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ABSTRACT 
 

 

 

ONE-DIMENSIONAL EFFECTIVE CONTINUUM MECHANICS MODELS OF BRAIDED 

AND TRAPEZOIDAL WIRES 

 
 
 

As the use of wires in different engineering applications increases, investigation into and 

better understanding of the wire’s behavior become more important. Over the past years, heavy 

work has been done to study the mechanical and dynamical behavior of wires using analytical, 

experimental, and finite element models. This attention explains the importance of such a structure. 

However, studying such a structure is more challenging than with other ordinary structures, due to 

the nonlinearity of the geometry. 

 In this work, the axial elastic behavior was studied using linear three-dimensional finite 

element Fortran 77 code. The wire was discretized, element matrices were built, and varying 

boundary conditions were applied to find the four elastic coefficients of the global matrix: pure 

tensile stiffness, two coupling terms between the tensile and torsional stiffness. Couple action 

appears when there is a twist in the wire, for that varying twist angles (0°, 5°, 10°, 15°, 20°, 25°, 

and 30°) were used to check their effect on the stiffness. To validate the model used, a simple 

straight wire rope (1+6) of known behavior was tested using same approach and twist angles, and 

then compared with 7 existing analytical models available in literature. Results showed a good 

agreement with the finite element model, which indicates that the approach used to solve for the 

trapezoidal wire was reliable and valid. The results showed that the trapezoidal wire is stiffer than 

the simple straight wire rope and exhibited extensional and torsional coupling behavior values, 
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which can be critical in the design process of these structures. This model can also be used to 

decrease the high costs associated with experimental tests needed to determine its behavior. 

The method was extended, as, to evaluate the integrity of such a structure, it was essential 

to conduct a free vibration analysis using a one-dimensional finite element approximation for the 

trapezoidal wire as well as for the simple straight wire rope, which had not been done before, to 

investigate the extensional and torsional behavior of the motion of these wires. First, an aluminum 

straight bar was tested by solving the mass and stiffness matrices using 2-, 4-, 8-, and 16-element 

approximations, and the convergence was checked against the known exact axial and torsional 

frequency solutions. The 16-element approximation was applied to both the trapezoidal and the 

simple straight wire rope with all the lay angles considered. The coupled extensional and torsional 

vibration for these wires was solved using closed-form equations for the mass matrices; with these 

and the stiffness matrices constructed, the eigenproblem was solved to find the frequencies and the 

corresponding mode shapes. The two types of displacement, axial and torsional, were found in 

each frequency while having coupled stiffness. The simple straight wire rope behaved similarly to 

the trapezoidal wire, but with relatively lower frequencies. Which conclude that it is important to 

the design, safety, and monitoring, depending on the application for which these wires are used, 

that the coupled frequencies suggested be considered and studied carefully. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Over the past years, with the increase in the use of wires in different engineering 

applications, a better understanding of their behavior is essential, so, much work has been done to 

study the mechanical and dynamic behavior of spiral strands and wire ropes using analytical, 

experimental, and finite element (FE) models. Such attention bespeaks the importance of such a 

structure. A spiral strand can be defined as multiple layers of helical wires wound around a straight 

wire, whereas a wire rope is typically six wires wound around a straight core wire. Hobbs and 

Raoof (1996) observed that the difference between spiral strands and wire ropes is that the spiral 

strand has a simpler helical path for each wire around its center wire, while the wire rope has more 

complex and double helical paths in strands which are themselves helically constructed. 

Wire strands and ropes are widely used in many engineering applications, for instance, in 

suspension bridges, aerial ropeways, mine hoists, overhead electrical conductors in transmission 

lines, etc., because of their ability to take large axial loads (a dominant advantage in comparison 

with small torsion or bending stiffness), their high strength over weight, and their ability to take 

advantage of their material in a very effective way. Indeed, their mechanical and dynamic behavior 

depend on their geometry, material, and the lay configurations of each wire.  

Experiments on large-diameter strands need expensive and huge devices. It is important 

for designers to have tools with which to determine the axial elastic stiffness of these kinds of 

structures. For this purpose, there are many analytical models based on different assumptions, 

including, for example, purely tension wires, Poisson’s ratio effects, curved beam theory, friction 

effects and variations in core radius, on a single layer or multilayers strands with a single helix or 

multihelix configuration, and testing different lay angles �. Also, with the development of finite 
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element modeling, comparing the early analytical models made it possible to study more and more 

interesting phenomena, including vibration analysis. Related and most important models were 

introduced and are presented in the literature review in chapter 2. The complexity starts when the 

wire has a twist along its length, which means extensional and torsional coupling action appears 

in the stiffness matrix of the wire. 

A new aluminum composite conductor core with trapezoidal outer wires and a polymer 

hybrid composite core was designed as a solution to a major problem in the electrical overhead 

conductors used in the transmission lines; the current metal conductors cause a limitation in the 

distribution capacity when there is an increase in the demand because of heat, which causes 

expansion, which results in end of sag. In addition, if there is an excessive sag, the risk of human 

injury and property damages will increase significantly. Furthermore, in a side note,  Alawar, 

Bosze, & R. (2007)  assessed this new wire under high temperature (100°C to 180°C ) and found 

that the core lost only 10% from room temperature, and studied creep under 150°C and stated that 

the results were insignificant since the change in sag was only 0.35 mm for a typical span length.  

Nevertheless, in this work the global axial mechanical behavior of the new trapezoidal wire 

(Figure 1.1) is the focus, which leads to conducting a vibration analysis. The study measured the 

change of the wire behavior within the change of the lay angles, which is the angle it takes a full 

wire to turn around a center straight wire, the angles used between 5° and 30° which covers the 

most practical lay angles. The wire was first meshed using AutoCAD to model in detail all the 

geometric aspect of the wire and then conduct a three-dimensional finite element analysis using a 

Fortran 77 code. To validate this methodology, a well-known simple straight wire rope’s (Figure 

1.2) mechanical behavior was analyzed using the same process and methodology and its results 
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then compared with 7 other known analytical models. The coupling behavior resulting from the 

axial load where the twisting angle (lay angle) exists was the focus of the study.  

 

Figure 1.1 Trapezoidal wire. 

 

Figure 1.2 Simple straight wire rope. 
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In addition, free vibration analysis using one-dimensional finite element approximation for 

the trapezoidal wire and the simple straight wire rope was conducted after finding the mass 

matrices and stiffness matrices, as mentioned before, for each lay angle � studied (0°, 5°, 10°, 15°, 

20°, 25°, and 30°); the natural frequencies and the corresponding mode shapes were found using 

Matlab function. The effect of coupling (extensional and torsional) behavior in the vibration 

analysis is of interest to this research, as it has not been studied before for wires. 

The results for the mechanical behavior of the trapezoidal wire were better than for the 

simple straight metal wire rope and proved it is a stiffer wire, that can be relied on in many 

engineering applications. The simple straight wire rope’s elastic stiffness was satisfactory in 

comparison with the 7 analytical models for all lay angles. 

It is also important for designers to study the significance of the coupling action in the 

trapezoidal wire and the simple straight wire rope in solving the free vibration analysis, which 

showed two types of displacement in a wire with a twist, primarily axial with torsional or reverse. 

In comparisons of the trapezoidal wire to the simple straight strand, the trapezoidal had better 

results, indicating that it can be used in more applications.  

1.2 Mechanical Behavior of Wires 

In general, wires are helically designed and despite how many layers or the section shape 

they have, their global axial behavior for linear elastic analysis will be a coupling between tension 

and torsion as in (1):  

{ {௭ܯ௭ܨ = [��� ������ ���]  (1) {௭,௭ߠ௭,௭ݑ}

where ܨ௭, ܯ௭, ݑ௭,௭, ߠ௭,௭, ��� , ���, ���, and ��� are the axial force (ܨ௭,), the axial twisting 

moment (ܯ௭), the global axial strain (ݑ௭,௭,), the global twist angle per unit length (ߠ௭,௭), the global 
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pure tensile stiffness (���), the global coupling stiffness terms between the tensile (���) and the 

torsional (���), and the global torsional stiffness (���). Note that the equations used in this research 

follow the notations of Ghoreishi, Messager, Cartraud, & Davies (2007).  

It should be mentioned that the coupling terms in the stiffness matrix should be 

symmetrical to satisfy the Maxwell Betti reciprocal theorem, which is a basic law in conducting a 

linear elastic structure analysis (more discussion on which will be presented in chapter 4).  

This research focus will be on two wires: (1) the new trapezoidal wire, composed of two 

layers of trapezoidal-section aluminum helical wires wound around a center wire with circular 

section composed of two different materials: carbon/glass-fiber polymer composite, as shown in 

Figure 1.1. And (2) the simple straight wire rope, which contains one layer of six helical wires 

wound around a center wire, all of them having a circular section and being made of similar 

material (i.e., steel), as shown in Figure 1.2. The stiffness matrix of the trapezoidal wire has not 

yet been solved. 

1.3 Dynamic Behavior of Wires 

As is well known, due to its geometry, when a wire (even a small wire) has a twist, the 

tension will not only result in extension of the wire, it will have a rotation as well; likewise, when 

it has a torque load it will produce not only rotation, but extension also (Samras, Skop, & Milburn, 

1974). This behavior of the stiffness matrix has been extensively studied, along with the effects of 

such an aspect on a structure like wire. Free-vibration-analysis eigenvalues (natural frequencies) 

and eigenvectors (mode shapes) can be solved after finding the stiffness and mass matrix for linear 

structure analysis. In this work, the frequencies and the corresponding modes shape were solved 

for the new trapezoidal wire and the simple straight wire rope as it has not been solved before to 

study the effect of the coupled stiffness on the oscillation of such a structure.  
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1.4 Objectives 

There are many goals in this work. It starts with studying the complex geometry of these 

structures (trapezoidal wire and simple straight wire rope) using a three-dimensional finite element 

model; accurate discretization of the structure is essential for such a method. Then building the 

element matrices after finding out the elastic properties. The models will be solved using different 

boundary conditions, to find the global axial stiffness matrix for lay angles between 0° and 30° for 

the new trapezoidal wire using Fortran 77 code. To validate the results, the known mechanical 

behavior of simple straight wire rope was used on the same three-dimensional finite element code 

and application, and its results will be checked with 7 existing analytical models. Next, free 

vibration analysis will be used to study the extensional and torsional behavior of the trapezoidal 

wire and the simple straight wire rope; an aluminum bar with approximately the same radius as 

the trapezoidal wire will be used. Mass matrices will be constructed for each structure studied. The 

dynamic stiffness element matrix will be computed for all lay angles specified for both the 

trapezoidal and the simple straight wire rope, along with the bar stiffness, to find the natural 

frequencies and the mode shapes to confirm the method used and compare it with known exact 

solutions.  

1.5 Thesis Organization 

This thesis contains 5 chapters and an appendix. The first chapter is an introduction with 5 

parts: (1) an overview about this thesis, (2) a brief peak of wire history and its uses, (3) a general 

description of the wires’ overall mechanical behavior, (4) overall dynamic behavior of wires, and 

(5) a list of the objectives of this thesis. Chapter 2 is a detailed literature review divided into 4 

parts: the first shows the analytical and experimental models; the second, the finite element 

models; the third shows the free vibration analysis for wires; and the fourth, a statement of the 
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significance of this research and the methods used. chapter 3 is divided into 4 main sections: (1) 

an overview, (2) a discussion of how the global stiffness matrix was obtained for the trapezoidal 

wire and the simple straight wire rope using a three-dimensional finite element method, (3) a listing 

of the 7 analytical models for the simple straight wire rope, and (4) the free vibration analysis for 

the aluminum bar, the trapezoidal wire, and the simple straight wire rope. Chapter 4 shows the 

results and discussion on the method applied in chapter 3, also divided into 3 main sections: (1) an 

overview, (2) the mechanical behavior of both the trapezoidal wire and the simple straight wire 

rope, and (3) the dynamic behavior of the aluminum bar, the trapezoidal wire, and the simple 

straight wire rope. Chapter 5 is a conclusion, which lists the study findings and possible future 

work or improvement on this research. At the end there is appendix containing the stiffness values 

of the analytical models for the simple straight wire rope.  

 

 

 

 

 

 

 

 

 

 

 



8 

 

CHAPTER 2: LITERATURE REVIEW 

2.1 Background 

There are many experimental and analytical models focused on the description of the 

mechanical behavior of a single straight isotropic strand subjected to axial load while knowing the 

wire’s material and geometry, which are partially described by Feyrer (2015). The focus of the 

authors was to find the global response of wire ropes—the axial, bending, and torsion stiffness—

as well as the local deformation of individual wires, which are critically related to the fatigue and 

damage behavior of the wire ropes (Xiang et al., 2015). Lee (1991) introduced a geometrical 

technique that can work with any cable with axisymmetric strands and noted that this damage is 

closely associated with the geometrical properties of the individual wires of which a rope is 

constructed. The degree of damage depends upon the geometrical and spatial configuration of the 

wires as well as their positions within the rope; Lee (1991) noted that a thorough understanding of 

the geometrical properties is required to model the deformation and strain components along 

individual wires within a rope under operating conditions. Later, other mathematical models were 

created and are now available to predict the mechanical behavior of a two- and three-layered 

isotropic straight strand subjected to axial loads while knowing the wire’s material and geometry. 

