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ABSTRACT 

 

MEMBRANE FLUIDITY OF RBL-2H3 CELLS TREATED WITH INSULIN AND BMOV 

USING TIME-CORRELATED SINGLE PHOTON COUNTING FLUORESCENCE 

ANISOTROPY 

 

 Transition metal compounds have been shown to be insulin-enhancing but the 

mechanism of action has not been fully elucidated.  With obesity, diabetes and other metabolic 

derangements increasing in developed countries, understanding the effects these compounds will 

better target drug therapy.  Previous investigations have focused on vanadium and have studied 

the effects on protein-protein interactions in the insulin signaling pathway.  In this paper, we 

propose that the mechanism of action may also include interactions with the plasma membrane.  

Lipids as bioactive molecules are on the horizon as the next great area of exploration in 

biochemistry and molecular biology.  Within the insulin signaling pathway, the insulin receptor 

functions optimally in areas of specialized lipid packing that are characterized as small detergent 

insoluble regions enriched in sphingomyelin and cholesterol and termed lipid rafts.  These lipid 

rafts are a subset of microdomains within the plasma membrane.  Obesity and excess lipids have 

been shown to increase inflammation via increases in free fatty acids, cytokines, TNF-α, and 

reactive oxygen species resulting in the peroxidation of membrane lipids.  We propose that one 

cause of insulin resistance, a failure of insulin receptors to respond to insulin, is due to disruption 

of the membrane lipids resulting in an increase in membrane fluidity.  This disruption results in 

displacement of insulin receptors out of specialized lipid rafts.  We propose that treatment with 

vanadium will result in an increase in membrane rigidity favoring lipid raft formation and 
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restoration of insulin receptors to a platform favoring optimal signaling.  Time-correlated single 

photon counting fluorescence anisotropy was used to measure the membrane fluidity of RBL-

2H3 cells treated with insulin and the vanadium compound bis(maltolato)oxovanadium(IV) 

(BMOV). 

.
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CHAPTER І 

 

BACKGROUND  

INTRODUCTION 

Diabetes mellitus is the leading cause of blindness, amputations, and cardiovascular-

linked death with a post-diagnosis life expectancy worse than some forms of cancer (1).  It is a 

debilitating metabolic disorder characterized by lack of insulin secretion or lack of response to 

insulin resulting in impaired metabolism of carbohydrates, lipids, and proteins.  Type 1 diabetes 

results from the failure of the β-cells of the pancreas to produce insulin and accounts for 5-10% 

of diabetes cases.  Type 2 diabetes, is characterized by insulin resistance, obesity, and 

dyslipidemia, and accounts for 90% of diabetes cases. 

Obesity is one of the most common nutritional disorders in the United States whose 

prevalence has increased more than 75% since 1980 (2).  Defined as a body-mass index in the 

95
th

 percentile or higher for age and sex, obesity is commonly recognized as increased lipid 

accumulation, as a result of nutrient oversupply, and is predicted to lead to a decline in life 

expectancy (3).  Studies of obesity have been extensive due to the deleterious effects of excess 

lipids in the body (4).  Obesity is known to lead to dyslipidemia, insulin resistance, eventually 

leading to the development of Type II Diabetes, and is associated with Metabolic Syndrome. (5-

7).  

While each of the above conditions can exist alone, they are traditionally found 

associated with one another and, due to the metabolic pathways involved, can potentiate the 

effects of one another (8).  Insulin resistance due to obesity is usually a precursor to the 

development of Type II diabetes, which is estimated to exist up to 10 years prior to a formal 

diagnosis (9).  Obese patients are typically found to be hyperglycemic and hyperinsulinemic.  
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The hyperinsulinemia is a result of being in a state of insulin resistance.  The target tissues in the 

body are no longer responsive to the insulin being produced so the body responds by increasing 

the amount of insulin produced by the β cells of the pancreas.  The hyperglycemia exists because 

the tissues are not able to respond to the insulin secreted and therefore have impaired uptake of 

glucose by the target cells.  It has been noted that some individuals have a decreased affinity of 

the insulin receptor (IR) for insulin while others have normal binding of insulin but decreased 

intracellular response with decreased recruitment of the GLUT4 transporter to the cell surface in 

order to transport glucose into the cell (5-7).  

 Along with insulin resistance, obesity is known to produce dyslipidemia, a disruption in 

the amount of lipids in the blood and/or the ratios of lipids found in the blood when compared to 

a healthy individual.  Excess lipids have been shown to accumulate in specialized tissues such as 

muscle, liver and heart (1).  This has been noted in Metabolic Syndrome and Type II diabetes 

with the hallmark of high levels of triglycerides (TGs), increased low density lipoproteins (LDL) 

cholesterol and decreased high density lipoprotein (HDL) cholesterol levels (10).  

Metabolic Syndrome is a cluster of metabolic derangements that include insulin 

resistance, obesity, hypertension, and dyslipidemia (9).  While Metabolic Syndrome has received 

a great deal of attention, there is a lack of consensus as to whether metabolic syndrome actually 

constitutes its own diagnosis or is simply the sum of its parts (11,12).  The treatment of 

metabolic syndrome is to treat each of its parts individually, the hypertension with hypertension 

medications, the insulin resistance with hyperglycemic medications, the dyslipidemia with drugs 

targeting the lowering of TG and LDL and the elevation of HDL’s in the blood stream, hoping to 

prevent or slow the development of Type II diabetes in the patient (13-15).  In order to 
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understand the relationships between excess lipids and the many signaling pathways involved in 

metabolic derangements, we will first look at insulin and the insulin signaling pathway. 

 

THE INSULIN MOLECULE 

Insulin and the insulin-signaling pathway have been extensively studied due to their 

involvement in disease progression and glucose homeostasis.  Insulin is the most potent anabolic 

hormone and is involved in synthesis and storage of carbohydrates, lipids and proteins as well as 

inhibiting degradation and subsequent release into circulation (16).  Specifically, insulin is 

produced in the Islets of Langerhans in the pancreas by the β-cells and is composed of 51 amino 

acids.  The action of insulin is mediated by the insulin receptor.   

 

THE INSULIN RECEPTOR 

The insulin receptor (IR) is a tyrosine kinase transmembrane protein.  It consists of two 

α- and two β-subunits bound by disulfide bonds.  Upon insulin binding to the α- subunit on the 

extracellular surface of the cell, a conformational change occurs which results in ATP binding 

the β-subunit’s intracellular domain (18).  The β-subunit has extracellular, transmembrane and 

cytosolic regions.  Upon ATP binding, autophosphorylation occurs on the cytosolic domain on 

three clusters of tyrosine residues (19).  Once phosphorylated, the IR catalyzes the 

phosphorylation of several intracellular targets such as, insulin receptor substrate protein 1 (IRS-

1), Shc, APS, and c-Cbl.  
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Figure 1. Molecular structure of insulin.  Shown here in its primary structure showing the 

alpha and beta chains with disulfide bridges, a three dimensional representation and as a hexamer 

(17).  (Adapted from Owens, D., Nature Reviews, 2002, 1:529-540.) 
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Figure 2. Computer generated 3-D modeling of the insulin receptor structure.  Also 

shown is the relative size of the insulin molecule and its orientation in the receptor when binding.  

