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ABSTRACT

THE USE OF SATELLITE-DERIVED HETEROGENEOUS
SURFACE SOIL MOISTURE FOR NUMERICAL WEATHER
PREDICTION

This work's general scientific objective is to develop and apply a coupled satellite-model data
assimilation approach to observe heterogeneous soil moisture effects on the mesoscale for use in
understanding and quantifying the processes that have an impact on the preconvective inesoscale
environment and affect initial convective cloud development related to surface-forced circula-
tions. Several satellite-based methods are used to investigate the feasibility of retrieving surface
wetness information. Passive microwave satellite data are used as a subjective indicator of sur-
face wetness, while a quantitative satellite data assimilation method is developed to assimilate
observational infrared heating rates into an atmospheric mesoscale model to retrieve riodel soil
moisture. The data assimilation method employs a prognostic soil model with explicit. bare soil

and vegetation surface components.

In a case study, the data assimilation method is successful at retrieving realistic representa-
tions of the heterogeneous soil moisture. However, limitations are found regarding the ability to
retrieve extreme dry or wet events using the current model surface parameterization. This has
implications on the ability of the retrieved soil moisture values to affect the atmospheric model’s
forecast. Instrument noise is not found to be a major factor in the data assimilation methiod’s per-

formance.
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Atmospheric-corrected microwave surface emittance results are shown to enhance the use of
the microwave datasets for determining land surface characteristics, especially in regards to
analysis of the data’s frequency dependencies. Several problems that affect the use of the micro-
wave brightness temperature data were examined, including natural characteristics of the spatial

aad temporal variability of the microwave background signature, and sub-field of view effects.

The microwave surface emittance was found to be sensitive to numerous rain events captured
in the dataset. The relationship of the microwave surface emittance to a vegetation index is
saown to be highly variable for all but the sparsest vegetation amounts when analyzed at high
s»atial resolutions. The complexity of the microwave surface emittance versus vegetation rela-
tionship limits any future quantitative use of the microwave surface emittance for direct soil
nioisture retrieval; however, the potential application of the microwave surface emittance for

flood monitoring purposes and trafficability indices is high for non-forested regions.
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Chapter 1
INTRODUCTION

Several challenging scientific questions remain to be answered about important atmospheric-
land surface processes. This work's objective is to develop and apply a coupled satellite-model
data assimilation approach to observe heterogeneous soil moisture and vegetation effects on the
mesoscale for use in understanding and quantifying the processes that have an impact on the pre-

convective mesoscale environment and affect initial convective cloud development.

1.1 SIGNIFICANCE OF SOIL MOISTURE ON ATMOSPHERIC CIRCULATIONS
Several studies have suggested that sea-breeze-like circulations can be generated over areas
of heterogeneous vegetation and soil moisture conditions due to surface forcing (Ookouchi et al.
1984; Segal et al. 1988). In addition, the importance of soil moisture initialization has been dem-
onstrated at several modeling scales, from the mesoscale to general circulation model (GCM)
resolutions (Diak et al. 1986; Fast and McCorcle 1991; Sellers et al. 1988). In the operational
forecasting and mesoscale research modeling communities, there are ever greater requirements to
produce high resolution soil moisture estimates for data assimilation into the models to improve
operational forecasts, and research analysis, development, and validation. Recent work (e.g. Betts
et al. 1996) has shown improvements to model precipitation forecasts when soil moisture initiali-
zation is more carefully treated, and also suggests that some predictability exists in the extended
range as a result of the memory of the soil moisture reservoir. At the larger scale, GCM modelers
are also seeking to improve land-surface parameterizations, and they must continue to do so if

they are to accurately answer the questions regarding the climate change issue (Dickinson 1994).



Beyond the needs of the weather modeling community, a reliable source of regional soil moisture
information also needs to be available for the assessment of potential economic effects related to
the climate change question and its impact on national policy decisions (Schmalensee 1993). All

are pressing issues of our day.

The Global Energy and Water Cycle Experiment (GEWEX) is designed to address several
scientific issues related to climate change. in particular, the GEWEX Continental-scale Interna-
tional Project (GCIP) is intended to address the GCM land surface parameterization problem.
GCIP’s primary study area is the Mississippi Basin watershed in central North America. Prepara-
tion for a 5 year intensive observing period (IOP) (1995-2000) began in 1993. During the prepa-
ration phase of GCIP, satellite remote sensing methods to estimate soil moisture are expected to
be developed and validated for use during the IOP to extend the analysis and results from the
Mississippi Basin to other geégraphical areas around the world. Satellite data in particular is im-
portant to the GEWEX/GCIP goals since the results are expected to be transported to other re-
gions in which conventional hydrological and surface observations may be lacking or nonexist-
ent. Even in the highly instrumented Mississippi Basin, satellite data will be an important
information source to spatially interpolate the in situ data sets. The satellite data sets are also im-
portant for GCM model validation with observations, and acts as a reference data set for model-

to-model intercomparisons of improved GCM land surface parameterizations.

