
Thesis

Hardware Implementation and Design Space Exploration for Wave 2D and

Jacobi 2D Stencil Computations

Submitted by

Rajbharath Chandramohan

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2017

Master’s Committee:

Advisor: Sanjay Rajopadhye

Sudeep Pasricha
Oliver Pinaud

Copyright by Rajbharath Chandramohan 2017

All Rights Reserved

Abstract

Hardware Implementation and Design Space Exploration for Wave 2D and

Jacobi 2D Stencil Computations

Hardware accelerators are highly optimized functional blocks designed to perform specific

tasks at higher performance. We developed a hardware accelerator for Jacobi 2D and Wave

2D algorithms, two computations with a stencil pattern. They are used in many scientific

applications in the field of acoustics, electro magnetics and Fluid dynamics. These prob-

lems have large problem sizes, memory limitations and bandwidth constraints that result in

long run times. Hence, an approach which increases the performance of these problems that

reduces bandwidth requirement is necessary. We developed analytical models for the perfor-

mance, bandwidth and area models for the Wave 2D algorithm and Jacobi 2D algorithm and

solved them for the optimal solution using posynomials and positivity property in MATLAB

and using Excel Solver. In order to achieve an optimal design, we split the computation into

two levels of tiling. The first level called passes is a rectangular prism that runs through

the 3-D iteration space. Each pass is mapped to a grid of processing elements(PEs) in the

hardware accelerator. The second level of tiling splits the vertical prism into smaller prisms

executed by a single PE. These optimizations are implemented in the hardware accelerator

designed using Verilog and simulated using ModelSIM. Results from ModelSIM provides an

accurate model and an experimental verification of the design. We also achieved improved

performance and lower bandwidth.

ii

Table of Contents

Abstract . ii

List of Tables . v

List of Figures . vi

Chapter 1. Introduction . 1

1.1. Contributions . 2

1.2. Related Work . 2

1.3. Thesis Structure . 4

Chapter 2. Background . 5

2.1. Hardware Accelerators . 5

2.2. FPGA Architecture . 7

2.3. Stencil Computation . 10

2.4. Wave 2D Algorithm. 11

2.5. Jacobi 2D Algorithm. 12

2.6. Loop Transformations . 13

Chapter 3. Wave 2D accelerator design . 15

3.1. Analysis of Data Dependencies of Wave 2D Stencil . 15

3.2. Passes . 18

3.3. Horizontal passes . 20

3.4. Vertical passes . 23

3.5. Tiling . 26

3.6. Processor Allocation . 28

iii

3.7. Execution of one tile by a processing element. 29

Chapter 4. Jacobi 2D accelerator design . 32

4.1. Analysis of data dependencies . 32

4.2. Processor Allocation . 34

Chapter 5. Hardware Design . 35

5.1. Compute unit . 35

5.2. Control unit . 36

5.3. Memory unit . 37

5.4. Verilog Design . 38

5.5. Design Verification . 41

Chapter 6. Optimization Problem. 43

6.1. Wave 2D optimization problem. 43

6.2. Jacobi 2D optimization problem. 50

Chapter 7. Conclusion and Future work. 56

Bibliography . 57

iv

List of Tables

3.1 Notations . 15

5.1 Timing Verification . 42

6.1 Excel Solver Results for wave 2D. 49

6.2 MATLAB Results for wave 2D . 49

6.3 Excel Solver Results for jacobi 2D . 54

6.4 MATLAB Results for jacobi 2D. 54

v

List of Figures

2.1 Cluster of N BLEs (Figure taken from [10]) . 8

2.2 Basic Logic Element (BLE) (Figure taken from [10]) . 9

2.3 Grid of points in x-y plane . 11

3.1 Wave 2D dependencies . 16

3.2 Wave 2D inter-tile dependencies . 17

3.3 Wave 2D dependencies after skewing ~d1′=(-3,-3). 17

3.4 Horizontal Pass projected on i-t plane. 19

3.5 Horizontal Pass Dependencies . 20

3.6 Vertical Passes visualized from i-t plane . 22

3.7 Vertical pass . 23

3.8 Vertical Passes Dependencies . 24

3.9 Tiling along i and j plane . 28

3.10 Processor Allocation . 30

4.1 Jacobi 2D dependencies . 32

4.2 Jacobi 2D dependencies after skewing ~d1′=(-1,-1). 33

5.1 Arithmetic pipelined unit . 36

5.2 PE communication state1 . 38

5.3 PE communication state2 . 39

vi

CHAPTER 1

Introduction

Stencil computations constitute a large fraction of scientific computations in diverse

areas such as electromagnetics, image processing and fluid dynamics. Stencil codes involve

computations that are largely independent of each other and have a very regular pattern of

execution. This makes them highly amenable for parallelization. A lot of research has been

done in building accelerators to solve stencil computations. We consider two different stencils

namely, Jacobi 2D stencil and Wave 2D stencil. Jacobi is a popular algorithm for solving

Laplace’s differential equation on a square domain discretized. In Jacobi method, a body is

represented by a 2D array of particles, each with an initial value of temperature and several

iterations are computed over the data to compute average temperatures repeatedly until the

desired accuracy is reached. Wave 2D algorithm solves wave 2D propagation equation. This

equation is used to describe waves in space.

FPGAs have been increasingly used for building efficient hardware accelerators because

of their reconfigurability, low cost, shorter development cycle, reasonable speed grades and

low running power. To increase the performance of our iterative stencil computation, we

exploit parallelism by making use of the independent nature of stencil computations. We de-

sign an FPGA-based hardware accelerator that efficiently implements the Jacobi 2D method

and wave 2D method. We designed multiple, processing elements (PEs) on an FPGA that

contain pipelined arithmetic units that produce one new value every cycle. Our hardware

accelerator is intended to achieve high performance with low bandwidth and area require-

ments. To achieve this, we develop a three-step approach to implement Jacobi 2D and Wave

2D algorithm on FPGA. First, we analyze the data dependencies of Jacobi 2D and Wave 2D

1

and propose two levels of tiling. Second, we perform a thorough design space exploration

to understand the impact of various design parameters on the execution time and area and

to determine the optimal design for the given problem size with given area and bandwidth

constraint. Finally, we map the computation to the processing elements in the hardware

accelerator and implement it on FPGA.

1.1. Contributions

The main contributions of this thesis are as follows:

(1) A well-defined approach for deriving FPGA-based hardware acceleration of Wave

2D and Jacobi 2D.

(2) Careful analysis of data dependencies, use of two levels of tiling to fully exploit

available parallelism, reduce off-chip memory accesses and reduce area, reintegration

of these optimizations in the hardware design of the accelerator.

(3) Verilog implementation of a 2D grid of Processors that computes a Jacobi 2D com-

putation, an arithmetic unit that delivers the result of one computation every clock

cycle in steady state.

(4) Systemic design space exploration by developing analytical models of area and per-

formance and by formulating an optimization problem with the objective of mini-

mizing the total execution time for given resource constraints and solving it using

MATLAB and Excel Solver.

1.2. Related Work

FPGA technology was used for implementing FDTD method by Schneider et al. [1]. In

this paper, the authors describe the custom FPGA-based hardware design of 1-D FDTD

and implements it on FPGA. They implemented a 10-computation cell pipelined bit-serial

2

arithmetic design that runs at 37.5 MHz. Durbano et al. [2, 3] proposed a design for three-

dimensional FDTD using floating point arithmetic. They describe in detail their hardware

accelerator architecture consisting of computation engine, data storage and handling of spe-

cial boundary nodes. However, due to the use of floating-point arithmetic, slow memory

interface and lack of pipelining, the design runs only at 14 MHz and is 9 times slower than

the software design running on 2 GHz PC. Chen et al. [4] implement a fixed-point, deeply

pipelined custom hardware for two-dimensional FDTD. The design was described in VHDL

and implemented on Xilinx Virtex II Pro FPGA chip. The throughput of their design is

13.8 Mcells/s (i.e, millions of grid points updated per second). Pless et al. [5] implemented a

fixed-point, deeply pipelined custom hardware for two-dimensional FDTD on FPGA-based

Maxeler dataflow computer. They achieved a throughput of 1486 Mcells/s. None of these

works included tiling optimizations integrated in their custom hardware design.

Kameyama et al. [6] designed an FPGA-based hardware accelerator for two dimensional

FDTD based on overlapped tiling in openCL. However, they do not describe the methodol-

ogy and synthesized hardware in detail. Also, overlapped tiling involves a lot a redundant

computations. This paper does not suggest optimal tile sizes or method for selection of

optimal design parameters. Wester et al. [7] describe the methodology for transforming

higher-order stencils into FPGA-based design in their recent paper on deriving FPGA-based

hardware for stencil computations. Their approach applies space/time transformations to

the higher-order stencils and they also mention the need to study the trade-offs between

execution time and FPGA resources to find out better design parameters. However, they do

not provide any mathematical formulation for this.