The insulin receptor has an extracellular domain which binds insulin, a transmembrane domain 

(labeled) which crosses the cell’s plasma membrane, and a cytoplasmic domain (represented in 

green) which contains the portion of the receptor that undergoes autophosphorylation upon 

binding of insulin (20).  (Adapted from De Meyts, P., and Whittaker, J. Nature Reviews, 2002, 1: 

769-783.) 
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THE INSULIN SIGNALING PATHWAY 

When considering the insulin signaling pathway shown in Figure 3, attention must be 

paid to each site of phosphorylation. Sites of phosphorylation may serve as points of potential 

regulation.  Signaling proteins with Src homology (SH2) domains are recruited by those targets 

and interact with the sequences surrounding the phosphotyrosines. Specific to IRS-1 family 

members is the generation of a docking site for p85, a regulatory subunit of type 1A 

phosphatidylinositol 3-kinase (PI3K) (18,21).  PI3K phosphorylates phosphatidylinositol-4,5P2 

(PIP2) to generate phosphatidylinositol-3,4,5-triphosphate (PIP3).  PIP3 acts as the allosteric 

regulator of phosphoinositide-dependent kinase (PDK1), which phosphorylates and activates Akt 

and atypical protein kinase C isoforms PKCζ and PKCλ (22).  PKC’s are responsible for 

generating glucose uptake via the GLUT-4 transporters in muscle cells and adipocytes.  While 

Akt and PI3K are known to play a role in GLUT4 translocation, there exists a PI3K independent 

pathway for GLUT4 recruitment. Cbl phosphorylation via insulin, associates with the CAP 

adaptor protein.  This causes the Cbl-CAP complex to translocate to lipid rafts, or microdomains 

(MDs) in the plasma membrane.  These will be discussed later in detail.  At the MD, Cbl 

interacts with Crk, an adaptor protein, which is constitutively associated with the Rho-family 

guanine nucleotide exchange factor C3G. C3G activates TC10, a member of the GTP-binding 

protein family, which promotes GLUT4 translocation to the plasma membrane (23).  Akt can 

activate 1) glycogen synthesis through glycogen synthase kinase 3 (GSK3), 2) gene expression 

through FKHR, and 3) protein synthesis by p70S6K (18).  GSK3 acts on glycogen synthase, an 

enzyme that catalyzes the last step in glycogen synthesis.  Once GSK3 phosphorylates glycogen 

synthase, it has effectively inhibited glycogen synthesis.  Therefore, Akt inactivation of GSK3 

promotes glucose storage as glycogen.  Through phosphorylation and dephosphorylation events, 
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insulin blocks gluconeogenesis and glycogenolysis by the liver by controlling the expression of 

certain genes that encode for specific proteins required for gluconeogenesis (23).  Synthesis of 

lipids is also controlled by insulin, as well as their degradation.  This occurs through the 

transcription factor steroid regulatory binding protein SREBP-1.  In adipocytes, glucose is stored 

as lipid and insulin inhibits lipolysis by blocking lipase, an enzyme sensitive to the hormone (23).  

Having discussed the cellular targets interactions and functions for insulin binding the IR, the 

insulin receptor can bind more than just insulin. 

One of the unique features of the insulin receptor is its ability to bind insulin-like growth 

factor (IGF-1 and IGF-2).  The affinity for binding these ligands is 100-1000 times lower than 

the receptor’s affinity for insulin, but the circulating concentration of IGF-1 is around 100 times 

higher.  IGF-2 has equal affinity for IRs and its own receptor. IGF-1 and IGF-2 also act by 

phosphorylating tyrosine residues on the IRS family of molecule (18).  Binding of insulin-like 

growth factors leads to a growth response in the cell.  The ability of the IR to bind more than one 

ligand may also be a point of regulation with attention to be paid to the possible changes in 

concentration of ligands in response to the stresses associated with metabolic syndrome.  The 

termination of signals from the IR has been linked to events following ligand dissociation.  

Once insulin dissociates from the receptor, its substrates undergo rapid 

dephosphorylation, which implicates protein tyrosine phosphatases (PTPases) in signal 

termination.  Lipid dephosphorylases can also exert temporal control by dephosphorylating PIP3.  

Vollenweider et al. demonstrated that microinjection of phosphoinositide phosphatase SHIP2, 

blocks insulin action (24).  Another area of investigation for IR function has been distribution 

and localization. 
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Figure 3. The insulin signaling pathway.  Pathway activation can have multiple effects 

including glucose uptake, glucose metabolism, synthesis of glycogen, fats and proteins, and gene 

expression.  Depending on the pathway activated, the response to binding ligand can be varied 

(23).  (Adapted from Saltiel, A. R.; Kahn, C. R. Nature, 2001, 414: 799-806). 

 

INSULIN RECEPTORS LOCALIZE TO MICRODOMAINS 

Key to optimal IR function, is its localization to small membrane regions known as lipid 

rafts, a specialized subset of microdomains (MD) that are enriched in sphingomyelin and 

cholesterol (23,25-27).  Upon binding insulin, the IR’s move into the MDs which serve as 

platforms on the exoplasmic leafs of the lipid bilayer (28).  One of the characteristics of MDs is 

their ability to include or exclude certain proteins selectively, with the affinity for a particular 

protein being influenced by both intra- and extracellular stimuli.  Interactions between adaptors 
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and scaffold and anchoring proteins can be organized through microdomains to transduce the 

signal leading to amplification through signal molecule concentration and the exclusion of 

unwanted modulators (29).  Interestingly, MDs and their interactions with IRs in the insulin-

signaling pathway can vary according to the tissue type involved.  In adipocytes, IRs associate 

with a subset of MDs known as caveolae as seen in Figure 4 (29,30).   

 

 

Figure 4. Insulin receptors associated with caveolin-enriched caveolae, a subset of 

microdomains. Caveolae may or may not be required for all insulin signaling, depending upon 

the tissue of interest, but a general microdomain enriched in cholesterol and sphingomyelin is 

required. The relationship between IR distribution and insulin resistance in response to 

inflammation is also shown (31). (Adapted from Kabayama et al. Glycobiology 2005, 15: 21-29.) 

Caveolae are small, flask shaped, non-clatharin-coated invaginations in the plasma 

membrane (PM) that are rich in the protein caveolin (32,33).  Caveolin also associates with the 

GLUT4 glucose transporter in adipocytes (33).  Though found intracellularly, caveolin in the PM 

exists only in caveolae, whose proper function depends on a sufficient level of cholesterol (34).  

However, in the liver, the IR does not require calveolae within the MD, in order to function 
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properly, though it is still associated with a lipid raft region in the plasma membrane that is 

enriched with cholesterol (28).  The variability of the localization of the IR, based on tissue 

distribution, implies that the features that regulate responses through IRs in MDs are specialized.  

In order to understand the specialized role that MDs play in signaling, we must understand the 

distribution of lipids within the PM. 

 

CELL MEMBRANE COMPOSITION 

The plasma membrane has been a subject of study for many years.  Basic science 

textbooks include descriptions of the fluid mosaic model of the membrane first proposed by 

Singer and Nicolson in 1972 which described a bilayer of lipids with different proteins scattered 

throughout (35).  Since then, research has revealed that the PM is more complex and dynamic 

than initially believed.  Heterogeneity exists between the extracellular side of the PM and the 

cytosolic side.  The distribution of phospholipids on the extracellular leaflet has a large 

concentration of phosphatidylcholine (PC) and sphingomyelin (SM).  The cytosolic leaflet is 

preferentially composed of phosphatidylethanolamine (PE) and phosphatidylserine (PS) (36-39).  

