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ABSTRACT

TURBULENCE MODELING OF STABLY STRATIFIED WALL-BOUNDED FLOWS

The subject of wall-bounded flows has been a matter of discussion and has received
considerable attention in the past few decades. This is mainly attributed to the fact that
the presence of the solid wall has profound effects on the turbulence and hence results in
anomalous mixing and transport of momentum, scalar and heat in environmental flows.
This is much more intense in the vicinity of the solid wall commonly known as the near-
wall region compared to regions away from the wall. This effect will be more complicated
in the presence of density stratification which has a strong influence on the development
of turbulence. Therefore, numerous field, laboratory, numerical and theoretical studies are
performed in a quest to gain a better understanding of wall-bounded flows especially in the
presence of stratification. However, there is still a lack of a clear picture on the near-wall
flow properties, the onset of turbulence and the resulting mixing in wall-bounded flows.

The aim of this dissertation is to employ both theory and numerical simulations to revisit
mixing in wall-bounded flows, especially in the near-wall region. The main objectives are:

e To investigate the unstratified near-wall turbulence and revisit the turbulent (eddy)
viscosity (1) formulation in unstratified wall-bounded flows. This will be followed by
derivation of a novel proposition for the appropriate velocity, length and time scales in
unstratified wall-bounded flows.

e To revisit the fundamentals of common Reynolds-averaged Navier-Stokes (RANS) clo-
sure schemes such as the standard k-e¢ model and investigate their capability to model

near-wall turbulence.



e To investigate the turbulent mixing in stably stratified wall-bounded flows. The mixing
of momentum, scalar and the efficiency of the mixing are evaluated.

e To study wall-bounded turbulent flows in the presence of stable stratification by per-
forming one-dimensional RANS simulations. In particular, this includes introduction of
a modified turbulent Prandtl number (Pr;) for wall-bounded flows and calibration of
the standard k-e model.

In this dissertation, a novel formulation for the turbulent (eddy) viscosity given by v, =
¢/S5?% is derived by assuming equilibrium between the turbulent kinetic energy production
rate (P) and the dissipation rate of the turbulent kinetic energy (€), where S is the mean
shear rate. Also, the relevant scales of length and velocity are derived. The propositions
are tested with the direct numerical simulation (DNS) data of unstratified turbulent channel
flow of Hoyas & Jiménez (2006) and unstratified turbulent boundary layer flow of Sillero et
al. (2013). The comparisons of the propositions with the exact computations from the DNS
data are excellent.

Furthermore, the suitability of the equilibrium assumption (i.e. P = ¢) for modeling
near-wall turbulence is revisited. This is important as most widely used turbulent viscosities
such as the formulation of the standard k-e model are developed by using the equilibrium
assumption. It is analytically shown that such 1, formulations are not suitable for modeling
near-wall turbulence.

Also, the turbulent mixing in stably stratified wall-bounded flows is studied by employing
analytical arguments. ‘A priori’tests are performed by using highly resolved stably stratified
channel flow DNS data of Garcia-Villalba & del Alamo (2011). It is shown that in such flows

assuming P = € + epg, where epg is the dissipation rate of the turbulent potential energy,
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holds in a big fraction of the flow depth. Also, the results show that an irreversible flux
Richardson number as R} = epg/(€+ epg) can properly predict the flux Richardson number
(Ry = —B/P), where B is the buoyancy flux. It is also shown that neglecting the transport
rate of epr and assuming equilibrium as —B = epg is not a suitable assumption.

Furthermore, the ideas discussed are utilized to perform ‘a posteriori’ tests and to simu-
late stably stratified wall-bounded flows by using RANS numerical models. To do this, first
a simple one-dimensional zero-equation as well as two-equation k-¢ RANS models are devel-
oped. It is shown that turbulent Prandtl numbers based on the homogeneous assumption
are not capable of providing a good estimation of the mixing and therefore an inhomogeneity
correction must be introduced. It is analytically shown that commonly used homogeneous
turbulent Prandt]l numbers should be modified for a wall-bounded flow using a correction as
(1—2z/D), where D is the total flow depth. This work is extended by revisiting the buoyancy
parameter (C.3) in the standard k-e closure scheme. Analytical arguments are used to show
that C.3 =~ 0. RANS results show the suitability of the propositions for modeling of stably
stratified turbulent channel flows.

The ultimate goal of this research is to enhance understanding of the fundamental aspects
of wall-bounded environmental flows and develop appropriate turbulence models that can

capture the physics of stably stratified wall-bounded turbulent flows.
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CHAPTER 1

INTRODUCTION

1.1. MOTIVATION

Wall-bounded turbulent flows are common phenomena in engineered flows as well as in
nature such as rivers, estuaries and oceans. The existence of the solid wall has intricate ef-
fects on the turbulent flow, particularly in the vicinity of the wall which is commonly known
as the near-wall region. The thin layer of the near-wall region is subtle and important to
comprehend as about 50% of the maximum velocity in the free-stream occurs in this region
(Hanjali¢ & Launder 1976) and the anisotropy of the flow is remarkable. Furthermore, many
environmental flows are influenced strongly by density stratification. The simultaneous ef-
fect of the solid wall and stratification leads to presence of anisotropy and inhomogeneity
in the flow causing boundary layer instability and generation of turbulence which has pro-
found effect on momentum and scalar transport and associated mixing. Therefore, stratified
wall-bounded turbulent flows are considered as one of the most complicated but interest-
ing research topics in fluid mechanics. Although the wall effect on the flows has long been
recognized, it is only fairly recently that the detailed aspects of the wall-bounded flows
have become clearer mainly due to the numerical simulation studies of Kim et al. (1987),
Durbin (1991), Armenio & Sarkar (2002), Hoyas & Jiménez (2006), Wu & Moin (2008) and
Garcia-Villalba & del Alamo (2011). However, despite such studies, there is still a lack of
robust understanding of the complexity associated with wall-bounded flows, especially in the
presence of density stratification. Hence, further investigation is warranted.

Unstratified wall-bounded turbulent flows widely exist such as air flow around the aero-
dynamic body surface of space shuttles or water flow in a shallow river. In such flows, it
is essential to correctly capture the near-wall velocity profile and the transition from lam-
inar to turbulent flow in the boundary layer. This is vital for correctly inferring the shear
stress on the solid body which plays a main role for designing, sustaining and operating

objects in direct contact to the turbulent fluid. The failure to do so might be fatal, such as
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the disaster of Columbia space shuttle in 2003. In recent years, numerical simulations such
as direct numerical simulation (DNS), large-eddy simulation (LES) and Reynolds-averaged
Navier-Stokes (RANS) simulations are widely used for modeling wall-bounded flows. DNS
and LES methods predict the flow with high accuracy but are prohibitively expensive and
not appropriate for modeling complex flows. On the other hand, while RANS models are
much faster, they suffer from lack of accuracy. Hence, in spite of great strides made to
introduce robust RANS models for simulating near-wall turbulence, there is still uncertainty
about the performance of such models for simulating flows with high Reynolds numbers and
complex geometries. Hence, further research is required to investigate RANS closure schemes
for modeling unstratified wall-bounded turbulent flows.

Besides unstratified flows, stratified wall-bounded turbulent flows are quite common es-
pecially in nature. Oceanic flows are a good example of such flows. Stable stratification is
ubiquitous in the ocean and its effect on the turbulence and mixing has long been recognized.
Stable stratification can be due to vertical temperature and/or salinity gradients (Staquet
& Sommeria 2002) leading to qualitative and quantitative changes in the small-scale mixing
of momentum and scalars, ultimately influencing large-scale processes (Armenio & Sarkar
2002). On the other hand, the presence of stable stratification resulting in buoyancy forces
along with existence of a perturbation smaller than buoyancy frequency are prerequisites
for internal waves generation (Aguilar & Sutherland 2006). Therefore, the ocean as a sta-
bly stratified environment which is constantly under the influence of external forces such as
tidal waves and wind stress fluctuations at the free-surface is a suitable environment for the
excitement, propagation and dissipation of internal waves. A major source of internal waves
generation in the ocean is through stratified fluid flow over bottom topographies such as
submarine ridges and seamounts (Legg & Adcroft 2003, Legg 2004). This interaction with
bottom features not only can result in generation of internal waves, but is also a major cause
of internal waves instability and breaking and hence generation of turbulence. The break-
ing of the internal waves resulting from interaction with the bottom boundary is usually

considered as a major source of energy required for turbulence and enhanced mixing in the
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FIGURE 1.1. Sketch (not to scale) showing some of the processes related to
ocean turbulence. (from Thorpe 2004).

ocean. A major hypothesis is that high turbulent (eddy) diffusivity (x;) in localized turbu-
lent patches is caused by breaking of internal waves due to their interaction with bottom
boundary (Gregg 1987, Munk & Wunsch 1998). Therefore, having a tangible understanding
of the bottom boundary layer in the presence of stratification, substantially improves the
comprehension of oceanic mixing processes.

Mixing is usually envisioned as a cascade that begins with energy transfer from surface
tides to internal tides and subsequent breaking internal waves resulting in turbulence (Rud-
nick et al. 2003). This has accentuated the study of the stratified bottom boundary layer in
order to better understand the turbulent mixing and transport processes of nutrients, pol-
lutants and salinity in the ocean. Figure (1.1) schematically depicts the small-scale oceanic

processes.

1.2. BACKGROUND AND OBJECTIVES

In this research, fundamental aspects of smooth wall-bounded flows and ensuing mixing

will be studied using theoretical analysis, ‘a priori’ testing by using published DNS data and
3



numerical simulations. Studies on both unstratified and stratified wall-bounded turbulent

flows are carried out. The main objectives of this research are as follows

(1)

To attain a detailed comprehension of wall effect on the mixing of momentum and
scalar in the near-wall region in fully developed unstratified and stratified wall-
bounded turbulent flows. In particular, fundamental characteristic scales of the
turbulence in the context of the turbulent-viscosity hypothesis (TVH) will be de-
termined in the near-wall region, where mean shear rate is dominant.

To investigate the effect of the equilibrium assumption by considering formulations
of the turbulent viscosity (1) developed based on the equilibrium assumption and
further study their capability for modeling near-wall turbulence.

To develop an appropriate turbulent Prandtl number for modeling stably stratified
wall-bounded flows using Reynolds-averaged Navier-Stokes (RANS) schemes and
assess the efficacy of the standard k-e closure scheme for modeling stably stratified

wall-bounded flows.

1.3. DISSERTATION LAYOUT

The remainder of this dissertation is composed of four further chapters. The contents of

chapters 3, 4 and 5 have been written up as journal manuscripts, hence they are relatively

self-contained and as such some redundancy exists, especially with regard to the literature.

Chapter 2 consists of a literature review on the turbulence schemes, unstratified and

stratified wall-bounded flows and mixing. It expands on some of the issues mentioned in

section 1.1. Governing equations of flow dynamics and different turbulence schemes are also

discussed.

Chapter 3 presents the work done in this study to understand unstratified wall-bounded

flows from a fundamental point of view. In this chapter, the relevant characteristic scales

are derived by using the equilibrium assumption. Also, ‘a priori’ tests are performed to

examine their suitability for describing the turbulence, using DNS data of wall-bounded
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turbulent flows. Furthermore, shortcomings of turbulent viscosity formulations based on the
equilibrium assumption are elucidated.

In chapter 4, the turbulent mixing in stably stratified wall-bounded flows is studied. The
equilibrium assumption is made and the mixing of momentum, scalar and the efficiency of
the turbulent mixing are evaluated.

In chapter 5, the efficacy of present models for simulating stably stratified wall-bounded
turbulent flows is examined. Also, an appropriate Pr; formulation for modeling such flows
is introduced. The proposed formulation is developed by using analytical discussions and its
efficacy is tested by performing numerical simulations. The performance of the standard k-¢
closure scheme and especially the buoyancy parameter (C.3) is investigated, as well. To do
this, analytical arguments are presented and modeling of a stably stratified channel flow is

implemented.

1.4. SUMMARY

This dissertation presents an investigation of wall-bounded turbulent flows with an eye
toward developing appropriate RANS models for simulating wall-bounded flows. This is done
by revisiting fundamental concepts of both unstratified and stratified near-wall turbulence
to predict momentum and active scalar mixing followed by implementation and testing of

proposed formulations in RANS simulations.



CHAPTER 2

LITERATURE REVIEW

2.1. INTRODUCTION

The interaction of fluid flow with solid walls is common in nature and engineered flows.
The nonlinear behavior of turbulent flows, the inhomogeneity arising from the wall combined
with the anisotropy effects of stratification as well as the possible presence of internal waves,
have made wall-bounded flows one of the most complex but interesting problems to study.
Numerous studies using field experiments, laboratory experiments and numerical simulations
have focused on understanding this problem.

In this chapter, a review of the governing equations of fluid flows is provided first, followed
by an overview of the significant properties and modeling methods of wall-bounded turbulent
flows. Further, the effect of stratification on wall-bounded turbulence and turbulent mixing
are discussed.

More comprehensive reviews on the unstratified and /or stratified wall-bounded flows can
be found in the works of Kim et al. (1987), Durbin (1991), Pope (2000), Armenio & Sarkar
(2002), George (2007), Jones et al. (2008), Marusic et al. (2010) and Garcia-Villalba &
del Alamo (2011). Detailed discussions on the turbulent mixing are provided in works of
Linden (1980), Barrett & Van Atta (1991), Smyth et al. (2001), Staquet & Bouruet-Aubertot
(2001), Venayagamoorthy & Stretch (2006) and Stretch et al. (2010).

2.2. GOVERNING EQUATIONS

Any motion including fluid flow can be described by the principles of the momentum,
mass and energy conservation. The hard to solve fluid flow governing equations are derived
by using these three simple principles. In this section, the governing equations are presented

for an unsteady, three-dimensional, irrotational, incompressible and stratified flow.

