 0.15 0.14 0.13 0.19 0.14 0.16 0.15 0.15 0.12

beer-mug 0.14 0.17 0.13 0.26 0.17 0.17 0.13 0.16 0.17

binoculars 0.49 0.41 0.44 0.49 0.37 0.49 0.38 0.44 0.29

birdbath 0.11 0.19 0.14 0.17 0.13 0.17 0.13 0.17 0.11

blimp 0.09 0.09 0.10 0.12 0.10 0.11 0.10 0.18 0.19

bonsai-101 0.27 0.14 0.27 0.24 0.34 0.21 0.26 0.25 0.19

boom-box 0.17 0.24 0.15 0.19 0.26 0.21 0.17 0.16 0.13

bowling-ball 0.17 0.19 0.17 0.22 0.16 0.17 0.12 0.20 0.26

boxing-glove 0.16 0.18 0.12 0.21 0.16 0.19 0.14 0.18 0.15

brain-101 0.24 0.24 0.23 0.36 0.20 0.30 0.21 0.33 0.19

breadmaker 0.36 0.30 0.33 0.37 0.39 0.26 0.30 0.30 0.42

buddha-101 0.11 0.15 0.25 0.17 0.17 0.18 0.12 0.20 0.12

bulldozer 0.16 0.18 0.15 0.19 0.21 0.23 0.19 0.18 0.17

cactus 0.17 0.20 0.17 0.20 0.13 0.26 0.15 0.18 0.18
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calculator 0.19 0.22 0.12 0.18 0.26 0.20 0.12 0.22 0.27

camel 0.18 0.17 0.20 0.16 0.27 0.25 0.18 0.16 0.16

cannon 0.20 0.21 0.19 0.21 0.17 0.23 0.16 0.19 0.20

canoe 0.16 0.17 0.14 0.17 0.14 0.19 0.13 0.18 0.15

car-side-101 0.33 0.52 0.55 0.73 0.62 0.88 0.58 0.86 0.60

car-tire 0.18 0.14 0.13 0.13 0.11 0.11 0.15 0.14 0.28

cartman 0.19 0.19 0.24 0.20 0.17 0.16 0.19 0.15 0.14

cereal-box 0.20 0.23 0.21 0.24 0.36 0.25 0.17 0.19 0.15

chandelier-101 0.13 0.17 0.17 0.32 0.16 0.27 0.17 0.22 0.21

chess-board 0.35 0.20 0.29 0.25 0.28 0.27 0.16 0.22 0.15

chimp 0.18 0.22 0.18 0.26 0.17 0.22 0.17 0.20 0.15

cockroach 0.28 0.17 0.27 0.16 0.17 0.15 0.15 0.16 0.20

coffee-mug 0.13 0.16 0.15 0.19 0.13 0.18 0.14 0.13 0.13

comet 0.10 0.34 0.09 0.51 0.10 0.43 0.08 0.28 0.15

computer-keyboard 0.13 0.16 0.24 0.15 0.11 0.20 0.10 0.18 0.20

computer-mouse 0.17 0.18 0.20 0.25 0.24 0.19 0.17 0.19 0.22

cormorant 0.13 0.31 0.18 0.39 0.18 0.41 0.17 0.29 0.18

crab-101 0.16 0.21 0.18 0.16 0.25 0.15 0.20 0.13 0.20

desk-globe 0.27 0.18 0.19 0.32 0.17 0.19 0.14 0.20 0.16

diamond-ring 0.20 0.21 0.24 0.23 0.22 0.23 0.18 0.19 0.16

dice 0.19 0.16 0.18 0.16 0.12 0.23 0.20 0.25 0.08

dog 0.14 0.16 0.15 0.18 0.14 0.18 0.16 0.18 0.11

dolphin-101 0.25 0.15 0.16 0.20 0.16 0.26 0.14 0.20 0.22

doorknob 0.11 0.22 0.13 0.24 0.15 0.22 0.12 0.21 0.13

drinking-straw 0.12 0.16 0.11 0.12 0.13 0.13 0.12 0.11 0.12

dumb-bell 0.14 0.15 0.11 0.13 0.13 0.17 0.15 0.16 0.15

eiffel-tower 0.21 0.18 0.15 0.14 0.12 0.14 0.11 0.16 0.19
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electric-guitar-101 0.15 0.15 0.12 0.16 0.14 0.17 0.15 0.14 0.17