3

We present, in detail, a methodology for deriving an FPGA-based hardware accelerator

for Wave 2D and Jacobi 2D that uses tiling transformations. We also formulate an opti-

mization problem to systematically explore the design space to study the execution time and

area trade-offs and to find the optimal design amongst all possible designs.

1.3. Thesis Structure

The rest of the thesis is organized as follows:

In chapter 2, we describe the need for hardware accelerators. We describe the structure

of FPGAs and we discuss some program transformations. We then introduce the Wave 2D

method and Jacobi 2D method.

In chapter 3, we analyze the data dependencies of Wave 2D and develop two levels of

tiling leading to an optimal design. We perform design space exploration of wave 2D stencil

and come up with an optimal solution. We develop analytical models characterizing the

performance, Bandwidth and Area. We use MATLAB and excel solver to find the optimal

solution.

In chapter 4, we analyze the data dependencies of Jacobi 2D stencil. We perform design

space exploration of Jacobi 2D stencil. We discuss the hardware implementation of Jacobi 2D

in Verilog. The Verilog design, the synthesized hardware and its characteristics are explained

in detail.

Chapter 5 draws conclusions and gives suggestions for future work.

4

CHAPTER 2

Background

In this chapter, we present some of the background information that will help to follow the

rest of the thesis. We discuss the advantages of hardware accelerators, FPGA architecture,

wave 2D algorithm, Jacobi 2D algorithm and some program transformations.

2.1. Hardware Accelerators

The need of hardware accelerators can be associated with the drawbacks of the multicore

approaches. Ideally, processor performance should increase linearly with each additional core.

But, there are many limitations of multicore processors that dampen their performance.

(1) Parallelism: Programs need to be first parallelized to maximize utilization of the

computing resources provided by multicore processors.

(2) Energy and Heat Dissipation: Despite stopping the rise of clock frequencies, mul-

ticore architectures are beginning to hit energy limits. Some power is used up to

keep track of shared resources like caches and system bus. Moreover, the higher the

number of cores, the higher is the heat radiated from a processor. Large heat sinks

are required to cool the processors.

(3) Slower clocks: The voltage scaling era allowed clock scaling and running chips at

faster clock speeds. The clock speed of each of the cores on a multicore processor

can be slower than those of single core processors they are replacing.

(4) Dark Silicon: For decades, Dennard Scaling model has allowed the chip designers

to keep power density (power consumption per unit area of silicon) constant while

moving from one technology node to another. However, the dependence of leakage

power consumption on the threshold voltage has constrained further threshold and

5

supply voltage scaling. This has led to a sharp increase in the power densities

that restricts powering-on all the transistors simultaneously, while keeping the chip

temperature in safe operating range. Some of the cores cannot be powered-on at

nominal voltage for a given thermal design power (TDP) constraint. Esmaeilzadeh

et al. [8] refer to this as ”Dark Silicon”.

An approach that can help in overcoming the limitations of multicores, for certain class

of tasks, is hardware acceleration. Hardware accelerators are circuits customized for spe-

cific tasks or classes of tasks. Accelerator architectures come in many forms, like Graphic

Processing Units (GPUs), Digital Signal Processors (DSPs), ASIC-based accelerators and

FPGA-based accelerators. In this thesis, we will be focusing on FPGA based accelerators.

FPGAs offer many advantages like reconfigurability, low cost, faster turn-around, reasonable

speed grades and low running power.

An FPGA is an array of logic gates that can be hardware programmed to implement

specific tasks. Special purpose functional units can be devised and used in parallel on an

FPGA. FPGAs are good candidates for acceleration of certain applications. The memory

hierarchy, pipeline stages, interconnects between processing blocks can be customized for

specific application. The accelerator may only be used to perform Stencil computation and

turned off at other times. This is especially useful in the future generations, due to the prob-

lem of Dark Silicon. Hardware accelerators are often limited by available resources. More

resources mean more parallelism but also higher cost and more power consumption. Thus,

there is a trade-off between hardware resources and performance. The prime considerations

while designing the FPGA-based hardware accelerators are listed below.

(1) Designing the arithmetic unit in a pipelined fashion that can compute one value

every clock cycle in steady state

6

(2) Designing efficient memory controller to control reads/writes from/to memory loca-

tions

(3) Determining on-chip memory requirement and register file organization

(4) Increasing memory reuse

(5) Avoiding idling of resources

(6) Comprehensive design space exploration to make different architectural and design

parameter choices effectively

(7) Design parameter choices also include tile size selection and selecting the number of

processing elements (PEs)

2.2. FPGA Architecture

Field Programmable Gate Array (FPGA) is an Integrated circuit designed to be config-

urable after manufacturing by the designer or by the customer. An FPGA contains an array

of programmable logic blocks and a hierarchy of reconfigurable interconnects that allows the

blocks to be wired together. The programmable logic and routing interconnect of FPGAs

makes them flexible and general purpose. An FPGA needs 20 to 35 times more area, has

speed performance 3 to 4 times slower and consumes approximately 10 times more dynamic

power as compared to standard cell Application Specific Integrated Circuit (ASIC) [9]. Also

for large volume the cost is significantly higher since ASIC design and fab cost can be amor-

tized over the larger market. However, FPGAs offer many advantages like reconfigurability,

faster turn-around, reasonable speed grades and low running power. FPGAs can be pro-

grammed using Hardware Description Languages (HDL) like Verilog and VHDL. By using

the CAD tools, the design descriptions in HDL can be compiled, synthesized and placed and

routed on the target FPGA platform.

7

2.2.1. Configurable Logic Blocks. A configurable logic block is a fundamental

building block of Field Programmable Gate Array. These blocks can be configured by the

programmer. It is reconfigurable hardware where a hardware block can be used to implement

more than one function. They can implement combinational and sequential logic. The block

contains RAM for creating arbitrary combinatorial logic functions, also known as lookup

tables (LUTs). It also contains flip-flops for clocked storage elements, along with multiplexers

to route the logic within the block and to and from external resources. The multiplexers

also allow polarity selection and reset and clear input selection. Any digital logic can be

implemented by configuring one or more LUTs. FPGAs also contain some special purpose

blocks like memory, multipliers, adders, DSP blocks etc. These are called as hard blocks and

are integrated on chip to implement specific frequently used functions very efficiently.

Figure 2.1. Cluster of N BLEs (Figure taken from [10])

2.2.2. Programming Technologies. Every FPGA relies on an underlying program-

ming technology. There are different kinds of programming technologies and they can have

a significant impact on programmable logic architecture. The approaches that have been

used in the past are EPROM, EEPROM, flash, static memory and anti-fuses. Most of the

8

Figure 2.2. Basic Logic Element (BLE) (Figure taken from [10])

modern FPGAs use Flash, static memory and Anti-fuse. SRAM are reprogrammable and

volatile but they have a high area cost. Flash memories are not volatile but they are repro-

grammable. Antifuse are not reprogrammable and not volatile but they have low area. Most

devices from Xilinx and Altera have static memory cells distributed throughout the FPGA

to provide reconfigurability. SRAM remains the most dominant programmable technologies

for most FPGA because of its re-programmability and use of standard CMOS technology.

Since they use standard CMOS technology, they can make use of higher speeds and lower

dynamic power with new process technologies. The volatility of SRAM cell necessitates the

use of external devices to store configuration data when the device is powered off. External

flash or EEPROM devices add to the cost of an SRAM-based FPGA. Flash memories are

non-volatile. This eliminates the need for external resources required to store and load con-

figuration data when SRAM based programming technology is used. Flash based approach

is more area efficient. One disadvantage of Flash based devices is that it cannot be repro-

grammed infinite number of times. Charge buildup eventually prevents a flash based device

from being properly erased and programmed. A trend that has recently emerged is to use

Flash storage in combination with SRAM technology with Flash memory used to provide

9

non-volatile storage while SRAM cells are still used to control the programmable elements

in the design. Anti-fuse technology is an alternative to SRAM and flash based technologies.

Unlike SRAM or floating gate programming technologies, this is not reprogrammable. The

primary advantage of using Anti-fuse technology is its low area. It is non-volatile. This

technology uses a non-standard CMOS process and are typically well behind in the man-

ufacturing process. The inability to reprogram makes it unsuitable for applications where

configuration changes are required. We use cyclone V GX family FPGA where SRAM is

coupled with flash memory.

