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Abstract Eigendecomposition-based techniques are

popular for a number of computer vision problems,

e.g., object and pose estimation, because they are

purely appearance based and they require few on-line

computations. Unfortunately, they also typically

require an unobstructed view of the object whose pose

is being detected. The presence of occlusion and

background clutter precludes the use of the normal-

izations that are typically applied and significantly al-

ters the appearance of the object under detection. This

work presents an algorithm that is based on applying

eigendecomposition to a quadtree representation of

the image dataset used to describe the appearance

of an object. This allows decisions concerning the pose

of an object to be based on only those portions of the

image in which the algorithm has determined that the

object is not occluded. The accuracy and computa-

tional efficiency of the proposed approach is evaluated

on 16 different objects with up to 50% of the object

being occluded and on images of ships in a dockyard.

Keywords Singular value decomposition �
Quadtree decomposition � Partial occlusion �
Background clutter � Object recognition �
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1 Introduction

One of the fundamental problems in computer vision is

the recognition and localization of three-dimensional

objects. Subspace methods represent one computa-

tionally efficient approach for dealing with this class of

problems. Variously referred to as eigenspace meth-

ods, principal component analysis methods, and

Karhunen–Loeve transformation methods [1, 2], these

have been used extensively in a variety of applications

such as face characterization [3, 4] and recognition [5–

9], lip-reading [10, 11], object recognition [12–16], pose

estimation [17–19], robot position estimation [19, 20],

visual tracking [21, 22], and inspection [23–26]. All

of these applications are based on taking advantage of

the fact that a set of highly correlated images can be

approximately represented by a small set of eigen-

images [27]. Once the set of principal eigenimages is

determined, online computation using these eigen-

images can be performed very efficiently.

Unfortunately, one of the drawbacks associated with

using eigendecomposition-based approaches is that

they are very sensitive to occlusion and background

clutter [24, 28–44]. The purpose of this work is to ex-

plore the feasibility of applying eigendecomposition to
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a quadtree representation of correlated images in order

to efficiently accommodate the presence of occlusion

and background clutter. The pose estimation problem

is used here as a representative application. In the next

subsection, the fundamentals of applying eigende-

composition to related images are reviewed. This is

followed by an overview of the standard approach to

solving the pose estimation problem using eigende-

composition and a discussion of why occlusion and

background clutter present such difficulty.

1.1 Eigendecomposition of related images

An image can be represented as an h · v array of

square pixels with intensity values normalized between

0 and 1. Thus, an image will be represented by a matrix

X 2 ½0; 1�h�v: Since we will be considering sets of re-

lated images, it will be convenient to represent an

image equivalently as a vector, obtained simply by

‘‘row-scanning’’, i.e., concatenating the rows to obtain

the image vector x of length m = hv:

x ¼ vecðXTÞ:

The image data matrix of a set of images X 1; . . . ;Xn is

an m · n matrix, denoted X, and defined as

X ¼ x1 � � � xn½ �;

with typically m� n. We consider only the case where

n is fixed, as opposed to cases where X is constantly

updated with new images.

The average image vector is denoted �x and defined as

�x ¼ x1 þ � � � þ xnð Þ=n:

The corresponding average image data matrix, denoted
�X; is

�X ¼ �x � � � �x½ �:

The matrix X � �X; which we denote X̂; has the inter-

pretation of an ‘‘unbiased’’ image data matrix.

The singular value decomposition (SVD) of X̂ is

given by

X̂ ¼ ÛR̂V̂T;

where Û 2 R
m�m and V̂ 2 R

n�n are orthogonal, and R̂ 2
R

m�n; with R̂ ¼ ½R̂d 0�T; where R̂d ¼ diagðr̂1; . . . ; r̂nÞ;
with r̂1 � r̂2 � � � � � r̂n � 0; and 0 is an n by m – n zero

matrix. The SVD of X̂ plays a central role in several

important imaging applications such as image com-

pression, pattern recognition and pose estimation. The

columns of Û; denoted ûi; i = 1, . . . , m, are referred to

as the eigenimages of X̂; these can be interpreted as

estimates of the eigenvectors of the covariance matrix

of the image vector. The eigenimages provide an

orthonormal basis for the columns of X̂; ordered in

terms of importance; the corresponding singular values

measure how ‘‘aligned’’ the columns of X̂ are with the

associated eigenimage. The components of the ith col-

umn of V̂ measure how much each individual image

contributes to the ith eigenimage.

1.2 Eigendecomposition applied to pose estimation

The standard application of eigendecomposition to

solve the pose estimation problem requires the com-

putation of a reduced-order representation of the set of

all possible orientations for the object being consid-

ered. For this purpose, several intermediate orienta-

tions of an object are normally used. Because the

eigenspace representation of an image is very sensitive

to changes in size and intensity, each training image is

normalized to account for differences in scale and

brightness. The average normalized training image is

then subtracted from each of the normalized training

images and the eigendecomposition is computed from

the resulting images. A reduced-order representation

of the object’s orientation change is then obtained by

projecting the normalized training images into the

space spanned by the dominant eigenimages, and

interpolating to obtain a manifold.