2.2.1. MoMENTUM EQUATIONS. The fluid flow is controlled by Newton’s second law of

motion, relating the imposed force with mass and acceleration. For a three dimensional,
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irrotational system with the Boussinesq approximation, the momentum equations (often

known as the Navier-Stokes equations) are given by

Du;  Ou; 0 _ Op du;
Di =P P () = ~ g+ g — peda, 1)

p

where v is the molecular (kinematic) viscosity (assumed as a constant). The Einstein sum-
mation convention is used with ¢, 7 = 1,2,3 where z3 represents the vertical coordinate. d;;
is the Kronecker delta, equal to unity for ¢ = j and zero for 7 # j.

In geophysical flows, Coriolis force (F) and the gravitational force (F}) are the external
forces acting on the fluid. The Coriolis force is an apparent force in a rotating coordinate
system which arises from the Earth’s rotation and only changes the direction of motion, not
the speed. This force is important for large scale systems, but in this study can be neglected
as we just focus on small-scale events in water bodies.

The fluid density can be decomposed into a constant density (pg), local mean value (p)

and fluctuation (p') given by

p=po+p+p. (2)

By inserting the decomposed density in equation (1) and rearranging, the momentum equa-

tion can be recast as
/ Du; 1 0
325 (5) - -G o
pPo+p Dt po+p) 0z
/ 2,,.
—l—(l—i— P _)l/ Ou;
,00+,0 8xj8xj

+7p+ 0
_ (M) 6 )

po+p

In stratified water bodies the ratio (#) < 1 and can be neglected in the acceleration
(inertial) and viscosity terms, but should be retained in the gravity term as it is the primary
contributor to buoyancy. This assumption is known as the Boussinesq approximation. More-

over, as p < po then the mean density is negligible compared with the background density.



In addition, if p, = pg + p and p, = py + p are considered as reference density and pressure,
and the hydrostatic relation holds, then the reference pressure and density are related as
Op,/0x3 = —p,g. This assumption helps in numerical simulations when starting from the
rest, as the pressure field is taken as the initial hydrostatic pressure field. However, for an
irrotational, incompressible and stratified fluid the Navier-Stokes equation (equation 3) can

be rewritten as

(4)

+ 7 (uuy) = v

ou,; 0 _i op 0%u; (p 5
ot 0xj Lo a!L',L 8xj3xj s
2.2.2. CONTINUITY EQUATION. In fluid mechanics, mass is absolutely conserved and can

be described by a mass conservation equation. The continuity equation using an Eulerian

point of view is given by

@ 4 d(pus)

=0 )

or from a Lagrangian point of view is as
— =0 6
Dt T Par =0 (6)

where D/Dt = 0/0t + u;(0/0x;) is the total or material derivative. For the flows under
Boussinesq approximation, p~*(Dp)/(Dt) is negligible compared to du;/dx;, therefore the

continuity equation reduces to
8ui
8951-

—0. (7)

This implies that the flow field is divergence free.

2.2.3. DENSITY TRANSPORT EQUATION. In unstratified flows, the density is constant
and acts as a ‘passive’ quantity in the momentum equation, but in stratified flows the density
field evolves with the flow and is coupled with the momentum equation through the buoyancy
term in the vertical momentum equation. This highlights the importance of considering the

evolution of density transport as one of the flow governing equations. The density transport
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is depicted through an advection-diffusion equation based on the energy equation as

Dp 9dp 0 B D?p
Dt n 82& * an (pU]) n Km(?xjaxj’ (8>

where k,, is the molecular diffusivity.

2.3. TURBULENCE SCHEMES

The highly nonlinear Navier-Stokes equations are hard to solve analytically even for the
simplest turbulent flows. The mathematical solution of Navier-Stokes equations describing
the complete spatial and temporal behavior of turbulent flows can be obtained by solving
the fluid governing equations numerically. In general, there are three main approaches for
solving these equations numerically, namely: Direct Numerical Simulations (DNS), Large-
Eddy Simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) simulations. DNS
resolves the whole spatial and temporal scales of the flow without employing any ‘turbulence
model’, while LES uses a spatial filter to simulate large scales explicitly and uses a turbulence
model for small scales. RANS simulations just model the mean field of the flow by using
turbulence closure schemes. Figure (2.1) compares these simulation models. Brief details of

these models will be provided later.

2.3.1. REYNOLDS-AVERAGED NAVIER-STOKES SIMULATIONS. Reynolds-averaged Navier-
Stokes (RANS) equations are derived by applying Reynolds decomposition and averaging to
the Navier-Stokes equations. Reynolds decomposition involves splitting any instantaneous
quantity into mean and fluctuating components by time-averaging, e.g. the velocity field can
be represented as

where () and (') show the mean and fluctuation, respectively. Therefore, the momentum

equation in the RANS framework can be written as

ou; 0

1 9p U, p
L9 p 0°U; p
at &L‘j

£o 8%2 8Ij8$j £o 8xj

(U:iU;) =



S =
(c) Reynolds-Averaged Navier-Stokes Simulation (RANS)

FIGURE 2.1. Flow over a back-ward facing step (spanwise vorticity) obtained
from: (a) Direct Numerical Simulations (DNS), (b) Large-Eddy Simulations
(LES), and (c) Reynolds-averaged Navier-Stokes (RANS) Simulations (Wu,
Homsy & Moin; Gallery of Turbulent Flows, Center for Turbulence Research)

where wu’; is called the Reynolds stress or the turbulent momentum flux. The mean conti-

nuity equation is similar to its instantaneous counterpart (i.e. divergence free) and is given

by
oU;
=0. 11
o (11)
The mean density transport evolves as
op 0 — 0%p 0
— + —(pU,) = kyp—— — —(p'1)), 12
ot + 3xj (p J) & 0@8:@- (%zzj (p uj) ( )

where p’_u; is the turbulent density flux. As shown in equations (10)-(12), the RANS equa-

tions resemble the basic governing equations, except for the turbulent momentum and density

10



fluxes which resulted from the Reynolds decomposition and averaging. Six unknown terms
of the Reynolds stress tensor and three unknown terms of the density flux term imply that
the number of unknowns exceeds the number of available equations. This leads to an unde-
termined system of equations commonly referred to as the ‘closure problem’. To resolve this
severe shortcoming, a number of hypotheses and methods are prescribed. The turbulent-
viscosity and gradient-diffusion hypotheses are the most widely used concepts to deal with
the closure problem. The turbulent-viscosity hypothesis (TVH) assumes that the deviatoric
Reynolds stress is proportional to the mean shear strain rate as

ov.  IT;
aZL‘j c%c,

- 2 <
—(ufe) + Gkdy =~ ) =205, (13)

where k = (1/2)u? = 0.5(u/* + v + w™) is the turbulent kinetic energy and v; is the turbu-
lent (eddy) viscosity. The gradient-diffusion hypothesis (GDH) assumes that the turbulent

density (scalar) flux is aligned with the mean density (scalar) gradient as

—(p’uj) = th (14)

where k; is a positive scalar, named turbulent (eddy) diffusivity. Although these hypotheses
have known restrictions and shortcomings (e.g. see Pope 2000), they are widely accepted
and implemented in RANS turbulence simulations. These hypotheses resolve the closure
problem by decreasing the number of unknowns, but still require a correct proposition for
the turbulent viscosity and diffusivity. In spite of great efforts, suitable formulations for the
turbulent viscosity and diffusivity are still sought-after goals.

Different closure schemes are introduced widely to define the turbulent viscosity ().
Depending on the number of additional transport equations that are used to solve for v,
these closure schemes are classified as zero-equation, one-equation or two-equation models.
Zero-equation or algebraic models do not require additional transport equations (PDE’s) and
provide a prediction of the turbulent viscosity (1) directly from the mean flow variables.
One-equation models involve the use of one additional transport equation (usually turbulent

kinetic energy) and assess the turbulent viscosity (1;) based on the estimated turbulent
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quantity. Two-equation RANS closure schemes such as the standard k-e model make use of
two additional transport equations for turbulence quantities to define the turbulent viscosity
(¢). On the other hand, in order to provide closure for the turbulent flux term in the density
transport equation, most turbulence schemes make use of a turbulent Prandtl number (Pr;)
instead of defining the turbulent diffusivity (k) explicitly. The turbulent Prandtl number is
defined as

Vt

Pry = —. (15)

Kt

A general parameterization for Pr; is widely sought and over the last few decades, many
researchers have proposed formulations for Pr; (e.g. Kays 1994, Schumann & Gerz 1995 and
Venayagamoorthy & Stretch 2010). However, the efficacy of these propositions for modeling
stratified flows has been a matter of doubt.

Extending the Reynolds decomposition and averaging process to the energy equations
results in the introduction of new turbulent quantities known as the turbulent kinetic energy
(k) and the turbulent potential energy (£;). In what follows, these concepts are briefly

discussed.

e Turbulent kinetic energy

The turbulent kinetic energy is half the sum of the isotropic Reynolds stresses given by

1 1
k= §(u’u’) = §(UI2 + 0% 4+ w'’?). (16)

The evolution equation for the turbulent kinetic energy can be derived by splitting the total
kinetic energy equation into the mean and fluctuating (turbulent) components (see Pope

2000 for a detailed discussion). For an incompressible, stratified flow the turbulent kinetic
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energy is given by

%+ﬁ% B (uu)aU Ou; Oul, +8u;aug 95 s
ot T0x; © I 0w Ox; 0x;  Oxj Ox; pop "
T h pe R

b
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v
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——" v v
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To summarize, the terms in equation (17) are as follows:

) Production rate of the turbulent kinetic energy (P).
IT) Dissipation rate of the turbulent kinetic energy (e).

[II) Buoyancy flux (B).

)
)
)
IV) Viscous transport of the turbulent kinetic energy (D,).
V) Turbulent velocity transport of the turbulent kinetic energy (7).
)

VI) Pressure transport of the turbulent kinetic energy (II).

The exact value for the dissipation rate of the turbulent kinetic energy is

02 (ul,
__0ulou . (i) (18)

Oz Ox; Ox;x;

The last term in equation (18) is very small compared to other terms (Pope 2000) and is

usually neglected.

eTurbulent potential energy

The turbulent potential energy is defined as

E, = _J pldz. (19)

Po

By assuming that p'/z’ = 0p/0z, where 2’ is the displacement from a stable position along

the background density gradient and replacing dz = dz’ = (0p/0z)~'dp’, equation (19) can

st (@) fre(@) ()
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be rewritten as



where the transport equation for the scalar (density) variance ((1/2)p2) is

T PV N A CL) §
. _ P _ 21
o Yo, (P5) 5, it a:cjaxj oz, (21)
‘I, ]I I‘]’I

The terms in equation (21) are

I) Production rate of density variance (P,).
IT) Dissipation rate of density variance (e,).

IIT) Transport rate of density variance (7,).

The transport equation of the turbulent potential energy can be simply obtained by multi-
plying both sides of equation (21) by N2 (9p/dz)

As previously discussed, RANS modeling relies on employment of turbulence closure
schemes to model turbulent flows. The k-¢ closure scheme is the most widely used scheme for
modeling turbulence (Durbin & Pettersson Reif 2011). Hence, in the following we introduce
and revisit the k-e model.

2.3.1.1. The k-e Model. The k-e model is a two-equation complete turbulence model
which is widely used in engineering and incorporated in commercial CFD codes. Launder
& Spalding (1972) and Jones & Launder (1973) are widely credited as the developers of
the standard k-e¢ model. This turbulence closure scheme solves two transport equations to
obtain the turbulent kinetic energy (k) and its dissipation rate (¢). In the standard k-e¢ model,
the turbulent viscosity (1) for regions away from the wall is derived assuming equilibrium
between the turbulent kinetic energy production rate (P) and the dissipation rate of the
turbulent kinetic energy (e) for an unstratified flow (i.e. P ~ €). Hence, we can write
P = (—u'w')? =~ ye. Using the proposition of Kolmogorov (1942) as —u'w’ = ck'/?, the

turbulent viscosity (14) for an unstratified flow is given by

2 2
Vt—ck——C’k— (22)
€ €

where C), = (|u/w’|/k)? is the turbulent viscosity parameter, shown by experiments and DNS

data (e.g. Kim et al. 1987) to be approximately equal to 0.09 in the log-law region (i.e.
14



away from the near-wall region). It is well known that the standard k-e model is not suitable
for modeling the near-wall turbulence, as the formulation for the turbulent viscosity (1)
overpredicts the exact v; in this region. An in-depth study of near-wall modeling using the
k-e¢ model will be presented in chapter 3.

In order to calculate the turbulent viscosity (1), the standard k-e model requires solutions
for k and e. To do this, the k-e model uses an almost exact equation to solve for the turbulent
kinetic energy as

T _p_ei By
ot %o, TP

ok — 0k 0 (ut 81{:)‘ (23)

oy, 0x;
The last term is the only empirical term and is the modeled transport of the turbulent kinetic
energy by using the gradient-diffusion hypothesis.

It is hard to define € explicitly as the velocity fluctuations are required. Therefore, the
k-e model solves an empirical transport equation for e that is analogous to the transport

equation of k (equation 23) given by

2
OJe — Oe Pe € Be 0 (&%) (24)

a + Uja_xj = Cd? — 062? + Ceg? + a—xj

o 0x;

In this equation, Cy, C» and Cg are empirical constants for production, dissipation and
buoyancy terms. The last term in equation (24) is a modeled transport term by using the

gradient-diffusion hypothesis. The empirical coefficients are given in table (2.1).

Ou Cel 062 Ok O¢
0.09 144 192 1.0 1.3

TABLE 2.1. Values of constants in the standard k-e model

There is no consensus on the value of C.3 and is still a source of controversy in stratified
turbulence modeling. Durbin & Pettersson Reif (2011) assumed C.3 = C¢y = 1.44 as this
results in —B < P, Baum & Caponi (1992) suggested C.3 = 1.14 while Burchard & Baumert

(1995) proposed negative values for C.s.