Later, with the development of advanced finite-element methods, many scholars 

investigated the mechanical response of a simple straight wire and two- and three-layered straight 

wire using different approaches and different software (to save time and cost of these analytical 

models and experimental models, presented before became available). The finite element method 

was used also for the design as well as for the investigation of the behavior of wire strands. In 

addition, using finite elements gave the advantage of searching many different wire geometry 

configurations and materials, under various assumptions. 
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However, very few studies have researched the vibration phenomena, including the natural 

frequencies and the normal modes for coupled extensional torsional in wires. 

To follow precisely what research has been done, this chapter is divided into four sections: 

the first describes the analytical and experimental models, the second shows the finite element 

models followed, the third is a vibration analysis, and in the fourth a description of the significance 

of this study is presented.  

2.2 Analytical and Experimental Models for Wires’ Mechanical Response  

The first model dates back to the early 1950s, which was a fiber model by Hruska (1952a, 

1952b). His model was the simplest; he accounted for the tension response of each wire and 

ignored its bending and torsion (clamping conditions). He assumed zero end rotation and the 

contact mode was radial; however, he ignored the radial contraction as well as the friction (Cardou 

& Jolicoeur, 1997), so he did not investigate the actual contact stresses. This model was later 

extended by R. Knapp (1975) with a rigid core. It should be noted that bending and torsion cannot 

be negligible because newer models considered the bending and torsion response and explained 

why it needed to be included (Xiang et al., 2015). So, in the McConnell and Zemke (1982) model, 

they included the torsional stiffness for each cable around the center cable. 

As in McConnell and Zemke’s (1982) model, the next analytical models were based on 

beam theory assumptions, which were modeled using (Love, 1906) curved beam equations, where 

they dealt with each wire individually by assuming it to be a helically curved rod but making 

different assumptions about the geometry or even the contacts of the interwire (Anne Nawrocki & 

Labrosse, 2000). Machida & Durelli (1973) also studied the mechanical response when they added 

the bending and torsion stiffness to the global stiffness matrix, as in Knapp’s (1975) model. Knapp 
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(1979) extended the work by examining the effect of changing the core radius due to the layers’ 

pressure. 

Costello and Phillips’ (1976) model also considered the bending and torsion stiffness of 

the wire while ignoring the friction force and contact deformation. The model was developed on a 

nonlinear theory for a simple straight wire with a soft core or without a core; due to the Poisson 

ratio, the effect of the angle and radius of the cable were included, and forces from lateral contact 

were calculated on the assumption that the cable cross-section is an ellipse, which entails a smaller 

lay angle, normally less than 30 degrees. Cable strain was neglected while it will appear from only 

changing the helix angle; the last assumption was neglected in Phillips and Costello’s (1985) 

model (Cardou & Jolicoeur, 1997). Velinsky (1985) extended it to a cable with a core, taking into 

account the Poisson ratio (radial contraction) with small lay angles as well for the bending and 

torsion stiffness of the wire. This model was the first to compute the response of a multi-strand 

construction. Moreover, this model calculated the tension and torque for a straight wire due to a 

uniform tension and torsion; then the wound strand’s tension and torque that resulted, due also to 

elongation and torsion, was approximated by exactly the same mechanical relation computed for 

the straight wire. The effect of curvature changes of the wound wire was included in this model by 

an approximation that accounted for the bending in the plane for the straight wire around a cylinder 

(Elata, Eshkenazy, & Weiss, 2004). Phillips and Costello (1985) continued the work by 

generalizing Velinsky’s (1985) model for any type of cable with an independent wire rope core; 

this model neglected the friction between the wires as well. After that, Costello (1997) developed 

a linearized theory, including a study of the effect of twist and curvature. Kumar and Cochran 

(1987) linearized Costello’s (1997) theory and included the Poisson ratio, and that resulted in 

finding a closed-form expression for the stiffness matrix terms. By using a metallic material for 
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the wire core, Kumar and Botsis (2001) extended Kumar and Cochran’s (1987) work to obtain an 

analytical expression for the maximum contact stress found in the multilayered strands (Ghoreishi, 

Messager et al., 2007). Jiang (1995) developed a general formulation to be applied to more 

complex wire geometries for one-layered as well as multilayered wires. Huang (1978) investigated 

the contact mode conditions either radially or laterally for the simple straight wire. While the 

Poisson effect is considered and local contact deformation is neglected, it was shown that radial 

contact appeared to be prevalent, even if no gap exists between the wire’s layers (Ghoreishi 

Messager et al., 2007). Utting and Jones (1987a, 1987b) continued Costello’s analysis to include 

wire flattening, which is contact deformation and friction. The results proved that these phenomena 

have almost no effect on estimates of the global cable response (Ghoreishi, Messager et al., 2007). 

Jolicoeur and Cardou (1991) studied the response of a simple straight wire by Costello and 

Phillis’ (1976) model and the estimated result of Hruska’s (1952a, 1952b) model, and the study 

found that the fiber model is not appropriate when twisting moment and angle have to be taken 

into consideration; however, the thin-rod model showed good results comparing the stiffness terms 

with the experimental results in Utting and Jones (1987b). 

Ramsey (1988) stated that more analysis should be done specifically for the wire twist, so 

he derived new constitutive equations using an accurate theory. Then, Ramsey (1990) revised his 

earlier work, leading to a non-zero distributed moment component in the radial direction (Cardou 

& Jolicoeur, 1997). 

For a cable with a rigid core, Sathikh, Moorthy, and Krishnan (1996) derived a closed-form 

symmetric linear elastic model, using discrete thin-rod theory because most of the earlier models 

lack symmetry when the bending and torsion terms are included and he compared his result with 

these models, such as Ramsey’s theory as well, with the experimental result obtained before. 
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Labrosse (1998) presented a new analytical approach to predict the overall behavior of simple 

straight wires subjected to tension, bending, and torsion. In this model, the Poisson ratio effect is 

neglected while relative motions between core and wires are considered (Ghoreishi, Messager et 

al., 2007). 

Elata et al. (2004) simulated a new model for the mechanical response of a wire rope with 

an independent wire rope core under axial loads and axial torque. In contrast to the earlier models, 

where the effective response of wound strands was considered, this model considers the complete 

double-helix configuration of the wires within the wound strand and relates the wire level stress to 

the applied overall load at the rope level. Only axial stiffness is considered, but the wires are 

subjected to loads on their lateral surface, applied by adjacent wires; as a result, the accuracy of 

this model increases when the number of wires increases (Ghoreishi, Messager et al., 2007). Elata 

et al.’s (2004) major concern was to analyze the effect of a double-helix configuration. However, 

this model does not lead to closed-form equations. 

There are many authors who have worked on such structures having a large number of 

components. As Raoof and Hobbs (1988) stated, for such cables the bending moment and torque 

were not considered. These authors developed models to find the global elastic constant, knowing 

the material and geometry of the structures. These models fall into two groups: (1) semicontinuous 

models developed only for metallic cables, and (2) models for synthetic cables (Ghoreishi, 

Cartraud, Davies, & Messager, 2007). 

For semicontinuous models, a method called homogenization is used for multilayered 

cables, and it is basically changing a system composed of identical repetitive elements into one 

made of continuous material; these models are in contrast to the thin-rod models. Hobbs and Raoof 

(1982) were the first to apply this approach to their cable model, and they extended it further 
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(Raoof, 1983). This model replaced each wire layer with a thin cylindrical orthotropic layer, to be 

in a plane state of stress. Four elastic constants are important for composite laminates: two are 

related to the properties of the wires and two are related to the contact stiffness between the wire 

layers (Cardou & Jolicoeur, 1997). The whole cable was then treated as a discrete concentric 

orthotropic cylinder set (Ghoreishi, Cartraud et al., 2007). That led Raoof and Hobbs (1988) to 

calculate the axial stiffness, as well as the torsional stiffness  (Raoof and Hobbs, 1989), and that 

work was extended for two decades by Raoof and Kraincanic (1995), and Mohammed and Ivana 

(1995). Using the same idea but replacing each layer with an orthotropic cylinder, of transversely 

isotropic material, first Blouin and Cardou (1989), then Crossley, Spencer, and England (2003), 

Claude and Alain (1996), and then Crossley, England, and Spencer (2003) extended the work, 

taking into account that such method is applied when the number of wires is larger than six. The 

cylinder thickness is arbitrary, so, for the three-dimensional model, five elastic constants are 

needed instead of four (Cardou & Jolicoeur, 1997). These models included the friction between 

components, but some elastic constants are derived from contact mechanics because the layers are 

considered to be circular cross-sections (Ghoreishi, Cartraud et al., 2007). However, Jolicoeur 

(1997) studied and compared Raoof’s (1983) and Blouin and Cardou’s (1989) models, and 

indicated that the previous cylinder model is easier and simpler for tension or torsion loads; 

however, using this approach when there is bending will result in failing to get the bending stiffness 

(Spak, Agnes, & Inman, 2013). Raoof and Kraincanic (1994) have also compared the 

semicontinuous models versus the thin-rod model and indicated that the thin-rod method was more 

reliable when the wire diameter is small, whereas, for the semicontinuous models it would be better 

with a larger number of wires (Xiang et al., 2015). 
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Moreover, some models for analyzing synthetic cables were presented. The simplest model 

is that of Raoof (1991). While still accounting for tension and neglecting bending, torsion, friction, 

and contact, this approximation is acceptable for monotonic axial loading (Ghoreishi, Cartraud, et 

al., 2007). Leech, Hearle, Overington, and Banfield (1993) presented a quasi-static analysis using 

computer codes for fiber ropes and splices to predict the ropes’ properties; from their dependence 

on elongation and twist they computed the tension and torque. Beltran, Rungamornrat, and 

Williamson (n.d.) and Beltran and Williamson (2009) developed models that are very similar to 

that of Leech (although Leech focused on a damaged model, to take into account the degradation 

of rope properties as a function of loading); these models are also implemented in a computer 

program (Ghoreishi, Messager, et al., 2007). 

For two dimensions, recently, Argatov (2011) presented a refined discrete mathematical 

model for a simple straight wire, and this model took the effect of the Poisson ratio and the contact 

deformation into consideration, and found the wire stiffness and local contact stress; this model 

assumed a plane strain to formulate the two-dimensional problem (Frikha, Cartraud, & Treyssède, 

2013). 

Recently, Ghoreishi, Cartraud, et al. (2007) did two tests on two structures of a fibrous 

cable with a large number of twisted components subjected to axial loads; using their model the 

axial stiffness of the structures has been predicted. They continued their work in Ghoreishi, Davies, 

Cartraud, and Messager (2007); at the end of their research they came up with two closed-form 

analytical models that can be used to analyze synthetic cables. 

It should be noted that it is difficult to complete an analytical investigation of the 

mechanical response for a cable because the kinematics of each individual wire is very complex. 

To complete such a study, it is essential to assume the kinematics of the wire and then compute 
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the mechanical behavior for the structure as a whole and, after that, test the consequences of these 

assumptions by considering their effect on the validity of the equilibrium equation (Love, 1906). 

2.3 Finite Element Models for Wires’ Mechanical Response 

In the 1970s, Carlson, Kasper, and Tucchio (1973) were the first to model armored wire 

using the finite element method; they modeled the wire and its connections using bar elements 

(Ghoreishi, Messager, et al., 2007). A study of the damping isolators for multiconductor cable was 

presented by Cutchins, Cochran, Guest, Fitz-Coy, and Tinker (1987); this model used a six-nodal 

solid element and the connections were simulated with springs (Ghoreishi, Messager, et al., 2007). 

A small segment length of the cable was modeled for a simple straight wire only to optimize the 

geometry by Chiang (1996); the model investigated the main impact design factors, including the 

radius of the core, the radius of the wire, the helical angle, and the boundary conditions. The 

previous models used volumic finite elements, which are not applicable to investigate all the 

interwire mechanical behavior; and indeed to model a cable accurately, it is essential to have a 

large number of elements (Nawrocki & Labrosse, 2000). Jiang, Yao, and Walton (1999) presented 

a concise finite element model; taking advantage of the cable and loading symmetry, the model 

used three-dimensional solid brick elements. This model accounted for tension, shear, bending, 

torsion, contact, friction, and possible local plastic yielding when axially loaded. The model 

showed excellent agreement with the analytical model by Costello (1978) as well as the 

experimental work by Utting and Jones (1987a, 1987b). Jiang, Henshall, and Walton (2000) 

extended the work by applying it for a three-layered straight strand. However, this model cannot 

be applied for the bending case, nor for a very complex load. Using a simple straight wire, Jiang, 

Warby, and Henshall (2008) studied the statically indeterminate contact problem when the wire is 
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axially loaded; the results of this study showed that contacts can happen at all possible contact 

points if the wire is under tension and both ends restrained against rotation. 

