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ABSTRACT 

 
 

A COUNTY-LEVEL ANALYSIS OF RESIDENTIAL SOLAR ADOPTION IN THE 

UNITED STATES 

  
 

 This thesis set out to achieve two major objectives, with a third objective added at 

the end. The first was the update and analysis of the zero-inflated negative binomial 

(ZINB) model used by Zahran et al. (2008) in regards to its validity and robustness as a 

predictor of the count of solar using households in a county.  The second objective was to 

use the model to provide an empirical measure of the effect financial and regulatory 

incentives have on the count of solar using households. The final objective was to explore 

and explain an unexpected decrease in the count of solar using households.  This was 

done by using a ZINB regression to model the number of occupied housing units that use 

solar heating at the county level over the period from 2000 to 2009.  In addition to 

analyzing the effects of the explanatory variables, geographic information systems (GIS) 

modeling was used to provide geographic mapping of the distribution of occupied 

housing units that use solar heating.  The results indicate that Zahran et al.’s (2008) 

model is a robust and accurate predictor of the count of solar using households. Financial 

incentives were found to have an insignificant impact on the count of solar-using 

households, while regulatory incentives decreased the odds of a zero count in a county, 

but also decreased the expected count.  A correlation was found between densely 

populated counties and the decrease in the count of solar using households. 
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Chapter 1: Introduction 

 With the increased awareness of the true costs of fossil fuels and the growing 

push for protecting the environment, more people and governments are turning towards 

renewable energy sources such as solar energy.  Most forms of renewable energy are still 

not economically feasible when compared to more traditional sources of electricity. In 

order to address this issue, governments offer a variety of financial incentives such as 

subsidies and loans as well as enforce various policies such as requiring that a certain 

percentage of a utility’s energy comes from renewable sources.  One of the main aims of 

this thesis is to estimate the effectiveness of financial incentives and regulations enacted 

between 2000 and 2009 that were designed to encourage residential solar energy use.    

There are several benefits to solar energy that have caused governments to 

support the growth of the solar panel industry.  Provided the location is good, the 

simplest reason is that solar panels are a reliable renewable energy source.  The other 

reasons have to do less to do with how much energy is provided and more to do with the 

way in which the energy is provided.  Solar panels receive their energy from the sun and 

thus only produce energy when the sun is out.  This mostly corresponds with peak energy 

consumption times, when the demand for energy is greatest.  This means that solar panels 

provide the most energy at the times when energy is most needed. This can be very 

beneficial to utility companies because normally they have to build and operate extra 

plants to deal with these peaks in energy demand.  The other benefit of solar panels is that 

they can be installed on private homes and businesses.  On the individual level this allows 

households and businesses to produce a significant portion of their energy themselves, 

and with expected improvements in the performance of solar panels, solar energy 
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producing households may one day achieve self-sufficiency.  On a societal level this is a 

step away from a centralized model of energy supply and toward a more distributed 

model where energy can be supplied at or close to the point of use.  This reduces the need 

for transmission facilities and land dedicated to energy production. 

 It is necessary to understand what motivates consumers to purchase solar panels 

for their homes so that the limited support governments can provide is directed in the 

manner that would bring the greatest possible benefit.  There are many factors that could 

influence a consumer’s decision, both financial and nonfinancial in nature.  They include 

how much the consumer values the environment, how energy conscious the consumer is, 

how long they plan to live in their house, and so on (Palm; Faiers).  Of course there is 

little governments can do to address those issues aside from running 

advertising/information campaigns promoting the environmental benefits of solar energy 

use.  What governments are interested in is the impact financial incentives and 

regulations have in promoting solar system adoption by consumers. 

 This thesis then will address how basic climate, economic, and sociopolitical 

factors influence a consumer’s decision as well as the impact that financial incentives and 

other governmental policies have on the adoption of solar heating.  This will be 

accomplished by extending the work of Zahran et al. (2008) by: 1) updating their 

statistical model with new data from 2005-2009; and 2) including measures of financial 

incentives and regulations enacted between 2000 and 2009 to empirically assess the 

effectiveness of government efforts to encourage solar energy adoption. It is important to 

note that this thesis, as Zahran et al. did, measures solar heating units specifically and not 

solar electricity systems such as photovoltaic (PV) panels due to the more comprehensive 
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data available on solar heating adoption compared to PV adoption.  These two 

technologies are very similar, however, and a consumer deciding whether to install a 

solar heating system has much the same motivations and issues as he would face if 

deciding to install a PV system instead.  Therefore solar heating will be acting as a 

representation of the entire solar industry in this thesis. 

 There was an unexpected trend discovered while analyzing the data that also 

needs to be addressed. That trend is that residential solar usage has decreased by a 

significant amount between 2000 and 2009 despite an overall increase in the number of 

households during that time.  Combined with the rising price of fossil fuels and drop in 

the costs of solar technology, the fact that instead of an increase in solar users there was a 

decrease is rather difficult to explain.  An interesting correlation was found between a 

decrease in solar users and an increase in population density in highly urbanized counties 

that could explain it, however.  This thesis will first explore this correlation before 

explaining how this could be the cause of the trend and some of the implications and 

ramifications if so. 
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Chapter 2: Literature Review 

 The literature on consumer adoption of solar systems can be divided into three 

broad categories; 1) technical papers dealing with a specific aspect of the technology, 

method of installment, or feasibility; 2) policy papers that analyze the effect of 

government policies; and 3)  social-psychological papers that focus on consumer 

motivations to purchase solar systems.   

Technical Papers 

A number of reports focus on the technical aspects of solar energy adoption such 

as the best type of system for an area or the best angle for the panels.  For example Payne 

(2000) explores the feasibility of a new type of PV technology. His focus is on how much 

more efficient the technology is and how much cost-savings it would generate.  Holbert 

(2007) instead focuses on one area, Phoenix Arizona, and calculates the best direction 

and angle for solar panels to generate the most energy. As he is looking at just one town 

he is also able to discuss the specific regulations and incentives that affect the local solar 

market.  Perez (2004) also focuses on the technical side of the discussion; although in his 

case he is looking into financial technicalities such as the proper way to measure 

profitability of solar systems for homeowners. 

Financial and Regulatory Papers 

Just as there have been a variety of government policies and incentives aimed at 

promoting residential solar panels over the last 40 years (both in the U.S. and in other 

countries around the world), there have been a number of studies done that attempt to 

determine how successful these policies and incentives were and what made them 
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succeed or fail.  Some studies focus on analyzing specific government programs, for 

example Hoffman and Kiefer’s (2001) study on the German 1000 rooftop program or 

Haas’ (1998) study on the Austrian rooftop program.  Still other studies focus on a 

specific locality and try to determine the best policies for it, given local conditions. One 

such study is Holbert’s (2007) study of the Phoenix area.  Other studies apply a variety of 

methodologies in order to answer the question, such as Long’s (1993) econometric 

analysis, Hasset’s (1993) use of panel data, and Hayne’s (2002) use of case studies.   

While the methodologies and specific focus of the studies are all very different, 

there are some overarching ideas and conclusions made about the residential solar panel 

industry.  The first is that, in general, financial incentives work for developing the 

industry by lowering the costs of solar panels.  This is because as the industry develops, 

suppliers and installers get better at making and installing solar panels.  As a result, they 

reduce costs and can therefore charge customers less. Also as the market grows, suppliers 

are able to build bigger factories and take advantage of economies of scale.  Where the 

studies differ is in what financial incentives work the best at doing this.  

Another common conclusion is that without the necessary infrastructure in place, 

financial incentives will have a very limited impact.  In other words, if there are not 

enough installers or quality control checks, or if it is difficult to actually connect the solar 

panel system to the energy grid, then it will take a long time to completely install all the 

new solar panel systems that the financial incentives will bring. This will hurt the 

reputation of the program and the industry, leading to fewer consumers buying solar 

panels. 
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Similarly to the previous conclusion, many studies such as Haynes (2002) and 

Painuly (2001) have found that quality control is integral in both lowering costs and 

ensuring the reputation and thus success of a program or incentive.  Programs or 

incentives that have a poor quality control process not only lead to more solar panel 

failures, thus damaging the reputation, but also fail to properly promote industry growth. 

This is caused by the fact that poor quality control means that installers will be sub-par 

and unlikely to improve and will also lead to poorly designed solar panels being 

supported on the market by the incentives, lowering the overall quality of the industry. 

Haynes (2002) also states that a stable and adequate source of funding is vital for 

any financial incentives.  This is not quite as crucial at the residential level as it is at the 

utility level, where many incentives and contracts are very long-term, but it still plays a 

significant role in the residential market as well.  For example, if funding runs out in a 

given year, or there is not a guarantee there will be enough funding, then consumers are 

more likely to wait and not purchase a solar panel system until they can be sure that they 

will receive the funds from the incentive.  

Socio-Economic Papers 

  There are a number of papers, especially in the last ten years, which look into 

what motivates consumers to purchase solar systems and go beyond just the financial 

aspects of that decision.   