2.3.2. LARGE-EDDY SIMULATION. The accuracy of RANS models is always a matter of

discussion in turbulence modeling, therefore numerical methods with better accuracy, but
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still feasible for industrial applications are desired. Large-eddy simulation (LES) has gained
attention in the past few decades especially with increase of the computational power. At
present, LES is widely used as a powerful tool in research and industry with reasonable
computational cost and accuracy. LES captures the unsteady and energy-containing motions
of large eddies, but still relies on turbulence models to model the effect of small scales. A
spatial decomposition called ‘filtering’ is applied to the governing equations, splitting the
velocity field into a filtered or mean value ((U)) and a residual or a sub-grid scale ((u')).
The filter size can either be determined implicitly by the numerical domain grid size or by
introducing filter functions (Gullbrand & Chow 2003). The filtered governing equations for

unsteady, three-dimensional, stratified flows with Boussinesq approximation in LES are

oU) | UL _ 109U o) O

ot 3:16]- £o al’l 8:Ej8:cj g Lo 3 8xj ( )
subject to continuity equation as
Uy
= 0. 26
. (26)
Also, the filtered density transport equation is
0 d(pU; 0? Ox;°
) | el _ O (27)

ot ' Owm; ™Ox,0u; O
In equations (26) and (27), 759% and x7°* are the sub-grid scale (SGS) tensor and sub-grid

scale flux vector respectively and are defined as

7565 = (U:U;) — (Ui)(Uy), (28)

]

X5 = (pUs) — {o)(Uy). (29)

With the existence of residuals, like RANS models, LES suffers from the closure problem,
and requires SGS models to resolve closure. The accuracy of LES highly depends on the
efficiency of SGS models used to define the sub-grid scale (SGS) motions. The simplest and

most well-known closure method is introduced by Smagorinsky (1963). This model uses a
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linear turbulent viscosity (4) to model the residual motions as

7565 = —2u,(S,;), (30)

ij
where the turbulent (eddy) viscosity is defined as
v = 15(S) = (CsA)*(S). (31)

In this equation, A is usually taken as the grid size, Cg is the Smagorinsky constant and
(S) = 1/2(54;)(Si;) is the characteristic rate of strain. The main drawback of Smagorinsky’s
model is that it uses a predetermined empirical constant, which is not universal and shows
large variations depending on the flow type, geometry, domain resolution and the local
characteristics of the flow (Germano et al. 1991, Park et al. 2006). Lilly (1966) defined
Cs ~ 0.23 for a homogeneous isotropic turbulence. Deardorff (1970) ran a three-dimensional
turbulent channel flow and observed that a large value of C's results in damping of large-scale
fluctuations and proposed Cs = 0.1. However, the commonly used value is Cs ~ 0.1 — 0.2.
Germano et al. (1991) introduced a modification to Smagorinsky’s model by using a dynamic
sub-grid scale model which allows Smagorinsky constant (Cs) to change with time and
space. The proposed method employs a two-level filtering of the flow variables to establish
an algebraic relation between the resolved turbulent stresses and the sub-grid scale stresses.
On the other hand, the other deficiency of Smagorinsky’s model is that the SGS turbulent
viscosity does not vanish at regions where the sub-grid scale dissipation is expected to be zero
and therefore even the dynamic sub-grid scale models show large variations in time and space
(Park et al. 2006). Vreman (2004) has proposed a model based on the mean shear rate and
grid size that ensures the SGS turbulent viscosity goes to zero when SGS dissipation vanishes.
The model is tested for channel flows and transitional flows and showed good agreement with
experiments and DNS data. Park et al. (2006) proposed modification to Vreman’s model
and introduced a dynamic coefficient by assuming general equilibrium between the sub-grid

scale dissipation and viscous dissipation through a two-level filtering. You & Moin (2007)
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further modified Vreman’s model and simplified Park et al. (2006) model by introducing a

single-level filtering model.

2.3.3. DIRECT NUMERICAL SIMULATION. Direct numerical simulation (DNS) is used
to solve for the velocity and scalar field of turbulent flows without resort to a ‘turbulence
model’. DNS fully resolves the temporal and spatial scales of the flow from the Kolmogorov
length scale (n), asserted to be the smallest scale in the turbulent flow where the molecular
viscosity () dominates, to the largest energy-containing length scales. Solving a very finely
resolved flow domain is an extremely hard task that was not possible until only a few decades
ago. Despite the increase in computational power, DNS is still restricted to simple flows with
regular geometries. Furthermore, at higher Reynolds numbers, the number of the grid points
required to resolve the flow field down to the Kolmogorov length scale increases exponentially,
therefore DNS is also limited to low to moderate Reynolds number flows. These shortcomings
have made DNS to be more of a valuable technique employed to understand the fundamental

physics of turbulent flows rather than a tool for industrial applications.

2.4. WALL-BOUNDED TURBULENCE BASICS

Wall-bounded turbulent flows are ubiquitous in most natural and engineered flows. The
presence of the solid wall has profound effects on the transport of momentum, mass and
heat. As such, it is not surprising that the subject of wall-bounded flows has received much
attention in the last few decades. Wall-bounded flows can be generally classified into three
canonical categories of channel flow, pipe flow and boundary layer flow. Fully developed
channel flow with simple geometry has been the subject of research with the goal of un-
derstanding the complex structure of turbulent wall-bounded flows. Nikuradse (1929) and
Reichardt (1938) are among the first investigators to study fully developed channel flows,
while Laufer (1948) has provided the first details of the fully developed channel flow statis-
tics. Eckelmann (1974) performed experiments to investigate the turbulence statistics in the
near-wall region by using an oil channel with a thick viscous sublayer in order to measure

very close to the wall. These early experiments provided valuable insights on the complex
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turbulence interactions in wall-bounded flows, but there was still poor agreement in the re-
ported measurements (Kim et al. 1987). This accentuated the need for performing highly
resolved numerical simulations for a detailed investigation of wall-bounded flows. Deardorff
(1970) and Schumann (1973) are among the first to perform three-dimensional simulations
to study wall-bounded flows. However, they did not resolve the near-wall region due to
computational costs. Kim et al. (1987) performed the first (seminal) DNS of fully devel-
oped channel flow. Emergence of DNS opened a new path in turbulence studies, enabling
researchers to measure exact turbulence statistics such as Reynolds stresses. The early nu-
merical works were restricted to low-Reynolds-number flows due to limited computational
facilities, but over the years a number of DNS works with higher Reynolds numbers have
been implemented such as works of Moser et al. (1999), del Alamo et al. (2004), Hoyas &
Jiménez (2006). Higher Reynolds numbers simulations enable researchers to have a better
understanding of wall-bounded flows especially in the near-wall region.

Experimental and DNS observations have shown that wall-bounded turbulent flows can
usually be subdivided into two-main regions: an inner region for z/D < 0.1 and an outer
region for z/D > 0.1, where z is the local flow depth from the wall and D is the total
depth. The inner region can be further subdivided into three different layers namely: viscous
sublayer for z* < 5, buffer layer for 5 < 2zt < 30 and log-law region which overlaps both the

inner region and outer region with z* > 30 and z/D < 0.3. The wall unit (z*) is defined as
2 =wuz/y, (32)

where u, is the friction velocity and v is the molecular (kinematic) viscosity. The viscous
sublayer and the buffer layer together are defined as the near-wall region or viscous region
since the viscosity is important and the energetic and the dissipative scales overlap (Jiménez
& Moser 2007). Although the thickness of the near-wall region is two or more orders of
magnitude smaller than the total flow depth, its effect extends throughout all the flow
region as almost 50% of the flow velocity from the wall to the free-surface occurs in this thin

region (Hanjali¢ & Launder 1976). The remaining velocity difference is mostly obtained in

19



the logarithmic layer. Near the wall the mean shear rate is high with the highest mean shear
rate occurring right at the wall leading to considerable inhomogeneity and the viscosity effect
is noticeable resulting in low-Reynolds-number flow. However, Durbin (1991) has discussed
that it is the inviscid wall blocking effect resulting from the impermeability condition at
solid boundary (i.e. zero normal velocity) that suppresses the turbulent transport in the
wall region, not the viscous effects.

It is widely shown that in the near-wall region there is an imbalance between the pro-
duction rate of the turbulent kinetic energy (P) and the dissipation rate of the turbulent
kinetic energy (¢), which leads to a noticeable transport of k£ in this region. However, obser-
vations show that in the log-law region which starts at z*+ ~ 30, the transport of k becomes
negligible and it is legitimate to assume equilibrium between P and € (i.e. P/e ~ 1). Hence,
the logarithmic region is also named as the equilibrium layer (Townsend 1961). Due to the
non-linear behavior of the near-wall region which can also be physically attributed to the
rapid decrease of the turbulent eddy sizes as approaching the wall, most turbulence models
have difficulties modeling this region. Therefore, most of the existing formulations for the
turbulent viscosity such as the formulation of v; in the standard k-e¢ model are developed
assuming the existence of a logarithmic layer and hence the balance between the produc-
tion and the dissipation rates of k. Such turbulence closure schemes avoid modeling the
near-wall region turbulence by employing wall-functions. A wall-function helps model the
wall-bounded flows from the logarithmic layer by assuming the existence of a logarithmic
velocity profile and constant stress region. However, the DNS data show that these models
are qualitatively wrong to be used for modeling the near-wall region, requiring new develop-
ments (Pope 2000). For example, Durbin (1991) has discussed that the standard k-¢ model
overpredicts the near-wall turbulent viscosity (1;). To handle this drawback, special treat-
ment called damping functions (f,) are introduced to reduce the turbulent viscosity in the

near-wall region. A damping function is the ratio of the exact turbulent viscosity to the

20



predicted turbulent viscosity given by

Vi

fu= CRe (33)

Such ideas were first introduced by van Driest (1956). Other popular damping functions have
been introduced by Jones & Launder (1973), Launder & Sharma (1974), Lam & Bremhorst
(1981), Patel et al. (1985) and Rodi & Mansour (1993). Most of these models fall back
on the employment of the friction velocity (u,) and/or the wall unit (z%). The major
drawback of these models is that they are mostly tuned for low-Reynolds-number DNS data
and are not universal. To resolve this shortcoming, Durbin (1991) has introduced a more
universal model that avoids the use of a damping function. He concludes that the vertical
(cross-stream) velocity fluctuation is responsible for the transport of the turbulence in a

wall-bounded flow and introduces a fourth-order turbulence scheme called k-e-v2 as
—k
v = cw?—, 34
= ! (39
where ¢/, ~ 0.2 is a constant and w’ is the cross-stream velocity fluctuation. Although this
model performs well near the wall, it is a more sophisticated model compared to the standard
k-e model, solving for two extra transport terms. Also, it still employs a constant (c],) which

is sensitive to the Reynolds number. Hence, a simpler model is still a sought-after goal.

2.5. STRATIFICATION IN WALL-BOUNDED FLOWS

Stably stratified channel flows are inevitable in nature such as in the atmosphere, estuar-
ies and oceans, where temperature and/or salinity gradients are large enough that buoyancy
effects become dynamically important. The atmospheric boundary layer is typically stable
at nights due to stable temperature gradients, while oceanic flows are often stable. Buoyancy
effects arising from the density stratification add another term of complexity to any turbulent
flow through coupling of the momentum and the density transport equations. The buoyancy
force arising from the stable stratification impedes turbulent motions converting a portion

of the turbulent kinetic energy into turbulent potential energy through mixing (Briggs et
21



al. 1998). To date there has been a great deal of work on homogeneous stratified flows and
unstratified inhomogeneous flows but it is only recently that research works on inhomoge-
neous stratified flows are emerging. Most experiments on wall-bounded flows are performed
on open-channel flows or boundary layers. Webster (1964) studied grid-generated turbulent
flows with vertical temperature and velocity gradients in outer layers in wind tunnels. One
of the first experiments on stratified wall-bounded flows was done by Arya (1975) on a flat
plate. He made observations in a well-developed, thermally stratified, horizontal, flat-plate
boundary layer and the effects of buoyancy on the mean flow and turbulence structure are
studied. He observed that the mean velocity and temperature profiles are dependent on the
thermal stratification in both the inner and outer layers. Komori et al. (1983) experimen-
tally studied stably stratified open-channel flow. They investigated the outer layer, where
the wall effect is small and observed that the turbulence quantities are correlated with the
local gradient Richardson number (Ri,). The gradient Richardson number (Ri,) is a relative
measure of the strength of the buoyancy and mechanical forces in a fluid flow and is defined

as
N?
N

Here, N = —/g/po(0p/0z) is the buoyancy or Brunt-Viisili frequency and S = dU/dz

Ri, (35)
is the mean shear rate with z defined as the vertical distance from the wall. N shows
the oscillating frequency of a fluid particle when displaced from its stable position in a
stratified fluid and is a measure of the strength of the density stratification. Ohya et al.
(1997) studied the turbulence structure in a thermally stratified wind tunnel and observed
suppression of velocity fluctuations in both streamwise and vertical directions. However,
stratified channel flows are hard to realize in laboratory experiments because of technical
difficulties to keep the walls at constant temperature, the influence of the side walls, etc. As
a result, the existing laboratory experiments are few and at fairly low Reynolds numbers.
These experiments mostly show the final fate of the mean flow profiles and the suppression of
turbulent statistics due to stable stratification, without providing the small-scale turbulence

statistics in stably stratified wall-bounded flows.
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On the other hand, with the emergence of highly resolved numerical simulations, the
numerical study of wall-bounded flows are becoming feasible and is fairly straightforward
compared to laboratory experiments. Garg et al. (2000) performed numerical simulation
of stably stratified channel flows. They used LES and DNS to delineate the stratified flow
regimes and transition between them based on the gradient Richardson and Reynolds num-
bers. For a better understanding of the buoyancy effect, a Dirichlet boundary condition was
used and the density was kept constant at both upper and lower boundaries. They also
studied mean flow quantities and observed the suppression of the log-law region. Armenio
& Sarkar (2002) studied stably stratified channel flows behavior for various stratifications
with the same density boundary condition as Garg et al. (2000). They used LES technique
for very low friction Reynolds number of Re, ~ 180 and with friction Richardson numbers
up to Ri, = 480. The friction Richardson number is defined as