Rope stress was calculated using the finite element method by Wehking and Zieglen 

(2004). Messager and Cartraud (2008) took advantage of the helical symmetry and used the 

semicontinuous (or the so-called homogenization) theory of periodic slender domain to find the 

elastic behavior from a three-dimensional concise finite element model that is free of the 

displacement assumption. A cable with large perturbations with interwire friction and deformation 

of the wire cross-section was modeled by Durville (1998); however, this model has no 

experimental validation (Nawrocki & Labrosse, 2000). Nawrocki and Labrosse (2000) presented 

a finite element model to predict the behavior of simple straight wire rope strands, which allows 

the study of all the possible interwire behaviors. They investigated the contact conditions in axial 

loading and in combined axial and bending load, which was an extension of the work done by 

Nawrocki (1997), where a one-dimensional curved beam element was investigated for a simple 

straight wire. Michel, Anne, and Ted (2000) analyzed the frictional damping properties of axially 

loading on one-layered cables, such as a simple straight wire rope, and investigated the quantity 

of energy dissipated through friction due to motions between wires when loading. 

In an excellent work done by Ghoreishi, Messager, et al. (2007), they presented a three-

dimensional finite element model and used it as a reference to compare the validity domain of the 

analytical models, i.e., those of Hruska (1952a, 1952b), McConnell and Zemke (1982), Machida 

and Durelli (1973), Knapp (1979), Kumar and Cochran (1987), Ramsey (1988, 1990), Sathikh, 

Moorthy, and Krishnan (1996), Costello (1997), and Labrosse (1998). For lay angles below 20 

degrees of the nine linear elastic models of the simple straight wire rope subjected to axial load, 

the compared finite element model showed a satisfactory estimation; however, it showed that the 
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analytical models have limitations due to their assumptions, for example, that the simple strand is 

actually assumed to be linear elastic (Chen, Meng, & Gong, 2017).  

Because most of the analytical models presented depended on neglecting the friction effect 

and beam theory, Erdönmez and Ímrak (2009) created a three-dimensional model for a wire strand 

considering friction and sliding effects. Using a simple straight two-layered wire rope, Páczelt and 

Beleznai (2011) studied the possible interwire motions, contact, and friction between the wires as 

well as the Poisson ratio and wear effect between the elements by developing the p-extension 

concept in the finite element mesh of a simple straight two-layered cable. This model considered 

tension, torsion, and bending loading, and it showed accuracy when they compared it with several 

analytical models. Erdönmez and Ímrak (2011) presented an accurate three-dimensional solid 

modeling that can be used for finite element analysis by the new methodology of defining and 

modeling the nested helical wire ropes; they presented the parametric equations for single and 

nested helical wire ropes. Prawoto and Mazlan (2012) introduced a simple theory and 

computational, mechanical, and metallurgical characteristics of wire rope to find their mechanics 

under axial loading. Wang, Zhang, Wang, and Ge (2012) presented a three-dimensional finite 

element analysis for a hosing rope and three-layered strand subjected to fretting fatigue and stress. 

The study showed that different wires in the rope or strand and distinct material in the analyses 

generate different parameters of the fretting fatigue and stress. This study’s results showed 

agreement with the results of experimental work done previously. An investigation by Frikha, 

Cartraud, and Treyssède (2013) was performed to study the behavior of a simple straight wire rope 

under tension load considering their translation invariance and applying the homogenization theory 

based on an asymptotic expansion. Stanova, Fedorko, Fabian, and Kmet (2011a, 2011b) presented 
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parametric equations to generate arbitrary multilayered strand ropes with circular sections and 

apply it to a finite element application (Stanova, Fedorko, Kmet, Molnar, & Fabian, 2015). 

For pure bending, Jiang (2012) presented a concise three-dimensional finite element model 

for a straight wire strand, before applying it to the periodic artificial cross-sectional end 

boundaries. Jiang created a bending symmetric condition, which was accurate. For bending 

moment versus bending curvature, the models had satisfactory results when compared with the 

analytical results of Costello’s (1997) model theory. In addition, this model is able to show the 

progressive nonlinear plastic behavior of the strand. 

2.3 Models for Wires’ Dynamic Response 

The vibration analysis of tight strings started by Taylor, D’Alembert, Euler, and Bernoulli, 

Bernoulli studied the transverse vibration of a uniform wire clamped at one end. After 50 years, 

Euler and Bernoulli solved the natural frequencies as inform of series that were infinite (Irvine, 

1974). After the use of partial differential equations, in 1788, Lagrange had come up with a 

solution for the vibration of a tight wire that is fixed and both ends. The general motion equations 

were first introduced by Largrange in 1760 and then improved in Mecanique Analytique in 1788. 

The general force action was included in the Cartesian partial equations used for that wire and 

modified for vertical wires; this is was a huge contribution in the wire’s vibration analysis, made 

by Poisson in 1820 (Irvine, 1974). It should be noted that until this point in history, the free 

vibration of wires with sag had not been studied. In 1851, Rohrs found vertical vibration 

approximation for the fixed wire with a very small sag compared to its span. Roith (1868) did 

similar work to obtain the exact solution for symmetric and antisymmetric vertical vibration, and 

the work on wires vibration did not have any major improvement until Karman and Rannie (1941) 

derived symmetric and antisymmetric vertical vibration of three-span wire. For the same wire span 
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Vincent (1965) continued the work by including the elastic properties in the model, more extensive 

study taking the same approach by Bleich (1950); however, he was concerned about including a 

sag ratio of 1:10, so the wire elasticity was not appreciable (Irvine, 1974). Pugsley (1949) was the 

first to solve the natural frequencies for the first three modes of a wire using empirical theory and 

he tested the result of changing the sag-to-span ratio from 1:10 to 1:4. Saxon and Cahn made a 

major improvement in the in-plane vibration theory, where they found solutions that effectively 

decreased the previous results for a small sagged wire and yielded very good results for the larger 

sag-to-span ratio. An interesting aspect of these studies at that time was that no one had searched 

the discrepancy when the sag-to-span ratio goes to zero; as most of the theories assumed a small 

sag, the first mode would primarily have a vertical motion (Irvine, 1974). Most of this historical 

review was presented in a classic paper by Irvine, who also did a remarkable study based on a 

linear theory for the free vibration analysis for uniform wires; but with a sag-to-span ratio of 1:8 

or less, he concluded that the analysis depended on the wire’s geometry and elasticity parameters. 

An experimental study needs to be done to prove the validity of his theory. It can be clearly seen 

that these earlier models were limited by the lack of the advanced mathematical methods available 

today (Thai, Kim, & Lee, 2017). Other recent analytical work has focused more on other things, 

like the increase of nonlinear interactions, as in Rega's (2004) paper or the study of the increase in 

temperature on the wire’s sag by Lepidi & Gattulli (2012). In addition, most of these methods 

studied the axial deformation only.  

Samras et al. (1974) studied the coupled extensional torsional and found the equation for 

it solved the frequency equations under four different boundary conditions. The study derived the 

coupled extensional and torsional motion equations, and the frequencies were computed for a wire 

stretching from the ocean floor to the surface. These frequencies were compared with the result of 
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frequencies of only extensional deformation. The results of the critical frequencies showed that 

the result of the coupled frequencies have lower results than the one with extensional theory, and 

concluded by stating that the torsional behavior of wires needs more study, considering the 

importance of such structures. To the author’s knowledge, this is the only analytical study that has 

been done to examine the dynamic behavior due to a coupled action.  

2.4 Significance of this Research 

In this work, a three-dimensional, finite-element model will be applied to the double layer 

new trapezoidal wire, including the Poisson effect to the global axial stiffness, which has not been 

found before and includes the effect of varying the lay angle between 5° and 30°. Using the same 

approach, the global axial stiffness also will be computed for the simple straight wire rope with 

the same lay angles studied, thereby validating the approach in comparison with 7 different 

existing analytical models for this wire. For both wires the coupling action will be studied with a 

lay angle existing in the model.  After that, free vibration using one-dimensional approximation 

will be performed to see the effect of such coupled stiffness behavior on the national frequencies 

and the normal mode where the vibration motion can be captured.  
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CHAPTER 3: METHOD 

3.1 Overview 

In this chapter, a description to what have been done to obtain the result of this research. 

Starts with introduction to the method used in the analysis. The approach used to predict the 

mechanical response of the new trapezoidal wire studied; geometry, material, and how it was 

analyzed and to examine the methodology and the codes used in this analysis, a well-known wire 

mechanical behavior, simple straight wire rope (1+6 wire) was analyzed and then compared with 

7 existing analytical models available in the literature for this wire. The dynamical analysis 

including natural frequencies and modes shapes for an Aluminum bar modes used as a base model, 

then for the trapezoidal wire and the simple straight wire rope. 

3.2 Finite Element Method 

Converting a large problem to simple, easy, small pieces is the main characteristic of the 

finite element method or analysis. It is an effective method based on a numerical analysis that can 

solve any problem in structural mechanics, fluid flow, heat transfer, and more. The finite element 

method has clear steps that leads to an accurate final solution and it is powerful enough that it can 

deal with a very complex geometry, with isotropic or orthotropic materials. In this method, a clear 

picture of what is going on at any point into the system analyzed can be done easily.  

3.2.1 Three-Dimensional Finite Element Method for Solving Wire’s Stiffness 

This section will describe in detail all the finite element analysis steps to find the 

mechanical behavior in the form of a ʹ × ʹ stiffness matrix for a trapezoidal wire and a simple 

straight strand, starting with showing the geometry and discretizing the full domain into finite 

elements, building the element matrices, assembling the global stiffness matrix, imposing 
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boundary conditions, and solving the equation (1.1) for the linear system to have the ʹ × ʹ stiffness 

matrix for both wires.  

3.2.1.1 Discretization  

In general, three-dimensional finite elements have three known solid geometry system 

elements that can be used: tetrahedron, wedge, and hexahedron that have 4, 6, and 8 corners 

(nodes), respectively. In this research, linear plane elasticity elements as hexahedron solids were 

used in the finite elements analysis to find the mechanical behavior of the new trapezoidal wire 

and the simple straight wire (1+6). Each node in the hexahedron element has three degrees of 

freedom in X, Y, and Z direction as displacement (u), (v), and (w), respectively. The accuracy of 

result is related to the number of elements discretized, to be more accurate more elements is 

essential, and deciding that depends on the computational cost. AutoCAD was used to discretize 

both wires to make sure that the x, y, and z coordinates of each node are very accurate.    

3.2.1.1.1 Trapezoidal Wire 

The wire has two layers; the outer wire layer has 14 aluminum wires, and the inner wire 

layer has 8 aluminum wires with a trapezoidal cross section wound around a carbon/glass fiber 

polymer composite core with a circular section (Figure 1.1). At first, the x and y plan of the back 

face of the wire was plot in AutoCAD. As can be seen in Figure 3.1, the gray color shows the 

aluminum material elements, the yellow shows the glass fiber polymer material elements, the black 

shows the carbon fiber polymer material elements, and the red shows the slip material elements or 

the gaps between the layers and the wires, which has been included in the analysis to give more 

accurate results.  
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Figure 3.1 The new trapezoidal wire’s x and y plan on the back face. 

Then, each node on this face was given a number from 1 to 265, the total number of nodes 

in the back face being 265. With an arbitrary length, the front face was also plotted and the nodes 

were numbered from 266 to 530. The total number of nodes in the system is 530. Then, each node 

on the back face was connected to its corresponding node on the front face, after numbering the 

system elements from 1 to 264. Each element has a trapezoidal solid with 8 nodes (Figure 3.2). In 

addition, each node has 3 degrees of freedom in x as (u) displacement, y as (v) displacement, and 

z as (w) displacement, so, in total the system has 1,590 degrees of freedom, and each node is linked 

with its 3 degrees of freedom actual number, so it will be easy to apply the boundary conditions 

later. 
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Figure 3.2 An example of the 8-nodal solid used for the finite element analysis. 

The x and y local coordinates for the back face were read using an AutoCAD command 

and were saved to use as base coordinates. It should be noted that both the back and front face 

nodes have the same x and y coordinates with different z coordinate values at this point, which 

indicates that the wire is now straight with no twist. The connectivity array was computed manually 

and, for example, for element number 3 in Figure 3.2 the connectivity array is 

4,5,270,269,48,49,314,313.  