Palm (2011) conducted a series of interviews with consumers in Sweden who had 

adopted green technology, either PV or microwind turbines, or were in the process of 

doing so, to uncover their motivations and any barriers to adoption.  There were two 

major motivations reported for adopting green technology. One is for environmental 
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reasons, both in the strict sense of wanting to reduce pollution and also as being an 

integral part of their self-image of living a green lifestyle.  The other motivation is to be 

more independent, whether that is the desire to be more independent from the electricity 

companies, society, or to be more financially independent, the underlying motivation is 

that green technology makes them less dependent on others.  The major barrier to 

adoption is the high upfront cost combined with the long pay-back period.   

Faiers (2009) conducted an in-depth review of residential solar adoption in the 

UK in order to determine why several incentive programs were succeeding while another 

program was failing.  Faiers analyzed differences in motivations of early adopters as 

compared to early majority adopters, the next consumer group to adopt a technology.  

What he finds is that early adopters base their decision primarily off of environmental 

concerns and their interest in solar technology. While those motivations are still 

important to the early majority, they also care about aesthetic, financial, and operational 

issues and find solar technology lacking in those regards. 

Gillingham (2010) and Rothfield (2010) both look at the impact that previous 

adoption of solar technology in an area has on future adoptions in that area.  They both 

used different methods: Gillingham ran three different experiments each analyzing 

different levels of data and Rothfield used a zero-inflated negative binomial model that 

allowed her to also analyze the effect of several other variables. In the end they both 

came to the same conclusion that a previous adoption in an area (both at the street level 

and the zip-code level) increases the likelihood of further adoptions in that area.  The two 

most likely reasons for this are that seeing a neighbor with a solar system motivates 

people to adopt solar as well in order to not be outdone, or that they will learn more about 
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solar systems from the neighbor and with this increased knowledge on the subject, feel 

confident enough to adopt the technology as well. 

Benchmark Study Review 

 Finally the article “Greening Local Energy” by Zahran et al. (2008) endeavors to 

help policy makers design appropriate policies for household adoption of solar energy by 

looking at county-level data for the entire country.  Zahran et al. do not compare the 

different policy tools available, but instead provide all the other information a policy 

maker might need, such as the location of households that are already using solar energy 

as well as pertinent environmental, economic and sociopolitical factors that would 

explain why households are willing to pay to install solar panels on their house.      

Zahran et al. maintain that the most important factor to consider is how much 

solar radiation a county receives, as higher amounts of solar radiation produce more solar 

energy per square foot, requiring fewer panels to collect the same amount of energy.  

This means that solar energy systems will be cheaper and take up less space, both of 

which should encourage adoption.   Another important environmental factor is the 

climate of a county, which they measure using maximum temperature.  This is important 

as counties that have a hot climate do not have as great a need for heating while counties 

with a cold climate are much more likely to have their solar panels damaged in winter 

periods.   

Solar energy systems have very high up-front costs so naturally economic factors 

play a large role in solar energy adoption.  The most obvious factor to consider is how 

wealthy somebody is, as the wealthier they are, the less of a financial burden it is to 

install a solar energy system. The article uses the median home value of a county to 
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measure this, as this gives a general idea for how wealthy the county is while also 

indicating a source of ready capital to finance installation. Just because somebody is 

wealthy does not mean that they are willing to actually spend that money on expensive 

goods. Many studies, such as Gourinchas and Parker (2002), have shown that consumers 

between the age of 40 to 49 are the most likely to purchase expensive durable goods, 

such as solar energy systems, and so Zahran et al. also measure the percentage of the 

population in a county between age 40 and 49.  The article also measures whether there is 

a solar energy retailer in the county or not.  Without a retailer nearby, adoption is 

unlikely.  Another economic factor measured by Zahran et al. is the level of urbanization 

in a county. This is an important factor largely due to the fact that more urbanized 

counties have dense social networks that increase the effectiveness of word of mouth 

propagation of the technology as well as informational campaigns.   

The last set of factors that predict solar energy adoption are the sociopolitical 

factors.  In short there are major environmental benefits to using solar systems and so 

counties with populations that are both aware of and care about this are more likely to 

adopt solar systems.  The article uses three different measures to determine the likely 

attitude of a county. The first is what percentage of the population are Democrats, as 

Zahran, Brody, Grover, and Vedlitz (2006) found that Democrats are more likely to adopt 

policies designed to conserve the environment and thus more likely to switch to solar 

energy.  The next is the number of nonprofit environmental organizations in the county. 

Environmental nonprofits function to increase awareness of environmental issues, 

including the benefits of solar energy.  The last measure is whether or not a county is a 

member of The International Council for Local Environmental Initiatives (ICLEI).  
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ICLEI works to help members promote environmental sustainability, which means that 

the county is invested in working on those issues so members of the community are more 

likely to adopt solar energy. 

 After explaining the reasoning behind all the factors the article constructs a 

statistical model to determine how many households have adopted solar energy for home 

heating.  The technical problem they had in modeling the count of solar energy users in a 

county was that many counties had zero households that use solar energy, which 

invalidated most ordinary statistical approaches. A common way to account for excess 

zeros is to use a zero-inflated count model as advanced by Lambert (1992). In the end 

they used a zero-inflated negative binomial regression (ZINB regression).  The ZINB 

regression splits the calculation into two smaller models, one that simply determines 

whether or not a county will have any households that use solar energy and another that 

determines just how many households use solar energy in counties that do have some 

household users.  

They created four separate models by starting without using any of the factors and 

then adding in first environmental, then economic, and finally sociopolitical factors.  In 

the end the final model that incorporates all of the factors was the best predictor of 

household adoption.  Overall their statistical model did a good job of predicting 

household adoption although it did systematically overestimate zero count counties.   

Next they use predicted values to create standardized residuals to determine 

which counties were significantly above or below expectations from the model. If the 

model is a good predictor for solar energy adoption based on environmental, economic, 

and sociopolitical reasons, that means counties that are performing above expectations 



11 
 

are likely providing their households with additional incentives such as financial 

assistance and other policies while counties that are performing below expectations have 

untapped potential and that proper policies could provide the boost needed to get 

households started. 

Zahran et al. end by discussing the significance of spatial predictors.  Solar 

radiation is extremely significant with counties having high levels of solar radiation being 

very likely to have households using solar energy.  Maximum temperature was also a 

significant predictor.  Using the square of maximum temperature, Zahran et al. were able 

to show that as expected, counties with either high or low temperatures were less likely to 

have households using solar energy.  On economic factors, measures of wealth, 

urbanization, and the percent of the population aged 40 to 49 were all significant positive 

predictors of household adoption.  The presence of a solar energy retailer was not 

significant however.  This is likely due to using a coarse measure, however the non-

significance of retailer presence as a predictor of the count of solar energy users in a 

county, might also mean that it is easy for households to purchase their solar energy 

systems from outside the county and online.  For the sociopolitical factors, the percentage 

of the population that vote Democrat and whether the county is a member in ICLEI are 

both significant positive predictors and have at least as great an influence on solar energy 

adoption as solar radiation received.  The number of environmental nonprofits in a county 

did not have any impact however and no explanation is given as to reasons behind this. 

The article shows that environmental, economic, and sociopolitical factors play an 

important role in determining household adoption of solar energy.  Zahran et al.’s paper 

serves as a basis for policy makers to design their policies around. Moreover, the 
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inventory of variables analyzed serve as a basis for the investigation of the effect of 

financial and regulatory incentives enacted between 2000 and 2009 on present period 

solar adoption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Chapter 3: Data Set and Variables 

This chapter describes the data collection efforts and measurement decisions.  To 

enable valid and reliable comparison, where possible the same variables used in Zahran et 

al. are used in this thesis.     

Dependent Variable 

To measure household adoption of solar technologies the variable occupied 

housing units with solar heating is used.  While the data source for this variable has 

changed from the long form of the 2000 Census to the 2005-2009 American Community 

Survey (ACS), the question asked remains the same and the ACS provides a comparable 

sample to the long form Census.  The questions asked is this: “Which FUEL is used 

MOST for heating this house, apartment, or mobile home?”  

Baseline Variable 

The number of occupied housing units in a county is used as a baseline variable as 

the more housing units there are the more chances that one of them will have a solar 

heating system. The data come from the 2000 census and the 2005-2009 ACS. 

Environmental Variables 

The viability and effectiveness of solar heating is dependent on how much solar 

radiation an area receives and the climate of the area.  Since these are both long-term 

variables that change little over a 10 year period, the data from Zahran et al. was used.  

Therefore the data for solar radiation is the same used in “Greening Local Energy”.  That 

data originally came from the National Renewable Energy Laboratory (NREL), where 

they modeled the average total solar radiation in kWh/m2/day for 40km2 grid cells.  
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Zahran et al. then took that data and used GIS to fit the grid cells to specific counties.  

They then took the weighted average of all the grid cells in each county to arrive at an 

average solar radiation for each county as a whole.  

The climate variables were replaced instead of simply updated with new data.  