A
_9/p'B _ |AplgD
(uT/D)2 pouZ

(36)

T

where Ap is the maximum density difference in the channel at the initialization of the
simulation. They concluded that the gradient Richardson number (Ri,) is a very good local
buoyancy determinant. The turbulent motion was observed to be two-dimensional with
increasing stratification, while for the highest stratification the buoyancy-affected region
encroaches into the inner layer, suppressing the low speed streaks in the near-wall region.
Also, in the core of the channel where the mean shear rate () relaxes, internal wave motions
were seen. Taylor et al. (2005) employed LES to investigate stably stratified open channel
flow. They imposed a constant heat flux at the top and an adiabatic bottom wall (i.e. no
heat transfer at the wall), different from previous works. They showed that this different
boundary condition leads to an untouched near-wall turbulence production and consequently
the buoyancy flux, the turbulent Prandtl number (Pr;) and a generalized flux Richardson
number (Ry = —B/(—B + ¢€)) are seen to be different from free shear layers and channels
with constant temperature walls, highlighting the major effect of the near-wall on the entire

behavior of the stratified channel flow. Interestingly, unlike Armenio & Sarkar (2002), they
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did not see the collapse of quantities as a function of the gradient Richardson number (Ri,).
They observed that the vertical turbulent Froude number (F'r,) defined in equation (37)
is a better measure of the turbulence in the upper portion of the channel where buoyancy

is dominant and affects the turbulent patches generated at the bottom wall. The vertical

()"
-— 37
NLgp ’ (37)

turbulent Froude number is
Fr, =

where L is the Ellison length scale introduced by Ellison (1957) which provides a measure of
the vertical distance traveled by particles before either returning to their equilibrium position

or mixing in the density field (Venayagamoorthy & Stretch 2010). Lg is defined as

N\ 1/2
pl2
Ls = % (38)

where p’ denotes the density fluctuation. The latest work is the DNS by Garcia-Villalba
& del Alamo (2011) which has so far the highest Reynolds number with Re, = 550. They
have used similar configuration as Armenio & Sarkar (2002) and arrived at almost similar
conclusions to those suggested by them.

It should be noted that although these numerical simulations have provided valuable
information about turbulence quantities that are not easy to obtain from field or laboratory
experiments, they suffer from the low-Reynolds-number issue. This shortcoming causes the
flow not to be sufficiently turbulent especially for higher stratifications.

However, like unstratified flows, DNS and LES methods are not appropriate for modeling
large-scale stratified wall-bounded flows and RANS turbulence models remain popular. For
such flows, it is required to capture buoyancy fluxes (or the turbulent diffusivity) additional
to momentum fluxes. The standard k-e¢ model remains a popular method for modeling
stratified flows, commonly using a turbulent Prandtl number (Pr;) to link the momentum
and density (scalar) fluxes. This highlights the importance of revisiting this model as well as
Pry for modeling stably stratified wall-bounded flows. A complete discussion will be provided

in chapter 5.
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2.6. INSTABILITIES AND BREAKING

Most of the studied processes in geophysical fluid dynamics have been for cases where

the rotation is dominant, implying small Rossby numbers defined as

R, =U/fL, (39)

where f is the Coriolis frequency and U and L are characteristic velocity and length scales,
respectively. These large-scale phenomena depend on and lead to very small-scale processes
and finally turbulent motions, where rotation is not important. The chaotic and churning
nature of turbulent flows usually arise from onset of instabilities in the fluid. Therefore,
in the context of geophysical systems it is essential to fully comprehend the small-scale
phenomena, such as instability and breaking processes in order to investigate and model
geophysical flows.

Instabilities and breaking are in general defined and regarded as a short-term, transient
and active process ensuing irreversible dissipation of the fluid flow energy (Imberger 1998,
Michallet & Ivey 1999) which lead to turbulent motions with small length scales. The
complex instability and consequently breaking result in distortion of isopycnals leading to
‘irreversible’ transfer of turbulent kinetic energy into potential energy through rearrangement
of the density profile. This process is known as ‘turbulent mixing’. The turbulent mixing
is at the bottom end of a set of obscure and intricate processes leading to very small-scale
motions in the ocean and plays an important role in determining distribution of stratification
and biogeochemical matter in water columns (Wiiest et al. 2000).

However, there are various types of instabilities with distinct mechanisms occurring in
stratified flows (Sonmor & Klaassen 1997). These instabilities are usually a function of the
flow characteristics such as the amplitude of the internal wave and the interaction with the
surrounding. Primarily breaking is considered to occur from two types of instabilities: ‘static
(convective) instability” and ‘dynamic (shear) instability’. These are discussed in more detail

next.
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2.6.1. STATIC INSTABILITY OR CONVECTIVE OVERTURN. In general, a convective in-
stability is considered to occur when a heavier fluid is superposed over a lighter fluid (i.e.
% > 0 or N? < 0) in a gravitational field (Daly 1967). Any perturbation of this interface
tends to grow with time, resulting in the well-known Rayleigh-Taylor instability. Rayleigh-
Taylor instability is driven by the conversion of the potential energy in the originally inverted
stratification to kinetic energy (Sharp 1984). Rayleigh (1894) and Taylor (1950) are the first
who have analytically predicted the rate of growth of such an instability. Their prediction
is extensively confirmed by different researchers such as Lewis (1950) who experimentally
showed that for an air-liquid interface, the theoretical prediction agrees well with experiments
in the initial phase of the instability.

Atmospheric instabilities are usually associated with density overturns and convective
instabilities. In the atmosphere, as the wave propagates upward, the amplitude increases
as the ambient density is decreasing. If this propagation continues, the amplitude becomes
large enough for overturning to occur and the heavier fluid is lifted over the lighter fluid,
resulting in a convective instability. However, it is not straightforward to discern internal
waves breaking in the ocean.

Such an instability is common in the ocean too especially when internal wave field in-
teracts with the bottom topography. Kao et al. (1985), Helfrich (1992), Michallet & Ivey
(1999) are among the first researchers to study progressive shoaling waves of large ampli-
tudes interacting with slopes. They have visualized the breaking process in their experiments
and have found that convective instabilities are initial instabilities leading to the breaking
of internal solitary waves on slopes. Hult et al. (2009) experimentally investigated periodic
progressive two-layer interfacial waves interaction with a submerged ridge. They concluded
from their results that a noticeable portion of the breaking on a ridge in a two-layer system
is convective.

Numerical simulations are also used to study convective instabilities (e.g. Bouruet-

Aubertot et al. 2001, Sutherland 2001, Koudella & Staquet 2006, Fritts et al. 2009a,b).
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Venayagamoorthy & Fringer (2012) discussed the breaking of progressive internal waves, in-
teracting with a shelf break in a linearly stratified fluid by employing highly resolved LES.
They observed significant overturning and distortion of isopycnals leading to convective in-
stabilities in the slope region highlighting the importance of convective instabilities in shallow

regions.

2.6.2. DYNAMIC OR SHEAR INSTABILITY. Dynamic or shear instabilities occur due to
the high mean shear rate of the flow relative to the buoyancy frequency, where small-scale
instabilities draw energy from the mean flow. Kelvin-Helmholtz billows are a classical exam-
ple of shear instabilities introduced by Helmholtz (1868) and Kelvin (1871). They devised
a theory to describe the stability of infinitesimal, spatially periodic disturbances to the in-
terface between two layers of differing density in relative motion. However, in literature the
term is used for a growing instability in any stably stratified shear flow, with density and ve-
locity varying in depth. The most accessible example of a Kelvin-Helmholtz instability is the
surface gravity waves, where at the air-water interface the density difference is about three
orders of magnitude. As Smyth & Moum (2012) have pointed out, the Kelvin-Helmholtz
instability is a critical link in the chain of the oceanic events leading to mixing from internal
waves. Defining useful parameterization and prevalence conditions of the Kelvin-Helmholtz
instability and its contribution to mixing is a first-order priority. Reynolds (1883) made
the first experiments on the shear instabilities in a two-layer flow composed of two immis-
cible fluids, which was part of his attempt to study the onset of turbulence in a pipe. The
most important results on the Kelvin-Helmholtz instability are attributed to the seminal
works of Miles (1961), Howard (1961), Klebanoff et al. (1962) and Thorpe (1971). Miles
(1961) and Howard (1961) have provided a theoretical stability criterion for a parallel shear
flow in an inviscid, incompressible fluid with variable density p(z) under static stability (i.e.
Op(z)/0z < 0). By employing theoretical arguments they showed that in a heterogeneous
(stratified) shear flow the sufficient conditions for stability are a non-zero mean shear rate
(S = dU/dz # 0) and Ri, > 0.25. Klebanoff et al. (1962) ran experiments to reveal the

nature of motions in the non-linear range of boundary layer instability and the onset of
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turbulence. They have shown that the three-dimensional effect should be taken into account
while investigating the non-linear wave motions and the instability phenomenon in a shear
boundary layer flow. Thorpe (1971) used miscible two-layer fluid of water and brine to ex-
perimentally investigate the instability for small-amplitude disturbances in an accelerating
stratified shear layer and characterized the instability and transition to turbulence. Also,
numerous examinations are performed to classify the breaking events as a result of internal
waves interacting with bottom topographic features. Eriksen (1985) and Garrett & Gilbert
(1988) studied the internal wave reflection from sloping boundaries and discussed that this
reflection can cause the enhancement of the mean shear leading to shear instabilities.

One of the first published works discussing observed values for critical gradient Richard-
son number (Ri,.) in oceanic flows appears to be that of Woods (1968). Eriksen (1978) used
the critical gradient Richardson number as a local indicator of fine structure instabilities in
the ocean. His measurements of mooring off a sloping bed in Bermuda showed a reduction of
density below lines of N? = (0.2552. However, whether a flow will transition into turbulence
and the shear instability will occur or not, when the wave breaking criterion (Rigz. = 0.25)
is satisfied for development of a Kelvin-Helmholtz instability, does not only depend on the
value of the gradient Richardson number being below the critical value, but is also a func-
tion of time. There are circumstances when Ri, is trespassing the critical value, but before
overturning can occur, the mean shear relaxes. Fringer & Street (2003) numerically stud-
ied a progressive wave. For some flow regimes, they have observed a much lower critical
Richardson number as Riy. = 0.13 compared with 0.25, indicating that waves might still
travel without breaking with gradient Richardson numbers less than the critical value 0.25.
Sveen et al. (2002) studied an internal wave interacting with a submerged ridge and showed
that as long as Ri, > 0.25 no shear instability occurs, however in the strong breaking or the
initial phase of wave-ridge encounter, shear instabilities were created. Also the numerical
work of Barad & Fringer (2010) which simulated shear instabilities in internal solitary-like
waves showed that a much lower critical value of Ri, = 0.1 is required for the onset of shear

instabilities.
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Shear instabilities are not easy to observe in field since fine-scale turbulent structure is
difficult to measure. Sandstrom & Oakey (1995) associated high turbulence with a highly
sheared subsurface interface, although the details of the gradient Richardson number were
not clear. Several researchers such as Woods (1968), Armi & Farmer (1988), Gossard (1990)
have measured field shear instabilities but it was Moum et al. (2003) that clearly measured
Kelvin-Helmholtz instabilities. They studied the structure within the shear-induced decaying
solitary waves propagating over Oregon’s continental shelf. The measurements depict trains
of near-surface, solitary-like waves of depression that propagate in the absence of significant
shoaling effects, with clear signatures of shear instabilities that are the primary source of
turbulence and dissipation. Their observations show that the shear is sufficiently high to
create explosively growing, small wavelength shear instabilities and have conjectured that
they are the possible source of Kelvin-Helmholtz billows.

The aim of understanding the breaking and instability event in stratified flows is to be
able to infer turbulent mixing. In the next section, a review of the turbulent mixing is

discussed.

2.7. TURBULENT MIXING

The ability of turbulent flows to effectively mix mass and momentum in the environment
is vital to the dynamics of such flows with wide-span consequences in nature and engineered
applications. Eckart (1948) considered turbulent mixing to be a three-stage process of en-
trainment, dispersion (stirring) and diffusion. Three levels of turbulent mixing are known to
occur in nature namely: passive mixing, mixing coupled with the dynamics of the fluid and
mixing that causes changes to the fluid (Dimotakis 2005). For the first and simplest case,
mixing is passive as is the case between passive scalars. Mixing of matched-density gases,
ink or low-concentration dyes in a liquid, small particle smoke/clouds are examples of this
type of mixing. Such a simple mixing does not feed back on the flow dynamics, therefore
a correct prediction of the mixing is not required to describe flow dynamics, although the

mixing is driven by the turbulent flow. The second level of mixing is coupled with the flow
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dynamics, such as mixing between fluids of different densities, mixing of temperature and
density fields in large oceanic currents (Adkins et al. 2002, Wunsch & Ferrari 2004). Hence,
prediction of flow dynamics and mixing are coupled. The third and most complex mixing is
also coupled to the fluid dynamics and happens when as a result of mixing of fluids, changes
are produced to fluids properties such as in density, composition, etc. Examples are most of
combustion phenomena or processes taking place in stellar bodies resulting to the production
of light elements from heavy ones.

The second level mixing can be regarded as the most important one influencing the life
and climate on the Earth. A great example of this type of mixing is mixing in stratified
flows (stable or unstable). Due to misalignment between the density and pressure gradients, a
baroclinic vorticity field is generated and represented as an independent term in the vorticity
equation (Petersen et al. 2007). The baroclinic vorticity drives internal instability that
can increase scalar- or density-isosurfaces (surfaces of constant density) generation which
ensues mixing. The mixing along isopycnals can be approximated by using two-dimensional
turbulence models (Pasquero et al. 2001), but mixing across the isopycnals (i.e. diapycnal
or vertical mixing) presents a special modeling challenge and requires additional time and
space scales introduction (Riley & Lelong 2000).