elephant-101 0.13 0.24 0.13 0.18 0.12 0.28 0.15 0.25 0.15

elk 0.16 0.18 0.16 0.25 0.18 0.25 0.19 0.17 0.11

ewer-101 0.19 0.12 0.26 0.15 0.26 0.14 0.13 0.18 0.16

faces-easy-101 0.68 0.66 0.85 0.73 0.64 0.76 0.47 0.69 0.49

fern 0.27 0.35 0.25 0.33 0.22 0.24 0.28 0.30 0.33

fire-extinguisher 0.20 0.16 0.20 0.25 0.23 0.15 0.17 0.18 0.13

fire-hydrant 0.12 0.15 0.12 0.15 0.12 0.17 0.11 0.16 0.13

fireworks 0.24 0.18 0.29 0.41 0.24 0.15 0.19 0.23 0.15

flashlight 0.20 0.22 0.19 0.32 0.20 0.37 0.20 0.38 0.31

floppy-disk 0.22 0.18 0.20 0.15 0.17 0.16 0.15 0.13 0.11

football-helmet 0.29 0.17 0.15 0.21 0.20 0.14 0.14 0.14 0.16

frying-pan 0.25 0.22 0.20 0.24 0.20 0.26 0.17 0.26 0.24

galaxy 0.49 0.17 0.40 0.20 0.37 0.23 0.24 0.26 0.17

giraffe 0.16 0.16 0.13 0.17 0.19 0.16 0.15 0.18 0.16

goat 0.17 0.17 0.14 0.16 0.17 0.22 0.17 0.18 0.12

golden-gate-bridge 0.20 0.25 0.29 0.26 0.24 0.21 0.21 0.16 0.17

goldfish 0.14 0.16 0.14 0.23 0.13 0.20 0.11 0.21 0.11

golf-ball 0.29 0.12 0.11 0.15 0.18 0.12 0.14 0.13 0.10

goose 0.15 0.21 0.12 0.23 0.14 0.23 0.16 0.24 0.15

gorilla 0.36 0.40 0.34 0.36 0.36 0.48 0.38 0.47 0.21

grapes 0.28 0.39 0.26 0.58 0.27 0.51 0.28 0.42 0.20

grasshopper 0.21 0.22 0.23 0.20 0.21 0.33 0.27 0.32 0.18

guitar-pick 0.31 0.14 0.28 0.45 0.28 0.22 0.14 0.19 0.18

harmonica 0.16 0.17 0.11 0.24 0.14 0.16 0.11 0.16 0.11

harp 0.12 0.15 0.13 0.31 0.29 0.42 0.20 0.42 0.14

helicopter-101 0.15 0.13 0.35 0.24 0.26 0.18 0.16 0.20 0.15
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hibiscus 0.42 0.22 0.42 0.27 0.28 0.39 0.25 0.30 0.21