A brief review of the production of the membrane lipids is given below. 
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Figure 5. Model of a cell’s plasma membrane demonstrating heterogeneity in the 

distribution and location of phospholipid constituents and cholesterol. Various types of 

membrane associated proteins are also modeled as well as the associated cytoskeleton on the 

cytoplasmic side of the plasma membrane bilayer (40).  (Adapted from Pietzsch, J., Nature, 2004, 

Horizon Symposia: Living Frontier, 1-4.) 

The lipid elements of the membrane are initially constructed in the smooth endoplasmic 

reticulum (SER), specifically the glycerophospholipids which are synthesized on the cytoplasmic 

side of the SER.  From the SER, the phospholipids are transferred to the Golgi.  Within the Golgi 

it has been found that the asymmetry of the membrane bilayer is established.  Specific proteins in 
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red blood cells, termed flippases, floppases, and scramblases, have been found to be responsible 

for redistributing and orienting the phospholipids for vesicular transport to the PM so that they 

are appropriately matched for fusion with the PM bilayer (36,37).  Flippases are responsible for 

“flipping” lipids toward the cytoplasmic side of the membrane and floppases move lipids in the 

opposite direction.  Scramblases possess the ability to move lipids in either direction and have 

been found to be involved in apoptosis and cell signaling (41).  In other types of eukaryotic cells, 

similarly functioning proteins have been identified (38, 42-44). 

 

LIPID PACKING 

Within the PM exist specialized regions known as lipid rafts, previously mentioned in the 

section on the insulin signaling pathway.  These subsets of MDs are unique in their composition 

of high concentrations of sphyingomyelin (SM) and cholesterol.  It has been found that 

cholesterol may play a role in phase separations as it prefers to associate with saturated lipids.  

When a lipid is saturated, it lacks conformational changes in its fatty acids resulting in the ability 

to package themselves more closely together.  This packing is described as being “liquid-

ordered” (LO).  The surrounding membrane is considered “liquid-disordered” (LD) as it has a 

larger concentration of unsaturated lipids and thus cannot spatially organize into a tighter 

conformation as seen in Figure 6 (45-48).  

Given the specificity of the distribution of phospholipids to their respective sides of the 

PM bilayer and the specialized function and composition of lipid rafts and lipid packing in MD 

formation, it is important to next examine the effects that obesity and insulin resistance may have 

on the membrane components involved in insulin signaling. 
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a). 

 

b). 

 

Figure 6. a). Model of lipid interactions with components distributed in the cell 

membrane including lipid rafts, caveolae, clatharin coated pits and the cytoskeleton. b). 

Representation of lipid packing in lipid rafts and the effects on the level of order in the 

membrane (49).  (Adapted from (Semrau, S., and Schmidt, T., Soft Matter, J. Royal. Soc. Chem. 

2009, 5: 3174-3186.) 
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LIPID RAFT SPHINGOLIPID SYNTHESIS AND CYCLING 

Sphingolipids consist of sphingophospholipids and sphingoglycolipids, and are major 

players in MDs in the plasma membrane even though they only make up a small portion of lipids 

found in the plasma membrane.  As seen in Figure 7, the major component of sphingolipids is 

sphingomyelin (SM) which contains a head group that is either phosphocholine or 

phosphoethanolamine (50).  The structure of SM includes a long-chain saturated or 

monounsaturated fatty acid, a head group, and a sphingosine base backbone. In the smooth 

endoplasmic reticulum (SER), de novo synthesis of SM occurs.  Ceramide formation begins with 

the synthesis of sphinganine followed by the transfer of an acyl group, this forms 

acylsphinganine (dihydroceramide).  This product is oxidized to form ceramide.  Then the 

phosphocholine head group is attached by SM synthase. SM can be turned over by removal of 

the head group by sphingomyelinases (SMases) and the removal of amide-linked fatty acid by 

ceramidases.  While de novo synthesis of ceramide has already been mentioned, of interest is its 

involvement in the SM pathway, which involves the hydrolysis of SM to form ceramide.  

Ceramide levels have been shown to be elevated in numerous rodent and human models with 

insulin-resistance (51).  Ceramide has also been shown to be pro-apoptotic as de novo Fas 

activated pathway activates PP1, a ceramide-activated Ser-Thr phosphatase.  PP1 then 

dephosphorylates proteins that regulate RNA splicing which results in a pro-apoptotic mRNAs 

being favorably translated (52).  Thus de novo synthesis, as well as SM hydrolysis, is important 

because SM is an integral component of MDs and a potential target for IR loss of function (50).   
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Figure 7.  Sphingolipid synthesis and degradation cycle.  Ceramide has been identified as 

a key player in the production and degradation of sphingomyelin and is shown in dark blue.  This 

may serve a marker for lipid cycling or peroxidation (52).  (Adapted from Hannun et al. 

Molecular Cell Biology 2008, 9: 139-150). 

In the SM pathway, SMases, as mentioned, are responsible for the removal of the 

phosphocholine head group on SM.  SMAses exist as acidic, neutral, or alkaline SMases and are 

localized based on their optimal pH.  Acidic SMases exist in lysosomes whereas neutral and 

alkaline SMases are located in or near the PM.  Ceramide, itself, can inhibit SMase activity.  SM 

synthase catalyzes the reverse reaction of SMases by increasing the rate at which 

phosphorylcholine is transferred from PC to ceramide to yield diacylglycerol (DAG) and SM 

(50).  Ceramide can vary in chain length and can be broken down into sphingosine and a free 

fatty acid (FFA) via ceramidase (CDase).  Sphingosines produced by CDases can be 

phosphorylated by sphingosine kinase to produce sphingosine 1-phosphate (S1P).  S1P has been  
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shown to oppose the action of ceramide (53).  However, this pathway can be manipulated by an 

excess of lipid. 

 

EFFECTORS OF INSULIN SIGNALING AND LIPID RAFT COMPONENTS  

Metabolic derangements, triggered by high-calorie diets and a lack of exercise, are 

associated with increased adipocyte proliferation and inflammation.  Inflammation can affect cell 

signaling pathways through a number of mechanisms.  Mechanisms include production of 

inflammatory cytokines and increasing oxidative stress resulting in an imbalance in regulation of 

the cell’s redox chemistry.  This imbalance results in production of reactive oxygen species 

(ROS) (54).  ROS generation leads to increases in free fatty acids (FFAs) by interacting with the 

cell membrane and oxidizing lipid components which is known as lipid peroxidation.  How these 

mechanisms overlap both the insulin signaling pathway and lipid metabolism is of great interest 

in trying to elucidate the mechanisms of action of potential drugs and for targeting drug therapy. 