In the ocean, the turbulent mixing is a ubiquitous phenomenon and is commonly con-
jectured as a direct consequence of internal waves breaking. Without turbulent mixing, in
a few thousand years the ocean would be a cold, salty pool (Munk & Wunsch 1998). The
average turbulent diffusivity (k) based on the balance between mixing and the deep-water
upwelling is predicted to be roughly 10™*m?s™!, but Munk & Wunsch (1998) showed that
the turbulent diffusivity (k;) in the ocean far from the boundaries is about 10™°m?s™1. A
plausible source for the mixing energy required to maintain the oceanic structure could be
from internal waves interacting with undersea topography (Munk & Wunsch 1998). There-
fore a great deal of work focuses on induced mixing by internal waves such as Ivey & Nokes
(1989), Helfrich (1992), Michallet & Ivey (1999), Slinn & Riley (1996), Wunsch & Ferrari
(2004), Chen (2008) and Hult et al. (2011).
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It is essential to quantify the absolute amount of mixing but its efficiency is of more
importance, which is usually quantified by using the definition of the flux Richardson number
(Ry) or mixing efficiency. The mixing efficiency is defined as the ratio of the increase in the

potential energy due to mixing to the loss of the kinetic energy as

APFE

R = KB

(40)

The common formulation for the flux Richardson number (Ry) is defined as the ratio of
the buoyancy flux B = —g/po(p'w’) and the turbulent kinetic energy production rate P =

—u'w'(dU /dz) as
-B

Ry = —. (41)

The major drawback is that this definition of R; can be negative in non-stationary flows
(Venayagamoorthy & Stretch 2010) or highly stratified channel flows where countergradi-
ent buoyancy fluxes are observed (Armenio & Sarkar 2002) and exceed 1 for high gradient
Richardson numbers (e.g. Garcia-Villalba & del Alamo 2011). Peltier & Caulfield (2003)
discussed that the mixing efficiency should be calculated based on irreversible mixing and

viscous dissipation of the turbulent kinetic energy (¢) as

€PE
Rt = : 42
! €+ €pp ( )

where epp = N?¢,(dp/dz)~? is the dissipation rate of the turbulent potential energy, with
€p = kVp/ .V defined as the scalar variance dissipation rate. As the dissipation rate of the
turbulent kinetic energy (€) and the turbulent potential energy dissipation rate (epg) are
positive-definite, then the irreversible definition requires that 0 < R} < 1.

The correct prediction of Ry is a sought-after demand and still an open question. In
numerical modeling of stratified flows, R is directly required for proper calculation of the
turbulent (eddy) viscosity and diffusivity. Hence, it is a key parameter for modeling geo-
physical flows (Pardyjak et al. 2002). Experimental and numerical works are carried out to
infer R;. For example, Ivey & Nokes (1989) used laboratory experiments to examine the

mixing due to the breaking of internal waves in a continuously stratified fluid on a sloping
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boundary by confining the attention to critical waves when the slope of the group velocity
of incident waves is equal to the bottom slope. They measured the mixing efficiency in the
breaking process with the upper limit of approximately 20%. Linden & Redondo (1991) cre-
ated a pure Rayleigh-Taylor instability by overlying brine over fresh water, which resulted
in overturning. This method could provide a convenient way to see how much of the initial
potential energy was used to mix the fluid and what portion was dissipated by viscosity. The
mixing efficiency for such an experiment can be 0 < Ry < 0.5. Surprisingly, the results show
that for different Atwood numbers (A; = (p2 — p1)/(p2 + p1), where ps is the density of the
heavier fluid) even the maximum value is attainable. Also, for high Atwood numbers it was
observed that Ry o~ 0.35. Helfrich (1992) ran experiments on the solitary depression wave
interacting with a uniform slope in a two-layer system and observed breaking and production
of turbulent surges traveling upslope. His measurements revealed that about 15+ 5% of the
first mode wave breaking energy goes into irreversible vertical mixing. Stretch et al. (2010)
used data from towed grid experiments and DNS data of decaying turbulence for different
stratifications. Both experimental and DNS results showed an increasing trend for low strat-
ifications and constant values for high stratifications. However, while the DNS data suggest
a maximum flux Richardson number of 30%, the experimental results give about 6%.

As it is evident from different investigations, to date there is no general consensus on a
universal parameterization for R¢. This is due to lack of evidence on what the behavior of
Ry should be under very strong stratifications in high Reynolds number flows (Karimpour &
Venayagamoorthy 2014). Laboratory experiments and direct numerical simulations remain
inconclusive about this issue due to Reynolds number limitations. Field experiments tend
to show quite a bit of scatter due to difficulties to measure R as well as contamination from
other processes such as internal waves. It is typical to use a constant flux Richardson number
to infer mixing, but there is a lack of consensus on its value, e.g. Ry < 0.17 is introduced
by Osborn (1980) or Oakey (1982) introduced a highly variable value of Ry ~ 0.206 & 0.174
and Lilly et al. (1974) estimated Ry ~ 0.25.
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On the other hand, evidences suggest that the flux Richardson number (Rj) has to be
a function of forcing and stratification (Ivey et al. 2008). Therefore a dynamic expression
for Ry is required. Mellor & Yamada (1982) proposed a flux Richardson number (Ry) as a

function of the gradient Richardson number (Ri,) as
Ry = 0.725[Riy + 0.186 — (Ri. — 0.316Riy + 0.0346)°°], (43)

which suggests Ry < 0.25. Nakanishi (2001) has used LES simulations to slightly improve

Mellor & Yamada (1982) formulation with a maximum flux Richardson number of 0.3.

2.8. SUMMARY

This chapter has provided a brief overview on some fundamental aspects of turbulence
modeling methods, wall-bounded flows, the breaking and mixing. Also, a brief review of
investigations (field, laboratory experiments and numerical simulation results) focusing on
these subjects was provided. In the next chapter, we focus on unstratified near-wall turbu-

lence by using analytical arguments.
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CHAPTER 3

EQUILIBRIUM ASSUMPTION FOR UNSTRATIFIED

WALL-BOUNDED TURBULENCE

In this chapter a discussion and description of near-wall turbulence is presented. In
section 3.1 the near-wall turbulence in an unstratified turbulent channel flow is revisited using
the equilibrium assumption and the relevant length, velocity and time scales are derived. The
propositions are examined using DNS data of unstratified channel and boundary layer flows.
In section 3.2, the proposition of the standard k-e¢ model for the turbulent viscosity which
is developed based on the equilibrium assumption is analytically revisited and its suitability

for modeling near-wall turbulence is investigated.

3.1. UNSTRATIFIED CHANNEL Frow!

3.1.1. INTRODUCTION. Unstratified wall-bounded turbulent flows are prevalent in many
engineered and natural flows such as turbulent flow in channels, pipelines and rivers. The
presence of the solid wall has profound effects on the transport of momentum, mass and
heat. As such, it is not surprising that the subject of near-wall modeling has received much
attention in the last few decades. However, modeling the near-wall effects is not trivial due to
the highly inhomogeneous and anisotropic nature of the flow in the ‘near-wall’ region, which
can be considered to be the most volatile region of the turbulent boundary layer where most
of the turbulence is produced. Turbulence closure schemes such as the k-e model (Launder
& Spalding 1972) are often used in Reynolds-averaged Navier-Stokes (RANS) numerical
simulations to model turbulence in wall-bounded flows. Such models use the turbulent-
viscosity hypothesis to link the turbulent momentum flux (Reynolds stresses) with the mean
shear rate (S) through a turbulent (eddy) viscosity (v). For example, in a uni-directional
shear flow (such as in a turbulent channel flow) with a mean streamwise velocity (U), and

IThe results presented in this section have been published in substantial part as “Some insights for the
prediction of near-wall turbulence” by F. Karimpour and S. K. Venayagamoorthy, in the Journal of Fluid

Mechanics, Vol. 723, pp 126-139, 2013. This chapter is written in a collective “we” tense to acknowledge
collaborative work with the co-author.
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taking z as the wall-normal coordinate, the turbulent momentum flux is given by

dU
ww = _VtE = -1, (44)

where the mean shear rate S = dU/dz. There are a number of different closure schemes
that have been developed to model 14, but two-equation models such as the k- model,
have emerged to be the most widely used complete closure schemes (Pope 2000, Durbin &
Pettersson Reif 2011).

Wall-bounded flow (specifically channel flow) can be categorized into two main regions:
an inner region and an outer region. The inner region can be further subdivided into three
different layers namely: the viscous sublayer for 2™ < 5, buffer layer for 5 < 27 < 30
and the log-law region (constant-stress region that overlaps the inner and outer regions) for
2zt > 30, where z* is the wall unit defined as 2zt = w,z/v with w,, z and v defined as the
friction velocity, distance from the wall and the molecular (kinematic) viscosity, respectively
(Pope 2000). The viscous sublayer and buffer layer together are classified as the near-wall
(or viscous wall) region since viscosity is important and the energetic and dissipative scales
overlap (Jiménez & Moser 2007). There have been numerous discussions on the appropriate
velocity scale for both the inner and outer flow regions. The velocity scale that is assumed to
be common to both regions of the flow is the friction velocity (u,). However, the length scales
are different; in the inner region, it is the viscous length scale (v/u.) that is relevant while
in the outer region, the boundary layer thickness is considered to be the appropriate length
scale. Such arguments (in the limit of infinite Reynolds number) give rise to the logarithmic
law for the mean velocity profile and are now commonly referred to as the “classical” scaling
(Jones et al. 2008). Some recent review papers by Marusic et al. (2010), Smits et al. (2011),
George (2007) and Gad-el-Hak & Bandyopadhyay (1994) provide comprehensive reviews on
wall-bounded turbulent flows that highlight the issue of inner and outer scales of the flow
and their universality.

In this study, the focus is on the near-wall predictability of turbulence. Although the

thickness of the near-wall region is two or more orders of magnitude smaller than the total
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flow depth, its effect extends throughout the whole flow as almost 50% of the total flow ve-
locity from the wall to the free surface occurs in this thin region (Hanjali¢ & Launder 1976).
The remaining velocity differences mostly occur in the logarithmic layer. Therefore under-
standing the flow behavior in the near-wall region is essential for modeling the turbulence.
To this end, direct numerical simulations (DNS) have been used extensively to study the
kinematics and dynamics of wall-bounded flows (for a recent in-depth review, see Jiménez
2012). Near the wall, the mean shear rate is very high and the local Reynolds number is
low due to viscous effects. However, Durbin (1991) argued that the low-Reynolds-number
effect is not as important as the wall blocking effect which results from the impermeability
condition at the wall (i.e. zero normal velocity). All of the above conditions make this thin
layer very interesting to study and highlight the complexity involved in modeling the flow in
the near-wall region compared to free shear flows.

The difficult and costly problem of resolving the very thin near-wall layer at high Reynolds
number can be avoided by using wall functions which requires the existence of a log-law region
where production and dissipation of turbulence are nearly in balance. For example, in the

standard k-e model, 1, is then calculated as
Vy = C'u—, (45)
€

where k is the turbulent kinetic energy, € is the dissipation rate of the turbulent kinetic energy,
and C, = (Ju/w'|/k)? is the turbulent viscosity parameter (constant) and usually assumed
to be 0.09 in the constant-stress (log-law) region. This result for the turbulent viscosity
can be derived through a number of ways but it can be simply inferred from dimensional
analysis by assuming that the characteristic velocity scale is k'/? and the characteristic time
scale is Ty, = k/e. The turbulent viscosity formulation with a constant C), works well above
the near-wall region, but as discussed by Durbin (1991) and indicated in Figure (3.1), it
overpredicts the turbulent viscosity (1) in the near-wall region even when C, is almost half
of the commonly assumed value of 0.09. The results shown in Figure (3.1) are computed

from the channel flow DNS data of Hoyas & Jiménez (2006) at a friction Reynolds number
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F1GURE 3.1. Comparison of the exact turbulent viscosity and the k-e predic-
tion in a turbulent channel flow at Re,=2003, computed from the DNS data
of Hoyas & Jiménez (2006).

Re,=2003. The turbulent viscosities have been computed using both the exact definition
obtained from equation (44) and the k-e formulation given in equation (45) with the exact
k and e values from the DNS. Durbin & Pettersson Reif (2011) denote such comparisons as
‘a priori’ tests.

This severe shortcoming has made it essential to make modifications to the k- model to
correctly capture the near-wall behavior. Attempts to model the near-wall effects date back
to van Driest (1956) who used a damping function to reduce the turbulent viscosity near
the wall. A damping function is the ratio of the exact turbulent viscosity to the turbulent
viscosity predicted by the turbulence model given by

Vg

= —k2 .
CM?

Ju (46)

Since then numerous proposals have been made to reduce the turbulent viscosity in the near-
wall region. Some of the commonly cited formulations include those by Jones & Launder
(1973), Lam & Bremhorst (1981), Patel et al. (1985), and Rodi & Mansour (1993). Most
of these formulations use damping functions (sometimes loosely referred to as low-Reynolds-

number models) that are based on z* and/or u,, and tend to be generally ineffective. Durbin
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(1991) rejected the notion of using arbitrary damping functions to overcome the deficiency
of the k-e¢ model. He pointed out that the k-e formulation is isotropic while the near-wall
turbulence is anisotropic, and argued that it is the wall-normal turbulent velocity which
is responsible for transport. He proposed the so-called k-e-v2 model which is essentially
an elliptic relaxation model that allows for a representation of the wall blocking effect.
It involves the solution of a fourth-order (i.e. a four-equation model) coupled system of

differential equations in order to calculate the turbulent viscosity as

v s (47)
where ¢, is a constant with a suggested value of 0.20 (Durbin 1991). It is important to
note that in the k-e-v? model, the velocity scale is chosen as v2 (a model for the variance
of the wall-normal component of turbulent velocity W), while the time scale is still chosen
to be Ty, like in the standard k-e formulations given in equation (45) or equation (46)
with a lower bound set by the Kolomogorov time scale (T, = (v/€)!/?). This model agrees
well with the DNS data especially in the near-wall region, but is sensitive to the choice
of ¢, away from the near-wall region as shown in Figure (3.2). It must be noted that
this model has been shown to successfully predict different complex flows (for more details,
see Pope 2000 and Durbin & Pettersson Reif 2011). A lot of the more recent works have
focused on developing wall conditions for large-eddy simulations (LES) (see e.g. Kawai &
Larsson 2012). In the RANS context, some recent work includes that of Kalitzin et al.
(2005) where implications for the development of wall functions are discussed. Other recent
RANS turbulence modeling efforts include near-wall corrections to account for low-Reynolds-
number effects near the wall (Rahman & Siikonen 2005) and turbulent viscosity formulations
proposed for the atmospheric boundary layer by Wilson (2012).