In this work, all the wire layers have a single helix around the center wire, the helix radius �ℎ was assumed to be 7 mm, which is the length from the center point to the middle of the inner 

wires and the half radius if the sections were assumed to be circular (14 mm). 
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Figure 3.3.a,b Trapezoidal wire with 0 degrees lay angle.  

Lay or pitch length denoted as p is the length it takes a wire to go a single round around 

the center core, modeling this will yield an inaccurate result because of the curve lines from the 

helix. Figure 3.3.a shows the whole trapezoidal wire length with no twist. Only small individual 

element lengths of the wire’s pitch length will be modeled to meet the required accuracy 

approximation Figure 3.3.b. The pitch length was first computed using equation (3.1) for the 

known lay angles � (0°, 5°, 10°, 15°, 20°, 25°, and 30°) and the result will be used to determine 

the rotation and translation of the model’s front face when it will be cut for small sections; Table 

3.1 shows the pitch lengths.     ݌ = ଶగோℎ୲a୬ �        (3.1) 
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Table 3.1 Pitch lengths for lay angles � : 5°, 10°, 15°, 20°, 25°, and 30° for the trapezoidal wire 

Lay Angles � (°) Pitch Length p (mm) 

5 502.72 

10 249.43 

15 164.14 

20 120.84 

25 94.32 

30 76.17 

 

As indicated, for all the lay angles tested; all lay lengths (along the z axis) were discrete by 

length elements Lா = ͹.ͺ͸͸ ��; this length was chosen as it will always be approximately less 

than 10% of the lay length, and the reason for using one length for all models is ease of computation 

and comprising between models behavior later. However, once the lay is cut at a certain length, 

the front face coordinates (i.e., how this face rotated around its center) become unknown; to 

overcome this problem the transformation angle Θ௥ (in degrees) can be found using equation (3.2). 

Table 3.2 shows the transformation angles associated with each model. Θ௥ = ଷ଺଴°ሺ ���ሻ        (3.2) 
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Table 3.2 Transformation angles �� associated with each model in the trapezoidal wire 

Models Transformation Angle Θ௥ 

5° Lay  5.63° 

10° Lay 11.35° 

15° Lay 17.25° 

20° Lay 23.43° 

25° Lay 30.02° 

30° Lay 37.17° 

 

After the transformation angle is obtained, the front face node coordinates for each model 

can be calculated using the Cartesian coordinate system in equation (3.3). 

{′ݖ′ݕ′ݔ} = [cosሺΘ௥ሻ − sinሺΘ௥ሻ ͲsinሺΘ௥ሻ cosሺΘ௥ሻ ͲͲ Ͳ ͳ]  (3.3) {ݖݕݔ}

For the example of element number 3, it can be seen in Figure 3.4 that nodes 269, 270, 313, 

and 314 in the front face have transformed from their original coordinates at lay angle 0° to a new 

coordinate with 15° lay angle, for instance, by rotation value around point o, which is the center 

node in the front face.  
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Figure 3.4 Element number 3 transformation from its original shape to the new shape. 

For this work it is important to calculate the section area and the centroid for the 264 

elements, for the four material properties (aluminum, glass fiber, carbon fiber, and the slip 

material), for many purposes, including comparing the results with one-dimensional finite element 

analysis for a circular bar in finding the mechanical behavior, and also when solving the vibration 

problem (which will be discussed later).  

First, the trapezoidal area A was calculated using the closed form equation (3.4) and then 

the centroid Y௖  was calculated in (3.5), where h is the trapezoidal element height and a and b are 

the base lengths. Table 3.3 shows the area of each material as well as the total area for the 

trapezoidal elements, when it is assumed to be a circular section with 14-mm radius. � = ℎሺ௔+௕ሻଶ         (3.4) 

Y௖ = ℎሺଶ௔+௕ሻଷሺ௔+௕ሻ         (3.5) 
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Table 3.3 Trapezoidal wire and circular wire section area. 

Material Area ሺ���ሻ 

Aluminum 522.21 

Carbon fiber polymer 37.76 

Glass fiber polymer 21.85 

Slip 20.03 

Total trapezoidal wire section area 601.86 

Circular wire section area 615.75 

 

3.2.1.1.2 Simple Straight Strand 

This wire has one layer, which has 6 circular section metal wires, wound around a circular 

section core with the same material properties (Figure 1.2). A similar approach was made to 

conduct the x and y plan of the back face of the wire from the trapezoidal wire, taking into account 

the geometrical difference. However, to shorten work and analysis time for this wire, only one 

outer wire and the core wire were modeled and they were modeled separately, then their results 

were added. As can be seen in Figure 3.5, the core wire with R௖ = ͳ.ͻͷ �� was first modeled, 

then the one outer wire with R௪ = ͳ.ͺ͸ �� was modeled (Figure 3.6), the total section area being � = ͹͹.ͷͲ ��ଶ. 
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Figure 3.5 Discretization of the center core. 

 

Figure 3.6 Discretization of one outer wire. 

For each model, each node in this face was also given a number from 1 to 25, the total 

number of nodes on the back face being 25. With arbitrary length the front face was also drawn 
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and the nodes were numbered from 25 to 50. The total number of nodes in the wire is 50. Each 

node in the back face was connected to its corresponding node, and the wire was given element 

numbers from 1 to 24. Elements also were solid with 8 nodes (Figure 3.2). The same degrees of 

freedom were given for this wire x, y, and z, the system in total having 150 degrees of freedom. 

The coordinates for the back face were read and saved to use as base coordinates. At this 

point, the back and front face nodes have the same x and y coordinates with different z coordinate 

values. The connectivity array was conducted in the same way as the trapezoidal wire.  

For the simple straight strand, wires have a single helix around the center core wire, the 

helix radius �ℎ being calculated using equation (3.6):  �ℎ = �௖ + �௪        (3.6) 

For the outer wire, as the lay angle increases the major axis �௪ଶ of the circle will increase, 

resulting in an elliptical shape. The major axis was calculated using equation (3.7). As a result, for 

each of the lay angles studied, each outer model has to be revised to change the geometry and 

coordinates as a result of the change in the major axis. However, this change has been ignored 

when modeling the trapezoidal wire due to the complexity and since the change will vary the result 

by 1% to 2%, which was been tested on the simple straight strand. �௪ଶ = ோℎc୭ୱ �     (3.7) 

As in the trapezoidal wire, only small individual element lengths of the wire’s pitch length 

(Table 3.4) will be modeled to meet the required accuracy approximation for the known lay angles � (0°, 5°, 10°, 15°, 20°, 25°, and 30°) and the result will be used to determine the rotation and 

translation of the model’s front face when cut for a small section. 
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Table 3.4 Pitch lengths for lay angles αu: 5°, 10°, 15°, 20°, 25°, and 30° for the simple straight strand. 

Lay Angles � (°) Pitch Length p (mm) 

5 275.41 

10 136.65 

15 89.92 

20 66.20 

25 51.67 

30 41.73 

 

The same z axis discretization length element Lா = ͹.ͺ͸͸ �� is used for the simple 

strand, and the transformation angle Θ௥ (in degrees) is also calculated using equation (3.2). Table 

3.5 shows the transformation angles associated with each model. 

Table 3.5 Transformation angles Θr associated with each model in the simple straight strand. 
Models Transformation Angle Θ௥ 

5° Lay  10.28° 

10° Lay 20.72° 

15° Lay 31.48° 

20° Lay 42.77° 

25° Lay 54.80° 

30° Lay 67.84° 

After calculating the transformation angle, the front face nodes coordinates were found 

using the Cartesians coordinate system in equation (3.3). 
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3.2.1.2 Building the Element Matrices  

The governing equation is a differential equation of equilibrium in the Cartesian coordinate 

system for a hexahedron shape for the three types of plan elasticity, which can be expressed in 

expanded form and indicial form as:  ߲�௫௫߲ݔ + ߲�௬௫߲ݕ + ߲�௭௫߲ݖ + �௫ = Ͳ 

߲�௫௬߲ݔ + ߲�௬௬߲ݕ + ߲�௭௬߲ݖ + �௬ = Ͳ 

߲�௫௭߲ݔ + ߲�௬௭߲ݕ + ߲�௭௭߲ݖ + �௭ = Ͳ 

Or,                �௜௝,௝ + �௜ = Ͳ             (3.8) 

(where �௜௝,௝ is the stress component, and �௜ is the body force in x, y, and z directions). 

Assuming small displacement, the strain displacement relations are represented in 

expanded form and indicial form: 

௫௫ߝ =  ݔ߲ݑ߲

௬௬ߝ =  ݕ߲ݒ߲

௭௭ߝ = ݖݓ߲߲  

ɂ௫௬ = ͳʹ ሺ߲ݕ߲ݑ +  ሻݔ߲ݒ߲

ɂ௫௭ = ͳʹ ሺ߲ݖ߲ݑ + ݔ߲ݓ߲ ሻ 

ɂ௬௭ = ͳʹ ሺ߲ݖ߲ݒ +  ሻݕ߲ݓ߲

Or,             ߝ௜௝ = ଵଶ ሺݑ௜,௝ +  ௝,௜ሻ         (3.9)ݑ
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(where ߝ௜௝ is the linear strain component in xx, yy, and zz plan and the engineering shear 

strain component in xy, xz, and yz plan). 

Stress strain or constitutive relations is expressed by generalized Hook’s law of elastic 

stiffness tensor �௜௝௞௟ in equation (3.10): �௜௝ = �௜௝௞௟ߝ௞௟        (3.10) 

To calculate the elastic stiffness constant C୧୨୩୪, the elastic compliance constant S୧୨୩୪ was 

computed in (3.11) for each material in the trapezoidal wire and the simple straight strand. Note 

that the elastic stiffness constant is the inverse of the elastic compliance constant in matrix form.  

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

ijkl

v v

E E E
v v

E E E
v v

E E ES
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G

G

  
 
 
  
 
   
   
 
 
 
 
 
 
  

     (3.11) 

In Table 3.6, which details the engineering constant (elastic modulus E, Poisson ratio υ, 

shear modulus G, and density �) for the trapezoidal wire, note that the slip’s properties have been 

assumed to be 0.0001% of the aluminum’s properties. And, for the simple straight strand the 

engineering constant used are exact same material found and used in the analytical and 

experimental literature were  E = ͳͻ͹.ͻ GPa, υ = Ͳ.͵, G = ͹͸.ͳͳ GPa, and  ρ = ͹͹ͲͲ ୩g୫య. 
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Table 3.6 The engineering constant for trapezoidal wire. 

 Aluminum Carbon Fiber Glass Fiber 

Elastic modulus E ሺGPaሻ 
69 230 76 

Poisson ratio υ 0.33 0.30 0.22 

Shear modulus G ሺGPaሻ 
25.94 88.46 31.15 

Density ρ ሺ ୩g୫యሻ 2710 1800 2580 

 

 To find the weak form, the three governing differential equations (3.8) will be multiplied 

by a weight function, ݓଵ, ݓଶ, and ݓଷ, respectively, then integrated by parts, so we have: ∫ ଵ[��ೣೣ�௫ݓ + ��೤ೣ�௬ + ��೥ೣ�௭ + �௫ଵΩ� ݖ�ݕ�ݔ�[ = Ͳ  (3.12) 

∫ ଶ[��ೣ೤�௫ݓ + ��೤೤�௬ + ��೥೤�௭ + �௬ଵΩ� ݖ�ݕ�ݔ�[ = Ͳ  (3.13) 

∫ ଷ[��ೣ೥�௫ݓ + ��೤೥�௬ + ��೥೥�௭ + �௭ଵΩ� ݖ�ݕ�ݔ�[ = Ͳ  (3.14) 

So, it will be: 

Ͳ = ∫ [−�௪భ�௫ ሺ�ଵଵଵΩ� �௨�௫ + �ଵଶ �௩�௬ + �ଵଷ �௪�௭ ሻ − �௪భ�௬ ቆଵଶ �଺଺ ቀ�௨�௬ + �௩�௫ቁቇ − �௪భ�௭ (ଵଶ �ହହ ቀ�௨�௭ + �௪�௫ ቁ) +
Ͳ (3.15)  ݖ�ݕ�ݔ�[ଵ�௫ݓ = ∫ [−�௪మ�௫ ሺଵଶ �଺଺ ቀ�௨�௬ + �௩�௫ቁሻଵΩ� − �௪మ�௬ ሺ�ଶଵ �௨�௫ + �ଶଶ �௩�௬ + �ଶଷ �௪�௭ ሻ − �௪మ�௭ ሺଵଶ �ସସ ቀ�௩�௭ + �௪�௬ቁሻ +
 (3.16)  ݖ�ݕ�ݔ�[ଶ�௬ݓ
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Ͳ = ∫ [−�௪య�௫ ሺଵଶ �ହହ ቀ�௨�௭ + �௪�௫ ቁሻ ଵΩ� − �௪య�௬ ቆଵଶ �ସସ ቀ�௩�௭ + �௪�௬ቁ − �௪య�௭ ቀ�ଵଷ �௨�௫ + �ଶଷ �௩�௬ +
�ଷଷ �௪�௭ ቁቇ +  (3.17) ݖ�ݕ�ݔ�[ଷ�௭ݓ

The finite element approximation can be written as: ݑሺݔ, ,ݕ ሻݖ = ∑ ,ݔ௝߰௝௨ሺݑ ,ݕ ሻ௡௝=ଵݖ ,ݔሺݒ (3.18)  ,ݕ ሻݖ = ∑ ,ݔ௝߰௝௩ሺݒ ,ݕ ሻ௡௝=ଵݖ ,ݔሺݓ (3.19)  ,ݕ ሻݖ = ∑ ,ݔ௝߰௝௪ሺݒ ,ݕ ሻ௡௝=ଵݖ  (3.20) 

And:  ݓଵ = ߰௜௨ሺݔ, ,ݕ  ሻ (3.21)ݖ

ଶݓ      = ߰௜௩ሺݔ, ,ݕ  ሻ         (3.22)ݖ

ଷݓ      = ߰௜௪ሺݔ, ,ݕ  ሻ         (3.23)ݖ

After that, for the 8-nodal element, each node has three degrees of freedom, so the element 

matrix will be ʹͶ × ʹͶ of: 

 
 
 

 
 
 

111 12 13

21 22 23 2

31 32 33 3

fK K K u

K K K v f

wK K K f

                                         
                  

 (3.24) 

Then the matrices for the 264-element trapezoidal wire and the 24-element simple straight 

strand can be assembled.  

