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ABSTRACT 

 

IMPACTS OF THAWING PERMAFROST ON NEMATODE POPULATIONS AND 

SOIL HABITAT CHARACTERISTICS IN AN ANTARCTIC POLAR DESERT 

ECOSYSTEM 

 

Global climatic changes are altering ecosystem dynamics at unprecedented rates 

and degrees. Given this, studying the controls on species distribution and functioning 

within ecosystems, as well as how they are impacted by such changes, is timely. Polar 

deserts such as those in the McMurdo Dry Valleys, Antarctica (MDV) have been exposed 

to long-term cooling over the last two decades as well as increased frequency of seasonal 

warming events, and may also be exposed to a warming trend within the next several 

decades. Each of these changes can lead to substantial shifts in ecosystem characteristics, 

affecting habitat conditions for biota. 

I examined these issues with a specific focus on how nematode communities, the 

dominant fauna in the extremely cold and arid environment of the MDV, responded to a 

warming event that led to inundation of moisture from thawing permafrost. I took 

samples to the depth of the ice-cemented soil layer in seeps of permafrost thaw and 

compared nematode community structure to dry soils not affected by thaw. I also 

assessed potential alterations to soil properties that determine suitability of nematode 
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habitats, measuring soil pH, salinity, and texture. I observed a gradient in impacts on each 

of these soil properties, which were consistent with the pattern of the degree of moisture 

increase. I additionally observed a response by nematode populations that similarly 

followed these patterns.  My results suggest that warming and the resulting moisture 

increases from thawing permafrost can have profound negative effects on nematode 

abundance and distribution. 
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CHAPTER I: INTRODUCTION 

 

 Soil fauna are critically involved in global biogeochemical cycling, providing 

substantial services to ecosystems such as enhancing soil fertility, recycling carbon to the 

atmosphere and purifying groundwater (Wall et al. 2004; Bardgett 2005; Coleman 2008). 

Despite this, mechanisms driving such processes receive relatively scarce attention with 

respect to both research and conservation (Brussaard et al. 1997; Wall et al. 2001; Parker 

2010).  In particular, a complete picture of soil biodiversity and its connections to overall 

ecosystem functioning has been described only gradually over the past several decades 

and many unknowns remain (Wolters et al. 2000).  This deficiency in understanding 

creates a challenge for addressing current threats to the functioning of soils within an 

ecosystem.   

Above- and belowground biodiversity is declining rapidly across the globe, and 

losses are expected to continue at increasing rates due mostly to global land use and 

climate change (Hannah et al. 2002; Wardle et al. 2004).  This decline poses a threat to 

the provision of many ecosystem services by soil organisms, on which our society 

depends.  To facilitate conservation of soils and the functions they carry out, it is 

necessary to clarify whether there are key species that contribute proportionally more to 

the ecosystem as a whole, which species and functional groups are threatened most, and 
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to what extent changes in the makeup of soil communities affect various processes within 

an ecosystem (Wall et al. 2010).  

The ecologically simple Antarctic dry valleys present a valuable opportunity to 

gain insight into the most fundamental linkages between soil fauna and ecosystem 

processes (Adams et al. 2006; Wall 2007). The complexities of biological, chemical and 

physical interactions found in temperate and tropical regions make it difficult to tease 

apart specific components of functioning and assess general patterns in ecosystem 

processes (Wardle et al. 2004). One specific point of interest that may result from such 

understanding is in identifying thresholds at which certain components in a system (e.g. 

biodiversity, nutrient availability, environmental conditions) are reduced to the extent that 

related processes are altered substantially.  

In the context of global climatic and ecological changes, amplified and more rapid 

effects of which are occurring in polar regions (Christensen et al. 2004; Chapin 2005; 

Chapin et al. 2008), a description of the controls individual species and functional groups 

exert in shaping ecosystems is valuable. Furthermore, traditionally frozen soils in high 

latitudes are a primary point of concern with regards to climate change (Chapin 2005; 

Shuur et al. 2008). Observing impacts on soils in polar systems is timely and may also 

provide important clues to the above gaps in understanding. Antarctic polar deserts are 

sensitive to change due to low functional redundancy and proximity to the environmental 

limits of metabolic processes (Wall and Virginia 1999; Wall 2005; Adams et al. 2006), 

and are already experiencing changes in environmental conditions (Doran et al. 2002; 

Harris et al. 2007; Barrett et al. 2008b). Thus, the Dry Valleys allow an arena for fine-

scale, in-situ exploration of questions concerning species-level responses to change and 
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implications for ecosystem functioning. 

A specific concern for both Arctic and Antarctic systems is the thawing of soils 

that either experience periodic freeze-thaw patterns or are frozen year-round (Campbell 

and Claridge 1987; Schimel and Clein 1996; Schimel et al. 2007; Ugolini et al. 2008). 

These effects could have differential and in some cases interacting impacts depending on 

the characteristics of the soil profile above permafrost and ice-cemented soils. Perhaps 

the largest variation between soils in the Arctic and those in the Antarctic Dry Valleys is 

the quantity of organic matter bound in frozen soil and throughout the active layer. While 

arctic soils contain large amounts of organic matter, the Dry Valley soils contain very 

little. However, the response by soil invertebrates to thawing permafrost and possible 

implications for other trophic groups and ecosystem processes is relevant to both regions. 

Questions of current importance specific to the Dry Valleys are how the 

ecosystem will respond to thawing frozen soil, both in a) the long-term with general 

increased warming, and b) the short term with increased intensity and frequency of 

periodically heightened summer temperatures with pulses of moisture from extensive 

permafrost thaw.  Insight into these questions could also be drawn upon to make 

implications for soil biodiversity in less extreme ecosystems exposed to climate changes 

that surpass biological thresholds. 