To determine the pose of the object in a given test

image, that image must undergo the same transfor-

mations as a training image, i.e., it must be normalized

in both scale and intensity and have the average

training image subtracted from it. It can then be pro-

jected onto the reduced-order eigenspace and the ob-

ject’s orientation can be obtained by computing the

closest point on the manifold created using the training

images [45]. This process is very computationally effi-

cient and reasonably accurate if the boundary of the

object in the test image can be calculated. Unfortu-

nately, the presence of occlusion and/or background

clutter complicates this procedure in several ways:

1. The location of the object in the test image cannot

be easily determined.

2. Scale normalization cannot be performed on the

test image.

3. Brightness normalization is not effective.

4. The occluded and/or cluttered region will alter the

projection into the eigenspace.

Some of the problems associated with the pose

estimation problem in the presence of background
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clutter can be addressed by using a hierarchical ei-

genspace approach [24], for example, one can include

object size variation in the set of training images. To

deal with occlusion, one can apply an ‘‘eigen features’’

[32], ‘‘attention operator’’ [44], or an ‘‘eigen windows’’

[33] approach in which small windows around ‘‘feature

points’’ are automatically detected and used for both

training and detection. An alternative is to predefine

regions of the image that contain important features

and represent them using Gaussian distributions [28].

Unfortunately, these approaches rely on appropriate

feature selection as well as detection, and thus lose

some of the advantages associated with purely

appearance-based techniques.1

A search window, which is the ANDed area of the

object regions of all images in the training image set,

can also be used to deal with the background clutter

[29], however, this does not help with occlusion. This

search window technique can be extended to an

adaptive mask to deal with the occlusion [30], however,

occluding objects must be limited to a predefined set.

Rather than using fixed masks, Leonardis et al. [34, 37]

randomly select pixels from an image in order to

identify the most likely object.

Recently, many component-based algorithms have

also been proposed for object detection and pose

estimation problems in the presence of occlusion and

background clutter. In particular, either a product of

histograms [38] that represent a wide variety of visual

attributes or an adaptive combination of classifiers [39]

that are used to classify different components of the

object can be used for identification of both ‘‘object’’

and ‘‘non-object’’. Alternatively, the similarity tem-

plates [40], or non-negative matrix factorization tech-

nique can be used [41–43] to effectively combine the

parts to form a whole. However, some of these ap-

proaches lose the advantages associated with purely

appearance-based techniques, while others do not re-

sult in the minimal orthonormal basis provided by the

SVD.

The goal of the work presented here is to solve the

pose estimation problem in the presence of occlusion

and background clutter, while retaining the framework

of an eigendecomposition approach and all its atten-

dant advantages. The next section presents an outline

of our approach, which first identifies candidate loca-

tions for the object in a test image, and then per-

forms pose estimation using eigendecomposition on a

quadtree representation of the training images. The

efficacy of our approach, both in terms of accuracy and

computational efficiency, as a function of the degree of

occlusion and/or background clutter, is explored

through a number of experiments.

2 Algorithm description

We first consider the problem of object localization

and pose estimation under the assumption that the

target object is partially occluded but is in an envi-

ronment where the background can be controlled. A

two-step approach is proposed to solve this problem.

The first step is to determine the likely candidate

locations of the object in the test image. The second

step is to evaluate the candidate locations by using

eigendecomposition on a quadtree structure of the

training images to simultaneously determine if the

object is present at a given candidate location, and if

so, its pose.

2.1 Localization

Let y be an image vector of the same size as the

training images that represents a window within the

test image offset by (v, h) pixels in the vertical and

horizontal directions, respectively. Then, if there is no

occlusion, one can identify the location of the desired

object within the test image, given by (v, h), by com-

paring y to the training images for every possible value

of (v, h). However, because an eigendecomposition of

the training images exists, it is much more computa-

tionally efficient to simply compute the amount of y

that can be represented in a smaller eigenspace, i.e.,

yðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

i¼1

ðuT
i yÞ2

v

u

u

t ;

where k represents the size of the reduced-order

representation and ui represents the ith eigenimage.

Because the brightness within the window y will vary

for different values of (v, h), the normalized measure

m1 ¼
yðkÞ

kyk ð1Þ

is more useful for comparing different locations within

the test image. Note that the k-dimensional eigenspace

computed for X̂ provides the best rank k approxima-

tion of X̂ [46]. Empirical results for all 16 objects in

Fig. 4 showed that each individual image in X̂ was also

1 For purely appearance-based techniques, no modeling is
required and thus no feature extraction/selection needs to be
performed. Hence these techniques can be applied to any class of
objects and can be effectively used in a wide variety of applica-
tions [23].
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well represented by its eigenspace but not by the ei-

genspace computed for any other object. Therefore,

measure m1 in (1) is likely to be maximized when the

image represented by y is similar to one of the training

images, thus identifying the location of the object

within the test image.