2.3. Stencil Computation

Stencil codes are a class of iterative kernels which update array elements according to

some fixed pattern, called stencil. They are most commonly found in the codes of computer

simulations, e.g. for computational fluid dynamics in the context of scientific and engineer-

ing applications. Other notable examples include solving partial differential equations, the

Jacobi kernel, the GaussSeidel method, image processing and cellular automata. The reg-

ular structure of the arrays sets stencil codes apart from other modeling methods such as

the Finite element method. Most finite difference codes which operate on regular grids can

be formulated as stencil codes. Stencil codes perform a sequence of sweeps through a given

array. Generally, this is a 2 or 3-dimensional regular grid. In each time step, the stencil

code updates all array elements. Using neighboring array elements in a fixed pattern, each

cell’s new value is computed. In most cases boundary values are left unchanged, but in some

cases, they need to be adjusted during the computation as well. Since the stencil is the same

for each element, the pattern of data accesses is repeated. A stencil can also be defined as

a geometric arrangement of a nodal group that relate to the point of interest by using a

10

numerical approximation routine. Stencils are the basis for many algorithms to numerically

solve partial differential equations (PDE).

2.4. Wave 2D Algorithm

2D wave propagation is governed by the following equation.

∂2u

∂x2
+

∂2u

∂y2
= v−2∂

2u

∂t2

where, u(x,y,t) is the wave field and v(x,y) is the velocity of the medium. In order to

Figure 2.3. Grid of points in x-y plane

solve a continuous time equation using a computer, we have to discretize it. A discrete

model can approximate a continuous one to any desired degree of accuracy. Developing such

approximations is important in the field of applied mathematics and it provides a practical

approach to these problems. It is possible to create a discrete wave model starting with the

continuous wave equation. Wave equation describes how the behavior of a wave changes

11

based on conditions in its immediate neighborhood. One of the ways of discretization is

to define a grid or array of points as shown in Figure 2.3. Instead of defining the function

everywhere, we consider only selected points. The more closely these points are spaced the

more accurate an approximation to the continuous case and the more time consuming the

computation. In our case, we consider two dimensions in space and one in time. Only

the space dimensions are shown in the grid. Indices are used to locate points in the grid.

f(i,j,t) is the location i,j in space at time t. It has neighboring points in space and time.

Continuous differential equations are defined by taking the limit of finitely spaced locations

as the distance between points goes to zero. The first order difference is computed by

subtracting neighboring values along the relevant dimension (i,j or t). The wave equation

uses the second order difference or rate of acceleration. To get the second order difference, we

compute a difference of differences. In generating the difference equation from the differential

equation, we must consider the time and distance scale of the points on the grid. The second

order difference is computed by subtracting one first order difference from the other. Based

on the level of accuracy, after discretization we end up with a n-point stencil.

2.5. Jacobi 2D Algorithm

Jacobi is a popular algorithm for solving Laplace’s differential equation on a square

domain discretized. This arises in heat flow, electrostatics, gravity, and other situations. In

2-dimensions the heat equation is,

ut = c2(uxx + uyy) (2.5.1)

Jacobi method is an iterative approach to solving Laplace equation. Let us consider a body

represented by a 2D array of particles, each with an initial value of temperature. This

12

body is in contact with a fixed value of temperature on the four boundaries, and Laplace

equation is solved for all internal points to determine their temperature as a function of the

four neighboring particles. These temperature values are expressed as a 2D array. Several

iterations are performed over the array to recompute new temperatures repeatedly. At each

step, a new value of temperature is obtained. Note that all new values can be computed

independently of one another. This is used to parallelize the algorithm. The computed

values gradually converge to a finer solution until the desired accuracy is reached.

2.6. Loop Transformations

Loop transformations can be used for memory optimization. They can improve memory

performance or enable other optimizations that have been impossible before due to bad data

dependencies.

Loop blocking or tiling is a common loop transformation which consists of breaking the

entire loop into chunks. This is mainly done on the iteration space and can be seen as a

task partitioning. Loop Tiling or Loop blocking is a loop Optimization technique used by

programmers or compilers to make the execution of certain types of loops more efficient. It

is done to make sure that data that is currently accessed stays in the cache until its reused.

It is used to avoid cache misses. In our case, Tiling is used so that we can parallelize the code

enabling different processing elements to compute tiles in parallel. Loop tiling reorganizes a

loop to iterate over blocks of data sized to fit in the cache. Loop blocking can be considered

to improve cache performance, derive a coarse-grained parallelism from a fine-grained model

or to handle memory constraints.

Loop splitting breaks a loop into multiple loops which have the same bodies but iterate

over different contiguous portions of the index range. Loop Fusion merges adjacent loops

13

with identical control into one loop. This transformation is valid if the fusion does not

introduce any lexically backward data dependence. Its purpose is to reduce loop overheads,

improve immediate data reuse and reduce data transfers. If the granularity of a loop, or

the work performed by a loop, is small, the performance gain from distribution may be

insignificant. This is because the overhead of parallel loop start-up is too high compared to

the loop workload.

The loop skewing transformation changes the shape of the iteration space without chang-

ing the dependencies. It looks like a geometrical transformation, which can help to expose

a canonical parallelism. Skewing is a program transformation that is done if the program

that is currently being computed cannot be computed in parallel due to the nature of the

dependence. Skewing the program results in changing the dependencies of the program that

would then allow us to implement it in parallel thereby improving the performance.

Scheduling is the method by which tasks are assigned to processors in a computer system.

Each task is given a time at which it is executed based on the priority. In our case, Scheduling

helps us assign times at which each point in the iteration space is computed. A schedule

should be chosen based on the performance it delivers. It is beneficial to divide the work

evenly among the different processing elements in the hardware accelerator when the work

performed by different iterations of a loop is the same. Provided there are no interruptions

and each processing element progresses at the same rate, all the processing elements will

complete at the same time.

14

CHAPTER 3

Wave 2D accelerator design

In this chapter, we first analyze the data dependencies of Wave-2D computation. Analyz-

ing the data dependencies of a computation plays a crucial role in deciding the architectural

features and control flow. We look at different design choices and analyze how they impact

the design.

Table 3.1. Notations

parameter description

M Total number of points in i-th dimension
N Total number of points in the j-dimension
T Total number of points in the t-dimension
pi Number of processing elements (PE) along i-direction
pj Number of processing elements (PE) along j-direction
x Tile size along i-direction
y Tile size along j-direction
z Tile size along k-direction
d Depth of the arithmetic pipeline
L Pass length along i-direction
W Pass width along j-direction
H Pass height along k-direction

3.1. Analysis of Data Dependencies of Wave 2D Stencil

The table above shows some notations we use in this chapter. The wave 2D equation is,

B(t, i, j) = cB[t− 1, i− 3, j] + B[t− 1, i− 2, j] + B[t− 1, i− 1, j] + B[t− 1, i+ 3, j]

+B[t− 1, i+ 2, j] +B[t− 1, i+ 1, j] +B[t− 1, i, j − 3] +B[t− 1, i, j − 2] +B[t− 1, i, j − 1]

+B[t− 1, i, j] + B[t− 1, i, j + 1] + B[t− 1, i, j + 2] + B[t− 1, i, j + 3] (3.1.1)

As we can see from wave-2D equation, we have an array that updates based on its

neighbors. We have 13 dependencies. We use these data dependencies to draw the data

15

Figure 3.1. Wave 2D dependencies

dependence graph. The Data Dependence Graph (DDG) is shown in Figure 3.1, which

represents the dependence of points in the iteration space. In Figure 3.1 the circles represents

a point in the iteration space. The red circle depends on all the green circles. The red circle

is located at time plane t+1 and the green circles are located at time plane t. The red circle

depends on all the green circles including the one under it. There is a green circle underneath

the red circle. The nature of this dependence is uniform as depicted in the figure Figure 3.1

and as we can see from the equation.

We have a three dimensional iteration space with two space dimensions i,j and one time

dimension t. We update each point in the iteration space using the equation. The basic way

of implementing this stencil would be to traverse the iteration space sequentially and execute

the grid points one after the other. However, such an implementation is not very efficient

due to lack of data locality and parallelism. It leads to large volume of data transfers from

the main memory and low computation-to-communication ratio. The Wave 2D algorithm

offers abundant parallelism. Based on the nature of dependencies of wave 2D computation,

we conclude that these dependencies are uniform and all points in the plane t+1 depends on

points in t-plane. Therefore, the points in the plane t+1 can be computed independent of

16

Figure 3.2. Wave 2D inter-tile dependencies

Figure 3.3. Wave 2D dependencies after skewing ~d1′=(-3,-3)

each other. We make use of this independent nature to exploit parallelism. We can execute

these points in the same plane in parallel enabling the use of multiple processing elements

(PEs) that can compute different points in the iteration space at the same time thereby

improving the performance.

The iteration space is of size M,N,T. Most problems have large values of M,N and T.