Our main goal is to highlight some insights that may be useful for modeling near-wall
turbulence in closure schemes. We do this by revisiting the turbulent kinetic energy equation
for a turbulent channel flow in order to propose a revised formulation for the turbulent

viscosity, and hence derive more appropriate velocity, length and time scales. In section 3.1.2,
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FIGURE 3.2. Comparison of the exact turbulent viscosity and the k-e-v2 model
prediction in a turbulent channel flow at Re,=2003, computed from the DNS
data of Hoyas & Jiménez (2006). Curves for different ¢/, values are shown.

we present the evolution equation of the turbulent kinetic energy, followed by a proposal for
the turbulent viscosity by extending the equilibrium assumption to the near-wall region.
This is followed by a discussion on relevant velocity, length and time scales. In section
3.1.3, ‘a priori’ tests using DNS data are presented to highlight the validity of the revised

formulation. Conclusions are given in section 3.1.4.

3.1.2. PARAMETERIZATION OF THE TURBULENT VISCOSITY.
3.1.2.1. Turbulent Kinetic Energy Equation. The evolution equation for the turbulent
kinetic energy (k) for an inhomogeneous constant density shear flow can be written as (using

the Einstein summation convention)

%Jrﬁak

J

where P = —u;ugﬁﬁz/ Oz; is the production rate of the turbulent kinetic energy (k), € =
v(0u;/0x;)(0uf/dx;) + vO*(ujuf;) /0x;0x; is the dissipation rate of k, D, = vd’k/(0x;0x;)

is the viscous transport of the turbulent kinetic energy, T = —(1/2)0(ujuju;)/0z; is the
turbulent velocity transport of & and II = —(1/p)0(p'u;)/0x; is the pressure transport

39



of k, respectively. It is worth noting that all the three transport terms arise due to the
inhomogeneity in the flow.

3.1.2.2. Turbulent Viscosity and Appropriate Velocity Scale. For steady fully developed
turbulent channel flow, equation (48) simplifies to
dU

—u’w’d— =e—D,—-T—1I, (49)
z

where now the transport terms are also simpler (for details see e.g. Pope 2000). Equation
(49) implies that the production of k is balanced by the dissipation and transport of & in the
flow. Using the turbulent-viscosity hypothesis, P can be replaced with 1452 and rearranging

gives an expression for the turbulent viscosity as
v,=(e—D,—T—1I)/S> (50)

Evidence from DNS data (dating back to the seminal DNS of channel flow by Kim et al.
1987) shows that in the near-wall region (especially in the buffer region), the dominant
terms are P and ¢, while the transport of k is substantially impeded. Suppose we make the
assumption to neglect all the transport terms in the near-wall region (i.e. assume equilibrium

in the near-wall region), then equation (50) simplifies to
vy = 6/52. (5]‘)

The turbulent viscosity given by equation (51) can be defined as an irreversible momentum
diffusivity since it is based on €, which is an irreversible quantity in the turbulent kinetic
energy budget (Venayagamoorthy & Stretch 2010). Equation (51) also directly follows from
the turbulent-viscosity hypothesis (equation 44), once the equilibrium assumption is made.
However, let us also take a slightly long-winded path using the turbulent viscosity formulation
from a dimensional point of view, to illustrate how equation (51) is also equivalent to equation

(45). Dimensional reasoning suggests that the turbulent viscosity should be given by

v = UrvuLrvy = UvgTrve = vy /Trva, (52)
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where Ury g is a characteristic velocity scale, Ly g is a characteristic mixing length scale
(which will be discussed later), and Try g is a characteristic time scale in the context of
the turbulent-viscosity hypothesis (TVH). Pope (2000) suggested that a favorably disposed

specification for the velocity scale is
UTVH = |u’w’|1/2. (53)

In the context of two-equation models, a good choice as also suggested by Kolmogorov (1942)

is to base the velocity scale on k as
Urvy = ck'/?, (54)

where ¢ is usually assumed to be a constant. However, it is easy (and important) to note

from equation (53) and equation (54) that c is given as the square root of the stress-intensity

() -

In the constant-stress region (i.e. in the log-law region in wall-bounded flows), ¢ ~ 0.55,

ratio

based on empirical evidence that the stress intensity —w/w’/k = 0.3 in this region. However,
elsewhere it should hold as a dynamic ‘constant’. Using the turbulent-viscosity hypothesis

given in equation (44), ¢ can be expressed as

()" ()"

where the production P = -vw/w'S = 1,5%. The quantity P/(Sk) is the ratio of the mean
shear time scale (1/5) to the turbulence production time scale (k/P). Hence, for equilibrium

flows (when P ~ ¢), this simplifies to

€ \1/2 |
= <§> ~ (STp)/? (57)
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FIGURE 3.3. Profiles of v¢/k? and 1/(STL)? in a turbulent channel flow at
Re,;=2003, computed from the DNS data of Hoyas & Jiménez (2006). C,=0.09
is also shown for comparison.

At this point, it follows that the turbulent viscosity constant (C),) in equation (45) is given

by

(58)

— A
Ou—c ~

We note that equation (45) is therefore equivalent to equation (51) if C,, is given by equation
(58). The assertion in equation (58) can be tested using DNS data. Figure (3.3) shows
the behavior of C, = (1/5T;)* (computed from the DNS data) and C,, = 0.09. The exact
value v,e/k* computed from the DNS data is also shown. First, it is remarkable to see the
excellent agreement between the curves given by equation (58) and the exact computation,
especially in the near-wall region, indicating that the assumption made in neglecting the
transport terms to arrive at equation (51) seems to be valid. Second, as already shown in
Figure (3.1), it is not surprising that the exact quantity is very disparate from the usually

assumed constant value of 0.09 for C),, especially close to the wall.
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Furthermore, substitution of the expression for ¢ given by equation (57) in equation (54)
indicates that the appropriate velocity scale should be prescribed as

1 1z €\ 1/2
Urvir ~ Us = (S—TLk) -(5) (59)

where ST}, is the ratio of the turbulence decay time scale (77) to mean shear time scale
(1/S). As a side note, it is worth noting that when ST;, — oo, the turbulence (fluctuations)
in homogeneous shear flows can be described by rapid-distortion theory (see e.g. Pope 2000
for a detailed discussion), while for ST, — 0, turbulence production and turbulent viscosity
vanish. This limit is nicely discussed in Pope (2000) using the so-called return-to-isotropy
models. The behavior of ST}, obtained from channel flow DNS data at Re,=2003 (Hoyas &
Jiménez 2006) is shown in Figure (3.4). It is clear that ST}, increases rapidly in the buffer
layer in the near-wall region with a maximum value just greater than 18 at a distance of
2T & 8. In essence, ST, serves as the anisotropic correction scale in the near-wall region
to the original velocity scale based on k that is used in the k-e model. We also note that
further away from the wall (in the far outer region, z* ~ 1000), the agreement between the
exact curve and (1/ST%)? shown in Figure (3.3) diverges. This is clearly expected as the
mean shear rapidly drops to zero beyond the log-law region.

3.1.2.3. Relevant Length and Time Scales. Here we extend our discussion to the relevant
length scale and time scale that are inherent in the turbulent viscosity formulation that
was presented in the previous section. From equation (52) in section 3.1.2.2, it is clear
that a number of different length, time and velocity scales can be combined to obtain a
dimensionally consistent turbulent viscosity. However, the critical issue in the context of
near-wall modeling is that the classical scales (i.e. L = k%?/e, Ty, = k/e and U = k'/?)
that two-equation models are based on do not seem to capture the near-wall behavior of
the turbulent viscosity in a wall-bounded shear flow. Using the appropriate velocity scale

obtained in equation (59), the corresponding length scale (Lryy) can be back calculated
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FIGURE 3.4. Profile of turbulent to mean time scales ST} in a turbulent
channel flow at Re,=2003, computed from the DNS data of Hoyas & Jiménez
(2006).

from equation (51) as follows

Vi €/S? € \1/2
L — ~ frmnd _— .
YT Uy~ (k/STL)'? <53> (60)

This is indeed the shear length scale (Lg), sometimes referred to as the Corrsin scale as
he was the first to allude to this scale in his discussion on local isotropy in turbulent shear
flows (Corrsin 1958). It is considered as the relevant scale that marks the start of the inertial
subrange in turbulent shear flows (e.g. see Pope 2000). Conceptually, it can be thought of as
the smallest scale at which eddies are strongly deformed by mean shear. The corresponding

time scale is given by

Uy 1
Trvy = S (61)
U’Z%VH S

We shall denote this time scale as Ts. This might perhaps appear as a surprising result since
it implies that the relevant time scale is governed by the mean shear rate (S) and not T}, as
used in the formulations for the models given in equation (45) and equation (47). However, it

is not at all surprising once we recognize that if £/ is the wrong velocity scale (as suggested
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by Durbin 1991), then it must also mean that 7, will be the wrong time scale. Furthermore,
this is obvious once we recall that S is implicit in the turbulent-viscosity hypothesis. In
other words, T}, needs a similar anisotropic correction as the velocity scale, i.e. in this case
by a factor of (ST7)~!.

It is constructive here to revisit the turbulent viscosity formulation proposed by Durbin
(1991) as shown in equation (47). We will assume that equation (51) is valid for now and
test this validity later (in section 3.1.3.1) using DNS data. Using equation (51) and assuming
(for the purpose of this exercise) that T, is the appropriate time scale (noting that this is
the time scale assumed in the k-e¢ model), the corresponding velocity scale can be backed

out as follows

€ k
&= = U3 (62)

Vy = —
€

which can be rearranged to get the expression for velocity as

1
Uy = — kY2, 63
M= sT, (63)

The corresponding length scale can also be obtained in a similar manner as

k‘l/Q 1 k3/2

Ly = — 4
M™ 76 ~ ST, « (64)

Venayagamoorthy & Stretch (2010) indicated that Ly, can be considered as a rough measure
of the active turbulent fluctuations in momentum and can be interpreted as the approximate
measure of the average eddy size. Note, using Ly, and T}, equation (51) can also be expressed
as vy = L3, /Ty. Now if equation (51) is indeed a good approximation to the actual turbulent
viscosity, then it should also be approximately equal to the turbulent viscosity obtained from

equation (47). Equating these two equations reveals the following relationships

Uy ~ (c;m)l/{ (65)

Ly = (c,w?TH)"2. (66)
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Essentially, the terms on the right hand side of equation (65) and equation (66) can be
considered as the pertinent (effective) velocity and length scales in the k-e-v2 model of

Durbin (1991). We test the validity of these relationships in the next section.

3.1.3. ‘A PRIORI’ TESTS USING DNS DATA. In this section we test the validity of the
proposed model for the turbulent viscosity given by equation (51). We then compare the

velocity scale (Us) and length scale (Lg) with the exact velocity scale (Ury ), and the exact

mixing length scale (Lryy = [u/w/|'/2/S) using DNS data of turbulent channel flow. We also
compare the relationships proposed in equation (65) and equation (66). Comparisons with
DNS data of turbulent boundary layer flows are also presented to highlight the applicability
of the proposed model to other canonical wall-bounded turbulent flows.

3.1.3.1. Turbulent Viscosity Comparisons in Turbulent Channel Flow. Figure (3.5) shows
the ‘a priori’ comparison between the exact turbulent viscosity obtained from equation (44)
and the proposed approximation given in equation (51). The excellent agreement in the near-
wall region is remarkable, especially given the fact that all the transport terms were neglected
in arriving at equation (51). This implies that the transport terms are not as important as
the production and dissipation terms in the near-wall region, at least as far as modeling
the mixing in the near-wall region is concerned. We note that the turbulent viscosity given
by equation (51) can be expressed in non-dimensional form as a shear Reynolds number
(Res = ¢/(vS?)). Therefore, Reg provides a very good measure of the intensity of turbulent
mixing in unstratified shear flows.

3.1.3.2. Comparisons of Velocity and Length Scales in Turbulent Channel Flow. Figure
(3.6) shows the comparison of velocity scales and length scales discussed in section 3.1.2.
First, the comparison between the exact velocity scale (Uryy) and the proposed velocity
scale (Usg) given by equation (59) is very good in the near-wall region (see Figure 3.6a).
The corresponding comparisons between Lyy gy and Lg given by equation (60) as shown in
Figure (3.6b) is almost perfect in the near-wall region. In essence, these results clearly show
that Lg, Ts and Ug are the appropriate turbulent scales that capture the behavior of the

near-wall turbulence.
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Figures (3.6a) and (3.6b) also show the comparisons between Uy, given by equation (63)

with the right hand side term in equation (65) and between L, given by equation (64)
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Sillero et al. (2013).

with the right hand side term in equation (66), respectively. Note, we have used ¢, =0.18,
since this value gave the best agreement with the DNS results shown in Figure (3.2). The
close agreement between these scales indicate that Ly, and Uy, may be considered to be the
pertinent length and velocity scales embedded in the k-e-v2 model. However, if a comparison
is done between (w2)'/2 and Upy g (shown in section 3.2), it becomes evident that (w'2)'/? is
a good choice for the velocity scale in the near-wall region but it deviates faster from Upy gy
than Us does. This means that the constant ¢, in the k-e-v? model is equivalent to a time
scale correction factor such that ¢ 17, is by construction designed to mimic the behavior of
the appropriate time scale Ts = 1/5, in order to predict the correct turbulent viscosity in
the near-wall region.