The major computational expense in evaluating (1)

consists of the dot products of the eigenimages ui with

the image vector y associated with the window at all

possible locations, i.e., all values of (v, h). It was shown

in [47] that these projections can be efficiently com-

puted by using a 2D FFT. That is, if

P ¼ F�1ðFðXÞFðUiÞ�Þ

then

uT
i y ¼ pðv;hÞ;

where X is the test image, Ui is obtained from the

eigenimage matrix by padding it with zeros to the size

of X ;Fð�Þ denotes the 2D FFT, * represents the

conjugate and p(v,h) represents the (v, h) entry of the

matrix P. The 2D FFT of all the eigenimages can be

pre-calculated and stored during the off-line process.

The major on-line computation involved in evaluating

m1, for every possible location in the test image, re-

quires one 2D FFT of the test image and k 2D inverse

FFTs where k is the eigenspace dimension. This is

much more efficient than performing a brute force

match of the test image with all the training images.

While this method works well for a controlled

environment, it is not as effective when occlusion is

present. This is illustrated in Fig. 1 where the above

approach is applied to the same object, both with and

without occlusion. Large values of m1 do occur when

the training images are correctly registered with the

test image, however, they do not necessarily corre-

spond to the largest values. In fact, in Fig. 1e there

were 202 locations that had a higher or equal value of

m1 than that of the correct location because of the

occluding object. It is still possible, however, to dif-

ferentiate between large values of m1 that are due to

the desired object and those that are due to occlusion.

This is due to the likelihood that the value of y(k) will

be much more sensitive to small registration errors for

the desired object than for the occluding object. This

motivates the use of a measure based on the second

derivative of y(k), namely,

m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@2yðkÞ

@v2

� �2

þ @2yðkÞ

@h2

� �2
s

: ð2Þ

This measure uses the fact that eigenspace approaches

are highly sensitive to registration errors [48], i.e.,

measure m1 will have a large value if the center of the

object in the test window is perfectly aligned with the

center of its training images; even a small registration

error will result in a much smaller value of m1. Thus,

measure m2 will typically have a large value only when

the test window is perfectly registered with the training

images. This behavior is not likely if the eigenspace was

not computed for the object in the test window. The

example in Fig. 1 shows that this measure is clearly

effective in identifying the correct object location.

Because the measure m2 can tend to be ‘‘noisy’’ due

to the use of derivatives, it is combined with the value-

based measure m1 to form the measure:

M ¼ m2 if m1 � q;
0 if m1\q;

�

where q is a preset threshold, which is used to identify

candidate locations of the desired object even under

the influence of occlusion.

An experiment was conducted to evaluate the

accuracy of measure M for use in identifying the

location of a desired object in a test image as a function

of the percent of occlusion. (The percent of occlusion

for a test image is defined as the area of the object that

is occluded divided by the area of the entire object.) A

total of 800 cases were examined, with the percent of

occlusion evenly distributed between 0 and 80%. The

target object used in this experiment is shown in

Fig. 1a with the image of an occluding object randomly

selected from a pool of 15 other objects (see Fig. 4) to

create the desired level of occlusion. The test images

were of size 256 · 256 and the training images were of

size 128 · 128, with a total of 90 training images used to

create a 12-dimensional eigenspace.

The measure M was evaluated at a resolution of

one pixel in both horizontal and vertical directions.

The number of locations that have a measure higher

than or equal to that of the correct location, will be

referred to as the rank of the correct location. In

60% of all the cases, the rank of the correct location

was one, i.e., it had the highest value of M. In

addition, the rank of the correct location was less

than fifty for over 90% of all cases. The average rank

was never more than 100, even for the maximum

occlusion of 80%. It is important to note that a lar-

ger rank value results in a longer computation time,

but does not affect solution accuracy. This suggests

that an object registration and pose estimation

scheme based on candidate locations identified using

18 Pattern Anal Applic (2007) 10:15–31
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the measure M may be very efficient.2 This is the

topic of the next subsection.