Excess lipids have been linked to inflammation resulting in the activation of 

inflammatory cytokines (56).  One such cytokine that has received a lot of attention is TNF-α 

(Figure 8).  TNF-α is produced at greater levels by the excess adipose tissue in obese individuals 

as well as the protein resistin which together both act to impair IR function.  TNF-α can activate 

serine threonine kinases like JNK and IKKβ, already previously mentioned as IRS inhibitors in 

the insulin signaling pathway.  TNF-α can not only inhibit IRS function, it has been shown to 

affect the transcription of cytokine signaling-3, a protein that interacts with the IR and IRS 

protein.   
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Figure 8.  Inflammation and lipid peroxidation. Multiple pathways are involved in lipid 

peroxidation and degradation in response to inflammatory cytokines or ionizing radiation. Of 

note is the formation of ceramide which is implicated in multiple pathways including the 

arachidonic acid pathway which produces leukotrienes and thromboxanes, both of which 

contribute to the pro-inflammatory and pro-thrombotic states found in insulin dysregulation (55).  

(Adapted from the Merk Biosciences website, www.merckbiosciences.co.uk). 

However, these are not the only ways in which TNF-α can act. A study by Kabayama et 

al, showed that TNF-α induces an overproduction of GM-3 ganglioside (57).  This over-

production leads to an insulin-resistant state by GM-3s displacement of the IR from the MDs 

(57).  This suggests that there may be some preferential interaction with the lipids of the MD that 

GM-3 may possess over the IR. Another way in which TNF-α affects MDs is that it alters the 

rates of lipid hydrolysis by rapidly increasing the amount of ceramide produced by breaking 

down SM as well as promoting de novo synthesis of ceramide as well (58-60).  The equilibrium 

http://www.merckbiosciences.co.uk/
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that exists in sphingolipid metabolism between formation of SM or hydrolysis to ceramide raises 

the question that if ceramide levels have been shown to be elevated in insulin-resistant models, 

and IR loss of function can be linked to its association, or lack thereof, with MDs, is the 

hydrolysis of SM to ceramide one cause of what has been seen? While ceramide has been 

implicated in effects on Akt(PKB) and subsequent inhibition of glucose uptake, a recent study 

found that ceramide can also block actin remodeling.  The inhibition was found to be a result of a 

lack of activation of Rac which decreased GLUT4 translocation (61).  Therefore, an 

inflammatory response by TNF-α, can increase ceramide production and result in attenuation of 

insulin signaling via combinatorial mechanisms.  Increases in ceramide levels likely will result in 

increased enzymatic breakdown by CDases resulting in sphingosine and a FFA.  Free fatty acids 

have also been implicated in a loss of insulin signaling and changes in regulation of lipid 

handling by the cell. 

 

FREE FATTY ACIDS IN INSULIN SIGNALING AND LIPID METABOLISM 

Free fatty acids have also been shown to have a role in insulin-resistance.  Non-esterified 

fatty acids (NEFA) can affect insulin signaling via inhibition of PKB (Akt), thereby blocking 

glucose uptake.  NEFAs can decrease the IRS-1 tyrosine phosphorylation by producing an 

inhibitory Ser
307

 phosphorylation by PKCθ (62). 

Adipocytes are capable of esterifying NEFAs into triglycerides and then sequester the 

triglycerides into lipid droplets (63).  Within adipocytes, elevated FFA plasma levels are sensed 

by nuclear receptors known as peroxisome proliferator-activated receptors (PPARs).  These 

control fatty acid degradation and storage, as well as adipocyte differentiation (54).  Lipid 

chaperones in adipocytes called fatty acid binding proteins (FABPs) coordinate lipid metabolism 
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responses. Interestingly, animals lacking FABP4 and FABP5 exhibited similar fatty acid 

resistance found in human and mouse models similar to the effects of PPARs, as well as 

protection from most features of metabolic syndrome (64,65).  This demonstrates that increased 

free fatty acids can affect lipid metabolism via PPARs and FABPs.  Free fatty acids are produced 

as part of normal lipid metabolism as well as inflammation which can lead to increases in 

oxidative stress . 

 

OXIDATIVE STRESS IN INSULIN SIGNALING AND LIPID METABOLISM 

Oxidative stress (OS) is defined as an oxidant/antioxidant system equilibrium imbalance 

where the oxidant side dominates, and as such, has been implicated in the degeneration of 

conditions associated with diabetes (66).  OS has been shown to decrease pancreatic β-cell 

insulin secretion, as well as impair glucose uptake in muscle and fat as well as decrease 

pancreatic β-cell insulin secretion (67).  Many studies have focused on oxidative stress in 

relation to Type II diabetes, and insulin-resistance, and have found increased levels of OS and 

ROS generated in both rodent and human experiments (68-70).  Cardona et al. demonstrated that 

an increase in oxidative stress occurs in subjects with and without metabolic syndrome when 

given a high fat meal by increasing TG rich lipoprotein plasma levels.  The increase in TGs 

levels lead to increases in free radicals from lipids and ROS (1).  The authors did note that this 

was not the only source of oxidative stress, acknowledging the effects of hyperglycemia which 

results in increased inflammation. They also noted the potential of the mitochondria to produce 

ROSs.  The mitochondria is a primary source of electron and oxygen handling in the cell and has 

also been identified as a source of proteins involved in lipid droplet formation and lipolysis 

regulation (71).  While proteins associated with the mitochondria have some control in lipid 
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metabolism, ROSs can also affect lipolysis by interacting with the cell membrane leading to lipid 

peroxidation.  Antioxidant enzymes have been demonstrated to be part of the regulation of ROS 

in the cell.  ROSs levels elevate with a decrease in antioxidant enzyme concentrations (70).   

Regulation of ROSs includes the antioxidant defense. The antioxidant defense was 

described as a network of enzymes including glutathione peroxidase (GPx), and antioxidants that 

are non-enzymatic.  GPx is a seleno-enzyme, meaning it contains selenium which is required for 

its function. Some of the functions in which GPx is involved are signaling pathways of cell death 

and survival, protein kinase phosphorylation, and oxidant-mediated activation of NFκB as well 

as maintaining lipid peroxide levels (72).  Interestingly, studies described in the review by Lei et 

al. showed that GPx-overexpressing mice developed hyperglycemia, hyperinsulinemia, and 

insulin resistance (72).  This is counter-intuitive as functioning Gpx is part of the antioxidant 

defense.  This implies that the redox chemistry within the cell is in a state of equilibrium in that 

without sufficient GPx, lipid peroxidation proliferates.  How lipid peroxidation affects insulin 

signaling and the cell membrane will be explained next.  

 

LIPID PEROXIDATION IN INSULIN SIGNALING AND LIPID METABOLISM 

Lipid peroxidation occurs when ROS interact with the lipid components of the cell 

membrane. Levels of lipid peroxides were found to be higher in Type 2 diabetics compared to 

controls and Type 1 diabetics in a study by Cymbaljevic et al. (10).  This is likely due to 

increased inflammation, free fatty acids, and oxidaive stress secondary to excess adipose tissue 

seen in Type II diabetics.   

Lipid peroxidation byproducts have recently been implicated in changes in human insulin 

structure and function. Pillon et al. demonstrated that adductions occur at the histidine residues 
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on the human insulin molecule when exposed to highly volatile lipid peroxidation byproducts.  

