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ABSTRACT

THE USE OF SATELLITE-DERIVED HETEROGENEOUS

SURFACE SOIL MOISTURE FOR NUMERICAL WEATHER

PREDICTION

This work's general scientific objective is to develop and apply a coupled satellite-model data

assimilation approach to observe heterogeneous soil moisture effects on the mesoscale for use in

understanding and quantifYing the processes that have an impact on the preconvective mesosca Ie

environment and affect initial convective cloud development related to surface-forced circula­

tions. Several satellite-based methods are used to investigate the feasibility of retrieving surface

wetness information. Passive microwave satellite data are used as a subjective indicator of su­

face wetness, while a quantitative satellite data assimilation method is developed to assimilate

observational infrared heating rates into an atmospheric mesoscale model to retrieve node! soil

moisture. The data assimilation method employs a prognostic soil model with explicit bare soil

and vegetation surface components.

In a case study, the data assimilation method is successful at retrieving realistic n:presenta­

tions of the heterogeneous soil moisture. However, limitations are found regarding the ability to

retrieve extreme dry or wet events using the current model surface parameterization. This has

implications on the ability of the retrieved soil moisture values to affect the atmospheric model's

forecast. Instrument noise is not found to be a major factor in the data assimilation method's per­

formance.

11



Atmospheric-corrected microwave surface emittance results are shown to enhance the use of

the microwave datasets for determining land surface characteristics, especially in regards to

alalysis of the data's frequency dependencies. Several problems that affect the use of the micro­

wave brightness temperature data were examined, including natural characteristics of the spatial

ald temporal variability of the microwave background signature, and sub-field of view effects.

The microwave surface emittance was found to be sensitive to numerous rain events captured

ill the dataset. The relationship of the microwave surface emittance to a vegetation index is

s lown to be highly variable for all but the sparsest vegetation amounts when analyzed at high

sJatial resolutions. The complexity of the microwave surface emittance versus vegetation rela­

tionship limits any future quantitative use of the microwave surface emittance for direct soil

moisture retrieval; however, the potential application of the microwave surface emittance for

flood monitoring purposes and trafficability indices is high for non-forested regions.
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Chapter 1

INTRODUCTION

Several challenging scientific questions remain to be answered about important atmospheric­

land surface processes. This work's objective is to develop and apply a coupled satellite-model

data assimilation approach to observe heterogeneous soil moisture and vegetation effects on the

mesoscale for use in understanding and quantifying the processes that have an impact on the pre­

convective mesoscale environment and affect initial convective cloud development.

1.1 SIGNIFICANCE OF SOIL MOISTURE ON ATMOSPHERIC CmCULATIONS

Several studies have suggested that sea-breeze-like circulations can be generated over areas

of heterogeneous vegetation and soil moisture conditions due to surface forcing (Ookouchi et al.

1984; Segal et al. 1988). In addition, the importance of soil moisture initialization has been dem­

onstrated at several modeling scales, from the mesoscale to general circulation model (GCM)

resolutions (Diak et al. 1986; Fast and McCorcle 1991; Sellers et al. 1988). In the operational

forecasting and mesoscale research modeling communities, there are ever greater requirements to

produce high resolution soil moisture estimates for data assimilation into the models to improve

operational forecasts, and research analysis, development, and validation. Recent work (e.g. Betts

et al. 1996) has shown improvements to model precipitation forecasts when soil moisture initiali­

zation is more carefully treated, and also suggests that some predictability exists in the extended

range as a result of the memory of the soil moisture reservoir. At the larger scale, GCM modelers

are also seeking to improve land-surface parameterizations, and they must continue to do so if

they are to accurately answer the questions regarding the climate change issue (Dickinson 1994).
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Beyond the needs of the weather modeling community, a reliable source of regional soil moisture

information also needs to be available for the assessment of potential economic effects related to

the climate change question and its impact on national policy decisions (Schmalensee 1993). All

are pressing issues of our day.

The Global Energy and Water Cycle Experiment (GEWEX) is designed to address several

scientific issues related to climate change. In particular, the GEWEX Continental-scale Interna­

tional Project (GCIP) is intended to address the GCM land surface parameterization problem.

GCIP's primary study area is the Mississippi Basin watershed in central North America. Prepara­

tion for a 5 year intensive observing period (lOP) (1995-2000) began in 1993. During the prepa­

ration phase of GClP, satellite remote sensing methods to estimate soil moisture are expected to

be developed and validated for use during the lOP to extend the analysis and results from the

Mississippi Basin to other geographical areas around the world. Satellite data in particular is im­

portant to the GEWEXJGCIP goals since the results are expected to be transported to other re­

gions in which conventional hydrological and surface observations may be lacking or nonexist­

ent. Even in the highly instrumented Mississippi Basin, satellite data will be an important

information source to spatially interpolate the in situ data sets. The satellite data sets are also im­

portant for GCM model validation with observations, and acts as a reference data set for model­

to-model intercomparisons of improved GCM land surface parameterizations.

One of the primary goals of GEWEX is to estimate global water and energy budgets of the

earth. Remote sensing alone can not produce all the information required to create such budgets.

The fluxes for such a calculation will from necessity come from the models that have 3D wind

fields for the flux calculations in the atmosphere. However, for accurate estimates, the models

will require information for several model parameters, such as soil moisture, which are not well

known without remote sensing techniques. Thus the continental scale water and energy budget
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calculations of GEWEXlGCIP need highly developed data assimilation procedures for incorpo­

rating remote sensing information into the mesoscale models.

Satellite data sets are well suited to observe spatial and temporal variations of clouds and of

the land surface characteristics. Several studies have observed significant relationships between

surface geographical features such as lakes and rivers, topography, albedo and soil moisture to

cloud formation (Chang and Wetzel 1991; Gibson and Vonder Haar 1990; Rabin et al. 1990).

Quantification of the satellite observed surface features and applicability of these results to model

parameterizations is a remaining challenge. However, recent attempts have been made to include

satellite observations of vegetation into model land surface parameterizations (Chang and Wetzel

1991). This work extends this to include satellite observations of surface soil moisture into a cou­

pled satellite-model land surface parameterization scheme. This is an important next-step in the

development of satellite-model coupling techniques from Lipton and Vonder Haar's (l990a,

1990b) earlier work.

Assimilating satellite data into mesoscale models is traditionally a two-step process where the

satellite retrieval is separate from the model objective analysis and initialization. However, recent

work (Eyre and Lorenc 1989; Lipton and Vonder Haar 1990a; 1990b; McNider et al. 1994) has

shown that significant improvements are to be gained in both steps by coupling the satellite data

assimilation with the model such that the model and the satellite retrieval process are interde­

pendent. (This will be referred to as a satellite-model coupled system.) Due to the surface turbu­

lence mixing effects on the partitioning of the sensible and latent heat fluxes at the surface, such

an interdependent relationship should improve surface soil moisture retrieval results by obtaining

more accurate important meteorological parameters for the remote sensing retrieval process,

while also improving the model analysis with better soil moisture information. Chapter 5 details

the satellite-model coupled system developed for this particular work.
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A major problem in developing GCM land surface parameterizations is how to accurately

represent the subgrid scale interactions that determine the hydrological and energy balance at the

surface (Avissar and Pielke 1989; Henderson-Sellers and Pitman 1992). Even future GCMs with

grid intervals of 100 km will have subgrid scale parameterization problems. For example, in two

regions with identical mean values of soil moisture but different spatial distributions, a heteroge­

neous distribution on the scale of 10 km could induce mesoscale sea-breeze-like circulations

which would be completely different from circulations associated with a homogeneous distribu­

tion of soil moisture with the same mean soil moisture. Thus characterization of the spatial and

temporal distribution of parameters related to surface forcing are very important for correct

parameterization of the land surface processes at the GCM scale. Mesoscale models with appro­

priate data assimilation are an excellent tool by which to gain understanding of these subgrid

scale effects. Such understanding is crucial for better parameterizations at the scale of the GCM.

Thus mesoscale model output would serve as a test bed for GCM model parameterization efforts.

Small scale effects are also important at the mesoscale. Remote sensing retrieval results are

averaged values over an entire sensor field-of-view. Consideration of subgrid resolution effects

could be important to remote sensing applications regarding model data assimilation (Wetzel and

Chang 1987). High resolution remote sensing data, rather than data that has been degraded by

averaging, is therefore crucial for accurate remote sensing results (Guo and Schuepp 1994).

However, even at reduced resolutions used in current studies, variations of soil moisture and

vegetation have a noticeable impact on the evolution of the preconvective environment (Chang

and Wetzel 1991).

Mesoscale model land surface parameterizations also need high resolution soil moisture data

sets for model development and validation. Initialization of mesoscale models with accurate high

resolution soil moisture and vegetation information can significantly improve model forecast ac-
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curacy (Coates et al. 1984). Recent land surface parameterization efforts have been based on rain

gauge indices such as the antecedent precipitation index (API) (Wetzel and Chang 1987). Satel­

lite soil moisture data sets for mesoscale data assimilation will have higher spatial and temporal

resolution than is available with conventional in situ derived data sets. Comparing and/or com­

bining API-like methods with satellite soil moisture estimates will allow extrapolation of avail­

able in situ measurements in space and time, yielding a more optimum data set for high resolution

model development and validation. Results from an extensive intercomparison of satellite­

derived surface soil moisture products and an API method are shown later in Chapter 4.

Other fundamental remote sensing problems remain over land surfaces. It is well known that

microwave brightness temperatures measured by satellite are physically related to land surface

properties such as soil wetness, vegetation, and surface roughness (Jackson and Schmugge 1989;

Heymsfield and Fulton 1992), but understanding and quantifying the relationship of these inter­

related parameters is a challenging and complex problem. The microwave spectral emittance is a

fundamental surface radiometric parameter that can be measured from space and is also often

related to the physical hydrological parameters in theoretical work (Isaacs et al. 1989; Kerr and

Njoku 1990). The ability to combine microwave and infrared satellite data makes the calculation

of this fundamental radiometric surface parameter possible (Jones and Vonder Haar 1990). In

turn, the measurement of microwave surface emittance makes possible the minimization of the

background problem over land for microwave remote sensing of precipitation and cloud liquid

water (Spencer 1984; Jones and Vonder Haar 1990). A major result of this work is the production

of a high resolution microwave spectral emittance for use in such studies. Other meteorological

parameters, such as boundary-layer turbulence and mixing, further complicate the retrieval of

accurate soil moisture estimates (Wetzel and Woodward 1987). A soil moisture retrieval method

should ideally include these atmospheric effects. This work accomplishes this by using a satellite-
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model coupled system to incorporate the surface meteorological parameters that affect the soil

moisture retrieval results and thereby improve overall retrievui accuracy.

1.2 RESEARCH OBJECTIVES

This work's general scientific objective is to develop and apply a coupled satellite-model data

assimilation approach to observe heterogeneous soil moisture effects on the mesoscale for use in

understanding and quantifying the processes that have an impact on the preconvective mesoscale

environment and affect initial convective cloud development related to surface-forced circula­

tions. The primary objectives are:

1. to develop, validate, and intercompare multi-sensor satellite soil moisture retrieval algo­

rithms in the context of a satellite-model coupled system, and

2. application of the developed satellite-model coupled system to a 3D case study to assess

the impact of observed soil moisture on the preconvective mesoscale environment.

Closely related ideas which information will be provided for are:

1. determination of the space and time variability of high resolution microwave satellite sur­

face emittance for use in understanding the nature of processes which control the hydro­

logical balance and radiometric surface properties of the land surface at a 10-15 km grid

scale,

2. determination of the relative roles and important interactions that observed soil moisture

and vegetation have on initial convective cloud development at the mesoscale, and

3. demonstration of multi-sensor satellite data fusion technology in conjunction with data

assimilation for mesoscale models.
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1.3 SCOPE AND SEQUENCE

The two major parts of this study, remote sensing and the coupled satellite-model work, have

unique characteristics that require that the work be performed on two temporal scales and slightly

different spatial scales. This requirement is primarily driven by the large computational demands

of the mesoscale atmospheric model, and the desire to have a spatial domain and time period

large enough to minimize the potential loss of understanding of the remote sensing phenomenon

if the data were processed on a smaller domain.

In brief, the remote sensing work consists of calculating the microwave surface emittance

and comparing the results with other surface wetness information sources (including satellite

data, and other available in situ and geographical information sources). The coupled satellite­

model work is broken down into two parts: the development and testing stage, and the application

of the satellite-model coupled system to a case study. So in summary, the work will be performed

in a total of two stages:

1. satellite related work observing microwave surface emittance and the processing of sat­

ellite and geographical data sets necessary for the satellite-model parameterization devel­

opment, and

2. satellite-model work consisting of:

a) development and testing ofthe satellite-model coupled system, and

b) application of the satellite-model coupled system to a 3D case study.

The remote sensing aspect of the study will cover a continental-scale domain area, with the

data set being selected over the Mississippi Basin watershed area (25-55° N, 85-110° W). The

remote sensing work will benefit from the geographical diversity that the larger continental scale

area offers. Thus greater understanding will be possible due to the wider range of environmental
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conditions and situations. The satellite data set is approximately 70 days in duration occurring in

late summer (Aug.-Oct., 1991). The 70 day time period will allow for observation of cyclical sur­

face hydrological processes such as surface moistening and drying due to precipitation events

(Serafini 1990). The late summer time period should also focus our work on air mass convection

rather than convection that is driven by the larger synoptic scale conditions.

The coupled satellite-model. work v.'ill be performed on a smaller scale of approximately

500x500 km with a 5 km grid interval, \\iith larger parent grids of approximately the same do­

main size as the satellite analysis v.'ork mentioned previously. The smaller spatial domain is due

to the large computational requirements of the mesoscale model. A special case study on

9 September 1991 has been selected from the larger remote sensing data set for data assimilation

into the coupled satellite-model system. The central Great Plains (Kansas-Oklahoma area) was

selected for the coupled satellite-model system data assimilation work due to its small topo­

graphic relief, relatively low vegetation amounts and high diurnal surface temperature fluctua­

tions. Features of particular interest is the dryline which should be strongly influenced by land

surface properties in a non-synoptically forced environment (Sun and Ogura 1979; Benjamin and

Carlson 1986; Lanicci et al. 1987; Sun and Wu 1992; Ziegler et al. 1995). The modeling work

continues a heritage of recent dryline studies performed using the CSU-RAMS (e.g., Shaw 1995;

Ziegler et al. 1995; Grasso 1996).

1.4 READER'S GUIDE

The following chapters draw upon diverse literature sources due to the interdisciplinary na­

ture of this study. The original intent was to present sufficient material for all potential readers to

be able to review material unfamiliar to them and to be able to skip others that might be related to

their specialties. Thus it is encouraged that the reader skips to the "meat" when he feels the mate­

rial is perhaps too basic for his needs, while understanding that not all readers will be from the
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same background as his own. An attempt has been made to move as much material as possible

into the appendices to remove as many of the burdensome details from the reader as possible

while still including material that is relevant to the study. Of particular note is placement of a mi­

crowave remote sensing review in Appendix A, and the absence of the PORTAL software pack­

age in the main text which has been placed into Appendix C. While interesting in its own right,

especiaIly with regard to sateIlite data processing methods, such details have been omitted from

the main text, with more emphasis placed on the scientific algorithms instead.

Chapter 2 contains background material that discusses previous studies that involved remote

sensing of surface soil moisture and related numerical studies. The microwave remote sensing

background chapter contained in Appendix A may be skipped by the remote sensing specialist,

while Chapter 2 would be beneficial for those desiring a stronger background in current research

regarding atmospheric land surface effects. Data sources are described in Chapter 3, while the

sateIlite portion of this work is discussed in Chapter 4. Chapter 5 discusses the data assimilation

work using the coupled sateIlite-model system, with conclusions and summary foIlowing in

Chapter 6.



Chapter 2

BACKGROUND

Early in the development of boundary layer and mesoscale models it was recognized that the

correct specification and partitioning of surface fluxes of moisture and sensible heat was critical

to the accurate prediction of boundary layer behavior and subsequent mesoscale circulations

(Deardorff 1978; Wetzel 1978; Blackadar 1979; McCumber and Pie1ke 1981; Zhang and Anthes

1982). Numerous simulations and studies have been performed since using various parameteriza­

tion methods to link the model's atmospheric dynamics to the land surface boundary layer proc­

esses. A review of the fundamental physical concepts is required to set the framework for these

methods and also to place the remote sensing work in its proper context. This section introduces

the fundamental physical concepts in section 2.1 and then reviews previous studies, in sec­

tions 2.2-2.4, which are relevant to this work. It should be pointed out that the body of literature

available on this topic is rather large and loosely associated. A diverse group of scientific com­

munities have contributed to this research area and thus presented a challenge to the author to

condense and correlate the relevant material into a cohesive whole, thus the overview which fol­

lows should not be construed as being all encompassing. However, an effort is made to cite addi­

tional material when possible to allow further exploration on the part of the reader.

2.1 FUNDAMENTALS

Critical to the proper functioning of an atmospheric model is the linkage of the land surface

forcing effects and the atmospheric dynamics of the model at higher model levels. This is accom­

plished through parameterization methods since the model is unable to explicitly resolve the
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subgrid-scale turbulent effects which are important in the transport of heat and water at this scale.

The parameterizations are usually based on experimental data and contain simplified fundamental

concepts. However there is no requirement that a "good" parameterization contain any physics,

just that it performs well for a given set of conditions (and in general, the presence of some

physical mechanisms usually helps to achieve this goal). This section is meant to enhance the

discussion of specific physical mechanisms and provide a common framework for further devel­

opments.

The interaction of the land surface with the atmosphere occurs on scales from leaf, field,

landscape, and biome spatial scales. In trying to understand the complex processes which interact

on such a small scale, the fundamental principles are introduced first with regards to the land sur­

face and then from an atmospheric perspective, but first, let's begin with the concept of how en­

ergy is transported between the air and land surface systems.

2.1.1 Surface Energy Budget over Land

The air-surface interface is the location at which the atmosphere and the surface exchange

energy with respect to several state parameters. If we assume the actual interface is infinitesi­

mally thin, then the energy "balance" or "budget" can be defined. If the surface interface is

parameterized by a finite soil slab (i.e. with mass), the energy fluxes at the air-surface interface

may not balance due to storage within the system and perhaps also by the physical limitations of

the system to produce fluxes of the magnitude required to balance the energy exchange. The fol­

lowing discussion is therefore in the context of an infinitesimally-thin interface.

The surface energy balance at the air-surface interface is,

(2.1)
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where Qc' Qc' QR' are the conductive, convective, and net radiative heat fluxes (positive

fluxes being directed toward the ground), respectively (Pielke 1984). The conductive heat flux,

QG' is the heat which is being transported (or conducted) through the soil. An example of this

would be a cooling (heating) of the atmosphere through the sink (source) of heat produced by

contact with the cooler (hotter) low-level soil temperatures. The convective heat flux has two

components, one from the transport of sensible heat and the other from the transport of latent

heat. Both components are very important, and in practice it is the partitioning of the energy be-

tween a more readily measured quantity, sensible heat flux, H, and the more elusive latent heat

flux, E, which makes the remote sensing of surface soil moisture difficult. Methods to remotely

measure these components will be reviewed in section 2.2. The total convective heat flux is thus

the sum of the sensible and latent heat fluxes and is given by,

Q = H + E = -p-c w" 0" -p-L w"q"c P I' 3 '
(2.2)

where the sensible and latent heat flux terms also depend on the atmospheric density, p, the at-

mospheric heat capacity at constant pressure, cp' the latent heat of vaporization, Lv' and the

subgrid scale correlation terms, w" e" and w" q~' . The subgrid scale correlation terms consist of

the correlation of the subgrid scale vertical velocity perturbation, w" , with respect to the subgrid

scale potential temperature perturbation, e" , and the subgrid scale specific humidity perturbation

for water vapor, q~' , where the overbar, ( ), denotes the average taken over the grid interval in

space and time. The correlation terms denote the vertical subgrid scale mixing and transport of

heat in both of its possible forms. The third term of the surface energy balance, the net radiation

heat flux, is represented by,
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(2.3)

where A is the surface albedo, R, is the direct downward shortwave radiation flux, R/ IS
+~ s~

the diffuse downward shortwave radiation flux, and R,j./w
G

and ~/wG are the downward and up-

ward longwave radiation fluxes, respectively.

To evaluate the conductive heat flux, QG , it is helpful to examine the vertical distribution of

heat and moisture throughout the soil profile, however it should be noted that the primary con-

cern is with the conductive heat flux at the surface. The representation of the heat and moisture

flux in the soil levels below the air-surface interface are used to enhance the physical under-

standing of the integration processes and thus the coupling of the energy fluxes in time and space.

This introduces the next two topics, the soil heat flux and soil moisture flux.

2.1.2 Soil Heat Flux

The soil heat flux is the functional equivalent of the atmospheric sensible heat flux in that it

transports heat in a sensible form, but it consists of different underlying dominant physical trans-

fer mechanisms (e.g., the soil is nonconvective) and therefore requires a substantially different

method of solution. The soil heat flux is evaluated using a one-dimensional diffusion equation,

(2.4)

where v, cs' and Ps are the thermal conductivity, specific heat capacity and soil density, re-

spectively. The coefficients of Equation 2.4 can be gathered into one term called the thermal dif-

fusivity which is given by ks = viPscs = f( TJ); a function of the volumetric soil moisture con-

tent, TJ. Since the soil heat flux depends on the volumetric soil moisture content, the soil

moisture flux must be solved simultaneously with the soil heat flux.
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2.1.3 Soil Moisture Flux

Various methods are possible to represent the soil moisture flux, however for the purposes of

this section the method of McCumber (1980) as summarized in Pielke (1984) will be used. This

parameterization is also used in the data assimilation method described in Chapter 5.

The local time rate of change of the volumetric moisture content, 17, is related to the soil

moisture flux, W", and is given by

l'17 __1 oW,
{'I - ~- 'P.... c.:.

(2.5)

where P.... is the water density, and conservation of water has been assumed without advective

processes such as runoff and/or additional sources and sinks of water such as from rainfall or

plant root uptake. This relationship may then be parameterized with the following expression,

(2.6)

where

(2.7)

has been used to replace ~ from Equation 2.5, and DIJ and KIJ are parameters which vary de-

pending on the particular soil textural class (e.g., sand, clay, peat, etc.). KIJ is called the hydrau-

lic conductivity and DIJ =KIJ o'¥/017 is related to the derivative of the moisture potential, '¥,

with respect to the volumetric moisture content, 17. The hydraulic conductivity accounts for the

gravity drainage in the viscous soil, while the moisture potential represents the potential energy

(negative in sign) needed to extract water from the soil due to the capillary action of the particular

soil type structure.
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In addition to the representations of the soil heat flux and the soil moisture flux are the

boundary condition (BC) requirements to completely specify the solution. If one assumes that all

moisture comes in and out of the top BC, and that at a sufficiently deep soil-level the soil tem-

perature and moisture are fixed, the BC's which remain to be specified are limited to the surface

(i.e. at z = ze;). The moisture flux continuity must be preserved at the air-surface interface, thus

WI.=.E,., (J
(2.8)

and, as mentioned previously, thermal equilibrium must also be maintained at the air-surface in-

terface such that Equation 2.1 is satisfied. Given that the soil's heat and moisture fluxes can be

properly represented, the conductive heat flux at the air-surface interface is given by

(2.9)

where the temperature gradient at the air-surface interface (i.e. ground level) is oT/ 0 ziG'

2.1.4 Similarity Theory

The atmospheric boundary layer can be thought of as three layers, the viscous sublayer, the

surface layer, and the transition layer. The height of the top of the atmospheric boundary layer,

Z i ' can extend from 100 m to several kilometers or more, and is defined to be "the lowest level in

the atmosphere at which the ground surface no longer influences the dependent variables through

the turbulent transfer of mass" (Pielke 1984). Different parameterization methods are used in

each layer to estimate the subgrid fluxes of temperature, moisture and momentum. The following

discussion begins with the lowest layer, the viscous sublayer, and progresses to the higher levels

of the atmosphere.
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The viscous sublayer (z < zo) is at the bottom of the atmosphere, below the roughness

height, zo, and it is in this region where molecular motions become important. An empirical re-

lationship has been developed which relates the temperature and specific humidity of the ground

(Z = zG) to variables measured at the top of the viscous sublayer (at z = zo) (Ziltinkevich 1970;

Deardorff 1974),

B.
B_ = B(. + - r ,

-0 .I k C
(2.10)

(2.11 )

where k is Von Karmann's constant (k ~0.35), and where a correction factor, Yc' is used to re-

late surface values to values at the height of the roughness length, zo' The proportionality factor

is given by,

u.Zorc =0.0962-,
r

(2.12)

where r is the viscosity of air (1.5 x 10-5 m2s- I), and u., q., and B. are the friction velocity,

friction humidity, and the friction temperature, respectively.

The surface layer (zo < z < hs ) is the region of the atmosphere where the subgrid scale

fluxes are assumed to be independent of height and where veering of the wind with height owing

to the Coriolis effect is neglected, with the top of the surface layer, hs ' usually ranging from

10m to 100 m in height (Pielke 1984). It is in this layer that the parameterization formulated by

Businger (1973) is commonly used which is based on Monin-Obukov similarity theory. The

Businger parameterization consists of the following equation set:
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(e(z) -B. )
B. = fJk ·0

[In(z/zo) -lj/H(Z/L)] ,

(2. ]3)

(2.14)

(2.15)

where fJ is the inverse of the Prandtl number for a neutrally stable atmosphere (j3 - 1.35), V is

wind speed and lj/M ( z/ L) and lj/H ( z/ L) are the integrated stability parameters for momentum

and heat given by Businger et al. (1971), and are a function of height, z , and the Monin length,

3/ - -2/ -L =- Bou. gw" B" = Bu. kgB., where the assumption has been made that w" B" can be ap-

proximated by u.B•.

The transition layer (hs < Z < Z i) is the portion of the atmosphere which is below the top of

the atmospheric boundary layer, z;, and above the height of the surface layer, hs ' Several meth-

ods are available to parameterize the subgrid scale fluxes within the transition layer. Pielke

(1984) contains a useful review of the various methods which will not be repeated here. In gen-

eral, the methods are classified according to their "closure" order, which is the statistical level

(e.g., variance, skewness, kurtosis, etc. of the grid volume subgrid scale products of the depend-

ent variables) in which quantities of higher level statistics are represented in terms of lower order

statistics and empirical proportionality values. Depending on conditions (e.g., stability criteria),

certain parameterizations perform better or worse than others. However, in regard to the closure

order of the parameterization, it must be held in mind that the parameterization should not be

overly complex, the real goal is to obtain an accurate parameterization scheme. Higher-order
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closure is not necessarily better since they introduce additional degrees of freedom in their repre­

sentation, for which adequate empirical data to provide an accurate closure are usually not avail­

able.

2.2 REMOTE SENSING STUDIES

Remote sensing of soil moisture is comprised of a large group of scientists each with their

own unique background and reason for attempting to remotely sense soil moisture. Areas of ex­

pertise include ecologists interested in vegetation-soil moisture feedback, soil scientists interested

in relatively deep soil moisture, atmospheric boundary layer scientists working on the interaction

of the surface with the atmosphere, etc. The list is a long one. The principle problem in grouping

this body of literature together is that the emphasis of the work tends to differ depending on the

perspective that the original task was addressed from. In this subsection an attempt is made to

give a broad overview of current research in this area pointing out the context of the work. It is

beyond the scope of this background section to provide a complete summary, but an effort is

made to specifically mention the most directly relevant work. However, for further reading, sev­

eral good texts exist in the literature which describe current techniques in remote sensing of soil

moisture (Mulders 1987; Pampaloni 1989; Schmugge and Andre 1991), including several rele­

vant review articles (Schmugge et al. 1980; Schmugge 1983; Freeland 1989; Jackson and

Schmugge 1989; Engman 1990; Gutman 1990; Sellers 1990; Choudhury 1991a; Choudhury

1991b; Engman 1991; Gutman 1991; Kairu 1991; Townshend 1991; Schmugge et al. 1992). This

subsection is divided into three subdivisions, the remote sensing of vegetation, infrared remote

sensing of soil moisture, and microwave remote sensing of soil moisture.

2.2.1 Remote Sensing of Vegetation

The remote sensing of vegetation is a large category which includes microscale remote sens­

ing efforts using land-based active and passive microwave sensors, an active research group
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which emphasize multispectral infrared and visible data sets from the Landsat and SPOT satellite

series (Thelin and Heimes 1987), active microwave remote sensing using synthetic aperture radar

(SAR) technology (Engman 1991), and global analyses using the Advanced Very High Resolu-

tion Radiometer (AVHRR) sensor on the NOAA polar orbiting satellite series (Sellers 1990;

Loveland et al. 1991; Gutman et al. 1995). The Landsat series data set provides high resolution

(30 m footprint) and is thus preferred for many of the regional studies, however it has a return

time of 16 days, and in cloudy regions this can restrict its practical usage. The SAR data is also a

high resolution data set and suffers from similar sampling problems as the Landsat data set. Thus

for regional and global vegetation studies, the AVHRR with its 1 km resolution and approxi-

mately twice daily coverage is most ideally suited to monitor the global vegetation of the earth.

The primary method to estimate vegetation cover on regional and global scales using the

AVHRR is the Normalized Difference Vegetation Index (NDVI) (Nemani and Running 1989;

Gutman 1991; Kalb 1991; Loveland et al. 1991; Gutman et al. 1995; Nemani et al. 1996). The

index is based on the difference between the spectral reflectivity in the near-infrared and visible

radiances which is dependent on the vegetation cover. The NDV! is defined as

NDVI = PNIR - PvIs ,
PNIR + PvIs

(2.16)

where PNIR and PVIS are the AVHRR near-infrared (channel 2), and visible (channell) reflec-

tance values that cover the spectral regions of 0.58-0.68 jJ.m and 0.73-1.0 jJ.m, respectively. This

equation produces NDVI values in the range of -1.0 to 1.0, where negative values generally rep-

resent clouds, snow, water and non-vegetated surfaces while positive values represent vegetated

surfaces (Loveland et al. 1991). It has also been shown that the NDVI is correlated with such

vegetation parameters as green leaf biomass and green leaf area (Tucker 1979; Justice et al.

1985). In heavily vegetated regions, the NDV! has been shown to saturate in comparison with
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other vegetation measures, such as leaf area index (LAI) (Carlson et al. 1990). Conversely in

sparse vegetation the NDVI may also not be informative, in that most bare surfaces have positive

vegetation index values, so that it is difficult to discriminate a sparsely vegetated surface from

one with no vegetation (Sellers 1990). Work by van de Griend and Owe (1993) has shown that

the NDVI is also correlated to the thermal infrared emittance, but since the in situ infrared emit-

tance measurements can only be performed on a small scale (on the order of I-10m), the estima-

tion of an "effective" infrared emittance by using the NDVI poses a serious problem regarding

the scale of the processes involved.

Monitoring interannual variability with NDVI can be problematic, in that it requires the re-

moval of residual trends/noise in the NDVI data set, which are on the order of the magnitude of

interannual variability (Gutman et al. 1995). The variability is caused by satellite/sensor change,

by sensor instability (Kaufman and Holden 1993), and by satellite orbit drift (Price 1991). Strato-

spheric aerosols such as was observed from Mt. Pinatubo can also affect the AVHRR measure-

ments, particularly the visible channels (Stowe et al. 1992). Monitoring of interannual effects

therefore requires additional care in the processing of the data set; however, for the cases in-

volved in this work, the time period is about 2 months, and such long term AVHRR calibration

difficulties are avoided.

Additional vegetation indexes have been developed which extend upon the concepts in the

NDVI. Among these is the soil-adjusted vegetation index (SAVI) developed by Huete (1988) to

minimize the influence of the soil background

SA VI =( PNIR - PvIs )(1 + L),
PNIR + PvIs + L

(2.17)
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where L is the soil correction term. An experiment in Arizona showed that the linear correlation

between SAVI and observed vegetation cover was small (r 2 ~ 0.36) and suggests that the rela­

tionship probably changes significantly as a function of vegetation type as well as amount (e.g.,

grasses versus shrubs) (Ormsby et al. 1987; Kustas 1993).

The combination of NDVI and land surface temperature (LST) has also been an active re­

search area for development of a method to retrieve surface moisture and fractional vegetation

coverage (Carlson et al. 1990; Price 1990; Nemani et al. 1993). The basic physical assumption is

that the more heavily vegetated surfaces are associated with greater transpiration and hence

should be cooler than the less vegetated ones (Gutman et al. 1995). The NDVI has also been

compared with surface temperature observations over southeastern Australia (Smith and Choud­

hury 1991) and with day-time range of surface skin temperature (Diak et al. 1995). The results

show similar results for both the absolute skin temperature measurements and the heating rate

skin temperatures. The correlation between the surface skin temperature and NDVI is poor, but

does exhibit a unique triangular structure which may suggest a sensitivity of the NDVI to soil

moisture. This is discussed further in section 2.2.2.