2.2 Quadtree-based detection

Once a number of candidate locations have been

determined using the measure M, these locations are

evaluated using eigendecomposition on a quadtree

representation of the training images. Eigenimages are

calculated for each level of a quadtree decomposition

of the training images. At a level l, each training image

is broken into 4(l–1) sub-images (see Fig. 2). Let xi,l,j

denote the image vector associated with the jth sub-

image in level l of the ith training image. Then the

image data matrix associated with the jth sub-image in

level l is formed as

Xl;j ¼ ½x1;l;j x2;l;j _s xn;l;j�:

Eigendecomposition is applied to X̂l;j ¼ Xl;j � �Xl;j for

each sub-image in each level where �Xl;j is the average

Fig. 1 Test images without
and with occlusion are shown
in (a) and (d), respectively.
Their values of measure m1

are shown in (b) and (e) with
the peak location of the
measure marked by a ‘‘+‘‘ and
the correct location of the
object marked by an ‘‘·’’.
Note that the peak has shifted
from the correct location due
to the occlusion. However,
the peak for measure m2,
shown in (c) and (f), correctly
registered the location of the
object even when occlusion is
present

    level 1      level 2         level 3 

1 1 3 

2 4 

1 

2 104 

7 13 15

1614

5 

8 

12

119 3 

6 

Fig. 2 This figure shows how
an image is decomposed into
a quadtree structure, and how
the sub-images in each level
are numbered

2 Note that when the actual object location is not of rank one, the
rank one candidate is frequently far from the correct location
(due to occlusion) so that local optimization techniques such as
gradient descent [32] are not effective.
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image data matrix for the image vectors in Xl,j. If a

k-dimensional eigenspace is used, then there will be

4(l–1) · k eigenimages for this level. The image data

matrices Xl,j that contain very little information about

an object, i.e., contain mostly background, are auto-

matically discarded by the algorithm (for example, X3,1

in Fig. 2).3 The projection of xi;l;j � �xl;j onto the cor-

responding eigenspace is calculated to form the pose

manifold that is used in the on-line process.

The on-line process consists of performing image

comparisons in the eigenspace for each of the candi-

date locations until a ‘‘match’’ is found. For pose

estimation without occlusion, the orientation of the

object is obtained from the point on the manifold that

is closest to the projection of the test image because

both the test image and training images can be nor-

malized. When occlusion is present, the images are not

automatically registered so that the distance to the

manifold of training images is used to simultaneously

determine if the object is present at this location in

addition to determining its orientation. The following

normalized distance is used:

d ¼ kth � pqk=kthk; ð3Þ

where th represents a point on the manifold of training

images at orientation h for a particular sub-image

and pq represents the eigenspace projection of the
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Fig. 3 This figure shows an
example of the quadtree
eigenspace object/pose
estimation process. The sub-
figures on the left show the
test image and the result of
the process for all sub-images
in each level. A box with a
cross through it indicates the
rejected sub-images. The sub-
figures on the right show the
normalized distance as a
function of orientation, for
each sub-image in each level.
The acceptance and rejection
thresholds are set at 0.1 and
0.9, respectively. A sub-plot
with a gray background
indicates that the normalized
distance to some of the
training images went below
the acceptance threshold for
the corresponding sub-image,
while a sub-plot with a black
background indicates that the
normalized distance to all the
training images was above
the rejection threshold for the
corresponding sub-image

3 Specifically, the image data matrices corresponding to the
training sub-images, whose rank is below 12, are automatically
discarded.
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corresponding sub-image in the window associated

with the qth candidate location. The projection pq is

considered to match ti, the ith training image whose

orientation is closest to h, when d is less than a preset

threshold. When the training images cover all the

possible variations in orientation, illumination, scaling

and other factors, this threshold can be set very small;

however this is usually not feasible and interpolation is

used between samples. (A threshold of 0.1 was used for

the examples presented in the subsequent sections,

which worked well for a variety of objects.)

For each candidate location, the image comparison

in the eigenspace is evaluated based on (3). The com-

parison starts at the first level and proceeds to smaller

images at higher levels in the quadtree. At each level,

all the sub-images that do not consist of only the

background are examined. If d is smaller than a preset

threshold for orientation h, the orientation associated

with training image i whose projection is closest to th
will receive a vote. The value of this vote is equal to the

percentage of the corresponding training sub-image

that is occupied by the object. For example, the vote

associated with sub-image 4 at level 3 in Fig. 2 is much

smaller than that of sub-image 7 at level 3. This

mechanism is used to de-emphasize the vote from a

sub-image corresponding to a background area or

containing very limited information about the object. If

the normalized distances for all orientations of a sub-

image are greater than a preset threshold (0.9 is used),

all child notes in the following level will be skipped to

save computation time. If the vote for a particular

orientation exceeds a preset threshold, the process is

terminated and the orientation of the object is deter-

mined by the orientation receiving the largest vote.

The process moves to the next level if the maximum

vote does not exceed the preset threshold. This

threshold is set to 2
4ðlmax�lÞwhere lmax is the maximum

level allowed. (In this work lmax = 4 is used with a

training image of size 128 · 128.) If the level lmax is

completed and no voting exceeds this threshold, the

next candidate location is then assessed.

An example of this process is illustrated in Fig. 3.