They then demonstrated that the efficacy of GLUT4 translocation and subsequent glucose uptake 

was significantly reduced in multiple models including 3T3-L1 adipocytes, L6 muscle cells, and 

the hypoglycemic effects of the modified insulin in mouse models was also significantly 

decreased (73).  In a study done by Navarro et al. hydroxyl radicals introduced carbonyl groups 

to the native insulin molecule as well as tyrosine residue formation.  The changes in the insulin 

molecule also resulted in ineffective glucose uptake in rat models and adipocytes (74).  These 

data add to the growing body of evidence that inflammation and lipids play a large and multi-

factorial role in the development of insulin resistance and diabetes.  Investigations into potential 

therapies should include exploration of effects on both insulin and its pathway as well as any 

effects the potential therapy may have on the membrane. 

 

VANADIUM AND OTHER TRANSITION METAL COMPOUNDS WITH INSULIN 

ENHANCING ACTIVITY AS NOVEL THERAPIES 

 Vanadium was used historically in France as a treatment for diabetes (75).  It is generally 

recognized that insulin responsiveness can be enhanced and elevated blood glucose and lipid 

levels can be normalized.by administration of specific vanadium compounds (76-81).  Other 

transition metal compounds including chromium and molybdenum have also demonstrated 

insulin-enhancing properties both individually or in combination with vanadium (82-86).  

Interestingly, some the vanadium compounds studied did not interact with the insulin receptor 

(IR) directly, but acted intracellularly (81,87-90). 
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VANADIUM AND PHOSPHORYLATION 

 One of the mechanisms of actions of certain vanadium compounds is to inhibit 

dephosphorylation by protein tyrosine phosphatases (PTPases) which results in sustained 

phosphorylation of intracellular proteins which then results in a lack of termination of signal.  

The lack of termination in signaling results in perpetuation of signaling (91-98).  This has been 

demonstrated in adipocytes in insulin signaling and is thought to act via PI3K (99).  With BMOV 

treated adipocytes, it was found that in the presence of insulin there was increased 

phosphorylation of the tyrosine residues of the IR as well as increased phosphorylation of IRS-1 

(100).  

 In answer to the question whether it is the vanadium compounds or the ligands that effect 

insulin signaling, several investigations found that certain classes of vanadium compounds are 

found to enhance the activity of insulin with the metal with a greater affect than the ligand alone.  

In recent studies, the effectiveness varies with the oxidation state of the metal (101,102) and the 

various ligands exert a “fine-tuning” effect (79,103) to enhance insulin responsiveness in part by 

decreasing the toxicity of the metal within the body.  A study by Barrand et al. noted that malto 

and ethylmalto ligands provided some protection against the gastrointestinal irritation that 

vanadium compounds can cause (104). 

 

VANADIUM AND REACTIVE OXYGEN AND NITROGEN SPECIES 

 Vanadium compounds have been found to be involved with stress signaling pathways in 

the cell as well as apoptosis (87,105) have also been found to produce ROS and reactive nitrogen 

species (RNS) as well as affect glutathione levels in cells (106-109).  As previously discussed, 

glutathione is involved in the antioxidant/oxidant balance in the cell and diabetes and obesity are 
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linked to increases in ROS generation.  This apparent imbalance changes the redox state of the 

cell.  Vanadium compounds are known to undergo redox cycling within the cell and this may be 

one mechanism of modulating the other players previously identified in the insulin signaling 

pathway.  

 

VANADIUM AND THE PLASMA MEMBRANE 

 While it has been demonstrated that some vanadium compounds exert their effects 

through PTP inhibition within the cell, it is worth examining the interactions of vanadium 

compounds with the PM.  In order to gain access into the cell, vanadium compounds must 

interact with the cell’s membrane.  Recent findings demonstrate that the insulin-enhancing 

compound [VO2dipic] (110,111) penetrates the lipid interface and is located in the hydrophobic 

portion of the lipid layer of the microemulsion (112,113).  Previous reports have shown the 

highly lipophilic vanadium compounds such as naglivan (114) are able to penetrate lipid 

monolayers (81,115).  New evidence suggests that vanadium compounds can also affect 

membrane composition and lipid packing (116,117). 

 It is the seemingly multifactorial effect that vanadium compounds have on the insulin 

signaling pathway that warrants further investigation as to how these molecules exert their 

effects.  In this study, BMOV was used as it is structurally similar to 

bis(ethylmaltolato)oxovanadium (IV) complex (BEOV) that has completed phase 1 clinical trials 

(118).  See Figure 9 for a comparison of the two structures.  What effects, if any, it has on the 

fluidity of the cell membrane may suggest a change in the lipid packing of the PM as a 

mechanism of action for affecting insulin receptor signaling. 
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 Figure 9. Molecular structure of BMOV and BEOV.  Chemically and structurally, 

BMOV and BEOV are similar.  BEOV began stage II clinical trials in 2008 and differs from 

BMOV by one additional hydro carbon (CH2). Abdol-Khalegh Bordbar et al. noted that much of 

the chemistry involved in the affinity of BMOV for binding human serum transferrin involved 

oxidation of the vanadyl (IV) ion (119).  (Adapted from Abdl-Khaegh Bordbar, A., et al., 

Journal of Inorganic Biochemistry 2009.:103, 643–647.)  

 

ANISOTROPY AS A METHOD OF MEMBRANE FLUIDITY MEASUREMENT 

 Anisotropy uses polarized excitation of a sample and measures the intensity of the 

fluorescence emission through a polarizer.  Polarized light preferentially excites fluorophores 

whose transition moments are aligned parallel to the excitation’s polarization.  The fluorescence 

from these molecules will also be parallel to the excitation.  The mathematical equations for 

anisotropy have been derived by Lakowicz in his work, Principles of Fluorescence Spectroscopy 

(2006). Anisotropy is described mathematically as 
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          (1) 

      

A number of things can affect a measured anisotropy.  For example, rotational diffusion 

of a fluorophore will affect measures of anisotropy by depolarization as the molecules transition 

moment changes.  If the fluorescent molecule has freedom of motion prior to polarized excitation, 

the transition moment of the molecule will not be fixed and thus the probability of the molecule 

being oriented to the polarized excitation is low.  Therefore the fluorophore is not likely to be 

excited. If the molecule is oriented to the polarized excitation and has freedom of motion 

following excitation, the angle at which the fluorophore will emit will not be parallel to the 

excitation polarization (120). 

According to the author of Principles of Fluorescence Spectroscopy, the value for 

anisotropy, r = 1.0, if a single fluorophore is oriented along the z-axis as seen in Figure 10.  

However, the limit of r = 0.4 is based on mathematical derivations from the probability 

distributions for molecules that will display maximal photoselection and is a function of cos
2
θ.  

See Equation 2.  The authors note that any value greater than r = 0.4 is attributed to light scatter 

or multi-photon excitation.  

   (2)  
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 Figure 10. Z-axis orientation of the excited state distribution for an immobile fluorophore 

with an anisotropy of r = 0.4 (120).  (Adapted from Lakowicz, J. R. 2006. Principles of 

Fluorescence Spectroscopy. Springer, Berlin, Germany.) 