3.2.1.3 Imposing the Boundary Conditions  

In order to find the overall mechanical behavior of the trapezoidal wire and the simple 

straight strand represented in the stiffness coefficients in equation (1.1), the boundary conditions 

have two cases, defined as follows: first, at one end (the back face), all node-essential boundary 

conditions: displacement (u) in x direction, displacement (v) in y direction, and displacement (w) 
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in z direction were prescribed to be zero, meaning this face is fully clamped. The other end (front 

face) nodes, having a value of one (a unit displacement) in axial displacement (w) in z direction, 

displacement (u) in x axis, and displacement (v) in y axis, were set to be zero. Similarly, for the 

back face, all node displacements are set to be zero; however, the other face (front face) 

displacements in x and y were having an equivalent amount of value to present a unit rotation, and 

the displacement (w) in z direction was set to be zero. For example, node 4 and its corresponding 

node 269 in element number 3 in Figure 3.2 will have, in the first case, node 4 (u=0, v=0, and 

w=0) and node 269 (u=0, v=0, w=1), and, for the second case, node 4 (u=0, v=0, and w=0) and 

node 269 (u=0.0117, v=0.0064, and w=0). 

3.2.1.4 Solving the Global Stiffness Matrix  

After inserting all the above in the input file to be solved using a Fortran 77 code, the code 

was run two times for the seven different lay angle models for each wire, the trapezoidal wire and 

the simple straight strand, the result is represented as forces in x, y, and z direction of the front 

face. To solve the stiffness coefficients by applying the equations of equilibrium, two steps were 

followed: the total forces in z direction ܨ௭ comprise the pure tensile stiffness ��� , the coupled 

stiffness between tensile and the torsional term ��� is the forces in x and in y direction multiplied 

by the length from the origin to node, which is the moment around the z direction ܯ௭, and that is 

the solution from applying the first boundary condition meaning these coefficients are the forces 

required to hold one unit displacement. As for applying the second boundary condition, the forces 

required to hold one unit rotation, coupled stiffness between tensile and the torsional term ��� is 

the total forces in z direction ܨ௭, and torsional stiffness ��� is the moment around the z direction ܯ௭ for this case. In the end, 14 stiffness matrices were computed, for both the trapezoidal 
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aluminum wire and the simple straight strand for all lay angles �: 0°, 5°, 10°, 15°, 20°, 25°, and 

30°. 

3.3 Analytical Models 

For the simple straight strand (1+6) there are many mathematical models, depending on 

different theories. In this work, to validate the finite element approach, 7 of the analytical models 

presented in the literature were chosen here, namely, the Hruska, McConnell and Zemek, Machida 

and Durelli, Knapp, Kumar and Cochran, Sathikh, and Labrosse models. A general idea and the 

closed form equations to find the stiffness coefficients are presented for each model. All the results 

from these models were then compared with the finite element model used in this research. Most 

of these equation are replicated from Ghoreishi, Messager, et al. (2007). 

3.3.1 Hruska’s Model 

As described, this model is the simplest; it only accounted for axial tension and ignored 

the torsion and bending. The stiffness coefficients can be found using: ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ሻଷ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ௖ܬܩ + ͸�ܧ௪�ℎଶcos ሺ�ሻ sinሺ�ሻଶ (3.25) 

(where �ܧ represents the axial stiffness and ܬܩ represents the torsional stiffness, while 

subscripts c and w are related to core and wire properties).  

3.3.2 McConnell and Zemek’s Model 

This model simply modified Hurska’s model by including the total stiffness torsion of the 

6 wires in stiffness torsion term equation ���, the rest remaining unchanged: ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ሻଷ 
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��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ௖ܬܩ + ͸ܬܩ௪ + ͸�ܧ௪�ℎଶcos ሺ�ሻ sinሺ�ሻଶ (3.26) 

3.3.3 Machida and Durelli’s Model 

This model added the bending and torsion stiffness to the global stiffness matrix; 

however, ��� and ��� remain unchanged: ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ሻଷ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ 

��� = ͸ሺ�ܧ௪�ℎ cosሺ�ሻଶ sinሺ�ሻ − ௪�ℎܫܧʹ cosሺ�ሻଶ sinሺ�ሻଷ
+ ௪�ℎܬܩ cosሺ�ሻଶ sinሺ�ሻ ሺͳ − ʹ cosሺ�ሻଶሻሻ 

��� = ௖ܬܩ + ͸ሺ�ܧ௪�ℎଶ cosሺ�ሻ sinሺ�ሻଶ + ௪ܫܧʹ cosሺ�ሻଷ sinሺ�ሻଶ + ௪ܬܩ cosሺ�ሻଷ ሺͳ −ʹ sinሺ�ሻଶሻሻ (3.27) 

Here, ܫܧ represent the bending stiffness. 

3.3.4 Knapp’s Model 

This model focused on the compressibility of the steel core, which is the change in the 

core radius due to pressure; the equation then can be written as:  ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ߞሻଷ ��� = ͸�ܧ௪�ℎ cosሺ�ߟሻଶ sin ሺ�ሻ 

��� = ͸ሺ�ܧ௪�ℎ sinሺ�ߞሻ − ௪�ℎܫܧ ሺߣ + ௪�ℎܬܩሻሺߞʹ ሺͳ − ʹɃሻcosሺ�ሻଶ sinሺ�ሻሻሻ 

��� = ௖ܬܩ + ͸ሺ�ܧ௪�ℎߟ sinሺ�ሻ − ாூೢோℎ ሺߤ + ߟʹ − ଶோℎ୲a୬ሺ�ሻሻ sinሺ�ሻଷ +
ீ௃ೢோℎ ቀ ோℎ୲a୬ሺ�ሻ − ʹɊቁ cosሺ�ሻଶ sinሺ�ሻሻ (3.28) 
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ߞ :and Ɋ are geometric and elastic properties; and for a steel core ,ߣ ,ߟ ,ߞ = cosሺ�ሻଶ ߟ = �ℎsinሺ�ሻcosሺ�ሻ ߣ = Ɋ = Ͳ (3.29) 

3.3.5 Kumar and Cochran’s Model 

This model linearized Costello’s model and included the Possion ratio: ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ሻ ሺͳ − ሺͳ + ɋሻ p sinሺ�ሻଶ ��� = ͸�ܧ௪�ℎ p cosሺ�ሻଶ sinሺ�ሻ 

��� = ͸ሺ�ܧ௪�ℎ sinሺ�ሻ − ௪�ℎܫܧ  sinሺ�ሻ ሺͳ − ௙ߥ  cosሺ�ሻସ + ሺͳ + ݍ)ሻߥ − ͳ + ௙ߥ cosሺ�ሻସ)ሻ 

��� = ௖ܬܩ + ͸ܫܧ௪ݍ cos ሺ�ሻ    (3.30) ߥ ,ݍ ,݌ଵ, and ߥ௙ are: 

݌ = ሺͳ − ଵሻሺͳߥ − ଵସ ቀோೢோℎ ቁଶ ሺͳ + ௙ߥ cosሺʹ�ሻሻ sinሺ�ሻଶሻ (3.31) 

ݍ = ሺͳ − ଵሻሺଵସߥ ቀோೢோℎ ቁଶ sinሺ�ሻଶ + ͳ − sinሺ�ሻସ − ௙ߥ cosሺ�ሻସ cosሺʹ�ሻሻ (3.32) 

ଵߥ = ߥ ோோೢℎ sinሺ�ሻଶ (3.33) 

௙ߥ = �ሺଵ+�ሻ (3.34) 

3.3.6 Sathikh’s Model 

Most of the early models have lack of symmetry when the torsion and bending is 

included, so this model is a driven, closed-form, symmetric linear elastic equation:  

��� = ௖ܧ� + ͸ሺ�ܧ௪ cosሺ�ሻଷ + ሺܬܩ௪ sinሺ�ሻଶ + ௪ܫܧ cosሺ�ሻଶሻ sinሺ�ሻସ cosሺ�ሻ�ℎଶ ሻ 

��� = ͸ሺ�ܧ௪�ℎ cosሺ�ሻଶ sinሺ�ሻ + ሺܬܩ௪ cosሺ�ሻଶ − ௪ሺͳܫܧ + cosሺ�ሻଶሻሻ sinሺ�ሻସ cosሺ�ሻ�ℎଶ ሻ 



41 

 

��� = ͸ሺ�ܧ௪�ℎ cosሺ�ሻଶ sinሺ�ሻ + ሺܬܩ௪ cosሺ�ሻଶ − ௪ሺͳܫܧ + cosሺ�ሻଶሻሻ sinሺ�ሻସ cosሺ�ሻ�ℎଶ ሻ 

��� = ௖ܬܩ + ͸ሺ�ܧ௪�ℎଶ cosሺ�ሻ sinሺ�ሻଶ + ௪ܬܩ cosሺ�ሻ଻ + ௪ܫܧ sinሺ�ሻଶ cosሺ�ሻ ሺͳ + cosሺ�ሻଶሻଶሻ
 (3.35) 

3.3.7 Labrosse’s Model 

This model included the bending and the torsion, so the stiffness components will be: ��� = ௖ܧ� + ͸�ܧ௪ cosሺ�ሻଷ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ͸�ܧ௪�ℎ cosሺ�ሻଶ sin ሺ�ሻ ��� = ௖ܬܩ + ͸ሺ�ܧ௪�ℎଶ cosሺ�ሻ sinሺ�ሻଶ + ௪ܬܩ cosሺ�ሻହ + ௪ܫܧ sinሺ�ሻଶ cosሺ�ሻ ሺͳ + cosሺ�ሻଶሻሻ
 (3.36) 

3.3 Free Vibration Analysis  

For the trapezoidal wire and the simple straight strand, a free vibration analysis was 

applied, assuming tight wire (fixed-fixed) at both ends with no sag for one-dimensional 

approximation. A Matlab code was used to solve for the eigenvalues which are the natural 

frequencies and the eigenvectors as the normal mode shapes. To check the approach used and the 

code, the straight 14-mm radius of a circular aluminum bar was discretized along its length and 

analyzed; this bar had a 2.3% different area section from that of the trapezoidal wire, and the results 

of this bar will be compared with a one-dimensional known exact solution. 

3.3.1 Aluminum Circular Bar 

The governing equation based on simple harmonic motion for the free vibration of 

undamped two degrees of freedom is given as:  ሺ−߱ଶ[ܯ] + ሻ[ܭ] {ߠݑ} = Ͳ (3.37) 
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,ݔሺݑ ሻݐ = �ሺݔሻ sin ,ݔሺߠ (3.38)  ݐ߱ ሻݐ = ሻݔሺߠ sin  (3.39)  ݐ߱

(where ߱ is the natural frequency, ܯ the mass matrix assembled for one-dimensional 

approximation, ܭ is the stiffness matrix assembled for one-dimensional approximation, ݑ is the 

global axial displacement, and ߠ is the global twist angle). 

 First, that global mass matrix which is the kinetic energy of the section has to be computed, 

and for the two degrees of freedom (axial and twist), as a result a ʹ × ʹ matrix has to be found for 

each section studied: �௜௝ = [��� ������ ���]     (3.40) 

(where ���  is the axial mass, ��� and ��� are the coupling mass between axial and twist, 

and ��� is the torsional mass term). It should be known that there is no coupling mass between 

axial and twist (��� = ��� = Ͳ). 