horse 0.28 0.39 0.27 0.37 0.27 0.32 0.28 0.32 0.28

horseshoe-crab 0.15 0.17 0.16 0.19 0.18 0.23 0.15 0.21 0.14

hot-air-balloon 0.19 0.13 0.13 0.16 0.13 0.18 0.13 0.15 0.14

hot-dog 0.11 0.13 0.20 0.15 0.12 0.17 0.12 0.15 0.15

hot-tub 0.14 0.36 0.14 0.26 0.12 0.30 0.15 0.27 0.30

hourglass 0.11 0.13 0.11 0.16 0.15 0.17 0.13 0.15 0.15

house-fly 0.45 0.15 0.22 0.11 0.10 0.12 0.12 0.11 0.12

human-skeleton 0.19 0.12 0.42 0.14 0.16 0.12 0.15 0.15 0.11

ice-cream-cone 0.18 0.11 0.17 0.13 0.17 0.11 0.18 0.12 0.11

iguana 0.21 0.20 0.21 0.24 0.22 0.24 0.20 0.19 0.19

iris 0.10 0.24 0.11 0.25 0.13 0.42 0.12 0.30 0.18

joy-stick 0.15 0.18 0.16 0.16 0.17 0.17 0.15 0.18 0.15

kangaroo-101 0.24 0.20 0.19 0.20 0.15 0.23 0.15 0.28 0.15

kayak 0.12 0.21 0.11 0.28 0.10 0.37 0.11 0.20 0.17

ketch-101 0.29 0.22 0.46 0.24 0.30 0.27 0.24 0.23 0.25

killer-whale 0.18 0.27 0.20 0.35 0.17 0.31 0.11 0.21 0.20

knife 0.15 0.17 0.15 0.17 0.14 0.18 0.17 0.18 0.16

ladder 0.24 0.28 0.23 0.27 0.28 0.30 0.23 0.26 0.27

laptop-101 0.18 0.17 0.19 0.23 0.36 0.24 0.23 0.17 0.17

lathe 0.16 0.26 0.14 0.31 0.19 0.34 0.15 0.30 0.19

leopards-101 0.51 0.54 0.64 0.99 0.60 0.84 0.71 0.51 0.86

license-plate 0.42 0.14 0.26 0.25 0.30 0.25 0.16 0.42 0.21

light-house 0.26 0.25 0.26 0.25 0.33 0.27 0.29 0.27 0.33

lightbulb 0.14 0.20 0.17 0.13 0.21 0.23 0.20 0.17 0.14

llama-101 0.14 0.22 0.16 0.22 0.14 0.20 0.12 0.22 0.14

mailbox 0.14 0.14 0.14 0.13 0.14 0.15 0.13 0.14 0.09
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mars 0.13 0.26 0.12 0.58 0.12 0.33 0.11 0.34 0.42

megaphone 0.14 0.22 0.22 0.13 0.15 0.13 0.16 0.15 0.15

menorah-101 0.18 0.14 0.29 0.26 0.24 0.13 0.18 0.14 0.14

microwave 0.22 0.32 0.18 0.21 0.43 0.54 0.19 0.44 0.12

minaret 0.15 0.22 0.16 0.27 0.18 0.31 0.16 0.30 0.31

motorbikes-101 0.55 0.70 0.55 0.80 0.55 0.72 0.55 0.72 0.61

mountain-bike 0.42 0.16 0.34 0.22 0.20 0.15 0.16 0.19 0.31

mushroom 0.39 0.41 0.31 0.38 0.37 0.40 0.35 0.38 0.25

mussels 0.12 0.24 0.12 0.26 0.12 0.27 0.12 0.28 0.12

necktie 0.17 0.19 0.17 0.23 0.14 0.17 0.18 0.17 0.19

owl 0.13 0.18 0.10 0.23 0.10 0.20 0.12 0.21 0.15

palm-pilot 0.16 0.17 0.11 0.15 0.16 0.15 0.12 0.13 0.18

palm-tree 0.22 0.22 0.21 0.18 0.18 0.19 0.19 0.27 0.20

paper-shredder 0.11 0.25 0.09 0.34 0.09 0.29 0.13 0.30 0.38

paperclip 0.15 0.22 0.22 0.12 0.16 0.12 0.16 0.13 0.14

penguin 0.18 0.22 0.23 0.23 0.21 0.22 0.25 0.25 0.21

pez-dispenser 0.14 0.13 0.11 0.18 0.12 0.15 0.10 0.15 0.12

picnic-table 0.15 0.15 0.14 0.18 0.13 0.28 0.12 0.20 0.15

porcupine 0.24 0.21 0.27 0.37 0.15 0.28 0.18 0.21 0.16

pram 0.19 0.16 0.26 0.16 0.17 0.15 0.14 0.13 0.13

praying-mantis 0.17 0.14 0.18 0.15 0.13 0.16 0.13 0.17 0.12

pyramid 0.15 0.14 0.14 0.20 0.14 0.17 0.12 0.15 0.12

raccoon 0.24 0.34 0.21 0.23 0.28 0.36 0.25 0.26 0.21

radio-telescope 0.13 0.14 0.13 0.23 0.11 0.23 0.09 0.23 0.16

rainbow 0.13 0.34 0.11 0.35 0.11 0.30 0.12 0.35 0.29

refrigerator 0.10 0.15 0.11 0.25 0.22 0.20 0.15 0.20 0.16

rifle 0.15 0.15 0.13 0.13 0.11 0.14 0.15 0.15 0.16
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saddle 0.24 0.19 0.23 0.19 0.20 0.23 0.22 0.23 0.13