When considering rotational diffusion, the viscosity of the environment plays an 

important role in how quickly a fluorophore can rotate or diffuse.  When a fluorophore inserts 

itself into the PM, its position becomes fixed and is therefore capable of responding to polarized 

excitation.  The fluidity of the PM can change in the face of changes in the environment of the 
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cell.  When the PM becomes more fluid, the fluorophore is no longer in a fixed position and thus, 

there is a change in anisotropy.  It is the resultant change in anisotropy that describes changes in 

the probe environment.   For our experiments, we chose to use Time Correlated Single 

Photon Counting (TCSPC) Anisotropy.  This method differs from steady state fluorescence 

anisotropy in that fluorescent decays model the photons of light being emitted over a period of 

time following the excitation from a source of light.  Rather than measure every photon emitted 

for each excitation, TCSPC Anisotropy is a method used to detect one and only one photon 

emitted after fluorescence per pulse of light, for many, many pulses of light and is an averaging 

technique (120).  Figure 11 is a detailed schematic of the instrument.  The rationale for this 

method is that a fluorescent probe, when inserted in a lipid bilayer, will not display the typical 

decay to zero used in steady state anisotropy.  It is this principle that demonstrates the restricted 

motion of the probe within a membrane and thus any changes in a timed anisotropy decay will 

yield information on how a treatment has affected the probe’s environment (120).  The equation 

used in evaluating time-dependent decays is   

 

                    (3)    
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 Figure 11. Detailed schematic of the Time-correlated Single Photon Counting apparatus 

of the Jovin IBH used in the experiments (121).  Image is courtesy of Laura Swafford of the 

Levinger lab at Colorado State University.  

 

TMA-DPH MEMBRANE PROBE 

 The fluorophore chosen for the fluidity measurements is the dye 1-(4-

trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate, (TMA-DPH) from 

Molecular Probes of Invitrogen.  TMA-DPH is well characterized and has been used extensively 

to explore lipid membrane dynamics and characterization (122-124).  TMA-DPH has a 
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maximum absorbance at 356nm and emits at 435nm.  The carbon chain inserts itself into the 

outer leaflet of the membrane and the trimethylammonium component interacts with the 

polarized environment on the external surface of the cell. 

 

 

Figure 12. Chemical structure of membrane fluorescent probe TMA-DPH.  TMA-DPH: 

is a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in 

intact living cells. TMA-DPH (in blue) locates near the polar heads of phospholipids; anionic 

phospholipids are represented in red and zwitterionic in yellow (125). (Adapted from Ribeiro, M., 

et al. Frontiers in Cellular Neuroscience. 2012, 6: 1-7.) 
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CHAPTER ІІ 

 

EVALUATING MEMBRANE FLUIDITY USING TIME-CORRELATED SINGLE PHOTON 

COUNTING FLUORESENCE ANISOTROPY  

INTRODUCTION 

As previously established, IR’s function best when clustered in specific microdomains 

within the plasma membrane and are influenced by the lipid packing of the plasma membrane.  

Changes in the fluidity of the PM would imply changes in the lipid packing of the cell.  The goal 

of this project is to investigate the effect on the PM of BMOV treatment in the plasma membrane 

of RBL-2H3 cells.  In order to measure membrane fluidity we will use time-correlated, single 

photon counting fluorescence anisotropy. 

RBL-2H3 cells are well characterized and have well characterized PM’s, specifically 

with Type 1 Fcε receptors.  Multiple studies have described Type 1 Fcε receptor’s lateral 

dynamics and signaling within membrane MDs.  Like the IR, proper signaling requires 

positioning within a MD. (126-130). Therefore RBL-2H3 cells were selected for experimentation.  

 

MATERIALS 

 Minimum Essential Medium (MEM) with Earle’s Balanced Salts was purchased from 

Thermo Scientific (Logan, Utah). Fetal bovine serum (FBS) was purchased from Invitrogen 

(Carlsbad, CA).  L-glutamine, penicillin and streptomycin and amphotericin B, (PSA) were 

purchased from Gemini BioProducts (Woodland, CA).  Insulin from bovine pancreas was 

purchased from Sigma-Aldrich (St. Louis, MO).  BMOV and oxidized BMOV were synthesized 

and characterized as previously described (131-132).  For cell experiments, BMOV was prepared 

fresh before each experiment as a 100x stock solution in phosphate buffered saline (PBS), pH 7.2, 
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by the Crans laboratory.  TMA-DPH and Trypan blue were purchased from Molecular Probes 

Invitrogen (Grand Island, NY).  Ficoll, and EDTA were purchased from Sigma Aldrich, (St. 

Louis, MO).  NaOH and HCl were purchased from Fisher Scientific (Denver, CO).  Doubly 

distilled deionized water with specific resistivity ≥ 17.8 MΩ·cm (Barnstead E-pure system) was 

used throughout.  Eppendorf 2mL tubes were purchased from Sigma Aldrich, (Milwaukee, WI).  

BD Falcon 75mL polystyrene sterile non-pyrogenic flasks and BD Falcon 50mL polypropylene 

conical tubes were purchased from BD Biosciences, (San Jose, CA).  10mm Quartz Fluorometer 

cuvettes were purchased from Starna Cells (Atascadero, CA).  Hemacytometer was purchased 

from Beckman Coulter, (Brea, CA)  RBL-2H3 cells were kindly provided by Dr. Reuben 

Siraganian of the National Institutes of Health.  Instrumentation includes the Jobin IBH Model 

500F with Xenon Flashlamp Fluorometer and LUDOX were purchased from Jobin Yvon IBH 

(Glasgow, UK).  The Zeiss Axiomat microscope equipped with a Zeiss 63x NA 1.2, Plan 

Neofluar immersion fluorescence objective with appropriate Omega dichroic mirrors and filters 

for imaging TMA-DPH fluorescence were purchased from Zeiss (Germany).  The Damon/IEC 

DPR-6000 Centrifuge was purchased from Thermo Scientific (Asheville, NC).  Data analysis 

was performed using Microsoft Excel. 

 

METHODS 

Cell Culture 

 RBL-2H3 cells were maintained in RBL-2H3 medium made of 830mL MEM, 150mL FBS, 

10mL PSA, 10mL L-glutamine which was sterilized via vacuum filtration filter.  For serum 

starving cells, a medium was prepared with only 980mL MEM, 10mL and PSA, 10mL L-
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glutamine.  Cells were incubated in ThermoForma Series II Water Jacketed CO2 Incubator with 

Hepa filter at 37°C, 5%CO2 and grown to 90% confluency.  

 

Cell Counting Protocol 

Cells were serum starved overnight.  Control cells were not serum starved.  At 16hrs, 

cells were removed from the incubator.  The medium was removed and discarded and replaced 

with 8mM EDTA (pH 8.0) in 1X PBS to remove cells from the flask.  Cells were washed with 

5mL 1X PBS and transferred to 50mL conical centrifuge tubes.  Cell samples were spun at 1000 

RPM for 3 minutes.  Supernatant was discarded and pellet was suspended in 10mL 1X PBS.  

This cycle was repeated 3 times.  After last spin, supernatant as discarded and pellet was 

suspended in 1xPBS to equal exactly 1mL.  In an Eppendorf tube, 10µL of cells from the 1mL 

suspended pellet solution was placed and 990µL 1X PBS, and 1mL Trypan blue was added.  The 

Eppendorf tube was briefly agitated to insure distribution of the Trypan blue dye.  A Beckman 

Hemacytometer was loaded with 10µL Trypan blue cell mixture on each side and cells imaged 

under microscopy.  Cell viability of 95% was the requirement for continuing with anisotropy 

measurements (124). 