One of the primary goals of GEWEX is to estimate global water and energy budgets of the
earth. Remote sensing alone can not produce all the information required to create such budgets.
The fluxes for such a calculation will from necessity come from the models that have 3D wind
fields for the flux calculations in the atmosphere. However, for accurate estimates, the models
will require information for several model parameters, such as soil moisture, which are not well

known without remote sensing techniques. Thus the continental scale water and energy budget



calculations of GEWEX/GCIP need highly developed data assimilation procedures for incorpo-

rating remote sensing information into the mesoscale models.

Satellite data sets are well suited to observe spatial and temporal variations of clouds and of
the land surface characteristics. Several studies have observed significant relationships between
surface geographical features such as lakes and rivers, topography, albedo and soil moisture to
cloud formation (Chang and Wetzel 1991; Gibson and Vonder Haar 1990; Rabin et al. 1990).
Quantification of the satellite observed surface features and applicability of these results to model
parameterizations is a remaining challenge. However, recent attempts have been made to include
satellite observations of vegetation into model land surface parameterizations (Chang and Wetzel
1991). This work extends this to include satellite observations of surface soil moisture into a cou-
pled satellite-model land surface parameterization scheme. This is an important next-step in the

development of satellite-model coupling techniques from Lipton and Vonder Haar’s (1990a,

1990b) earlier work.

Assimilating satellite data into mesoscale models is traditionally a two-step process where the
satellite retrieval is separate from the model objective analysis and initialization. However, recent
work (Eyre and Lorenc 1989; Lipton and Vonder Haar 1990a; 1990b; McNider et al. 1994) has
shown that significant improvements are to be gained in both steps by coupling the satellite data
assimilation with the model such that the model and the satellite retrieval process are interde-
pendent. (This will be referred to as a satellite-model coupled system.) Due to the surface turbu-
lence mixing effects on the partitioning of the sensible and latent heat fluxes at the surface, such
an interdependent relationship should improve surface soil moisture retrieval results by obtaining
more accurate important meteorological parameters for the remote sensing retrieval process,
while also improving the model analysis with better soil moisture information. Chapter 5 details

the satellite-model coupled system developed for this particular work.



A major problem in developing GCM land surface parameterizations is how to accurately
represent the subgrid scale interactions that determine the hydrological and energy balance at the
surface (Avissar and Pielke 1989; Henderson-Sellers and Pitman 1992). Even future GCMs with
grid intervals of 100 km will have subgrid scale parameterization problems. For example, in two
regions with identical mean values of soil moisture but different spatial distributions, a heteroge-
neous distribution on the scale of 10 km could induce mesoscale sea-breeze-like circulations
which would be completely different from circulations associated with a homogeneous distribu-
tion of soil moisture with the same mean soil moisture. Thus characterization of the spatial and
temporal distribution of parameters related to surface forcing are very important for correct
parameterization of the land surface processes at the GCM scale. Mesoscale models with appro-
priate data assimilation are an excellent tool by which to gain understanding of these subgrid
scale effects. Such understanding is crucial for better parameterizations at the scale of the GCM.

Thus mesoscale model output would serve as a test bed for GCM model parameterization efforts.

Small scale effects are also important at the mesoscale. Remote sensing retrieval results are
averaged values over an entire sensor field-of-view. Consideration of subgrid resolution effects
could be important to remote sensing applications regarding model data assimilation (Wetzel and
Chang 1987). High resolution remote sensing data, rather than data that has been degraded by
averaging, is therefore crucial for accurate remote sensing results (Guo and Schuepp 1994).
However, even at reduced resolutions used in current studies, variations of soil moisture and
vegetation have a noticeable impact on the evolution of the preconvective environment (Chang

and Wetzel 1991).

Mesoscale model land surface parameterizations also need high resolution soil moisture data
sets for model development and validation. Initialization of mesoscale models with accurate high

resolution soil moisture and vegetation information can significantly improve model forecast ac-



curacy (Coates et al. 1984). Recent land surface parameterization efforts have been based on rain
gauge indices such as the antecedent precipitation index (API) (Wetzel and Chang 1987). Satel-
lite soil moisture data sets for mesoscale data assimilation will have higher spatial and temporal
resolution than is available with conventional in situ derived data sets. Comparing and/or com-
bining API-like methods with satellite soil moisture estimates will allow extrapolation of avail-
able in situ measurements in space and time, yielding a more optimum data set for high resolution
model development and validation. Results from an extensive intercomparison of satellite-

derived surface soil moisture products and an API method are shown later in Chapter 4.