Due to environmental conditions (eg. extreme aridity, negligible organic matter 

content in soils and most often sub-freezing temperatures), vascular plants are absent in 

the Dry Valleys and diversity of animal species is low relative to ecosystems elsewhere 

(Adams et al. 2006). Given this, ecosystem processes such as nutrient cycling and soil 

development are slow (Barrett et al. 2006; Hopkins et al. 2006). However, several 
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changes in environmental conditions have emerged over the past few decades that may 

lead to shifts in ecosystem functioning. One of these is a cooling trend observed between 

1986-2000 that has continued to the present (Doran et al. 2002). An increased occurrence 

of inter-annual pulses of high temperature and melt has also been noted (Barrett et al. 

2008b; Harris et al. 2007; Lyons et al. 2005 Simmons et al. 2009). Finally, long-term 

warming has been projected to begin around 2050 (Chapman and Walsh 2007; Steig et al. 

2009; Walsh 2009). 

Several scenarios have been hypothesized for potential ecological shifts under 

current and projected climatic changes. Biological activity and thus organic matter 

cycling in the Dry Valleys is thought to be strongly controlled by brief and relatively 

infrequent periods of tolerable temperature and moisture, at times with subtle diel 

fluctuations (Parsons et al. 2004; Ball et al. 2009), intra-annual variability in the summer 

months (Barrett et al. 2009; Moorhead et al. 1999), and over long timescales (on the order 

of centuries to millennia, Moorhead et al. 1999; Burkins et al. 2000; Burkins et al. 2001).  

Increased occurrence of seemingly more tolerable conditions may therefore have large 

implications for the ecosystem’s functioning. Warming could increase glacial, subsurface 

ice, and frozen lake melt, expanding the area of wetted soils across the Dry Valley 

landscape (Foreman et al. 2004; Lyons et al. 2005; Harris et al. 2007). Glacial  and frozen 

lake melt events have been increasingly studied for their impact on soils, but the 

emergence of moisture wicking up to the soil surface from thawing subsurface ice has 

only recently received attention with regards to biota and larger-scale functioning in the 

ecosystem. 
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One potential effect of warming, resulting from both general trends and discrete 

events, could be the increased homogeneity among the landscape units due to spatial 

expansion of liquid water during the austral summer (Wall 2007). Throughout the time 

this region has been studied, the landscape has remained considerably heterogeneous in 

terms of soil propertes and distribution of biota (Courtright et al. 2001; Barrett et al. 

2004).  With this spatial heterogeneity, the landscape hosts patchy “hotspots” of suitable 

conditions for barren soils (Adams et al. 2006; Freckman and Virginia 1997; Courtright 

et al. 2001) and hotspots of wetter habitat where higher biodiversity can be found (Adams 

et al. 2006; Ayres et al. 2007).    

The significance of a potential transformation to a warmer landscape is that with a 

greater similarity of ecosystem characteristics, features of the system would become 

increasingly more similar and interact to a greater degree, making for a change in the 

overall behavior of the ecosystem (Wall 2007).  Specifically, under this shift a tipping 

point or threshold may be reached, where the system moves into a modified steady state 

than the one that previously existed (Wall 2007). Peters et al. (2008) presented a related 

conceptual framework, under which they assert that when the extent to which cosystems 

become connected is depended upon the “spacial stucture” of the environment. With 

regards to the ecosytstem shifts discussed above, this could imply that connectivity across 

the landscape would become greater, stemming from an increase in homogeneity. The 

potential alteration to a moister landscape furthermore suggests that dispersal potential of 

biota, presently restricted to heavy winds and pulses of high stream flow (Nkem et al. 

2006), may then be increased. Additionally, if wetter suitable habitats increase in area 

across the landscape, establishment will be possible in a greater area of soil than is 
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typically available. Under this scenario, the ecosystem would essentially take on the 

characteristics of those observed in warmer, moister regions (Wall  2007). 

In order to contribute to the above understanding, I sought to address three central 

questions: 1) Will future expansion of sub-surface ice seeps increase the area of suitable 

habitats both horizontally across the landscape, and vertically to greater depths in the soil 

profile than is typically available to nematodes? 2) Do soil properties shown to determine 

habitat suitability differ in patches of soils that experience repeated subsurface ice melt? 

Finally, 3) Do nematode communities respond favorably to moisture increases and 

potential associated changes in habitat characteristics created by permafrost seeps, 

supporting greater abundance and diversity of species? 

 I conducted an observational study in the Dry Valleys of Antarctica during the 

Austral summer 2008-2009, a year that experienced an episodic warming event as those 

described above, focusing on populations of nematodes, the dominant taxa in the 

system’s fauna (Freckman and Virginia 1997; Powers et al. 1998). To compliment these 

measurements and gain a clearer picture of how the soil habitat may differ in ways other 

than moisture content, I examined soil properties including pH, electrical conductivity 

and soil texture.  The overarching aims of my research were to contribute to insight into 

the extent to which soil invertebrates in this polar desert ecosystem respond to changes in 

habitat conditions, by measuring community structure and distribution of nematode 

populations. The research experimental design, methods, analysis and results are 

enclosed as the main body of this thesis in a manuscript that is being prepared for 

submission. 
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CHAPTER 2: THAWING PERMAFROST ALTERS NEMATODE POPULATIONS 

AND SOIL HABITAT CHARACTERISTICS IN AN ANTARCTIC POLAR DESERT 

ECOSYSTEM 

 

 