Microwave data have also been used to remotely sense vegetation. The depolarization of the

microwave radiation emitted by the soil surface is the identifying signature of heavier vegetation

amounts (Mo 1982). Experimental microwave vegetation indices have been developed to exploit

this signature. A comparison of the NDVI versus one of these indices, the Microwave Polariza­

tion Difference Temperature (MPDT), is shown later in section 4.3.6. The microwave data set is

more complex in its interpretation, since significant physical features such as surface roughness

and water content of the foliage have a significant effect on the observed microwave brightness

temperatures (see the discussion about microwave surface effects in Appendix A.3).
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The main emphasis from this summary is not that the NDVI is the only vegetation index

available, but that it has been thoroughly tested within the remote sensing vegetation community

(Gutman 1991; Gutman et al. 1995) and represents a defacto remote sensing vegetation reference

from which to infer vegetation dependencies in remote sensing studies. The AVHRR NDVI is

used later in this work in the remote sensing comparisons of section 4.3.6, and in Chapter 5 for

initialization of the atmospheric model's surface parameterization.

2.2.2 Infrared Remote Sensing of Soil Moisture

Infrared remote sensing of soil moisture is best suited to semi-arid conditions in which rela­

tively sparse vegetation amounts exist. This results in the soil surface having a major influence on

the partitioning of the energy fluxes between the soil and vegetation. Several modeling ap­

proaches are available that evaluate the energy balance of individual soil and vegetation compo­

nents (Kustas 1990; Shuttleworth and Gurney 1990; Schmugge et al. 1991; Massman 1992;

Nichols 1992). However in many of the methods, significant limitations exist due to the necessity

to accurately separate the composite surface temperature into soil and vegetation temperature

components (Smith and Choudhury 1991) and difficulties involved with correctly specifying im­

portant vegetation parameters such as fractional vegetation cover and leaf-area index (LAI) from

remotely sensed data (Myneni et al. 1992). Infrared methods have been considered by some to be

largely limited to bare soil conditions (van de Griend et al.1985). The relationship between diur­

nal temperature and soil moisture is also variable and depends upon soil type (ldso et al.1975).

However, when soil water content is transformed into pressure potential, a single relationship was

found to be valid for all the different soil types investigated. This is the basis for expressing

moisture values as a percentage of field capacity, where field capacity is the moisture content of

the -33 kPa pressure potential (Schmugge et al. 1980). Along with the previous problems, appli­

cation of an independent regression analysis between radiometer temperatures and sensible heat
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flux calculations have indicated poor skill, and reinforces the notion that for satellite applications

the radiometric approach is also only feasible on a site-specific basis (Cooper et al. 1995). Other

work has shown that at times the additional satellite information of surface skin temperature was

neither helpful nor harmful to the mesoscale analysis fields (Lipton et al. 1995). However, even

for all of its short comings, infrared techniques have several distinct advantages. Among those

advantages are the availability of infrared measurements at relatively high spatial and temporal

resolutions, the unique role of surface skin temperature in the surface energy budget and its im­

portance for other surface physical properties, and the presence of a relatively large diurnal signal

for most situations and conditions. The soil moisture information is there, but obscured to various

degrees.

In earlier work, the mid-morning differential of surface temperature with respect to absorbed

solar radiation was found to be most sensitive to soil moisture, and sensitivity studies based on

model simulations have shown that only under deep cold thermal advection is the surface tem­

perature heating rate seriously affected (Wetzel et al. 1984). To avoid the need for direct wind

speed measurements, methods have been developed which use geostrophic wind speed derived

from routine measurements of the surface pressure field (Crago 1995). A common technique is to

calculate latent heat fluxes as the residual term of the surface energy balance, thus mixing satel­

lite observations and model simulation results. An example of a simple straight-forward imple­

mentation is given by Kustas et al. (1996).

API methods that correlate the surface skin temperature information with an API have also

produced useful insights into the physical relationship of the surface skin temperature on the sur­

face energy balance. From these results, the relatively narrow range of API values over which

soil moisture is sensitive to changes in rainfall suggest that the infrared method is most suitable

for deriving surface moisture availability over plains or semiarid vegetation and where there are
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large horizontal precipitation gradiems (Carlson et al. 1984). This work also showed that agree­

ment between soil moisture and API was poorest on the smallest scales. This might suggest a

mismatch in scale between precipitation and the satellite measurements, or an inability of the sat­

ellite to distinguish between wet and dry surfaces when differences in dryness are masked by

complex vegetation cover or confused by lakes or underground aquifers or local irrigation prac­

tices (Carlson et al. 1984). In related work, Wetzel and Chang (1987) examined a simple statisti­

cal method using infrared surface temperature. Their approach relied on numerical model results

to identify important variables other than soil moisture that have a significant effect on the sur­

face temperature, and to define linear relationships between these variables and surface tempera­

ture. Results showed good agreement between estimated and observed soil moisture features

(r 2 = 0.71); however, when advection was neglected the average r2 value drops to 0.57. The

method developed for this work (discussed in Chapter 5) implicitly includes the advection effects

through the atmospheric model state variables.

A significant improvement over previous methods was the use of surface temperature heating

rates rather than a single temperature. Methods which involve time differencing offer advantages

over the direct method, because they almost completely eliminate the effects of systematic bias in

the surface temperature due to sensor problems or view angle, and they operate on a time integral

of heat flux which effectively reduces the impact of random errors (Hall and Sellers 1995). As an

example, twelve-hour daytime totals of surface sensible heat flux were estimated using satellite

measured surface skin temperatures and a model of the land surface and planetary boundary layer

during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experi­

ment (FIFE) 1989 (Diak and Whipple 1995). On an even longer time-scale, monthly evapotran­

spiration has been measured from infrared satellite data by (1994). Time integration is a strength

that should be exploited in future methods.
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Another critical area of research regards the use of aerodynamic values versus radiometric

quantities. Radiometric values of the exchange coefficient and roughness length have been shown

to not agree with their aerodynamic equivalents (Sun and Mahrt 1995). The radiometric rough­

ness height was found to be flow dependent and not systematically related to the roughness

height for momentum. This has serious implications on the methods that rely upon infrared sur­

face skin temperatures as a surrogate for aerodynamic surface temperature, and suggests that a

more complete surface parameterization is needed, especially for partially vegetated surfaces. As

an example, observations of countergradient heat fluxes, as defined from the satellite radiative

skin temperature and in situ temperature just above the surface, are observed over irrigated crops,

apparently due to domination of the heat flux by the unshaded bare soil between the rows, while

the radiation footprint is dominated by the cooler transpiring vegetation (Sun and Mahrt 1995).

Additional model simulations have shown systematic differences between soil and vegetation

temperatures that help to explain the complex relationship between surface radiometric and aero­

dynamic temperatures, and clearly demonstrated the need to distinguish between canopy and soil

background temperatures in the surface energy balance models that use thermal infrared data to

estimate land surface fluxes (Friedl 1995).

Observational attempts to address the fractional vegetation effects have shown that the NDVI

versus the surface skin temperature produces a unique relationship between the data sets and is

the basis of a nomogram, called the "universal triangle". This universal triangle simplifies the

interpretation of the satellite data sets and is a possible step toward future methods that integrate

multisensor datasets (Gillies and Carlson 1995). Soil vegetation atmospheric transfer (SVAT)

models have also been used in conjunction with infrared satellite measurements to estimate the

evaporation and transpiration at the surface (Olioso et a1. 1995). The method developed in Chap­

ter 5 can be thought of as a simple SVAT-based method since it employs the CSU-RAMS land
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surface and vegetation parameterization scheme. Other methods using the coupled satellite-model

approach have, for example, included explicit cloud information for the solar fluxes (Lipton

1993).

2.2.3 Microwave Remote Sensing of Soil Moisture

Microwave radiometers have the potential to measure soil moisture because of the large dif­

ference between wet and dry soil dielectric constants as reflected in the emissivity values. The

best frequencies are lower (such as 1.4 GHz) because the upwelling radiance comes from greater

soil depths (3-5 cm) compared with higher frequencies (Njoku and Kong 1977), the dielectric

constant is higher, and the measurements are relatively unaffected by clouds and vegetation

(Schmugge 1989). Higher frequencies sense only a very shallow layer, and vegetation produces

attenuation and scattering that partially obscures the soil radiance contribution upwelling from

below the vegetation canopy (Jackson et al. 1982; Mo 1982).

In some of the earliest microwave soil moisture work, McFarland (1976) showed a strong

relationship between the Skylab 21-cm brightness temperatures and the antecedent precipitation

index (API) for data collected during a pass starting over the Texas and Oklahoma panhandles

and continuing southeast toward the Gulf of Mexico. A modem aircraft-based version of this sen­

sor with much higher spatial resolution, the Pushbroom Microwave Radiometer (PBMR), has

been used to conduct experiments using low frequency (21-cm wavelength) microwave radi­

ometers to determine soil moisture (Kustas 1993). These microwave frequencies have been

shown to be highly correlated with 0-5 cm soil moisture (Schmugge et a1. 1992; Schmugge et a1.

1994). Results from the Hydrologic Atmospheric Pilot Experiment- Mode1isation du Bilan Hy-

drique program (HAPEX-MOBILHY) showed smaller correlations (r 2 ~ 0.4), while data from

FIFE had better results with a 4.5% RMS difference and a 1.8% bias between estimated and

measured values of soil moisture (Schmugge et a1. 1992). In MONSOON 90 (Kustas et a1. 1991)
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which had lower vegetation amounts than the previously mentioned experiments, comparisons of

the brightness temperature difference between two days 48 hours apart with corresponding rain-

fall amounts had even higher correlations (r 2 = 0.87) (Schmugge et al. 1992). It was also found

that adequate estimates of vegetation biomass are needed to obtain reliable retrieval of surface

soil moisture from the L-band radiometric measurements (Wang 1995). An example of high

resolution microwave soil moisture estimates from the PBMR combined with in situ soil moisture

measurements is given by Peck and Hope (1995) for the FIFE study area. Results from the

PBMR over the FIFE study region during 1985-1989 are summarized by Wang (1995). The

PBMR has also been compared with active (SAR) microwave sensors, but the results were non­

conclusive as to which instrument performed better. The final opinion was that the choice of in­

strument be based on the intended applications and information that is available (Wood et al.

1993).

Wang (1985) examined Skylab (1.4 GHz) and Scanning Multichannel Microwave Radiome­

ter (SMMR) (6.6 GHz and 10.7 GHz) microwave data in a bare soil and a densely vegetated re­

gion in Texas. He found that the vegetation reduced the sensitivity of the 6.6 GHz and 10.7 GHz

microwave channels to the soil moisture signal. At a slightly higher frequency, Barton (1978)

showed that soil moisture estimates based on 11 GHz airborne microwave measurements were

quite good over bare soil but very poor in vegetated regions due to the effects of scattering and

absorption and reemission by the vegetation canopy.

Nimbus-5 Electronically Scanning Microwave Radiometer (ESMR) satellite measurements

have also been shown to be responsive to soil-moisture conditions over large land areas

(Schmugge et al. 1977). At the ESMR frequency (19.35 GHz), correlations with soil moisrure

were found to be limited to predominantly bare soil and low vegetation density areas (Njoku

1982). Further studies by McFarland and Blanchard (1977) extended these results to the use of
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API algorithms for ESMR data obtained over the Great Plains where little or no vegetation exists

(Jackson and Schmugge 1989). Allison et at. (1979) also used ESMR data to observe flooding

conditions in East Australia.

Using 37 GHz SMMR data, Spencer (1984) found polarization differences exceeding 16 K

over wet soil regions. Additional studies by Choudhury and Blanchard (1983), and Choudhury

and Monteith (1988) have used API as a surrogate soil moisture observation to correlate with mi­

crowave brightness temperatures from SMMR. Results from Choudhury and Monteith (1988)

demonstrated that the relationship of microwave brightness temperature with API is also sensitive

to the NDVI. However, two sites with different vegetation amounts also had similar correlations

of microwave brightness temperature with API (r 2 = 0.72). Flooding conditions were also ob­

served in South America with the 37 GHz channels of SMMR (Giddings and 1989). Figure 2.1

shows the observed temporal variation of the Negro river stage at Manaus and the difference

between the vertical and horizontal polarization at 37 GHz, !1T. The maxima and minima of the

river height match the !1T values extremely well. As the river height increases, the low-lying

areas of the river banks progressively become flooded. As the area of exposed water increases,

the !1T value increases. Other work has attempted to extend the single sensor data analysis to the

use of multiple sensors to remotely sense soil moisture with various combinations of microwave,

infrared and optical sensor data (e.g., Perry and Carlson 1988; Soares et at. 1988; van de Griend

and Gurney 1988; Choudhury 1990; Choudhury 1992).

Heymsfield and Fulton (1992) used higher frequency (19 GHz, 37 GHz and 85.5 GHz)

SSM/I data in a case study over Oklahoma and found that rainfall has an important effect of the

background microwave brightness temperatures at the SSM/I frequencies and found that a region

of abnormally cold brightness temperatures coincided with a region dominated by recently

planted wheat fields. Dew formation did not appear to cause a significant impact on the SSM/I
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brightness temperatures. However, the effect of vegetation was shown to strongly dampen the

soil moisture response at the SSMII frequencies, even at the lowest 19 GHz frequency. In addi­

tion, a time series of observations was used to relate evaporation and transpiration to SSM/I

brightness temperatures and API. Microwave emissivities were also used to normalize the bright­

ness temperatures for the changing thermometric temperature of the background. These emissivi­

ties were based on in situ measurements of soil temperature at 10.2 cm depth and surface air tem­

peratures. However, as mentioned in section 2.2.2 the surface air temperature is not generally the

same as the radiometric surface temperature (Friedl 1995). The SSM/I radiances however are

more affected by atmospheric features such as clouds and rain than lower frequency measure­

ments (Hollinger et al. 1987), thus interpretation of the higher frequency microwave data is made

more complex and difficult compared to lower frequency measurements. Appendix A.2 and A.3

contain further details regarding the behavior of microwave brightness temperatures due to at­

mospheric and surface conditions. Work by Heymsfield and Fulton (1992) showed that it would

be very difficult to monitor soil moisture variations with any SSMII frequency in vegetated re­

gions. It was also not clear from that work whether soil moisture was being sensed, or whether

the vegetation moisture content itself was measured. Thus the SSMII does not have the most ap­

propriate sensor frequencies to use for remote sensing of soil moisture. However, the SSMII is

currently the only available satellite-based passive microwave imaging sensor in orbit. Other pas­

sive microwave sensors such as the Microwave Sounding Unit (MSU) and the Special Sensor

Microwave/Temperature Sounder (SSMIT and SSMlT-2) are sounders with reduced resolution

capabilities.

Given multifrequency microwave observations, it is theoretically possible to determine a

crude soil moisture profile since the depth of penetration of microwaves is a function of the fre­

quency (Njoku and Kong 1977). However, Burke et al. (1979) have found that in practice this is
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difficult to achieve. They found that even at 1.4 GHz the surface soil layer (I -2 cm deep) domi­

nated the microwave signature. Heymsfield and Fulton (1992) also found that the SSM/I frequen­

cies exhibited no clear difference in the period of recovery because of the very shallow surface

soil layer being sensed at all frequencies. This suggests that soil moisture profiling does not seem

feasible with the SSM/I channels. Long time periods of recovery were observed for the SSMII

which is likely due to the shallow surface layer being replenished by the hydraulic conductivity

from deeper, wetter soil layers during the recovery period. Thus the SSM/I frequencies offer the

possibility of gross monitoring of soil moisture in bare soil regions and perhaps even quantitative

soil moisture retrievals with the use of radiative transfer models and additional data including in

situ soil moisture measurements (Heymsfield and Fulton 1992). An explicit solution to the in­

verse problem of soil moisture using coherent wave radiative transfer theory has been derived by

Entekhabi et al. (1994). However, this method has not been tested using actual observations.

Soil vegetation atmospheric transfer (SVAT) models have been developed to estimate bare­

soil evaporation using microwave remote sensing data to initialize or update near-surface soil

moisture conditions (e.g., Bernard et al. 1981; Prevot et al. 1984; Bernard et al. 1986; Bruckler

and Witono 1989; Olioso et al. 1994). These models require atmospheric forcing inputs (e.g.,

wind speed, air temperature, and humidity at screen height) and information on soil properties

that are usually difficult to obtain for regional energy balance estimates (Kustas 1993). However,

results from this work show that at the higher microwave frequencies of the SSMII the complex­

ity of the vegetation influences on the microwave signature makes such a direct relationship quite

tenuous.

Another idea that has been introduced recently is microwave brightness temperature correla­

tions against the evaporative fraction (EF) (EF =- E/(QR + QG))' The microwave brightness

temperatures were correlated against EF and it was found that an inverse relationship existed with
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a significant correlation (r 2 = 0.69). The variation in EF in dry near-surface soil moisture con­

ditions was correlated to the amount of vegetation cover estimated with a remotely sensed vege­

tation index. Thus the microwave data can indicate when soil evaporation is significantly contrib­

uting to EF, while the optical data is helpful for quantifying the spatial variation in EF due to the

distribution of vegetation cover. In addition, using only microwave frequencies is a major limita­

tion in estimating EF because the influence of vegetation and moisture below 5 cm in regulating

EF cannot be addressed (Kustas 1993).

A method known as Radiobrightness Thermal Inertia (RTI) has also been proposed which

uses day-night (12 h) differences in satellite-sensed brightness temperatures to monitor soil

moisture (England et al. 1992). Again vegetation tends to mask both the thermal infrared and mi­

crowave signatures, so the attenuation of the diurnal brightness temperature range is expected to

be less severe in prairie regions where the vegetation is short or sparse. The optimum day/night

sampling times are during peak heating of the soil, since the method relies on a strong surface

temperature range. The RTI method is a microwave analog of the infrared methods discussed in

section 2.2.2.

An additional approach for detecting soil moisture using microwave data is through change

detection. This approach can be used for both passive and active microwave data. The change

detection method minimizes the impact of target variables such as soil texture, roughness and

vegetation because these tend to change slowly, if at all with time. With change detection it is

assumed that the only target change occurring is the soil moisture. Thus any measured changes in

brightness temperature or roughness can be related directly to changes in soil moisture. Fortu­

nately for many applications, the changes in soil moisture may be more important than the actual

absolute value of soil moisture (Engman 1991).
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2.3 ATMOSPHERIC MODELING STUDIES

The Project for the Intercomparison of Land Surface Parameterization Schemes (PILPS) has

shown that a significant amount of the variability among models can be tracked to the soil mois­

ture parameterization (Henderson-Sellers et al. 1995). In addition, when a hypothetical initial soil

moisture field derived from forecast errors instead of a climatological estimate is used to initialize

the Canadian global forecast modeL it shov.ed that the standard deviation of the temperature error

is reduced by 20% (Delage and Yerseghy 1995). That work is typical of other's experience with

improving the soil moisture representation of their land surface parameterization schemes (see

Chapter 1). Recently as part of a continuing sequence of model improvements, the National Me­

teorological Center (NMC) has implemented a Land-Surface Data Assimilation System (LDAS)

that executes continuously in real time over the conterminous United States to provide initial soil

moisture to the National Center for Environmental Prediction (NCEP) mesoscale Eta model

(Black 1994).

In general, atmospheric land surface parameterization methods can be classified into two

categories, one quasi-statistical and one deterministic. An example of the first group is an ex­

tended bucket model developed by Schaake (1990) which is being used successfully with limited

data in the Nile River basin. The deterministic methods include explicit multilayer soils and

vegetation canopies. Examples of these include the simplified SiB model ofXue et aI. (1991) and

the soil and vegetation model ofPan and Mahrt (1987), among numerous others. Of the determi­

nistic methods, the variational data assimilation methods consist of a subgroup that have also

been used to estimate soil moisture from the evolution of atmospheric parameters near the surface

(temperature and relative humidity) (Mahfouf1991). Classification of the methods can be subdi­

vided further by data source requirements (e.g., various surface observations, satellite data sets,

spatial and temporal sampling requirements), assumptions made for simplification or to ensure
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closure of the land surface parameterization equation set, and the relative complexity and detail

of the land surface system that the method attempts to simulate.

Application of the land surface parameterizations is typically much harder to do in the "real

world" than with idealized simulations. Several factors can combine to make the anticipated

thermally induced flows obscure. For example, in work by Segal et al. (1989) the circulations

were reflected in the measurements, but only by modest changes in the wind speed and wind di­

rection across the region of strong surface contrast. It was suggested that the synoptic flow, and

the daytime elevated terrain-forced flow in the area, combined to mask to varying degrees the

circulation due to the irrigated versus dry land effect. Numerical model simulations were per­

formed over the studied region and were found to support this hypothesis. For simpler methods

that employ bulk transfer coefficients, a systematic error of± 1 K in the surface temperature has

been found to lead to erroneous bulk transfer coefficient estimates (Matsushima and Kondo

1995). Thus implementation and validation of land surface parameterization schemes with obser­

vations can be a difficult task.

However, simulations of hypothetical situations can lead to a more in-depth understanding of

the physical processes involved. For example, additional moistening in numerical simulations of

the drought of 1988, showed a large relative increase in precipitation, often by as much as a fac­

tor of 2. Conversely, in the flood year of 1993, drying of the land surface resulted in a relative

decrease in simulated rainfall by as much as 30%-40% (Pan et al. 1995). Temporal issues can

also be addressed, such as in Clark and Arritt's (1995) work where larger values of initial soil

moisture were found to delay the onset of precipitation and to increase the precipitation amount.

It was also found that the greatest rainfall amounts were generally predicted to occur for moist

fully vegetated surfaces, and that vegetation cover had a pronounced moderating influence, de­

creasing the sensitivity of the results to the soil moisture content. Also the inclusion of shading by
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shallow cumulus clouds has been shown to have a tendency to reduce the convection for moist,

bare (or partly bare) soil (Clark and Arritt 1995). The analysis of Chen and Avissar (1994b)

showed that land-surface moisture discontinuities seem to playa more important role in a rela­

tively dry atmosphere, and that the strongest precipitation is produced by a wavelength of land­

surface forcing equivalent to the local Rossby radius of deformation. In another paper, Chen and

Avissar (1994a) examined the mesoscale heat fluxes and found that the fluxes weaken in the

presence of large-scale background winds but can remain significant even under moderate winds.

Such work as this is helpful in the planning of field projects, and in focusing efforts toward areas

that hopefully will produce a better understanding of the complex physical mechanisms involved

with land surface-atmospheric interactions.

2.4 MCNIDER DATA ASSIMILATION METHOD

Several studies have been performed using surface skin-temperatures as retrieved from satel­

lite for use in mesoscale models. Among these studies is work by Price (1982), Carlson et al.

(1981), Wetzel et al. (1984), Carlson (1986), Wetzel and Woodward (1987), and Wetzel and

Chang (1988). A major shortcoming of dynamic assimilation techniques has been that nudging

the near-surface temperature has not been successful (Stauffer et al. 1991). This is primarily be­

cause nudging of the surface temperature alters the delicate balance in near-surface stability,

drastically changes the momentum balance, and leads to sharp changes in velocity and boundary­

layer behavior. Also, the surface energy budget may become unbalanced and prevent conver­

gence (McNider et al. 1994). A recent development has been to force the atmospheric model sur­

face parameterization with surface skin-temperature heating rates, rather than with the absolute

magnitudes of the remotely sensed skin-temperatures. This has the benefit of eliminating the

systematic bias due to sensor errors and view angle (Hall and Sellers 1995), and conversely, bi­

ases that may exist in the model parameterization scheme are also minimized. For example, an
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imperfect model forced with absolutely accurate satellite data would produce invalid results and

may not converge to a solution at all, while an imperfect model forced by relative satellite data

(i.e. heating rates) may perform quite well, since a model based on heating rates requires only

relative temperature accuracy rather than absolute temperature accuracy.

A study by McNider et al. (1994) used Geostationary Operational Environmental Satellite

(GOES) Visible Infrared Spin Scan Radiometer (VISSR) infrared brightness temperatures cou-

pled to an atmospheric mesoscale model to diagnose the surface friction humidity, q• . The tech-

nique is based on analytically recovering surface moisture from similarity expressions derived

from an evaporation residual obtained as a difference between the unadjusted model evapotran-

spiration and the satellite inferred evaporation and transpiration. It assumes that the largest error

in the surface energy budget is in the evaporation and transpiration term. The method was tested

on data from FIFE and a three-dimensional test over Oklahoma.

The technique of McNider et al. (1994) requires the use of surface skin-temperatures over the

time period of interest, and is most applicable to the period from early to mid-morning when

cloud-free views of the surface are more frequent and the assumptions of the technique are best

satisfied (see section 2.2.2). The method is based on an alternative form of the surface energy

budget (see Equation 2.1)

(2.18)

(Blackadar 1979) which contains a prognostic term Cb oTG/ot that accounts for the resistance

to changes in the surface temperature. This is different in approach than the original surface en-

ergy budget (Equation 2.1). Previously we had assumed that all changes in the surface energy

budget occurred instantaneously within an infinitesimally-thin air-surface interface. The repre-

sentation of Equation 2.18 is now capable of including temporal "lags" induced by heat storage
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and other factors, similar in concept to thermal inertial, but more general in scope. Thus, to avoid

confusion, the parameter, Cb , is called the surface heat resistance, rather than thermal inertia,

i.e., the thermal inertia term is reserved for referring to the narrowly defined physics phenomena

relating directly to the heat capacity of a material, while surface heat resistance is a more gener-

alized composite term which can include multiple heat capacities in addition of other physical

mechanisms.

Given the satellite-observed temperature change and Equation 2.2, Equation 2.18 can be in-

verted to give

(2.19)

where H is the sensible heat flux, and Es is the satellite inferred latent heat flux as a function of

the satellite derived time rate of change of the surface skin-temperature (the subscript s denotes

satellite observed values). By writing the model's surface energy budget in a similar manner,

(2.20)

where the subscript m denotes the model values, there are two equations that can be combined

given certain assumptions. The biggest assumption is that all the terms in the model's surface en-

ergy budget are the same as for the actual energy budget except for the latent heat flux term, E .

So by taking the difference of Equations 2.19 and 2.20 we obtain

(2.21)

The term on the left-hand-side of Equation 2.21 can be expanded substituting with Equation 2.2,

which results in
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(2.22)

By assuming that u's = u'm in Equation 2.22, we can solve for q.s

(2.23)

were u. has a specified minimum value for calm wind conditions. Once q.\. is in terms of the
m .

model variables and satellite observations, it may be used in combination with Equations 2.15

and 2.11 to obtain the surface wetness using similarity theory,

(2.24)

Equation 2.24 is the revised surface humidity deduced from the rate of change of the satellite

skin-temperature. In practice, limits are imposed on qG such that qG < qSGt (Tc;) , where qSGt is

the saturated specific humidity at the surface temperature, TG , and qc; > O. As shown in Fig-

ure 2.2, the method iterates to converge upon a sensible heat flux value before attempting to cal-

culate the surface humidity. Another piece of information required by the method is the surface

heat resistance which must be calculated by inverting Equation 2.20 and solving for Cb ,

(2.25)

This parameter can be highly variable and McNider et al. (1994) suggest that more work needs to

be done in diagnosing this parameter. The main limitations of the method are the unknown errors

involved in the assumptions of the method, and in the rather limited time period for which is it
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valid (morning to early afternoon). An extension of this method that includes vegetation effects

and eliminates the problematic Ch term is developed for the CSU-RAMS surface parameteriza­

tion scheme in Chapter 5.
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Chapter 3

DATA

By the very nature of this work, the data sets involved are varied and diverse. This chapter

provides summary information for reference throughout the text. In particular, the satellite sen­

sors and data sets are discussed in sections 3.1 and 3.2, and various ancillary data sets are dis­

cussed in section 3.3, while the meteorological backgrounds for the two major case studies of this

work are discussed in section 3.6. Additional information regarding the specific NDVI data set

used in this work is presented in section 3.3.5. A brief reference is made to the satellite data fu­

sion methodology in section 3.5. However, a complete description is contained in Appendix C.

3.1 VISSR INSTRUMENT DESCRIPTION

The GOES series are operated by the National Oceanic and Atmospheric Administration

(NOAA). Presently, three such satellites are in operation over the Western Hemisphere, GOES-7,

GOES-8, and GOES-9, maintaining a geosynchronous orbit at the equator at an altitude of

35,800 km. The satellite used in this study, GOES-7, is commonly called GOES WEST due to its

stationary longitudinal position at approximately 135° W. This position can vary depending on

NOAA needs. During the time period of this study, the actual longitudinal position was at

97.5° Wand was relatively stable. The GOES-8 and GOES-9 satellites are the first of a new gen­

eration of satellites known as the GOES-NEXT series (Menzel and Purdom 1994). Thus,

GOES-7 is the last satellite of an older GOES satellite series.

The instrument on board the GOES-7 satellite used in this study is the Visible and Infrared

Spin Scan Radiometer (VISSR) and when operated in dwell sounding mode (a mode in which all
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12 infrared channels are repeatedly scanned to improve instrument nOise characteristics for

sounding retrieval purposes) it is known as the VISSR Atmospheric Sounder (VAS). The instru­

ment is capable of measuring the upwelling radiance from the earth in the visible and in

12 infrared spectral channels from 3.9 J..lm to 15 J..lm. Table 3.1 adapted from Chesters and Robin­

son (1983) lists the spectral characteristics of the VAS channels. The pre-launch noise specifica­

tions were originally given in terms of Noise Equivalent Radiance Differences but are listed in

Table 3.1 as noise equivalent temperature differences (NELlTs). The absolute accuracy of the

VISSR infrared data is ± 1.5 K. In normal VISSR mode, the visible and surface infrared channel,

channel 8, are transmitted each half hour for the whole hemisphere. Channel 8 is a surface chan­

nel with a high sensitivity to the surface as the atmospheric weighting function, dr/dIn p, for

channel 8 in Figure 3.1 indicates. The other VAS channels are used for sounding retrievals since

their weighting functions peak at a higher level in the atmosphere.

The instrument is actually several detectors combined. The visible detector is a separate unit

with 8 sensors that scan the earth West-to-East (W-E) in parallel. Three infrared sensors ofmul­

tiple types with different field-of-views (FOVs) are used in conjunction with a selectable narrow­

band filter creating a quite complex arrangement that is capable of several modes of operation

(Clark 1983). The instrument scans the earth by moving a mirror in the north-to-south (N-S) di­

rection in angular increments of 0.192 mrad as the satellite spins at 100 rpm about its axis that is

perpendicular to the earth's equatorial plane. The sampling rate for the infrared data is 8 J..lS,

which produces 3822 elements for each line of data, and for the maximum mirror steps there are

1821 lines, which result in hemispheric coverage of approximately ± 70° in longitude with re­

spect to the satellite subpoint. The visible data with its 8 sensors has a possible 14568 lines and

elements. The visible resolution at nadir is 0.9 km and channel 8 has a nadir resolution of 6.9 km.

During the scanning process the E-W direction is over sampled, which results in 4 x 8 km
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rectangular infrared sensor FOVs. The VISSR data is navigated based on the automatic naviga­

tion parameters that the satellite transmits to the groundstation which are updated daily. The ap­

parent navigation error during the case study was ± 2 pixels for the infrared imagery which

roughly corresponds to ± 14 km. Examples of the VISSR infrared, water vapor, and visible im­

agery over the case study region for 1532-1535 UTe 8 September 1991 are shown in Figures 3.2

- 3.4. The infrared and water vapor imagery are displayed in terms of brightness temperature (K),

while the visible imagery is in terms of raw 6-bit visible count values (with a range of 0 to 63).

As Figure 3.4 shows, the visible spatial resolution is significantly better than the infrared imagery

resolution.

3.2 SSMII INSTRUMENT DESCRIPTION

The Special Sensor Microwavellmager (SSMII) has flown on at least three Defense Mete­

orological Satellite Program (DMSP) satellites, F-8 (launched 19 June 1987), F-10 (launched

1 December 1990), and F-11 (launched 28 November 1991). The DMSP satellites are in a sun­

synchronous near-polar orbit at an altitude of 833 km with a period of 102 minutes. The orbit

equator crossing times are approximately 0612 local time and has an orbit inclination of 98.8°

which allows for twice daily coverage poleward of 50° latitude (Hollinger et al. 1987).

The instrument consists of an offset parabolic reflector which is 61 cm x 66 em in size and is

mounted on a rotating drum which also contains the feedhom and various supporting electronics.