Other fundamental remote sensing problems remain over land surfaces. It is well known that
microwave brightness temperatures measured by satellite are physically related to land surface
properties such as soil wetness, vegetation, and surface roughness (Jackson and Schmugge 1989;
Heymsfield and Fulton 1992), but understanding and quantifying the relationship of these inter-
related parameters is a challenging and complex problem. The microwave spectral emittance is a
fundamental surface radiometric parameter that can be measured from space and is also often
related to the physical hydrological parameters in theoretical work (Isaacs et al. 1989; Kerr and
Njoku 1990). The ability to combine microwave and infrared satellite data makes the calculation
of this fundamental radiometric surface parameter possible (Jones and Vonder Haar 1990). In
turn, the measurement of microwave surface emittance makes possible the minimization of the
background problem over land for microwave remote sensing of precipitation and cloud liquid
water (Spencer 1984; Jones and Vonder Haar 1990). A major result of this work is the production
of a high resolution microwave spectral emittance for use in such studies. Other meteorological
parameters, such as boundary-layer turbulence and mixing, further complicate the retrieval of
accurate soil moisture estimates (Wetzel and Woodward 1987). A soil moisture retrieval method

should ideally include these atmospheric effects. This work accomplishes this by using a satellite-



model coupled system to incorporate the surface meteorological parameters that affect the soil

moisture retrieval results and thereby improve overall retrievai accuracy.

1.2 RESEARCH OBJECTIVES

This work's general scientific objective is to develdp and apply a coupled satellite-model data
assimilation approach to observe heterogeneous soil moisture effects on the mesoscale for use in
understanding and quantifying the processes that have an impact on the preconvective mesoscale
environment and affect initial convective cloud development related to surface-forced circula-

tions. The primary objectives are:

1. to develop, validate, and intercompare multi-sensor satellite soil moisture retrieval algo-

rithms in the context of a satellite-model coupled system, and

2. application of the developed satellite-model coupled system to a 3D case study to assess

the impact of observed soil moisture on the preconvective mesoscale environment.

Closely related ideas which information will be provided for are:

1. determination of the space and time variability of high resolution microwave satellite sur-
face emittance for use in understanding the nature of processes which control the hydro-
logical balance and radiometric surface properties of the land surface at a 10-15 km grid

scale,

2. determination of the relative roles and important interactions that observed soil moisture

and vegetation have on initial convective cloud development at the mesoscale, and

3. demonstration of multi-sensor satellite data fusion technology in conjunction with data

assimilation for mesoscale models.



1.3 SCOPE AND SEQUENCE

The two major parts of this study, remote sensing and the coupled satellite-model work, have
unique characteristics that require that the work be performed on two temporal scales and slightly
different spatial scales. This requirement is primarily driven by the large computational demands
of the mesoscale atmospheric model, and the desire to have a spatial domain and time period
large enough to minimize the potential loss of understanding of the remote sensing phenomenon

if the data were processed on a smaller domain.

In brief, the remote sensing work consists of calculating the microwave surface emittance
and comparing the results with other surface wetness information sources (including satellite
data, and other available in situ and geographical information sources). The coupled satellite-
model work is broken down into two parts: the development and testing stage, and the application
of the satellite-model coupled system to a case study. So in summary, the work will be performed

in a total of two stages:

1. satellite related work observing microwave surface emittance and the processing of sat-
ellite and geographical data sets necessary for the satellite-model parameterization devel-

opment, and

2. satellite-model work consisting of:

a) development and testing of the satellite-model coupled system, and

b) application of the satellite-model coupled system to a 3D case study.

The remote sensing aspect of the study will cover a continental-scale domain area, with the
data set being selected over the Mississippi Basin watershed area (25-55° N, 85-110° W). The
remote sensing work will benefit from the geographical diversity that the larger continental scale

area offers. Thus greater understanding will be possible due to the wider range of environmental



conditions and situations. The satellite data set is approximately 70 days in duration occurring in
late summer (Aug.-Oct., 1991). The 70 day time period will allow for observation of cyclical sur-
face hydrological processes such as surface moistening and drying due to precipitation events
(Serafini 1990). The late summer time period should also focus our work on air mass convection

rather than convection that is driven by the larger synoptic scale conditions.

The coupled satellite-model. work will be performed on a smaller scale of approximately
500x500 km with a 5 km grid interval, with larger parent grids of approximately the same do-
main size as the satellite analysis work mentioned previously. The smaller spatial domain is due
to the large computational requirements of the mesoscale model. A spec