I. Summary 

Spatial distribution of soil nematode populations in Antarctic terrestrial 

ecosystems is tightly controlled by environmental factors and thus highly sensitive to 

changes in soil properties. Increases in the magnitude and frequency of episodic 

warming events as well as eventual warming trends are likely to result in increased 

water availability due to glacial melting and permafrost thaw, and may also incite 

changes in soil physical and chemical characteristics that determine nematode habitat 

suitability. We hypothesized that climate warming would result in new suitable soil 

habitats leading to heightened diversity and activity in nematode communities. In order 

to test this hypothesis, we compared nematode populations in patches of soil wetted by 

naturally enhanced permafrost thaw versus adjacent soils unaffected by thaw.  We found 

that thaw sites had significantly lower nematode abundances and living to dead ratios, 

contradicting our hypothesis. We also observed significantly altered soil texture (finer 

particle size), lower pH and higher salinity in permafrost seeps. These observations 
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suggest that current and future changes in climate may alter soil properties and result in 

significant changes in nematode population structure, distribution and function. 
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I. Introduction 

High latitude ecosystems are projected to experience future rises in temperature, 

resulting in thawing glaciers and permafrost and thus increased available soil moisture 

(Chapin 2005).  As liquid water is the primary limiting factor for life and ecosystem 

processes in polar deserts such as the McMurdo Dry Valleys of Antarctica (Kennedy 

1993; Barrett et al. 2007; Barrett et al. 2009), this may lead to changes in the system’s 

biotic diversity and activity (Gooseff et al. 2003; Foreman et al. 2004).  

 Permafrost thaw in the rapidly warming terrestrial arctic has been widely 

examined for its implications to climate warming feedbacks (Chapin 2005; Bäckstrand et 

al. 2010), with considerable attention given to soil-atmosphere carbon exchange and the 

release of carbon by biotic processes in frozen peat soils (Oelberman et al. 2008; Pautler 

et al. 2010). Studies on biotic exchange have generally concentrated on microbial activity 

and carbon flux, and less on the implications of thawing permafrost for microbial-

consuming invertebrates. 

However, the ice-free areas of Antarctica are also likely to be altered by regional 

temperature changes as a result of climatic trends. For example, the region has 

experienced recent cooling and episodic warming events (Doran et al. 2002; Thompson 

and Solomon 2002; Barrett et al. 2008b), and warming is projected over longer 

timescales (Chapman and Walsh 2007; Walsh 2009; Steig et al. 2009). Although 

permafrost characteristics and extent have been widely studied in the Dry Valleys 

(Campbell and Claridge 1987; Bockheim et al. 2007; Bockheim 2008), understanding of 

its relationship with soil biodiversity and soil physical processes remains rudimentary.  

Furthermore, the effects of temperature changes on a low-diversity system may have a 
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magnified effect on soil biological diversity and ecosystem processes (Ball et al. 2009; 

Simmons et al. 2009).  Because water availability drives biological processes and 

controls soil development and geochemistry in the Dry Valleys, increased thaw may 

affect biota directly as well as indirectly through altering soil environmental 

characteristics that determine habitat suitability for the existing fauna (Lyons et al. 2005; 

Harris et al. 2007). 

 To further investigate the consequences of climate warming on Dry Valley 

ecosystems, we focused on Taylor Valley, a polar desert in the Ross Sea region, 

Antarctica (77° S, 162.3° E).  Specifically, we examined the interactions between 

increased moisture likely resulting from permafrost thaw, soil chemical and physical 

properties, and populations of free-living nematodes, a dominant group of invertebrates 

in Antarctic soil habitats.  

The Dry Valleys are hyper-arid and at the extremes of low biotic temperature and 

moisture thresholds, restricting species diversity. Soil invertebrates are the system’s most 

prominent fauna, with nematodes typically displaying the highest abundances and 

dominating the terrestrial food chain (Freckman and Virginia 1997; Powers et al. 1998). 

The endemic microbial-feeder Scottnema lindsayae (Nematoda) is a particularly common 

inhabitant of the Dry Valleys, especially in dry, high-salinity soils typical of the 

landscape (Freckman and Virginia 1997; Courtright et al. 2001). Two other nematode 

species, Plectus murrayi  (also a microbial feeder) and Eudorylaimus antarcticus (an 

algivore), are patchily dispersed throughout the valleys and more commonly found in 

moist areas where algae are present such as lake margins and ephemeral streams (Powers 

et al. 1998; Barrett et al. 2004; Ayres et al. 2007).  Several other metazoan taxa exist in 
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the system including collembolans, mites, tardigrades and rotifers, although at far lower 

abundances in dry soil habitats and more limited in distribution than nematodes (Powers 

et al. 1998; Courtright et al. 2001; Stevens and Hogg 2002). Nematode abundance also 

tends to be greatest in the top 10 cm of soils, decreasing sharply below that point and 

virtually absent at depths greater than 20 cm (Powers et al.1994). 

Liquid water is biologically unavailable to biota until the austral summer, when 

permafrost thaws and glacial melt-streams flow across soils, expanding onto soil from 

perennially ice-covered lakes (Barrett et al. 2009). Thus, the austral summer can be a 

period of relatively high biological activity (Moorhead et al. 1999). The minimal snow 

that falls in the valleys (<50 mm water equivalent annually; Fountain et al. 2010) quickly 

sublimates and rarely moistens soils long enough to become available to soil animals 

(Gooseff et al. 2003).  Nematodes, tardigrades, and rotifers survive in these arid soils by 

entering into a metabolically inactive state, anhydrobiosis, during periods when water is 

absent (Treonis et al. 1999; Treonis and Wall, 2005; Adkihari et al. 2010). Once liquid 

water becomes available they resume activity, affecting rates of soil carbon cycling and 

ecosystem processes (Gooseff et al. 2003; Barrett et al. 2009). 