Therefore, it is not possible to fit all the array values in the hardware accelerator. So, we

use loop Blocking/Loop Tiling to split the iteration space into smaller chunks that can fit

17

on the hardware accelerator. Tiling transformations enable parallelization and data-locality

optimization. We propose two levels of tiling for implementing Wave 2D algorithm on the

hardware accelerator. The outermost level is called passes and the innermost level is called

tiles. The hyperplane which defines the pass boundaries should be such that all the data

dependences should always lie on one side or along the hyperplane. We do the inner level

of tiling to provide parallelism and to have less idle time. To tile safely, we must make sure

that there are no cyclic dependencies among tiles. Assuming that we use rectangular tiles,

we can clearly see from Figure 3.2 that the tile on the left depends on the tile on the right

and the tile on the right depends on the tile on the left. We have shown the dependence to

the right along i axis of the left tile and the dependence to the left along i axis of the right

tile for clarity. We have inter-tile dependencies. It is not safe to tile with our dependencies.

To overcome this, we use a loop transformation called skewing.

The loop skewing transformation changes the shape of the iteration space without chang-

ing the dependencies. It looks like a geometrical transformation, which can help to expose

a canonical parallelism. Skewing the program results in changing the dependencies of the

program. Skewing our iteration space by a factor of 3 would result in a different dependence

as shown in Figure 3.3. Because of skewing, we have dependencies to the left tile and the

tile below. Now, we can tile the iteration space without causing any cyclic dependencies.

There are different ways to break the iteration space using passes and tiles. We will look at

some of them in the next section.

3.2. Passes

As mentioned in the previous section, the iteration space is split into smaller chunks

called passes. These passes can be in the form of rectangular prisms. These rectangular

18

Figure 3.4. Horizontal Pass projected on i-t plane

prisms are executed on the hardware accelerator. There are different ways of splitting the

iteration space into rectangular prisms. These prisms can be along the i-direction, j-direction

or the t-direction. The problem size is M * N * T. The pass dimensions of a pass along i

direction is given by M * W * H, along j direction is given by N * L * H, along k direction

is given by T * L * W, where L, W and H are given by,

L = x ∗ px (3.2.1)

W = y ∗ py (3.2.2)

H = z ∗ pz (3.2.3)

Based on the direction of passes described above, We consider two different kinds of

passes.

1. Horizontal passes and

2. Vertical passes.

19

Figure 3.5. Horizontal Pass Dependencies

3.3. Horizontal passes

Horizontal passes are rectangular prisms along i direction or j direction. Consider a pass

in the i direction, the pass would have a length M, width W and height H as shown in

Figure 3.4. Based on the nature of our dependencies, we see that each pass needs data from

neighboring passes on its left boundary(i direction), from the pass below(t direction) and

from the pass in front(j direction) as we can see from Figure 3.5. There are some advantages

and disadvantages to using horizontal passes. Horizontal passes have an uneven boundary

because of skewing as we see in Figure 3.4. The uneven boundaries increase the complexity

of the memory controller. The pass is mapped to a grid of processing elements in the j-

t plane. Due to the nature of data dependencies, some processing elements (PEs) must

wait for its neighboring processing elements (PEs) to execute its first tile before starting its

computation. So, there is no concurrent start for processing elements (PEs). We develop a

cost function for horizontal passes along i direction. This cost function is based on the I/O

between passes. We compute that in two steps.

20

1. I/O between one pass and another

2. Total I/O from all the passes

In order to compute I/O, we require the amount of data needed by a pass. The amount

of data needed by a pass in i direction is,

Dt = M ∗W (3.3.1)

Di = 6 ∗W ∗H (3.3.2)

Dj = 6 ∗M ∗H (3.3.3)

Dpass = M ∗W + 6 ∗M ∗H + 6 ∗W ∗H (3.3.4)

The size of the problem is,

Psize = M ∗N ∗ T (3.3.5)

21

Figure 3.6. Vertical Passes visualized from i-t plane

The total number of horizontal passes is given by,

Passtot =
T

H
∗
N

W
(3.3.6)

Total I/O for all the passes is,

I/Opass =
T

H
∗
N

W
∗ (M ∗W + 6 ∗M ∗H + 6 ∗W ∗H) (3.3.7)

The amount of data needed by a pass is a function of M which is quite large. To start

computing a pass, we need M ∗W + 6 ∗M + 6 ∗W values which is quite large. With some

optimizations, the data needed to start the computation can be reduced. But, we still have

the problem of uneven boundaries and a complex memory controller. It would lead to a

suboptimal design. There is a different version of horizontal pass where the prism is along

the j direction. All the values computed earlier are the same except that, they will be

corresponding to j direction. So, we do not dicuss horizontal pass along j direction.

22

Figure 3.7. Vertical pass

3.4. Vertical passes

Vertical passes are rectangular prisms along t direction. Consider a pass in the t direction,

the pass would have a length W, width H and height T as shown in Figure 3.6. A vertical

pass in the iteration space is shown in Figure 3.7. Based on the nature of our dependencies,

we see that each pass needs data from neighboring passes on its left boundary(i-direction),

from below(t-direction) and from front(j-direction) as we can see from Figure 3.8. There are

some advantages and disadvantages to using vertical passes. There are some uneven passes

at the boundary because of skewing. There is a near concurrent start for processing elements

(PEs) as we will explain in the next sections. The pass is mapped to a grid of processing

elements in the i-j plane.

Vertical passes have an easier control because they are rectangular prisms with the same

boundary conditions. The uneven passes at the boundary is out of scope of our thesis and

can be resolved using other methods. Our objective is to implement a single pass on the

hardware accelerator in the most efficient way. In most cases, T is larger than W or H

because W and H are cut off from a larger M and N. The hardware accelerator computes a

23

Figure 3.8. Vertical Passes Dependencies

tile pass as a vertical prism with length W, width H and height T in one pass. Within a

pass, each processing element (PE) executes rectangular tiles sequentially. A pass is mapped

to the hardware accelerator and it is executed by all the PEs.

We develop a cost function for horizontal passes along t direction. This cost function is

based on the I/O between passes. We compute that in two steps.

1. I/O between one pass and another

2. Total I/O from all the passes

24

To compute I/O, we require the amount of data needed by a pass. The amount of data

needed by a pass in t direction is,

Datat = L ∗W (3.4.1)

Datai = 6 ∗W ∗ T (3.4.2)

Dataj = 6 ∗ L ∗ T (3.4.3)

Datatot = x ∗W + 6 ∗W ∗ T + 6 ∗ L ∗ T (3.4.4)

Problem size = M ∗N ∗ T (3.4.5)

No. of Vertical Passes =
M

L
+

N

W
(3.4.6)

25

Total I/O for all the passes is,

IOpass =
M

L
+

N

W
∗ (x ∗W + 6 ∗W ∗ T + 6 ∗ L ∗ T) (3.4.7)

When we use vertical passes, the total amount of data needed by a pass is a function

of T which is quite large. But, we do not need all its input data to start the computation.

We only need x ∗W + 6 ∗ L+ 6 ∗W values to start the computation which is considerably

small. We chose to use vertical passes in our design since less data is required to start the

computation and we have a simpler memory controller. Also, we have a concurrent start for

processing elements in i direction and a slight delay based on pipeline depth for processing

elements(PEs) in j direction. Each pass is executed by the hardware accelerator in a tiled

fashion. The tile dimensions are x,y and z. We will discuss different types of tiling in the

next section.

3.5. Tiling

We split one pass into multiple tiles that are mapped to the hardware accelerator. We

map the tiles to a grid of processing elements(PEs). A set of tiles are executed sequentially

by a processing element(PE). We develop analytical models characterizing the data reuse

that results from executing the tiles along different directions.

The data reuse from executing tiles along i axis is,

Ri = 6 ∗W ∗H (3.5.1)

26

The data reuse from executing tiles along j axis is,

Rj = 6 ∗ L ∗H (3.5.2)

The data reuse from executing tiles along t axis is,

Rt = L ∗W (3.5.3)

We have tiles in all 3 directions. Each tile is executed by one processing element(PE).

Each processing element(PE) has memory and an arithmetic unit that performs the compu-

tation. We will discuss the structure of a processing element(PE) in the next chapter. We

have a grid of processing elements (PEs) computing different independent tiles at the same

time. As we discussed earlier, we have dependencies along i axis, j axis and t axis . Based

on the nature of dependencies, each tile depends on the tile to its left(i direction), the tile

in front of it(j direction) and the tile below it(t direction). Each processing element(PE)

can communicate with its neighbors. The communication network and the nature of the

communication is covered in the next chapter. We have shown the tiling along i-j plane in

Figure 3.9. The data needed for computing the first tile in a pass is,

data = L ∗W + 6 ∗W ∗H + 6 ∗ L ∗H (3.5.4)

27

Figure 3.9. Tiling along i and j plane

3.6. Processor Allocation

There are different ways of allocating tiles to processing elements (PEs). Some of them are

Rowwise Allocation, Columnwise Allocation, Planewise Allocation and their combinations.