The algorithm starts from the first level, with the cor-

responding area of the test image displayed on the left

Fig. 4 The 16 target objects
used for the experiments in
this section. For each target
object, 90 training images
were obtained by rotating the
object by 4� between images.
All training images are of size
128 · 128 pixels with 8 bits
used to represent intensity

Pattern Anal Applic (2007) 10:15–31 21

123



and the normalized distance for different orientations

on the right. The acceptance threshold is set at 0.1 and

the rejection threshold is set at 0.9. In this example,

neither the acceptance nor the rejection criterion is

satisfied at the first level; therefore, the search pro-

ceeds to the second level. In the second level, the third

sub-image exceeded the rejection threshold, and thus

none of its child nodes are evaluated. In level 3, sub-

images 6, 8, 14, and 16 were not occluded and thus

were successfully detected. All four of these sub-ima-

ges voted for an orientation of 355�, although the last

sub-image also voted for other orientations. However,

because the value of a vote is based on the percent of

the matched training sub-image that is occupied by the

object, the value of the vote for this sub-image is equal

to zero. The process stops at this level with the con-

clusion that the object is at an orientation of 355�.

3 Experimental evaluation

To evaluate the accuracy and computational efficiency

of the proposed algorithm, a number of experiments

were performed. For these experiments, it was as-

sumed that the target object whose pose is desired is

partially occluded but it is located in a controlled

environment with no background clutter. A variety of

objects (see Fig. 4) were used to test the robustness of

the proposed algorithm. A 12-dimensional eigenspace

was used for every sub-image at each level of the

quadtree.4 All test images (of size 256 · 256) were

generated by superimposing the image of a randomly

selected occluding object on top of a randomly selected

target object.5 The target objects were selected

from 360 different possible images, i.e., a 1� rotation

between successive images, in order to include poses

that were not part of the training set.6 The percent of

occlusion used in the test images was equally distrib-

uted, with 100 cases selected within each 10% range.

Finally, the training data was used to do a receiver

operating characteristics (ROC) analysis to find the

tradeoff between false positives and true negatives for

different thresholds. Using this analysis, the thresh-

olds that gave the optimum results were used in the
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Fig. 5 This figure provides
data on the accuracy and
computational efficiency of
the proposed algorithm as a
function of the percent
occlusion when evaluated on
800 random test cases of
correctly registered images: a
Depth to which the quadtree
is searched (average plotted
with a solid line), b
computation time required
for each case (average plotted
with a solid line), c number of
cases where the pose cannot
be determined, d orientation
error when a pose is
determined (average plotted
with a solid line)

4 Empirical results showed that using a constant subspace
dimension at every sub-image performs consistently better than
using a constant energy recovery ratio. The main reason behind
this is that a constant subspace dimension tends to make the
energy recovery ratio increase as the algorithm searches further
down the quadtree.
5 The generation of the occluded test images in this manner can
induce artifacts, like large step edges along the boundaries,
however, our results indicate that these artifacts do not affect the
performance of the algorithm.
6 We elected not to use one of the ‘‘standard’’ object data sets,
like COIL-100 [49], COIL-10 [50], SOIL-47 [51], and ALOI [52],
because they only contain 72 orientations per object.
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Fig. 6 Performance of the
proposed algorithm when
using the measure M to select
candidate locations. The
percent of cases that have the
rank of the correct location
smaller than the value of the
x-axis is displayed
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proposed algorithm. In particular, the rejection

threshold was set at 0.9 and the acceptance threshold

was set at 0.1.

3.1 Quadtree approach evaluation

The first set of tests was designed to evaluate the

performance of the quadtree approach, independent

of the localization problem. For these tests, the size of

the target object was the same as for the training

images and the objects location in the test image was

specified. Figure 5 shows the results of these tests

where the percent of occlusion was varied from 0 to

80%, i.e., 800 test cases. As would be expected, the

amount of work that the algorithm must perform, i.e.,

the depth to which the quadtree must be evaluated, is

monotonically related to the difficulty of the problem,

i.e., the percent occlusion. Both the average depth and

average computation time markedly increase for ob-

jects that are occluded by more than 50%. The diffi-

culty of determining the pose of objects that are more

than 50% occluded is even more strikingly evident in

part (c) of the figure which plots the number of cases

in which the algorithm cannot determine the objects

orientation. However, it is important to note that even

for the 100 cases with occlusions between 70–80%, in

72 of them the pose of the object was able to be

determined. Even more importantly, the average

accuracy to which the algorithm determines an ob-

ject’s orientation is essentially independent of the

amount of occlusion. In other words, if the algorithm

can make a decision regarding an object’s pose, it is

usually quite accurate.