 

Instrument Parameters for Anisotropy Measurements 

The Jovin IBH Fluorometer was programmed with a prompt excitation at 372nm, a 

prompt excitation monochromator of 372nm, and emissions monochromator of 435nm.  These 

are within the 20nm range of the maximum absorption and emission of the membrane probe 

TMA-DPH.  Excitation was provided by a 372nm Nano-LED light source.  The slit width was 

set to the widest setting at 32nm.  This was done to decrease the timeframe required to collect 
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10,000 counts.  Polarizers were programmed to collect data in the following positions: vertical-

vertical (V-V), vertical-horizontal (V-H), horizontal-horizontal (H-H), and horizontal-vertical 

(H-V).  These orientations are required in order to calculate the anisotropy value for a sample 

based on Equation 1 and Equation 3 in Chapter I in the section on TCSPC Anisotropy.  A 

solution of LUDOX specific for the IBH was used to zero the instrument to subtract light scatter.  

After initial data was collected, a short pass filter at 390nm was added and used on all 

subsequent experiments.  (See Results section Figure 13).  All data were analyzed and figures 

were created using a Microsoft Excel program.  

 

Treatments 

 Please refer to Table 1 for experimental design.  Treated cells were incubated with BMOV 

1 hour prior to imaging in concentrations ranging from 10µM to 0.1µM, and/or 200nM insulin.  

The fluorescent membrane probe, TMA-DPH, was applied in a 10µM concentration 10 minutes 

prior to imaging.  Cells were then harvested and counted via the cell counting protocol below.  

Cells were then imaged in a 9% Ficoll solution in 10mm quartz cuvettes at a concentration of 

1x10
^6

 cells/mL.  Control cells were only treated with 10µM TMA-DPH.  Within separate flasks, 

cells were labeled controls and for each treatment applied.  These flasks were imaged using the 

Zeiss Axiomat microscope in order to assess the health of the cells during the timeframe of data 

collection using the IBH Fluorometer on prepared cell samples.  
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Table 1.  Experimental Design.  
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RESULTS 

Addition of a short pass filter to the IBH apparatus for anisotropy measurements resulted 

in anisotropy values that were closer to the theoretical maximum allowed of 0.4 as seen in Figure 

13. 

In Figure 14, 200nM insulin caused an increase in anisotropy compared to untreated cells. 

10µM BMOV treated cells had a larger increase in anisotropy than when the cells were 

incubated with 10µM BMOV and 200nM insulin, but less than cells treated with insulin alone. 

In Figure 15, 200nM insulin again caused the largest increase in anisotropy compared to 

untreated cells.  1µM BMOV treated cells again had an increase in anisotropy compared to 

untreated cells, but had less effect than 200nM insulin.  1µM BMOV and 200nM insulin caused 

decreased anisotropy compared to untreated cells. 

In Figure 16, the largest increase in anisotropy was seen in 0.1µM BMOV compared to 

untreated cells.  Cells treated with 200nM insulin also demonstrated an increase in anisotropy 

over untreated cells but this was less than the effect of 0.1µM BMOV.  Cells treated with 0.1µM 

BMOV and 200nM insulin showed an increase in anisotropy over untreated cells but less than 

cells treated with either BMOV or insulin alone. 
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Figure 13. The effect of a 390nm short pass filter on TCSPC anisotropy measurements on 

RBL-2H3 cells.  The y-axis is anisotropy (r), and the x-axis is channel number.  Measurements 

were done until 10,000 counts of data had been collected.  NF indicates no filter was used in the 

measurements.  SPF indicates that the 390nm short pass filter was used in the measurements. 
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Figure 14.  Experiment 1.  TCSPC Anisotropies of RBL-2H3 cells labeled with 10µM 

TMA-DPH and treated with 10µM BMOV, 10µM BMOV and 200nM insulin, and 200nM alone.   
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Figure 15.  Experiment 2.  TCSPC Anisotropies of RBL-2H3 cells labeled with 10µM 

TMA-DPH and treated with 1µM BMOV, 1µM BMOV and 200nM insulin, and 200nM insulin 

alone. 
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Figure 16.  Experiment 3.  TCSPC Anisotropies of RBL-2H3 cells labeled with 10µM 

TMA-DPH and treated with 0.1µM BMOV, 0.1µM BMOV and 200nM insulin, and 200nM 

insulin alone. 

 

DISCUSSION 

When first developing the method for measuring membrane fluidity in RBL-2H3 cells, a 

number of challenges arose.  Early in the development of this method using the IBH, we found 

that cells would begin to precipitate in solution.  To rectify this problem Ficoll was added to 

equal 9% of the cell solution.  Ficoll was chosen after absorption and emission spectra 

demonstrated that it does not absorb or emit within the spectrum of TMA-DPH (data not shown).  

The use of Ficoll kept the cells suspended for the duration of the experiments. 
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When analyzing the data from Figure 13, it is clear that there is a noticeable decrease in 

the maximal anisotropy with the addition of the 390nm short pass filter.  This filter was added to 

the IBH apparatus with the sole purpose of decreasing the amount of scattered light and cross-

talk that can occur in the fluorescing samples.  Given the improvement in the measurements 

following the addition of the short pass filter, it was included for the rest of the anisotropy 

measurements carried out on the cells. 

It is clear when looking at Figures 14-16 that there is a lack of consistency between each 

of the experiments as to which treatment resulted in the greatest increase in anisotropy.  An 

increase in anisotropy should correlate to a decrease in membrane fluidity due to an increase in 

lipid packing.  In Figures 14 and 15, 200nM insulin caused the greatest decrease in membrane 

fluidity, but in Figure 16 this treatment did not demonstrate the same effect.  Also of note, is that 

there was a marked decrease in anisotropy in Figure 15 in cells treated with both 0.1µM BMOV 

and 200nM insulin.  This would indicate that cells treated with 0.1µM BMOV + 200nM insulin 

actually resulted in an increase in membrane fluidity which would correlate with a loss of lipid 

packing.  

To explain the inconsistencies found in the above data, the cells that were left plated on 

the flasks but treated with the same treatments as those placed in the cuvettes for measurement in 

the IBH were imaged.  It was found that during the timeframe of the experiments, the cells were 

not able to maintain the 95% viability.  Cells began to show blebbing of their membranes which 

indicated cell stress and apoptosis.  In some flasks, cells had completely lost adhesion to the floor 

of the flasks and floated in the medium.  Samples from these flasks were taken and the cell 

counting protocol was performed.  Viable cells in these samples ranged from 10%-30% (data not 
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shown).  The loss of membrane integrity is the mostly explanation for the inconsistencies in the 

data. 

Concern for the viability of the cells was first raised when the first rounds of experiments 

were requiring hours of time to collect the 10,000 counts of photons set as our initial parameters.  

Steps were taken to optimize the parameters on the IBH and decrease the time needed to acquire 

10,000 counts.  However, prior to being able to decrease the timeframe of experiments, cells 

were reserved to be treated and observed under microscopy to evaluate viability.  It was also 

found that not only did the cell membrane integrity begin to fail as the viability of the cells 

decreased, but some samples demonstrated internalization of the TMA-DPH intracellularly (data 

not shown).  It was not clear whether this was a diffusive process, a loss of membrane integrity, 

or part of membrane cycling. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

 Given the difficulties encountered with the cells due to the timescale of the experiments, 

it might be more advantageous to explore other methods of collecting membrane fluidity 

measurements.  One option is ratiometric imaging of a specific fluorophore such as Di-4-

ANEPPDHQ, which has a change in emission based on membrane lipid packing.  For example, 

its fluorescence emission is red at 605nm when the probe is restricted, but emission is green at 

530 nm when there is an increase in the viscosity of the probe’s environment.  This probe could 

potentially decrease the time required to collect data, thereby increasing the likelihood that the 

cells would still be living at the end of the experiments.  This would obviously allow for a more 

definitive discussion of the data and implications drawn from the data collected.  