school-bus 0.32 0.22 0.29 0.24 0.27 0.47 0.20 0.27 0.14

scorpion-101 0.22 0.15 0.17 0.17 0.19 0.18 0.13 0.15 0.14

skateboard 0.16 0.12 0.11 0.13 0.15 0.13 0.13 0.14 0.15

smokestack 0.23 0.16 0.15 0.16 0.10 0.19 0.10 0.21 0.21

snake 0.22 0.27 0.19 0.21 0.21 0.34 0.24 0.28 0.20

soccer-ball 0.19 0.24 0.19 0.34 0.20 0.22 0.19 0.21 0.35

socks 0.18 0.17 0.17 0.15 0.14 0.14 0.13 0.15 0.13

soda-can 0.14 0.13 0.12 0.14 0.11 0.15 0.13 0.14 0.12

spaghetti 0.08 0.14 0.07 0.23 0.08 0.16 0.08 0.20 0.15

speed-boat 0.14 0.35 0.27 0.41 0.18 0.47 0.13 0.38 0.15

spoon 0.19 0.16 0.19 0.21 0.16 0.25 0.17 0.26 0.11

starfish-101 0.17 0.16 0.14 0.19 0.23 0.19 0.20 0.19 0.16

steering-wheel 0.30 0.23 0.19 0.26 0.15 0.17 0.21 0.12 0.15

sunflower-101 0.28 0.14 0.24 0.37 0.20 0.17 0.15 0.22 0.29

superman 0.12 0.14 0.18 0.14 0.15 0.19 0.09 0.13 0.13

swan 0.19 0.21 0.18 0.29 0.19 0.25 0.16 0.20 0.18

swiss-army-knife 0.19 0.23 0.17 0.25 0.18 0.24 0.20 0.24 0.23

sword 0.12 0.25 0.14 0.29 0.12 0.35 0.16 0.35 0.13

syringe 0.14 0.21 0.13 0.15 0.13 0.19 0.11 0.19 0.16

t-shirt 0.39 0.36 0.36 0.39 0.41 0.36 0.34 0.34 0.34

teapot 0.15 0.20 0.16 0.18 0.18 0.22 0.14 0.21 0.18

telephone-box 0.16 0.23 0.20 0.20 0.33 0.40 0.23 0.32 0.14

tennis-ball 0.24 0.15 0.24 0.22 0.13 0.20 0.15 0.19 0.22

tennis-court 0.19 0.22 0.16 0.33 0.15 0.27 0.14 0.21 0.24

tennis-racket 0.26 0.12 0.21 0.13 0.15 0.11 0.12 0.12 0.16

theodolite 0.25 0.19 0.23 0.21 0.17 0.14 0.19 0.19 0.20
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toad 0.25 0.26 0.28 0.25 0.32 0.36 0.26 0.40 0.20