3.1.3.3. Comparisons in Turbulent Boundary Layer Flow. Figure (3.7a) shows the ‘a
priori’ comparison between the exact turbulent viscosity obtained from equation (44) and
the proposed approximation given in equation (51) using DNS data of turbulent boundary
layer flow (Sillero et al. 2013) at a Reynolds number based on the momentum thickness
of Rey ~ 6500. Similar to the channel flow comparison shown in Figure (3.5), there is
excellent agreement in the near-wall region. Furthermore, the agreement between the exact

velocity scale (Ury ) and the proposed velocity scale (Ug) is very good as shown in Figure
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(3.7b). The corresponding comparisons between the length scales (Lyyy) and (Lg) shown
in Figure (3.7¢) are in excellent agreement in the near-wall region similar to the channel
flow comparisons shown in Figure (3.6b). We note that comparisons (not shown) with DNS
data of pipe flow at relatively low-Reynolds-number of Re,=190 based on the pipe radius
show good agreement (Loulou et al. 1997). The highest Reynolds number DNS of pipe flows
to date were done by Wu & Moin (2008) but unfortunately, the dissipation rate of k was
not sampled and hence we were unable to verify the proposed scaling at higher Reynolds
numbers that are comparable to the channel and boundary layer flows discussed in this study.
Regardless, these results indicate that the proposed scaling is widely applicable to turbulent
wall-bounded flows.

3.1.3.4. Implications at Higher Reynolds Numbers. The turbulent channel and boundary
layer flow DNS data that have been used to test the proposed scaling have (to our knowledge)
the highest Reynolds numbers to date. However, they are still well below the Reynolds
numbers of most practical flows. There are higher Reynolds number pipe flow experiments
(see e.g. the Princeton Superpipe experiments by Zagarola & Smits 1998 and McKeon et al.
2004) that have a significant logarithmic region but due to constraints of measurements very
close to the wall do not have turbulence fluctuation statistics near the wall. However, we
performed comparisons (not shown here in order to avoid repetition) of the proposed scaling
with DNS of channel flow data at lower Reynolds numbers (Kim et al. 1987, Moser et al.
1999 and del Alamo et al. 2004). The agreement gets consistently better with increasing
Re,, which is a promising trend, suggesting that the proposed prediction should hold true

at even higher Reynolds numbers that typifies relevant practical flows.

3.1.4. CONCLUDING REMARKS. In this study, we have made the equilibrium assump-
tion (i.e. P =~ ¢€) to propose that the turbulent viscosity v; ~ ¢/S?. We have then ar-
gued by revisiting the turbulent viscosity formulation that the appropriate velocity scale
is Ug = (STy)"Y2k'? = (¢/5)Y? as opposed to the classical scale of k'/2. We then ex-
tended our analysis to show that the corresponding appropriate length and time scales are

Ls = (¢/S%)'/? and Ts = 1/, respectively. The comparisons between the proposed scales
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and the exact scales computed from the most highly resolved turbulent channel flow DNS
dataset to date show remarkable agreement. The agreement with DNS data of turbulent
boundary layer flow is also very good. To our knowledge, this appears to be the first time
such results have been reported for describing the behavior of near-wall turbulence. We
have also provided some insights on the pertinent velocity, length and time scales that are
inherent in the k-e-v2 model proposed by Durbin (1991).

In essence, these results highlight how well the equilibrium assumption holds in the
near-wall region. We evaluate the effect of equilibrium assumption on developing near-wall
turbulence models in next section. Another obvious extension to this work is to study
the effects of density stratification in wall-bounded shear flows. This adds another level of
complexity through the coupling between the equations for the turbulent kinetic energy and
density fluctuations via the buoyancy flux term. This aspect is what forms the subject of

chapter 4 of this dissertation.

3.2. REVISIT OF EQUILIBRIUM ASSUMPTION?

3.2.1. INTRODUCTION. Reynolds-averaged Navier Stokes (RANS) turbulence models such
as the k-e closure scheme (Launder & Spalding 1972) commonly use the turbulent-viscosity
hypothesis (hereafter TVH) to simulate wall-bounded flows. In these models, the Reynolds
stresses are linked with the mean shear rate () through the turbulent (eddy) viscosity (v4).
For a one-dimensional shear flow, v, is given by

—uuw

T dU/dz (67)

Vi

where U is the mean streamwise velocity and z is the vertical distance from the wall. Within
the context of the TVH, dimensional reasoning can be used to recast v, in terms of charac-

teristic scales of velocity (Urvy), length (Lyy ) and time (Tryy) as

vi = Urve Lrve = Ubvg Trve = Ly /Trva. (68)

2The results presented in this section can be found in a paper entitled “A revisit of the equilibrium
assumption for predicting near-wall turbulence” by F. Karimpour and S. K. Venayagamoorthy, that is
currently in press for publication in the Journal of Fluid Mechanics.
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Pope (2000) suggested that a favorable velocity scale for turbulent flows is Upy g = (—w/w’)'/?

which consequently results in the characteristic length scale as Ly = (—u/w)Y/?/S and
the characteristic time scale as Tryy = Ts = 1/S. It should be noted that these derived
scales are only the relevant scales of the flow within the framework of the TVH and should
not be interpreted as the scales of turbulence.

In some turbulence closure schemes such as the standard k-e¢ model which is the most
commonly used two-equation closure scheme (Pope 2000, Durbin & Pettersson Reif 2011), the
turbulent viscosity (1) is derived by assuming local and approximate equilibrium between the
production rate of the turbulent kinetic energy (P) and the dissipation rate of the turbulent
kinetic energy (¢€) in a fully developed wall-bounded turbulent flow. This assumption implies
that the transport terms which result due to the presence of the solid wall are negligible and
hence simplifies analysis of the wall-bounded turbulence.

In addition to assuming equilibrium (i.e. P = €), the turbulent viscosity of the k-e model
(Vi(k—e)) is developed by using the proposition of Kolmogorov (1942) to base the characteristic
velocity scale on the turbulent kinetic energy (k) such that Upyy = (—u/w’)Y/? = ck'/2.

Hence, v4;—¢) is given by

k> k?
Vit B Vi(k—e) = 64? = C,u? (69>

Here, c is the square root of the stress-intensity ratio (i.e. ¢ = (Ju'w’|/k)*/?) and is usually
assumed to be constant in the log-law region. In the standard k-e model, ¢ ~ 0.55 or ¢? ~ 0.3
is employed on the basis of empirical measurements which implies that C), ~ 0.09.

For the k-e model to work properly in the near-wall region, the turbulent (eddy) viscosity
shown in equation (69) needs to be the same as the turbulent viscosity defined in equation
(67). However, it is well known that this formulation (equation 69) breaks down in the near-
wall region of canonical wall-bounded flows and overpredicts the exact turbulent viscosity
(14). This failure is normally attributed to the fact that the stress-intensity ratio (¢?) is not a
constant in the near-wall region. Efforts to overcome this severe shortcoming have focused on

modifications to the transport equations for £ and € in conjunction with empirical damping
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functions to reduce vy;_¢ in the near-wall region (e.g., see Jones & Launder 1973, Launder
& Sharma 1974, Lam & Bremhorst 1981 and Rodi & Mansour 1993). These functions are
not universal and tend to be ineffective when tested with different sets of DNS data.
Attempts have been made to model the near-wall turbulence without employing such
damping functions. Durbin (1991) proposed a model that solves for wall-bounded turbulence
without recourse to a damping function. He argued that the wall-normal velocity fluctuation
(w'2) is responsible for transport from the wall and not the total turbulent kinetic energy
(k), as is assumed in the k-e¢ model. Hence, he developed a fourth-order turbulence closure

scheme, namely k-e-v2 model where v? represents w’2. Considering the model time scale as

Ty, = k/e, the turbulent viscosity () in Durbin’s model is computed as

v = c;ﬁé (70)
where ¢, is a constant taken as 0.20 by Durbin (1991). Recently, Karimpour & Venayag-
amoorthy (2013) have shown that the v; formulation of Durbin’s model is insensitive to ¢, in
the near-wall region. This is also in agreement with the experimental observations of Schultz
& Flack (2013) where they concluded that —u'w’ and w’? are Reynolds-number-independent
in the near-wall region. Durbin’s model has been extensively verified with both ‘a prior:’
and ‘a posteriori’ tests with remarkably good results.

Our main aim is to highlight the drawbacks of using the equilibrium assumption in
conjunction with the use of the turbulent kinetic energy (k) to infer the pertinent velocity
scale in formulating a suitable turbulent viscosity. We also derive the appropriate scales
within the framework of the TVH by analyzing the turbulent viscosity formulation of Durbin
(1991). In section 3.2.2, a dimensional analysis of the turbulent viscosity formulation of
the standard k-e model (vy4—¢)) is presented to derive the relevant scales inherent in this
formulation and highlight the consequence of assuming equilibrium for inferring v,_.). The
correlation of the turbulent kinetic energy (k) with the anisotropic Reynolds stress (u/w’) is
revisited in section 3.2.2.2, followed by a discussion on the appropriate scales for predicting

near-wall turbulence. Finally, conclusions are given in section 3.2.3. In this study, different
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channel flow DNS datasets of Kim, Moin & Moser (1987) for Re, =~ 180, Moser, Kim &
Mansour (1999) for Re, ~ 395 and 590, del Alamo et al. (2004) for Re, ~ 934 and Hoyas
& Jiménez (2006) for Re, ~ 2003 are used together with the boundary layer experimental

data of Marusic & Perry (1995), for performing ‘a priori’ tests.

3.2.2. ASSESSMENT OF THE k-¢ MODEL TURBULENT VISCOSITY. In this section, we
derive the inherent scales in the turbulent viscosity formulation of the standard k-e closure
scheme and also discuss the possibility of introducing a universal c. We use ‘a priori’ tests
to reinforce our discussion.

3.2.2.1. Reuisit of relevant characteristic scales and stress intensity. Using equation (69)
and the proposition of Kolmogorov (1942) for the velocity scale (i.e. U,_. = ck'/?), the
relevant length scale inherent in v,_¢) can be derived as

Vik—) 4 K2 Je 3K

Ly = Up_e T T T

(71)

Using ¢ = (—u/w'/k)Y/? and P = —u/w'S, equation (71) can be rewritten as

Y R G T N S ST AN <i>1/2
ke = € e k e € S3

- () -0 ™

where L. = (¢/5%)'/? is the Corrsin scale, introduced for the first time by Corrsin (1958).

L. shows the smallest eddy size which is deformed by the mean shear rate. The ratio P/e

can be expressed in terms of length scales as

e e €S8

P —uw'S  —uw/S* (LTVH)2

= L. (73)

Using equation (73), we can rewrite equation (71) as

P\*? etz (PN Lyyy [ e\Y/?> (P
= (7)) (&)= (0) 2 (5) 7 = (7) b )
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Equation (74) highlights the fact that while in the log-law region where P =~ €, Lj_. is equal

to Lpyy and consequently L., in the near-wall region both the length scale and therefore

the turbulent viscosity (v4x—c)) are incorrect. Put another way, the turbulent viscosity from

the standard k-e model can be expressed in terms of the characteristic scales and the exact

turbulent viscosity as

Vi(k—e) = C

2
K
€

- (o)

k3/2
CS—

)= (2) vt = () .

(75)

Equation (75) clearly shows that in the near-wall region this formulation breaks down as it is

a function of P/e. This implies that the failure of 14— is independent of the fact that the

exact value of ¢ is ambiguous and hence damping c is not sufficient to make v;(,_.) suitable

for modeling the near-wall turbulence.

Furthermore, using Uy_. = ck'/? and Ly_, the relevant time scale can be deduced as

which can also be rewritten as

kae

o Lk—e
n Uk—e €

k
= 02—’

(76)
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using (a) the DNS data of turbulent channel flows for Re, = 2003, 934, 590, 395
and 180; and (b) the experimental data of boundary layer flow of Marusic &
Perry (1995).

which again shows that the time scale is only correct where equilibrium holds. This finding
also shows that the traditionally assumed time scale T;, = k/e in the standard k-e model
should be modified with ¢2.

The comparisons of the standard k-e model scales with the TVH scales are shown in
Figure (3.8) using ¢ ~ 0.55. It is obvious that (even in the log-law region) the standard
k-e model scales highly overpredict the corresponding characteristic scales which raises the
doubt about the suitability of assuming a constant ¢ ~ 0.55 in the log-law region. To assess
this issue further, Figure (3.9) shows profiles of ¢ = —u/w’/k obtained from direct numeri-
cal simulations (DNS) data of channel flows as well as high-Reynolds-number experimental
boundary layer data. In Figure (3.9), Re, = u.h/v is the friction Reynolds number where
h is half of the channel depth. Also, Rey = U.0/v is the momentum thickness Reynolds
number with 6 defined as the momentum thickness, U, as 99% of the maximum velocity
and 0 is the boundary layer thickness. The profiles clearly show that assuming ¢ = 0.55 or
c? ~ 0.3 is wrong. In fact, the profiles suggest that ¢ decreases with increasing Reynolds

number in the log-law region at least for this range of Reynolds numbers.
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F1cURE 3.10. Comparison of Reynolds stresses and the turbulent kinetic en-
ergy (k) computed from (a) the DNS data of Hoyas & Jiménez (2006) for
Re, = 2003; and (b) the experimental boundary layer data of Marusic &
Perry (1995) for Rey = 19133.