Zahran (2008) used the maximum temperature and maximum temperature squared for a 

county in 2000. In this thesis, mean maximum temperature, which is the mean 

temperature in July for the climate period 1941-1970, and mean maximum temperature 

squared were used.  Mean minimum temperature, which is the mean temperature in 

January in the climate period 1941-1970, is also added. This variable was added only 

after testing to ensure that there was no multi-collinearity with mean maximum 

temperature. Mean maximum temperature squared is used to determine if there is an 

effective temperature range outside of which solar adoption rapidly decreased.  The new 

variables come from the Area Resource File (ARF) and are measured in degrees 

Fahrenheit.  This older climate data does a better job of representing the actual climate of 

a county and not just what the weather was like in a given year. 

Economic Variables  

The original report measured four economic variables: median home value, solar 

energy service providers, urbanization, and percentage of population aged 40 to 49.  The 

median home value serves as an indicator of the amount of available capital the 

households have with a higher home value increasing the likelihood of adopting solar 

heating.  The data for the updated variable comes from the 2005-2009 ACS, again 

measuring median home value by the value estimated by the occupants, with the prices 

adjusted for inflation using the CPI indexed to 2000.  
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The data for solar energy providers is carried over from the original report 

without being updated both because the original report found it to be statistically 

insignificant and because of the difficulty of collecting reliable and valid information. 

These data originally came from the Solar Energy Industries Association (SEIA) and 

measures whether or not the SEIA reported the presence of at least one solar energy 

provider in the county. 

It is impossible to update the urbanization variable until 2012 or 2013 and so a 

replacement variable was needed.  Urbanization was used as a proxy to measure the 

presence and strength of a community for word of mouth to spread through.  Population 

density was chosen as the replacement and is measured by the number of people per 

square mile of land area in a county.  The ACS does not measure this and so the 2010 

Census was used instead, meaning that the values come from 2010 instead of 2005-2009 

and so do not perfectly match the time logic of other variables used. 

Finally there is the age 40 to 49 or consumption age  variable that is used based 

on the fact that people of that age are the most likely to adopt expensive durable goods, 

like a solar heating system.  This measures the percentage of the population that is 

between ages 40 to 49 in a county.  Again the data for this variable is updated using the 

2005-2009 ACS. 

Sociopolitical Variables 

   The three sociopolitical variables used in the original report were the net 

Democrats in a county, the number of environmental nonprofit organizations, and 

whether the county is a member in the International Council for Local Environmental 

Initiatives (ICLEI).  
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 Net Democrats is measured because Democrats are generally much more 

environmentally conscious and thus more likely to both adopt solar technologies and 

support policies and regulations that encourage solar adoption.  The data for the variable 

has been updated from measuring voting in the 2000 presidential election to the 2008 

presidential election where the percentage of voters for McCain was subtracted from the 

percentage of voters for Obama to provide the net percentage of Democratic voters. The 

data comes from http://uselectionatlas.org/. 

 The number of nonprofit environmental organizations in a county ended up being 

statistically insignificant in the original report and so the data was not updated1.  The data 

originally came from the National Center for Charitable Statistics (NCCS).   

 Membership in ICLEI serves as an indicator of willingness and likelihood of the 

local governments to adopt policies and regulations that promote environmentally 

positive behavior, such as adopting solar technologies. Unfortunately the original data on 

membership in the ICLEI in 2000 was lost and so both periods use the same data from 

2008.  This data is drawn from the ICLEI website (www.iclei.org). 

New Variables 

Several variables have been added to the model in an attempt to better estimate 

the adoption of solar technology, and to pursue the main novel objective of this thesis: 

estimating the effect of regulatory and financial incentives enacted between measurement 

periods on household adoption of solar energy.   

                                                            
1 An attempt to update this variable was made using only the data available for free from the NCCS, but 
this updated variable produced similar results to the original variable and so wasn’t included in the model. 
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The first variable to be added was percentage of population that has lived in their 

current home for at least five years.  This was meant to account for the fact that solar 

technology has a long payback period and so is more likely to be adopted in areas where 

people stay in the same house for a long time.  It was also meant to measure and account 

for the increase in social/geographic mobility of the country.  Unfortunately the ACS data 

is not comparable to the Census data because it is a multi-year estimate.  This means that 

somebody surveyed in 2005 might, at that point in time, have only lived in their house for 

4 years and thus not count towards the variable while if they had been surveyed in 2007 

they would count.  Since the new data for the variable cannot be compared with old 

census data the variable had to be dropped. 

Next median household income was added to better account for a household’s 

ability to afford a solar heating system.  The 2000 data for this variable comes from the 

2000 Census while the 2005-2009 data comes from the ACS. The CPI indexed to 2000 is 

used to account for inflation. This variable was added only after testing to ensure that 

there was no multi-collinearity with median home value. 

A variable to control for time was also added as the dataset contains both the 2000 

values for all the variables as well as the updated 2005-2009 values. This means that 

there are two observations for each county, one for 2000 and one for 2005-2009. 

Therefore pre/post is used as a dummy variable to indicate whether an observation is 

from 2000 or 2005-2009. 

Finally a set of financial incentive and solar regulation variables were added. 

Total financial incentives and total solar regulations variables were created to indicate 

the total number of incentives or regulations present between 2000 and 2009 relevant to 
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solar heating. These data came from the DSIRE website (see appendix 1 for more 

details).  In order to more accurately estimate the effect of these incentives and 

regulations difference in differences was used to account for heterogeneity, selection bias 

and time. Difference in differences is an econometric technique where the dependent 

variables of groups that have implemented the treatment, in this case the incentives and 

regulations, are compared to the dependent variables of groups that have not 

implemented the treatment, essentially control groups, both before and after the 

treatment.  The difference between the groups before the treatment is then subtracted 

from the difference between the groups after the treatment to arrive at the difference in 

the differences, or the actual impact of the treatment by accounting for time and structural 

effects.  That at least is how it is done in the simple case; in this more complex situation 

the difference estimator was instead worked into the regression, however the underlying 

theory and assumptions remain the same.  Financial difference estimators and regulation 

difference estimators were created by multiplying Total financial incentives and total 

solar regulations by the pre/post variable.   

As the updated solar count as well as a number of other variables comes from the 

2005-2009 ACS 5-year estimate, the new period will be referred to as 2005-2009 to 

better represent the fact that much of the data was gathered piece-meal over that time-

period.  Despite being a 5 year estimate instead of a sample collected all at once as the 

2000 Census was, most of the variables (and all those actually used in the model) can be 

meaningfully compared between the two.   
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Chapter 4: Statistical Procedure 

 As this thesis builds on Zahran (2008), the first step was to determine if Zahran’s 

model was still robust and an accurate predictor of the dependent variable with the new 

data. Zahran used a zero-inflated negative binomial regression (ZINB) to model the data.  

ZINB regression works by estimating two separate models at the same time.  The first is 

a logit model that gives the conditional expectation of the probability that there will be 

zero households with solar heating: 

߰௜ ൌ Prሺܣ௜ ൌ ௜ሻݖ	|1 ൌ 	
ୣ୶୮ሺ	ఊ௭೔ሻ

ଵ	ାୣ୶୮ሺ	ఊ௭೔ሻ
 , 

Where A = 1 indicates membership in the always zero group so this is measuring the 

probability of an observation to fall in that group conditioned on the inflation variables z. 

The second is a negative binomial model that derives the conditional expected number of 

households with solar heating: 

Prሺݕ௜	|ݔ௜,			ܣ௜ ൌ 0ሻ ൌ 	 ୻ሺ௬೔ା	ఈ
షభሻ

௬೔!୻ሺఈషభሻ
	ቀ ఈషభ

ఈషభାୣ୶୮ሺ௫೔ఉሻ
ቁ
ఈషభ

ቀ ୣ୶୮ሺ௫೔ఉሻ

ఈషభା	ୣ୶୮ሺ௫೔ఉሻ
ቁ
௬೔	

. 

This is the probability of an observed count of y conditioned on both the x-variables and 

that the observation is not part of the always zero group.  Β represents the coefficients of 

the x-variables.  Г is the gamma function and α represents unobserved heterogeneity and 

determines the degree of dispersion (Long, 2006).  Expanding on that, α measures how 

much the variance diverges from the mean.  The gamma function is well known and is an 

extension of the factorial function that works with real and complex numbers.  In this 

case it is used to generate a gamma distribution of the error terms introduced with α. This 

gamma distribution when combined with the Poisson distribution forms the negative 
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binomial distribution and allows the negative binomial regression to relax the assumption 

that the variance equals the mean.   