The axial mass ���  can be found from approximating the axial displacement and 

integrating the mass over that particular domain, which means basically integrating the mass over 

the area. Where the density is a constant will be multiplied by the area in closed form, for the 

circular aluminum bar: ��� = ��௟ × �௖௜௥௖௟௘    (3.41) 

 (where ��௟ is the aluminum density and �௖௜௥௖௟௘ is the section area of the circular bar).  

  Then, the torsional mass ��� can be found by multiplying the torsional stiffness by the density 

of that particular element in closed form. In the aluminum bar case: ��� = ��௟ × ௖௜௥௖௟௘ܬ = ��௟ሺగଶ  ሻ (3.42)ݎ

(where ܬ is the torsional stiffness and ݎ is the radius).  
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 After solving the global matrix equation (3.40), this matrix has to be discretized to one-

dimensional approximation over length; with the two degrees of freedom (axial and twist), the 

mass matrix is a Ͷ × Ͷ can be written as: 

0 0
3 6

0 0
3 6

0 0
6 3

0 0
6 3

ij

m L m L

m L m L

m
m L m L

m L m L

 

 

 

 

 
 
 
 
 

  
 
 
 
 
 

  (3.43) 

Second, the global stiffness matrix (which was discussed in section 3.2 of this chapter) has 

to be found. However, for the aluminum bar, pure tensile stiffness ���is represented by ሺܧ�௟�௖௜௥௖௟௘), where ܧ�௟ is the modulus of elasticity for aluminum (the constant can be found in 

Table 3.6), with no coupling stiffness terms between the tensile and the torsional, since the bar is 

straight (��� = ��� = Ͳሻ, and the global torsional stiffness ��� is represented by ሺܩ�௟ܬ௖௜௥௖௟௘), 

where ܩ�௟ is the shear modulus from Table 3.6.  

Similarly, after the global stiffness matrices are obtained, it has to be discretized to find the 

one-dimensional approximation over a specific length, and since two degrees of freedom (axial 

and twist) is assumed, the stiffness matrix is a Ͷ × Ͷ: 

ij

k k k k

h h h h
k k k k

h h h hk
k k k k

h h h h
k k k k

h h h h
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   
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   
 
   

  
  
 
 
  
 

  (3.44) 
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After finding the element mass matrix and element stiffness matrix for the aluminum bar 

case, a length of 8 m was discretized into 2, 4, 8, and 16 elements. Then, assembling to find the 

global matrix (͵Ͷ × ͵Ͷሻ for 16 elements for one-dimensional approximation and applying the 

boundary condition which is fixing both ends, the global matrix will be ሺ͵Ͳ × ͵Ͳሻ. The results 

then will be checked for convergence with the exact solution of fixed-fixed bar equations for the 

axial and torsional natural frequencies: 

߱� = గ� √ா��ఘ��     (3.45) 

்߱ = గ� √ீ��ఘ��    (3.46) 

(where ߱�, ்߱, and ܮ are the axial frequency, the torsional frequency, and the bar length, 

respectively). 

  3.3.2 Trapezoidal Wire 

The free vibration analysis was also applied on the trapezoidal wire for all the lay angles 

(0°, 5°, 10°, 15°, 20°, 25°, and 30°) to observe the behavior and the changes in the natural 

frequencies and normal modes and study them.  

Finding the global mass matrix was more complex for the trapezoidal wire, due to the 

different trapezoidal elements areas and shapes (Figure 3.1). For the axial mass ���  as same as the 

circular bar approach was used, however, three more materials had to be added: ��� = ሺ��௟ × ��௟ሻ + ሺ��ி × ��ிሻ + ሺ�ீி × �ீிሻ + ሺ�ௌ × �ௌሻ (3.47) 

(where ��௟, ��ி , �ீி , and �ௌ are aluminum, carbon fiber, glass fiber, and slip density, and ��௟, ��ி, �ீி , and �ௌ are aluminum, carbon fiber, glass fiber, and slip areas, respectively).  

However, for the torsional mass ���, each element of the x,y planer had to be calculated 

individually by discretizing. To find that, first the area and centroid were calculated using 
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equations (3.4) and (3.5).  From the centroid, the distance from the center of the section and the 

center of the element can be easily calculated ݎ�.After that, the torsional stiffness ܬ௘௟௠ was 

calculated, which is simply the area multiplied by the squared distance. In the end, ܬ௘௟௠ will be 

multiplied by each element density �௘௟௠: ��� = �௘௟௠ × ௘௟௠ܬ = �௘௟௠ሺݎ�ଶ�௘௟௠ሻ       (3.48) 

After constructing the global mass matrix (3.40), equation (3.43) also was used to find the 

element matrix for the trapezoidal wire. The global stiffness matrices for lay angles �: 0°, 5°, 10°, 

15°, 20°, 25°, and 30° were already found in section 3.2.  The equation (3.44) was also used to 

find the element stiffness matrix of the trapezoidal wire.  

The natural frequencies and the normal modes were found for all the lay angles studied 

using the Matlab code for 16 elements of an arbitrary length (8 m) for the trapezoidal wire.  

  3.3.3 Simple Straight Strand 

The natural frequencies and normal modes for the simple straight strand for all the lay 

angles (0°, 5°, 10°, 15°, 20°, 25°, and 30°) to study its behavior verse the trapezoidal wire. 

As in the two previous sections, the global mass (3.40) was calculated for the simple strand 

using a combination of the circular bar and the trapezoidal wire approaches. Then, it was 

discretized for the one-dimensional matrix (4.43). Also, the global stiffness matrices were 

computed earlier for all the lay angles, and used here in the form of equation (4.44). The natural 

frequencies ߱ and the normal modes were found for the same length assumed (8 m). 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Overview  

In this chapter, the results of the methodology used in this work are presented, including 

the axial behavior of the trapezoidal wire studied and compared with the simple straight strand and 

its analytical models. The results of the free vibration analysis for the dynamic behavior of these 

wires are also presented. 

4.2 Mechanical Behavior  

The global stiffness matrix showing the axial mechanical behavior was solved for the new 

wire; the trapezoidal wire, and comparison was performed for lay angles � between 0°and 30°; to 

validate the method used, the simple straight strand was modeled and analyzed and compared with 

existing analytical formulations for the same lay angles used.  

4.2.1 Trapezoidal Wire 

Considering equation (1.1), which represents the final results for the elastic static tension 

torsion behavior of the trapezoidal wire, as the finite element model was run 7 times for 7 different 

lay angles �: 0°, 5°, 10°, 15°, 20°, 25°, and 30°, the final stiffness component in the form of a ʹ × ʹ matrix was obtained for each angle (results in Table 4.1).  

Table 4.1 Comparison between the different lay angles matrix components for the trapezoidal wire. 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 6.71E+04 0.00E+00 0.00E+00 1.36E+03 
5° 6.70E+04 8.48E+04 8.48E+04 1.42E+03 
10° 6.67E+04 9.24E+04 9.24E+04 1.49E+03 
15° 6.61E+04 9.98E+04 9.98E+04 1.57E+03 
20° 6.52E+04 1.07E+05 1.07E+05 1.66E+03 
25° 6.41E+04 1.14E+05 1.14E+05 1.75E+03 
30° 6.25E+04 1.20E+05 1.20E+05 1.86E+03 
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Furthermore, the coupling terms had a small difference, and this difference can be resolved 

by increasing the element numbers, it can be recognized that the global coupling stiffness terms 

between the tensile and the torsional were set to be equal (��� = ���) by computing the average 

without losing the accuracy, which is done to avoid the contrast of the Maxwell Betti reciprocal 

theorem for linear elastic structures.  

For the axial stiffness ��� , it can be seen in Figure 4.1 that it is decreasing while the lay 

angles � are increasing. The different from between the stiffness of straightening the trapezoidal 

wire (0°) and starting twisting it as small an angle as 5° will result in a 0.15% change. However, 

the loss in tensile stiffness will be 7.36% for a 30° twist angle.  

 

 

Figure 4.1 Axial stiffness ��� versus lay angles �. 

 

The coupling coefficient terms between the tensile and the torsional ���, and ��� curve are 

linearly increasing as showing in Figure 4.2 and Figure 4.3. The results show that the coupling 

action will start once the wire has even a small angle twist. However, the results of a 5° twist 

indicate that the coupling terms will have a significant value ሺͺͶ.͸ �ܰ�ሻ compared to no coupling 

in the straight state in the trapezoidal wire. 
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Figure 4.2 Coupling stiffness ��� versus lay angles α. 

 

 

Figure 4.3 Coupling stiffness ���versus lay angles α 

The torsional stiffness ��� coefficients also are increasing linearly as the lay angle is 

increasing, as can be seen in Figure 4.4. Furthermore, the stiffness will increase 4.41% by merely 

increasing the twist from a 0° to a 5° angle, and a significant increase by 36.76% if twisted 30°. It 

can still be seen that it has a smaller contribution when it is compared with the axial stiffness ��� . 
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Figure 4.4 Torsional stiffness ��� versus lay angles α. 

This new trapezoidal wire showed a great result for the most practical lay angles � between 

0° and 30° compared with existing wire, of which some can have lower stiffness behavior even at 

23° and higher. However, it should be noted that, for this trapezoidal wire, at some higher twisting 

angle, the results will start significantly deceasing for the coupling term and torsion term. 

4.2.2 Simple Straight Strand 

To verify the method used to solve for the mechanical behavior of the trapezoidal wire, the 

same approach used in the finite 24-element model for this wire was also studied by varying the 

twist angle used in the comparison. (The goal here is only checking that the methodology used can 

yield a good approximation for a wire with a large number of elements.) The four elastic stiffness 

components in the form of a ʹ × ʹ matrix were obtained for each lay angle � between 0° and 30° 

(results in Table 4.2); it can be readily seen that the results are smaller than those for the trapezoidal 

wire due to the simple straight strand section’s small size. Then the results of the simple straight 

strand finite element model were compared with the seven analytical models available in the 

literature by Hruska, McConnell and Zemek, Machida and Durelli, Knapp, Kumar and Cochran, 

Sathikh, and Labrosse. 
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Table 4.2 Comparison between the different lay angles matrix components for the simple straight strand. 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.67E+04 0.00E+00 0.00E+00 3.58E+01 
5° 1.66E+04 5.57E+03 5.57E+03 4.20E+01 
10° 1.64E+04 7.98E+03 7.98E+03 5.07E+01 
15° 1.61E+04 1.03E+04 1.03E+04 6.21E+01 
20° 1.57E+04 1.26E+04 1.26E+04 7.60E+01 
25° 1.51E+04 1.47E+04 1.47E+04 9.24E+01 
30° 1.42E+04 1.64E+04 1.64E+04 1.10E+02 

 

The elastic stiffness coefficients for the Hruska, McConnell and Zemek, Machida and 

Durelli, Knapp, Kumar and Cochran, Sathikh, and Labrosse models are listed in Appendix A. 

The axial stiffness ��� , as can be seen in Figure 4.5, is decreasing while the lay angles �  

are increasing for the finite element model and the analytical models. It can also be seen that all 

the analytical models except Kumar and Cochran’s have coincident results. Kumar and Cochran 

have accounted for the Poisson ratio effect on geometry in their model, as in the finite element 

model presented; as a result it can be seen that the analytical model curve and the finite model 

curve have configurations with different results (percentage), which can be explained by the fact 

that the element number (24/wire) used for this strand is too small. For lay angle 0° the difference 

is only 11.03% and as lay angle � increases, the percentage goes up to 22.41% when the lay angle 

is 30°. 
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Figure 4.5 Axial stiffness ��� versus lay angles α. 

For both the coupling coefficient terms, between the tensile and the torsional ���, and ��� 

for the finite element, the curve is linearly increasing, as shown in Figure 4.6 and Figure 4.7. It 

should be noted that, as can be seen in the figures, only Hruska, Sathikh, and Labrosse have a 

symmetrical matrix beside the proposed finite element model. In addition, similarly to the axial 

stiffness, in both coupling terms it can be seen that the model which accounted for the Poisson 

ratio has a result close to the finite element model result. The different percentages between the 

finite element model and Kumar and Cochran’s model for lay angle �, 5°, 20°, and 30° for ��� is 

greater by 25.16%, lower by 4.76%, and lower by 3.65%, respectively, and for  ��� is greater by 

29.83%, lower by 14.28%, and lower by 3.65%, respectively. And, it can be seen that the Knapp 

model is also closer to the current model because it added more accurate geometry parameters. 
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Figure 4.6 Coupling stiffness ��� versus lay angles α. 

 

 
Figure 4.7 Coupling stiffness ���versus lay angles α. 