 Other options exist for fluorophores to probe the PM.  These include Di-I C-18, PE, PC, 

DPH, and Di-O with each demonstrating an affinity for a specific portion of the membrane.  

Some preferentially stay in the hydrophobic section of the PM bilayer.  Others prefer either the 

cytoplasmic or extracellular leaflets of the membrane.  It would be of interest whether BMOV or 

other transition metal compounds specifically affect specialized membrane regions identified by 

these various probes. 

 All of the experiments were performed at 25°C.  Physiologic temperature is 37°C. For 

completeness, measurements at 4°, 15°, 25°, and 37°C should be completed.  Measurements at 

4°C were attempted but at this temperature, the lines carrying the cold water from the ice bath to 

the housing holding the cuvettes froze and the temperature was not  maintained even with 

insulation of water lines. 
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 As lipid peroxidation has been demonstrated to affect the insulin molecule, it would be 

interesting to know if the products of lipid peroxidation also affect the IR itself or its location in 

lipid raft fractions.  This could be done using a discontinuous sucrose gradient after treating cells 

with the oxidizing molecules described by Navarro and Pillon et al. (73,74).  Along these same 

lines, changes in the IR or the IR localization in response to exposure with the lipid peroxidation 

products is of interest as are effects of treatment with BMOV and other transition metals on the 

modified IR or lipid raft localization, or on the modified insulin molecule itself. 

 Given that ceramide is an intermediate for sphingomyelin degradation, it would be 

interesting to know what effect the lipid peroxidation products discussed above had on ceramide 

levels in treated and untreated cells and what effect, if any, BMOV and other transition metals 

had on ceramide levels.  

 Various compounds have demonstrated redox chemistry once the vanadium compounds 

reach the cell as well as during transport through the body.  Investigation of the potential for 

redox reactions between lipid peroxidation products and vanadium species would be prudent.  

Such a mechanism would explain lipid and glucose normalization properties of some vanadium 

complexes. 

 Of note is the link between the metabolic derangements discussed and fertility, 

specifically with respect to Polycystic Ovarian Syndrome (PCOS).  Patients with this syndrome 

typically have obesity, insulin resistance, hirsutism, elevated levels of aldosterone, irregular 

menses, and issues with infertility.  The relationship between increased aldosterone levels and 

insulin resistance has not been elucidated (133).  It would be interesting to see if BMOV or other 

transition metal compounds are able to affect aldosterone production, or if they exert an effect on 

other hormones regulating the menstrual cycle such as estrogen, follicle stimulating hormone 
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(FSH) and luteinizing hormone (LH).  It would also be interesting to know if there is any change 

in the aldosterone molecule secondary to the effects of ROS or toxic metabolites of PM lipid 

peroxidation as described in the insulin molecule by Navarro and Pillon (73,74).  

 All of the above experiments would be performed on RBL-2H3 cells.  It would also be 

prudent to know how adipocytes, specifically 3T3-L1 adipocytes, which have been well 

characterized, respond to treatment with vanadium and other transition metal compounds.  For 

experiments investigating transition metal compounds and PCOS, in addition to adipocytes, 

theca and granulosa cells would be appropriate. 
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LIST OF ABBREVIATIONS 

 

3T3-L1:              cell line of adipocytes 

Akt:                    serine/threonine specific kinase, also known as PKB  

APS:                   Cbl binding protein  

BEOV:               bis(ethylmaltolato)oxovanadium (IV) complex  

BMOV:              bis(maltolato)oxovanadium(IV) complex 

C3G:                  guanine nucleotide exchange factor 

CAP  :                cyclase associated protein  

c-Cbl:                 E3 ubiquitin-protein ligase adaptor molecule 

CDase:               ceramidase 

DAG                  diacylglycerol 

EDTA:               ethylenediamine tetraacetic acid  

FABP:                fatty acid binding protein 

Fas:                    cell surface receptor which signals cell death 

FBS:                   fetal bovine serum  

FFA:                   free fatty acid  

FKHR:               transcription factor “forkhead in human rhabdomyosarcoma” (FOXO1a) 

FSH:                   follicle stimulating hormone 

GLUT4:             glucose transporter 4 

GM-3:                a subset of ganglioside 

GPx :                  glutathione peroxidase 

GSK3:                glycogen synthase kinase 3, a serine threonine kinase 

HDL:                  high density lipoprotein 
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IBH:                   fluorometer manufactured by Jovin Horiba 

IGF-1:                insulin-like growth factor-1 

IGF-2                 insulin-like growth factor-2 

IKKβ:                 inhibitor of nuclear factor kappa-B kinase 

IR:                      insulin receptor 

IRS-1:                insulin receptor substrate 1 

JNK:                  c-Jun N-terminal kinase 

LDL:                  low density lipoprotein 

LH:                     luteinizing hormone 

LO:                     liquid ordered 

MD:                   microdomain 

MEM:                Minimum Essential Medium  

mRNA:              messenger ribonucleic acid 

NEFA:               non-esterified fatty acid 

NFκB:                nuclear factor kappa-light-chain-enhancer of activated B cells  

OS:                     oxidative stress 

PI3K:                  phosphatidylinositol 3-kinase  

P70S6K:             p70 ribosomal S6  kinase 

PBS:                   phosphate buffered saline 

PC:                     phosphatidylcholine 

PCOS:                polycystic ovarian syndrome 

PE                      phosphatidylethanolamine 

PIP2:                  phosphatidylinositol-4 5-bisphosphate 
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PIP3:                  phosphatidylinositol (3,4,5)-triphosphate 

PKB:                  protein kinase B 

PKC:                  protein kinase C 

PM:                    plasma membrane 

PP1:                    protein phosphatase 1 (class of serine/threonine phosphatase) 

PPAR:                peroxisome proliferator-activated receptors 

PS:                      phosphatidylserine 

PSA:                   penicillin + streptomycin +amphotericin B  

PTPase:              protein tyrosine phosphatase 

Rac:                    subset of Rho family GTPases 

RBL-2H3:          rat basophilic leukemia cell line 

RNA:                  ribonucleic acid 

RNS:                  reactive nitrogen species 

ROS:                  reactive oxygen species 

S1P                     sphingosine 1-phosphate 

Ser:                     serine 

SER:                   smooth endoplasmic reticulum 

SH2:                   Src homology 2 domain 

Shc:                    Src homology domain containing 

SHIP2:               SH2 domain containing inositol 5-phosphatase 2 

SM:                    sphingomyelin 

SMase:               sphingomyelinase 

SREBP-1:          Sterol regulatory element-binding protein-1 
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TC10:                 protein member of Rho family of GTPases 

TG:                     triglyceride 

Thr:                    threonine 

TMA-DPH:        1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate 

TNF-α:               tumor necrosis factor-alpha 

VO2dipic:           dipicolinatooxovanadium(V) 

 

 

 

 

 