The simultaneous rotation of the feedhom assembly with the reflector is an improvement over

earlier microwave imaging systems such as SMMR that had a fixed feedhom assembly. The si­

multaneous rotation allows for more accurate polarization measurements since the direction of

polarized radiation with respect to the feedhom is the same as the feedhom rotates with the re­

flector. The SMMR data must have polarization corrections applied to overcome this problem

(Njoku 1980). The SSMII has four frequencies (19.35, 22.235, 37.0, and 85.5 GHz) and dual
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polarization capabilities on all except the 22.235 GHz frequency which records only the vertical

polarization (see Table 3.2). The data is collected during the rearward 102° portion of the instru­

ment rotation which results in a conical scanning pattern 1394 km wide (see Figure 3.5). The

conical scanning pattern has a constant zenith angle of 53.1°, eliminating changing limb effects

due to varying zenith angle. Since the instrument uses the same antenna for the various channels,

the effective-field-of-view (EFOY) of the sensor varies with frequency, with the highest fre­

quency, 85.5 GHz, having the highest resolution. The resolutions given in Table 3.2 and shown

schematically in Figure 3.5 are for the 3 dB (half-power) antenna beam widths. The data are

sampled at 64 positions (every 1.6°) per scan line (128 samples at 85.5 GHz) with an integration

time of 7.95 ms (3.89 ms at 85.5 GHz). Since the 85.5 GHz is of higher resolution, the lower

resolution channels are sampled every other scan line with the 85.5 GHz channels being sampled

for each line continuously. This pattern results in a sample resolution of 12.5 km x 12.5 km for

the 85.5 GHz channels and 25 km x 25 km for the lower resolution channels. Figure 3.6 presents

the beam sizes and sampling grid for a region near the ground track of the sub-satellite point and

near the edge of the swath. The effect of the radiometer integration times is to increase the effec­

tive along scan beam diameter and make the beams at 37 and 85 GHz nearly circular. Note the

greater overlapping of beams near the edge of the swath in Figure 3.6. Examples ofDMSP F-I0

SSMII microwave brightness temperature data from the 37H GHz and 85.5H GHz channels

(channels 5 and 7) for 1525-1534 UTe 8 September 1991 are shown in Figures 3.7 and 3.8.

The F-8 SSMII sensor developed technical problems with its 85.5 GHz channels (Hollinger

et al. 1990) (see Table 3.3). Thus the 85.5 GHz data for the time period of this study (late sum­

mer of 1991) originates exclusively from the F-I0 SSMII sensor (the F-l1 was not yet launched).

However, the lower frequency SSMII channel data (channels 1-5) were unaffected by the F-8

85.5 GHz problems and are available for both SSMII sensors (F-8 and F-I0).
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The raw data is processed by several algorithms that provide antenna corrections for the cali­

brated sensor brightness temperatures and navigation parameters which will not be explained in

detail here (for more information see Hollinger et al. 1987). The navigation for each data location

was assigned from the satellite ephemeris data. Data archived after July 1989 have absolute navi­

gation errors reduced to approximately 7 km (half of the 85.5 GHz sample resolution) due to im­

proved satellite ephemeris data and an additional constant navigation correction (Poe and Con-

way 1990; Poe 1990).

3.3 ANCILLARY DATA SETS

3.3.1 SAOIUPA Data

The United States Air Force Environmental Technical Applications Center (USAFETAC)

DATSAV Upper-Air Data Set (USAF 1977) was the source of the atmospheric soundings of

temperature and water vapor that were used in this study. In particular, it was the source for the

radiative transfer calculations that require measurements of the atmospheric state variables. The

data was quality controlled to remove potential errors in the data set. Soundings were required to

extend to the 400 mb level and have at least 5 sounding levels with valid temperature and water

vapor mixing ratios spread over a 650 mb range. Many soundings exceeded these criteria and

data quality was not found to be a significant problem.

3.3.2 USAFETAC Climatic Database - Surface Observations

The USAFETAC Climatic Database (DATSAV2 Surface) was used in the precipitation com­

parison data analysis (USAF 1986). In the database, precipitation totals were reported for each

6 hour period for the central United States, with some additional irregular reporting periods. The

data were quality controlled by removing redundant reports, temporally interpolating irregular

reporting periods, and eliminating stations that reported less than 80% of the time. The remaining
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296 post-quality-controlled stations are shown in Figure 3.9. Over 11,000 precipitation events are

included in the data set.

3.3.3 USDA Crop Moisture Index

The USDA produces crop moisture estimates for the United States from local USDA agri­

cult,:,ral offices distributed throughout the country. Each division reports a numerical crop mois­

ture index (CMI) which is then spatially interpolated to generate the final product. The divisions

have a spacing of roughly 100 km in the East with much larger distances in parts of the western

United States (up to 500 km). The estimate is based on crop need versus the available water in a

1.5 m soil profile. The USDA crop moisture estimates are considered short term (up to about 4

weeks) and can change considerably on a weekly basis. Table 3.4 contains the numerical crop

moisture ratings and their verbal equivalents.

3.3.4 NGDC Digital Elevation Model Database

The National Geophysical Data Center (NGDC) Digital Elevation Model (DEM) data were

used to correct the radiative transfer calculations for topographic effects. Primarily the radiative

transfer topographic effect is due to surface pressure changes associated with elevation differ­

ences. This effect is largest in the mountainous regions. The DEM data were derived from the

30-arc second data set distributed by NGDC. The EROS Data Center (EDC) has edited this ver­

sion of the NGDC DEM data for obvious errors in the Great Lakes. The only important differ­

ence between the NGDC product and the EDC version is that the EDC has reprojected the file

using bilinear resampling to the Lambert projection with l-krn cells. These data were originally

created by the U.S. Army Mapping Service with a 64 m Universal Transverse Mercator (VIM)

cell and were resarnpled (at 3 arc seconds) by Defense Mapping Agency Topographic Command.

For the NGDC product, sampling was done by selecting every 10th line and element (l percent

sample), and elevations were rounded to the nearest 6 m (20 ft.). The DEM for the case study
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region is shown in Figure 3.10. The data are limited to the United States and were not available

for Canada or Mexico. Therefore, results that rely on the DEM, data set are also limited to the

United States.

3.3.5 CSU-RAMS Initialization Datasets

Atmospheric variables of the CSU-RAMS model were initialized using a combination of the

NMC gridded 2.5 degree pressure data, upper air soundings and surface observations for

1200 UTC and 0000 UTC. The data were obtained through the internet from the NCAR mass

storage system. Topography, vegetation type, land percentage, and climatological sea surface

temperature were read from the standard CSU-RAMS 10 minute initialization data files. Vegeta­

tion categories for the land surface vegetation parameterization scheme were obtained from

USGS NDVI-derived datasets (see Lee 1992).

3.4 NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI)

As discussed in section 2.2.1, the NDV! is based on channels 1 and 2 of the AVHRR sensor

(Gutman 1991; KidweI11994; Gutman et al. 1995). The NDVI dataset used in this work is the

USGS EDC's Land-cover Characteristics Database for the Conterminous United States that in­

cludes a biweekly 1 km NDV! dataset (Loveland et al. 1991). The NDVI data have been re­

mapped to a Lambert projection in a similar fashion as the DEM data described in section 3.3.4.

Figure 3.11 shows average NDV! values for the central United States for Julian Days 200-284 of

1991. The main vegetation feature is the strong east-west gradient in the NDVI field, with maxi­

mum NDVI values over the upper Midwest, and minimum NDV! values scattered thoughout des­

ert regions of the West. The NDV! values were observed to change slowly with seasonal vegta­

tional effects.
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3.5 CO-LOCATION OF SATELLITE AND GEOPHYSICAL DATA SETS

Multisensor-multispectral scientific data applications require a tremendous investment re­

garding data preparation and analysis. A data fusion method was developed for this work that is

general enough for use with any scan-line-based datasets (satellite and ground based) and enables

multisensor-multispectral datasets to be merged on a routine basis (Jones et al. 1995). A self­

describing generalized data format is used to modularize the data processing flow and obtain sig­

nificant improvements in terms of flexibility, extensibility, and generality of application. While

comparable processing times are needed to physically merge datasets, results show significant

performance gains on any subsequent analysis of the merged datasets since scientific algorithms

operate within the original satellite projection space. The advanced software processing tech­

niques used in the Polar Orbiter Remapping and Transformation Application Library (PORTAL)

are discussed further in Appendix C.

3.6 GENERAL DESCRIPTION OF SELECTED CASE STUDIES

As discussed in section 1.3, there are two major parts of this study. This section reviews rele­

vant background information and conditions for each part for future reference throughout the re­

mainder of this work.

3.6.1 Case A: Mississippi Basin

The Mississippi Basin watershed area (25-55° N, 85-110° W) was selected for the continen­

tal-scale portion of this work. The period selected was late summer (Aug.-Oct., 1991) and was

approximately 70 days in length. The year of 1991 was noted for the mid-summer drought over

the Midwest with several locations receiving less than 50% of their normal rainfall (see

Figure 3.12). However, during the late summer time period of this case study, the Midwest

drought started to break by September, so this case study includes a significant transitional pe­

riod. Monthly total precipitation and percentage of normal precipitation for July 1991 through
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September 1991 is shown in Figures 3.13-3.15. Features to notice are the generally moist condi­

tions throughout the period for the upper Midwest, the early dry conditions in the lower Midwest

that later receive significant rainfall, and the highly variable situation in the central Great Plains

region. July's rainfall (see Figure 3.13) was not unusual except for south-central Nebraska re­

ceiving more than 4 inches (l0.24 cm) of rain. August brought heavy rains to most of Kansas

while sparing Oklahoma (Figure 3.14). Conversely, during September west Kansas had little if

any rain, while most of Oklahoma, and the southern Plains in general, received very heavy rain,

with a large region receiving more than 8 inches (20.48 cm) of rain (Figure 3.15). Thus the late

summer of 1991 is a very good time period to observe surface soil moisture changes. The corre­

spondence of these rain events to the satellite observations is discussed in detail in Chapter 4.

3.6.2 Case B: OklahomaIKansas Region

The coupled satellite-model work was performed on a much smaller time scale. A single day

was selected (1991 September 8) in which morning conditions were mostly clear, and afternoon

observations showed a weak dryline formation in the central Great Plains (Kansas-Oklahoma re­

gion). Additionally, soil moisture contrasts were particularly strong for this case. Thus this repre­

sented an excellent opportunity to test the coupled satellite-model soil moisture retrieval system

that is developed in Chapter 5.

The day before September 8 heavily influenced the surface soil moisture field, with morning

rain in south-central Kansas and northwest Oklahoma moving northeastward with time. Eastern

South Dakota also experienced rain on September 7. The basic synoptic flow was dominated by

an upper level trough over the Rockies with a surface low in eastern Wyoming moving into South

Dakota by late evening. Radar indicated a persistent pattern of rain showers in the eastern part of

Kansas. Details of the radar field will be shown in Chapter 5 along with the satellite-model­

derived surface soil moisture fields. Flood watches were issued for parts of north-central Texas.
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During September 7 forecasts were calling for a dryline to appear in central Oklahoma extending

southwestward into west-central Texas. By late evening a line of precipitation that was slowly

propagating eastward extended from west Minnesota south to east Texas.

On September 8 a flood watch was issued for southeast and south-central North Dakota.

Windy conditions were pervasive throughout most of the Great Plains in association with the sur­

face low which at this time was in western South Dakota. Morning temperatures were generally

in the low-20's (0C) for most Great Plains stations. By the afternoon of September 8, the dryline

location had been reforecasted to appear slightly west (100-200 km west) of the original forecast

location, which corresponded to its eventual location as observed by satellite later in the after­

noon. A tornado watch box was issued extending until 10 PM (local time) for southeast North

Dakota and northeast South Dakota. A severe thunderstorm watch box was issued for central

Kansas. High's extended into the low to mid 30's (0C) in the central Great Plains. The strength of

the dryline was weak. By evening, the severe thunderstorm watch box had been canceled while

only the southeast quadrant of the tornado watch box remained for the Dakotas. In the late even­

ing of September 8, a rather strong thunderstorm did eventually form in extreme north-central

Kansas.
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Ta.ble 3.1 : VAS instrument characteristics (GOES-7) (adapted from Chesters and Robinson
1983).

VAS Central Weighting Absorbing single sample
channel wavelength function peak constituent noise values*
number (f.lm) (hPa) (K)

1 14.68 40 CO2 3.1

2 14.46 70 CO2 2.0

3 14.19 150 CO2 1.4

4 13.97 450 CO2 1.0

5 13.33 950 CO2 0.5

6 4.52 850 CO2 0.4

7 12.67 surface H2O 0.6

8 11.18 surface window 0.2

9 7.26 600 H2O 1.6

10 6.72 400 H2O 1.0

11 4.48 500 CO2 1.8

12 3.95 surface window 0.3

* VAS large field of view sensor

Table 3.2: SSM/I instrument characteristics (adapted from Hollinger et al. 1987).

Polar- Effective-field-of- Sensitivity
Channel Frequency ization view (EFOV)* (NE~T)** Accuracy
number (GHz) (H or V) (km) (K) (K)

1 19.35 V 70 x 45 0.45 1.5

2 19.35 H 70 x 45 0.42 1.5

3 22.235 V 60 x 40 0.74 1.5

4 37.0 V 38 x 30 0.37 1.5

5 37.0 H 38 x 30 0.38 1.5

6 85.5 V 16 x 14 0.69 1.5

7 85.5 H 16 x 14 0.73 1.5

* 3 dB limits.
** Average oflaboratory measurements.
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Table 3.3: F-8 SSM/I 85.5 GHz channel performance summary.

Polarization time period
V H

off off 02-Dec-1987 to 12-Jan-1988
poor good 12-Jan-1988 to end of Jan-I988
failed good end of Jan-1988

good til Dec-1988/Jan-1988
poor Dec-1988/Jan-1988 to Mar-1990
failed Mar-1990

Table 3.4: USDA Crop Moisture Index (CMI) and verbal equivalents.

USDA Crop wetter or stable drying
Moisture conditions conditions

Index Range
CMI>3 excessively wet, some fields flooded some drying but still excessively wet

2>CMI>3 too wet, some standing water some dry weather needed, work de-
layed

I> CMI > 2 prospects above normal, some fields favorable, except still too wet in spots
too wet

0> CMI > I moisture adequate for present needs favorable for nonnal growth and
fieldwork

-1> CMI > 0 prospects improved but rain still topsoil moisture short, germination
needed slow

-2> CMI >-1 some improvement but still too dry abnormally dry, prospects deteriorating

-3> CMI >-2 drought eased but still serious too dry, yield prospects reduced

-4> CMI >-3 drought continues, rain urgently potential yields severely cut by drou~ht

needed
CMI <-4 not enough rain, still extremely dry extremely dry, most crops ruined
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Figure 3.1: Comparison of VAS C02 sounding channel atmospheric weighting functions with
VAS channel 8 (from Montgomery and Uccellini 1985).
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Figure 3.2: An example of VISSR infrared imagery for 1532-1535 UTe 8 September 1991 over
the case study region. Values are displayed in terms of brightness temperature (K).
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Figure 3.3: Same as Figure 3.2, except for VISSR water vapor imagery.
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Figure 3.4: Same as Figure 3.2, except for VISSR visible imagery. Values displayed are in terms
of raw 6-bit count values.
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Figure 3.7: DMSP F-I0 SSMII 37H GHz (channel 5) microwave brightness temperature (K) for
1525-1534 UTe 8 September 1991.
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Figure 3.8: Same as Figure 3.7, except for the SSM/I 85.5H GHz (channel 7) microwave bright­
ness temperature (K).
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Figure 3.9: Locations of quality-controlled precipitation stations. Triangles denote the station lo­
cations.
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Figure 3.10: The NGDC Digital Elevation Model Database. Heights are measured in meters.
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Figure 3.11: Average NOVI values for Julian Days 200-284 of 1991. Lightly shaded areas have
high NOVI values and dark regions have low NOV! values.
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Figure 3.12: Percent of normal precipitation for the Midwest region, June 1 - August 5, 1991.
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Chapter 4

REMOTE SENSING OF SURFACE WETNESS

This chapter is divided into three major sections. In the first section, current microwave sur­

face wetness retrieval techniques are introduced and applied to data from the central United

States during July 30 - Oct. 7 1991. The following section, section 4.2, introduces the microwave

surface emittance retrieval procedure that is based on both microwave and infrared satellite data.

The microwave surface emittance results are then discussed and compared with various other

data sets in the last section, section 4.3.

4.1 SSMII SOIL WETNESS INDICES

This section reviews results from some selected SSM/I surface wetness and land classifica­

tion algorithms. The first method, developed by McFarland and Neale (1991), is based on exten­

sive empirical comparisons of SSM/I microwave brightness temperatures with an Antecedent

Precipitation Index (API), in the context of a land classification method. The second method, the

NOAA Soil Wetness Index (SWI) (Achutuni et al. 1994), is simpler and was designed for use as

a surface flooding index.

4.1.1 McFarland Surface Moisture Index

The McFarland and Neale Surface Moisture Index (SMI) is described in detail in the DMSP

Cal/Val Final Report (McFarland and Neale 1991). The basic premise is to narrow the domain of

the algorithm to those areas that have moderate to low vegetation, since high vegetation amounts

obscure the soil wetness signature. Filtering of the data is accomplished with the Neale et al.
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(1990) land classification method, then various combinations of the SSMII microwave brightness

temperatures were correlated with a variety of API indices to find an optimal correlation. The

results of their study showed that the 19H GHz channel normalized by the 37V GHz channel had

the highest correlations with the API of the SSMII derived variables studied. A linear regression

analysis was performed for 3 different vegetation classes where the vegetation classes were in­

ferred by the average polarization in the 19 and 37 GHz channels. The method is limited to the

moist soils and wet soils classifications of the Neale land classification scheme.

The updated Neale et al. (1990) land classification scheme as reported in McFarland and

Neale (1991) is used in the following data analysis. Several versions of the method are available

to account for one, or even two, failed 85 GHz channels on the SSMII. However, in this study,

the full 7 channel algorithm was selected for use with the DMSP F-lO data to not bias the results

by incorporating the 5 channel algorithm results that are of reduced quality. Table 4.1 describes

the 7 channel Neale land classification scheme. An additional classification class of

"Unclassified" was added for data that did not meet any of the classification criteria. The data

were sampled at the sample resolution of the SSM/I channels 1-5 (25 km) with the corresponding

85 GHz channels being averaged to match the low resolution data. Figures 4.1 - 4.3 are the Neale

land classifications for "Moist soil", "Composite soil and water/wet soils", and "Flooded condi­

tions" respectively, for the entire 70 day case study area. The DMSP F-l 0 SSM/I has relatively

uniform coverage over the study area, but with a gradual increase in the number of data points for

the northern portions of the domain. Appendix 0 contains results from all 15 classification cate­

gories, along with a density plot of the DMSP F-l 0 SSM/I sampling.

In summary, the McFarland and Neale SMI method is as follows.

1. Determine the Neale land classification category (see Table 4.1). If the classification is

moist soil or wet soil a surface moisture index retrieval is possible, otherwise vegetation or other
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conditions prevent the retrieval of surface moisture. As an addition to the method, land classifi­

cations of "Flood conditions" are assigned an SMI value of 70, the maximum SMI value allowed

in the algorithm. This allows for flood conditions to contribute to the overall composite SMI val-

ues.

2. Determine the vegetation density class and select the appropriate SMI algorithm coeffi­

cients for that vegetation density class (see Table 4.2).

3. Calculate the surface moisture index,

SMI = A + B(T19H/T37V), . (4.1)

where A and B are the SMI best fit coefficients determined from Table 4.2, and T19H and T3 7V

are the SSM/I microwave brightness temperatures for the 19H GHz and 37V GHz channels, re­

spectively. The SMI values are restricted to the range of (0 < SMI < 70), since values greater than

70 were removed from the original analysis used to derive Table 4.2. The values greater than 70

were removed since signal saturation occurs at such high SMI values.

An example of the SMI method is shown in Figures 4.4 and 4.5 for a single DMSP F-10

SSM/I orbit pass at 1525-1534 UTC 8 September 1991. The Neale land classification results in

Figure 4.4 are dominated by three rather large classification categories: the "Composite soil and

water/wet soil" category (category I I) over the eastern New Mexico/northern Texas/western

Oklahoma/central Kansas region and a smaller region in North Dakota; the "Dry arable soil"

category (category 4) over most of the northwest Great Plains region and south-central Texas

area; and finally, the "Composite vegetation and water" category (category 10) that occurs in

parts of Missouri, most ofIowa, and portions of Minnesota and Wisconsin. The SMI algorithm is

thus primarily limited to the "Composite soil and water/wet soil" category (category 11) areas.

Figure 4.5 contains the SMI results for the same orbit pass. The SMI values show a maximum in

the Oklahoma/Kansas region, which matches the USDA crop moisture availability reports for the
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same time period (see section 4.3.2.5 for more details). In addition, a small region of"Flooded

conditions" is retrieved by the Neale land classification algorithm near the center of the SMI

maximum. Relatively low SM! values are found in North Dakota, while the large waterbodies

such as Lake Superior and the Gulf of California have been correctly identified.

SM! composites for the entire 70 day case study are shown in Figures 4.6 - 4.10. The mean

SMI values for the period (see Figure 4.6) show a strong large waterbody signal since they are

easily identified by the Neale land classification method. The remaining regions show a strong

positive bias over the desert regions of Wyoming, Utah, Arizona, and New Mexico. The south­

east plains of Colorado also have a strong positive bias. These areas also correlate well with the

"Unclassified" category (see Appendix D) and indicate a problem with the Neale land classifica­

tion algorithm in these regions. The northern Minnesota and southwest Ontario areas also have

consistently high SMI values, which is probably due to the small lake effects in the region. The

moist region near central OklahomalKansas is correctly identified throughout the period and sug­

gests that the wheat regions in that area enable the SMI method to perform much better in that

region than in other regions. This would confirm the findings ofHeymsfield and Fulton (1992).

Minimum SMI values retrieved during the entire period (Figure 4.7) suggest a problem with an

oversensitivity or an inability to cope with arid soil conditions, especially in the desert regions

mentioned previously. The maximum SMI values (Figure 4.8) exhibit similar behavior over the

desert regions, however this could be a realistic event since it only takes one rain event to create a

wet surface signature, but when considered with the high mean and minimum SMI values, it indi­

cates that the SMI method is consistently over reporting surface wetness conditions in the desert

regions. The standard deviation of the SMI values during the 70 day period (Figure 4.9) shows

high variability near coastal features, southwest Ontario, northwest Texas, and the Okla­

homa/Kansas regions. The high variability in the coastal regions and possibly the southwest
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Ontario region is due to sub-FOY effects of waterbodies. Depending on the particular FOY ori­

entation significantly different percentages of land and water are within the SSM/I FOY thus in­

creasing the SMI standard deviation for those conditions. The north Texas region corresponds to

an irrigated grain sorghum region, while the OklahomalKansas region experienced a wide range

of soil wetness conditions, from severe drought to standing water. The spatial coverage of the

SMI retrievals is not uniform (see Figure 4.10) since the SMI uses the Neale land classification

method as a filter. The regions with the most consistent coverage are the large waterbodies

(including major lakes along the Missouri River, and portions of the lower Mississippi River) and

the northern Great Lakes region. The OklahomalKansas and north Texas regions also have rela­

tively good coverage during the period.

4.1.2 NOAA Soil Wetness Index

Developed during the Great Flood of 1993 in the United States Midwest, the NOAA experi­

mental Soil Wetness Index (SWl) (Achutuni et aI. 1994) was designed to be primarily a surface

flooding index. It is conceptually much simpler than the SMI method discussed in section4.1.1.

The SWI uses the brightness temperature difference between the 85.5 GHz and 19 GHz horizon­

tally polarized SSM/I microwave data, since for flooded SSM/I FOYs this brightness temperature

difference was found to be the largest brightness temperature combination. The SWI is defined as

follows

SWI = TBs5H - TBI9H , (4.2)

where (10 ~ SWI ~ 30) and TBs5H and TBI9H are the 85.5H GHz and 19H GHz SSM/I micro­

wave brightness temperature data, respectively. The range limitation on the SWI value functions

as a simple filter to remove rain and vegetation effects.



73

An example of the SWI method is shown in Figure 4.11 for a single DMSP F-10 SSM/I orbit

pass at 1525-1534 UTe 8 September 1991. The SWI results are nearly identical in spatial distri­

bution to the SMI results shown in Figure 4.5. The high SWI values are centered on the Okla­

homa/Kansas region that experienced flood conditions at this time. A smaller region in North

Dakota and western Minnesota also has high SWI values indicated. The very low SMI values

tend to be missing from the SWI results suggesting that the SWI is a slightly more conservative

index. This is most likely due to the particular SWI threshold values that are used to filter the

SWI values. If the SWI threshold value constraints were relaxed, the low SWI value results

would also tend to match the low valued SMI results.

SWI composites for the entire 70 day case study are shown in Figures 4.12 - 4.14. The mean

SWI results (Figure 4.12) indicate a ringing effect around coastal features, where the SWI expe­

riences high SWI values adjacent to resolvable waterbodies. This feature was also present in the

SMI mean value composite results (see Figure 4.6) except that with the addition of the "Flooded

conditions" land classification the ringing effect tapered into maximum SMI values. Thus if a

similar "Flooded condition" land classification algorithm was added to the SWI method, the

ringing effect would be made less obvious and perhaps therefore more useful for operational use.

The more conservative filtering of the SWI as opposed to the SMI is apparent in the composite

SWI results as it was in the individual orbit pass results of Figure 4.11. Major features are the

same except with a noticeable improvement on the noisy appearance of some of the lower SMI

values shown in Figure 4.6. Again, this would be due to the more conservative filtering of the

data in the SWI method. The maximum SWI value composite (see Figure 4.13) more clearly

shows those regions that had a significant SWI signal. This pattern closely resembles the SMI

results (see Figure 4.8). The spatial coverage of the SWI algorithm as it is applied (Figure 4.14) is

much more uniform than the SMI method's spatial coverage (Figure 4.10), however the SWI
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implements a filter which substantially alters the final spatial coverage and is even more sparse

than the SMI composite results as the maximum SWI composite results indicate (Figure 4.13).

4.1.3 Summary ofSSMlI Soil Wetness Indices

The SMI and SWI methods produce very similar results, especially with regard to the spatial

distribution of the values. Both methods appear to perform best in the central Great Plains region.

Coastal regions and areas with small lakes tend to obscure the surface wetness signature due to

sub-FOV effects and the exact viewing geometries which can change subtly with each orbit over-

pass. Desert regions also posed significant problems for both methods, with false surface wetness

signatures being rather common. The additional help of a land surface classification scheme did

not seem to obviously improve the SMI results as opposed to the SWI. The main benefit of the

land classification scheme was the addition made to the SMI method for this study which as-

signed maximum SMI values to those regions categorized as "Flood conditions". The benefit was

mainly a superficial cosmetic one, in that the retrieved SMI and SWI results for areas with non-

flood conditions were unaffected. The primary difference between the methods' results was the

suppression of noise in the low index values of the SWI as compared to the SMl. This is primar~

ily due to the stronger filtering imposed by the SWI method.

4.2 MEASUREMENT OF MICROWAVE SURFACE EMITTANCE

The surface emittance retrieval method of Wilke and McFarland (1986) divided the micro-

wave brightness temperature by the minimum air temperature for a nighttime overpass and the

maximum air temperature for a daytime overpass, so that,

(4.3)
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where ~ is the atmospheric temperature. This assumes that the atmospheric transmittance is 1.0

and that the influence of clouds is negligible. For the SSMJI 85.5 GHz channels the atmospheric

transmittance for the 1962 standard atmosphere is approximately 0.71. Transmittances for the

SMMR channels used by Wilke and McFarland are approximately 0.88 and above under clear

sky conditions.

A method used by Grody (1983) with the MSU, that has a set of sounding channels in the

oxygen band (50.30 GHz, 53.74 GHz, 54.96 GHz, and 57.95 GHz), is to compare the surface

channel to a lower sounding channel that is relatively unaffected by the surface. Theoretical cal­

culations were performed using various surface emittance assumptions and atmospheric sound­

ings and were compared with the observed microwave brightness temperatures in the surface

channel (50030 GHz) and the lowest sounding channel (53.74 GHz). A parametric equation was

developed relating the measured brightness temperatures at 50030 GHzand 53.74 GHz to the sur-

face emittance,

(4.4)

where Qi(e) (1== 1,2,3) are coefficients as a function of zenith angle and TB
vl

and TB
v2

are the

brightness temperatures for the surface and lower sounding channels of the MSU instrument. At

larger zenith angles however, the increased attenuation decreases the sensitivity of the surface

channel to the surface emittance. Another problem noted by Grody was the poor resolution of the

MSU data (a 110 km footprint at nadir) which smoothed the results. Values of surface emittance

ranged from above 0.95 to values below 0.8. Some of the low values using Grody' s method were

due to cloud contamination.

The microwave surface emittance retrieval method used in this study uses VISSR infrared

data to determine surface skin temperature which in turn is used in the microwave radiative
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transfer calculations to determine the microwave surface emittance. As a simple example, con-

sider a planet with no atmosphere, and a surface skin temperature of 300 K and a microwave

brightness temperature of270 K. From the definition of emittance given in Appendix A,

(4.5)

the surface emittance would be 0.9. The same principle is used in the full surface emittance re-

trieval method except that atmospheric contributions due to water vapor and oxygen absorption

must be accounted for, and care taken to avoid cloudy regions that can significantly affect the

infrared data. The following sections (sections 4.2.1 - 4.2.6) describe in detail the microwave sur-

face emittance retrieval method and its various necessary components.

4.2.1 SSM/I Antenna Effective Field-of-view Adjustment

The effective field-of-view (EFOV) of the SSM/I data in Table 3.2 is for the antenna beam's

half-power limit (3 dB). The area checked for cloud contamination for each SSM/I data point was

expanded beyond the 3 dB EFOV limits to eliminate as much cloud influence as possible due to

the microwave antenna's sensitivity to the area outside the 3 dB limits. As an example, the an-

tenna pattern for the 85.5 GHz vertical polarization channel in Figure 4.15 has a strong center

lobe with several smaller side lobes. The 3 dB EFOV limits include a large portion of the center

lobe but exclude a significant portion of the sides of the center lobe. Thus it is necessary to create

a spatial weighting function from the antenna pattern for use in accounting for possible cloud

contamination outside the 3 dB limits. The center portion of the SSM/! antenna pattern was fitted

to a spatial weighting function for each channel. The functions selected to represent the dB values

are:
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(4.6)

where k denotes the channel number, x and yare the horizontal earth coordinates, and nx(k)

and n/k) are the cross-track and along-track antenna pattern best-fit coefficients. The implied

assumption of Equation 4.6 is that the 0 dB and 3 dB limits are assumed to be exact fits to the

function. The spatial values are normalized in terms of the 3 dB EFOV limits. Equation 4.6 was

selected as a crude fit to the actual antenna patterns (e.g., see Figure 4.15) and the coefficients

were optimized to be a best-fit at the measured values of 5, 10, 15 and 20 dB. Table 4.3 contains

the best-fit coefficients nx(k) and n/k) , and the standard deviation, (J', which is represented in

terms ofthe gain. The spatial weighting function of the antenna is related to the dB values by

(4.7)

where WFk(x,y) is the spatial weighting function, and dBk(x,y) is the azimuthally dependent

dBk value as determined from the best-fit orthogonal dBk values:

(4.8)

The spatial weighting function has a maximum value of 1 for the center point of the beam, de-

creases to 0.5 at the 3 dB EFOV limits given in Table 3.2. In practice, the fit is rather good for

most channels, as the (J' values in Table 4.3 indicate, but some minor problems arose due to the

flattening of the center lobe sides and stronger side-lobes of the antenna pattern at the higher fre-

quencies. Thus only the 5 and 10 dB values were used in the estimation of the best-fit coefficients
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of Equation 4.6 for channels 4-7. The standard deviations of the best-fit line compared to the

measured values for all channels are at or below 0.01.

4.2.2 Cloud Discrimination

The microwave surface emittance is calculated only for clear sky conditions since clouds can

have a measurable impact on the observed microwave brightness temperatures (Jones and Von­

der Haar 1990). The cloud discrimination is accomplished during the surface skin temperature

calculations as a residual of the surface skin temperature atmospheric correction. The method is a

dynamic radiative transfer threshold technique which is determined from the failure of the radia­

tive transfer equations to balance in the presence of clouds, thus allowing identification of cloudy

regions. The dynamic thresholds were selected conservatively so that no significant cloud con­

tamination is likely in the microwave surface emittance results (with the exception of some fog

situations discussed in section 4.2.4). The dynamic threshold technique is explained in detail in

section 4.2.3. Static threshold methods that apply a fixed threshold determined subjectively from

interactive image analysis were initially attempted but the methods performed unsatisfactorily

due to the widely varying conditions of the case study.

4.2.3 Surface Skin Temperature Calculation

The surface skin temperature is calculated in clear sky regions using the infrared data (VAS

channel 8) from the GOES VISSR instrument. Additional data from the USAFETAC Upper-Air

Data Set and the NGDC OEM data base (see sections 3.3.1 and 3.3.4) were used in the radiative

transfer calculations that correct for the infrared atmospheric effects. Equation A.40 from Ap­

pendix section A.l.5, describes the radiative transfer for a non-scattering, plane-parallel atmos­

phere with a non-blackbody surface boundary condition and can be written more compactly as,

(4.9)
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where Lsje, L OI1/l' Lrejleeled' and Lspoee are given by,

(4.10)

(4.11)

(4.12)

(4.13)

where Lm is the "measured" out-going radiance at the top of the atmosphere (i.e. the satellite ob-

served radiance), Lsje is the surface radiance component, L olm and Lrejleeled are the direct and

reflected atmospheric radiances, respectively, and Lspoee is the top of the atmosphere radiative

boundary condition. Notice that the surface emittance has been factored out of Equations 4.1 0 -

4.13, thus the terms are the pre-reflected (or pre-emitted) radiances of the radiative transfer equa-

tion. This simplifies subsequent equation notation. Equations4.9 and 4.10 are then solved for the

surface skin temperature,

(4.14)

where B;l (L) is the inverse of the Planck function, and & IR is the infrared surface emittance.