The first step to validate the use of this model is to determine if there is still an 

excess of zero observations. It turns out that there are even more counties with no 

households using solar heating, up from 1,736 in 2000 to 2,126 in the 2005-2009 

measurement period.  Therefore the use of a zero-inflated regression is a valid method to 

ensure that the excess zeros do not skew estimates.  There is another zero-inflated 

regression besides the ZINB, the zero-inflated Poisson regression, however, and as that is 

the more commonly used regression, there is still the need to determine that the ZINB is a 

better fit for the data.  This is done by comparing the variance of the dependent variable 

(nsolar) to the mean, as the Poisson regression assumes that the mean and variance are 

equal, while the negative binomial regression does not. The results were that the updated 

count of nsolar had a variance of 2,876 and a mean of 10. This is not as large of a 

mismatch as Zahran et al. found, with the original nsolar having a variance of 15,669 and 

a mean of 13, but it is still a large enough disparity to invalidate the assumption 

underlying the Poisson regression.  These findings show that ZINB regression is still a 

valid method of modeling the data and will be the method used. 
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Chapter 5: Results 

Summary Statistics 

To begin, the summary statistics of the variables for both 2000 and 2005-2009 are 

reviewed in order to highlight any significant changes in the key characteristics of the 

population. Table 2 below includes the summary statistics of all the variables, while 

Table 1 has the total number of households that rely on solar heating in each period.  The 

most obvious change comes from Table 1, where  the total number of occupied housing 

units that rely on solar heating has decreased by almost a quarter despite a substantial 

increase in the number of occupied housing units. 

This is especially perplexing as, theoretically and in Zahran’s report, all of the 

variables in Table 2 that have a positive coefficient increased and thus an increase in 

solar households would be expected.  It is obvious that there is some hidden shift or trend 

in the data that the summary statistics don’t reveal that explains this unexpected result.  

Several different methods to uncover the underlying reason were attempted before a 

possible explanation was uncovered.  As those previous attempts help illustrate what has 

and hasn’t changed from Zahran et al.’s report they are still presented below.  

 Table 1. Total number of occupied housing units with solar heating by year 

 

 

 

Solar count   

Period  Total 

2000  40940 
2005‐2009  31126 

Occupied Housing Units (thousands)  

Period  Total 
2000  104852.3 

2005‐2009  111938.3 
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ne 

way to shed more light on the drop in occupied housing units that rely on solar heating is 

to look into the geographic distribution of solar using housing units and how that 

distribution has changed between the periods.  The best way to do that is through maps, 

dividing the count of solar energy users in a county into quartiles. Figure 1 shows this for 

the 2000 data while Figure 2 shows this for the 2005-2009 data.  From looking at these 

maps the only systematic change seems to be the large increase in counties with zero 

Table 2.  Summary Statistics 

2000           

Variable  Obs  Mean  Std. Dev.  Min  Max 
Solar count  3108  13.17246  125.1359  0  6349 
Occupied Housing Units#  3108  33.73627  104.6246  .031  3133.774 
Solar Radiation  3108  4.339217  .7915084  2.84  7.496875 
Temp Min  3111  32.91035  12.02736  1.1  67.2 
Temp Max  3111  75.85616  5.353499  55.5  93.7 
Temp Max Squared  3111  5782.807  799.391  3080.25  8779.69 
Population density  3109  244.9088  1675.725  .1  66940.1 
Home Value#   3107  84.19517  47.37867  13.8  1000.001 
House Income#    3108  35.26892  8.837691  12.692  82.929 
Consumption Age  3108  .1500682  .0146798  .0795966  .2835821 
Net Democrat  3108  ‐.215297  .2505282  ‐.848  .799 
ICLEI  3108  .0357143  .1856067  0  1 

2005‐2009           

Variable    Obs  Mean  Std. Dev.  Min  Max 
Solar count  3109  10.01158  53.62467  0  2188 
Occupied Housing Units#  3109  36.00459  108.9863  .041  3178.266 
Solar Radiation  3108  4.339217  .7915084  2.84  7.496875 
Temp Min  3111  32.91035  12.02736  1.1  67.2 
Temp Max  3111  75.85616  5.353499  55.5  93.7 
Temp Max Squared  3111  5782.807  799.391  3080.25  8779.69 
Population density  3109  261.4817  1733.225  .1  69468.4 
Home Value#    3109  106.738  73.43501  24.41757  830.5305 
House Income#    3109  35.9616  9.484394  15.67126  94.10981 
Consumption Age  3109  .1460875  .0171752  .0464611  .245614 
Net Democrat  3109  ‐.1531736  .2760695  ‐.8773  .8592 
ICLEI  3108  .0357143  .1856067  0  1 
Financial Incentives  3113  4.699647  3.601368  0  16 
Solar Regulations  3112  5.946996  3.569646  0  13 

#=measured in thousands  Inc. and Reg. not measured in 2000 
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solar-heated occupied housing units stretching from the Carolinas to Texas.  To focus 

more directly on changes rather than levels, Figure 3 shows this by splitting the counties 

into those that showed a significant drop in occupied housing units that rely on solar 

heating, those that had little change, and those that showed a significant increase in 

occupied housing units that rely on solar heating between the two periods. 

Figure 3 tells a rather different story from that suggested by simply eyeballing the 

changes between Figure 1 and Figure 2.  Instead of the single region suffering 

disproportionate losses, as Figure 2 seemed to show, there is instead no readily apparent 

pattern to the losses, as there is almost always a county that grew right next to a county 

that suffered losses and both are interspersed with counties with no significant change.  

Another fact that Figure 3 reveals, with reference to the legend, is that one county 

suffered a 4,161 decrease in occupied housing units that rely on solar heating, which 

accounts for almost half the overall decrease observed between the two time periods.  

This county is Los Angeles County, California. The specific reasons for such a 

large drop in the county with the highest number of occupied housing units that rely on 

solar heating are unclear, as none of the explanatory variables can account for such a 

large decrease.  Therefore a new test is needed in order to determine if LA is a unique 

case that is skewing the data or if it is the most obvious example of a common trend in 

the data that could explain the decrease in solar households.  The first test done was to 

determine if other highly urbanized counties had suffered from a loss in solar households 

and if any patterns could be found there.  This was done using population density as a  
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Figure 1:Distribution of the Count of Housing Units that Rely on Solar Energy at the County Scale, 2000 
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Figure 2: Distribution of the Count of Housing Units that Rely on Solar Energy at the County Scale, 2005-2009 



26 
 

 
Figure 3:Distribution of the Change in Count of Housing Units that Rely on Solar Energy at the County Scale, 2000 to 2009
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measure for the urbanization of a county and by creating a new variable called solar diff 

that measures the difference in the number of occupied housing units that rely on solar 

heating from 2000 to 2005-2009.  By splitting the counties into quantiles (after removing 

LA county) based on their population density and then taking the summary statistics of   

solar diff of each quantile it is easy to see if the drop in solar households came from one 

specific quantile of counties or if it was spread relatively evenly between all of them.  

Table 5 below does just that using 16 quantiles.   

Table 5.  Difference in the number of occupied housing units that rely on solar heating 
from 2000 to 2005‐2009 sorted by population density quantiles (excluding LA county) 
Pop density 
Quantiles  Observations  Mean 

Standard 
Deviation  Minimum  Maximum 

1  198  ‐0.10606  4.518868  ‐29 37 

2  196  1.091837  8.063322  ‐21 47 

3  194  ‐0.7268  13.67736  ‐105 124 

4  187  1.754011  10.34218  ‐30 76 

5  189  0.587302  7.568063  ‐18 57 

6  193  ‐0.64249  8.42687  ‐44 57 

7  186  ‐0.94624  11.94661  ‐79 56 

8  184  ‐0.34239  9.048572  ‐56 34 

9  194  0.273196  8.717953  ‐22 55 

10  193  ‐1.48705  10.98536  ‐58 48 

11  194  ‐1.42268  28.16967  ‐336 94 

12  196  ‐1.18878  20.94021  ‐243 63 

13  198  ‐1.25758  13.98183  ‐87 52 

14  193  1.507772  18.49863  ‐52 100 

15  205  ‐4.1122  35.64974  ‐321 145 

16  206  ‐20.6311  92.67251  ‐896 203 

 

 Table 5 clearly shows a large drop in the mean and increase in the standard 

deviation for the final quantile, which is made up of counties with population densities of 

at least 600, compared to any of the previous quantiles; although the 15th quantile shows 

the beginning of this trend, with a similar, if much smaller, decrease in mean and increase 
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in the standard deviation. In order to even more clearly show the relationship between the 

decrease in the number of occupied housing units that rely on solar heating and densely 

populated counties Table 6 shows the total difference in solar households compared to 

the count of solar households in 2005-2009, again sorted by population density quantiles. 

 Table 6. Total Solar difference and Solar count by Population Density Quantile 

Pop. density 
Quantiles 

Total solar 
difference  Std. Err. 

Solar count 
2005‐2009  Std. Err. 

1  ‐21  63.58611 268  73.5293

2  214  112.8865 799  158.0357

3  ‐141  190.5035 704  211.8837

4  328  141.4272 1085  433.4517

5  111  104.0437 737  206.8756

6  ‐124  117.0698 512  167.4966

7  ‐176  162.93 749  189.7854

8  ‐63  122.7408 644  123.0704

9  53  121.427 663  111.5825

10  ‐287  152.6136 927  189.591

11  ‐276  392.3581 1575  522.9435

12  ‐233  293.1629 1470  367.6884

13  ‐249  196.7418 1746  348.3105

14  291  256.9911 2286  313.4877

15  ‐843  510.4266 5064  819.6598

16  ‐4250  1330.101 9696  1438.828

 

 Table 6 shows that, while the last quantile has a higher solar household count than 

any other quantile, it still suffered a disproportionately larger loss in solar households 

than any other quantile.  This reinforces the results from table 6, making it clear that LA 

was not a unique case, but that something is happening in densely populated counties that 

have a significant, negative impact on the number of occupied housing units that rely on 

solar heating in those counties. 
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Regression Results 

The ZINB regression model was built following Zahran’s (2008) example and so 

the independent variables were added in increments to the model.  This is done to provide 

transparency to the model and demonstrate the robustness of the regression by showing 

that meaningful results can be obtained even when varying which variables are included.  