The landscape in the Dry Valleys is underlain by ice-cemented or dry permafrost 

generally between 20 and 60cm below the soil surface (Bockheim 2002).  Soils are 

predominantly alkaline, course-textured (typically 95-99% sand), and saline (Campbell 

and Claridge 1987; Poage et al. 2008). Vegetation and primary production is limited to 

algae and mosses in areas of elevated soil moisture, and intermittent single-celled 

autotrophs in soils (Johnston and Vestal 1991; Barrett et al. 2005). As a result, organic 

carbon input into the system is low (Burkins et al. 2000; Hopkins et al. 2006). Given the 
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negligible autotrophic community and organic matter input, rates of biotic activity are 

slow and heavily influenced by temperature and moisture (Moorhead et al. 1999; Barrett 

et al. 2006; Zeglin et al. 2009). 

We predicted that an increase in available water from thawing permafrost would 

alter soil physical and chemical characteristics and increase habitat suitability for biota 

(Courtright et al. 2001). Short-term, intensified soil moisture often results in increased 

biological activity in other desert systems (Noy-Meir 1973; Schwinning and Sala 2004), 

and has led to changes in soil chemistry across many terrestrial ecosystems including the 

Dry Valleys (Austin et al. 2004; Barrett et al. 2008b). Additionally, repeated freeze-thaw 

cycling over time can increase soil mechanical weathering via cryoturbation processes in 

polar ecosystems, which also contribute to shifts in chemical characteristics (Bockheim 

2002; Ugolini et al. 2008). Therefore, changes in soil properties that determine habitat 

suitability for soil animals such as soil texture, salinity, pH, and organic matter 

availability may be found in areas of recurrent permafrost thaw.   

Temperatures during the 2008-2009 austral summer were unusually warm for the 

system, and visible patches of heightened soil moisture on the soil surface indicated the 

occurrence of subsurface ice melt. Such thawing is likely to fluctuate in magnitude over 

long timescales (Campbell and Claridge 1987; Lyons et al. 2005), and presumably occurs 

more frequently in particular micro-sites due to their topographic positions in the 

landscape (Campbell and Claridge 1987).  We used these apparent thaw sites across the 

landscape to compare soil characteristics and biotic make-up in seeps with those of 

adjacent dry soils. We hypothesized that the abundance and diversity of nematodes would 

be greater in more frequently wetted soils, coinciding with altered soil conditions 
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potentially more favorable for metabolic processes. Indeed, we observed large differences 

in soil properties between seeps and dry soils, especially where moisture increase was 

high. However, as we show, the response of nematode communities failed to support our 

hypothesis, as they were found in lower abundances in areas of high thaw. This suggests 

that decreased suitability of habitat conditions with permafrost thaw negated the 

concurrent benefits of increased water availability. 

 

II. Materials and methods 

a) Site description 

 Taylor Valley is an ice-free terrestrial ecosystem in East Antarctica and the 

primary location of the United States National Science Foundation McMurdo Dry 

Valleys Long Term Ecological Research program (MCM LTER).  Mean summer 

temperatures are around -8° C, and reach above-freezing temperatures for a maximum of 

three months between December and February (Doran et al. 2002). Three hydrologic 

basins separated by glaciers exist across Taylor Valley, which extends from the polar 

plateau down to the McMurdo Sound. As the three basins each contain distinct soil 

characteristics, we selected two of the basins for sampling locations near long-term 

experimental plots of the MCM LTER, Lake Fryxell Basin (77°38’ S, 163°06’ E) and 

Lake Hoare Basin (77°37 ’S, 162°52’ E). The Fryxell basin tends to contain higher 

diversity and abundances of soil organisms, containing higher moisture and organic 

matter content and lower salinity in relation to Lake Hoare soils (Virginia and Wall 1999; 

Barrett et al. 2007). 
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b) Experimental design and treatments 

 Samples were collected at the South side of Lake Hoare (hereafter referred to as 

‘SSLH’) and near the F6 Stream at Lake Fryxell (‘F6’).  We selected three sites in each 

basin where a permafrost seep was present (soil surface was visibly moistened; termed 

‘seeps’), and paired these sites with a nearby area of dry soil (‘dry soil’ sites). Prior to 

creating soil pits, we took a sample (roughly five grams) from the surface to measure 

chlorophyll a content, which was used as a proxy for algal biomass and level of primary 

productivity taking place (Barrett et al. 2004). Soil pits (square-shaped and approximately 

40cm by 40cm) were dug at each of the paired sites to the depth of the ice-cemented soil. 

Soil samples were taken at 10 cm depth intervals, generally down to 30-40 cm, and soil 

removed from the pit was placed on a nearby tarpaulin to be replaced in pits after 

sampling. Pairs of seep and dry pits were distant enough to exhibit a moisture difference, 

but also close enough so as not to be influenced by other factors such as topography and 

spatial heterogeneity of soils (generally around 1m apart). 

Soil samples (roughly 500g) were taken on two opposite sides of the interior of 

the soil pit using a sterile plastic scoop. The samples were collected in 10 cm increments 

from the surface down to and including the top of the frozen layer. Soils were placed in 

sterile Whirlpack® plastic bags, mixed gently, and transported to the Crary Laboratory at 

McMurdo Station in insulated ice chests.  Prior to sampling, soil temperature was 

measured with a thermometer at each depth increment and the depth to the layer of ice 

cement was recorded.  
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c) Laboratory Analysis 

The 5g surface soil samples were measured for chlorophyll a content by the 

acetone extraction/flourometric procedure (Barrett et al. 2004). 

A 100 g sub-sample was removed from each sample under a sterile laminar flow 

hood within 48 hours of return to Crary Lab and nematodes were extracted by wet-

sieving soils and placing in a sugar solution to be centrifuged (Freckman and Virginia 

1993). With the aid of an inverted microscope (100-400x), we enumerated and identified 

nematodes to species, sex and life stage (juvenile/adult and live/dead). Nematodes were 

reported as total abundance kg -1 dry soil, and as percentages of these totals that were 

found living. 