Since the infrared surface emittance is near 1.0, and the infrared space emission term is small, the

space emission term, Lspoce, is neglected in Equation 4.14.

Typically the infrared surface emittance is assumed to be 1.0, but more recent results show

that some variability of the infrared surface emittance exists under certain conditions, particularly
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in regions of bare soil (Becker 1987; Schmugge et al. 1991; Schmugge et al. 1995) and can con­

tribute approximately 3 K in error to the surface skin temperature retrievals (Perry and Moran

1994). Work using the Thermal Infrared Multispectral Scanner (TIMS) has also shown that under

vegetated conditions infrared surface emittances approach a value of 0.99 with a variability less

than 0.02 while the largest infrared emittance differences are spectral in nature and confined to

the 8.0-9.25 J.lm wavelengths (see Figure 4.16). Infrared surface emittance variability over mostly

bare soil in the HAPEX-Sahel savanna environment was found to be about 0.09 (Schmugge et al.

1995). Another study found that grass and shrub-dominated portions of a semiarid watershed had

mean composite infrared emittances of 0.98 (Humes et al. 1994). The accurate measurement of

infrared surface emittance is difficult and is a matter of current research. A benefit to the current

work in this study is that the VISSR infrared sensor 10.2-12.0 J.lm band width (Montgomery and

Uccellini 1985) is outside the spectral region of strongest infrared surface emittance variability.

Therefore, as a compromise concerning the preceding studies, the infrared surface emittance was

assumed to be 0.98.

Measurements of the atmospheric temperature and water vapor mixing ratio profiles from the

USAFETAC Upper-Air Data Set are used to compute the infrared transmittance profile, r(p,O),

using a 40-level VAS transmittance software package (McMillin and Fleming 1976; Fleming and

McMillin 1977). The VAS transmittance software is based on a set of polynomials for each

model pressure level and are functions of the atmospheric temperature, water vapor, and satellite

viewing zenith angle. Before insertion into the VAS transmittance software package, the atmos­

pheric sounding profiles were spatially interpolated using a 2-pass Barnes objective analysis

scheme (Barnes 1964; Koch et al. 1983). The 2-pass Barnes analysis scheme was modified to

determine hydrostatically adjusted surface pressures based on elevations from the NGDC OEM

data base. From the hypsometric equation (Holton 1979),
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it can be shown that the interpolated pressure is,

(-~gJP2 =PI exp T R '
I' d

(4.15)

(4.16)

where ~ is the elevation difference between the DEM data base and the sounding elevation,

Rd =287 J. kg-1
• K-1 is the gas constant for dry air, g = 9.81 m 'S-2 is the global average

gravitational constant at mean sea level and Tv is the mean virtual temperature and is used to

account for moisture effects. The interpolated surface pressure is used to adjust the surface

transmittance values to account for changes in elevation using a logarithmically weighted mean,

(4.17)

where the ng and ng - 1 subscripts denote the two consecutive VAS transmittance software

pressure levels which bracket the interpolated surface pressure within their respective pressure

range. The total path transmittance. r(p\.0). and the direct and reflected atmospheric terms,

L olm and Lref/eCled' are calculated using the spatially interpolated transmittances from the VAS

transmittance software.

The surface skin temperature is initially calculated for both clear and cloudy regions. The

discrimination between clear and cloudy conditions is based upon the infrared atmospheric cor-

rection that the surface skin temperature retrieval applies. For cloudy conditions, the infrared

brightness temperature is actually the cloud top temperature since clouds act as near blackbodies

in the infrared (except for thin cirrus which are greybodies). The surface skin temperature
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retrieval method compensates for the lower than expected infrared brightness temperature and

produces a lower than expected atmospheric correction. The magnitude of the infrared atmos­

pheric correction can therefore be used as a dynamic radiative transfer threshold. The cloud dis­

crimination method is dynamic in that the threshold is based on individual properties of the inter­

polated atmospheric conditions. Different atmospheric conditions produce distinct radiative

transfer balances that in tum produce unique equivalent infrared brightness temperature thresh­

olds. Thus the dynamic radiative transfer threshold method can be applied over large regions

without the assumption that each location has the same infrared brightness temperature cloud

threshold. For this study the thresholds used to determine the presence of clouds were,

.6.T>30K,

.6.1' < 3 K and T, < 295 K,

(4.18)

(4.19)

where t::.T is the magnitude of the infrared atmospheric correction (the retrieved surface skin

temperature minus the original infrared brightness temperature). The first condition in Equa­

tion 4.18 is for data quality control (i.e. it was used to check for bad soundings that would corrupt

the results) and in practice rarely occurred. The second condition, Equation 4.19, is the dynamic

cloud threshold used to determine the presence of clouds. It is based on the principle, that given

no cloud, the atmospheric correction should be greater than approximately 3 K, and that atmos­

pheric corrections below this amount are thus likely cloud contaminated. Cloud contaminated

FOVs tend to have very small or negative atmospheric correction values due to improperly speci­

fied surface skin temperatures due to the cloud top features. Using the infrared atmospheric cor­

rection as a threshold, allows the method to determine a spatially variable infrared brightness

temperature threshold field that is quasi-independent of the surface skin temperature and provides

a mechanism by which atmospheric sounding information is feed into the cloud/no cloud dis­

crimination through elements of the radiative transfer model. As Equation 4.19 indicates, no
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clouds were pennitted to occur with a retrieved surface skin temperature of greater than 295 K.

This constrained the method to eliminate only those clouds that have significant impact on the

microwave surface emittance retrieval (Le. clouds that are colder than the background signature).

Some fog situations (as will be shown in the following examples) did escape the cloud detection

method. The method relies only upon the infrared data set since visible data are of marginal use

with the SSM/I sensor due to its dawn-dusk orbit crossing times (see section 3.2). However, the

DMSP F-I0 has a precessing orbit due to initial launch problems that allow the morning GOES

VISSR visible imagery to be used for comparison and evaluation of the dynamic cloud threshold

method.

An example of the surface skin temperature retrieval method is shown in Figures 4.17 -4.22.

The original VISSR infrared and visible imagery for 1532-1535 UTe 8 September 1991 (Figures

4. I7 and 4.18) shows a large synoptic system moving through the central United States (this sys­

tem is described in more detail in section 3.6.2). A large clear region exists behind the large sys­

tem. Cloud free conditions are prevalent for most of Nebraska, Kansas, Oklahoma, northwest

Texas, and New Mexico. Additionally, regions east of the system are also clear. In anticipation of

its inclusion into the surface skin temperature retrieval method, the DEM data base is merged into

the VISSR infrared projection space using the PORTAL software package (Figure 4.19). The

surface skin temperature is retrieved using the merged DEM data, the USAFETAC Upper-Air

Data Set, and the VISSR infrared imagery using Equation 4.14 (Figure 4.20). The results show

the highest surface skin temperatures in the north-central Kansas region with temperatures ap­

proaching 310K. The infrared atmospheric correction (Figure 4.2 I) is largest for regions near the

Gulf of Mexico, in the deep South, and in the central Great Plains east of 100° W. Surface skin

temperature atmospheric correction magnitudes are less than 10K, which is reasonable consid­

ering the effects that the 0.98 infrared surface emittance assumption has on the results (one would



84

expect a 2% adjustment of approximately 6 K based on the infrared surface emittance effect

alone). The temperature difference between the retrieved surface skin temperature for clear-sky

regions and the surface level of the interpolated atmospheric sounding air temperature at 12 UTC

(Figure 4.22) shows the amount of diurnal heating which has occurred since 12 UTC until the

time of the VISSR data (1532-1535 UTC) (the Central Time Zone is -0600 from UTC time).

Thus nearly 20 K of warming relative to the surface air temperature has occurred during the past

3.5 hours for portions of north-central Kansas. Regions of partial or broken cloudiness have re­

duced temperature differences. Some areas that have been marked as clear using the dynamic

threshold method in reality have fog. The fog is most apparent in the VISSR visible imagery

(Figure 4.18). A region of fog exists in south-central Kansas and in portions of south-east Kan­

sas. The effect of the fog is to reduce the retrieved surface skin temperatures, but since the fog is

so near to the ground (some fog had surface temperatures of 295 K) its effect is only marginal. It

could be assumed that the fog is shading the ground and preventing its surface from heating as

rapidly as other areas perhaps resulting in a very similar pattern of surface skin temperatures as

that which is actually retrieved (in fact, the data shown in Figure 4.20 displays this pattern). As a

computational artifact, the field in Figure 4.22 is not as smooth as the surface skin temperature

results because of how interpolation between the surface levels was accomplished (i.e. only

soundings which are below a given pressure level are used in the comparison which results in a

small discontinuity that is apparent in eastern Colorado and eastern New Mexico). Overall how­

ever, the surface skin temperature retrieval method appeared to perform well for a variety of con­

ditions found during the 70 day case study over the central United States. Further enhancements

to the surface skin temperature retrieval method would have to be made to reliably extend it dur­

ing other seasonal conditions, especially with regard to the cloud detection algorithm.
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4.2.4 Microwave Surface Emittance Calculation

The microwave surface emittance is calculated by solving the integrated microwave radiative

transfer equation (Equation 4.9) for & v' which results in (Jones and Vonder Haar 1990):

(4.20)

where L
III

is the measured microwave radiance from the SSM/I instrument. The remaining terms

on the right hand side of Equation 4.20 are defined by Equations 4.10 - 4.13 and are determined

using a Millimeter-wave Propagation Model (MPM) (described in Appendix B) and integrating

the terms numerically. The surface skin temperature used in the microwave surface emittance

calculations are from the surface skin temperature retrieval results of section 4.2.3. The mean

surface skin temperature, T.r' and mean infrared cloud fraction, CF, is calculated for each

SSMII FOV using spatially weighted averages,

-() I WFk(x, Y)CF(x, y)CF k ==--=,---:-----'-_.2..--'-
IWFk(x,y) ,

(4.21)

(4.22)

where the SSM/I spatial weighting function, WFk (x, y), is given by Equation 4.7, x and yare

the horizontal earth coordinates, and k is the SSM/I sensor channel number. The spatial average

is performed over both horizontal coordinates within the SSM/I sensor's projection space using

the PORTAL software to merge the various data sets. The infrared cloud fraction, CF(x, y), for

a given VISSR infrared sensor position is determined to be either clear or cloudy (see sec-

tion 4.2.2), with a value assigned for the associated cloud condition,
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CF 0, clear,

CF = 1, cloudy.
(4.23)

Since the SSM/I FOV overlaps several GOES VISSR FOVs a minimum cloud threshold was

used to determine if the cloudiness was significant enough to prevent successful retrieval of the

microwave surface emittance. Since clouds can have an undesirable effect on the microwave sur-

face emittance retrieval (Jones and Yonder Haar 1990), FOVs with a CF> 0.05 were considered

cloud contaminated. The surface emittance retrieval was not performed on those areas identified

as having possible cloud contamination. Merged DEM data is used to apply an elevation correc-

tion to the microwave atmospheric transmittances in a manner similar to that of the surface skin

temperature retrieval method of section 4.2.3, with the exception that interpolation of the surface

transmittances is unnecessary since the MPM is not a fixed-level transmittance model. The

USAFETAC Upper-Air Data Set is spatially interpolated using the same 2-pass Barnes objective

analysis scheme that was described previously in section 4.2.3. Data quality control is performed

to ensure that bad SSM/I data did not produce invalid microwave surface emittance results. A

minimum microwave surface emittance threshold of 0.5 was used over land surfaces (based on

the Wentz surface identification database (Wentz 1988) included with the SSM/I data set), with

no minimum threshold used over water surfaces. A maximum microwave surface emittance of

1.05 was allowed. Instances of these thresholds being used to filter data out were limited to data

errors within the SSM/I data set.

An example of the microwave surface emittance retrieval method is shown in Figures 4.23 -

4.26. The microwave surface emittance is retrieved from the DMSP F-I0 SSM/I 85.5H GHz

(channel 7) microwave brightness temperature for 1525-1534 UTC 8 September 1991

(Figure 4.23). The DEM Database and the clear-sky surface skin temperature retrieval results

from section 4.2.3 are merged to the SSM/I projection space using the PORTAL software
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(Figures 4.24 and 4.25). The VISSR and SSM/I data sets have time periods that overlap (thus

possibly providing instantaneous infrared and microwave measurements) to a worst-case time

difference of 10 minutes. The microwave surface emittance is then retrieved using Equation 4.20

and the interpolated sounding information provided from the USAFETAC Upper-Air Data Set

(Figure 4.26). Low microwave surface emittance values were retrieved in portions of central

Kansas that were associated with very wet ground conditions during this time. The maximum

microwave surface emittance value is 0.994, which suggests that the surface skin temperature

retrieval is performing accurately. More discussion of the microwave surface emittance results

will be deferred until section 4.3, where in-depth comparisons are made with other ancillary data

sets.

4.2.5 Microwave Surface Emittance Retrieval Errors

In clear-sky conditions the surface contributes a majority of the total upwelling radiance

(r(ps ,0) == 0.71) which heavily links the retrieved microwave surface emittance and the surface

skin temperature. Since the same surface skin temperature is used in the retrieval process for all

channels at a given location, any bias in the surface skin temperature would affect all channels

similarly. Inter-channel biases must be due to the microwave brightness temperature biases and

errors in the microwave transmittance algorithm. The microwave brightness temperatures are the

most likely cause of inter-channel biases since the atmospheric component of the upwelling ra­

diation is small (less than 1/4). Estimates of absolute brightness temperature errors are difficult

even with co-located infrared data since the surface emittance has a wide range of reasonable

values (Hollinger et al. 1990).

Numerical simulations using random perturbations were used to estimate errors in the re­

trieved surface emittances. A control case that had a surface emittance of 0.95 and the 1962 Stan­

dard Atmosphere (Valley 1965) was used to determine the magnitudes expected for microwave
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surface emittance retrieval errors. Simulated data was generated with various amounts of random

noise added to several parameters that influence the retrieved surface emittances. The surface

emittance was found to be most sensitive to two parameters, the microwave brightness tempera­

ture and the surface skin temperature. The relative and absolute instrument errors of the VISSR

and SSM/I instruments (see Tables 3.1 and 3.2) were used to calculate the propagation of error

through the surface emittance retrieval algorithm (Beers 1957). Results from the analysis in Ta­

ble 4.4 show absolute accuracies ranging from 0.008 to 0.012. Frequencies with higher atmos­

pheric attenuation have the largest errors (e.g., 22.235 GHz and 85.5 GHz). In a physical sense

the high attenuation is obscuring the surface from view which makes it more difficult to measure

the surface emittance accurately. The lower relative error at 37 GHz is due to the lower relative

instrument noise at that frequency.

The highest microwave surface emittance retrieved during the entire 70 day case study

(30 July - 7 October 1991) was a value of 1.049 for the 85.5V GHz channel (see Table 4.5).

Other values also greater than 1.0 occurred for the remaining vertical polarization channels, and

the 85.5H GHz channel. The magnitudes of the extreme values indicate that the error analysis can

reasonably account for the errors contained in the microwave surface emittance results except for

the 85.5 GHz channels and possibly also the 22.235Y GHz channel. Closer examination of the

spatial location of the maxima occurrences indicates that the 85.5 GHz errors are most likely due

to sub-FaY cloud contamination since the maxima tend to occur near the edges of the observed

cloud fields. Since both the 22.235Y GHz and 85.5 GHz channels are sensitive to the distribution

of atmospheric water vapor is also likely that the Barnes objective analysis interpolation can l1\1t

account for the heterogeneous nature of the water vapor distribution in between sounding loca­

tions and thus interpolation of the atmospheric water vapor profiles is an additional source of er­

ror that is contributing to the extreme results. The mean surface emittance values in Table 4.5
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indicate that the vertical polarization is always higher than the horizontal polarization value as

expected. There appears to be a very small downward trend with respect to frequency in the ver­

tical polarization results. However, no significant frequency dependency is observed in the hori­

zontal polarization results.

4.2.6 Summary of the Microwave Surface Emittance Retrieval Method

A flowchart is presented in Figure 4.27 that represents the microwave surface emittance re­

trieval procedure. Two major steps are performed:

I. determine the surface skin temperature, and

2. determine the microwave surface emittance for each SSM/I channel using the retrieved

surface skin temperature.

These steps are accomplished using the programs GOFTSFC and GOFEMIT, both of which read

the data from the Generalized Oata Format (GOF), hence the GOF prefix in their names.

GOFTSFC is the surface skin temperature retrieval program and GOFEMIT is the microwave

surface emittance retrieval program. Additional PORTAL programs merge the data into the

proper satellite projection spaces to allow easy manipulation of the data by the two main pro­

grams (see Appendix C for more details). The PORTAL program that does the merging is called

GOF2GOF since it merges one GOF data file into another GOF data file's target projection

space. The output of the GOF2GOF program is another GOF file, so the entire processing chain

is very modular. The OEM data is merged into both the VISSR and SSM/I projection spaces

since both GOFTSFC and GOFEMIT require elevation data. The surface skin temperature re­

trieval results are also merged into the SSM/I projection space to allow the GDFEMIT program

to incorporate the high resolution surface skin temperature retrievals into the final microwave

surface emittance results. The only data set which bypasses the PORTAL software is the



90

USAFETAC Upper-Air Data Set. Since the upper-air data is a sparse data set, it is more efficient

to spatially interpolate the data "on-the-fly", otherwise massive data storage (>200MB per orbit

pass) would be required for its 40-level representation within the transmittance models. The algo-

rithm was able to retrieve microwave surface emittance for one orbit pass over the case study

region in approximately 20 minutes on a DEC 3000-400 AXP workstation (a 135 specFP92 ma-

chine).

4.3 MICROWAVE SURFACE EMITTANCE RESULTS

4.3.1 Effective Microwave Surface Emittance Calculation

An alternative microwave surface emittance retrieval method that does not include an atmos-

pheric correction was also developed for comparison purposes. It uses a simple effective micro-

wave surface emittance concept. In Equation 4.5 it is assumed that the infrared brightness tem-

perature is a close approximation to the actual blackbody temperature, i.e.,

(4.24)

(Ulaby et aI. 1986) where TBMw{k) and TBJR(k) are the microwave and mean infrared bright-

ness temperatures for the SSM/l channel k. The mean infrared brightness temperature is

(4.25)

(Jones eta!' 1995) where the spatial weighting function WFk(x,y) is given by Equation 4.7.

The cloud discrimination method of section 4.2.2 is used to make the results consistent with the

previous method. Thus, the effective microwave surface emittance retrieval method is identical

with the complete microwave surface emittance retrieval method discussed in section 4.2.4,
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except that no atmospheric corrections are applied. Results corresponding to the examples pre­

sented in section 4.2.4 are shown in Figure 4.28. In general, higher microwave surface emittance

results are retrieved, with the atmospheric attenuation effects becoming more obvious at the

higher frequencies.

Theoretical results using a standard midlatitude summer sounding are shown in Figure 4.29.

In Figure 4.29, the difference between the effective microwave surface emittance and the atmos­

pheric corrected microwave surface emittance is plotted as a function of the effective microwave

surface emittance for each of the SSM/I frequencies. For the theoretical calculations, the infrared

surface skin temperature is assumed to be 300 K. The noticeable feature in Figure 4.29 is that the

85.5 GHz channel is more sensitive to water vapor than the lower frequencies, and can have at­

mospheric corrections approaching -40% when the effective microwave surface emittance is par­

ticularly low. The atmospheric correction magnitude is a strong function of the effective micro­

wave surface emittance value, with the atmospheric correction becoming larger with lower

effective microwave surface emittance values. This result is expected since the low effective mi­

crowave surface emittance regions are areas with higher microwave reflectivity and this amplifies

the water vapor effect of the atmosphere. The water vapor effect is amplified for this situation

since the land surface's radiance boundary condition can not balance Equation 4.20 as easily as if

the surface term had contributed more to the overall radiative transfer balance, and the atmos­

pheric correction to the microwave surface emittance is thus larger. Significant corrections

(-10%) can also be found for the lower frequency channels. The 22 GHz data occurs on a water

vapor absorption line and is more sensitive to the water vapor effects than the 19 GHz and

37 GHz channels. When the effective microwave surface emittance is at a value of 0.98, the at­

mospheric correction magnitudes merge to a constant negative value of-3% and are independent

of frequency, and then reverse the order of their frequency dependence at higher effective
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microwave surface emittances. This is because the infrared surface emittance is assumed to be

0.98 in the microwave surface emittance retrieval method. The infrared surface emittance acts as

a pivot point in the microwave surface emittance retrieval method since it controls how much the

land surface can contribute to the overall radiative transfer balance and thus directly influences

the radiative transfer balance.

4.3.2 Composite Microwave Surface Emittance Values

The retrieved microwave surface emittance values were composited for the entire case study

period of 30 July - 7 October 1991 (~70 days). The PORTAL software was used to merge the

microwave surface emittance values onto a common grid that was in a Lambert Equal-area pro­

jection. The PORTAL programs GDFGRID and GDFCOMP were used in the compositing (see

Appendix C for more details). The composite grid spacing is about 4 km, which is sufficient

given the SSM/I navigation accuracy of ±7 km (see section 3.2). Results for the 85.5 GHz chan­

nels are from the DMSP F-I0 since the F-8's 85.5 GHz channels had failed by this time. All other

SSM/I channel results are from both the DMSP F-8 and F- IO. The following subsections

(sections 4.3.2.1 - 4.3.2.5) contain various composite microwave surface emittance results.

4.3.2.1 Total Composites

Although all channels of the SSM/I surface emittance results were individually composited,

only composite 85.5H GHz surface emittance results are presented in this section as an example

for general discussion. The remaining SSM/I channel results are similar but with frequency de­

pendencies that are related to the SSM/I sensor FOY size. The complete multispectral results are

presented in Appendix E. Polarization differences will be discussed in section 4.3.2.4.

The composite mean 85.5H GHz surface emittance results (Figure 4.30) show an intricate

web of detailed surface features. The horizontal polarization shows surface water effects more

readily than the vertical polarization since there is a larger dynamic range of microwave surface
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emittances (see Appendix section A.3). The microwave surface emittance ranges from about 0.5

for large waterbodies to near 1.0 for the most arid or heavily vegetated regions (see Table 4.5).

Appendix E contains detailed statistical information regarding the retrieved microwave surface

emittance results. The minimum and maximum 85.5H GHz surface emittance results retrieved

during the entire time period are shown in Figures 4.31 and 4.32. The microwave surface emit­

tance is not a constant field (see Figure 4.33) and contains many temporal features of interest.

Since the microwave surface emittance is retrieved only over clear-sky areas, it is not uniformly

measured across the entire case study domain (Figure 4.34). Some regions have greater coverage

than others due to the absence of clouds, or even the ability of the cloud algorithm to detect

clouds in given regions. Areas that were particularly problematic were the higher elevations of

the Rocky Mountains and the Great Lakes region. Both locations suffered from the same physical

problem. They were relatively cold and nearly the same temperature as the low clouds that could

have formed over the area. Thus these regions offered no signal from which to detect clear-sky

conditions and were nearly always identified as cloud covered by the cloud detection algorithm.

This does not pose a significant problem since the opposite alternative is the inclusion of cloud

contaminated microwave surface emittances which would be an even greater problem affecting

the analysis of the results. From the data sample density shown in Figure 4.34, the cloudiest areas

are in the upper Midwest and in the Southeast United States as one would expect. The orographic

effects upon the cloud algorithm makes it difficult to draw cloud coverage conclusions in the

Rocky Mountain regions.

Lakes and large river systems are the most pr'll11 incnt feature of the mIcrowave surface

emittance results (Figure 4.30). The Missouri Ri\ cr anJ its associated man-made lakes in the Da­

kotas and Montana are easily recognized. The Great Lakes and the Great Salt Lake have very low

microwave surface emittances since unobstructed \vater-only Fays are their primary component.
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Other relatively large lake features include three integrated lake features in Minnesota (the Upper

and Lower Red Lakes; Winnibigoshish and Leech Lake; and Mille Lacs). Other particularly

prominent waterbodies are: Lake Winnebago, Wisconsin; Lake Powell, Utah; and Kentucky

Lake, Kentucky. The polka-dot pattern (especially in the east Texas, east Oklahoma, and Ozark

regions) is due to smaller lakes that have partial footprint coverage (lakes about 5-10 km in size).

Flood plains in west Mississippi on the Yazoo River, and the much larger lower Mississippi

River flood plain also exhibit lower microwave emittances. Since the flood plains are not perma­

nent waterbody features, they should be thought of as transient lakes, thus it would be expected

that more variability would be associated with these features (Figure 4.33 confirms this hypothe­

sis).

Non-lake features are also prevalent in Figure 4.30. These include deserts, irrigation areas,

heavy crop regions, and coniferous forests, and temporal surface wetness signatures. The tempo­

ral surface wetness features are best seen in the individual orbit passes or the 7 day composites

(section 4.3.2.5). However, the strength of the effect of prolonged sequences between flooded

and dry conditions can even be seen in the mean composite values by a lower microwave surface

emittance in the central Oklahoma, and central Kansas region (also note the high surface emit­

tance variability in this region, see Figure 4.33). Other rainfall events recorded in this data set

tend to be washed out in the mean total composite results. By comparing the minimum and

maximum microwave surface emittance results (Figures 4.31 and 4.32), the rainfall event influ­

ence is more clearly seen, however the spatial sampl ing of the SSM/l sensor of sub-FaY features

(such as lakes) introduces some ambiguities into the interpretation of the maximum and minimum

microwave surface emittance results. Further detailed discussion of the rain events is reserved for

sections 4.3 .2.5 - 4.3.4.



95

The desert regions in eastern Utah, parts of Arizona and New Mexico, and the intermountain

basins of Wyoming, show rather low microwave surface emittances over a broad region. These

are the same regions that are poorly classified in the Neale land classification algorithm (see Ap­

pendix D, Figure D.15). The desert regions have low microwave surface emittance due to the

high dielectric constant of quartz. Since the material has a high dielectric constant it also acts in a

manner similar to water (another material with a high dielectric constant). A comparison of two

desert regions was performed to determine if different sand types make a significant impact on

the microwave surface emittance. A small region was selected for analysis surrounding White

Sands, New Mexico (32.65 - 33.15°N, 105.96 - 106.62° W) and a randomly selected similar

sized area in the intermountain Red Desert of southwest Wyoming (41.64 - 42.16° N, 108.16 ­

108.91° W). Figure 4.35 is a graphical depiction of the comparison results that are in Tables4.6

and 4.7. The conclusion of the comparison is that the different desert regions have similar mi­

crowave surface emittance features that are within the natural variability of the data set and

measurement noise levels and thus are nearly indistinguishable from each other as a unique desert

type. The only noticeable feature is the slightly lower absolute minima of the White Sands region

versus that of the Red Desert region (see Tables 4.6 and 4.7). This is probably due to sub-FaY

effects in which the small but non-vegetated White Sands region is centered within the SSMII

FaY providing optimum FaY coverage. On the other hand, the Red Desert has some scattered

desert shrubs that may prevent its microwave emittance from approaching the non-vegetated

minima values ofthe White Sands region.

Irrigation and moist croplands have lower microwave surface emittances as well. These re­

gions change only slowly with time and thus appear in the total composite results better than

some of the other features that have smaller spatial features or have a significant temporal factor

to their existence. Regions of particular significance are the Platte River, eastern Nebraska; the
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North Platte River, western Nebraska; the South Platte River, northeastern Colorado, the Arkan-

sas River, southeastern Colorado; southwest Kansas, and a relatively large region in west Texas

near Lubbock, Texas. Direct comparisons with irrigation maps will be made in section 4.3.4.

Intensive crop regions also influence the microwave surface emittance. Areas in northern

Iowa and southern Minnesota have low stable microwave surface emittances. Since the region

was not under flooding conditions at the time, it is possible that the water content within the

vegetation is causing the lowering of the microwave surface emittance. Given conditions where

the LAI is approximately constant, this would indicate that the health of a crop could be esti­

mated from microwave surface emittance observations, with the assumption that stressed crops

would have a lower plant water content and thus higher microwave surface emittances.

Coniferous forests have high microwave surface emittances and are one of the few high sur­

face emittance signatures found (excluding dry arid soil). Particularly noticeable regions are the

foothills of western Montana; the Wind River Range and Big Horn Mountains of Wyoming; the

Black Hills, western South Dakota; the Pine Ridge forest of southwestern South Dakota and ex­

treme northwestern Nebraska; portions of the Colorado Rockies; the Apache and Gila National

Forests of Arizona and New Mexico; the Sacramento Mountains, New Mexico; Northern Minne­

sota; and the Florida Panhandle. Upon first inspection it appears that an elevation bias must be

present due to the luge number of mountailWlh locatillns identified. However, this hypothesis

fails once the low elevations of the identified FI, )rida, Minnesota, and Nebraska-South Dakota

regions are considered. The composite minimum microwave surface emittance (see Figure 4.31)

highlights these high surface emittance areas, since these regions also have small microwave sur­

face emittance ranges. The conifer vegetation most likely has I) a higher infrared surface emit­

tance than the surrounding vegetation that biases the surface skin temperature and thus the mi­

ro\\avc surface emittances, 2) the coniferous vegetation is extremely dry compared with other
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dry ground vegetation, 3) the coniferous vegetation is particularly rough in appearance to the

SSM/I microwave frequencies, or 4) a possible combination of these effects.

4.3.2.2 Atmospheric Correction Effects

The effect of the atmospheric correction on the microwave surface emittance results was ex­

amined by comparing the microwave surface emittance retrieval method results with the simpler

effective microwave surface emittance retrieval method of section 4.3 .1. The composite effective

microwave surface emittance results for 30 July - 7 October 1991 are shown in Figure 4.36.

Contrasting these results with the atmospheric corrected microwave surface emittance values

(Figure 4.30) shows that the atmospheric corrected microwave surface emittances are lower in

value and that the image contrast is enhanced between surface water features and land.

A statistical analysis was performed to examine the frequency dependencies of the atmos­

pheric correction. The microwave surface emittances were filtered to minimize the large water­

body bias on the statistical results. Thus, microwave surface emittances below a value of 0.5 were

removed from the analysis. The composite mean values (Figure 4.37) indicate that the atmos­

pheric corrected microwave surface emittance is approximately 1.5% lower at 19V GHz com­

pared with the effective microwave surface emittance results. The magnitude of the correction

increases with frequency, with an atmospheric correction of 3.5% at 85.5H GHz. A larger atmos­

pheric correction is present for the horizontal polarizations than for the vertical polarizations, as

would be expected from their lower effective microwave values (see Figure 4.29). The micro­

wave surface emittance standard deviation is reduced by 20-25% with the application of the at­

mospheric correction for the 19 and 37 GHz channels. The 22V and 85.5 GHz channels are much

less responsive and instead have increased standard deviation values after the application of the

atmospheric correction. At first glance, this implies that the atmospheric correction is introducing

noise into the retrieved microwave surface emittance values. This might be caused by incorrect
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specification of the atmospheric conditions, or by problems within the radiative transfer modeling

code at these frequencies. However, these channels are at frequencies where the atmosphere is

the most opaque, thus the effective microwave surface emittance values are partially obscured by

the atmosphere effectively damping the true surface emittance signal. The microwave surface

emittance standard deviations are relatively uniform for a given polarization indicating that the

retrieved atmospheric-corrected microwave surface emittances are consistent with the other fre­

quencies. This supports the idea of a near frequency-independent surface emittance model of the

surface conditions. While some noise must be introduced by the retrieval method due to the pre­

viously mentioned factors, the frequency dependence of the effective microwave surface emit­

tance values is not at all obvious (Figure 4.37). Thus, efforts to support a surface emittance model

with a high frequency dependent component would be difficult if not impossible. The relatively

constant microwave surface emittance standard deviations support the conclusion that the effec­

tive surface emittance variability is damped by the atmosphere at the 22V and 85.5 GHz chan­

nels, and that the surface emittance retrieval method has compensated for this effect.

4.3.2.3 Diurnal Effects

Diurnal effects were examined by compositing the microwave surface emittance results for

morning and afternoon overpasses of the DMSP satellites. The morning period (0600 - 1800

UTe) mean composite surface emittance results (Figure 4.39) were nearly identical to the after­

noon period (1800 - 0600 UTC) results (Figure 4.40). Only small differences were observed in

very localized regions, namely south Texas and west Mississippi. Other areas experienced almost

no diurnal effects. The south Texas area had a positive morning bias of approximately 0.01 sug­

gesting that perhaps heavy early morning dews had a measurable impact in this particular region.

The west Mississippi area is in the Yazoo River flood plain and experienced a small positive af­

ternoon bias «0.01). This could be the result of a bias in the time of flooding events that affect
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this region. The rather poor temporal sampling that the DMSP platforms provide could be another

possible cause. A closer inspection of Figures 4.39 and 4.40 reveals that the afternoon results are

more sparse than the morning overpass results. This is due to the additional afternoon cloudiness

compared to the morning overpasses.

The small data overlap with the U.S. - Mexico border and the U. S. - Canada borders is not a

navigation error but rather an artifact of the image compositing. The SSM/I FOVs were compos­

ited as quadrilaterals. For FOVs near the beginning and end of the SSM/I scan line the polygons

are rather oblique in the forward direction due to the SSM/I conical scanning pattern. Thus for

the morning ascending orbit pass, the most acute polygon points are at the top border, and vise

versa for the afternoon descending orbit passes.