The baseline model is the same, using only the number of occupied housing units to 

predict the number of housing units that rely on solar heating. The pre/post time variable 

is included in all the other models.  So the next model has both a time variable and 

environmental variables. For Model 3 both the economic and sociopolitical variables 

were added.  In Model 4, financial incentive and regulatory variables are added.  Thus 

model 4 is the complete model with all the variables. Table 7 contains the coefficients, 

standard errors, and statistical significance of the variables in each model as well as 

alpha, which is a measure for the over-dispersion in the data.   

 
Table 7. Zero‐inflated negative binomial regression models predicting housing units 
per count with solar heating 

Model 1  Model 2  Model 3  Model 4 

Coef. 
Std. 
Err.  Coef. 

Std. 
Err.  Coef. 

Std. 
Err.  Coef. 

Std. 
Err. 

Negative binomial portion 

Constant  2.47**  0.031  ‐13.93**  2.45  ‐16.32**  2.32  ‐16.82**  2.32 

Housing units  0.00526**  0.00024  0.0047**  0.0002  0.0027**  0.0002  0.0027**  0.0002 

pre/post  0.2186**  0.0406  0.2061**  0.0418  0.4995**  0.0909 

Solar radiation  0.4092**  0.0227  0.4353**  0.0228  0.4179**  0.0236 

Mean temp min  0.0368**  0.0025  0.0390**  0.0026  0.0379**  0.0027 

Mean temp max  0.4439**  0.0651  0.4592**  0.0617  0.4681**  0.0617 

Mean temp max squared  ‐0.0035**  0.0004  ‐0.0035**  0.0004  ‐0.0035**  0.0004 

Median home value  ‐0.0010*  0.0005  ‐0.0005  0.0005 

Median household Income  0.0222**  0.0036  0.0192**  0.0036 

Solar providers  0.1434*  0.0716  0.1367ψ  0.0715 

Population density  2.59E‐5**  8.78E‐6  2.19E‐5*  8.85E‐6 
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Consumption Age  1.9728  1.4578  1.9964  1.4583 

Net democrat  0.9351**  0.0858  0.9162**  0.0874 

Environmental Groups  0.0397  0.0523  0.0409  0.0525 

ICLEI participation  0.3306**  0.0748  0.3225**  0.0743 

Total Financial incentive  ‐0.0039  0.0077 

Total Solar regulation  0.0266**  0.0094 

Financial difference estimator  ‐0.0021  0.0115 

regulatory difference estimator  ‐0.0406**  0.0137 

Logistic portion 

Constant  1.29**  0.05  ‐0.30  5.14  8.03  5.23  11.51*  5.12 

Housing units  ‐0.0527**  0.0034  ‐0.0498**  0.0031  ‐0.0373**  0.0028  ‐0.0368**  0.0027 

pre/post  0.8268**  0.0666  1.0350**  0.0721  1.2759**  0.1365 

Solar radiation  ‐0.3132**  0.0451  ‐0.3269**  0.0490  ‐0.2961**  0.0491 

Mean temp min  ‐0.0087ψ  0.0046  ‐0.0012  0.0055  ‐0.0026  0.0054 

Mean temp max  ‐0.0429  0.1390  ‐0.2370ψ  0.1405  ‐0.3213*  0.1374 

Mean temp max squared  0.0011  0.0010  0.0021*  0.0010  0.0026**  0.0009 

Median home value  ‐0.0076**  0.0016  ‐0.0060**  0.0015 

Median household Income  0.0066  0.0078  0.0074  0.0077 

Solar providers  ‐0.2501  0.3551  ‐0.3028  0.3577 

Population density  0.0004**  0.0001  0.0004**  0.0001 

Consumption Age  1.6565  2.3990  1.4907  2.3920 

Net democrat  ‐0.9275**  0.1500  ‐0.7491**  0.1547 

Environmental Groups  ‐0.2724  0.2120  ‐0.2996  0.2116 

ICLEI participation  ‐0.3833  0.2403  ‐0.4422 ψ  0.2424 

Total Financial incentive  0.0050  0.0158 

Total Solar regulation  ‐0.0410*  0.0160 

Financial difference estimator  0.0232  0.0232 

regulatory difference estimator  ‐0.0629**  0.0237 

lnalpha  0.2975**  0.0436  ‐0.1542**  0.0408  ‐0.3509**  0.0401  ‐0.3663**  0.0396 

alpha  1.3465  0.0587  0.8571  0.0350  0.7040  0.0283  0.6933  0.0275 

Ψp<.10  *p<.05  **p<.01 

Housing units Median home value and Median household Income are measured in thousands 

 

Table 8 converts these coefficients into the expected percentage change in the 

number of housing units with solar heating both for a one unit change and for a one 

standard deviation change in each variable in each model using the listcoef command 

developed for Stata by Long and Freese. Table 8 also reports the fit statistics for each of 

the models. 
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Table 8. Percentage of change in housing units with solar heating 

Model 1  Model 2  Model 3  Model 4 

per unit 
change 

per SD 
change 

per unit 
change 

per SD 
change 

per unit 
change 

per SD 
change 

per unit 
change 

per SD 
change 

Negative binomial portion 
Housing 
units  0.5  75.4  0.5  64.0  0.3  32.9  0.3  32.7 

pre/post  24.4  11.5  22.9  10.9  64.8  28.4 

Solar radiation  50.6  38.3  54.5  41.1  51.9  39.2 

Mean temp min  3.8  55.7  4.0  59.8  3.9  57.7 

Mean temp max  55.9  975.4  58.3  1066.8  59.7  1123.6 

Mean temp max squared  ‐0.4  ‐94.1  ‐0.3  ‐93.9  ‐0.4  ‐94.0 

Median home value  ‐0.1  ‐6.3  ‐0.0  ‐3.0 

Median household Income  2.2  22.5  1.9  19.2 

Solar providers  15.4  2.8  14.6  2.6 

Population density  0.0  4.5  0.0  3.8 

Consumption Age  619.1  3.2  636.3  3.2 

Net democrat  154.7  28.2  150.0  27.5 

Environmental Groups  4.0  1.1  4.2  1.1 

ICLEI participation  39.2  6.3  38.1  6.1 

Total financial incentives  ‐0.4  ‐1.4 

Total solar regulations  2.7  10.0 

Financial difference estimator  ‐0.2  ‐0.7 

regulatory difference estimator  ‐4.0  ‐14.6 

Logistic portion 
Housing 
units  ‐5.1  ‐99.6  ‐4.9  ‐99.5  ‐3.7  ‐98.1  ‐3.6  ‐98.0 

pre/post  128.6  51.2  181.5  67.8  258.2  89.3 

Solar radiation  ‐26.9  ‐22.0  ‐27.9  ‐22.8  ‐25.6  ‐20.9 

Mean temp min  ‐0.9  ‐9.9  ‐0.1  ‐1.4  ‐0.3  ‐3.1 

Mean temp max  ‐4.2  ‐20.5  ‐21.1  ‐71.9  ‐27.5  ‐82.1 

Mean temp max squared  0.1  135.6  0.2  435.1  0.3  705.1 

Median home value  ‐0.8  ‐37.9  ‐0.6  ‐31.3 

Median household Income  0.7  6.2  0.7  7.0 

Solar providers  ‐22.1  ‐4.6  ‐26.1  ‐5.6 

Population density  0.0  99.6  0.0  91.5 

Consumption Age  424.1  2.7  344.0  2.4 

Net democrat  ‐60.4  ‐21.8  ‐52.7  ‐18.0 

Environmental Groups  ‐23.8  ‐7.3  ‐25.9  ‐8.0 

ICLEI participation  ‐31.8  ‐6.8  ‐35.7  ‐7.8 

Total financial incentives  0.5  1.8 

Total solar regulations  ‐4.0  ‐13.6 

Financial difference estimator  2.3  8.4 

regulatory difference estimator  ‐6.1  ‐21.7 
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Total observations  6217  6213  6212  6212 

Nonzero observations  2354  2351  2351  2351 

Zero observations  3863  3862  3861  3861 

Vuong z  22.09  27.39  28.32  28.91 

Prob. > z  0.0  0.0  0.0  0.0 

LR  2581.31  3659.54  4051.91  4108.07 

Prob. > LR  0.0  0.0  0.0  0.0 

McFadden's Adj R2  0.092  0.13  0.145  0.144 

Maximum likelihood R2  0.34  0.445  0.479  0.484 

Cragg and Uhler's R2  0.344  0.45  0.484  0.489 

 

 For each of the models there are two separate portions; one that estimates the 

count of housing units with solar heating and one that estimates the probability that a 

county will contain zero housing units with solar heating. This means that a negative 

value indicates that a variable is decreasing the odds that there will be zero housing units 

with solar heating in that county. For each model the effect that each variable has on both 

portions will be analyzed.   