Gravimetric soil moisture was determined by weighing out a 50g subsample and 

drying at 105°C for 48 hours. Remaining soils were placed in freezers in a series of 

increasingly colder temperatures over a one week period, until they reached -20°C. 

After shipping frozen samples to Colorado State University, an Accumet model 

25 pH meter (Fisher Scientific, Pittsburg, PA, USA) was used to measure soil pH by 

creating a 1:2 saturated paste (30g soil to 60mL deionized water) and homogenizing the 

suspension (Parsons et al. 2004). 90mL DI water was then added to the suspended soils 

and an electrical conductivity meter (YSI 30 model, YSI Incorporated, Yellow Springs, 

OH, USA) was used to measure salinity (Parsons et al. 2004). 

 Soil was sieved through 2mm mesh and texture measurements were determined 

by air-drying 50g soil and adding 50g/L sodium-hexametaphosphate. The suspension was 

shaken for 18 hours and temperature was recorded, after which contents were again 

mixed thoroughly; using a Bouyoucos scale hydrometer we took readings at 40 seconds 
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to measure silt and sand and at 7 hours to measure clay content (Gee and Bauder 1986). 

Total carbon and nitrogen content was determined using a Leco® TruSpec® (Leco Corp., 

St. Joseph, MI, USA). Inorganic carbon was also measured, using the modified pressure-

calcimeter method described by Sherrod et al. (2002). 

 

d) Statistical analysis 

To ensure that measures were representative of individual pits, values from 

opposing sides of each pit were combined prior to analyses of variance (ANOVA), which 

was used to assess individual and interacting effects of basin, treatment, and depth 

increment on soil characteristics and nematode populations. Nematode abundance, 

electrical conductivity, and soil moisture were log(n+1) transformed prior to analyses to 

meet assumptions of normality. Calculations for population structure (specifically, ratios 

between juveniles, males and females) and community structure could not be performed 

due to the prevalence of samples with zero values for nematode abundance, and the 

absence of E. antarcticus and P. murrayii individuals in nearly all samples.  As a result, 

statistical analyses were not run on these data.  

Texture data were arc-sin square root transformed, and measurements of depth to 

frozen soil were rank-transformed to meet ANOVA assumptions. Modified Bonferroni 

corrections (Sidack’s method) were applied to depth analyses and interactions between 

location, depth, and treatment effects to compensate for multiple-comparison biases. All 

statistical tests were performed using JMP software (SAS Institute, Cary, North 

Carolina). 
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III. Results 

Soil moisture and depth to permafrost 

The two basins differed significantly in depth to the ice cemented soil (Figure 1). 

Frozen soils occurred at greater depths at SSLH than at F6 (Figure 1), with average 

values of 35cm at SSLH and 28cm at F6.  In addition to differences in depth to frozen 

soil between the two basins, seep sites had significantly greater depth values than those 

measured in dry soils and there was no interaction between these two factors. The mean 

depths for seep versus dry sites at F6 were 32cm and 24cm, respectively.  Mean depth in 

seep soils at SSLH was 36cm, and 34cm in dry soils. 

 

Figure 1. Depth (mean ± standard error) from the soil surface to the top of the permafrost 
layer (cm) 
 

Across treatments, F6 soils had significantly higher soil moisture content than 

those at SSLH (Table 1). Furthermore, there was a much greater difference in moisture 

content between seep sites and dry sites at F6 than was measured at SSLH (Figure 2). 
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Whereas mean moisture values for each soil depth increment at SSLH seep sites ranged 

from 6.6% to 10.1%, seep sites from F6 ranged from 14.9% to 29.5% (Table 2). Dry 

treatment soils at SSLH contained depth increment means between 1.4% and 11.5% 

moisture, and those at F6 contained between 5.5 and 14%. 

Soil moisture increased significantly with depth across both basins and treatments 

(p < .01), although there was no interaction between depth and treatment.  At SSLH, 

moisture in seep sites increased between the first two increments, from a mean of 6.6% at 

0-10 cm to 8.4% at 10-20 cm. After 10-20 cm, moisture remained fairly constant down to 

the 30-40 cm increment; thus, the statistical means for the dry sites in the basin surpassed 

those of the wet treatments at the 30-40 cm depth (Figure 2).  

 

 

Figure 2. Percent gravimetric soil moisture content (mean ± standard error) at each depth 
increment 
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Table 1. ANOVA table showing F-values; * p <0.05, ** p < 0.01, *** p < 0.001. (corrected for multiple 
comparisons).  

ANOVA 

Effect % Moisture 
Total nematode 

abundance 
pH EC % Sand % Silt % Clay 

Location 31.000 *** 0.435 99.273 *** 94.547 *** 28.107 *** 38.143 *** 11.529 ** 

Treatment 38.626 *** 173.482 *** 54.804 *** 93.581 *** 26.329 *** 56.084 *** 4.503 * 

Location x 

Treatment 
0.360 .435 52.614 *** 41.282 *** 9.172 * 22.238 *** 0.115 

Depth 8.194 ** 9.869 *** 4.532 7.186 ** 0.911 0.453 0.892 

Location x 

Depth 
0.141 0.404 0.248 2.275 0.550 0.023 1.318 

Treatment x 

Depth 
1.591 4.728 0.008 3.593  0.982 1.325 2.208 
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Table 2. Soil texture and chemical properties across locations, depths and treatments (percentage of sand, silt, and clay 
particles, gravimetric soil moisture content, pH, and salinity). Standard errors are given in parentheses. Dashes indicate 
no data. 