The torsional stiffness ��� coefficients also are increasing linearly, as the lay angle is 

increasing for the current finite element model (Figure 4.8) and in general the result are greater 

than the analytical models, as in the axial stiffness results. However, the Hurska model has 

relatively lower values since the torsion was neglected in the model derivation.  
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Figure 4.8 Torsional stiffness ��� versus lay angles α. 

4.3 Dynamic Behavior  

Free vibration analysis using finite element one-dimensional approximation was performed 

on the aluminum bar, the trapezoidal wire, and the simple straight strand. The natural frequencies ߱ and the normal mode shape are presented for each model; for both wires the study was applied 

for all the lay angles � studied (0°, 5°, 10°, 15°, 20°, 25°, and 30°). 

4.3.1 Aluminum Circular Bar 

First, the element mass and element stiffness were calculated using equation (3.43) and 

(3.44), with the following results: 
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And: 
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. .
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  (4.2) 

Then, the accuracy and predictability were checked for the Matlab code and the 

methodology used for the convergence between the exact solution and the 2, 4, 8, and 16 elements 

used in the finite element one-dimensional approximation after assembling and applying the 

boundary conditions where both ends were not allowed either to rotate or extent (fixed-fixed), 

Table 4.3 shows the known exact axial frequency (equation 3.43) and the torsional frequency 

(equation 3.44), and from the approximation of 2, 4, 8, and 16 elements, for the first mode. For 2, 

4, 8, and 16 elements, the mode shapes were drawn first, so that it will show which frequency is 

axial or torsional; the normal mode shape is presented later for this uncoupled aluminum bar.  

Table 4.3 Axial and torsional frequencies for exact solution and approximate solutions. 

Mode 1* Exact 2 Elements 4 Elements 8 Elements 16 Elements ߱�ሺݏ��ݎ ሻ 1980.52 2182.70 2032.80 1996 1985 ்߱ሺݏ��ݎ ሻ 1400.44 1544.40 1437.40 1409 1408 

* Where ߱� is the axial frequency and ்߱ is the torsional frequency. 

It can be seen that the different rates in 2, 4, 8, and 16 are 10.27%, 2.63%, 0.78%, and 

0.22%, respectively. This indicates that the 16-element approximation gave excellent results 

compared with the exact solutions. As a result, the 16-element model was used for this bar and the 

trapezoidal wire as well as in the simple straight strand. 

The natural frequencies ߱ and the mode shapes were solved using the linear eigenvalues 

and eigenvector in equation (3.37). Since it is a 16-element bar, 30 frequencies ߱ were derived, as 

shown in Table 4.4; to demonstrate which frequency is axial or torsional, the normalized mode 
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shapes were plotted. In this work, only the first 6 top modes are presented for all the models 

studied; ߱௨௡ indicates that the type of this frequency type is unknown. 

Table 4.4 The 30 frequencies results for 16-element approximation. 

Mode number Frequency 
type 

Frequency 
value 

1 ்߱ 1408 
2 ߱� 1985 
3 ்߱ 2826 
4 ߱� 3990 
5 ்߱ 4269 
6 ்߱ 5752 
7 ߱௨௡ 6032 
8 ߱௨௡ 7291 
9 ߱௨௡ 8132 
10 ߱௨௡ 8899 
11 ߱௨௡ 10310 
12 ߱௨௡ 10586 
13 ߱௨௡ 12361 
14 ߱௨௡ 12584 
15 ߱௨௡ 14223 
16 ߱௨௡ 14971 
17 ߱௨௡ 16162 
18 ߱௨௡ 17481 
19 ߱௨௡ 18139 
20 ߱௨௡ 20083 
21 ߱௨௡ 20117 
22 ߱௨௡ 21878 
23 ߱௨௡ 22859 
24 ߱௨௡ 23367 
25 ߱௨௡ 24366 
26 ߱௨௡ 25656 
27 ߱௨௡ 28408 
28 ߱௨௡ 30952 
29 ߱௨௡ 33057 
30 ߱௨௡ 34464 

 

As can be shown from Figures 4.9 through 4.14, the normalized modes corresponding to 

the natural frequencies show that mode 1, mode 3, mode 5, and mode 6 are dominated to be pure 
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torsion while the extension displacement is zero, and mode 2 and mode 4 are dominated to be pure 

extension with no torsion displacement. That result indicates that there is no coupling for the 

aluminum bar. 

 

Figure 4.9 First mode for the aluminum bar. 

 

Figure 4.10 Second mode for the aluminum bar. 

 

Figure 4.11 Third mode for the aluminum bar. 
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Figure 4.12 Fourth mode for the aluminum bar. 

 

Figure 4.13 Fifth mode for the aluminum bar. 

 

Figure 4.14 Sixth mode for the aluminum bar. 
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4.3.2 Trapezoidal wire 

The natural frequencies and mode shapes for the trapezoidal wire, considering the 

differences in geometry and material. As described in chapter 3, the element mass �்௥௔�. and 

stiffness �� for each lay angle � (0°, 5°, 10°, 15°, 20°, 25°, and 30°) was derived and it can be 

written as:  

.
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 (4.3) 

And: 
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After finding the element mass and stiffness assembling a 16-element approximation for a 

trapezoidal wire 8 m in length, and applying the boundary condition (i.e., the wire is fixed at both 

ends), the eigenproblem was solved using equation (3.37) to find, first, the natural frequencies ߱ 

(Table 4.5). 

Table 4.5 Natural frequencies for all lay angles for 16-element approximation for trapezoidal wire. 

 Natural frequency ߱  
Mode lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
1 1109 1129 1147 1168 1190 1219 1241 
2 2229 2267 2304 2347 2390 2445 2491 
3 2614 2620 2642 2609 2624 2584 2565 
4 3370 3426 3484 3548 3614 3690 3763 
5 4544 4618 4696 4783 4871 4970 5070 
6 5256 5265 5295 5247 5261 5197 5157 
7 5761 5855 5953 6063 6174 6299 6425 
8 7032 7146 7266 7400 7536 7687 7799 
9 7951 7960 7981 7938 7934 7863 7842 
10 8366 8501 8645 8803 8966 9144 9329 
11 9769 9927 10095 10280 10469 10602 10515 
12 10721 10733 10741 10704 10678 10677 10894 
13 11242 11424 11616 11830 12048 12287 12536 
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14 12775 12981 13200 13442 13528 13441 13331 
15 13591 13607 13609 13570 13690 13961 14244 
16 14338 14569 14816 15088 15365 15670 15988 
17 15878 16133 16406 16563 16510 16406 16271 
18 16589 16609 16609 16707 17015 17351 17703 
19 17299 17578 17874 18203 18537 18904 19288 
20 18476 18773 19090 19441 19639 19519 19358 
21 19263 19573 19756 19706 19798 20190 20600 
22 19736 19759 19905 20270 20644 21051 21479 
23 23045 23072 23064 23010 22928 22792 22604 
24 26518 26549 26538 26478 26381 26226 26010 
25 30132 30168 30155 30087 29976 29801 29555 
26 33820 33858 33843 33769 33644 33448 33172 
27 37445 37488 37468 37388 37248 37033 36728 
28 40792 40841 40818 40731 40576 40344 40012 
29 43568 43619 43596 43503 43339 43090 42734 
30 45434 45481 45459 45366 45196 44935 44562 

 

As can be seen in Figure 4.15, the natural frequency ߱ is increasing linearly (e.g., with 

1.80% rate for the first frequencies as the lay angle � is increasing), which indicates that the 

trapezoidal wire gets stiffer with a higher twist angle.  

 

Figure 4.15 Natural frequency ω versus lay angle α for trapazoidal wire. 
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Second, the top 6 mode shapes of vibration were found from the eigenvectors values from 

Matlab, showing the interesting extensional and torsional behavior motion of the trapezoidal wire 

in straight state (Ͳ°) with no coupling, and the other case, in which there is a twist in the wire, 

resulting in a coupled stiffness.  

The mode shapes were normalized, and having the Ͳ° lay angle results gave an excellent 

way to test a frequency and know which one is primarily axial or torsional vibration and then 

compare it with other vibrations where there are extensional and torsional values for both due to 

the coupling action in the wire. From Figures 4.16 through 4.21, it can be clearly seen from the Ͳ° 

lay angle results that: mode 1, mode 2, mode 4, and mode 5 are primarily torsional vibrations, 

while mode 2 and mode 6 are primarily axial vibrations.  

   

Figure 4.16 First mode for the trapezoidal wire. 
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Figure 4.17 Second mode for the trapezoidal wire. 

   

Figure 4.18 Third mode for the trapezoidal wire. 
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Figure 4.19 Forth mode for the trapezoidal wire. 

   

 

Figure 4.20 Fifth mode for the trapezoidal wire. 
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Figure 4.21 Sixth mode for the trapezoidal wire. 

 Furthermore, as shown here, mode 1, mode 2, mode 4, and mode 5 are primarily torsional 

vibrations; it also has an axial displacement when the lay angle exists. Mode 1 shows that the peak 

value of twist Ѳ at Ͳ° is 1 rad and, once the lay angle � increases, the twist displacement decreases 

slightly, which represents a very small change in the twist. On the other hand, the axial 

displacement ݑ at Ͳ° is zero; however, there are axial displacement ݑ values at the same 

corresponding point, indicating an increase in the axial displacement as the angle increases (see 

Table 4.6). Modes 2, 4, and 5 have behavior similar to that of the first mode.  

Table 4.6 Torsional versus axial values for mode 1 for trapezoidal wire. 

Displacements 

Mode 1 peak values 
lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
Torsional Ѳ ሺݎ��ሻ 

1 0.990 0.987 0.984 0.981 0.978 0.971 

Axial ݑ ሺ��ሻ 0 1.526 1.672 1.858 2.017 2.244 2.485 
 

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8u
 (

m
m

)

x (m)

Mode 6

0 Lay Angle 5 Lay Angle

10 Lay Angle 15 Lay Angle

20 Lay Angle 25 Lay Angle

30 Lay Angle

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 2 4 6 8Ѳ
(R

a
d

)

x (m)

Mode 6

0 Lay Angle 5 Lay Angle

10 Lay Angle 15 Lay Angle

20 Lay Angle 25 Lay Angle

30 Lay Angle



65 

 

For modes (mode 3 and mode 6) which are primarily having axial vibration, in reverse they 

have torsional vibration. Mode 3 shows that the peak value of axial displacement ݑ is 1 mm, while, 

with the increase in the lag angle, the displacement value is slightly decreasing as well, proving 

that only a small change in axial displacement is needed to increase the lay angle; however, the 

torsional behavior for this mode displays strange values where the peak values shift to the right of 

the point of symmetry for 5° to 20° , then to the left for 25° to 30° angles. Peak torsional values 

are listed in Table 4.7. For mode 6, the results were similar to mode 3; however, for the associated 

torsional values, they were symmetric at the point of symmetry.  

Table 4.7 Axial versus torsional values for mode 3 for trapezoidal wire. 

Displacements 

Mode 3 peak values 
lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
Axial ݑ ሺ��ሻ 1 0.989 0.986 0.983 0.981 0.975 0.968 

Torsional Ѳ ሺݎ��ሻ 
0 0.0148 0.0164 0.0180 0.020 0.021 0.024 

 

4.2.3 Simple Straight Strand 

A similar approach was taken to solve the natural frequencies and mode shapes for the 

simple straight strand, since it has not been solved in the literature. The element mass �௦௦ and 

stiffness ��for each lay angle � (0°, 5°, 10°, 15°, 20°, 25°, and 30°) was derived as indicated in 

chapter 3 and can be written as: 

.

9.97 02 0.00 00 4.99 02 0.00 00

0.00 00 1.27 06 0.00 00 6.34 07

4.99 02 0.00 00 9.97 02 0.00 00

0.00 00 6.34 07 0.00 00 1.27 06
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E E E E

E E E E

E E E E
m
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  


 
 
 



    

 (4.11) 

 And: 
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  0
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  5
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       (4.17) 

After constructing the element mass and stiffness, the 16-element approximation for simple 

straight strand (length, 8 m) was assembled; the boundary condition (the wire is fixed at both ends) 
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was applied, then the eigenproblem was solved using equation (3.37) to find, first, all the 30 natural 

frequencies ߱ ; however only the top 6 frequencies are presented in Table 4.8. 

 

Table 4.8 Natural frequencies for all lay angles for 16-element approximation for simple straight strand. 

 Natural frequency ߱  
Mode lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
1 850 901 978 1040 1116 1201 1255 
2 1711 1809 1958 2078 2079 2445 2093 
3 2069 2092 2087 2090 2244 2584 2522 
4 2590 2732 2947 3161 3396 3690 3812 
5 3494 3682 3961 4182 4184 4970 4203 
6 4164 4200 4193 4260 4580 5197 5139 

 

Figure 4.22 shows how the natural frequency ߱ is increasing at a linear rate of 

approximately 6%; for example, for the first frequencies the lay angle � is increasing, which 

indicates that the simple straight strand gets stiffer with a higher twist angle, similarly to the 

trapezoidal wire.  