Model 1 

To start off in the baseline model the only independent variable is the number of 

occupied housing units.  The result is that the expected count of housing units with solar 

heating increases by 75.4% with a one standard deviation increase in housing units. In the 

logistic portion a one standard deviation increase in housing units decreases the odds of 

having zero housing units with solar heating by 99.6%. 

Model 2 

 When the time variable and the environmental variables are added in model 2 the 

result is that the expected count only increases by 64% for a one standard deviation 

increase in housing units.  This indicates that the effect of housing units on the expected 
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count was overstated in model 1 as the impact of the new variables were in Model 1 

attributed to housing units. On the other hand a one standard deviation increase in 

housing units decreases the odds of zero by 99.5%, almost identical to the first model.  

This means that housing units was not absorbing the effects of the new variables had on 

the odds of a zero count.      

Looking at the pre/post time variable, in the later time period there is a 24.4% 

increase in the expected count.  Looking at the logistic portion however the later time 

period increases the odds of zero by 128.6%. Solar radiation increases the expected 

count by 38.3% for a one standard deviation increase and decreases the odds of zero by 

22% for a one standard deviation increase. Mean minimum temperature increases the 

expected count by 55.7% with a one standard deviation increase and decreases the odds 

of zero by 9.9%. However mean minimum temperature is only statistically significant 

given a 10% margin of error in the logistic portion, while the previous variables were 

statistically significant given a 1% margin of error in the logistic portion.  The expected 

count increases by 975.4% with a one standard deviation increase of the mean maximum 

temperature however it is statistically insignificant in the logistic portion. A one standard 

deviation increase in the mean maximum temperature squared decreases the expected 

count by 94.1% and is also statistically insignificant in the logistic portion.  All variables 

were statistically significant given a 1% margin of error in the negative binomial portion. 

Model 3 

 With the addition of the economic and sociopolitical variables the explanatory 

power of housing units dropped significantly.  Now a one standard deviation increase in 

housing units only increases the expected count of housing units with solar heating by 
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33%.  However its ability to predict whether a county will have zero housing units with 

solar heating has barely dropped at all with it decreasing the odds of such an event by 

98.2%.  Pre/post had little change, with the later time period increasing the expected 

count by 22.9% and is just as statistically significant as before. In the logistic portion the 

later time period increases the odds of zero by 181.5% so it has an even bigger impact 

than before. Mean minimum temperature, mean maximum temperature, and mean 

maximum temperature squared all remain roughly the same as in Model 2, in the 

negative binomial portion. In the logistic portion mean minimum temperature is no longer 

statistically significant while mean maximum temperature is statistically significant given 

a 10% error margin and mean maximum temperature squared is statistically significant 

given a 5% error margin. A one standard deviation increase in mean maximum 

temperature decreases the odds of zero by 71.9% while a one standard deviation increase 

in mean maximum temperature squared increases the odds of zero by 435.1%. 

 For the economic variables it turns out that a one unit increase ($1,000) in median 

home value decreases the expected count by .1% and decreases the odds of zero by .8%. 

It is statistically significant given a 5% error margin in the negative binomial portion and 

is statistically significant given a 1% error margin in the logistic portion.  A one unit 

increase ($1,000) in median household income on the other hand increases the expected 

count by 2.2% and is statistically significant given a 1% margin of error but is not 

statistically significant in the logistic portion. The presence of solar providers increases 

the expected count by 15.4% and is statistically significant given a 5% margin of error 

and is not statistically significant in the logistic portion. A one standard deviation 

increase in population density increases the expected count by 4.5% and increases the 
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odds of zero by 99.6%. It is statistically significant given a 1% margin of error in both the 

negative binomial and logistic portions. Finally consumption age is statistically 

insignificant in both portions of the model. 

 For the sociopolitical variables a one standard deviation increase in net 

Democrats increases the expected count by 28.2% and decreases the odds of zero by 

21.8%. It is statistically significant given a 1% margin of error in both the negative 

binomial and logistic portions. Environmental groups are statistically insignificant for 

both portions of the model.  ICLEI participation increases the expected count by 39.2% 

and is statistically significant given a 1% margin of error but is not statistically significant 

in the logistic portion. 

Model 4    

 The addition of financial and regulatory variables has little impact on the effects 

of many of the variables from model 3.  Pre/post now has a larger effect, with the later 

time period increasing the expected count by 64.8 and increasing the odds of a zero count 

by 258.2%.  Mean maximum temperature and mean maximum temperature squared both 

increased in statistical significance in the logistic portion so now mean maximum 

temperature is statistically significant given a 5% margin of error and mean maximum 

temperature squared is statistically significant given a 1% margin of error. A one 

standard deviation increase in mean maximum temperature now decreases the odds of 

zero by 82.1% while a one standard deviation increase in mean maximum temperature 

squared now increases the odds of zero by 705.1%.  Median home value is no longer 

statistically significant and solar providers and population density are both less 

statistically significant in the negative binomial portion while their effects remain roughly 
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the same. Solar providers is now only statistically significant given a 10% margin of 

error and population density is now only statistically significant given a 5% margin of 

error. Population density also retains roughly the same effects and its statistical 

significance in the logistic portion.  Finally ICLEI participation is now only statistically 

significant given a 10% margin of error in the logistic portion, with participation 

decreasing the odds of a zero count by 35.7%. 

  Neither total financial incentives nor financial difference estimator are 

statistically significant in either the negative binomial or the logistic portions.  Total solar 

regulation is statistically significant given a 1% margin of error in the negative binomial 

section and is statistically significant given a 5% margin of error in the logistic portion.  

A one standard deviation increase in total solar regulation increases the expected count 

by 10.0% and decreases the odds of a zero count by 13.6%. The regulatory difference 

estimator is statistically significant given a 1% margin of error in both the negative 

binomial and logistic portions.  For the regulatory difference estimator a one standard 

deviation increase in the regulatory difference estimator decreases the expected count by 

14.6% and also decreases the odds of a zero count by 21.7%. 

Fit of Models 

 As variables are added to each subsequent model the fit of the model improves as 

shown by the increase in the various pseudo R2 measures; for example Cragg and Uhler’s 

R2 increases from .344 for model 1 to .45 for model 2 and .484 for model 3.  Model 4 

though has almost the exact same fit as model 3 with some of the R2 measures staying the 

same and the rest only showing a marginal increase such as Cragg and Uhler’s only 

increasing to .489.  This, when combined with how the coefficients and standard 



37 
 

deviations of the variables all remained fairly steady across all of the models, indicates 

the general robustness of Zahran et al.’s method. 

  Maps provide additional insight into the goodness-of-fit question. Figure 4 shows 

the distribution of the predicted count of housing units that rely on solar heating in 2005-

2009.  By comparing this map to Figure 2, which shows the distribution of the observed 

count, the model can be judged on how well Figure 4 matches Figure 2.  While it looks 

like Figure 4 does a fairly good job of predicting the general areas, it appears to be over 

predicting the count in many areas, even after adjusting the first quantile to go from 0 to 2 

instead of just 0 as in Figure 2.  The problem is that the ZINB cannot properly report a 

zero count, except in the most extreme cases.  This is because of how it calculates 

expected count:  ܧሺ	ݕ௜|ݔ௜	ݖ௜ሻ ൌ 	μ௜ሺ1 െ	߰௜ሻ  where	μ௜ ൌ exp	ሺݔ௜	ߚሻ	.  So it takes the 

expected mean and multiplies it by 1 minus the probability of being in the always zero 

group.  So unless the probability is 100%, which in this model none of the counties are, 

then the expected count will be some positive value, even if it is just .5.  Therefore the 

model cannot properly report zero counts, but that is fairly easy to adjust for as Figure 4 

shows. How well does the model do at predicting non-zero counts though?   

Residuals are a good way to determine that, so Figure 5 plots the distribution of 

the standardized residuals for 2005-2009. The residuals are standardized using this 

formula: 
௢௕௦௘௥௩௘ௗି	ஜ೔

ඥ௏௔௥	ሺ௬೔	|	௫೔		,௭೔	ሻ
 , where  ܸܽݎ	ሺݕ௜	|	ݔ௜		, ሻ	௜ݖ 	ൌ 	 μ௜ሺ1	 െ	߰௜	ሻ	ሾ1 ൅ μ௜ሺ߰௜ ൅  	ሻሿ	ߙ	

(Zahran, 2008).  Looking at Figure 5, it appears as though the model systematically 

overestimated the count, with a majority of the counties being over 1 standard deviation 

below the predicted count.  However, if Figure 5 is compared with Figure 2 closely those 

same counties match up almost exactly with the zero count counties.  A close 



38 
 

examination of the data confirms this, with all but a dozen of the 2,136 counties that were 

over 1 standard deviation below the predicted count being counties with a zero count. 