 F6 SSLH 

Site Depth % 
Sand % Silt % 

Clay 
% 

Moisture pH EC % 
Sand 

% 
Silt 

% 
Clay 

% 
Moisture pH EC 

Dry 0-10 88.83 
(4.2) 

2.8 
(2.0) 

8.3 
(3.2) 

5.45 
(2.11) 

9.63 
(.28) 

123.45 
(30.71) 

92.7 
(2.3) 

 

0 
(1.1) 

7.5  
(1.3) 

1.39 
(0.56) 

9.68 
(0.06) 

58.37 
(1.15) 

Seep 0-10 59.83 
(10.9) 

25.3 
(9.9) 

14.8 
(1.4) 

14.85 
(1.74) 

8.01 
(.05) 

3403.67  
(232.12) 

88.8 
(1.6) 

1.5 
(0.5) 

9.7 
(1.3) 

6.58 
(0.66) 

9.95 
(0.11) 

121.40 
(7.85) 

Dry 10-20 91.33 
(4.8) 

1.2 
(1.4) 

7.5 
(3.3) 

6.79 
(0.97) 

9.31 
(0.14) 

70.57 
(5.88) 

94.3 
(2.3) 

0 
(1.4) 

7.0 
(0.9) 

4.06 
(0.82) 

9.62 
(0.12) 

47.82 
(7.59) 

Seep 10-20 47.2 
(8.9) 

38.0 
(8.3) 

14.8 
(0.7) 

24.48 
(1.34) 

7.98 
(0.15) 

1096.50 
(290.7) 

86.7 
(0.4) 

2.8 
(0.3) 

10.5 
(0.7) 

8.36 
(1.68) 

9.55 
(0.10) 

77.80 
(7.23) 

Dry 20-30 87.33 
(10.0) 

1.3 
(3.3) 

11.4 
(6.8) 

13.96 
(7.51) 9.17 92.73 92.3 

(1.5) 
0.3 

(0.7) 
7.3 

(1.5) 
7.12 

(3.33) 
9.56 

(0.00) 
55.12 
(4.10) 

Seep 20-30 48.0 
(14.1) 

38  
(10.5) 

14 
(3.7) 

22.78 
(4.09) 

8.04 
(0.2) 

726.13 
(358.81) 

87.7 
(0.9) 

2.5 
(1.4) 

9.8 
(0.9) 

10.10 
(1.57) 

9.33 
(0.07) 

77.98 
(0.71) 

Dry 30-40 - - - - - - 84.2 
(3.8) 

6.5 
(3.8) 

9.3 
(0.0) 

11.48 
(4.45) 

9.28 
(0.12) 

70.45 
(3.27) 

Seep 30-40 77.3 16 6.7 29.47 8.08 844.00 85.3 
(1.0) 

2.8 
(1.8) 

11.9 
(0.8) 9.19 9.35 

(0.08) 
96.88 
(9.13) 
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Nematodes 

Total nematode abundances did not significantly differ between SSLH and F6.  

However, seeps in both basins had significantly fewer total nematodes present (p < 0.001, 

F = 173.482). Nematodes were virtually absent in seeps at F6 and no living individuals 

were found, whereas dry sites in the basin contained as many as 4308 nematodes per kg 

dry soil, with a range of around 75-100% live across all depths. At SSLH, dry sites 

contained a mean percentage of living nematodes of 49% and an average of 53% in seeps 

(Table 3).  S. lindsayae was the most prevalent species across all locations, treatments 

and depths, and was the sole metazoan species in nearly all samples collected. Although 

very few E. antarcticus and P. murrayii individuals were encountered across all samples, 

the soils containing these two genera were collected from dry sites. There did not appear 

to be any patterns in life stage composition across treatments, depths, or locations (Table 

3). 

 With depth, nematodes in both wet and dry sites decreased sharply at both 

locations beginning at the 10-20cm increment down to the permafrost layer. The highest 

nematode abundances found below the surface layer were in the 10-20 cm depths in 

SSLH dry soils, where moisture levels remained at virtually the same values as those in 

the surface increment (Figure 3). 
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Table 3. Population structure of S. lindsayae (percentages of juveniles, males, and females making up total abundance, 
samples, percentage of total abundance found living, and total number of S. lindsayae individuals/kg dry soil), across 
locations, treatments, and depth increments. Standard errors are given in parentheses for total abundance. “N/A” is listed 
for samples containing no nematodes; dashes indicate that no sample was taken. 
 

 F6 SSLH 

Site Depth 
% 
Juvenile 

% 
Male 

% 
Female 

% 
Live 

Total 
abundance 

% 
Juvenile 

% 
Male 

% 
Female 

% 
Live 

Total 
abundance 

Dry 0-10 68.1% 17.3% 44.6% 84.3% 2797 (725) 66.9% 16.6% 51.5% 54.7% 1831 (573) 

Seep 0-10 100.0% 0.0% 0.0% 0% 2 (2) 80.7% 9.5% 50.1% 65.5% 2412 (155) 

Dry 10-20 68.3% 15.2% 50.7% 64.3% 189 (68) 74.3% 13.2% % 53% 504 (185) 

Seep 10-20 N/A N/A N/A N/A 0 (0) 72.2% 10.2% 10.2% 68.9% 43 (19) 

Dry 20-30 74.5% 15.5% 32.4% 94.5% 310 (277) 58.3% 37.5% 37.5% 54.7% 19 (4) 

Seep 20-30 N/A N/A N/A N/A 0 (0) 87.9% 3.0% 3.0% 32.8% 70 (24) 

Dry 30-40 - - - - - 65.8% 19.9% 19.9% 35% 176 (153) 

Seep 30-40 N/A N/A N/A N/A 0 (0) 33.5% 3.1% 3.1% 46.7% 40 (10) 
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Figure 3. Total nematode abundances (mean ± standard error) at each depth including the 
frozen soil layer, in numbers of individuals/kg dry soil. Data are presented on a log scale. 
 