3.2 Pose estimation with occlusion

The next set of experiments was designed to evaluate

the performance of the quadtree decomposition ap-

proach when applied to candidate object locations

identified by using measure M on the test images. To

account for the fact that size normalization cannot be

performed, an additional 180 training images were

used for each object, where the size of the object was

enlarged and reduced by 5%, resulting in an image

data matrix of 270 images. Two sets of test images were

generated in the manner described above. In one set,

referred to as the perturbed set, the object size, the

brightness of the background and the brightness of the

object itself were all randomly perturbed by a value

between 0 and 5%. In the other set all of these factors

were held constant (referred to as the unperturbed

set). Because the quadtree-based pose estimation ap-

proach started to degrade when the occlusion was

greater than 50%, 500 test cases were used for both the

perturbed and unperturbed sets with the percent

occlusion equally distributed between 0 and 50%. The

measure M was used to select the top 100 candidate

locations with the constraint that two candidate loca-

tions cannot be adjacent.

The performance of the measure M for localization

is shown in Fig. 6, where the percent of cases that have

the rank of the correct location smaller than the value

Table 1 Algorithm performance on 500 UNPERTURBED test
images (all numbers are percentages)

Object Unidentified Location
errors

Orientation
errors

Total
errors

Total
correct

1 0.2 0.6 0.6 1.2 98.6

2 0.2 0.0 0.0 0.0 99.8

3 0.8 1.8 1.4 3.2 96.0

4 1.6 2.0 0.8 2.8 95.6

5 1.6 0.0 0.4 0.4 98.0

6 7.2 0.0 0.0 0.0 92.8

7 12.4 1.4 1.4 2.8 84.8

8 1.2 7.8 1.2 9.0 89.8

9 0.6 0.2 0.0 0.2 99.2

10 0.8 0.0 0.4 0.4 98.8

11 7.0 0.0 0.0 0.0 93.0

12 0.4 1.0 1.0 2.0 97.6

13 0.0 0.4 0.8 1.2 98.8

14 0.2 0.0 1.2 1.2 98.6

15 0.8 3.8 0.2 4.0 95.2

16 4.8 0.0 0.0 0.0 95.2

Best case 0.0 0.0 0.0 0.0 99.8

Average case 0.8 0.3 0.5 1.2 96.8

Worst case 12.4 7.8 1.4 9.0 84.8

Table 2 Algorithm performance on 500 PERTURBED test
images (all numbers are percentages)

Object Unidentified Location
errors

Orientation
errors

Total
errors

Total
correct

1 1.4 4.4 1.4 5.8 92.8

2 1.2 0.0 0.0 0.0 98.8

3 1.4 5.6 5.4 11.0 87.6

4 1.4 3.8 5.2 9.0 89.6

5 17.4 1.6 1.6 3.2 79.4

6 10.0 0.2 0.6 0.8 89.2

7 12.0 4.8 3.8 8.4 79.6

8 1.0 15.6 1.8 17.4 81.6

9 1.6 0.0 1.8 1.8 96.6

10 2.2 0.0 3.0 3.0 94.8

11 12.0 0.4 0.2 0.6 87.4

12 1.2 1.2 1.2 2.4 96.4

13 0.2 1.0 0.8 1.8 98.0

14 1.2 1.2 1.8 3.0 95.8

15 0.2 7.2 1.2 8.4 91.4

16 6.6 0.4 0.2 0.6 92.8

Best case 0.2 0.0 0.0 0.0 98.8

Average case 1.4 1.2 1.5 3.0 92.1

Worst case 17.4 15.6 5.4 17.4 79.4
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Fig. 7 Average computation
time as a function of percent
of occlusion. (All programs
are written in MATLAB and
executed on an HP9000/C110
workstation.) This result is for
the experiment in Sect. 3
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of the x-axis is displayed. The rank displayed here is

before the adjacent pixels were removed, so that the

locations with the top 200 values of M are candidate

locations that will be evaluated by the quadtree

approach. Thus for all objects in the unperturbed set,

90% of the cases will have the correct location of the

object evaluated. This percentage is reduced signifi-

cantly if perturbation in the test images is allowed. In

particular, in the worst case, i.e., object five, the correct

location was a candidate in only 70% of the perturbed

cases. This is due to object five being rotationally

symmetric and therefore having its eigenimages con-

tain sharp edges that are very sensitive to size varia-

tions. This situation can be addressed by including

more size variation into the training set. (Note that the

correct location for object five had a rank of less than

10 for all cases in the unperturbed set.)