This is further proof that aside from not being able to predict actual zero counts the model 

does an excellent job predicting the number of housing units that rely on solar heating in 

a county. 
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Figure 4: Distribution of the Predicted Count of Housing Units that Rely on Solar Energy at the County Scale, 2005-2009 
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Figure 5: Distribution of Standardized Residual of Housing Units that Rely on Solar Energy at the County Scale, 2005-2009
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Chapter 6: Discussion 

Decrease in Solar Households 

 As was shown in tables 5 and 6, there is definitely a correlation between a densely 

populated county and a decrease in the number of occupied housing units that rely on 

solar heating in that county.  This doesn’t answer the question of what is causing that 

decrease however, instead merely providing a focus for future studies. 

 Original Variables 

 Now that the general validity and robustness of the ZINB model has been 

examined, the effects of the individual variables from model 4 can be examined and 

compared with their counterparts from Zahran et al.’s (2008) model.  Zahran et al.’s 

(2008) findings have already been discussed in the literature review chapter and so will 

not be restated here.   

 A number of variables showed no appreciable change between the models.  

Housing units, solar radiation, population density/urbanization, net Democrat, 

environmental groups, and ICLEI participation all have the same sign and statistical 

significance.  This means that Zahran et al.’s (2008) interpretations of their effects still is 

valid.   

 In terms of changes, the temperature variables both became more likely to be 

statistically significant, with both becoming statistically significant given a 1% margin of 

error in the negative binomial section, while keeping the same signs.  More striking is the 

huge increase in the effect these variables have with mean maximum temperature now 

increasing the expected count by 1033.7% with a one standard deviation increase, while 
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the original variable only increased it by 51.8%. The same happened for mean maximum 

temperature square, if not quite to the same degree, going from a 24% decrease to a 

93.7% decrease.  This is likely a result of switching to new temperature measurements 

that are more representative of the actual climate of an area.  Zahran et al.’s (2008) 

interpretations of climate effects is thus still valid as these new climate variables simply 

provide a different, slightly better representation of the climate and that is behind the 

changes in the results and not a change in the relationship between climate and the 

adoption of solar heating systems. 

 Median home value went through a major change, with it no longer being 

statistically significant in the negative binomial portion.  The loss of statistical 

significance is to be expected with the inclusion of median household income as a 

variable as home value was serving as something of a proxy for that measurement in 

Zahran et al.’s (2008) model.  The variable kept the same sign, statistical significance, 

and general impact as in Zahran et al.’s (2008) model for the logistic portion. 

 The presence of solar providers was statistically significant in the new model, at 

least in regards to the expected count when it was statistically insignificant in Zahran et 

al.’s model.  This is interesting for several reasons. First off is the fact that its percentage 

change for the expected count is very close to what it was for the original model.  That 

similarity is likely due to the fact that this variable was not updated so it is using the 2000 

values for both periods.  The most likely explanation is that the solar providers that were 

a part of SEIA in 2000 are having a larger impact on consumers’ decisions than they did 

before.  This could be due to increased marketing or doing a better job of providing 
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information and guidance than they did before or simply by providing better installation 

rates.  

 The final variable to have changed is consumption age. For some reason the 

fraction of the population in the ideal consumption age is no longer statistically 

significant.  While there was an overall decrease in the fraction of the population that fell 

in that age due to the aging of the baby boomers, that should not affect significance, 

especially with the corresponding decrease in houses with solar heating.  The best 

explanation is that the new group of citizens between the ages of 40 to 49 may not share 

the spending characteristics of the previous group. As a rough test of this theory a new 

variable was created that would capture as best it could the group of people who were 40 

to 49 years old in 2000 in order to measure the impact of a cohort instead of an age 

group.  To do this the data from the consumption variable for 2000 was kept and the 

percentage of the population between ages 50 to 59 for 2005-2009 from the ACS survey 

was added.  While not a perfect fit this new variable now provides a rough estimate of 

how much of a presence that cohort has in a county.  When the age variable in model 4 

was replaced with this new cohort variable the new model suffered a very slight decrease 

in fit in some of the pseudo R2 measures, but the new cohort variable was statistically 

significant in both the count and logistic portions with the expected signs. This matches 

with the original theory, but upon further reflection it might not be spending 

characteristics that are the major difference between the two groups.  Rather it could be 

that the earlier cohort is more environmentally conscious than the later cohort. 

 

 



44 
 

New Variables 

 As one of the new variables mean minimum temperature helps paint a fuller 

picture of the impact of climate on solar energy adoption.  Minimum temperature is 

statistically significant and has a positive impact on expected count. This supports the 

idea that solar heating systems fare poorly in especially cold climates.  The median 

household income of a county is also statistically significant and has a positive impact on 

the expected count.  This makes sense as a solar heating system is an expensive 

investment so a household’s income would be an important deciding factor. 

 Finally there are the financial and regulatory variables whose analysis is one of 

the main goals of this thesis.  None of the financial incentive variables were statistically 

significant in either portion of the model.  These results disagree with established 

literature, contradicting the results from many studies such as Hoffman and Kiefer 

(2001), Hasset (1993), and Hayne (2002) to name a few.  The most likely reason for this 

disparity is that the data are too coarse. The first problem is that the data only goes to the 

state level and not the county level. This is due to the fact that there were too few 

observations of local level incentives or regulations to model.  The biggest failing of the 

data though is that it makes no attempt to measure the size, value, or any other 

characteristics the might determine how successful an incentive or regulation might be.  

 On the other hand, both of the solar regulation variables are statistically 

significant in both portions of the model.  Total solar regulations being statistically 

significant means that there are unobserved characteristics that play a role in determining 

both how many solar regulations a county will enact and the number of housing units that 

rely on solar heating.  The regulatory difference estimator being statistically significant 
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on the other hand means that solar regulations have an impact on the number of housing 

units that rely on solar heating and the odds of there being no housing units that rely on 

solar heating.  The logistic portion is just as expected, with additional solar regulations 

decreasing the odds of there being zero housing units that rely on solar heating.  On the 

other hand the negative binomial portion is unexpected as it has additional solar 

regulations decreasing the expected count of housing units that rely on solar heating. As 

with the financial incentives this could be the result of the data being too coarse, thus 

skewing the results.  This coarseness of the data means that even though the regulatory 

variables are reported as being statistically significant, it would be premature to attach 

any meaning to those results as the data is not accurately capturing the effects of solar 

regulations. 
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Chapter 7: Conclusions 

 This thesis set out to achieve two major objectives, with a third objective added at 

the end. The first was the update and analysis of the ZINB model used by Zahran et al. 

(2008) first in regards to its validity and robustness and then in either confirming or 

noting any changes in its analysis of the effect of climate, economic, and sociopolitical 

factors on the count of households in a county using solar heating.  The second objective 

was to use the model to provide an empirical measure of the effect financial incentives 

and solar regulations have on the count of solar using households. The final objective was 

to explore and explain the unexpected decrease in residential solar usage.  

The first objective was met, with the model, despite a few quirks, proving to 

accurately predict the number of occupied housing units that rely on solar heating in a 

county.  While the effects of some variables had changed between the new model and 

Zahran et al.’s (2008) model, for the most part the original conclusions drawn by Zahran 

et al. still hold.  From a policy making standpoint the only noteworthy changes were the 

presence of solar providers becoming statistically significant for determining the 

expected count of housing units that rely on solar heating and ICLEI participation 

becoming statistically significant for decreasing the odds of there being zero housing 

units that rely on solar heating.  This is because policies can be made to encourage solar 

providers to set up business within a county and of course the local government can 

decide to join the ICLEI.  (Consumption Age- add it) 

  There was less success in meeting the second objective, however. Measures of 

financial incentives turned out to be statistically insignificant while solar regulations had 

contradictory results.  Therefore, few recommendations can be made based on those 
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results. There are some policy implications to consider, despite all the problems.  What 

this does show is that just introducing a financial incentive or solar regulation is not 

enough to guarantee an increase in housing units that rely on solar heating.  This means 

that the incentive or regulation should be tailored to best fit the specific area it is to be 

implemented.  This ties back to the first goal as the climate, economic, and sociopolitical 

characteristics of a county can be used to determine what type of incentive or regulation 

should be used.  For example counties with high economic characteristics, but low 

sociopolitical characteristics should focus on incentives and regulations that build 

environmental consciousness instead of focusing on making solar systems more 

affordable.  

 The final objective was mostly successful.  There was a clear correlation between 

the drop in residential solar usage and densely populated counties that will provide a 

sound starting point for any future studies on the issue.  While there is too here to offer 

suggestions on how to address this decrease it is now clear where any efforts to do so 

need to take place. 