 

Figure 4.22 Natural frequency ω versus lay angle α for simple straight strand. 
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also normalized, and Ͳ° lay angle results used also as a base to know which one is primarily axial 

or torsional vibration and then compare it with other vibrations where there are extensional and 

torsional values for both due to the coupling action in the wire. From Figures 4.23 through 4.28 it 

can be seen for Ͳ° lay angle (similar to the trapezoidal wire results) that: mode 1, mode 2, mode 4, 

and mode 5 are primarily torsional vibrations, while mode 2 and mode 6 are primarily axial 

vibrations.  

   

Figure 4.23 First mode for the simple straight strand. 
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Figure 4.24 Second mode for the simple straight strand. 

   

Figure 4.25 Third mode for the simple straight strand. 
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Figure 4.26 Forth mode for the simple straight strand. 

   

Figure 4.27 Fifth mode for the simple straight strand. 
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Figure 4.28 Sixth mode for the simple straight strand. 
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the axial displacement as the angle increases (Table 4.9). Mode 2, 4, and 5 have similar behavior 

to the first mode.  

Table 4.9 Torsional versus axial values for mode 1 for simple straight strand. 

Displacements 

Mode 1 peak values 
lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
Torsional Ѳ ሺݎ��ሻ 

1 0.995 0.991 0.973 0.950 0.918 0.872 

Axial ݑ ሺ��ሻ 0 0.415 0.612 0.840 1.114 1.420 1.751 
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For mode 3 and mode 6, which are primarily axial vibrations, in reverse they are also 

having torsional vibration. Mode 3 shows that the peak value of axial displacement ݑ is 1 mm, 

while the increase in angle indicates that only a small change in axial displacement is needed to 

increase the lay angle. However, the torsional behavior for this mode displays strange values where 

the peak values shift to the right then to the left of the point of symmetry for each lay angle change. 

Peak torsional values are listed in Table 4.10. For mode 6, the results were similar to mode 3; 

however, for the associated torsional values, they were symmetric at the point of symmetry.  

Table 4.10 Axial versus torsional values for mode 3 for simple straight strand. 

Displacements 

Mode 3 peak values 
lay 

angle � = Ͳ° lay 
angle � = ͷ° lay 

angle � = ͳͲ° lay 
angle � = ͳͷ° lay 

angle � = ʹͲ° lay 
angle � = ʹͷ° lay 

angle � = ͵Ͳ° 
Axial ݑ ሺ��ሻ 1 0.995 0.986 0.963 0.948 0.975 0.874 

Torsional Ѳ ሺݎ��ሻ 
0 0.033 0.048 0.067 0.088 0.112 0.137 
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CHAPTER 5: CONCLUSION  

A three-dimensional finite element study was conducted to find mechanical behavior of 

the new trapezoidal wire and the simple straight wire rope, as part of the validation of the 

approaches used. A one-dimensional finite element study for free vibration analysis was also done, 

to study the dynamic behavior of the aluminum bar, the trapezoidal wire, and the simple straight 

wire. 

5.1 Concluding Remarks 

As for the elastic behavior of the wires, the trapezoidal wire was studied using three-

dimensional finite element Fortran 77 code within 264 elements and 1,590 degrees of freedom for 

the whole system. The study extended to capture the wire’s behavior under varying the lay angles: 

0°, 5°, 10°, 15°, 20°, 25°, and 30° where an extensional and torsional coupling action appears in 

the stiffness matrix due to the existence of the lay angle (twist). Similarly, however, with a smaller 

element number (24) and a total of 150 degree of freedom for only the outer wire (the core wire 

was meshed similarly to the simple straight wire rope), it was tested to find the four linear elastic 

coefficients for all the lay angles studied as well. This model was used to validate the three-

dimensional finite element model where this wire has existing analytical models with which it can 

be compared. The finite element model in comparison with the 7 analytical models gave good 

estimations, except for Hurska’s model (where the torsion effect was ignored), which concluded 

that the result of a trapezoidal wire’s stiffness matrices were valid. The results of the trapezoidal 

wire were significant where: the maximum axial stiffness value (6.71E+04 �ܰ) at Ͳ° have losted 

only nearly 7% of the value when it reached the maximum angle used in this study at ͵Ͳ°, the 

torsional stiffness have increased approximately by 37% when twisted at ͵Ͳ° (1.86E+03 ܰ�ଶ), 

the coupling coefficient terms between the tensile and the torsional are linearly increasing with lay 
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angle increasing, coupling action will start once the wire has even a small angle twist, the result of 

a 5° twist for example, indicates that the coupling terms will have a significant value 84.6 �ܰ� 

compared to no coupling in the straight state (Ͳ°). In addition, this is a very important conclusion 

for designers, which says that this three-dimensional finite element model can be used to estimate 

the stiffness of a wire where the coupling action can be seen and taken into account. 

After solving the axial stiffness for these wires, the free vibration analysis using one-

dimensional finite approximation was considered, as it is very important, and to investigate the 

extensional and torsional coupled stiffness effect on vibration for such structure. As it has not been 

done before, an aluminum straight bar was analyzed using 2-, 4-, 8-, and 16-element 

approximation; when the convergence was checked, first it showed that the 16-element 

approximation gave excellent results, with 0.22% of the exact solutions for the axial and the 

torsional vibration, so this model was considered for both wires. For trapezoidal wire, the mass 

matrix required to solve for the eigenvalues (which are the natural frequencies) and the 

eigenvectors (which are the mode shapes) was computed, and extra care was used due to the 

complex geometry. Then the vibration was solved and the mode shapes were drawn to see the 

vibration motion which resulted in finding two types of displacement for each frequency, axial and 

torsional, at same time for all models (0°, 5°, 10°, 15°, 20°, 25°, and 30°) where there is extensional 

and torsional coupling behavior. The results were significant where it showed approximately linear 

increase in the frequency while the lay angle is increasing, which shows that the wire is getting 

stiffer. In addition, for example, the first mode, which was primarily a torsional vibration, and this 

displacement goes decreasing with increased of the lay angle; however, it exhibited an axial 

displacement that increased with the lay angle increase. However, for the sixth mode, which is 

primarily an axial displacement, it also decreased while the angle increased, and in reverse with 
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the torsional displacement it increased. The simple straight wire rope behaved similarly to the 

trapezoidal wire; however, relative to the geometry and material, this wire has lower stiffness and 

frequencies, and it was tested for all the lay angles studied. In compare of twisted trapezoidal wire 

and simple straight wire rope’s displacements, in the first mode which is dominated to be a 

torsional vibration, after normalizing the result, the trapezoidal wire displaced 1 rad associated 

with 2.5 mm, and the simple straight wire rope displaced 1.7 mm; and for the third mode which is 

dominated to be axial displacement, the trapezoidal wire displaced 0.025 rad in 1 mm, and the 

simple straight wire rope displaced 0.14 rad for 1 mm. We conclude that it is important to the 

design, safety, and monitoring, depending on what application these wires are used for, that the 

coupled frequencies suggested be considered and studied carefully.   

5.2 Future Work 

In regard to the three-finite element model, for both trapezoidal wire and simple straight 

wire rope an increase in the finite element number will result in more accurate results in global the 

stiffness matrix. As well as testing these wires under larger lay angles and investigate their 

behavior. In addition, the impact of design should be study and that is include: change in the core 

radius, geometry of the helical, boundary conditions, and the length of the wire. This model can 

be also developed to include some more nonlinear analysis phenomena, for example, friction, 

sliding effects, residual stress, elastic-plastic deformation, and contact stress between individual 

wires within the wire, as this contact can effect all aspects of the wire behavior.  

For better understanding of the deformation mechanism of these wires, an increase in 

number of the one dimensional finite elements model, as well as including a sag to length ratio, 

and increase the lay angles tested, should increase the accuracy and reality of results of the 

extensional and torsional free vibration. In addition, finding a quick way to study and investigate 
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all the values resulting. As well as examine the dynamical responses inform of the natural 

frequencies and the mode shapes due to wind and seismic loads as forced vibration analysis. Apply 

same approach used here on the existing wires used in various of engineering applications.  
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APPENDIX A: THE ELASTIC COEFFICIENTS FOR ANALYTICAL MODELS 

The elastic stiffness component for all lay angles studied for Hruska model in Table A.1. 

Table A.1 Comparison between the different lay angles matrix components for Hurska model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.80E+00 
5° 1.58E+04 4.50E+03 4.50E+03 3.31E+00 
10° 1.54E+04 8.77E+03 8.77E+03 7.73E+00 
15° 1.46E+04 1.26E+04 1.26E+04 1.47E+01 
20° 1.37E+04 1.57E+04 1.57E+04 2.37E+01 
25° 1.25E+04 1.81E+04 1.81E+04 3.41E+01 
30° 1.12E+04 1.95E+04 1.95E+04 4.50E+01 

 

The elastic stiffness component for all lay angles studied for McConnell and Zemek 

model in Table A.2. 

Table A.2 Comparison between the different lay angles matrix components for McConnell and Zemek model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.50E+03 4.50E+03 1.20E+01 
10° 1.54E+04 8.77E+03 8.77E+03 1.64E+01 
15° 1.46E+04 1.26E+04 1.26E+04 2.34E+01 
20° 1.37E+04 1.57E+04 1.57E+04 3.24E+01 
25° 1.25E+04 1.81E+04 1.81E+04 4.28E+01 
30° 1.12E+04 1.95E+04 1.95E+04 5.37E+01 

 

The elastic stiffness component for all lay angles studied for Machida and Durelli model 

in Table A.3. 

Table A.3 Comparison between the different lay angles matrix components for Machida and Durelli model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.50E+03 4.31E+03 1.19E+01 
10° 1.54E+04 8.77E+03 8.38E+03 1.62E+01 
15° 1.46E+04 1.26E+04 1.20E+04 2.29E+01 
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20° 1.37E+04 1.57E+04 1.50E+04 3.15E+01 
25° 1.25E+04 1.81E+04 1.72E+04 4.13E+01 
30° 1.12E+04 1.95E+04 1.85E+04 5.15E+01 

 

The elastic stiffness component for all lay angles studied for Knapp model in Table A.4. 

Table A.4 Comparison between the different lay angles matrix components for Knapp model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.54E+03 4.31E+03 1.21E+01 
10° 1.54E+04 9.04E+03 8.38E+03 1.67E+01 
15° 1.48E+04 1.35E+04 1.20E+04 2.39E+01 
20° 1.42E+04 1.78E+04 1.50E+04 3.31E+01 
25° 1.36E+04 2.20E+04 1.72E+04 4.36E+01 
30° 1.31E+04 2.60E+04 1.85E+04 5.43E+01 

 

The elastic stiffness component for all lay angles studied for Kumar and Cochran model 

in Table A.5. 

Table A.5 Comparison between the different lay angles matrix components for Kumar and Cochran model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.45E+03 4.29E+03 1.20E+01 
10° 1.53E+04 8.39E+03 8.30E+03 1.62E+01 
15° 1.45E+04 1.14E+04 1.17E+04 2.29E+01 
20° 1.35E+04 1.32E+04 1.44E+04 3.13E+01 
25° 1.25E+04 1.38E+04 1.62E+04 4.06E+01 
30° 1.16E+04 1.33E+04 1.70E+04 4.98E+01 

 

The elastic stiffness component for all lay angles studied for Sathikh model in Table A.6. 

Table A.6 Comparison between the different lay angles matrix components for Sathikh model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.50E+03 4.50E+03 1.21E+01 
10° 1.54E+04 8.75E+03 8.75E+03 1.68E+01 
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15° 1.46E+04 1.25E+04 1.25E+04 2.43E+01 
20° 1.37E+04 1.56E+04 1.56E+04 3.38E+01 
25° 1.25E+04 1.79E+04 1.79E+04 4.45E+01 
30° 1.13E+04 1.92E+04 1.92E+04 5.57E+01 

 

The elastic stiffness component for all lay angles studied for Labrosse model in Table 

A.7. 

Table A.7 Comparison between the different lay angles matrix components for Labrosse model 

 Stiffness matrix components 

Lay Angles � ���ሺ�ܰሻ ���ሺܰ�ሻ ���ሺܰ�ሻ ���ሺܰ�ଶሻ 

0° 1.60E+04 0.00E+00 0.00E+00 1.05E+01 
5° 1.58E+04 4.50E+03 4.50E+03 1.20E+01 
10° 1.54E+04 8.77E+03 8.77E+03 1.64E+01 
15° 1.46E+04 1.26E+04 1.26E+04 2.34E+01 
20° 1.37E+04 1.57E+04 1.57E+04 3.24E+01 
25° 1.25E+04 1.81E+04 1.81E+04 4.28E+01 
30° 1.12E+04 1.95E+04 1.95E+04 5.35E+01 
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