The performance of the complete algorithm that

includes the quadtree detection applied to the candi-

date locations identified using the measure M is sum-

marized in Tables 1 and 2 for unperturbed and

perturbed test sets, respectively. Unidentified cases

refer to those test cases where the pose estimation

procedure did not identify the object at any of the

candidate locations. This is either due to the correct

location not being one of the candidate locations

(which was typically the case for objects 5, 7, and 11) or

due to a significant difference in the appearance of the

test image (either due to a pose that is not represented

Table 3 Comparison of the
proposed algorithm versus the
eigen window approach on
500 unperturbed test images

Object Percent
occlusion

Proposed algorithm Eigen window

Unidentified Location
errors

Total
errors

Location
errors

Total
errors

2 10 0 0 5 11 26
20 0 0 6 10 25
30 0 0 2 17 28
40 0 0 4 16 29
50 0 0 8 20 30

Total 0 0 25 74 138

7 10 0 5 18 15 21
20 0 18 27 34 43
30 3 18 29 40 47
40 0 24 29 48 56
50 10 29 35 47 48

Total 13 94 138 184 215

12 10 0 0 7 33 36
20 0 0 2 32 37
30 0 2 6 32 39
40 0 1 6 30 42
50 1 8 17 41 48

Total 1 11 38 168 202

4 10 0 4 16 31 51
20 0 6 15 42 56
30 0 4 16 45 53
40 0 9 27 51 68
50 3 19 35 61 69

Total 3 42 109 230 297

Fig. 8 One frame of a video sequence used to evaluate the
proposed algorithm. These images were not occluded, but
contained background clutter. The quadtree eigenspace algo-
rithm was used to identify the left-most ship in this image and to
determine its pose
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in the training images, occlusion, or perturbation) that

prevents detection even at the correct location (which

was typically the case for objects 6 and 16). Location

errors refer to those cases where the algorithm iden-

tified the presence of the object but in an incorrect

location. This typically occurred for objects that either

contain large areas of uniform intensity (objects 3, 7, 8

and 15) or have different portions of the object that

appear similar (objects 1 and 4). For those cases where

the object was identified in its correct location, the

error in computing the object’s pose was calculated.

Note that because the training images are taken every

4�, an error of up to 4� still implies that the algorithm

identified the correct interval in the manifold of object

poses. (Thus a more accurate orientation could be

determined by doing a local optimization.) Therefore,

only orientation errors of greater than 8� are consid-

ered pose estimation errors. The total number of errors

is the sum of the cases where either the location or the

pose was incorrectly determined.

In general, the percentage of cases where the algo-

rithm correctly identified both the location and the

pose of the target object was quite high. In particular,

most objects were correctly identified (95% in the

unperturbed case and 90% in the perturbed case), or if

they were not, then the algorithm effectively declared

that the problem was too difficult, i.e., it could not

register the test image (e.g., for objects 5, 6, 7, 11, and

16). The only objects that created a difficulty for the

algorithm in terms of true errors were object 8 and, to a

Level 1

5 10 15 20 25 30
0

0.5

1

1.5

2

Reject

Accept

Orientation

N
or

m
al

iz
ed

 D
is

ta
nc

e

Level 2

5 10 15 20 25 30
0

1

1.5

0.5

2

5 10 15 20 25 30
0

0.5

1

1.5

5 10 15 20 25 30

5 10 15 20 25 30

0

0.5

1

1.5

0

2

4

6

Level 3

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

1

10 20 30
0

1

10 20 30
0

1

10 20 30
0

1

10 20 30
0

0.5

1

10 20 30
0

1

10 20 30
0

0.5

1

10 20 30
0

2

a b

c d

e f

Fig. 9 This figure shows an
example of the quadtree
eigenspace object/pose
estimation process for the
rank 1 candidate location
from the frame given in
Fig. 8. The sub-figures on the
left show the test window and
the result of the process for all
sub-images in each level.
A box with a cross through it
indicates a rejected sub-
image. The sub-figures on the
right show the normalized
distance as a function of
orientation, for each sub-
image in each level. The
acceptance and rejection
thresholds are set at 0.4 and
1.2, respectively. A sub-plot
with a gray background
indicates that the normalized
distance to some of the
training images went below
the acceptance threshold for
the corresponding sub-image,
while a sub-plot with a black
background indicates that the
normalized distance to all the
training images was above
the rejection threshold for the
corresponding sub-image

Pattern Anal Applic (2007) 10:15–31 27

123



lesser extent, objects 3 and 4 for the perturbed case.

(The localization of object 8 is inherently difficult due

to the large areas of uniform appearance that are

present at many different poses.) The amount of work

that the algorithm performs, i.e., the computation time,

is directly related to the difficulty of the detection

problem (see Fig. 7). In general, objects that are more

difficult to localize (objects 5, 7, and 11 in the per-

turbed set) require the most computation time.

To provide a relative measure of performance, the

proposed algorithm was compared to the eigen win-

dow approach [33]. This approach was selected be-

cause it was similar in that it made decisions based on

sub-windows within the image. However, because it is

a computationally expensive approach, the number of

orientations used in the training set was reduced. In

particular, 36 equally spaced images of an object were

used for obtaining the training manifold. Objects 2, 7,

12, and 4 from Fig. 4, which gave the maximum,

minimum, median, and mean accuracy rates, respec-

tively, were used as representative examples. Table 3

shows the results for the test cases corresponding to

10% to 50% occlusion. Because the eigen window

approach always assumes to have found the object in

the scene, there is no ‘‘unidentified’’ column for that

approach in the table. The proposed algorithm out-

performed the eigen window approach in all cases,

primarily due to the fact that the eigen window ap-

proach had more difficulty in locating the object

correctly.