 There are a number of things that this thesis did not cover or covered inadequately 

that any future research should cover.  The biggest area to expand on is to obtain more 

meaningful measurements for financial incentives and regulations so that their impact can 

be better studied. Along those same lines updating the solar providers and urbanization 

variables should increase the explanatory powers of the model. The model could also be 

expanded with more climate, economic, and sociopolitical variables to improve the 

explanatory power of the model and provide policy-makers a more complete picture.  The 

most important variables to add would be local cost variables.  A more in-depth study of 
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the correlation between the decrease in housing units that rely on solar heating and 

densely populated counties should also be done. Given the apparent clustering of counties 

regarding solar adoption levels, a spatial econometric model could be applied to explore 

whether there is spatial autocorrelation, that is, a “neighbor effect” of the sort found by 

Gillingham (2010) and Rothfield (2010).  Finally, if the data can be found, a similar 

model should be built that measures the number of solar energy systems instead of solar 

heating systems.    
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Appendix 1 

 

Scoring system for state support of residential solar renewable technologies. 

Based on analysis of the DSIRE database (Alaska and Hawaii not included). 

 

1. Financial incentives. 

 

DSIRE provides an index of 10 financial incentive systems for the support of renewable energy. 
Five of the categories are designed for non-residential systems (corporate tax, industry support, 
bonds, production incentives, grants). Because the focus of the analysis is on residential use, these 
five categories were dropped, leaving five. The rebate and loan categories were both divided by 
either state or utility sponsorship, resulting in a total of seven scoring categories. See Table 1 for 
a description. 

 

The DSIRE database may only be searched using one conditional specification at a time within 
either renewable or efficiency programs. It was therefore necessary to reexamine each of the 468 
entries in the DSIRE summary table to identify solar-specific residential incentives, and then to 
differentiate solar water heating and solar space heating as subcategories of all solar incentive 
programs. Solar space heating programs were also scored separately if they were in place in 2000. 
Thus, four variables were scored for each incentive: total solar (all forms), programs including 
solar space heat, programs including solar space heat in 2000, and programs including solar water 
heating (scores don’t total due to overlap). Binary scoring was used to indicate whether or not the 
incentive was provided in any form at the state level. Reducing the measure to binary was 
especially desirable due to the manner in which many states are served by multiple utility 
companies, each of which might offer its own rebate or loan program. Counting each of these 
instances will inflate the score for larger states. The four state-level financial incentives indices 
are the sum of the binary scores over the seven categories. 

 

While the majority of the programs are at the state level, within the DSIRE database there are 47 
instances in which local programs are identified (after being reduced to residential solar only). 
Each of these was examined to determine if a specific county or counties could be assigned. It 
was also possible to assign some of the utility-sponsored incentive programs to a local level. 
When examination of a utility-sponsored program clearly indicated an exclusive county or 
municipal attachment then this entry was scored only at the local level. This analysis yielded 62 
counties with incentives above those scored at the state-level. These indices were summed across 
six categories (dropping state income tax), with differentiation between all solar, including solar 
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space heat, and including solar hot water. No local programs were identified that were in place in 
2000. 

 

2. Regulatory environment. 

 

The DSIRE database describes 12 regulatory mechanisms that support renewable energy, as 
described in Table 2. These can not be easily separated into mechanisms that apply only to the 
residential sector.  It is possible to identify subsets of the regulatory categories that are most 
germane to solar space heating and solar water heating (e.g., net metering is not, solar access is). 
Two separate indices were therefore calculated, again using a binary scoring scheme to indicate 
whether or not the regulatory mechanism exists in some form at the state level. An index of five 
items was summed for regulations that are germane to solar space heat and hot water, and an 
index of 12 items was summed over the full set of regulations as an indicator of the state’s 
general regulatory maturity for support of renewable energy. Again, separate measures were 
made for all regulatory mechanisms in place in 2000 and the subset representing heat- or water-
relevant programs that were in place in 2000. 

 

The DSIRE summary table of regulatory mechanisms also indicates the presence of local 
programs. A total of 85 such instances were identified in the summary table, representing 
counties in 23 states and eight of the regulatory categories. Each was examined to determine if a 
specific county could be assigned. A total of 60 local regulations were identified as relevant to 
renewable sources, spread across 21 states and seven of the regulatory mechanisms (four germane 
to solar space heat and water heat). As above, two indices were summed for the total number of 
regulations and those germane to solar space heat and water. No local programs were identified 
that were in place in 2000 (partially due to this information being unavailable in many of the local 
regulatory descriptions in DSIRE). 

 

Table 9. National Prevalence and Description of State-Level Financial Incentives Scoring 
Categories  

   from: (http://www.dsireusa.org/glossary/glossary.cfm?&CurrentPageID=8&EE=1&RE=1) 

Mechanism Prevalence Description 

Loan Programs 14 State 

9 Utility 

Loan programs provide financing for the purchase of renewable 
energy or energy efficiency systems or equipment. Low-interest or 
zero-interest loans for energy efficiency projects are a common 
demand-side management strategy for electric utilities. State 
governments also offer low-interest loans for a broad range of 
renewable energy and energy efficiency measures. 

Rebate 19 State States, local governments and utilities offer rebates to promote the 
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Programs 15 Utility installation of renewable energy systems and energy efficiency 
measures. The majority of rebate programs that support renewable 
energy are administered by states, municipal utilities and electric 
cooperatives; these programs commonly provide funding for solar 
water heating and/or photovoltaic (PV) systems. 

Personal Tax 
Incentives 

17 Personal tax incentives include personal income tax credits and 
deductions. Many states offer these incentives to reduce the expense 
of purchasing and installing renewable energy or energy efficiency 
systems and equipment. 

Property Tax 
Incentives 

28 Property tax incentives include exemptions, exclusions and credits. 
The majority of property tax incentives provide that the added value 
of a renewable energy system is excluded from the valuation of the 
property for taxation purposes. 

Sales Tax 
Incentives 

13 Sales tax incentives typically provide an exemption from the state 
sales tax (or sales and use tax) for the purchase of a renewable 
energy system, an energy-efficient appliance, or other energy 
efficiency measures. 

 

Table 10. National Prevalence and Description of State-level Regulation Scoring Categories  

   from: (http://www.dsireusa.org/glossary/glossary.cfm?&CurrentPageID=8&EE=1&RE=1) 

Mechanism Prevalence Description 

  Most Germane to Solar Space and Hot Water Heating 

Public Benefit 
Funds 

18 State-level programs typically developed during electric utility restructuring 
by some states in the late 1990s to ensure continued support for renewable 
energy resources, energy efficiency initiatives and low-income energy 
programs. 

Contractor 
Licensing 

9 Several states have adopted contractor licensing requirements for solar 
water heating, active and passive solar space heating, solar industrial 
process heat, solar-thermal electricity, and photovoltaics. These are 
designed to ensure that contractors have the necessary experience and 
knowledge to install systems properly. 

Equipment 
Certification 
Requirements 

3 Policies requiring renewable energy equipment to meet certain standards 
serve to protect consumers from buying inferior equipment. These 
requirements not only benefit consumers; they also protect the renewable 
energy industry by making it more difficult for substandard systems to 
reach the market. 

Solar  Access 
Laws 

34 Solar access laws are designed to protect a consumer’s right to install and 
operate a solar energy system at a home or business. Some solar access 
laws also ensure a system owner’s access to sunlight. In some states, access 
rights prohibit homeowners associations, neighborhood covenants or local 
ordinances from restricting a homeowner’s right to use solar energy. 

Permitting 24 Permitting standards can facilitate the installation of wind and solar energy 
systems by specifying the conditions and fees involved in project 
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Standards development. Some local governments have adopted simplified or 
expedited permitting standards for wind and/or solar. Also includes 
building energy standards (private and public). 

  All Others 

Generation 
Disclosure 

Rules 

24 Some states require electric utilities to provide their customers with specific 
information about the electricity that the utility supplies. This information, 
which must be shared with customers periodically, usually includes the 
utility’s fuel mix percentages and emissions statistics. 

Renewables 
Portfolio 
Standards 

32 Renewable portfolio standards require utilities to use renewable energy or 
renewable energy credits to account for a certain percentage of their retail 
electricity sales – or a certain amount of generating capacity – within a 
specified timeframe. 

Net Metering 44 For electric customers who generate their own electricity, net metering 
allows for the flow of electricity both to and from the customer. During 
times when a customer’s generation exceeds the customer’s use, electricity 
from the customer flows back to the grid, offsetting electricity consumed by 
the customer at a different time. 

Interconnection 
Standards 

38 Interconnection standards govern the technical and procedural process by 
which an electric customer connects an electric-generating system to the 
grid. Interconnection standards specify the technical, contractual, metering, 
and rate rules that system owners and utilities must abide by. 

Line Extension 
Analysis 

3 When a prospective electric customer requests service for a home or facility 
that is not currently serviced by the grid, the customer usually must pay a 
distance-based fee for the cost of extending power lines. In many cases, it is 
cheaper to use an on-site renewable energy system. Certain states require 
utilities to provide information regarding renewable energy options when 
customers request a line extension. 

Green Power 
Purchasing 

10 Many state and local governments have committed to buying green power 
to account for a certain percentage of their electricity consumption. 

Mandatory 
Utility Green 
Power Option 

8 Several states require certain electric utilities to offer customers the option 
of buying electricity generated from renewable resources. Typically, 
utilities offer green power generated using renewable resources that the 
utilities own, or they buy renewable energy credits from a provider certified 
by a state public utilities commission 

   

 