4.3.2.4 Polarization Effects

The microwave surface emittance polarization difference, /1£, at 85.5 GHz was calculated

for each SSM/I orbit pass from 30 July - 7 October 1991. The mean, minimum, maximum and

standard deviation of the microwave surface emittance polarization difference is shown in Fig­

ures 4.41 - 4.44, respectively. The mean polarization difference (Figure 4.41) is large over water­

bodies and desert regions as expected. In the desert regions, values of /1£ range from 0.03 ­

0.05, while the large lakes can have /1£ values greater than 0.2. Additional areas in the central

Great Plains also exhibit large polarization differences. A wide region in west Kansas, Oklahoma,

and north Texas has /1£ values greater than 0.02. with some mean values above 0.05 in certain

locations. The Arkansas River valley in Colorado also has relatively high mean /1£ values of

approximately 0.03. Another anomalous region exists in west Mississippi in the Yazoo River

flood plain where mean values exceed 0.04.
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The more permanent features are more obvious in the minimum microwave surface emittance

polarization difference results (Figure 4.42). The lakes and desert regions stand out. The lakes are

smaller in spatial extent due to the repetitive SSM/I sampling of a region with slightly different

sub-FOV effects. Only the large lake features remain after compositing. An interesting feature of

the data is the relatively high minimum polarization differences in west-central Texas and the

South Platte and Arkansas River valleys of Colorado. Some of the polarization is due to irriga­

tion. However, the widespread region of high minimums on the eastern Plains of Colorado sug­

gests the region is also rather arid and from the SSM/I's perspective appears more desert-like

than the other Great Plains regions. A similar interesting band is found in southeast New Mexico

extending into west Texas. North Iowa also has relatively high minimum polarization differences.

From the NDVI information (see section 4.3.6) this region is heavily vegetated. Thus, this

anomalous region must be due to sub-FOV lakes dotting the region or perhaps poor cloud-free

SSM/I sampling coverage. More data from a longer period, perhaps from multiyear seasonal

composites, would be necessary to answer this question satisfactorily.

The maximum microwave surface emittance polarization difference (Figure 4.43) indicates

the more temporal surface features. The region of most interest is the central Great Plains. Some

areas in north-central Oklahoma have /)"E values greater than 0.2. Such a high extreme value

indicates that nearly the entire SSM/I FOY was flooded. Transitory lakes appear due to rainfall

events throughout the central Great Plains. Many locations experience polarization differences

larger than 0.05. Figure 4.43 also indicates regions that have small polarization differences.

These regions are the heavily vegetated regions. The most noticeable low maximum polarization

difference areas are the forest regions in the Rocky Mountains, the Black Hills of South Dakota, a

small band-like feature in northwest Nebraska and southwest South Dakota, the Ozarks, the Great

Lakes region, and areas throughout a large portion east of the Mississippi River.
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The variability of the polarization difference signal is shown in Figure 4.44. These results are

similar to the standard deviation of the mean microwave surface emittance results (Figure 4.33).

The main feature is again the ringing effect around the waterbodies and the highly variable region

in the central Great Plains. There is also a noticeable northwest-southeast gradient in the results,

with generally higher values in the southeast regions particularly around the Gulf of Mexico. This

could be due to several effects. More rain events would occur in the high precipitation areas of

the southeast regions. Patchiness of the vegetation might increase in the direction of the gradient.

If large tree groves are interspersed with crop regions, this would make the results more variable

due the sensor sub-FOV sampling problem mentioned earlier. Without higher spatial resolution

data, this question might not be answerable with the current sensor capabilities.

These results have implications for the remote sensing of atmospheric properties over land

surfaces. The areas with significant surface polarization can be used as a multichannel back­

ground signature from which to retrieve non-polarizing atmospheric constituents. For example,

the retrieval of cloud liquid water might be possible by differencing the radiative transfer equa­

tion (Equation 4.9) to come up with a polarization difference form of the radiative transfer equa­

tion. This results in an equation of the form

M m = ~&( Life - Lrej/eeted - Lspaee) ' (4.26)

where Mill' is the satellite observed polarization difference radiance, and Ls{C' Lrej/ected' and

Lspace are defined in section 4.2.3 and specified by Equations 4.1 0 - 4.13. While such an equation

would be sensitive to measurement noise since it uses a difference equation form, possible quan­

tification of cloud liquid water into 3-5 categories might be feasible. The advantage of this

method over single channel methods is that the absolute bias of the instrument is removed. This
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improves the instrument noise characteristics since inter-channel relative accuracies are much

better than the instrument absolute accuracies (see Table 3.2).

On average, the application of this method would be limited to areas that have mean micro­

wave surface emittance polarization difference signatures (Figure 4.41) greater than the natural

background variability (Figure 4.44). The region where this condition occurs is shown in Fig­

ure 4.45. In Figure 4.45, mean surface emittance polarization difference values that are less than

the measured standard deviation are shaded black. Values that remain are signals that are one

standard deviation above the natural background variability. A large region remains in Fig­

ure 4.45. This shows potential for such a polarization difference method to work. Perhaps a better

overall cloud liquid water retrieval method would be a composite of the polarization difference

method and a single channel method such as that ofJones and Vonder Haar (1990).

4.3.2.5 7 Day Composites

Weekly composites of the microwave surface emittance were made to determine the spatial

structure and coherence of the weekly temporal variability. Figures 4.46 - 4.48 present results

from the weekly composite mean 85.5H GHz surface emittance values. Composites with a period

of less than one week would have poor spatial coverage due to cloud contamination. Thus, higher

temporal resolution composites would have limited value. Analysis of individual orbit pass re­

sults would provide nearly the same limited benefit.

The statistics from the 30 July - 7 October composites are further illuminated by studying the

higher time resolution results. The consistent nature of the waterbody features is obvious in the

sequence of figures. The less than desirable spatial coverage is due to the limited DMSP over­

passes coinciding with clear sky conditions. This problem would be much less severe if for in­

stance the GOES had a microwave imager scanning hourly.
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The primary region of interest is the central Great Plains. Rain events frequently modify the

microwave surface emittance over a large region. Comparing Figures 4.46 (a) and (b) for the

Kansas region indicates that the microwave surface emittance values are noticeably lower within

a one week period. In Figure 4.46 (c), the spatial features of the low surface emittance area are

further defined by more intense individual rain events. By the next week, (Figure 4.46 (d» the

region begins to "dry out". Figure 4.47 (a) is particularly ordinary, lacking any significant tempo­

ral features, but within two weeks (Figure 4.47 (b» more rain events have dotted the Great Plains

again. The data coverage then becomes poorer during a rather long period (two to three weeks)

due to clouds interfering with the successful retrieval of the microwave surface emittance. By

Julian day 272, the rain event signatures are once again gone from the Kansas/Oklahoma region.

Less than two days of data were available for the final composite period (Figure 4.48 (c» and its

spatial coverage was particularly sparse.

Some cloud contamination is also evident for regions with particularly high microwave sur­

face emittance (notice the Texas Panhandle region in Figure 4.46 (c». However, the weekly

composite results show that the cloud contamination was not persistent or wide spread. Thus the

mean statistics are still valid but with a small bias due to cloud contamination. However, the

maximum microwave surface emittances should be viewed with caution since these results indi­

cate that the cloudiest pixel was most likely used in the maximum microwave surface emittance

composite results. Since the maximum microwave surface emittance results are not worse, it is

perhaps an indicator of the robustness of the cloud discrimination method.

4.3.3 Comparison with Weekly USDA Crop Moisture and Precipitation Data

Results are compared with the weekly USDA Crop Moisture Index (CMI) and total precipi­

tation. Appendix F contains figures of the CMI and of the observed total precipitation. The dis­

cussion in this section is based on those figures and the 7 day 85.5H GHz surface emittance
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composites shown in Figures 4.46 - 4.48. Composites using the other SSM/I frequencies were

also performed and compared. Results were found to be similar, except that the cloud problem

which degrades the sampling characteristics is aggravated due to the larger sensor FOV at the

lower frequencies.

4.3.3.1 Week 1: Julian Days 209-215

The starting time period experienced general drought conditions that existed in the central

Great Plains and the Midwest (see Figures F.l and 3.12). However, precipitation of more than

2.5 cm occurred in the Yazoo River floodplain in Mississippi. This region exhibits a correspond­

ing low microwave surface emittance anomaly. Otherwise, the microwave surface emittance re­

sults show no significant rain event signatures for this period.

4.3.3.2 Week 2: Julian Days 216-222

Kansas experienced some relief from the drought but it is still too dry. A widespread region

of greater than 5 em rainfall occurred in Iowa and parts of Illinois. Potentially interesting parts of

this region are obscured by clouds. The Illinois microwave surface emittances are low during the

period of widespread heavy rain. North-central Iowa and southern Minnesota experienced flood

conditions due to the heavy rain, but most of the wettest region is obscured.

4.3.3.3 Week 3: Julian Days 223-229

The drought began to break in the central Great Plains. However, the CMI indicates that parts

of central Kansas still urgently needed rain (CMI = -3.3), even though relatively heavy precipita­

tion (> 1 em widespread, > 10 em in localized regions) had occurred. The comparable microwave

surface emittance results show much lower emittances during this period. The lowest microwave

surface emittance retrieved over land occurred in north-central Oklahoma, coincident with a

> 5 cm precipitation event. A major rain event with a large region of> 10 cm precipitation totals
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occurred in east Texas and had rainfall> 5 cm throughout much of north Texas, but again the

wettest regions were mostly obscured by clouds.

4.3.3.4 Week 4: Julian Days 230-236

Scattered storms occurred during this period. Some remains oflast week's intense precipita­

tion in west Texas is still apparent, with low microwave surface emittances again in the region. A

region of low microwave surface emittance again occurs in northeast Mississippi. This corre­

sponds to one rain event that was greater than 2.5 cm in magnitude. A spatially-small isolated

rain event greater than 5 cm occurred on the Colorado High Plains, but the microwave surface

emittance response is small and is represented by only a small dot on the microwave surface

emittance results.

4.3.3.5 Week 5: Julian Days 237-243

During this period, significant rain occurred for parts of Kansas and Oklahoma. Oklahoma is

now experiencing moist conditions (CMI = OJ) in its southwestern reaches that 3 weeks ago

were severely dry (CMI =-3.5). The first clear weekly composite of Iowa shows a widespread

region of low microwave surface emittance. Rainfall occurred in Iowa during this period, how­

ever total rainfall had not been sufficient for crop needs and the CMI is reported as "abnormally

dry" for Iowa.

4.3.3.6 Week 6: Julian Days 244-250

This period had particularly poor microwave surface emittance coverage due to cloud con­

tamination. Heavy rains fell throughout the south-central Great Plains. Rain in southwest Illinois

also exhibits lower microwave surface emittances during this period. The CMI reports flooded

conditions for a large area in Oklahoma, but this region is obscured by clouds in the microwave

surface emittance results.
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4.3.3.7 Week 7: Julian Days 251-257

Flood conditions were still prevalent in Oklahoma and were larger in extent than the previous

week. Individual storms can be identified on the microwave surface emittance results and are

seen as low microwave surface emittance anomalies. The lower rainfall amounts result in gener­

ally lower microwave surface emittances throughout Kansas and Oklahoma.

4.3.3.8 Week 8: Julian Days 258-264

This was an extremely active and wet week in the southern Great Plains. Unfortunately, the

cloud cover prevented retrieval of the microwave surface emittance over a large region.

4.3.3.9 Week 9: Julian Days 265-271

Conditions in the southern Great Plains remained wet. However, conditions were slightly

drier than the previous week. Most precipitation occurred in the eastern half of the region from

east Texas to Ohio. Over 5 cm of rain fell throughout most of Mississippi and Alabama. The mi­

crowave surface emittance results are lower in the Ohio Valley region, where over 2.5 cm of rain

has fallen in some locations. For this one week composite, the Mississippi and Alabama regions

do not appear to have lower microwave surface emittance values. This indicates insensitivity to

rain for these regions, or perhaps that the rain occurred near the end of the period and was not

sampled in the composite results. Again, relatively poor microwave surface emittance coverage

due to cloudiness is a significant problem.

4.3.3.10 Week 10: Julian Days 272-278

The only regions that experienced significant rainfall are northeast Missouri and Northern Il­

linois with more than 10 cm over a relatively large region. This event was not observed by the

microwave surface emittance results. The other non-rain areas however appear to have re­

bounded to their higher dry state they had in early August.
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4.3.3.11 Week 11: Julian Days 279-285

Only 2 days of data were available for this week's composite period. For short time periods

(e.g., 2 days) the cloud problem is much more acute. Microwave surface emittance results were

available only for the desert regions in the extreme southwest part of the case study region.

4.3.4 Comparison with Irrigation Regions and Spatial Crop-type Information

Irrigation has a significant impact on the microwave surface emittances. The density of irri­

gated land in farms for 1982 is shown in Figure 4.49. The most striking features are the Califor­

nia Imperial Valley, the Idaho Snake River Valley, a large region in the High Plains and Ne­

braska, and the Mississippi Alluvial Plain in Arkansas. For the case study region in the central

United States, the regions of most importance are the last three. Results from Landsat can be used

to determine irrigation densities over regional areas (see Figure 4.50). Two Landsat channels

(bands 5 and 6) were used to determine the irrigation areas in a rather labor and computer inten­

sive method (Thelin and Heimes 1987). The irrigation regions correspond welI with the mean

microwave surface emittance results (Figure 4.30). The regions along the Platte River in Ne­

braska, and in western Nebraska on the North Platte have lower microwave surface emittances

than other surrounding regions. The correspondence of the region in southwest Kansas is less

obvious due to Jow contrast with the surrounding areas. The irrigation region in west Texas is

particularly welI defined by a low microwave surface emittances. The irrigation signature in this

region maintains consistently low microwave surface emittances. The composite maximum mi­

crowave surface emittance results (Figure 4.31) indicate that this region has consistently low mi­

crowave emittances. Irrigation in Colorado is primarily confined to the South Platte and Arkansas

River Valleys (Figure 4.51). However, some intermittent irrigation occurs in east-central Colo­

rado as welI (indicated by the light hash pattern in Figure 4.51). The two Colorado irrigation ar­

eas are welI indicated on the composite mean microwave surface emittance results (Figure 4.30).
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Further irrigation information can be inferred from ground water withdrawal information.

Since the Great Plains States depend more heavily on ground water than do Western States that

rely on off-farm supplies such as runoff from snowmelt, the ground water withdrawal informa-

tion can be used to infer irrigation water usage. This can provide information where detailed re-

mote sensing studies have not been performed. The magnitude of the irrigation in the Arkansas is

found to be also relatively large. Over 2 million acres are irrigated in Arkansas (Bajwa et al.

1987). That is more than 20 percent of the entire cropland in the state. The Mississippi irrigation

area is smaller in scope (20% of the total irrigation in Arkansas). Appendix G contains more de-

tailed information regarding ground water withdrawal by state.

Excluding California and Idaho, the primary crops that depend on irrigation include corn

(22%), hay (17%), and wheat (9%) (Bajwa et al. 1987). Nebraska alone contributes 51 percent of

all irrigated corn acres. However, rice is the primary irrigation crop in Arkansas and Mississippi

and Texas' primary irrigated crops are cotton, sorghum, and wheat. Figures 4.52 - 4.53 show the

crop production regions for com, grain sorghum and rice. From this information, it is more obvi-

ous which !rop and irrigation region is causing the microwave surface emittance depressions. As

mentioned before, the Nebraska region and the low microwave emittance region in southern

Minnesota and Iowa are dominated by corn. The regions in Illinois and Indiana were experienc-

ing a severe drought at this time (Figure 3.12) which may explain why those regions did not also

have lower microwave surface emittances. The west Texas irrigation region is a grain sorghum

production area (Figure 4.53). Some cotton production is also present. The Arkansas and Missis-

sippi irrigation regions are primarily involved in rice production. These regions may have a

stronger influence than other regions due to flooding that rice requires at certain stages of its de-

velopment.;.The crops that were observed to depress the microwave surface emittance values are
.....



109

all high water-content crops. Wheat crops that should be maturing or already harvested during

this case study appear to have little influence on the microwave surface emittances.

The results over heavier vegetation are contrary to what some have observed using ground

based microwave instruments (Barton 1978; Newton and Rouse 1988). This suggests that the low

microwave surface emittances could be due to flooding in irrigation canals, rather than scattering

from the plant canopy. Another possibility is that the water content of the plant is being measured

as has been assumed at lower frequencies (Jackson and Schmugge 1991). The final interpretation

is still a matter of debate and deserves further study.

4.3.5 Comparison with an Antecedent Precipitation Index

An Antecedent Precipitation Index (API) was calculated from precipitation measurements

from the 6 h USAFETAC DATSAV2 precipitation database (see section 3.3.2). The API for day

i is given by

API; = k' API i-I + P;, (4.27)

where P; is the 6 h total precipitation and k' is the 6 h depletion coefficient. To make results

comparable with other studies which employed 24 h precipitation data, an equivalent 24 h deple­

tion coefficient was defined such that

k=(k'f, (4.28)

where k is the 24 h depletion coefficient. This 24 h depletion coefficient value will be referenced

throughout this work rather than the 6 h value to limit the terminology confusion. All stations

were initialized with an API of 10 mm on July 15. Within 15 days, less than 21 % of this value

remains (assuming k = 0.9). Stations with fewer than 5 sample times matching the microwave

surface emittance observations were discarded. Since the depletion coefficient can be a function
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of location, the selection of the depletion coefficient was obtained by varying the value from 0.85

to 0.93 and selecting the value that provided the best correlations for each site. The depletion co­

efficient was then held constant for each site through the remainder of the correlation calcula­

tions.

The mean microwave surface emittance results were compared with the API measurements

for each precipitation station location. Precipitation stations that had less then 10 mm of precipi­

tation were excluded from the analysis, as were locations that had microwave surface emittance

ranges less than 0.03. This prevents stations that contain especially noisy signals from corrupting

the analysis. The microwave surface emittance results were spatially filtered to correspond to the

precipitation locations using PORTAL. The point location data sets were then correlated against

each other for each precipitation site. No other attempts were made to further filter the data.

However, it should be recalled that the microwave surface emittance results are inherently cloud

free.

Histograms of the API correlation results show some correlation of the microwave surface

emittance with the API but the results are not outstanding (see Figures4.55 and 4.56). Some in­

dividuallocations have correlations as low as -0.95. Conversely, some sites had high correlation

values (0.95). In Figures 4.55 and 4.56, the histograms have a rather broad distribution with a

significant skewness toward the lower correlation values. The skewness in the correlation distri­

bution increases with lower frequencies, indicating that the lower frequency channels are on av­

erage better correlated to the API results. The 85.5 GHz results show a pronounced peak at zero

correlation suggesting that the results at 85.5 GHz are random for a majority of the locations, al­

though a small group of locations exhibits negative correlation with the API that is above the ran­

dom Gaussian-like background distribution. The horizontal polarization correlation results

(Figure 4.56) show similar features as that of the vertical polarization results. However, the
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skewness in the correlation distribution is stronger for the horizontal polarization results than for

the vertical. This is expected since the horizontal should have a correspondingly larger range than

that of the vertical polarization data and hence more of a signal to measure.

In an effort to understand the correlation distributions, the mean microwave surface emit­

tance, and its standard deviation, along with the API standard deviation were plotted against the

API correlation results (Figures 4.57 - 4.59). The skewness of the API correlation toward nega­

tive correlation values is apparent in all the figures. No obvious relationship was found between

the mean microwave surface emittance and the API correlation values. The microwave surface

emittance standard deviation and API standard deviation versus the API correlation results

(Figures 4.58 and 4.59) indicate a small trend of higher variability in the API and microwave sur­

face emittance with more negative API correlation values. This is most likely due to the quality

of the data sample at each site. For sites that undergo a wider range of conditions the correlation

results are more negative, since similar conditions (low standard deviations of either quantity)

would not allow accurate determination of the correlation relationship. These results show how

important long time series data sets are to the accurate determination of surface relationships in­

volving intermittent features such as rain. The overall high amount of scatter in Figures 4.57 ­

4.59 also indicates the difficulty involved with the point-measurement comparison method.

The spatial location of high correlation sites is also of considerable interest. The API correla­

tion results for the 85.5H GHz surface emittance are shown as an example. In Figure 4.60, the

locations of sites where the microwave surface emittance versus the API correlation values are

less than -0.5 are indicated. A wide range of locations are shown (35 stations) which have signifi­

cant negative correlation values. Many of these same locations were observed and discussed in

detail in section 4.3.3. Many stations are in areas that traditionally have been viewed as being

poor candidates for remote sensing of soil moisture due to their vegetation coverage (Heymsfield
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and Fulton 1992). Conversely, locations of stations with API correlation results greater than 0.5

are shown in Figure 4.61. It is counterintuitive to expect that high microwave surface emittance

would be correlated with high API values. However, this can occur due to SSM/I FOV placement

near large waterbodies or other surface features that experience large microwave surface emit­

tance variability due to their sub-FOV features. Another possibility could be due to cloud con­

tamination effects which would most likely have a positive correlation with rain events since

clouds are always present with rain. Thus, this figure can be thought of as a measure of noise

within the system due to sub-FOV effects and cloud contamination. An equal probability would

exist that similar errors occur in the negative API correlation results of Figure 4.60 as well. Thus,

it is likely that approximately seven stations are also misrepresented by similar effects in the re­

sults shown in Figure 4.60. When all 7 channels of the SSM/I are considered, 95 station locations

have API correlation values below -0.5 (Figure 4.62). This represents a wide range of possible

locations and conditions from which to develop satellite based soil wetness retrieval methods.

4.3.6 Comparison with a Normalized Difference Vegetation Index (NDVI)

The microwave surface emittance was also compared with I km biweekly NOVI observa­

tions. The NOVI data set used in the study is described in detail in section 3.3.5. The NOVI data

were composited for NOVI data within the July 30 - Oct. 7 data period of the case study. Mean

NDVI values were then compared with their respective mean microwave surface emittance val­

ues for a given location. In Figure 4.63 and 4.64 results are shown for the vertical and horizontal

polarizations of the SSM/I channels. The results are rather surprising. The microwave surface

emittance is largely independent of the NOVI. Low microwave surface emittance values are as

frequently associated with high NOVI values as with low NOVI values. High microwave surface

emittance values tend to have slightly lower maximum microwave surface emittance values for

both high and low NOV! extremes. For mid-range NOVI values (0.2 - 0.3) the microwave
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surface emittance tends to be slightly higher. The large scatter of points with low microwave sur­

face emittance is due to small waterbody features and surface wetness effects due to rainfall

events. The horizontal polarization results (Figure 4.64) show more variability and a more notice­

able dog-leg in the data distribution that occurs at an NDVI value of 0.2.

The data were separated into 4 smaller areas (A - D) for more detailed analysis. Sector defi­

nitions are described in Table 4.8. Area A includes the Black Hills of South Dakota, area B cov­

ers a large part of Kansas and Oklahoma, area C includes a more heavily vegetated region in the

Ozark Mountains of Arkansas, and area D is in west Texas and includes a region of intensive ir­

rigation. In Figure 4.65, scatterplots ofNDVI versus the 85.5 GHz surface emittance is shown for

each area. Area A (Figure 4.65a) shows the least surface emittance variability of the 4 regions,

possibly due to the dryness of the region and to the type of vegetation (prairie grass and conifer

forest). The remaining areas (Figure 4.65b-d) show little difference in their data distributions

other than the extent of their NDVI ranges. All the regions have a considerable range of micro­

wave surface emittance values, which indicates that the sc'atter in the composite plots for the en­

tire area (Figures 4.63 and 4.64) is not due to significantly different signatures from the selected

regions. Another interesting result is that few NDVI values in Figure 4.65 are below 0.2. Closer

examination of the results (not shown in the figure) indicates that the desert regions of the West

are primarily responsible for the dog-leg effect noticed in Figures 4.63 and 4.64.

The microwave surface emittance polarization difference, 11& , was also calculated for com­

parison with the composite NDVI results. The microwave surface emittance polarization differ­

ences at 85.5 GHz are plotted against the corresponding NDVI values in Figure 4.66. The distri­

bution is similar to the previous NDVI versus microwave surface emittance plots, with the

exception that the dog-leg feature is now oriented in the opposite direction since the vertical po­

larization is subtracted from the horizontal polarization. The standard deviation of the microwave
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surface emittance difference (Figure 4.67) shows quite a bit of variability in the results. NDVI

results that correspond to open water, values of zero, exhibit the largest variability. To examine

the regional behavior, the mean and maximum !:J.e values from the 4 small regions described in

Table 4.8 are plotted against the mean NDVI values for each area (see Figures 4.68 and 4.69).

Figure 4.68 shows that the mean !:J.e values tend to have more structure to their distributions

than the previous large area composite would indicate. There is a steep negative slope along the

minimum values of the mean lie values in areas A, B, and C. Area D does not have this feature.

This relationship is due to the surface roughness effect that increased vegetation amounts have on

the microwave polarization (see Appendix section A.3.6). Area D's behavior could be due to the

constantly wet conditions at the high NDVI values and thus does not exhibit the steep negative

slope feature, since the high NDVI values are nearly always polarized to some extent (see Fig­

ure 4.68d). The maximum lie values versus the NDVI for the 4 small regions (Figure 4.69) em­

phasize the temporal surface wetness features. Again, a steep negative slope is present for the

lowest maximum lie values for areas A - C, but area D is independent of the NDVI. The maxi­

mum lie values show more variability since the strongest polarizing rain events are represented

in this plot, along with static waterbody features which are also present in the mean lie results of

Figure 4.68. The polarization is larger in the irrigated region of Area D that has high NDVI,

while the low NDVI regions that are not irrigated are slightly polarized due to the sparse vegeta­

tion effect (the same effect that is present in areas A - C). The combination of the irrigated land

with the non-irrigated land overcomes the steep negative slope relationship that the NDVI has

with lie and results in the poor correlation shown in Figure 4.69d.

4.3.7 Comparison with the SSMII Soil Moisture and Surface Wetness Indices

The microwave surface emittance results share some significant features with the SWI and

SMI results. While the microwave surface emittance results show significant amounts of detail
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(see for example Figure 4.30), the SWI and SMI results for the same period appear more crude

due to resolution differences as a result of their multichannel processing requirements. The stan­

dard deviation of the microwave surface emittance (Figure 4.33) shows that regions with large

microwave surface emittance standard deviations (> 0.05) resemble the maximum SWI and SMI

composite results (Figures 4.13 and 4.8). For example, the wet area in the central Great Plains in

Oklahoma and Kansas is present in both indices. Since the SWI and SMI are relatively sporadic

in the their temporal coverage due to their threshold nature as opposed to the microwave surface

emittance, the maximum SWI and SMI corresponds best with the microwave surface emittance

standard deviation results. Further differences between the microwave surface emittance are

more difficult to explain and are more a function of the particular index method than on the mi­

crowave surface emittance results. The SWI and SMI are compared in more detail in sec­

tion 4.1.3. Since the microwave surface emittance includes all surface conditions into the final

product its results appear to have wider scope and more detail due to physical mechanisms that

may be unrelated to the surface wetting events that are captured in the SWI and SMI. Also some

station locations that had high correlations of microwave surface emittance with the API are not

present in the index results, suggesting that the SWI and SMI are incomplete indices for measur­

ing surface wetness.

The microwave surface emittance results also provide information about the physical mecha­

nism behind the SWI method. The SWI method relies on a microwave brightness temperature

difference between frequencies with a horizontal polarization. From the atmospheric correction

results it is known that this frequency dependence is primarily an atmospheric effect from water

vapor absorption. So how can the SWI work? Very simply, the surface emittance is being indi­

rectly measured through water vapor attenuation. The water vapor signal is strongest for areas

with low microwave surface emittance. Thus, regions with low microwave surface emittance
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have the largest SWI value. Regions that have high microwave surface emittances can not meas­

ure the water vapor effects as well and the frequency difference is small resulting in a small SWI

value.

4.3.8 Summary of Microwave Surface Emittance Results

The microwave surface emittance contains important information about the surface. Besides

the expected waterbody signature due to permanent hydrological features, the data show an abil­

ity to measure surface wetness features temporally for some conditions. Irrigation regions are

also able to be detected by the microwave surface emittance. The reason for the low microwave

surface emittance for irrigation regions may be due to standing water from the result of the irri­

gation or from very high plant water content. The results from this work were inconclusive on

this point. Coniferous vegetation was found to have a particularly high microwave surface emit­

tance signature which allowed for its identification in some regions. Deserts also had very low

microwave surface emittance features as expected, but no noticeable difference was found be­

tween desert sand types in a comparison of the Red Desert of Wyoming and of White Sands,

New Mexico. This suggests that the low desert microwave surface emittance is primarily due to

the high dielectric constant of sand instead of scattering influ.ences that are due to sand particle

shape and size differences. Further work over larger desert regions is needed to confirm this hy­

pothesis.

The atmospheric correction applied in the retrieval of the microwave surface emittance tend

to normalize the microwave surface emittance statistics so that only small differences with fre­

quency are observed. A small negative gradient with frequency is found with retrieved micro­

wave surface emittance, which is opposite of the expected frequency dependence due to water. A

non-uniform sampling size due to a frequency dependent FOV-size is suggested as the cause of

this frequency dependent feature. A frequency dependence was also found in the microwave
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surface emittance comparisons with API, which could be due to penetration depth dependence

with frequency, or also of the decreased signal with frequency due to atmospheric attenuation.

The microwave surface emittance variability at 85.5 GHz increased with the application of the

atmospheric correction, suggesting that previous studies using non-atmospheric corrected micro­

wave brightness temperatures could experience decreased sensitivity at higher frequencies due to

atmospheric effects along with the effect of the frequency dependent penetration depth of the mi­

crowave radiation. Only limited diurnal effects were found in the microwave surface emittance

data set; this suggests that the frequency penetration depth has little effect, since the penetration

depth should experience a diurnal cycle due to an out-of-phase vertical heating profile for the

surface and near-surface layers.

The microwave surface emittance polarization difference was found to be a good visual indi­

cator of surface wetness. The results also indicate the possibility of using this parameter for the

determination of cloud liquid water over land. Although some highly vegetated regions do not

experience sufficient polarization differences to produce measurable cloud liquid water amounts,

the method should be highly complementary to single channel microwave cloud liquid water re­

trieval methods. Error propagation of such a method should also be improved over single channel

methods since the relative interchannel calibration error is less than the single channel absolute

brightness temperature accuracy.

The weekly composites graphically show the temporal nature of the microwave surface

emittance fields, and thus their potential for retrieval of temporal surface features such as surface

wetness. Large rain events were observed in the data set for a wide range of regions. From this

data set, the region of most sensitivity appears to be the central Great Plains. However, signifi­

cant features related to rainfall were also found in highly vegetated regions such as Illinois and

west Mississippi. Not all rain events appear in the microwave surface emittance data set,
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especially in the forested regions of the East. The microwave surface emittance is thus spatially

inconsistent as an indicator of all precipitation events. Comparisons with an API showed that

some of the best correlations were to be found in Illinois in addition to the Oklahoma and Kansas

regions. Since Illinois was experiencing a drought during the first part of the data period, it might

be reasonable to assume that the vegetation was sufficiently dried to become less of an obscurant

to the land's surface wetness conditions. The rapidly changing wet and dry surface conditions in

Oklahoma and Kansas were particularly visible in the microwave surface emittance results.

The NDVI comparisons with the microwave surface emittance retrieval results were rather

surprising, since the NDVI showed little correspondence to the microwave surface emittance,

except at very low NOV! values « 0.2). Upon closer examination of the results, it was found that

some regions did experience a steep negative slope relationship with their lowest microwave sur­

face emittance polarization difference. This suggests that the NOVI relationship to the microwave

brightness temperature data is regional in nature at the higher NOVI levels. Irrigation regions did

not exhibit any noticeable correlation. This is explained by the low microwave surface emittances

being associated with the irrigation areas with their higher NOVI values, thus effectively cancel­

ing the steep negative slope relationship. However, when the mean NOVI and mean microwave

surface emittance values are compared, areas with NOVI values above 0.2 show little relationship

to the microwave surface emittance. Regions with NOVI values below 0.2 show the expected

NDVI and microwave polarization difference temperature (MPOT) correspondence. This work

highlights the inappropriateness of using the annualized MPOT versus NOVI relationship for

generalizations about the sensitivity of the microwave surface emittance to vegetation greenness

as measured by the NOV!. This has serious implications regarding recent attempts to use gener­

alized SVAT models (Olioso et ai. 1995) which require a deterministic NOVI versus MPOT re­

lationship that is simply not observed at the SSM/I frequencies. The microwave data is not
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responsive to vegetation in the same manner as NDVI except on a regional basis and at extremely

low NDVI values. Irrigation effects are thus a substantial source of noise in the MPDT versus

NDVI relationship.