Soil biogeochemical properties 

Electrical conductivity varied dramatically between the two basins (p < 0.001), 

with F6 soils having as low as 38 µS and reaching up to 4600 µS.  In contrast, soils at 

SSLH were nearly all between 34 and 100 µS, with the maximum being 149.9 µS. Lower 

pH levels were recorded at F6 (p < 0.001), ranging from 7.4 to 10.2.  Soils from SSLH 

ranged from pH levels of 9 to 10.2 (Table 2). 

Seep sites had significantly higher salinity than dry soils (p < 0.001) and 

contained significantly lower pH (p < 0.001, Table 1). Across all depths, electrical 

conductivity in F6 soils averaged 96.7 µS, while seep soils averaged 1694.8 µS. Seeps at 

SSLH also contained higher salinity than dry sites, although the difference was less 

pronounced than at F6. SSLH dry sites ranged from 34.6-80.6 µS (mean= 57.6), while 
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seeps in this location contained a mean electrical conductivity of 91.7µS and ranged from 

77.8-121 µS. 

Salinity decreased significantly with depth across all sites; this effect was subtle 

in SSLH wet and dry soils and F6 dry soils, but sharp between the 0-10 and 10-20 cm 

increments in F6 wet soils (Figure 4). Furthermore, there was a slight pattern in 

interactive effects of treatment and depth, as wet sites at both basins contained higher 

salinity values than dry sites at the 0-10 cm depth increment. This interaction was most 

notable at F6 and not significant after correcting for multiple comparisons. Although pH 

decreased slightly in all sites other than F6 seeps (Figure 5), depth effects had no 

significant association with the effects of pH.  

 

 

 

Figure 4. Electrical conductivity -1 (mean ± standard error) at each depth increment (µS)  
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Figure 5. Soil pH (mean ± standard error) at each depth increment 

 

Soil texture 

The two locations varied significantly in their sand, silt, and clay particle 

distribution (p < 0.001, p < 0.001, and p < 0.01, respectively). Texture at F6 was more 

variable than SSLH and in general made up of more clay (p < 0.001). Depth increment 

means for the clay fraction at F6 ranged from 7.5% to 14.8% clay particles as compared 

to a range of 7% to 11.9% at SSLH (Table 2).  

In addition to differences in soil texture between the two basins, seep presence 

had a further effect on makeup of sand, silt and clay particles. Seep soils had far lower 

sand content and higher clay content than dry soils at both SSLH and F6 (p < 0.001), the 

effect was even greater at F6.  Depth was not a significant factor in composition of 

particle-size, although all soils showed the same trend at increasing depth with the 

exception of F6 seep soils. Sand particle composition between 0 and 30cm in F6 seeps 
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decreased by about 10% between 0-10cm and 10-20cm, but increased again to around 

77% at the lowest depths (30-40cm); seep soils at SSLH also decreased slightly at the 10-

20cm depth, but only by a few percent. In SSLH soils and F6 dry soils, sand content was 

relatively constant (around 90%). Clay content accordingly showed inverse trends at both 

basins (Table 2). 

 

IV. Discussion 

Our seep sites were associated with distinct soil properties and populations of soil 

nematodes relative to reference soils more typical of Taylor Valley (e.g. Barrett et al. 

2006).  Higher moisture levels were correlated with lower pH, higher conductivity and 

higher clay content, indicating that the moisture increases seen in seeps alter interactions 

between multiple soil characteristics, the degree of variation in each of the above soil 

properties commensurate with level of moisture increase.  

Typically, soils at F6 are a more suitable habitat for nematodes and contain more 

abundant and diverse communities (Barrett et al. 2006). The soil properties found for dry 

soils in the current study are consistent with other research in the Dry Valleys in terms of 

soil chemical and physical characteristics as well as soil nematode abundances 

(Freckman and Virginia 1997; Powers et al.1998; Courtright et al. 2001; Poage et al. 

2006). However, we show here that soils in seepage sites, at particularly at F6, deviate 

significantly from dry soils in terms of soil properties (Table 1).  

Our results are also consistent with previous research carried out in the region 

focusing on moisture, salinity and pH as major determinants of nematode distribution and 

viability (Powers et al. 1998; Courtright et al. 2001; Nkem et al. 2006), and dependence 
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of nematodes on these specific environmental conditions for functioning (Gooseff et al. 

2003; Barrett et al. 2008a).  A recent study investigated temperature and moisture 

additions to surface soils over an eight-year period in the Dry Valleys, as well as a 

naturally occurring glacial melt event that flooded experimental plots during one season 

of the long-term study (Barrett et al. 2008b; Simmons et al. 2009). The authors observed 

that S. lindsayae responded poorly to the micro-climate manipulations and natural flood 

event, while E. antarcticus responded favorably (although not immediately). They 

concluded that such habitat shifts over longer timescales might impact individual species 

distinctively, altering food-web dynamics and thus nutrient cycling. Results of the present 

study expand on these previous conclusions by identifying a separate aspect of potential 

impacts on polar desert ecosystems under projected climate change; specifically, 

seasonally heightened moisture content resulting from increased below-ground thaw. 

Beyer et al. (1999) attributed soil development in the Antarctic Dry Valleys 

primarily to cryoturbation, acidification, and mineral weathering among several other 

chemical processes. Our study exemplifies this in that we saw changes in clay particle 

content and pH, both of which are by-products of soil development processes and 

contribute to nematode habitat suitability.  A study by Barrett et al. (2004) showed that 

polygon formation in soils across the landscape, a direct result of cryoturbation and areas 

in which soil movement and weathering are high, differed in both soil properties and 

nematode abundances. Specifically, they observed nematodes at greater abundances in 

the interior of polygon features, with fewer in the troughs between polygons where 

churning and development of soils actively occurs.  
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While freeze-thaw processes occur to a certain extent each summer, they are 

thought to vary in degree over longer timescales in response to annual and seasonal 

variability in temperature and moisture (Campbell and Claridge 1987). This observation 

suggests that varied magnitudes of freeze-thaw events over time have led to shifts in soil 

characteristics, such as those observed in the current study. Seeps tend to occur in 

relatively consistent locations throughout the valley through time, as topographic 

positions on hillsides determine exposure to both sun and aeolian soil deposition, 

determinants of depth to which soils remain frozen (Campbell and Claridge 1987).  