In case of Rowwise allocation, we have PE’s computing one row of tiles in each plane and

the corresponding rows above it. Every other PE’s are responsible for computing other

rows in the same timeplane in the j direction. This requires some communication between

neighboring PEs since some of the results computed by the current PE is needed by the

neighboring PEs to compute their result. The advantages of this scheme is that we have

concurrent startup because the data computed by a PE is needed by its neighbor only after

it completes the current set of rows. However, the problem is that it needs a lot of local

memory. The total amount of memory required is determined by the pass length W. This is

a waste of resource on on silicon area. In case of Columnwise allocation, we assign multiple

28

columns to each PE in a similar fashion to rowwise allocation. But we still have the same

problem as earlier. The total amount of memory required is determined by the pass width H.

The other allocation is planewise allocation where a PE is responsible for one plane of tiles

and the neighboring PE is responsible for the plane of tiles above it and they are assigned

in a Round Robin fashion. The amount of local memory still depends on the size of a pass.

Also, it needs a lot of data from the previous PE before it can start. Since, there is no

concurrent start, there is no parallelism. However, each plane can be broken into smaller

tiles. And these tiles are assigned to the processing elements(PEs). In this scheme, the data

for each PE is lowered but we still have the problem of concurrent start and each PE has to

wait for the results from the neighboring PEs. If we reduce the size of each pass, it reduces

the amount of memory needed for each PE. But, we still have the problem with concurrent

start. We could use wavefront schedule to expliot some parallelism except for the boundary

tiles. However, that still requires a substantial inter PE bandwidth.

In order to overcome the problems from the previous scheme, we chose to allocate a single

plane of tiles among all the PEs. So, now the inter PE bandwidth is greatly reduced and

we also have concurrent start. We have a concurrent start because the data needed by a PE

is available from its neighboring PE by the time it computes its first tile. So, basically the

3D iteration space is mapped to a 2D grid of processors in the j-k plane. Each Processing

element is responsible for multiple tiles in the k-direction. The processor allocation is shown

in Figure 3.10

3.7. Execution of one tile by a processing element

In this section, we will explain the execution of one tile by a PE. As we know from previous

sections, each tile has dimensions x, y and z. The points in a tile are executed in a sequential

29

Figure 3.10. Processor Allocation

fashion by one processing element. The order of execution of points in a tile is important to

determine the performance, memory requirement and bandwidth. The tile can be executed in

different ways. We can execute a tile along i direction first, then along j direction and finally

along t direction or execute along j-direction first and then along other directions or even

execute random points in tile in a sequential fashion. If we execute poins along t-direction

first, the data reuse is really low since only the currently computed value can be reused.

Even if we increase the data reuse by using additional memory, the performance would be

greatly hindered since we have a pipelined arithmetic unit. The pipelined arithmetic unit

would take a few cycles equal to pipeline depth to produce the current output. It leads to

a sub-optimal design. If we execute points in random fashion, we have no data reuse and

it would be a suboptimal design. If we execute points along i direction or j direction, the

amount of data reuse is the same. Therefore, we choose to execute points in the i-direction

in a processing element in a sequential fashion. As we mentioned earlier, we compute points

30

in a tile in a pipelined fashion. The total number of independent computations in a tile is

given by,

Independentcomputations = x ∗ y (3.7.1)

In order to use pipelining effectively, we need to make sure that the total number of

independent computations in a tile is greter than the pipeline depth. Therefore,

Independentcomputations = x ∗ y ≥ d (3.7.2)

31

CHAPTER 4

Jacobi 2D accelerator design

In this chapter, we discuss the design of Jacobi 2D accelerator.

4.1. Analysis of data dependencies

Jacobi 2D stencil is very similar to wave 2D stencil. As discussed earlier, the Jacobi 2D

equation is given by,

B[t+1, i, j] = c1(B[t, i−1, j]+B[t, i+1, j]+B[t, i, j−1]+B[t, i, j+1])+c2∗B[t, i, j] (4.1.1)

By analyzing equation (4.1.1), we can draw a Data Dependence Graph (DDG) that

represents the dependence of points in the Iteration space as shown in Figure 4.1. The light

circles in the figure represents a point in the iteration space. The red point depends on

all the green points and the point below it and there is a green point underneath the red

point. We have uniform dependencies and we update each point in the iteration space using

equation (4.1.1). As we can see from the equation, this update requires points from the

Figure 4.1. Jacobi 2D dependencies

32

previous timestamp since we have a point in time t+1 as a function of 5 other points in

t-plane. We use two levels of tiling. The first level of tiling is called passes and it is defined

as a vertical rectangular prism passing through the iteration space. Then, we split them into

smaller prisms called Tiles and they are mapped to processing elements(PEs). We apply

tiling transformations to optimize our design. We use passes since the data that can fit on

the hardware accelerator is limited. We use tiling so that we can allocate processing elements

(PEs) to compute different parts of the computation in a parallel fashion. In order to use

rectangular tiles, we have to make sure that there are no cyclic dependencies between tiles.

As we can see from Figure 4.1, we have dependencies to the left, right, above and below

along i and j axis. If we use rectangular tiles, we would have a cyclic dependence. So, in

order to use rectangular tiling, we first skew the iteration space. After skewing the iteration

space, we show a section in the middle of the iteration space away from the boundary in

Figure 4.2.

Figure 4.2. Jacobi 2D dependencies after skewing ~d1′=(-1,-1)

We can see the dependence of B[t, i, j] on values from previous timestamp from Figure 4.2.

Each point in the iteration space now depends on points to the left along i-direction and

33

below along j-direction. As a result, we can tile the iteration space without causing any

cyclic dependencies.

4.2. Processor Allocation

There are different ways of allocating tiles to PEs. We perform two levels of Tiling. The

first level of tiling is called a pass. A pass is a vertical rectangular prism in 3 dimensions.

The pass has dimensions of x,y and T. The second level of tiling is done by blocking along

all 3 directions. After tiling, we assign processing elements (PEs) to the set of tiles they

compute. We assign each processor to execute a set of consecutive tiles in t-direction. We

have a concurrent start for the processing elements (PEs) in i direction because the data

needed by a processing element (PE) is available from the processing element to its left by

the time it computes its first plane. We have a latency for the PEs in j direction because the

data needed by a PE is available from its neighboring PE at a delay equal to the pipeline

depth. Assume we have a pipelined arithmetic unit with a pipeline depth of 6. It takes 6

cycles to produce the first output. After the 6th cycle, one new value is produced every cycle.

So, the PEs in j direction gets delayed by a factor of pipeline depth(d) since the data needed

to start a processing element is only available d cycles after the start of the first processing

element. So, basically the 3D iteration space is mapped to a 2D grid of processors in the j-k

plane. Each PE is responsible for multiple tiles in t-direction.

34

CHAPTER 5

Hardware Design

In this chapter, we discuss the design of hardware accelerator. Our hardware design

comprises three main components.

(1) Compute unit and control unit within each PE

(2) Memory unit

(3) Communication between PEs.

We implemented jacobi 2D stencil in Verilog. Jacobi 2D stencil is similar to wave 2D

except the total number of dependencies is 5. We used Jacobi 2D because it wave 2D stencil

is more complicated to implement and the results from Jacobi 2D can be translated to wave

2D stencil. We implemented our hardware design in Altera’s Quartus II using Verilog. In

a tile pass, each PE computes a parallelogram shaped tile of height equal to one time-step

from left to right and then moves on to the next tile of the tile pass. We first did the

design entry for one PE and then instantiated the PE module in a top level Verilog module

multiple times. After doing the preliminary functional simulation, we synthesized and placed

and routed our design on Altera’s Arria II GX device. We then performed post-synthesis

functional verification and timing checks. Now, we will discuss each unit in detail.

5.1. Compute unit

We have an arithmetic unit that can produce one value every clock cycle. It is a pipelined

arithmetic unit. In order to make use of the arithmetic unit to its maximum efficiency, we

use independent computations to keep the pipeline full at all times. The arithmetic unit has

some registers to store the intermediate results. So, in our case, we have a 5 input 1 output

arithmetic unit as shown in Figure 5.1.

35

Figure 5.1. Arithmetic pipelined unit

5.2. Control unit

In order to maximize the efficiency of the arithmetic unit, we calculate a rectangular

block of data. The rectangular block of data has independent computations because the

computation of these data require values from previous time. Each Processing element

(PE) has memory to store the rectangular block of data. The control unit in a processing

element(PE) is responsible for calculating the addresses that we read from and the addresses

that we write into. These addresses are used to access the memory inside each Processing

element (PE). The row addresses are calculated based on a row counter that counts up to

the number of elements in a row and then it resets to zero. The column address is calculated

by incrementing by 1 every time the row counter resets. The control unit is also responsible

for reading boundary values. The first two rows of values depend on values at the boundary.