As opposed to the SWI and SMI retrievals, all cloud-free microwave FOVs are used to re­

trieve the microwave surface emittance. This eliminates the strong filtering of the SWI and SMI

methods, and allows the microwave surface emittance results to provide information on regions

that would have had no coverage by either of the above methods. However, since the microwave

surface emittance also requires infrared data, the cloud-free condition is a major hindrance to

practical use of the microwave surface emittance using the limited temporal coverage available

from current polar orbiting satellites. The higher temporal resolution available from a geostation­

ary microwave imager could significantly improve the microwave surface emittance coverage.
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Table 4.1: Summary of surface type classification rules using the seven channels of the SSMJI
(from McFarland and Neale 1991).

Brightness Temperature Threshold Values
LAND SURF. TYPE [a] [b] [c] [d] [e] [g] [h] [j]

(K) (K) (K) (K) (K) (K) (K) (K)
1 Flooded Conditions >4

2 Dense Vegetation ~4 ~ 1.9 ~ -1 <4.5 >262

3 Dense Agric.l ~4 > 1.9 2 -1 <4.5 >262
Range Veg. ~4

4 Dry Arable Soil ~4 >4 2-6.5 < 0.5 <4.2
~ 9.8 2-5

5 Moist Soil ~4 >4 ~-6.5 ~0.5 <4.2
< 19.7 <4

6 Semi-Arid Surface ~4 > 9.8 < 0.5 <6 <-1.8
< 19.7

7 Desert ~2 219.7 > -1 > 268

8 Precip. Over Veg. ~4 ~4 < -1 > 268

9 Precip. Over Soil ~4 >4 < -3 <-5 < -4.1 > 268

10 Compo Veg. and ::;;4 <6.4 2 -1 24.5 > 257
Water

11 Compo Soil & Water/ ~4 26.4 2 -6.5 2 0.5 24.2
Wet Soil

12 Dry Snow I ~4 >4 < -6.5 > 225
~257

13 Wet Snow ~4 > 9.8 ~ -0.8 < 0.5 ~268 ~-1.8

~ -6.5 > 253 ~ 6.5
14 Refrozen Snow 2 ::;;4 >4 < -6.5 ~225

15 Unclassified otherwise

[a] 22V - 19V

[d] 85V - 37V

[g] 19V

[b] (19V + 37V)/2 - (19H + 37H)/2

[e] 85H - 37H

[h] 37V

[c] 37V - 19V

[f] 37V - 37H

[j] 37H - 19H

Additional conditions: 1 19V - 19H 2 5, 2 19V > 37V > 85V, 19H > 37H > 85H
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Table 4.2: McFarland and Neale surface moisture retrieval algorithms for three vegetation classes
(adapted from McFarland and Neale 1991).

Vegetation
Density Class A B TEST

Low 659.35 -675.22 [b] > 8 K

Medium 1126.58 -1145.48 6< [b] ~ 8 K

Medium-High 1707.24 -1724.14 4< [b] ~ 6 K

SMI =A + B (T19H / T37V) [b] (l9V + 37V)/2 - (l9H + 37H)/2

Table 4.3: SSM/I best-fit spatial weighting function coefficients and standard deviations.

channel • n * •• ..
nx (J'G

r
(J'cy

1,Y

1 2.06 2.17 0.01 0.01

2 2.10 2.16 0.00 0.00

3 2.24 2.20 0.00 0.01

4 1.96 2.52 0.01 0.01

5 2.49 1.95 0.01 0.01

6 2.30 2.19 0.00 0.00

7 2.24 1.54 0.00 0.01

* Values are valid for 0-20 dB, except for channels 4-7 whIch are valid for
0-10 dB.
** Standard deviation values are in terms of gain.
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Table 4.4: Error sensitivity analysis for retrieved microwave surface emittance (adapted from
Jones and Yonder Haar 1990).

frequency microwave surface emittance errors

(GHz) relative absolute

19.35 0.0021 0.0078

22.235 0.0041 0.0094

37.0 0.0020 0.0084

85.5 0.0053 0.0123

Table 4.5: Mean and maximum microwave surface emittance values for 30 July - 7 October
1991.

frequency and polarization microwave surface emittance values

(GHz) mean maxImum

19.35V 0.962 1.017

19.35H 0.933 0.991

22.235V 0.954 1.027

37.0V 0.951 1.010

37.0H 0.928 0.994

85.5V 0.945 1.049

85.5H 0.927 1.023
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Table 4.6: Mean, minimum, maximum, and standard deviation microwave surface emittance sta­
tistics for White Sands, New Mexico for 30 July - 7 October 1991.

frequency mean standard minimum maximum
(GHz) value deviation value value

mean 19V 0.960 0.003 0.955 0.966

19H 0.886 0.012 0.866 0.920

22V 0.951 0.004 0.943 0.960

37V 0.952 0.004 0.945 0.960

37H 0.887 0.015 0.857 0.922

85V 0.947 0.007 0.931 0.960

85H 0.902 0.019 0.852 0.933

minima 19V 0.947 0.005 0.940 0.960

19H 0.856 0.018 0.831 0.907

22V 0.934 0.007 0.925 0.951

37V 0.937 0.007 0.930 0.954

37H 0.853 0.022 0.819 0.911

85V 0.925 0.011 0.906 0.945

85H 0.865 0.029 0.807 0.909

maxima 19V 0.973 0.004 0.968 0.978

19H 0.906 0.014 0.887 0.939

22V 0.967 0.005 0.960 0.978

37V 0.966 0.005 0.956 0.976

37H 0.91'+ 0.012 0.878 0.941

85V 0.969 0.010 0.949 0.987

85H 0.932 0.016 0.875 0.962

standard 19V 0.008 0.001 0.005 0.011

deviation 19H 0.016 0.004 0.008 0.029

22V 0.010 0.003 0.004 0.015

37V 0.009 0.002 0.004 0.012

37H 0.018 0.004 0.007 0.031

85V 0.012 0.002 0.008 0.016

85H 0.019 0.006 0.009 0.038
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Table 4.7: Mean, minimum, maximum, and standard deviation microwave surface emittance sta­
tistics for the Red Desert of southwest Wyoming for 30 July - 7 October 1991.

frequency mean standard mInImUm maximum
(GHz) value deviation value value

mean 19V 0.956 0.002 0.950 0.959

19H 0.888 0.006 0.878 0.901

22V 0.947 0.002 0.942 0.952

37V 0.947 0.002 0.943 0.951

37H 0.890 0.006 0.880 0.907

85V 0.943 0.003 0.936 0.950

85H 0.898 0.008 0.881 0.923

minima 19V 0.940 0.002 0.937 0.943

19H 0.871 0.007 0.859 0.885

22V 0.931 0.002 0.927 0.935

37V 0.930 0.002 0.927 0.936

37H 0.869 0.008 0.859 0.891

85V 0.922 0.004 0.914 0.932

85H 0.873 0.011 0.857 0.903

maXIma 19V 0.969 0.002 0.958 0.973

19H 0.902 0.006 0.893 0.918

22V 0.961 0.004 0.953 0.965

37V 0.961 0.002 0.957 0.966

37H 0.907 0.007 0.895 0.922

85V 0.964 0.008 0.947 0.981

85H 0.921 0.009 0.902 0.948

standard 19V 0.010 0.001 0.006 0.012

deviation 19H 0.01 I 0.001 0.008 0.014

22V 0.01 I 0.001 0.007 0.012

37V 0.010 0.001 0.007 0.012

37H 0.013 0.002 0.008 0.016

85V 0.013 0.002 0.008 0.018

85H 0.015 0.002 0.010 0.020
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Table 4.8: Small sector definitions for the NDVI versus microwave surface emittance compari­
sons.

latitude range longitude range

area states features min. max. min. max.

A MT, WY,SD PrairielBlack Hills -106° -101 ° 42° 46°

B OK,KS Central Great -100° -95° 34° 40°
Plains

C AK,MO,OK Ozark Mountains -95° -92° 34° 38°

D NM,TX Irrigated High -104° -100° 32° 36°
Plains
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Figure 4.1: Percent occurrence of "Moist soil" land classification category for 30 July - 7 October
1991 from DMSP F-I0 SSM/I data.
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Figure 4.2: Same as Figure 4.1, except for percent occurrence of "Composite soil and water/wet
s;' ir· land classification category.
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Figure 4.3: Same as Figure 4.1, except for percent occurrence of "Flooded conditions" land clas­
sification category.
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Figure 4.4: Neale land classification for 1525-1534 UTe 8 September 1991. Land classification
categories are described in Table 4.1.
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Figure 4.5: Same as Figure 4.4, except for SMI algorithm results.



131

Figure 4.6: Composite mean SMI values derived using DMSP F-l 0 SSM/I data for 30 July ­
7 October 1991.
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Figure 4.7: Same as Figure 4.6, except for the minimum SMI values.
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Figure 4.8: Same as Figure 4.6, except for the maximum SMI values.
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Figure 4.9: Same as Figure 4.6, except for the standard deviation of the SMI values.
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Figure 4.10: Same as Figure 4.6. c:\ccnt fpr the Ilumher of SSM/I data samples used in the SMI
algorithm composites.
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Figure 4.11: SWI results for 1525-1534 UTe 8 September 1991.
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Figure 4.12: Composite mean SWI values derived using DMSP F-1 0 SSM/I data for 30 July ­
7 October 1991.
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Figure 4.13: Same as Figure 4.12, except for the maximum SWI values.
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Figure 4.14: Same as Figure 4.12, except for the sample density of the SWI values.
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Figure 4.15: Antenna pattern for SSM/I channel 6 (85.5 GHz vertical polarization). The lines de­
note laboratory measurements, for more detail see Hollinger et al. (1987).
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Figure 4.16: Derived infrared surface emissivity values from TIMS using two infrared surface
emissivity retrieval methods (from Schmugge et ai. 1995).
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Figure 4.17: GOES VISSR infrared (channel 8) imagery for 1532-1535 UTe 8 September 1991.
Values are displayed in terms of brightness temperature (K).
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Figure 4.18: Same as Figure 4.17, except for the GOES VISSR visible imagery. Values displayed
are in tenns of raw 6-bit count values.
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Figure 4.19: NGDC DEM Database merged to the GOES VISSR infrared projection space shown
in Figure 4.17. Heights are in meters.
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Figllr~ 4.20: Same as Figure 4.17, except for surface skin temperature retrieval (K) for clear-sky
reglo:s.
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Figure 4.21: Same as Figure 4.17, except for the magn itude of the atmospheric correction (K)
applied during the surface skin temperature retric\ al for clear-sky regions.
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Figure 4.22: Same as Figure 4.17, except for the temperature difference (K) between the retrieved
surface skin temperature for clear-sky regions and the surface level of the interpolated atmos­
pheric sounding air temperatures (12 UTC).
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Figure 4.23: DMSP F-10 SSM/I 85.5H GHz microwave brightness temperature (K) for
1525-1534 UTe 8 September 1991.
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Figure 4.24: NGDC DEM Database merged to the DMSP F- I0 SSM/I projection space shown in
Figure 4.23. Heights are in meters.
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Figure 4.25: Surface skin temperature retrieval (K) for clear-sky regions merged to the DMSP
F-IO projection space shown in Figure 4.23.
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Figure 4.26: Same as Figure 4.23, except for retrieved 85.5H GHz surface emittance.
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Figure 4.27: Flowchart of the microwave surface emittance retrieval method.
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Figure 4.28: Same as Figure 4.23, except for 85.5H GHz surface emittance calculated without
applying infrared and microwayc atmospheric corrections.
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Figure 4.29: Change in the surface emittance versus the effective surface emittance estimate us­
ing a standard midlatitude summer sounding.
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Figure 4.30: Composite mean 85.5H GHz surface emittance derived using DMSP F-IO SSM/I
data for 30 July - 7 October 1991.
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Figure 4.31: Same as Figure 4.30, except for the minimum composite 85.5H GHz surface emit­
tance values.
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Figure 4.32: Same as Figure 4.30, except for the maximum composite 85.5H GHz surface emit­
tance values.
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Figure 4.33: Same as Figure 4.30, except for the standard deviation of the composite 85.5H GHz
surface emittance values.
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Figure 4.34: Same as Figure 4.30, except for the number of SSM/! data samples used in the
85.5H GHz surface emittance composites.
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Figure 4.35: Comparison of desert mean microwave surface emittance for 30 July - 7 October
1991. The error bars indicate standard deviation values.
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Figure 4.36: Same as Figure 4.30, except for composite mean 85.5 GHz effective surface emit­
tance.
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crowave surface emittance does not include an atmospheric correction.



163

~_.- ._-- ---- - ----~ --- -- -------

Standard deviation microwave surface emittance statistics

0.045
1

0.040

0.005.

0.010 l" ...

-- --------.~ -._-- ··----1
____ Standard deviation of effective

surface emittance values I
__ .. __ Standard deviation of surface i

emittance values i

fl 0.035
c
~·s
: 0.030 ._. _
u

~
:::l

: 0.025 --
>

~
.~ 0020E .-o
c

.S! 0.015iii
';
CIl

't:l

"E
III
't:l
C

.fl
Ul

0000 +-- -- .
19V 19H 22V 3TV 37H 85V 85H

Frequency (GHz)

Figure 4.38: Same as Figure 4.37, except for the standard deviation of the microwave surface
em ittance.
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Figure 4.39: Composite mean 85.5H GHz surface emittance derived using morning overpasses
(0600 - 1800 UTC) from OMS? F-IO SSM/l data for 30 July -7 October 1991.
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Figure 4.40: Same as Figure 4.39, except for afternoon overpasses (1800 - 0600 UTC).
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Figure 4.41: Composite mean 85.5 GHz surface emittance polarization difference (85V - 85H)
derived using DMSP F-1 0 SSM/I data for 30 July - 7 October 1991.
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Figure 4.42: Same as Figure 4.4 I, except for the minimum 85.5 GHz surface emittance polariza­
tion difference values.
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Figure 4.43 Same as Figure 4.41, except for the maximum 85.5 GHz surface emittance polariza­
tion difference values.
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Figure 4.44 Same as Figure 4.41, except for the standard deviation of the 85.5 GHz surface
emittance polarization difference values.
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Figure 4.45 Same as Figure 4.41. except that mean 85.5 CiHz surface emittance polarization dif­
ference values that are less than the measured standard deviation (see Figure 4.44) are shaded
black. Values that remain are signals that are 1 standard deviation above the natural background
variability.



171

Figure 4.46: Weekly composite mean 85.5H GHz surface emittance derived using DMSP F-I0
SSM/I data for Julian days a) 209-215, b) 216-222, c) 223-229, and d) 230-236.
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Figure 4.47: Same as Figure 4.46, except for days a) 237-243, b) 244-250, c) 25 J-257, d)
258-264.
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Figure 4.48: Same as Figure 4.46, except for days a) 265-271, b) 272-278, and c) 279-285.
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Figure 4.49: Irrigated land in farms, 1982 (Bajwa et al. 1987).
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areas with no data available.
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Figure 4.51: Irrigation areas of eastern Colorado (reproduced from the map of Important Farm­
lands of Colorado, prepared by USDA Soil Conservation Service and Colorado State University
Experiment Station, 1980).
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Figure 4.52: Density of corn crop production and milling capacities (Chapman and Sherman
1982).
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Figure 4.53: Density of sorghum production (adapted from Chapman and Sherman 1982).
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Figure 4.54: Density of rice production (adapted from Chapman and Sherman 1982).
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Figure 4.57: Mean microwave surface emittance versus API correlation results. Each SSM/I
channel has a unique symbol (see the figure legend).
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Chapter 5

DATA ASSIMILATION OF SATELLITE-DERIVED SURFACE SOIL
MOISTURE INTO AN ATMOSPHERIC MESOSCALE MODEL

This chapter presents the development and testing of a satellite-model coupled data assimila-

tion system for incorporating satellite-derived surface soil moisture into an atmospheric meso-

scale model. The method is based on the McNider technique discussed in section 2.4, with exten-

sions added to account for vegetation effects using a simple "big leaf' vegetation parameteriza-

tion scheme. The method is derived in section 5.1, and tested in a lD sensitivity test and a 3D

case study in sections 5.2 and 5.3, respectively. A simple noise experiment is performed in sec-

tion 5.3.3. The data assimilation results are summarized in section 5.4.

5.1 SATELLITE DATA ASSIMILATION METHOD

The satellite data assimilation method is based on using satellite measured heating rates as an

estimate of the surface latent heat flux in a manner similar toMcNider et al.'s work (1994). Ma-

jor differences include the inclusion of a prognostic soil model, and a vegetation parameteriza-

tion. The Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS)

was selected as the atmospheric mesoscale model to implement the data assimilation method due

to its capabilities to perform variable initialization from observations, and its long history as a

research-quality mesoscale atmospheric model including an emphasis on land surface parame-

terization (Pielke et al. 1992).
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5.1.1 CSU-RAMS Land Surface Parameterization Scheme

The standard vegetation/land surface parameterization scheme used in RAMS is based on a

series of papers (McCumber 1980; Avissar and Mahrer 1982; Avissar and Mahrer 1988; Avissar

and Pielke 1989), each incrementally improving upon the original scheme. The basic overall ca­

pabilities of the model are described in Pielke et aI. (1992), while a review of the current specific

vegetation scheme is reported in Lee (1992). The basic components of the bare soil prognostic

model (Tremback and Kessler 1985) have already been discussed in sections 2.1.2 and 2.1.3.

Several features of the vegetation/land surface parameterization scheme are relevant to this

work. The model is composed of 4 parts: the bare soil, shaded soil, vegetation, and water sur­

faces. The bare soil and shaded soil models use basically the same physical parameterization ex­

cept with different boundary conditions due to the overlaying vegetation. The water surface has a

relatively simple parameterization in which the water temperature is assumed to have a season­

ally specified temperature that is constant during the simulated period of the model run, and wa­

ter vapor is evaporated freely from its surface as a function of temperature, atmospheric humidity

and wind speed. The vegetation parameterization is a modified "big leaf' vegetation scheme in

which all vegetation is assumed to exist as one constant slab of plant material over the shaded soil

surface. Horizontal variations in the vegetation are accounted for by defining several vegetation

classes that specify appropriate model parameters (e.g., albedo, roughness length, and leaf area

index (LAI» for the particular classification category. The RAMS vegetation categories are

based on the Biosphere-Atmosphere Transfer Scheme (BATS) (Dickinson et al. 1986). Addition­

ally, USGS land classification categories based on NDVI measurements (Loveland et aI. 199 I)

are used to realistically distribute the various land classification categories at a I km grid interval

scale. Examples of the vegetation classification used for this work are shown in section 5.3.2. I.
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5.1.2 Satellite Data Assimilation Method Derivation

The aggregate model heating rate (Le. the heating rate that is equivalent to a single-FOY sat-

ellite heating rate) is composed of 3 parts: the heating rate fraction due to the bare soil, vegeta-

tion, and standing water. Although a shaded-soil heating rate component is calculated within the

land surface parameterization scheme, it is not used in the following derivation since the vegeta-

tion would shield the shaded soil temperatures from satellite observation. Thus,

(dT) (dTL) (dTv ) (dTw)dt = IL dt + Iv dt + Iw ----;;;- ,
m 111 111 I1J

(5.1)

represents the aggregate model heating rate that would be comparable to a satellite observed

heating rate. Each component is determined from the individual model heating rates,

(dTI, ) (dT;,) (dTw)
dt ' dt ' dt '

m m m

(5.2)

and is multiplied by its respective fractional area coverage, II,' Iv, Iw, where the subscripts,

L, V, and W denote the land, vegetation, and water components, respectively. To distinguish

satellite variables from model variables, the subscripts m and s are used, where m refers to

model quantities, and s , to satellite quantities. The combination of all fractional area coverage is

defined such that,

II. + J;. + Iw = 1. (5.3)

Fallowing the technique of McN ider et al. (1994), the aggregate model heating rate is perturbed

to force agreement between the model and observed satellite heating rates. This yields

(~) .
111

.(d0.) (dT;.) (dTw) (dT)I, dt + J;. dt + Iw dt = dt '
nit m' m' s

(5.4)
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where the subscript m' is used to denote the new perturbed model variables. Within the CSU-

RAMS land surface parameterization scheme, Equations 5.1 and 5.4 can be simplified since wa-

ter surface temperatures are assumed to be constant, i.e.,

(dTw) =(dT;v) = o.
dt m dt m'

(5.5)

Further usage of these equations requires that additional assumptions be introduced to reduce the

degrees of freedom in the equation set, since only an aggregate heating rate is available from the

satellite platform. Section 5.1.2.1 continues the data assimilation method derivation, focusing on

the derivation of the bare soil component, while section 5.1.2.2 derives the solution for the vege-

tation equation set.

5.1.2.1 Bare Soil Component

The heating rate of the bare soil component is not directly measured by the satellite, thus an

assumption is introduced that the current bare soil and vegetation model heating rates are propor-

tional to the new perturbed model heating rates which are to be calculated,

(5.6)

This assumes that the model is sufficiently capable of determining the relative magnitudes of the

component heating rates. It also has a side benefit, in that it ensures that the new perturbed model

heating rates will not abruptly alter the energy partitioning between the bare soil and vegetation

surface components. Inserting Equation 5.6 into Equation 5.4, and solving for the perturbed

model heating rate over bare soil, produces the following relationship,
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(5.7)

which can be used to estimate the new model heating rate over bare soil as a function of the sat-

ellite-derived heating rate.

From Equation 2.4, introduced in section 2.1.2, the soil heat flux is also related to the bare

soil heating rate, such that (in finite difference form),

(5.8)

where Q:,Zg and Q{nZg-l) are the perturbed model soil heat fluxes at the ground surface,

Znzg = 0 cm , and at the model level immediately below the ground surface (which was 3 cm be-

low the ground surface for the model configuration used in these runs). L1z is the depth of the

surface soil layer (3 cm), while p' and c' are the moisture-dependent soil density and soil spe-

cific heat capacity of the perturbed model (see section 2.1.2). Equation 5.8 is then solved for the

perturbed model soil heat flux,

(dT)I = 0' + __I. L1z 'c'
Qnzg ~(Ilzg-I) dt Ill' P . (5.9)

Proceeding beyond this point requires the second major assumption, which (after McNider) is

the assumption that all the terms in the model's surface energy budget are the same as the actual

energy budget except for the latent energy term E (McNider et al. 1994). Thus the new per-

turbed surface soil heat flux can be written as,

(5.10)
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where M is the latent energy term adjustment required to bring the model into balance with the

satellite observations. From similarity theory, the latent heat flux is also related to the surface

friction velocity, U., and friction humidity, q. (see section 2.1.1), which allows M to be ex-

panded in Equation 5.10. By combining Equations 5.9 and 5.10, the satellite-derived heating rate

forcing can then be reduced to a relationship involving a friction humidity perturbation,

llq.
l.

(5.11)

where the subscript L denotes bare soil friction velocity and humidity values. As you can see,

we are working our way downward into the land surface parameterization scheme.

The next derivation phase involves inverting the similarity relationship that connects the sur-

face friction velocity and friction humidity values to the surface specific humidity value, qG'

CSU-RAMS implements the Louis (1979) stability adjustment functions since the method is non-

iterative. This means a direct inversion is possible. The surface flux term is given by,

where

and

-[ k ]'('I = jJl'
In(.: / ':0)

(5.12)

(5.13)
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(1 + 4.7Rir
2

H.4Ri{I+53[In(Z~ ZO)]'~IRir
(5.14)

where Ri is the Richardson number (see section 2.1.4 for further details). Equation 5.12 there-

fore relates the surface specific humidity perturbation, I::1qG' to the surface friction humidity,

I::1q. ,and can be expressed as
I.

I::1q. u.
I. I. (5.15)

Combining Equations 5.11 and 5.15 produces a relationship for I::1qG'

I::1qG = (5.16)

where Equations 5.7, 5.13 and 5.14 are used to complete the equation set.

The soil surface specific humidity parameterization scheme ofLee and Pielke (1992) is used

to relate the surface specific humidity to the surface soil moisture value, 17. This particular

parameterization scheme was found to have the smallest variations of six methods compared by

Mihailovic et al. (1995) against observed latent heat fluxes. The surface specific humidity is a

function of the surface ground temperature, 'rei' and atmospheric humidity above the ground sur-

face, qa' Additional parameters a and f3 are introduced to control the performance of the

method,

(5.17)
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where,

a =exp(gtpJ,
RTG

(5.18)

p=
1,

(5.19)

and qJT) is the saturation specific humidity at a given temperature T, 1Jrc is the volumetric

soil water content at the field capacity of the soil, g is the acceleration due to gravity, \fI is the

soil water potential at the surface, and R is the gas constant for water vapor (Lee and PieIke

1992). Therefore, the perturbation form of Equation 5.17 can be written as

where the a and p terms are evaluated at their appropriate surface soil moisture values.

(5.20)

Therefore. the combination of Equations 5.16 and 5.20, in addition to their associated equa-

tions (Equations 5.7, 5.13 and 5.14) is the solution for the bare soil surface soil moisture in the

presence of the satellite observed heating rates. An iterative numerical solution technique is re-

quired to solve Equations 5.16 and 5.20. Equations 5.16 and 5.20 are subtracted so that a new

function, M , is defined,

!:::'F =
(dT)o ' --'. & 'e'_Il=~ - Q(Il=~-I) - dt . P

11/
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Using Newton's method (Conte and de Boor 1980), the iterative solution is then

To initialize the method, 77-1 and 770 are assumed to be

77-1 = 771
-
1+ 0.01,

and

(5.22)

(5.23)

(5.24)

where 771
-

1 is the surface soil moisture of the bare soil from the preceding time step of the model.

Since improperly initialized soil heat fluxes may for some cases prevent convergence of the

method, the surface soil temperature gradient is reinitialized at the beginning of the soil moisture

data assimilation period, so that Q{,,:g_I) is initially in balance with the satellite observations (i.e.

I:!.qG =0). From Equations 2.4 and 5. I6, the perturbed soil heat flux at the level immediately

below the surface layer is

(
~;:,tr + I-(,,:g-I)J( e,,:!, - ~":,tr-I) J Q (dT,)Q' = = - --" &P'C'

(":1'-1) 2 7 _ 7 ":,tr dt .
-,,:,tr -(":,tr-I) III'

Thus the revised sub-surface soil temperature, q,,:,tr-I)' is then,

(5.25)

(5.26)

where p and c are used as approximations for p' and c'. The adjustment is propagated

downward into the soil model. It is weighted linearly with depth so that the top levels are affected
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the most with the lowest soil temperature remaining unchanged. The model's deep soil vertical

heat fluxes are then recalculated using the revised sub-surface temperatures. The deep soil tem­

perature adjustment procedure eliminates the initial soil temperature gradient information from

having an initial impact on the soil moisture retrieval results, but at the same time, allows for later

soil model feedback into the system. No further soil temperature reinitialization adjustments are

made during the remainder of the model run.

5.1.2.2 Vegetation Component

The vegetation surface parameterization of the CSU-RAMS model is based on a "big leaf'

vegetation parameterization scheme (McCumber 1980; Avissar and Mahrer 1982; Avissar and

Mahrer 1988; Avissar and Pielke 1989). The history and details of the vegetation parameteriza­

tion scheme are discussed in Lee (1992). The focus of this work was not to improve the vegeta­

tion parameterization method but to assimilate the satellite-derived heating rates into the current

vegetation parameterization scheme. Additional efforts are currently underway to include an im­

proved vegetation parameterization method (Lee 1992; Walko et al. 1996) within the standard

distribution of RAMS.

Recalling where the bare soil and vegetation components parted ways in the satellite data as­

similation method derivation (section 5.1.2), the satellite heating rate has two parts; due to the

bare soil heating rate, and due to the vegetation heating rate. For the vegetation satellite data as­

similation component, the previous bare soil heating rate from the bare soil data assimilation re­

sults is used, since the actual assimilated heating rate may differ from the requested bare soil

heating rate. This allows the vegetation component to compensate for any model restrictions or

limitations affecting the bare soil component (this will be discussed futher in section 5.2). The

satellite-derived heating rate is then simply the sum of the component heating rates,
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(dT) (dTL) (d~,)
dt = IL dt + Iv 'dt '

s m' m'

(5.27)

bearing in mind that the water covered regions were assumed in section 5.1.2 to be of constant

temperature. The vegetation heating rate is given by a simple heat equation,

(5.28)

where the effective heat capacity of the vegetation is related to the heat capacity of water, Cw' the

density of water, Pw' and the leaf area index (LAI),

(5.29)

Combining Equations 5.27 and 5.28, an expression is obtained relating the vegetation heat

flux to the satellite-derived heating rate and the previously retrieved bare soil heating rate,

(5.30)

Making the identical assumption as before in section 5.1.2.1, all the terms in the model's surface

energy budget are assumed to be the same except for the latent energy term. Thus,

(5.31)

represents the perturbed vegetation heat flux, where the subscript V denotes the vegetation fric-

tion velocity and friction humidity terms. Equations 5.30 and 5.31 are then solved for ~q'I"

which results in the following,
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(5.32)

Again as in section 5.1.2.1 regarding the bare soil surface similarity equations, the Louis

(1979) stability adjustment functions are used to relate the surface friction humidity perturbation

to the vegetation specific humidity perturbation,

l:iq.,_ u'
J

'

l:iq \'eg =- C.(
Ii h

Combining Equations 5.32 and 5.33,

(5.33)

!1q\.eg = (5.34)

the vegetation specific humidity perturbation is related to the satellite-derived heating rate and the

previously retrieved bare soil heating rate.

The vegetation specific hum idity is related to the vegetation stomatal function that determines

the vegetation's physical response to its environmental conditions, This controls the vegetation

transpiration rate and thus is a key factor to the vegetation heating rate. The specific humidity at

the leaf-air interface is computed following a procedure suggested by Avissar et al. (1985),

q l'<'g = (/ \(T,,<,g )( I - d "0111 ) + d"olllqa,

where d,'wlII is the dimensionless relative stomatal conductance and is defined as,

(5.35)
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(5.36)

where de is the minimal stomatal conductance that occurs through the leaf cuticle when the sto-

mata are closed, dm is the maximal stomatal conductance that occurs when the stomata are com-

pletely opened, and FR is the incident solar radiation. The environmental functions, J;, are

given by

(5.37)

where the subscript i represents a specific environmental factor (the subscript R represents the

solar radiation, T for leaf temperature, V for vapor pressure difference between leaf and ambi-

ent air, C for ambient carbon dioxide concentration, and \f' for soil water potential in the root

zone).

Determining the vegetation specific humidity perturbation from Equation 5.35,

I1ql'eg = q;'eg - ql'eg = I1d'/olll [qa - qs(T"eg)] ,

and solving for the stomatal conductance perturbation, yields

which when combined with Equation 5.34,

(5.38)

(5.39)

I1d"'I11111 =

Q." - C." [(~~} - f, (~) Jr.;1
[qa -qs(~'eg)]LI'PaCJhLAI

(5.40)
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produces an expression relating the stomatal conductance perturbation to the satellite-derived

heating rate and to the previously derived bare soil heating rate.

Therefore, the perturbed stomatal conductance can be determined using Equation 5.40, since

Solving Equation 5.36 for the environmental factors,

(5.41)

(5.42)

and then inverting the soil moisture environmental factor for the both the perturbed and nonper-

turbed soil moisture values yields the following equations,

I {[ (dm - de)FR]n }\}J=x'I'=xh'l'--ln J;-I,
8'1' (1- d wom - de )LAI ;",'1'

and

I {[ (d - d )F] }UJ'= ' _ --I III e R nr'-I
T -X'I'-Xh'l' n, Ji'

8'1' (1- d wom - dc)LAI ;",'1'

(5.43)

(5.44)

where the product of the environmental factors is over all environmental terms except for the root

zone soil moisture potential environmental factor, and

qJ = IrOOf,\}J,[TJ,.)h,
I '7,

and

\}J' = IrOOf;\fJ.,[TJ,~)h,
I '7,

(5.45)

(5.46)
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are the root zone soil moisture potentials for the non-perturbed and perturbed soil moisture pro-

files.

Since no observational data exists for the actual distribution of the soil moisture profile, a

constant vertical soil moisture profile is assumed, so that

(5.47),

where i represents the soil model level. Therefore, the perturbed soil moisture profile is then

From the definition of the perturbation root zone soil moisture potential,

i1\f1 = \fI' - \fI,

(5.48)

(5.49)

and Equations 5.45 and 5.46, an equation relating the perturbed vegetated soil moisture to the

root zone soil moisture potential perturbation is derived,

1'1' =

-lIh

(5.50)

Thus for the satellite data assimilation method, Equations 5.29,5.36, 5.37, 5.40, 5.41, 5.43, 5.44,

5.49 and 5.50 constitute the solution for the vegetation component once the bare soil component

ofthe data assimilation method has been previously solved.