3.3 Pose estimation with background clutter

3.3.1 Without occlusion

The quadtree eigenspace object/pose estimation pro-

cess was applied to a video sequence with background

clutter, but without occlusion. Figure 8 shows one

frame from the sequence.7 The objective was to iden-

tify the smaller ship on the left and to determine its

pose. The training process was performed on images

that only included the desired ship superimposed on a

black background. These training images had a vari-

ability in the viewing angle of approximately 45� for

the camera as it panned past the ships. The algorithm

was then tested on the entire video sequence. A search

window, which contained the ANDed area [29] of the

object regions of all training images, was used to mask

out the background clutter in the testing sub-images. In

88.57% of the cases, our localization procedure iden-

tified the desired ship with rank 1 and in the remaining

cases, it identified a ship of the same size and form.

Figure 9 shows the results of the quadtree approach

applied to the rank 1 candidate location from the frame

given in Fig. 8. Even in the presence of background

clutter, our procedure detected the correct orientation

at level 3.

3.3.2 With occlusion

The quadtree eigenspace pose estimation process was

also applied to partially occluded objects against clut-

tered backgrounds [53]. For this evaluation, occluded

objects from Fig. 4 were placed in an environment with

background clutter. During the online process, a search

window [29] was again used to mask out the back-

ground clutter in the test sub-image for the candidate

location under consideration. An acceptance threshold

of 0.35 was used on a list of 1,000 candidate locations

for both perturbed and unperturbed cases.

Clearly, the addition of background clutter makes

the object detection/pose estimation problem much

more difficult and so the accuracy rates go down.

However, the different stages in the algorithm are not

affected uniformly. In particular, the addition of

background clutter did not appreciably degrade the

object detection accuracy. The effect on object

localization was variable. While the median increase

in the number of location errors was only 14%, two

object were incorrectly located half of the time. The

objects that were difficult to localize had either (1) a

small object area but a large AND area or (2) large

internal areas of uniform intensity. The first case is

difficult because large areas of the background will be

included in the localization process. The second case

is problematic because background clutter tends to

contaminate edge information and there is little

information in the interior. If an object is localized

properly, the background clutter has little effect on

pose estimation, increasing the average orientation

error by only 1.8%.

4 Conclusion

This paper has presented an algorithm based on

applying eigenspace methods to a quadtree represen-

tation of a set of related images to solve the pose

estimation problem in the presence of occlusion and/or

background clutter. Because the algorithm relies

purely on the appearance of the objects in the training

set of images, it is very general and easy to apply. The

7 A video sequence of ship images with resolution of
720 · 1,280 pixels each was provided by the National Imagery
and Mapping Agency.
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difficulties that are created due to the presence of

occlusion and/or background clutter, i.e., the inability

to easily locate the desired object and apply the

appropriate normalizations, are efficiently overcome

by the recursive quadtree procedure. While on-line

detection times can be an order of magnitude larger

than for unoccluded images, the amount of work is

proportional to the difficulty of the problem, i.e., the

extent of the occlusion. In addition, the algorithm

rarely makes an error in detecting the location and

pose of the desired object, preferring to declare the

detection problem too difficult when too much infor-

mation is occluded.

4.1 Originality and contribution

Purely appearance-based techniques such as SVD

have been extensively used in many computer vision

applications, i.e., face characterization, object recog-

nition, pose estimation, visual tracking, and inspec-

tion. The fundamental problem of object recognition

and pose estimation of three-dimensional objects is

considered here. Unfortunately, one of the drawbacks

associated with the appearance-based techniques for

solving this problem is that they are very sensitive to

occlusion and background clutter. Various different

approaches have been proposed until now to solve

this problem. However, some of these approaches,

e.g., feature-based algorithms, lose the advantages

associated with purely appearance-based techniques.

The work in this paper presents an algorithm that

is based on applying the SVD to a quadtree repre-

sentation of the image dataset used to describe the

appearance of an object. This allows decisions con-

cerning the pose of an object to be based on only

those portions of the image in which the algorithm

has determined that the object is not occluded. The

novelty of this algorithm lies in the combination

of the SVD with the quadtree decomposition. This

combination allows one to solve the pose estimation

problem in the presence of occlusion and background

clutter, while retaining the framework of an eigende-

composition approach and all its attendant advantages.

The empirical results show that this computa-

tionally efficient algorithm simultaneously recognizes

the object and its pose in the test scene with very good

accuracy.8
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