tomato 0.24 0.32 0.25 0.23 0.12 0.22 0.19 0.42 0.18

tombstone 0.18 0.20 0.15 0.21 0.16 0.23 0.17 0.24 0.14

touring-bike 0.40 0.19 0.27 0.33 0.28 0.11 0.16 0.20 0.23

treadmill 0.25 0.29 0.30 0.30 0.26 0.28 0.36 0.31 0.25

triceratops 0.25 0.17 0.19 0.19 0.20 0.16 0.24 0.18 0.15

tricycle 0.19 0.19 0.18 0.16 0.18 0.16 0.15 0.10 0.14

trilobite-101 0.20 0.31 0.32 0.49 0.30 0.70 0.26 0.59 0.19

tripod 0.24 0.26 0.20 0.25 0.14 0.19 0.18 0.19 0.12

tuning-fork 0.22 0.13 0.19 0.15 0.18 0.12 0.15 0.18 0.16

umbrella-101 0.17 0.17 0.20 0.19 0.14 0.18 0.15 0.20 0.17

vcr 0.18 0.17 0.19 0.26 0.20 0.19 0.17 0.18 0.23

video-projector 0.19 0.18 0.32 0.17 0.27 0.16 0.22 0.21 0.19

washing-machine 0.18 0.14 0.13 0.20 0.15 0.22 0.13 0.19 0.15

watch-101 0.24 0.24 0.22 0.28 0.28 0.23 0.29 0.27 0.20

waterfall 0.29 0.34 0.39 0.32 0.25 0.32 0.27 0.33 0.14

watermelon 0.15 0.16 0.13 0.19 0.16 0.16 0.16 0.19 0.13

wheelbarrow 0.13 0.14 0.17 0.16 0.13 0.17 0.13 0.14 0.13

windmill 0.11 0.14 0.12 0.15 0.13 0.15 0.12 0.14 0.18

wine-bottle 0.20 0.16 0.18 0.16 0.30 0.16 0.21 0.16 0.14

xylophone 0.10 0.16 0.13 0.18 0.11 0.18 0.12 0.18 0.12

yarmulke 0.33 0.20 0.34 0.32 0.19 0.22 0.20 0.25 0.29

yo-yo 0.11 0.12 0.10 0.16 0.11 0.13 0.08 0.14 0.16

zebra 0.61 0.19 0.56 0.49 0.47 0.25 0.46 0.26 0.16
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D.2. Localization score vs F measure ratio plots for Flowers dataset.
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Figure D.1. Localization Score vs F measure Ratio between Hessian and
Grid for HOG Descriptors on Flowers Dataset
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Figure D.2. Localization score vs F measure ratio between Hessian and Grid
for DAISY Descriptors on Flowers Dataset
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Figure D.3. Localization score vs F measure ratio between Hessian and Grid
for LBP Descriptors on Flowers Dataset
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D.3. Localization results for Caltech-256 dataset

Table D.2. Category Level Localization Results on Caltech-256. F(HP) is
F measure for Hessian-Laplace and F(GP) is F measure for Grid Points

F(HL) - F(GP)
Localization Score SIFT Daisy HoG LBP

bonsai-101 82.79 0.13 0.04 0.13 0.01
theodolite 78.57 0.06 0.02 0.03 0.01
pram 64.77 0.03 0.10 0.02 0.02
human-skeleton 72.62 0.07 0.28 0.04 0.00
mountain-bike 84.15 0.26 0.12 0.05 -0.03
ice-cream-cone 60.23 0.06 0.04 0.06 0.06
zebra 76.04 0.42 0.07 0.22 0.20
cockroach 68.55 0.11 0.10 0.02 -0.00
menorah-101 95.51 0.04 0.03 0.11 0.05
tennis-racket 74.07 0.14 0.08 0.04 -0.00
ketch-101 82.88 0.07 0.22 0.03 0.01
basketball-hoop 58.89 0.10 0.09 0.03 0.00
car-side-101 7.76 -0.18 -0.18 -0.26 -0.28
elephant-101 44.27 -0.11 -0.04 -0.17 -0.10
goldfish 27.96 -0.02 -0.09 -0.07 -0.10
iris 34.26 -0.14 -0.14 -0.29 -0.17
comet 27.27 -0.24 -0.42 -0.34 -0.20
kayak 31.07 -0.08 -0.17 -0.27 -0.09
horse 33.70 -0.11 -0.10 -0.05 -0.04
picnic-table 38.46 -0.00 -0.05 -0.15 -0.08
gorilla 31.13 -0.04 -0.02 -0.12 -0.08
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Table D.3. Average F-measure Scatter Plot that shows Dataset influenced
performance of GIST

SIFT LBP HoG Daisy GIST

15 Scenes 0.30 0.37 0.43 0.35 0.51
Caltech-256 0.27 0.29 0.30 0.32 0.25
Flowers 0.43 0.27 0.28 0.37 0.24
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