5.1.3 Satellite Data Assimilation Method Procedure Summary

The satellite data assimilation procedure is graphically depicted in Figure 5.1. The satellite

data is preprocessed to clear cloud contaminated FOYs using the dynamic infrared threshold

technique that was previously described in section 4.2.2. After cloud clearing, the satellite skin
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surface temperature heating rates are determined using unadjusted infrared skin temperatures for

each available satellite time period and are weighted linearly in time for input into the data as-

similation method. The satellite skin temperature heating rate is then first used in the bare soil

component soil moisture retrieval. The target model heating rate is estimated from the previous

unadjusted model component heating rates and the satellite-derived heating rate using

Equation 5.7. The subsurface ground soil heat flux is then adjusted using Equation 5.26 to bal-

ance the satellite-derived heating rates and subsurface ground soil heat flux as described previ-

ously in section 5.1.2.1. Based on the satellite-derived forcing value,M_1 and M o are deter-

mined using Equations 5.21, 5.23, and 5.24. Similarly, the iteration loop calculates M; using

Equation 5.21, and a new surface soil moisture value is estimated from Equation 5.22. The itera-

tion is loop is exited when the soil moisture value converges to a solution, i.e., when

77i - 77i-l < 10-5 .
77i

(5.51)

The loop typically converges within 3-5 iterations. The target model heating rate is then recalcu-

lated using the retrieved bare-soil soil moisture and is used as input into the vegetation compo-

nent soil moisture retrieval method. The vegetation soil moisture is retrieved by simply solving a

series of analytical equations (Equations 5.29, 5.36,5.37,5.40,5.41,5.43,5.44,5.49 and 5.50).

Figure 5.1 shows a simplified functional view of the vegetation-soil moisture retrieval process.

In summary, the satellite data assimilation method, has two major parts, the bare soil and

vegetation components. The bare-soil soil moisture is retrieved first using an iterative method,

while the vegetation soil moisture is a series of analytical solutions. The vegetation soil moisture

requires as input both the satellite-derived heating rates and the retrieved bare-soil soil moisture

values. Based on the RAMS model configuration that was used for this study, the satellite data
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assimilation method adds approximately 8% to the overall computational time of the model. The

RAMS model configuration that was used is described later in section 5.3 .2.1.

5.2 lD SENSITIVITY TESTS

A one-dimensional test of the method was perfonned by inserting a ID version of the satel­

lite data assimilation method which used simulated satellite heating rates, into a small 3D version

(lOx 10 horizontal grid with 30 grid intervals in the vertical for the atmospheric variables and 1I

soil model levels) of the RAMS model. The host model's 3D boundary conditions were forced by

the RAMS variable initialization procedure which is explained in more detail in section 5.3 .2.1.

Several tests were perfonned in an attempt to access the validity of the equation set derived in

section 5.1.2. In this section, results are shown from a control run in which the satellite data as­

similation method is turned off, and a run that was forced with a constant simulated satellite

heating rate of 1 KIh. While the constant satellite heating rate is unrealistic (especially in the late

afternoon, when the surface should be cooling), it exhibits several features of the data assimila­

tion method worth noting, and thus serves as a pedagogical example.

The surface energy budget over bare soil is shown for both the control run and forced run in

Figure 5.2. In the figures to be shown (Figures 5.2-5.8), time is measured in hours since the start

of the simulation which began at 600 local time. Therefore, 6 hours into the simulation is roughly

noon. The major features of the surface energy budget over bare soil for the control run are the

large diurnal cycle of the net radiation, the small impact of the surface soil heat fluxes, and the

comparable magnitudes of the latent and sensible heat fluxes. In the control run the latent and

sensible heat fluxes are slightly out of phase with each other since the model was relatively wet

initially (40% soil moisture). In contrast to the control run, the 1 KJhr forcing run (see Figure 5.2)

has a much diminished sensible heat flux, and a correspondingly greater latent heat flux. Thus it

is expected that the soil moisture for each run is rather different with presumably the 1 KJhr run
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having retrieved wetter soil. The control run surface energy budget for the vegetation (Figure 5.3)

shows similar features to the bare soil surface energy budget (Figure 5.2), in that the magnitude

of the sensible heat flux is low while the transpiration is high. However, the forcing run surface

energy budget for the vegetation shows that the sensible heat flux increases in magnitude over the

course of the 1 KIh constant forcing run simulation, suggesting that the vegetation is being forced

to dry out in the afternoon.

The volumetric soil moisture for the bare soil component is shown for both runs in Fig­

ure 5.4. The control run soil moisture values show that the surface model level gradually dries

with time, while the lower soil moisture levels (levels 9 and 10) maintain the initial soil water

content. The model effectively decoupled the bare soil surface layer from the underlying soil

model levels. The forced run using a constant 1 Klh simulated satellite heating rate, shows that

the data assimilation method initially moistens the surface and then saturates a little after 2 hours

into the simulation (early morning). Thus the simulated satellite heating rate is too low for this

early morning time period, and to maintain a balance the assimilation method adjusts the soil

moisture in an attempt to reduce the bare soil heating rate to match the specified satellite heating

rate of 1 Klh. After 3 hours into the simulation. the model begins to rapidly dry out, and is able to

maintain a soil moisture level of approximately 0.20-0.25 for almost 5 more additional hours.

Eventually, the bare soil is forced to dry out completely after II hours since the positive 1 Klhr

heating rate is unrealistic for this time period. when in fact the model should normally be cooling

the surface at this point in the simulation. To counter this natural tendency the data assimilation

method completely dries the surface layer. The lower model levels of the bare soil (e.g., levels 9

and 10) lag the surface soil moisture due to diffusion of water between the model soil layers.

Thus the bare soil surface energy budget partitioning mentioned previously was caused by an

increase in the bare-soil soil moisture. The soil moisture limits of approximately 0.42 and 0.06 in
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Figure 5.4 are due to the physical soil model properties, which for the case shown is for a sandy­

clay-loam soil.

Correspondingly, the bare soil temperatures are suppressed for the data assimilation method

run (Figure 5.5), since the soil moisture for the bare soil was increased initially to reduce the

heating rate of the model. Thus the bare soil temperatures were most suppressed during their

normal period of maximum heating. Since the bare soil temperature heating rate is reduced from

the control run, the forced run soil temperatures also tend to be more closely coupled and exhibit

less of a pronounced phase shift with time.

The shaded soil moisture for the control run (Figure 5.6) shows a reduced soil moisture value

range than does the bare soil control run results (Figure 5.4). A unique feature of the shaded soil

moisture is that the surface lags the lower soil levels throughout the day. This is because the

vegetation soil moisture is primarily influenced by the vegetation transpiration and its associated

depletion of the soil moisture in its root zone. Less drying occurs for the surface layer since very

few roots are found in this layer and also because the canopy humidity is higher which inhibits

evaporation from the surface. The data assimilation results show that initially the shaded soil is

dried out to increase the vegetation heating rate, but that the method saturates after 2 hours into

the simulation. A key feature to note is that the shaded vegetation saturates at a relatively low soil

moisture value of O. I77 that corresponds roughly to a 50% soil moisture value, rather than 100%

as the bare-soil soil moisture case did. This is due to the extreme sensitivity of the vegetation

parameterization to the soil moisture potential in the root zone. From section 5.1.2.2, the envi­

ronmental factors are modeled as exponential functions, thus additional moisture above O. I77 is

not used and produces the same transpiration effect as does soil with a soil moisture value of

O. I77. Rather than retrieve soil moisture values of 100% in the extreme cases, the data
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assimilation method was restricted to retrieve soil moisture values from which a definite func­

tional relationship existed. Thus values above or below the steep soil moisture transitional re-

gions,

0.016 < TJ < 0.177 (5.52)

are truncated to their respective limits. This prevents the erroneous retrieval of extremely high

shaded soil moisture values that might persist after initialization by the satellite data assimilation

method. Thus the vegetation component of the satellite data assimilation method is more sensitive

to the satellite-derived heating rate than the bare soil component. However, it must also be re­

membered that for this case the cropland land cover classification type was used and it implicitly

assumes that the vegetation fraction, Iv, is 85%. Thus for the constant satellite forcing used

here, the vegetation component will shoulder a disproportionate amount of the satellite forcing

burden. IIowever, this should not be made into a generalization, in that the amount of forcing is

also time dependent in the real world, while for the simplified test case the forcing was assumed

fixed in time.

The vegetation and shaded soil temperatures (Figure 5.7) show an approximately linear up­

ward trend with time for the control run case. This is due to the vegetation's ability to transpire

\vhich effectively integrates the day's heating. The forced run shows a similar temperature pro­

file, with the main exception being the stronger linear relationship with time which is due to the

constant forced heating rate imposed on the data assimilation method for that case.

The main question remains, is the satellite data assimilation method described in section 5.1.2

able to successfully assimilate the satellite heating rates? Figure 5.8 plots the satellite-equivalent

model heating rate, which from Equation 5.4 is
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(5.53)

The model heating rate has a significant negative spike at approximately 20 minutes into the

simulation that is due to the sun rising and waking the plants up which immediately begin tran­

spiring, thus cooling the surface. This early behavior of the vegetation parameterization is over­

come quickly (within minutes) once the vegetation and surface boundary layer parameters adjust

to the transpiring vegetation. The heating rate is greatest at 2.5 hours into the simulation with

heating rates approaching 2 Klh (about double the forced run's 1 Klh heating rate). The dip in the

heating rate at 3 hours is associated with an increase of the surface boundary layer wind speeds.

Thus the grid element represented by this plot receives a cooling shock from which it recovers in

about 30-45 minutes. The remainder of the day has relatively uniform heating rates which hover

around 1 Klh, until late afternoon when the model begins to cool again. The forced run with a

I Klh simulated satellite heating rate, shows similar features in early morning. This is because the

satellite data assimilation method is not turned on until the sun rises and the model heating rate

becomes positive. The method is started later to allow the vegetation to begin transpiring so that

the vegetation component of the data assimilation method can converge to a valid solution, oth­

erwise the vegetation environmental factors (particularly the shortwave radiation factor) effec­

tively cause the vegetation component to be inactive. The satellite data assimilation method is

able to quickly reach the desired I Klh heating rate specified for the forcing run. This is success­

fully maintained throughout an 8.5 h period. Only two instances occur where the satellite data

assimilation method is unable to keep the model's heating rate at I Klh. The region from 2-3

hours into the simulation corresponds to the flooded conditions of the soil for both the bare and

shaded soil (see Figures 5.4 and 5.6). The model is unable to make the model any wetter and thus

continues to heat at a rate above the 1 Klh target rate. The lower heating rates after 9.5 hours into
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the simulation for the forced run are associated with the vegetation drying out completely (see

Figure 5.6). Thus the model can not dry the soil any further to maintain the high heating rates.

The satellite data assimilation method does converge to a reasonable solution for all conditions

that are not too wet or too dry for the model to handle. Thus the satellite data assimilation method

performs only as well as the land surface parameterization allows it.

5.3 CASE STUDY RESULTS

The satellite data assimilation method was used in a 3D case study over the central United

States. A day was selected from the intensive satellite data analysis during the late summer of

1991 which was previously discussed in Chapter 4. In particular, the case of 8 September 1991

was selected due to the mostly clear morning conditions over the central Great Plains, the devel­

opment of an afternoon dryline, and the relatively high spatial contrast of the microwave surface

emittance results indicating heterogeneous surface wetness conditions. The synoptic situation for

the day is discussed in section 3.6.2. Additional surface observations are compared with the case

study model run results later in section 5.3.2.

5.3.1 Remote Sensing Data

5.3.1.1 Visible and Infrared Imagery

A selected time series from the available 30 minute interval data set of the GOES-7 VISSR

visible and infrared imagery for 8 September 1991 is shown in Figures 5.9-5.11. The morning

begins with clear skies over the western part of Kansas and Oklahoma, and low stratus and

ground fog over the eastern half of the region (Figure 5.9). The main region of ground fog is in

the south central part of Kansas. Broken fog conditions lingered in this region past local noon

(Figure 5.10). Brightness temperatures over the fog at 1501 UTC and 1601 UTC showed infrared

temperatures of approximately 297 K (or 75° F), which are within 2 K of the surface shelter
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temperatures observed at this time. The low stratus deck in the extreme northeast quadrant of the

sector and throughout most of Oklahoma moves slowly eastward with time as observed in a

30 minute interval time loop of the imagery. The stratus deck was most persistent in the Okla­

homa region, but became more broken in nature as time elapsed (Figures 5.9-5.11).

Convection along the dryline near the east part of the Oklahoma panhandle begins to form by

1801 UTC (Figure 5.10). Within 2 hours, 3 small thunderstorms have formed along a dryline that

is oriented southwest to northeast. An hour later at 2101 UTC (Figure 5.11), the storms have dis­

sipated, with their anvil remains drifting northeastward. The infrared imagery (Figure 5.11a) de­

picts the anvil remains more clearly than does the visible imagery (Figure 5.11 b). Also at

2101 UTC the dryline cumulus field begins to broaden spatially, and the most significant con­

vection begins to form on the west and east edges of the cumulus field by 2201 UTC

(Figures 5.11 c and d). This convection also dies out within the next couple of hours. The most

significant storm on this day occurred much later in the evening and in the extreme northeast

portion of the sector shown in Figures 5.9-5.11. The overall motion of the dryline was stagnant

with little east-west propagation observed. However, the dryline continually reformed over the

course of the day with the most recent convection initiating westward of the older convection and

then advecting eastward until it dissipated to again be formed west of its current location. Thus

the overall motion of the dryline was confined to a nearly stationary position due to its redevel­

opment.

5.3.1.2 Radar Summaries

The National Weather Service (NWS) radar summary reports for the case study region

(Figures 5.12 and 5.13) show that on the previous day this region experienced widespread rain

over the eastern portion of Kansas and most of Oklahoma, while the western portion of the region

did not experience any significant rainfall events. The general pattern of the rain was associated
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with a line of precipitation oriented north-south slowly propagating eastward as mentioned in

section 3.6.2. Within this line individual storms were moving to the north or northeast. Thus pre­

cipitation fields produced by this rainfall pattern tend to be oriented north-south following the

track of the individual storms. Most of the precipitation had moved out of the Kansas/Oklahoma

region by 8 September 1991 at 600 UTC.

The convection that developed on 8 September 1991 is first indicated on the radar summaries

at 2135 UTC, which corresponds to the second round of convective activity on the dryline. The

severe thunderstorm watch box (valid from 1951-0200 UTC) issued for central Kansas is indi­

cated by the dashed lines in Figures 5.13 d, e, and f. A second severe thunderstorm watch box

(valid from 2018-0300 UTC) was issued for a large part of the Texas panhandle (Figures 5.13e,

and f). Most convective activity on 8 September in the Kansas/Oklahoma region was light, except

for one hail producing storm that developed near sunset in north central Kansas which formed on

the north part of the dryline observed in Figures 5.9-5.11.

5.3.1.3 Microwave Surface Emittance Results

Atmospheric-corrected microwave surface emittance results for 8 September 1991 1529 UTC

(Figure 5.14) indicate a strong depression of the micrmvave surface emittance values in south

central Kansas and for a small region in nOrlh Oklahoma (m icrowave surface emittance statistics

for the entire 70 day dataset are shown in Figures ..UO--U4 and in Appendix E). The region of

low microwave surface emittance values is apparent in both the vertical and horizontal polariza­

tions. However, the horizontal polarization is most affected by the rain event from the previous

day. The resolution dependence of the microwave surface emittance results is also obvious from

the results shown in Figure 5.14. From this data.. surface flooding and generally wet soil condi­

tions are expected for the regions where £, < 0.92 (denoted by green areas in Figure 5.14), and

£H < 0.85 (denoted by blue areas in Figure 5.14). The microwave surface emittance horizontal
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polarization results at the frequencies of 19H, 37H and 85H GHz are comparable in magnitude,

but with a noticeable refinement in the resolution with higher frequency. The reduction of the

spatial extent of the areas where GH < 0.85 is related to the reduced sensitivity of the 85 GHz

channel to the soil features (see results from section 4.3.5). However, for regions which have

standing water or extremely wet conditions, the 85H GHz frequency might be used to locate re­

gions of surface flooding, whereas the low frequency microwave surface emittance results would

be more indicative of less severely flooded conditions, and would have a wet soil categorization

that is broader in scope. The vertical polarization results show a similar frequency dependency as

did the horizontal polarization results, except that the low frequency results (19V and 37V GHz)

appear to be less sensitive to vegetation and/or microwave surface roughness features (see also

the discussion in Appendix sections A.3.5 and A.3.6). Thus the lower 85V GHz microwave sur­

face emittances in western Kansas, and to a lesser extent the 37V GHz microwave surface emit­

tances, appear to be related to the vegetation and microwave surface roughness effects. This ex­

emplifies the complexity and difficulties involved with using the microwave surface emittances

as a direct measurement of surface wetness conditions. This was the motivational source for us-

ing the infrared surface skin temperature heating rates as a preferred method over the microwave

surface emittance for direct coupling of the satellite-derived surface wetness information and the

atmospheric model.

5.3.1.4 Diurnal Surface Skin Temperature Results

Cloud-cleared GOES VISSR infrared brightness temperatures were used to produce non­

atmospheric-corrected surface skin temperature heating rates for 8 September 1991 at 1501,

1531, and 1601 UTC for input into the satellite data assimilation method (Figure 5.15). In

Figure 5.15, high satellite-derived heating rates are shown as light shades of gray, while darker

shades represent low heating rates. The spatial distribution of heating rates indicates that the
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western half of the sector shown in Figure 5.15 experienced relatively high heating rates (up to

5 K1h) compared to the eastern portions of Kansas and most of Oklahoma that had some locations

with heating rates of nearly 0 K1h. As mentioned previously (section 5.3 .1.1), broken ground fog

did exist in south-central Kansas during this period. Consequently, the heating rates are actually

ground fog cloud top temperature heating rates, but when the satellite-derived heating rates are

compared with surface observations in this region, they are found to be comparable to the shelter

temperature heating rates (see Figures 5.16 and 5.17). Therefore the satellite-derived heating

rates are not seriously in error for the ground fog conditions. However, the model's solar heat

fluxes would almost certainly be over estimated by the model's solar radiation parameterization

under such conditions, since the solar parameterization does not allow for cloudy conditions. The

satellite-derived heating rates shown in Figure 5.15 are also relatively stable in appearance be­

tween the 30 minute sampling intervals. In addition, the linear time sampling performed by the

satellite data assimilation method also tends to smooth out some of the instrument noise.

Since the satellite-derived heating rates are produced from two different VISSR images, the

satellite navigation can change between images and produces a rather noisy appearance in the

satellite heating rates shown in Figure 5.15. The noise is particularly noticeable with streaks in

the east-west direction since the VISSR instrument has a rectangular FOV that over samples in

the east-west direction. Therefore. any north-south satellite navigation adjustments between im­

age times are more noticeable, since over sampling does not occur in the north-south direction

and instead produces east-west streaks in the dataset. The instrument noise of the GOES-7

VISSR channel 8 sensor has been estimated to be approximately 0.2 K (see Table 3.1). This pro­

vides a signal to noise ratio of about 25: 1 (5 K / 0.2 K). A noise sensitivity experiment using the

satellite data assimilation method is performed later in section 5.3.3.
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5.3.2 Model Runs

Three 12 h 3D model runs using variable initialization forcing from observed synoptic con­

ditions were performed to test the satellite data assimilation method. The first was a controlrun

(CONTROL) in which no satellite-derived heating rates were used to force the surface land

vegetation parameterization scheme. The second model run (SAT) was with the satellite data as­

similation method turned on between 1500 and 1600 UTC, with the remainder of the SAT run

being the same as CONTROL, but with the satellite soil moisture as derived from the 1500 to

1600 UTC forcing period. The third run (DRY) was performed as a sanity check in which the

model soil was initialized as completely dry to assist in determining the relative importance of the

day's synoptic environment to that of the surface conditions. The model configuration and ini­

tialization are described in section 5.3.2.1, while the model results are presented and discussed in

subsequent subsections.

5.3.2.1 Model Configuration

The CSU-RAMS, Version 3a, atmospheric mesoscale model (Pielke et al. 1992) was config­

ured to run as a three-dimensional, non-hydrostatic, compressible, primitive equation model. The

surface layer parameterization has already been described in section 5.1.1 and will not be re­

peated here. The model was run in a nested grid configuration with 2 grids initially, with a 3rd

grid added after 1000 LST (i.e., 4 hours after the start of the model simulations). The model grid

specifications are listed in Table 5.1. The model had 30 vertical levels and 11 soil model levels in

each grid, with horizontal grid intervals of 40 km, 10 km, and 5 km on grids 1,2, and 3, respec­

tively. The vertical coordinate is a terrain following sigma coordinate system that had a minimum

vertical spacing of 100 m at the surface and was stretched by a factor of 1.15 to a 1 km maximum

vertical interval. The model top was a rigid lid at 17.5 km with nudging toward observations at

the top 5 boundary points to dampen gravity waves. The soil model depths and initial soil



222

temperature offsets from the lowest atmospheric temperature are specified in Table 5.2. The soil

layers nearest the surface were 3 em in depth, with lower levels becoming progressively thicker,

up to a 10 em thick slab for the lowest soil model layer. The location of the first two grids was

centered on 380 N, -990 E (see Figure 5.18), while grid 3 was offset slightly to the west and had

center coordinates of38° N, -1000 E (see Figure 5.19).

The model option input list used to specifiy the numerics and physical parameterizations is

given in its entireity in Appendix H. A few of the model parameterization options are highlighted.

• A hybrid timestep scheme was used. A centered difference scheme was used on momentum

variables, while a forward in time difference scheme was used on scalar variables. Both methods

used second order advection.

• A Smagorinsky deformation-based K (Smagorinsky 1963) with stability modifications

(Lilly 1962) was used for vertical and horizontal turbulence above the surface layer.

• Water vapor advection and cloud water condensation microphysics was turned on in the

model (RAMS level 2 microphysics). No ice species or other more advanced conversion proc­

esses were allowed. This saves a considerable amount of processing time. Thus the primary focus

from the model results should be the water vapor fields and the initial location of the cloud fields.

Subsequent convective development is beyond the scope of this work and due to this model op­

tion setting should not be expected to perform realistically.

• The Mahrer-Pielke (Mahrer and Pielke 1977) longwave and shortwave radiation parame­

terization was used. This parameterization does not include cloud effects. It was activated every

60 s and was coincident with the grid 1 model timestep. Usually the radiation tendencies can be

calculated at longer timestep intervals, however updated radiation parameters were required for

each time step in which the satellite-derived heating rates were ingested.
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5.3.2.2 Model Initialization

The BATS land classification categories (see section 5.1.1) for grid 2 are shown as an exam­

ple of the vegetation heterogeneity in the model initialization that was provided by the USGS

NDVI vegetation database (Loveland et al. 1991) (Figure 5.20). The major vegetation classifica­

tion is cropland, followed by evergreen shrub. The vegetation classifications are from a 1 km

resolution database that is interpolated to the respective grids of the model, in a manner very

similar to that of the topographic data. Constant LAI values are used to represent their entire re­

spective vegetation classification category. Following Shaw (1995) and Grasso (1996), the LAI

values for each vegetation classification were modified to limit the maximum LAI index to a

value of 3. This prevents unrealistically large surface fluxes in the model due to incorrect specifi­

cation of this parameter. The resulting LAI values conform more reasonably to the LAI values

derived by Lee (1992) using a method based directly on the NDVI.

The model was nudged by surface and sounding observations from 8 September 1991

1200 UTC and 9 September 1991 0000 UTC archived synoptic data on grid 1. The synoptic data

is described in more detail in section 3.3.1. The zone of nudging was 5 lateral boundary grid ele­

ments, with nudging also specified for the top 5 grid levels of the model. The nudging is

weighted so that the outer-most grid elements are weighted the heaviest with decreasing weights

toward the model center (only up to 5 grid points into the model). Over 80% of grid 1 experi­

ences no direct forcing from the observations, and grids 2 and 3 experience no direct observa­

tionallateral boundary condition forcing at all.

5.3.2.3 CONTROL Results

As previously mentioned in section 5.3.2, the CONTROL run used no satellite-derived heat­

ing rates to force the surface land vegetation parameterization scheme. Initial soil moisture was

initialized homogeneously throughout the model domain at 25% of soil capacity. Results of that
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simulation at 1200, 1600, 2000, and 0000 UTe are shown in Figures 5.21-5.24, where quadrant

a) is a plot of the surface air temperature, b) is the bare-soil soil temperature, c) is the mixing ra­

tio, and d) is the grid 1 surface wind speed with vectors indicating wind direction and relative

magnitude based on the size of the vector arrows. Grid 1 winds are shown due to the extremely

small font of the grid 2 wind vectors; however, the wind speeds and directions are nearly identi­

cal with the nested grid results, with exceptions noted below.

The 1200 UTe results (Figure 5.21) are from the model's objective analysis of the archived

surface observations and thus represent the atmospheric conditions at 1200 UTe interpolated to

the model's grid configuration. The dryline feature described earlier in section 5.3.1 is located in

western Kansas (Figure 5.21c) at this time. Strong southerly and southwesterly winds are preva­

lent over a wide portion of the grid 2 domain. A wind speed maxima exists in central Kansas with

winds reaching over 7 m s-1. As will be shown later, the strong winds in this particular case study

hampered the overall performance of the satellite data assimilation method. A region of rather

calm wind conditions exists over western Nebraska and the High Plains of Colorado. This feature

persisted throughout the simulation (see Figures 5.21d-5.24d), and was in good agreement with

the surface observations during the period, in that extremely weak upslope (east winds) condi­

tions began in late afternoon in the Colorado High Plains. Peak winds were slightly less in the

model simulation than in the real world by about 1-2 m s-I. Winds were slightly higher on the

nested grids (0.5 to 1.0 m s-I) which had smaller grid intervals, thus suggesting that higher model

resolution would increase the maximum winds in the model. The model was also able to success­

fully propagate the water vapor mixing ratio gradient contrast eastward in time (see Fig­

ures 5.21c-5.24c). The orientation of the dryline and its placement in the afternoon is nearly

identical to the satellite observations (Figures 5.9-5.11). Thus the model simulated the actual

wind fields rather well during the period.
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The dryline water vapor mixing ratio gradient was very weak throughout the simulation, ex­

cept for a small region in the Oklahoma panhandle during 2300-2400 UTC (Figures 5.21c-5.24c).

This model behavior is expected from earlier work with homogeneous soil moisture simulations

by Shaw (1995) and Ziegler et al. (1995). The tightening of the water vapor mixing ratio gradient

in the Oklahoma panhandle region was traced to the formation of convection along the dryline

feature that began at approximately 2300 UTC (Figure 5.25). Thus the sharpening of the water

vapor mixing ratio gradient appears to be connected to the microphysical parameterization of the

model and its associated latent heat release that provides a feedback mechanism between the lo­

cal circulations and the convection on the dryline. This effect will be readdressed in the analysis

of the SAT simulation results in section 5.3.2.4. The dryline convection was also reduced in

overall magnitude compared to the satellite observations (Figures 5.9-5.11), suggesting a lack of

sufficient surface heating, or other convective initiation mechanism in this region, or possibly a

need for cloud ice microphysics. The cloud features in eastern Colorado in Figure 5.25 occur in a

regIOn that experienced scattered thunderstorms as seen from the radar dataset

(Figures 5.12-5.13); however, the actual placement of the High Plains convection appears to be

slightly incorrect, but again this is within the performance capabilities that can be expected of this

homogeneously initialized simulation.

Maximum surface air temperatures reached 34° C (93° F) in Kansas and Oklahoma. Obser­

vations reported highs of 97° F and 99° F for Hill City, KS (HCL) and Dodge City, KS (DDC)

(see Figures 5.26-5.27). Thus the model under-estimated the maximum air temperatures for the

day by approximately 3 K.

Figures 5.21 e-5.24e and 5.21 f-5.24f depict the model's surface latent and sensible heat

fluxes. The general pattern is of an east-west gradient, with regions to the east having higher la­

tent heat fluxes and lower sensible heat fluxes than the western regions. Since an initial soil
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moisture gradient was not imposed, this pattern is primarily produced by the vegetation parame­

terization that relies on the statically defined vegetation categories (Figure 5.20). Surface radia­

tive cooling dominates the sensible heat flux by late afternoon (0000 UTC) and produces nega­

tive sensible heat fluxes (Figure 5.24f).

Overall the CONTROL simulation does a remarkable job at simulating the location and ori­

entation of the dryline. Some deficiencies were noted in lower than expected maximum surface

air temperatures, but all-in-all the CONTROL simulation produced very respectable results.

5.3.2.4 SAT Results

The satellite data assimilation method consists of 4 basic steps (see Figure 5.28). The micro­

wave surface emittance dataset discussed in Chapter 4 is used as a subjective filter to select case

study days that have significant surface soil moisture heterogeneity (Step 1). As shown in Chap­

ter 5, the microwave surface emittance does not exhibit an obvious direct relationship with the

vegetation, or a consistently strong antecedent precipitation signal. Thus for implementing a

quantitative satellite data assimilation technique, the infrared satellite dataset from GOES is used

in conjunction with the satellite data assimilation method derived in section 5.1. The standard

RAMS initialization procedure is then performed using a static vegetation classification database

(Step 2). Atmospheric variable initialization from archived surface and upper air data sets is then

performed and creates a dataset from which the model is nudged on its grid I boundaries (Step 3)

(see section 5.3.2.2). The satellite derived heating rates are then used as input for the satellite data

assimilation method during a selected period of the model simulation (preferably in the morning

when the surface soil and vegetation temperature response is the strongest). For the 8 September

case study, the satellite data assimilation method was turned on between 1500 and 1600 UTC due

to unfavorable cloudy conditions during the remainder of the morning hours. If optimal morning

clear-sky conditions existed, the satellite data assimilation method could have easily been
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implemented for longer period (e.g., 4 h) with minimal modifications. After the initial satellite

data assimilation period, the satellite data assimilation method is turned off, and the model con­

tinues execution using the standard surface parameterization scheme (see section 5.1.1).

Results from the SAT simulation are shown in Figures 5.29-5.33. Apart from the surface soil

temperature field, and latent and sensible heat flux fields, the SAT simulation results are very

similar to the CONTROL run results shown in Figures 5.22-5.24. The surface air temperatures

are generally within 1 K of the previous results and surface wind speed and directions are nearly

the same. However, a slight strengthening of the winds is seen in the SAT simulation results, es­

pecially at 1800 UTC (Figure 5.30d) with winds exceeding 10 m s-1 in eastern Kansas. These

winds are in slightly better agreement with the surface observations of up to 25 knot (10m s-1 )

surface winds, but the overall difference between the CONTROL and SAT wind fields is small.

The wind minimum in western Nebraska and eastern Colorado appears in the SAT simulation as

it did in the CONTROL simulation results and no significant differences are noticeable.

The surface water vapor mixing ratio field does exhibit a notable difference between the

CONTROL and SAT simulation results. The water vapor mixing ratio gradient sharpens

throughout most of the length of the dryline in Kansas and Oklahoma. Previously only a tight

gradient existed in the Oklahoma panhandle region, and it was found to be associated with con­

vection along the dryline. The cloud field of the SAT simulation results shows no model convec­

tion along the dryline feature in Kansas or Oklahoma (Figure 5.34). Thus the weak satellite­

derived surface water vapor mixing ratio gradient tightening is not caused by convection and re­

lated latent heat release due to the cloud microphysics. However, the convection in the High

Plains of Colorado is similar to that of the CONTROL simulation results (see Figure 5.25). West

to east water vapor mixing ratio cross sections located in the middle of grid 3 (Figure 5.35) show

the intensification of the dryline gradient for the SAT simu lation results as compared with the
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CONTROL simulation results. The SAT simulation results also indicate that the west part of

grid 3 is drier than the control run simulation results. Even accounting for the tightening of the

water vapor mixing ratio gradient, the overall differences between the simulations are rather

small. The location and orientation of the dryline were unchanged between the simulations.

The extra structure contained in the surface soil temperature field, and the latent and sensible

heat flux fields (see Figures 5.29b-5.33b, 5.2ge-5.33e, and 5.29f-5.33f) can be attributed to the

altered soil moisture assimilated into the model surface parameterization scheme. The surface

bare-soil soil moisture expressed as a percentage of the field capacity of the soil for grid 2 is

shown for both the CONTROL and SAT simulations for 1600, 1800, 2100, and 0000 UTC in

Figures 5.36 and 5.37. Quadrants a) and c) represent the CONTROL run results, and quadrants b)

and d) represent the SAT simulation results. In Figures 5.36-5.39, the east part of the domain, the

lower Texas panhandle, and the northwest comer, are cloud covered during the data assimilation

period and thus have soil moisture values that are equivalent to the CONTROL simulation re­

sults. The bare-soil soil moisture results show that the satellite data assimilation method retrieved

very dry conditions for western Kansas and wetter conditions farther east. It is interesting that the

orientation of the bare-soil soil moisture discontinuity in central Kansas is the same as that of the

dryline which forms later that day. However. little can be drawn from this fact since it appears

simply fortuitous, in that the CONTROL simulation results appear to be quite able to form the

dryline in the correct location without the additional satellite information. The bare-soil soil

moisture dries down quite rapidly in the model. until at 0000 UTC there is little structure left of

the heterogeneous soil moisture field. The shaded-soil soil moisture results (Figures 5.38 and

5.39) exhibit similar spatial features as the bare-soil soil moisture fields, except that the contrast

between the wet and dry soils is reduced and additional horizontal variability exists in the shaded­

soil soil moisture fields. The enhanced shaded-soil soil moisture variability is due in part to the
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surface vegetation parameterization scheme, since different vegetation classification types tran­

spire differently in the model. Additionally, the vegetation can have a strong sensitivity to the

environmental forcing functions that are used to control the stomatal conductance of the vegeta­

tion, so small relative changes in environmental conditions can produce significantly different

plant evapotranspiration rates.