Now, we revisit the behavior of ¢. In a preliminary attempt, Karimpour & Venayag-
amoorthy (2013) have shown that by using the equilibrium assumption all the way to the
wall, a turbulent viscosity formulation can be derived as v; &~ ¢/S? which implies that
¢~ 1/(STy)"/2. The comparison of their propositions with exact DNS computations showed
small differences. However, it is clear that their formulation is not appropriate for modeling.

Here, we reassess the possibility of independently describing ¢ by relaxing the equilibrium
assumption that Karimpour & Venayagamoorthy (2013) made. The square root of the stress-

intensity ratio (¢ = (—u/w’/k)/?) can be recast as follows

B —W 1/2 B —u/w/S/E 1/2 B E 1/2 L 1/2 B LTVH L 1/2 (78)
Tk — 7 Sk/e — ST.) ~ L. \ST.)

STy, is the ratio of the turbulence (decay) time scale (77) to the mean shear time scale

(1/S) and can be considered to be a measure of the linearization of the turbulent flow
(Jiménez 2013). Equation (78) clearly shows that ¢ and therefore the proposed velocity scale
of Kolmogorov (1942) inherently depend on the behavior of P/e and hence Lyyg. It can be

inferred from Figure (3.9) and equation (78) that k cannot be an appropriate parameter of
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FIGURE 3.11. Comparison of Durbin’s model P/e and exact value computed
from the DNS data of Hoyas & Jiménez (2006) for Re, = 2003.

choice to describe w/w’. This highlights the reason for the lack of success in formulating a
universal damping function to appropriately decrease ¢ in the near-wall region.

3.2.2.2. Correlation of the Reynolds stresses. In this section, we assess the correlation

of the anisotropic Reynolds stress (v/w’) with isotropic Reynolds stresses. In his valuable
work, Lumley (1978) has discussed that the wall-normal velocity fluctuation (w) is a more
appropriate velocity scale since it mimics the behavior of (—u/w’) better compared to k.
Figure (3.10) confirms his assertion, and it can be seen that k behaves similarly to the
streamwise velocity fluctuation (u2) while w2 closely matches —uw/w’. As discussed in §1,
Durbin (1991) made a similar argument and introduced the turbulent viscosity as v, =
c;m(k/ €).

Durbin’s proposition for 14 is widely used and its good comparison with exact v is already
shown in several works. Here, we test its efficacy for predicting P/e in the near-wall region.
Figure (3.11) presents the comparison of P/e using Durbin’s formulation with the exact
value from DNS data. While there is a slight mismatch, the comparison is still favorable and

confirms the suitability of the turbulent viscosity formulation proposed by Durbin (1991) for

predicting the near-wall turbulence. This implies that the appropriate relevant scales in the
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context of the TVH are inherent in Durbin’s model. Therefore, it is instructive to derive the
scales inherent in his model within the context of the TVH framework.
Durbin (1991) considered 77, = k/e as the relevant time scale for his model with a lower

1/2 where v is the kinematic viscosity,

bound set by a factor of the Kolmogorov time scale (v/¢)
but as discussed earlier, the characteristic time scale in the context of the turbulent-viscosity
hypothesis is Ty g = Ts = 1/S. Using —u/w’ = 1,5, the relevant velocity and length scales

inherent in his model can be derived respectively, as follows

1/2
Urvu = (—u’w’) V2 x Uk—ev2 = C/;l/z(STL)l/Q (w,Q) ) (79)
——\1/2 1/2
(—u'w’) d —\ /2 k
L = — = L L == a 2 —.
TVH S k—e—v2 (STL) (w ) c (80)

Comparisons of these scales with the corresponding characteristic scales of length (Lryg)
and velocity (Uryp) are excellent as shown in Figure (3.12). Also, in this figure, w’ is shown
for comparison. Moreover, it is clear that Ty, . 2 = Ly 2/Ug_c_,2 = 1/S which is equal to
Tryy = 1/S and hence no comparison between the time scales is required. In Figures (3.11)
and (3.12), CL ~ 0.18 is used since it provides a better prediction of the overall turbulent
viscosity across the channel depth for this set of DNS data.

In equations (79) and (80), ST, serves as an anisotropic correction to w (which can also
be considered to be a non-equilibrium correction in the near-wall region), while it is absent
in the v, formulation given in equation (70). The reason for this is simply because w'? is less
than —u/w’ in the near-wall region (see Figure 3.10) while 77, = k/e is greater than 1/S in
the near wall regions (see Figure 3.8¢). These effects cancel out identically when computing

the turbulent viscosity (i.e. vy = Up_c_y2 X Lip_c_y2).

3.2.3. CONCLUDING REMARKS. In this study, the validity of the equilibrium assumption
in the near-wall region was revisited. Using dimensional reasoning, we have shown that the
equilibrium assumption leads to incorrect prediction of the characteristic scales in the near-

wall region and highlighted some of the shortcomings of using damping functions to model
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with Ly g computed from the DNS data of Hoyas & Jiménez (2006) for Re, =
2003.

the near-wall turbulence. This is followed by a detailed discussion on the importance of
introducing an appropriate velocity scale than the traditionally assumed scale ck/2. To this
end, the successful model of Durbin (1991) which makes use of w2 instead of k is analyzed
and the relevant length and velocity scales are derived. Our analysis shows that inherently
there is an anisotropic correction of ST7, to Durbin’s model constant (c],) which is not explicit
in the original turbulent viscosity formulation in his model. ‘A priori” comparisons of these
relevant scales using DNS data are excellent and indicate their relevance in capturing the
characteristic scales. Furthermore, the predicted behavior of P/e using Durbin’s turbulent
viscosity formulation shows favorable comparison with the exact profile obtained from DNS
data. Overall, this study highlights the fidelity of Durbin’s model in capturing the charac-
teristic scales of turbulence (within the framework of the turbulent-viscosity hypothesis) in

the near-wall region.

3.3. SUMMARY

In this chapter, a study of turbulent wall-bounded flows was provided. The equilibrium

assumption was used to study the turbulent quantities of inhomogeneous flows. The results
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show that the irreversibility assumption can be used for predicting turbulence for unstratified
flows. However, assuming equilibrium between P and € is not appropriate for employment
in RANS closure schemes. We have further analyzed the turbulent viscosity introduced by
Durbin (1991) developed for unstratified wall-bounded flows without assuming equilibrium.
Our analyses show that (W)l/ 2 is a suitable quantity to model w/w’. Chapter 4 presents the
work to further understand turbulent mixing in a stably stratified wall-bounded turbulent

flow.
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CHAPTER 4

TUBULENT MIXING IN WALL-BOUNDED FLOWS'

In this chapter, we provide an analysis of turbulent mixing in stably stratified wall-
bounded flows. For a fully developed stratified channel flow, we invoke the equilibrium
assumption between the production rate of the turbulent kinetic energy (P), the dissipation
rate of the turbulent kinetic energy (¢) and the dissipation rate of the turbulent potential en-
ergy (epp) to highlight a number of pertinent issues that have implications for predicting the

turbulent mixing. DNS data of stably stratified channel flow is used to test the propositions.

4.1. INTRODUCTION

Most geophysical flows such as those in estuaries, lakes, oceans and the atmosphere are
influenced by both the density stratification and the bottom boundary. In such flows, the
simultaneous existence of the density stratification and the solid wall results in anomalous
mixing of momentum and active scalar (density) compared to other turbulent flows. Hence,
it is not surprising that stratified wall-bounded flows are usually considered as one of the most
complex turbulent flows and have been the subject of several studies such as the works of
Arya (1975), Komori et al. (1983), Garg et al. (2000), Armenio & Sarkar (2002), Nieuwstadt
(2005), Taylor, Sarkar & Armenio (2005) and Garcia-Villalba & del Alamo (2011).

Quantifying the mixing of the momentum as well as the diapycnal mixing of density is
imperative as they directly impact the state of the geophysical flows in both the ocean and
the atmosphere. The turbulent (eddy) viscosity (14) and the turbulent (eddy) diffusivity are
the two parameters which are widely used for assessment of the state of the flow (such as
turbulent mixing) in physical oceanography or atmospheric sciences and are also employed
for simulating stratified turbulent flows in numerical models. For a uni-directional shear

IThe results presented in this chapter is submitted in substantial part as a paper entitled “On turbulent
mixing in stably stratified wall-bounded flows” by F. Karimpour and S. K. Venayagamoorthy, to Physics

of Fluids. This chapter is written in a collective “we” tense to acknowledge collaborative work with the
co-author.
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flow, using the turbulent-viscosity hypothesis, the turbulent viscosity (1;) is defined as

—u'w’

V= ——, 81
" dU/dz (81)
and using the gradient-diffusion hypothesis, the turbulent diffusivity (k) is given by
o p/w/
= — 82
Ry dﬁ/dz’ ( )

where U is the mean streamwise velocity, z is the normal distance from the wall and p is the
fluid mean density.

The turbulent viscosity and diffusivity have to be specified (computed) using turbulence
closure schemes. As a result, several parameterizations have been proposed that make use
of mean and/or other turbulent quantities. A common approach for parameterization of v,
and k¢ is to assume stationarity (i.e. statistics are invariant due to change in time) and
homogeneity (i.e. statistics are invariant under translations) in the flow. For example, the
formulation of v; in the k-e model is developed by assuming the equilibrium between the
production rate of the turbulent kinetic energy (P), the dissipation rate of the turbulent

kinetic energy (¢) and the buoyancy flux (B) which is given by (Rodi 1993)

/{32
Here, k = %(W + 02 + W) is the turbulent kinetic energy, € is the dissipation rate of the
turbulent kinetic energy, C,, = (—u/w’/k)? is the turbulent viscosity parameter usually taken

as C, = 0.09. Ry is the flux Richardson number that for a shear flow is usually defined as
(Peltier & Caulfield 2003)

Ry = —- (84)

where B = —g/po(p/w’) is the buoyancy flux and P = —u/w’(dU /dz) is the rate of production
of k. Similarly, a formulation for x; was proposed by Osborn (1980) by assuming equilibrium

between the buoyancy flux (B) and the dissipation rate of the turbulent potential energy
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(epp) and is given by k; = epp/N?. Here, N = \/(—g/po)(dp/dz) is the Brunt-Viisili or
buoyancy frequency.

Besides v; and k;, the efficiency of mixing is another key parameter in geophysical flows.
The flux Richardson number Ry given by equation (84), is commonly used to characterize
the efficiency of mixing in stably stratified turbulent flows. A drawback of this formulation
is that it is defined in flux form and could therefore be negative for non-stationary strongly
stable flows where countergradient fluxes are noticeable (Venayagamoorthy & Stretch 2010,
Armenio & Sarkar 2002).

Peltier & Caulfield (2003) discussed that Ry may be taken to be a cumulative mixing
efficiency that is calculated by integrating the instantaneous mixing efficiency over a sufficient
time interval. They have defined the instantaneous mixing efficiency (i.e. an irreversible flux
Richardson number R}) based on the irreversible transfer of the turbulent kinetic energy (k)

into the turbulent potential energy (E}% ) given by

€PE

R} = , 85
I e €PE (85)
where epg is the dissipation rate of the turbulent potential energy which is defined as
ap\
€EpEp — N2 <$) €p- (86)

Here, €, = £, Vp'.Vp' is the scalar variance dissipation rate with r,, defined as the molecular
diffusivity. Both € and epp are positive-definite quantities, ensuring that R} will be limited
to 0 < R} < 1. Their proposed definition for Ry which is the time-integration of Rj},
eliminates the stirring effects (reversible contributions). However, the common definition
of Ry = —B/P incorporates the stirring effects as both B and P inherently consist of the
reversible fluxes. Therefore, sometimes the instantaneous mixing efficiency (R}) is used
instead of Ry = —B/P due to its bounded nature. This substitution is still a matter of
doubt and needs more investigation in order to ascertain the conditions under which these

two quantities may be used interchangeably.
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In this chapter, we evaluate the suitability of assuming equilibrium for inference of Ry,
v, and k; in stably stratified wall-bounded flows. In section 4.2, we present the evolution
equations of the turbulent kinetic energy and scalar variance. We derive a revised formulation
for the turbulent viscosity (14) for a stably stratified turbulent channel flow by using the
equilibrium assumption (i.e. P &~ € + epg) all the way to the wall. Dimensional arguments
are then used to propose appropriate (relevant) velocity and length scales. In section 4.3,
the validity of the propositions are evaluated by performing ‘a priori’ tests using channel
flow DNS data. First, the behavior of Ry is compared with R}. Second, the validity of
the proposed 1; and relevant scales are evaluated. In section 4.4, the equilibrium between
the buoyancy flux and the dissipation rate of the turbulent potential energy is invoked
(i.e. —B = epg) which leads to Osborn’s (1980) formulation for ;. The suitability of
this formulation for estimating x; in stably stratified wall-bounded flows is evaluated by
performing ‘a priori’ tests. Conclusions are given in section 4.5. In this study, we use the
stably stratified turbulent channel flow DNS dataset of Garcia-Villalba & del Alamo (2011)
with a friction Reynolds number of Re, = u,d/v = 550 for different initial stratifications
given by friction Richardson numbers of Ri, = |Ap|gd/pou? = 0, 60 & 120 to perform ‘a
priori’ tests. Here, wu, is the friction velocity, ¢ is half of the channel depth and v is the
kinematic (molecular) viscosity and |Ap| is the initial density difference between the bottom

of the channel (z = 0) and the free-stream (z = J).

4.2. PREDICTION OF THE TURBULENT VISCOSITY

4.2.1. EvoLuTION EQUATIONS. The evolution equations for the turbulent kinetic energy
(k) and the density (scalar) variance (p2) for an inhomogeneous stratified shear flow with

the Boussinesq approximation can be respectively written as

ok | — 0k

N P ¢4B+D,+T+1L,
5 " Uige ¢+B+D,+T+ (87)
) ), :
o TUigy = hmet (83)

64



where P = (—W)@E/ Oz; is the production ra