Also, the first two elements in every row depend on values from the boundary. Muxes are

used to select the values from buffers at these points. In steady state, we need five points

to compute one value. We notice that two of the five values can be reused if we compute

36

values along i direction or j direction. In order to make use of this reuse, we use a 3 word

shift register. As a result, we read 3 new values every cycle. These values get shifted and

therefore are reused. There are additional buffers outside a processing element that store

boundary values. To make sure that we read the correct values from the boundary and to

have an easier control, we use two buffers and swap them at the end of computing each

plane. So, when we read values from one buffer, values are written on to the other buffer.

We only have one buffer for boundary PEs.

5.3. Memory unit

We require memory inside and outside a PE. We have memories to store a rectangular

block of data inside each PE. The buffers are memories outside Processing elements(PEs) that

are used to store boundary values needed by them. There is a memory controller outside

PEs that control the flow of data in the PE grid. This memory controller works using a

toggle mechanism among all the Processing elements(PEs). Each Processing element has

two input buffers and two output buffers. The Processing element reads values from the

two input buffers and writes values into the two output buffers. The input buffer that a

processing element reads from is swapped with the output buffer of its neighbor at the end

of a rectangular block/tile. At the end of a rectangular Block/Tile, every processing element

finished writing its output to its corresponding output buffer. This output buffer is swapped

with the input buffer of the neighboring Processing element. Now, each PE has the right set

of inputs to read from. The new output buffers of each Processing element are now ready to

receive new values. This method is used to make sure that none of the values are overwritten

before they are last used. The memory inside a PE is a collection of 1D memories. As we

discussed earlier, the control unit generates row and column addresses. The column address

37

Figure 5.2. PE communication state1

is used to select the memory and row address is used to select the corresponding memory

location.

5.4. Verilog Design

We will now discuss in detail the Verilog implementation of the Jacobi-2D hardware

accelerator. Each PE loads its memories with values from the boundary. Then, it loads the

values into the MAC unit which performs a multiply add. There is a pipeline depth of 6 in

our design. We have a pipeline depth of 6 because we have two multiplications that takes

2 cycles and 4 additions that take 4 cycles. There are two multipliers each one of which

takes 2 cycles. But since this is done in parallel, we have a pipeline depth of 6. Each PE is

allocated a tile of size x*y.

38

Figure 5.3. PE communication state2

if (j1>1 && j1<y && i1>1 && i1<x)

begin

a1[2]<=q0[h];

b1[2]<=q0[h+1];

c1[2]<=q0[j2];

a1[1]<=a1[2];

b1[1]<=b1[2];

c1[1]<=c1[2];

a1[0]<=a1[1];

b1[0]<=b1[1];

c1[0]<=c1[1];

end

As we can see from the code snippet, We have 3 shift registers that read 3 new values

every cycle. Some of these values are shifted as we move through the iteration space. When

we reach the end, we refresh the values corresponding to the next row. We read 9 new values

at the beginning of the iteration. Five out of 9 registers are fed into the MAC. The result of

the computation is available after 6 cycles. So, we place a restriction on minimum tile size

39

to be 6. We start the computation at the first point in the tile (0,0) and then we move along

i direction. When we reach the end we move to the next row. When we reach the end, we

move to the next plane. We have two extra rows of memories. We use these memories to

avoid overwriting of any value before its last read. This happens because, the value that is

currently being computed is 6 cycles later but the last read of the value is two rows later.

genvar n;

generate for (n=1; n<=h+2; n=n+1) begin : ms

m1 v0(.data(data),.waddr(wadd[n-1]),.raddr(radd[n-1]),.clk(clk),.count(count)

,.q0(q0[n-1]),.we(wen[n-1]));

end

endgenerate

Outputs from a PE are sent to the neighboring PE as they are produced. Therefore the

boundary values from a PE will be available 6 cycles later to the next PE. As we discussed

earlier, each PE has to be able to store (w+2) * (h+2) values in a PE. In order to accomplish

that, we use a generate for statement that synthesizes h+2 memories each one of size w+2.

I built a memory controller that controls which values are being read from the memory and

which values are written onto it. Our processor allocation involves assigning a pass to a grid

of PEs. Therefore, I used a similar generate for sequence to generate a grid of PEs in which

neighboring PEs can communicate to each other. As the memory controller determines which

memories to read from, it also determines which memory location to write into. In order

to ensure safe writes and to make sure that values are not accessed while writing, we add 2

extra memories which is used to store data. This ensures safe reads and writes because the

lifetime of a value is two rows.

We designed the memory controller in a way that it would read and write from memories

that are separated by 2. So, if I am currently reading from row 2, I would be writing into

row 0. Also, it works perfectly while reading data from adjacent memories. Since they would

40

have the right values written onto them. There is a communication module that performs

inter PE communication. Now, PEs write values to the boundary of the PE to the right at

different times compared to the PE above it. So, each PE communicates at certain times

specified by the memory controller based on what value is being read and at what times.

Now, because of the pipeline delay of 6, the PE above has to start 6 cycles late for all its

inputs to be available. Now, the PE to the right can start at the same time because its inputs

become available as they are produced from the previous PE. We also place a restriction on

the width of a tile to be 4. This restriction is made due to design constraints and if the tile

height is less than 4 we still have to add 2 extra memories, perform communication and so

on which makes the overhead substantial making it a worse design. These overheads include

2 extra rows of memories and communications to neighboring PEs. The delay of 6 for the

PEs above occurs only once at start. So, in steady state, all PEs are computing one value

each cycle.

5.5. Design Verification

We did a functional verification and timing verification on our design. The functional

verification was done by comparing the results of the Verilog program with the results from a

C program. We found the results to be accurate. We did functional verification on different

design parameter values and problem sizes and verified each case. To do timing verification,

we calculated the total number of cycles to compute one pass of computation analytically.

We also calculated the total number of cycles to compute one pass of computation by the

Verilog design. We found out that the number of cycles predicted by the analytical model

is exactly the same as the total number of cycles required by the hardware accelerator. We

did not consider the cycles to fill FPGA memories with initial values.

41

Table 5.1. Timing Verification

px py x y Analytical output(cycles) Verilog output(cycles)

16 16 4 4 16096 16096
12 12 8 8 64072 64072
12 14 6 8 48084 48084
12 14 6 6 36084 36084
12 14 6 4 24084 24084
14 12 6 6 36072 36072
14 12 8 6 48072 48072
14 12 8 8 64072 64072
16 12 8 6 48072 48072
16 12 8 8 64072 64072
16 14 4 4 16084 16084
16 16 6 6 36096 36096
16 16 10 10 100096 100096
12 12 14 14 196072 196072
12 14 12 14 168084 168084
12 14 12 12 144084 144084
12 14 12 10 120084 120084
14 12 12 12 144072 144072
14 12 14 12 168072 168072
14 12 14 14 196072 196072
16 12 14 12 168072 168072
16 12 14 14 196072 196072
16 14 10 10 100084 100084
16 16 12 12 144096 144096
16 18 4 4 16108 16108
16 20 8 8 64120 64120
16 22 6 8 48132 48132
16 24 6 6 36144 36144
18 16 6 4 24096 24096
18 18 6 6 36108 36108
18 20 8 6 48120 48120
18 22 8 8 64132 64132
18 24 8 6 48144 48144

42

CHAPTER 6

Optimization Problem

In this chapter, we formulate an optimization problem that minimizes the execution time

of the program subject to bandwidth and area for wave 2D and Jacobi 2D algorithm.

6.1. Wave 2D optimization problem

We formulate the optimization problem corresponding to wave 2D algorithm. In this

section, we formulate analytical models for execution time, bandwidth and area.

6.1.1. Bandwidth equation. We formulate the analytical models for Bandwidth equa-

tion. There are two different BW equations.

(1) Inter PE bandwidth

(2) offchip-PE bandwidth

Number of cycles required to compute one tile is x ∗ y ∗ z. The data needed is,

Dataoff = 2 ∗ y ∗ z + 2 ∗ x ∗ z + x ∗ y (6.1.1)

We store x ∗ y initial values of the array in each processing element(PE). The amount of

off-chip data needed for the computation is given by,

Dataoff = 2 ∗ y ∗ z + 2 ∗ x ∗ z (6.1.2)

6.1.2. Inter PE Bandwidth. The Inter PE bandwidth is given by,

BWPE =
2 ∗ y ∗ z + 2 ∗ x ∗ z

x ∗ y ∗ z
(6.1.3)

43

Simplifying the above equation, we get

BWPE =
2

x
+

2

y
(6.1.4)

6.1.3. Offchip-PE Bandwidth. Off chip-PE bandwidth represents the amount of

data that has to be transferred from off chip to the hardware accelerator. The off-chip

to PE bandwidth computed in this section does not involve the filling up of initial x*y val-

ues in each tile. The bandwidth computed here involves the transfer of boundary values

to the boundary processing elements(PEs) from off chip memory in steady state. The pro-

cessing elements(PEs) in the hardware accelerator operate in parallel. Therefore boundary

values corresponding to one plane of tiles has to be transferred in xyz cycles. As discussed

earlier, x*y*z is the total number of cycles required by one PE to compute its tile. The total

amount of data needed from off-chip memory depends on the total number of boundary PEs.