West to east cross sections of the surface bare-soil and shaded-soil soil moisture fields from

grid 3 for both the CONTROL and SAT simulations are plotted at 1600, 2000, 0000 UTC in Fig­

ures 5.40 and 5.41. From Figure 5.40, an obvious contrast can be made between the homogene­

ously initialized CONTROL results versus the SAT results. The CONTROL simulation results

show that over the entire domain drying is occurring, with slightly more drying in the west por­

tion of the grid domain. The satellite data assimilation results indicate that additional soil mois­

ture has been added in the east, however the absolute soil moisture amount added is relatively

small. The maximum soil moisture amounts approach 30% of the soil moisture capacity of the

soil which is contrasted with 23% soil moisture in the CONTROL simulation results. The 7% soil

moisture increase is rather disappointing, especially given the microwave surface emittance re­

sults that suggest surface flooding conditions for the same region (Figure 5.14). Drying over the

western half of grid 3 appears to be limited by the model's sensitivity to low soil moisture values,

thus forcing the data assimilation method to rely upon the dry threshold limit for the soil moisture

calculations (see section 5.1.2.1). However, the relative spatial contrast of the soil moisture val­

ues however appears to be excellent at 1600 UTe, with the region of maximum rainfall from the

radar summary reports (Figures 5.12 and 5.13) and API results (Figure 5.42), correlating well

with the retrieved bare-soil soil moisture results. Another notable feature of the bare-soil soil

moisture results is the rapid drying that occurs after 1600 UTe. Within 4 hours, the soil moisture

has been reduced to within 2% of its 0000 UTC soil moisture value. This significantly hampers
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any eventual effect the satellite data assimilation method can have on the atmospheric phenomena

during the afternoon, since the soil moisture has already been removed at this point by strong

bare-soil evaporation in the model. The shaded-soil soil moisture cross section shows a pattern

that is similar (in a gross sense) to the bare-soil soil moisture cross section, in that regions that are

wet in the bare-soil soil moisture field are also wet in the shaded-soil soil moisture field. The

main differences between the shaded-soil and bare-soil soil moisture fields are the enhanced vari­

ability in the shaded-soil results that was noted earlier in the horizontal surface plots, and that the

drying rate of the shaded-soil is more uniform as a function of time. The uniformity of the drying

rate is associated with the data assimilation method's initialization of the entire root zone of the

vegetation. Thus a larger reservoir is available to draw upon throughout the simulation. Another

factor is that if the vegetation is sufficiently wet, the transpiration rate is relatively constant. Thus

changes to the soil moisture of wet vegetation would occur at a nearly constant rate, until the

vegetation reaches its wilting point, or an environmental factor (other than the root zone soil

moisture potential environmental factor) changes to a new regime (e.g., sunset).

The similarities of the CONTROL and SAT simulations also extend vertically into the at­

mospheric model. A west to east vertical cross section of the water vapor mixing ratio at 2000,

and 0000 UTC is shown for the CONTROL and SAT simulation results in Figures 5.43 and 5.44.

An active boundary layer is seen in both simulations at 0000 UTC, with a more stratified bound­

ary layer earlier in the day. Only small differences are apprent in a comparison between the re­

sults. rhe differences which do exist are mainly related to the surface water vapor mixing ratio

field which has been discussed previously.

5.3.2.5 DRY Results

A DRY simulation run was performed to examine the effect of the rapid dry down of the

mude!" s surface soil moisture and its impact specifically on the initiation of the dryline. The soil
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moisture (both bare and shaded) in the DRY simulation was initialized at 4% soil moisture, which

is the minimum soil moisture allowed in the model soil, but otherwise it was allowed to run with

the same conditions as the CONTROL simulation. The DRY simulation results at 1800, and

0000 UTC are shown in Figures 5.45 and 5.46. The main differences from the CONTROL and

SAT simulation results are the slightly increased surface air temperature (about 0.5 K), increased

bare-soil surface temperature (approximately 2-4 K warmer), and the corresponding increase and

decrease in the sensible and latent heat flux values, respectively. The wind field pattern is not

significantly different. The water vapor mixing ratio field shows that the dryline is stronger for

the DRY simulation than for either the CONTROL or SAT simulations, but of the two it is more

similar to the CONTROL simulation concerning the location of the gradient tightening. However,

upon examination of the vertically integrated cloud water field (Figure 5.47), it is seen that the

convection along the dryline in the Oklahoma panhandle is stronger in the DRY simulation re­

sults than for the CONTROL results (Figure 5.25). Thus the enhanced surface temperatures of

the DRY simulation were able to strengthen the surface circulations by adding energy into the

system. The timing of the initial dryline formation was the same (within 10 minutes) for the

CONTROL and DRY simulation results. This suggests that the extremely sharp water vapor

mixing ratio gradient tightening (described by Shaw (1995), Ziegler et al. (1995), and Grasso

(1996) for example) is associated with initial convection and the microphysical latent heat re­

lease. A more general and less extreme water vapor gradient tightening is associated with the soil

moisture initialization, which in tum may provide a focusing mechanism for initial convective

formation along the dryline. The modeling results from this single case study were not sufficient

to confirm this hypothesis.
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5.3.3 Noise Sensitivity

A NOISE simulation was performed to determine the sensitivity of the method to noise. The

simulation added 0.2 K of Gaussian noise to the satellite infrared brightness temperatures. This

effectively doubles the instrument noise in the retrieval system (see Table 3.1). The soil moisture

retrieval results (Figure 5.48) were found to be nearly the same as the SAT simulation soil mois­

ture results (Figures 5.36-5.39). The same spatial features are evident in both simulations with

generally dry conditions in western Kansas and wetter conditions in the east. The orientation and

position of the soil moisture discontinuity are the same in both simulations. A west to east cross

sectional view (Figure 5.49) shows that the magnitudes of soil moisture values at 1600 UTe (the

end of the satellite data assimilation period) are also very similar to the previous SAT simulation

results (Figure 5.40 and 5.41). Some small variability can be noticed in the bare-soil soil moisture

results, but the overall differences are very small. The shaded-soil soil moisture appears to have

slightly more variability due to the added noise compared to the bare-soil soil moisture. However,

again the effect is small. The NOISE soil moisture retrievals are not significantly different from

the SAT simulation results. This shows that sensor instrument noise is not a significant factor in

the soil moisture retrieval accuracy, given the other static model inputs (e.g., vegetation classifi­

cation). Since small differences were found in the 1600 UTe soil moisture fields, it is expected

that the atmospheric model results at later model integration times would also be very similar to

the SAT simulation results. This is what is found (Figure 5.50). Nearly identical atmospheric

fields are found in the NOISE simulations results as compared to the SAT simulation results. The

noise sensitivity experiment has shown that the satellite data assimilation method is not highly

sensitive to the satellite instrument noise characteristics.
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5.4 SUMMARY

In this chapter, a satellite-coupled data assimilation method using GOES infrared heating

rates has been developed and tested. The satellite data assimilation method is an extension of

McNider et al.'s method (1994). The data assimilation is separated into two parts, a bare soil

component and a vegetation component. The addition of a vegetation component in satellite data

assimilation is a new concept. The major assumptions of the method are, 1) that the discrepancies

between the model's heating rate and the satellite-derived heating rates are related exclusively to

the model's evaporation and transpiration rates which are then adjusted into balance with the sat­

ellite observations (McNider's assumption), and 2) that the model adequately predicts the relative

heating rates of the bare soil and vegetation components (a new assumption introduced in this

work). Also, an inherent assumption is that the model's surface parameterization is adequate to

explain the physical features observed by the satellite. The satellite data assimilation method is

developed as a two part solution, with an iterative solution for the bare soil component, and an

analytical solution for the vegetation component (Figure 5.1). An advantage over the McNider

et al. (1994) method is that the problematic Ch term in the McNider method is removed (see sec­

tion 2.4). Thus the satellite data assimilation method is entirely objective and not subject to possi­

ble tuning parameters that may be highly variable or non-physical. The method was found to add

about 8% to the overall computational time of the model simulation during the model integration

period in which the satellite data is assimilated.

10 tests were used to explore the characteristics of the satellite data assimilation method.

Physical limitations of the current RAMS surface parameterization were found to constrain the

ability of the satellite data assimilation method retrievals of soil moisture. The physical limita­

tions include the environmental stomatal control functions, specification of the soil type with its

associated soil heat capacities and field capacities, and a constant surface albedo, among other
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model surface parameters which are assumed to have known initial values. Limits were imposed

within the satellite data assimilation method to prevent over forcing of the soil moisture due to

indeterminate model conditions. This limits the satellite data assimilation method to retrieving

relatively low soil moisture values, since high soil moisture values have a minimal sensitivity to

the vegetation transpiration rates due to the particular environmental root zone soil moisture fac­

tor implemented in the RAMS vegetation parameterization. In addition, the ID tests confirmed

that the data assimilation method is able to correctly force the model component heating rates to

match the satellite observations.

A case study was selected to apply the method to a period with known surface soil moisture

heterogeneity. The focus of the study was on a weak dryline feature in western Kansas and the

Oklahoma panhandle. The CONTROL simulation performed very well for the period selected

with a few deficiencies noted such as slightly cooler surface air temperatures west of the dryline.

The corresponding SAT simulation that used the satellite data assimilation method was able to

successfully retrieve wetter soil conditions east of the dryline feature and dry conditions west of

the dryline. The orientation and placement of the retrieved heterogeneous soil moisture field cor­

responded to the dryline orientation and placement. However, the CONTROL simulation was

also able to correctly place the dryline feature. thus it seems that no firm conclusion can be made

about the data assimilation m.ethod's impact on changing the location of the dryline, since the

dryline feature did not change locations between the simulations. The SAT simulation increased

the water vapor mixing ratio gradient throughout the length of the dryline in central Kansas;

however, convection was suppressed in the SAT simulation results compared to the CONTROL.

To test the cause of the dryline convection, a DRY simulation run was performed with 4% homo­

geneous soil moisture. This run was also able to form convection along the dryline in the panhan­

dle of Oklahoma. The extreme tightening of the water vapor gradient in the panhandle region



235

appears to have been caused by the latent heat release due to convection. Since the SAT simula­

tion did not develop the convection, the extreme tightening of the water vapor gradient shown by

authors such as Shaw (1995), Ziegler et al. (1995), and Grasso (1996), did not appear in the SAT

simulation results. Regions in the SAT simulation where the data assimilation method initialized

the bare-soil soil moisture as being wet were found to dry out too quickly. Thus the influence of

the heterogeneous soil moisture initialization was rather temporary in its effect. Differences in the

atmospheric fields between the SAT and CONTROL runs at the end of the 12 h simulation were

rather small.

A simple noise sensitivity test was also performed which doubled the GOES infrared sensor

instrument noise. The impact of the extra noise on the satellite data assimilation method was

found to be minimal. The retrieved soil moisture values were nearly identical to the previous SAT

simulation results, and correspondingly the atmospheric fields were also not significantly affected

by the extra noise in the data assimilation method. Thus the satellite data assimilation method is

not highly sensitive to instrument sensor noise.

Overall, the satellite data assimilation method was able to successfully retrieve realistic het­

erogeneous surface soil moisture fields for assimilation into the model's surface parameterization

scheme. While internally consistent with the model's surface parameterization scheme, and thus

correct from the model's perspective, the range of soil moisture values appeared to be somewhat

smaller than what the atmospheric conditions in the late afternoon implied were needed to initiate

the convection along the dry line. So in this sense, other than improving the water vapor gradient

of the model in general, the satellite data assimilation method failed to improve the final forecast

of the model. The satellite data assimilation method proved in this case to be more useful as a

tool for the analysis and tun ing of the model's surface parameterization scheme. Suggestions for

future \\U1'1-. along these lines are mentioned in section 6.5.
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Table 5.1: RAMS model grid specifications.

grid 1 grid 2 grid 3

x grid intervals 68 118 100

y grid intervals 68 130 100

z grid intervals 30 30 30

soil grid intervals 11 11 11

Ax (km) 40 10 5

~y(km) 40 10 5

I1t (s) 60 20 10

Table 5.2: RAMS soil model grid specifications.

Initial soil temperature offset
Soil level Depth from lowest atmospheric level

(em) (K)
1 50 5.0

2 40 5.0

3 30 5.0

4 25 5.0

5 20 3.5

6 16 2.0

7 12 0.5

8 9 -1.0

9 6 -1.5

10 3 -1.8

11 0 -2.0
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Figure 5.3: Same as Figure 5.2, except for vegetation surface energy budget.
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Soil Moisture (Bare Soil)
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Figure 5.4: Same as Figure 5.2, except for soil moisture (bare soil) (eta) for soil model levels
9-11 (soil depths 6 em, 3 em, and 0 em, respectively).



241

Bare Soil Temperature
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Figure 5.5: Same as Figure 5.4, except for bare soil temperature.
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Soil Moisture (Shaded Soil)
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Figure 5.6: Same as Figure 5.4, except for soil moisture (shaded soil).
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Vegetation and Shaded Soil Temperature
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Figure 5.7: Same as Figure 5A, except for vegetation canopy temperature and shaded soil tem­
perature.
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Satellite-Equivalent Model Heating Rate
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Figure 5.8: Same as Figure 5.2, except for satellite-equival~nt model surface heating rate.
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Figure 5.9: Time series of GOES VISSR infrared and visible satellite imagery for the Kan­
sas/Oklahoma case study region for 8 September 1991 1501 UTC (a and b), and 1601 UTC
(c and d). Infrared data is shown in a) and c), while visible imagery is shown in b) and d). Dark
values in the infrared imagery indicate warm temperatures, while lighter shades represent colder
tern peratures.



246

Figure 5.10: Same as Figure 5.9. except for 1801 UTe (a and b), and 200 1 UTe (c and d).
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Figure 5.11: Same as Figure 5.9, except for 2101 UTe (a and b), and 2201 UTe (c and d).
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Figure 5.12: Radar summaries for 7 September 1991 at a) 0635, b) 1035, c) 1235, d) 1635,
e) 2135, and f) 2235 UTe; and for 8 September 1991 at g) 0035, h) 0335, and i) 0635 UTe.
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Figure 5.13: Same as Figure 5.12, except for 8 September 1991 at a) 1035, b) 1235, c) 1635,
d) 2135, e) 2235 UTe; and for 9 September 1991 at f) 0035, g) 0335, and h) 0635 UTe.
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Figure 5.14: Atmospheric-corrected microwave surface emittance for 8 September 1991
1529 UTe for the Kansas/Oklahoma region. Results from vertical and horizontal polarizations at
the SSMII frequencies of 19,37 and 85.5 GHz are shown. Reds and pinks denote high microwave
emittance, while greens and blues represent low microwave surface emittance.
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Figure 5.15: Satellite-derived surface skin temperature heating rates for 8 September 1991
a) 1501 UTC, b) 1531 UTC, and c) 1601 UTC, for the Kansas/Oklahoma region. Dark regions
represent low heating rates (nearly 0 K/h for the darkest regions), while lighter regions denote
high heating rates (approaching 5 K/h for the lightest areas).
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Figure 5.16: Surface observations for 8 September 1991 1500 UTe for the Kansas/Oklahoma
region.
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Figure 5.17: Time series plot of surface observations for 8 September 1991 from 1200 to
1800 UTe for central Kansas. Station locations are shown in Figure 5.16.
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Figure 5.18: RAMS nested grid configuration for grids 1 and 2.
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Figure 5.19: RAMS nested grid configuration for grids 2 and 3.
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Figure 5.20: BATS land cover and vegetation classification categories for grid 2. Main vegetation
types are (1) crop/mixed farming; (2) short grass pre: irie; (3) evergreen needleleaf tree; (5) de­
ciduous broadleaf tree; (7) tall grass prairie; (10) iiTigated crop; (16) evergreen shrub; and
(18) mixed woodland.
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Figure 5.21: RAMS CONTROL run results from the lowest atmospheric level for grid 2 at
1200 UTC, where a) is the surface air temperature (oq contoured in 1 °C intervals, b) is the bare­
soil soil temperature (K) contoured in 1 K intervals, c) is the mixing ratio (gkg- 1) contoured in
I g kg- 1 intervals, and d) is the grid 1 surface wind speed (m s-l) contoured in 1 m s-1 intervals
with vectors indicating wind direction and relative magnitude based on the size of the vector ar­
rows.
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Figure 5.22: Same as Figure 5.21, except at 1600 UTe, and that e) and f) are the surface latent
and sensible heat fluxes (W m-2) contoured in 50 W m-2 intervals.
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Figure 5.23: Same as Figure 5.22, except at 2000 UTe.
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Figure 5.24: Same as Figure 5.22, except at 0000 UTe.
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Figure 5.25: RAMS CONTROL run vertically integrated cloud water results (kg m -2) for grid 3
at 0000 UTC.



262

(UTe)

Figure 5.26: Time series plot of surface observations for 8 September 1991 from 1700 to
0000 UTe for central Kansas. Station locations are shown in Figure 5.16.
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Figure 5.28: The satellite data assimilation method's processing steps.
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Figure 5.29: Same as Figure 5.22, except for the SAT simulation results at 1600 UTe.
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Figure 5.30: Same as Figure 5.22, except for the SAT simulation results at 1800 UTe.
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Figure 5.31: Same as Figure 5.22, except for the SAT simulation results at 2000 UTe.
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Figure 5.33: Same as Figure 5.22, except for the SAT simulation results at 0000 UTe.
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Figure 5.34: Same as Figure 5.25. except for the SAT simulation results.
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Figure 5.35: West to east cross section of water vapor mixing ratio (g kg-I) at 1600, 2000, and
0000 UTC for the CONTROL and SAT simulations. The cross section is through the middle of
grid 3, averaged over 7 grid points in the north-south direction (elements 47 to 53).
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Figure 5.36: Surface bare-soil soil moisture expressed as a percentage of field capacity for a) the
CONTROL run at 1600 UTC, b) the SAT run at 1600 UTe, c) the CONTROL run at 1800 UTC,
and d) the SAT run at 1800 UTe.
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Figure 5.37: Same as Figure 5.36, except for a) the CONTROL run at 2100 UTC, b) the SAT run
at 2100 UTC, c) the CONTROL run at 0000 UTC, and d) the SAT run at 0000 UTe.
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Figure 5.38: Surface shaded-soil soil moisture expressed as a percentage of field capacity for a)
the CONTROL run at 1600 UTC, b) the SAT run at 1600 UTC, c) the CONTROL run at
1800 UTC, and d) the SAT run at 1800 UTe.
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Figure 5.39: Same as Figure 5.38, except for a) the CONTROL run at 2100 UTC, b) the SAT run
at 2100 UTC, c) the CONTROL run at 0000 UTC, and d) the SAT run at 0000 UTC.
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Figure 5.40: Same as Figure 5.35, except for bare-soil soil moisture (%).
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Figure 5.41: Same as Figure 5.35, except for shaded-soil soil moisture (%).
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Figure 5.42: API for grid 2 at 8 September 1991 1200 UTe.
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Figure 5.43: West to east vertical cross section of water vapor mixing ratio (g kg-] ) at 2000, and
0000 UTC for the CONTROL simulation. The cross section is through the middle of grid 3, aver­
aged over 7 grid points in the north-south direction (elements 47 to 53).
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Figure 5.44: Same as Figure 5.43, except for the SAT simulation results.
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Figure 5.45: Same as Figure 5.22, except for the DRY simulation results at 1800 UTe.
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Figure 5.46: Same as Figure 5.22, except for the DRY simulation results at 0000 UTe.
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Figure 5.47: Same as Figure 5.25, except for the DRY simulation results at 0000 UTe.
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Figure 5.48: Same as Figure 5.36, except for the NOISE simulation soil moisture results at
1600 UTe for a) bare soil, and b) shaded soil.
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Figure 5.49: Same as Figure 5.40, except for the NOISE simulation soil moisture results at
1600 UTe for a) bare soil, and b) shaded soil.
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Figure 5.50: Same as Figure 5.22, except for the NOISE simulation results at 0000 UTe.



Chapter 6

SUMMARY AND CONCLUSIONS

Principal results of this dissertation fall into three categories as related to the scientific objec­

tives noted in section 1.2.

6.1 MICROWAVE SURFACE EMITTANCE RESULTS

Microwave surface emittance is an important fundamental radiometric surface parameter.

The results shown in Chapter 4 are unique in their spatial extent, and time covered in the micro­

wave surface emittance composites. Extensive analysis was performed comparing the microwave

surface emittance results other related datasets. Key findings of this work include the following:

• The microwave surface emittance is sensitive to temporal surface wetness features, irriga­

tion regions, and some vegetation types. Weekly composites of the microwave surface emittance

graphically show the temporal nature of the microwave surface emittance fields, and thus their

potential for retrieval of temporal surface features such as surface wetness.

• Not all rain events appear in the microwave surface emittance data set, especially in the

forested regions of the East; however, significant features related to rainfall were also found in

some highly vegetated regions such as Illinois and west Mississippi. The microwave surface

emittance is thus spatially inconsistent as an indicator of all precipitation events.

• The atmospheric correction applied during the retrieval of the microwave surface emittance

tended to normalize the frequency dependence of the microwave surface emittance statistics and
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thus would benefit remote sensing applications that need accurate radiometric surface boundary

conditions.

• A small negative gradient with frequency is found with retrieved microwave surface emit­

tance, which is opposite of the expected frequency dependence due to water. A non-uniform

sampling size due to a frequency dependent FOV-size is suggested as the cause of this frequency

dependent feature.

• Only limited diurnal effects were found in the microwave surface emittance data set, this

suggests that the frequency penetration depth has little effect, since the penetration depth should

experience a diurnal cycle due to an out-of-phase vertical heating profile for the surface and near­

surface layers.

• Desert regions with different surface properties did not exhibit a noticeable difference in

their microwave surface emittance values. This suggests that the low microwave emittance of

desert regions is primarily related to the dielectric constant of the surface material and not the

size and shape of the desert surface properties as has been suggested in earlier literature (e.g.,

Grody 1991). Further work is needed to confirm this hypothesis, since the desert regions exam­

ined in this study were rather small.

• Examination of the microwave polarization difference showed that most land surfaces are

polarized to some extent. These results indicate the possibility of exploiting this parameter for the

determination of cloud liquid water over land. A particular cloud liquid water retrieval method is

suggested in this work.

• The NOVI comparisons showed little correspondence to the microwave surface emittance,

except at very low NOVI values « 0.2). This work highlights the inappropriateness of using the

annualized MPOT versus NOVI relationship for generalizations about the sensitivity of the
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microwave surface emittance to vegetation greenness as measured by the NOVI. This has serious

implications regarding recent attempts to use generalized SVAT models (Olioso et al. 1995)

which require a deterministic NOVI versus MPOT relationship that is simply not observed at the

SSM/I frequencies. The microwave data is not responsive to vegetation in the same manner as

NOV! except on a regional basis and at extremely low NOVI values. Irrigation effects are thus a

substantial source of noise in the MPOT versus NOVI relationship.

• In a comparison of SSM/I-only semi-operational surface wetness indices, spatial filtering

methods used in the methods were examined, and suggestions are made regarding the source of

their underlying physical mechanisms as seen in light of the microwave surface emittance results.

6.2 SATELLITE DATA ASSIMILATION RESULTS

A new satellite-coupled data assimilation method using GOES infrared heating rates has been

developed and tested. The method is an extension of the McNider et al. (1994) data assimilation

method, and improves upon it by including a prognostic soil model, and an explicit vegetation

representation. One of the most significant improvements over the McNider method is the re­

moval the McNider method's problematic and highly variable Ch term. The data assimilation

method was found to perform well in 10 tests using simulated observations. The RAMS surface

parameterization scheme was found to impose physical constraints on the soil moisture retrievals,

specifically for the driest and wettest conditions. This hampers the overall performance of the

method, in that extreme events can not be successfully retrieved, since the satellite observations

do not have the same limitations as the model's surface parameterization. However, analysis of a

3D case study showed the method was able to successfully retrieve realistic heterogeneous distri­

butions (but not absolute magnitudes) of surface soil moisture conditions. The microwave surface

wetness datasets, radar summaries, and API data corroborate the retrieved surface soil moisture

fields of the satellite data assimilation method.
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Because of the lack of response to the extremes, the new method had difficulty in signifi­

cantly affecting the atmospheric model's forecast. While the surface water vapor gradient was

increased slightly in the region of greatest soil moisture contrast, the effect was not long lasting in

the model due to rapid surface evaporation in the model surface parameterization scheme. The

location and orientation of the surface soil moisture field discontinuity were found to be coinci­

dent with that of a dryline which formed in the afternoon of the case study; however, since the

CONTROL simulation results also placed the dryline in the same position, the satellite data as­

similation results appear to be simply fortuitous. Another model simulation with dry soil moisture

conditions showed that some of the intense water vapor gradient tightening in the Oklahoma pan­

handle is associated with convection in the region. This implies that the latent heat release due to

the convection may be the cause of the sharp tightening of the water vapor gradient in previous

related work [e.g., Shaw (1995), Ziegler et al. (1995), and Grasso (1996)]. Since only one 3D

case study was simulated in the present work, this hypothesis requires additional testing. A sim­

ple noise sensitivity test was also performed which doubled the instrument noise, and found that

the satellite data assimilation method produced nearly identical results. Thus instrument noise

does not appear to be a major factor in the performance ofthe method.

6.3 DATA FUSION METHOD PERFORMANCE

A data fusion method is developed that is general enough for use with any scan-line-based

datasets (satellite and ground based) and enables multi sensor-multispectral datasets to be merged

on a routine basis. The PORTAL system is able to combine data from sensors that have radically

different earth scan patterns and ground resolutions. A self-describing generalized data format is

used to modularize the data processing flow and obtain significant improvements in terms of

flexibility, extensibility, and generality of application. Computational efficiencies are compared

between this data fusion method and that of conventional remapping methods. While comparable
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processing times are needed to physically merge the datasets, results show significant perform­

ance gains on any subsequent analysis of the merged datasets since scientific algorithms operate

within the original satellite projection space.

6.4 CONCLUSIONS

A suite of satellite methodologies has been examined related to the problem of surface wet­

ness retrievals. Atmospheric-corrected microwave surface emittance results were shown to en­

hance the use of the microwave datasets for land surface characteristics, especially in regards to

analysis of the data's frequency dependencies. Several problems that affect the use of the micro­

wave brightness temperature data were examined, including sub-FOV effects, and the natural

characteristics of spatial and temporal variability of the microwave background signature. Use of

datasets such as this can significantly improve and expand the work of microwave remote sensing

over land regions. Much of the current microwave remote sensing work is limited over land sur­

faces due to uncertainties in the microwave surface properties. Land surface regions have been

traditionally treated as beyond the reach of current remote sensing technologies. This limitation

has resulted in the application of land masks to remote sensing techniques that omit data if it is

over land. An immediate application of this work could be to improve the SSM/T-2 lower tro­

pospheric water vapor retrievals (Felde and Pickle 1995). This study lays the scientific founda­

tion to help extend current remote sensing technologies to fill this data-void region for micro­

wave remote sensing techniques.

Specifically regarding the surface wetness remote sensing problem, the microwave surface

emittance was found to be sensitive to numerous rain events captured in the dataset. However, the

relationship of the microwave surface emittance to the NOVI was shown to be highly variable

when analyzed at high spatial resolutions, and for all but the sparsest vegetation amounts. The

additional complexity that was observed in the microwave surface emittance versus vegetation
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relationship limits any future quantitative use of the microwave surface emittance for direct soil

moisture retrieval. It also casts doubt on current methods that suppose a generalized instantane­

ous MPDT versus NDVI relationship that is simply not in the observations except at extremely

low NDVI values. In addition to the previously mentioned enhancement of microwave retrieval

methods over land surfaces, the microwave surface emittance may serve as a better indicator for

selecting obviously flooded regions in a gross subjective manner. Thus, the potential application

of the microwave surface emittance for flooding monitoring purposes and trafficability indices is

high for non-forested regions. In fact, some of the highest API correlations were found in regions

east of the Mississippi River, in Illinois and west Mississippi. The observational characteristics of

the microwave surface emittance from its current observational platform makes continual obser­

vation of all surface wetness events unlikely. Thus, if routine monitoring of soil wetness is im­

plemented from the current DMSP platforms, temporal performance expectations should be re­

adjusted to the more sporadic nature of the microwave products.

The satellite data assimilation method developed in this work shows that GOES infrared

heating rates can monitor heterogeneous surface \vetness fields in a gross sense. Limitations were

found regarding the ability to retrieve extreme dry or wet events. This has implications on the

ability of the retrieved soil moisture values to affect the atmospheric model's forecast. As an ex­

ample, extremely wet events that are retrieved with not enough soil moisture can not persist in the

model as long as they should in the real \\orld (assuming that the model's surface parameteriza­

tion is realistic). Likewise, retrieved dry conditions that are not dry enough. reduce the model's

predicted surface heating and can delay the onset of convection in the model (as occurred in the

simulation of this study). From the noise sensitivity experiment results, instrument noise does not

appear to be a major factor in the performance of the satellite data assimilation method. Overall,
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this work shows the viability of the approach of assimilating satellite heating rates into a mesos­

cale model to improve atmospheric numerical weather prediction model initialization.

A note should added that the ability to successfully monitor soil moisture has far reaching

benefits beyond atmospheric weather prediction. For example, several agricultural uses are men­

tioned by Engman (1991) and includes such diverse uses as crop yield prediction, irrigation man­

agement, and pest control. The potential economic ramifications of reliably determining soil

moisture content are enormous, and thus it deserves a significant expenditure of our scientific

resources.

6.5 SUGGESTIONS FOR FUTURE RESEARCH

6.5.1 Coupled Satellite-Model Remote Sensing of Surface Wetness

The satellite data assimilation method has been shown to be a viable method for incorporat­

ing infrared remote sensing data into an atmospheric mesoscale model. It is suggested that further

work is needed to explore additional case studies to test the method under a variety of environ­

mental conditions to determine other possible limitations of the method. This should include ad­

ditional datasets from other periods to explore possible seasonally related performance variabil­

ity. To improve the ability of the data assimilation method to sufficiently impact the atmospheric

simulation later in the afternoon. longer data assimilation periods should be investigated to de­

termine optimal satellite ingest periods, or possibly thicker surface soil levels should be used to

increase the prognostic soil model's effect on subsequent model weather features.

An alternative to extensive tuning of the current method is to explore the possibility of as­

similating the satellite heating rates in an adjoint version of the atmospheric model that would

simultaneously adjust other parameters in addition to the soil moisture fields. Such a method

could possibly overcome the limitations imposed on the method used in this study by allowing
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perhaps the bare-soil/vegetation/water fraction to freely adjust to the satellite conditions. Such a

method would allow extreme flooding events to be captured in the model in a more physical way

than the current method. For example, an adjoint method may be able to retrieve a surface flood­

ing fraction that would extend the ability of the model to duplicate observations in the real world.

Albedo factors that were fixed in this study could also be incorporated in such a scheme. Ad­

vanced work could also i~clude incorporating more realistic cloud fields into the model's radia­

tion code. Thus cloud shading effects might be able to account for some differences in the surface

energy budget of the model [e.g., see Lipton (1993)].

Soil moisture validation datasets are also needed. Previous programs focused on rather small

regions that were relatively insignificant in size compared the microwave satellite FOYs (e.g.,

FIFE). In situ soil moisture data from larger domains has only recently become more freely avail­

able. In particular, the Atmospheric Radiation Measurement (ARM) Programs's Cloud and Ra­

diation Test Bed (CART) field site will provide additional high quality surface measurements of

soil temperature and soil moisture which would assist in the validation efforts of similar work

(Stokes and Schwartz 1994). Future work should strongly focus on making the most of what soil

moisture data is available.

Another general area of future research would be the coupling of a hydrological model to an

atmospheric mesoscale model (Dabberdt and Sch latter 1996). Runoff processes and channel flow

are not represented in the current RAMS atmospheric model. The addition of satellite-derived

soil moisture information could help initialize the hydrological processes and provide better

flooding forecasts. A pilot research project should be initiated to test the feasibility of performing

such a threefold coupling of hydrologic and atmospheric modeling systems with satellite data.
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6.5.2 Data Fusion Methodologies

PORTAL is just an initial step toward developing a more comprehensive data fusion method­

ology. There is a need for further development of data fusion software so that multisensor remote

sensing can become more routine in the research community. This would allow all the calibra­

tion, scale, format, projections, etc., problems to be more transparent to the scientists, thereby

permitting them to be more productive (Engman 1991). This should include a more robust data

model that can account for the effects of possible data errors that are currently ignored in the pre­

sent system. Many factors, such as inaccurate satellite navigation, and calibration errors could be

better handled in a revised system. Software standardization should be a key goal in any further

work in this area. Simply developing a highly customized system specific to your current needs

and computing environment is not sufficient. It does not allow the researcher or scientific man­

agement to take advantage of the many possible alternatives and developments that are not lo­

cally created. Any future data fusion systems should be created with adherence to software stan­

dardization as a high priority. As outlined in Jones et al. (1995), error propagation analysis in the

data fusion process can be automated. thus substantially enhancing the scientific value of the

merged datasets. Future work should be undertaken to implement such a data system based on the

PORTAL data fusion paradigm.
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