Total amount of data needed from the left along i direction is given by,

Datai = 6 ∗ y ∗ py ∗ z (6.1.5)

Total amount of data needed from the front along j direction is given by,

Dataj = 6 ∗ x ∗ px ∗ z (6.1.6)

The amount of data needed from below is not taken into account because it is being

reused by the same PE. Also, the data is being read and written from/to the communication

44

buffers. So, the amount of data is multiplied by a factor of 2. Total amount of data needed

is given by,

Data = 12 ∗ y ∗ py ∗ z + 12 ∗ x ∗ px ∗ z (6.1.7)

Total number of cycles is given by,

Cycles = x ∗ y ∗ z (6.1.8)

BWoff =
12 ∗ y ∗ py ∗ z + 12 ∗ x ∗ px ∗ z

x ∗ y ∗ z
(6.1.9)

BWoff =
12 ∗ y ∗ py + 12 ∗ x ∗ px

x ∗ y
(6.1.10)

BWoff =
12 ∗ py

x
+

12 ∗ px
y

(6.1.11)

Note that both inter PE bandwidth and Off-chip to PE bandwidth are independent of z

(tile size in t direction).

6.1.4. Execution Time. Execution time represents the execution time of the whole

program. In order to compute the execution time of the program, we first compute the

45

execution time of a pass and multiply the value by the total number of passes. Execution

Time of a pass assuming concurrent start by all processing elements (PEs) and a throughput

of one value every cycle is given by,

Tpass = x ∗ y ∗ T (6.1.12)

But, when we simulated a grid of PEs using verilog, we found that there is a delay equal

to the pipeline depth for every PE in the y direction. So, each PE in y direction starts d

cycles later than the previous row of PEs. So, a more accurate version of execution time of

one pass is given by,

Tpass = x ∗ y ∗ T + d ∗ py (6.1.13)

The total number of passes is given by,

Npass =
M

x ∗ px
∗

N

y ∗ py
(6.1.14)

The total execution time is given by,

Ttot = (x ∗ y ∗ T + d ∗ py)(
M

x ∗ px
∗

N

y ∗ py
) (6.1.15)

46

If we have a pipeline depth of 6, we get

Ttot = (
M ∗N ∗ T

px ∗ py
) + (

6 ∗M ∗N

x ∗ px ∗ y
) (6.1.16)

6.1.5. Area Model. In this section, we develop area models for our architecture. The

total area can be divided into two different components.

(1) Compute units area

(2) Memory area

Area of compute units is given by a multiple of the total number of PEs.

CArea = α ∗ px ∗ py (6.1.17)

Area of memory units is given by,

MArea = β ∗ px ∗ py ∗ (x ∗ y + 6 ∗ x ∗ z + 6 ∗ y ∗ z) (6.1.18)

Total area is,

TArea = α ∗ px ∗ py + β ∗ px ∗ py ∗ (x ∗ y + 6 ∗ x ∗ z + 6 ∗ y ∗ z) (6.1.19)

Based on the BW model, Execution time and Area Model, we formulate the optimization

problem as follows:

47

Min Ttotal = (
M ∗N ∗ T

px ∗ py
) + (

6 ∗M ∗N

x ∗ px ∗ y
) subject to, (6.1.20)

12 ∗ py
x

+
12 ∗ px

y
≤ Bmax (6.1.21)

α ∗ px ∗ py + β ∗ px ∗ py ∗ (x ∗ y + 6 ∗ x ∗ z + 6 ∗ y ∗ z) ≤ Amax (6.1.22)

6.1.6. Solving the Optimization Problem. We solved the optimization problem

using Excel solver and Yalmip toolbox in MATLAB. Excel uses GRC Nonlinear method to

solve the optimization problem. In order to solve the problem using matlab, we used two

properties called posynomials and positivity.

A function f is called a posynomial function of x if it has the form,

f(x1, x2, ..., xn) = ck ∗ x1
a1k + ck ∗ x2

a2k + ... (6.1.23)

ck must be greater than or equal to 0. ak muse be real. So, in other words, all the coefficients

must be positive and the powers can be any real number including negative or fractions. If

we look closely at our optimization problem, we realize that all three equations follow this

criteria. Positivity is a property that ensures that all the terms and coefficients in an equation

are positive. We can solve such optimization problems using Yalmip toolbox in MATLAB.

48

We have an optimization problem involving 4 variables x,y,px and py. We considered a

reasonable Amax and Bmax and solved the problem using excel and MATLAB. Excel Solver

solves the problem using GRG Non-Linear method. We found results from MATLAB to be

consistently optimal. We have shown the results in a table below.

Table 6.1. Excel Solver Results for wave 2D

BW px py x y px*py Execution Time(cycles)

20 10 5 8 10 50 5.00E+08
22 8 7 9 8 56 4.47E+08
24 10 6 7 9 60 4.17E+08
26 8 8 7 8 64 3.91E+08
28 11 6 6 9 66 3.79E+08
30 9 8 8 6 72 3.48E+08
32 9 8 8 6 72 3.48E+08
34 10 8 6 7 80 3.13E+08
36 9 9 6 6 81 3.09E+08
38 11 8 6 6 88 2.84E+08
40 11 8 6 6 88 2.84E+08

Table 6.2. MATLAB Results for wave 2D

BW px py x y px*py Execution Time(cycles)

20 10 5 9 9 50 5.00E+08
22 8 7 8 9 56 4.47E+08
24 10 6 8 8 60 4.16E+08
26 8 8 8 7 64 3.91E+08
28 11 6 8 7 66 3.79E+08
30 12 6 6 8 72 3.47E+08
32 12 6 7 7 72 3.47E+08
34 10 8 7 6 80 3.13E+08
36 9 9 6 6 81 3.09E+08
38 11 8 6 6 88 2.84E+08
40 11 8 6 6 88 2.84E+08

49

As we can see from the table above, the results from MATLAB are slightly better. The

values of BW varies from 20 to 40 in both tables. We computed these bandwidth values

using normal FPGA BW and frequency values. The area of 500000 is taken from cyclone V

FPGA with appropriate coefficient values.

6.2. Jacobi 2D optimization problem

We formulate the optimization problem corresponding to jacobi 2D algorithm. In this

section, we formulate analytical models for execution time, bandwidth and area.

6.2.1. Bandwidth Model. Now, we formulate the analytical models for Bandwidth

equation. There are two different BW equations.

(1) Inter PE bandwidth

(2) offchip-PE bandwidth

Number of cycles required to compute one tile is x * y * z. Amount of data needed for

the computation is

Data = 2 ∗ y ∗ z + 2 ∗ x ∗ z (6.2.1)

6.2.2. Inter PE Bandwidth. The Inter PE bandwidth is given by,

BW =
2 ∗ y ∗ z + 2 ∗ x ∗ z

x ∗ y ∗ z
(6.2.2)

Simplifying the above equation, we get

BW =
2

x
+

2

y
(6.2.3)

50

6.2.3. Execution Time. Execution time represents the execution time of the whole

program. In order to compute the execution time of the program, we first compute the

execution time of a pass and multiply the value by the total number of passes. Execution

Time of a pass assuming concurrent start by all processing elements (PEs) and a throughput

of one value every cycle is given by,

Tpass = x ∗ y ∗ T (6.2.4)

But, when we simulated a grid of PEs using verilog, we found that there is a delay equal

to the pipeline depth for every PE in the y direction. So, each PE in y direction starts d

cycles later than the previous row of PEs. So, a more accurate version of execution time of

one pass is given by,

Tpass = x ∗ y ∗ T + d ∗ py (6.2.5)

The total number of passes is given by,

Npass =
M

x ∗ px
∗

N

y ∗ py
(6.2.6)

The total execution time is given by,

Ttot = (x ∗ y ∗ T + d ∗ py)(
M

x ∗ px
∗

N

y ∗ py
) (6.2.7)

51

If we have a pipeline depth of 6, we get

Ttot = (
M ∗N ∗ T

px ∗ py
) + (

6 ∗M ∗N

x ∗ px ∗ y
) (6.2.8)

6.2.4. Area Model. Now, we develop area models or our architecture. The total area

of the chip can be divided into two different components.

(1) Compute units area

(2) Memory area

Area of compute units is given by a multiple of the total number of PEs.

CArea = α ∗ px ∗ py (6.2.9)

Area of memory units is given by,

MArea = β ∗ px ∗ py ∗ (x ∗ y + 2 ∗ x ∗ z + 2 ∗ y ∗ z) (6.2.10)

Total area is,

TArea = α ∗ px ∗ py + β ∗ px ∗ py ∗ (x ∗ y + 2 ∗ x ∗ z + 2 ∗ y ∗ z) (6.2.11)

Based on the BW model, Execution time and Area Model, we formulate the optimization

problem as follows:

52

Min Ttotal = (
M ∗N ∗ T

px ∗ py
) + (

6 ∗M ∗N

x ∗ px ∗ y
) subject to, (6.2.12)

2 ∗ py
x

+
2 ∗ px
y

≤ Bmax (6.2.13)

α ∗ px ∗ py + β ∗ px ∗ py ∗ (x ∗ y + 2 ∗ x ∗ z + 2 ∗ y ∗ z) ≤ Amax (6.2.14)

6.2.5. Solving the Optimization Problem. We solved the optimization problem

using Excel solver and Yalmip toolbox in MATLAB. We have an optimization problem

involving 4 variables x,y,px and py. We considered a reasonable Amax and Bmax and solved

the problem using excel and MATLAB. Excel Solver solves the problem using GRG Non-

Linear method. We found results from MATLAB to be consistently optimal. We have shown

the results in a table below.

The values of BW varies from 10 to 30 in both tables. We computed these bandwidth

values using normal FPGA BW and frequency values. The area of 500000 is taken from

cyclone V FPGA with appropriate coefficient values. As we can see in this case, Area is

more constraining than Bandwidth. It is because we require less bandwidth due to less data

required from off chip.

sdpvar xi xj xk pj pk

A = 200.*pj.*pk+300.*pk.*xk.*pj.*xj+100.*(pj.*xj+pk.*xk);

B = 2.*(pj./xk)+12.*(pk./xj);

C1= -(xi.*xj)./6;

C2= (xi.*xj)./6;

53

Table 6.3. Excel Solver Results for jacobi 2D

BW px py x y px*py Execution Time(cycles)

10 11 16 6 5 176 1.42E+08
12 13 16 6 4 208 1.21E+08
14 10 22 6 3 220 1.14E+08
16 10 25 6 3 250 1.01E+08
18 8 34 7 2 272 9.33E+07
20 11 27 6 2 297 3.48E+08
22 13 24 6 2 312 8.11E+07
24 13 24 6 2 312 8.11E+07
26 13 24 6 2 312 8.11E+07
28 13 24 6 2 312 8.11E+07
30 13 24 6 2 312 8.11E+07

Table 6.4. MATLAB Results for jacobi 2D

BW px py x y px*py Execution Time(cycles)

10 11 16 6 5 176 1.42E+08
12 13 16 6 4 208 1.21E+08
14 10 22 6 3 220 1.14E+08
16 10 25 6 3 250 1.01E+08
18 8 34 7 2 272 9.33E+07
20 10 30 6 2 297 3.48E+08
22 13 24 6 2 312 8.11E+07
24 13 24 6 2 312 8.11E+07
26 13 24 6 2 312 8.11E+07
28 13 24 6 2 312 8.11E+07
30 13 24 6 2 312 8.11E+07

C3= (xi.*xj);

% Constraints

F = [xi >= 1, xj >= 1, xk >= 1, pj >= 1, pk >= 1, C3 >= 6, B <= 30, A <=

50000];

% Objective

D = min((5000000.*(5000+3.*xk.*pk+3.*pj.*xi))./(pj.*pk));

% Solve!

optimize([F, integer(xi), integer(xj),integer(xk), integer(pj),integer(pk)],D)

54

value(pj)

value(pk)

value(xi)

value(xj)

value(xk)

value(D)

The above code is a snippet that can optimize a posynomial and produce the output values

of tile sizes.

55

CHAPTER 7

Conclusion and Future work

The goal of this thesis is to present the design flow for hardware acceleration of 2D

stencil computations. In this thesis, we designed an FPGA-based hardware accelerator that

efficiently implements the Jacobi 2D method and wave 2D method. We built the accelerator

in a way that we achieve high performance with low Bandwidth and area requirements. The

Optimal design was achieved using several steps. The first step is to analyze the nature

of dependencies and using a multi-level Tiling approach. The second step is to create a

timestamp for all the points in the iteration space. The third step is to create hardware

that meets all the design requirements. The fourth step is to verify the functionality of the

hardware generated by Verilog. This is done by comparing the results produced by Verilog

code with a C program. The fifth step involves solving the optimization problem formulated

to minimize the execution time subject to bandwidth and Area constraints to compute the

optimal values of our design parameters x,y,px and py.

The design space exploration from this thesis can be applied to any other stencil. This

thesis can guide future developments in the area of hardware accelerators. Our approach

could be altered slightly to come up with good implementations of other stencils. The task

of finding a analytical solution is tricky because of the number of parameters that needs to

be solved. In applications with special nature like having square tiles, we could come up with

an analytical solution to the optimization problem. The hardware implementation is quite

complicated due to multiple levels of tiling and multiple design parameters. Our current

hardware implementation could be automated for all stencils which would make the design

scalable for any 2D-stencil.

56

Bibliography

[1] R. N. Schneider, L. E. Turner, and M. M. Okoniewski, “Application of FPGA tech-

nology to accelerate the finite-difference time-domain (FDTD) method,” in Proceedings

of the 2002 ACM/SIGDA Tenth International Symposium on Field-programmable Gate

Arrays, FPGA ’02, (New York, NY, USA), pp. 97–105, ACM, 2002.

[2] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W. Prather, and M. S. Mirotznik,

“Implementation of three-dimensional FPGA-based FDTD solvers: An architectural

overview,” in Field-Programmable Custom Computing Machines, 2003. FCCM 2003.

11th Annual IEEE Symposium on, pp. 269–270, IEEE, 2003.

[3] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, M. S. Mirotznik, and D. W. Prather,

“Hardware implementation of a three-dimensional finite-difference time-domain algo-

rithm,” Antennas and Wireless Propagation Letters, IEEE, vol. 2, no. 1, pp. 54–57,

2003.

[4] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, “An FPGA implementation of

the two-dimensional finite-difference time-domain (FDTD) algorithm,” in Proceedings

of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate

Arrays, FPGA ’04, (New York, NY, USA), pp. 213–222, ACM, 2004.

[5] H. Giefers, C. Plessl, and J. Förstner, “Accelerating finite difference time domain sim-

ulations with reconfigurable dataflow computers,” SIGARCH Comput. Archit. News,

vol. 41, pp. 65–70, June 2014.

[6] Y. Takei, H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, “FPGA-oriented

design of an FDTD accelerator based on overlapped tiling,” in Proceedings of the Inter-

national Conference on Parallel and Distributed Processing Techniques and Applications

57

(PDPTA), p. 72, The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp), 2015.

[7] R. Wester and J. Kuper, “Deriving stencil hardware accelerators from a single higher-

order function,” Communicating Process Architectures, CPA, 2014.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling,” SIGARCH Comput. Archit. News, vol. 39,

pp. 365–376, June 2011.

[9] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, pp. 203–215,

Feb 2007.

[10] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and challenges,” Foun-

dations and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

[11] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and

P. Sadayappan, “Effective automatic parallelization of stencil computations,” in ACM

Sigplan Notices, vol. 42, pp. 235–244, ACM, 2007.

[12] R. Andonov and S. Rajopadhye, “Optimal orthogonal tiling of 2-d iterations,” Journal

of Parallel and Distributed computing, vol. 45, no. 2, pp. 159–165, 1997.

[13] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to maxi-

mize parallelism,” in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, p. 40, IEEE Computer Society Press,

2012.

58

	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Contributions
	1.2. Related Work
	1.3. Thesis Structure

	Chapter 2. Background
	2.1. Hardware Accelerators
	2.2. FPGA Architecture
	2.3. Stencil Computation
	2.4. Wave 2D Algorithm
	2.5. Jacobi 2D Algorithm
	2.6. Loop Transformations

	Chapter 3. Wave 2D accelerator design
	3.1. Analysis of Data Dependencies of Wave 2D Stencil
	3.2. Passes
	3.3. Horizontal passes
	3.4. Vertical passes
	3.5. Tiling
	3.6. Processor Allocation
	3.7. Execution of one tile by a processing element

	Chapter 4. Jacobi 2D accelerator design
	4.1. Analysis of data dependencies
	4.2. Processor Allocation

	Chapter 5. Hardware Design
	5.1. Compute unit
	5.2. Control unit
	5.3. Memory unit
	5.4. Verilog Design
	5.5. Design Verification

	Chapter 6. Optimization Problem
	6.1. Wave 2D optimization problem
	6.2. Jacobi 2D optimization problem

	Chapter 7. Conclusion and Future work
	Bibliography