Our study suggests that increased permafrost thaw may contribute to soil change 

throughout the active layer, most notably through weathering. While temperatures 

reached during summer months are in most years too subtle to significantly alter thaw 

extent (Campbell and Claridge 1987), they would become more effective in promoting 

weathering over time under gradual warming scenarios and increases in the intensity, 

frequency, and spatial extent of moisture pulses (Harris et al. 2007).  The observation of 

increased patches of moisture during relatively high-temperature years (Lyons et al. 

2005; Harris et al. 2007) suggests that higher than average ice melt is occurring 

belowground and supports this projection.  

While most of our samples showed a consistent relationship between nematode 

abundance and certain soil properties such as sand and clay content, salinity, and pH, two 

measurements deviated from these patterns.  The samples taken from SSLH seeps at the 

0-10cm and 20-30cm depths had higher mean nematode abundance and mean living to 

dead ratios than dry soils at those depths. However, the differences in moisture content 

and soil properties seen between dry and seep samples at SSLH were slighter than those 
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at F6. Despite these exceptions, seeps overall displayed significantly higher nematode 

abundance and living to dead ratios across basins and depths in comparison with dry 

soils.  

The gradient in soil characteristics and nematode population abundances we 

observed highlights the concern that, with future rises in temperature, the system may 

reach a “tipping point” due to changes in ecosystem conditions and thus the functioning 

of biota (Wall 2007).  We found that permafrost thaw is associated with notable changes 

in soil characteristics such as soil texture, salinity, and pH, suggesting that formerly 

suitable habitat for soil animals adapted to dry soils may eventually be pushed beyond 

suitability. Thus, in the future, as permafrost thaw increases in magnitude, frequency and 

spatial extent, the distribution of biota across the landscape may be substantially reduced. 

We conclude that increasing levels of permafrost thaw from climate warming will 

have negative consequences for the Dry Valley biota, which naturally contain minimal 

diversity due to extreme environmental conditions and have rarely received new species 

as a result of geographic isolation (Adams et al. 2006). The endemic nematode S. 

lindsayae contributes substantially to carbon cycling. During a recent cooling event 

(1993-2005), the population size of the species was shown to decrease by greater than 

60% directly leading to a decline in soil carbon cycling of as much as 7% (Doran et al. 

2002; Barrett et al. 2008a).  These findings are concerning and suggest altered 

biodiversity and distribution of soil fauna with potentially hindered ecosystem 

functioning under altered environmental conditions. 

As in arctic ecosystems (Oelbermann et al. 2008; Pautler et al. 2010) amplified 

climatic change leading to permafrost thaw may also alter biotic processes in polar 
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deserts of Antarctica. The responses to change by invertebrate communities, which are 

only now beginning to be investigated, are critical components in understanding these 

processes.  Additional insight on the interactions between soil species, temperature 

changes, and resulting influences on nutrient dynamics of both frozen and un-frozen soil 

must be extended further to better predict how various polar systems as a whole might 

respond to shifts in climate. 
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CHAPTER 3. CONCLUSION 

 My research focused on three questions, which I list again here along with a short 

summation of the results. 1) Will future expansion of sub-surface ice seeps increase the 

area of suitable habitats both horizontally across the landscape, and vertically to greater 

depths in the soil profile than is typically hosted for nematodes? 2) Do soil properties 

shown to determine habitat suitability differ in patches of soils that experience repeated 

subsurface ice melt?  And, 3) Do nematode communities respond favorably to moisture 

increases and potential associated changes in habitat characteristics created by permafrost 

seeps, supporting greater abundance and diversity of species? 

The results of this study indicate that changes in environmental conditions, even 

those seemingly favorable for organisms, can have deleterious effects on an ecosystem. 

In many regions, increased temperature and moisture are thought to often have a positive 

effect on the activity levels of soil organisms.  It logically follows that this would be 

especially true of polar deserts, as the primary limiting factor for biological activity and 

thus rates of ecosystem processes is the availability of liquid water (Kennedy 1993; 

Gooseff et al. 2003; Barrett et al. 2009).  However, as shown here, a tipping point may be 

reached where changes in environmental conditions surpass those of an organism’s 

tolerance. Compounding on large increases of moisture from permafrost thaw are a 

multitude of other variables that also determine habitat suitability, such as substrate 

chemical and physical properties, which can also be affected by changes in moisture 



	
   41	
  

regime (Barrett et al. 2006; Ball et al. 2009). While these factors in habitat suitability may 

not be substantially altered by subtle, short-term temperature and moisture fluctuations, a 

more frequent and intense regime of episodic warming events may over longer timescales 

cause a shift in the habitat’s defining chemical and physical properties (Campbell and 

Claridge 1987). 

 Although polar regions are at the forefront of concern over the impacts of global 

climate change, observations of how soil biota in the Arctic and Antarctic are responding 

to altered climate may provide clues to general patterns in invertebrate responses to 

change also applicable at lower latitudes. The gradients I observed that culminated in a 

crash of nematode populations once a certain degree of change in habitat conditions was 

reached (for example those in the dramatically moistened seep soils at F6), can be 

assessed in conjunction with another recent study indicating altered carbon cycling after a 

decline in the same species’ population (Barrett et al. 2008).  The value in these 

implications for soils around the globe is in identifying a relatively direct cause-and-

effect relationship between altered microenvironments, individual species, and a few 

distinct processes by which we can scale up to soils containing a more convoluted set of 

many variables, which in temperate and tropical regions are difficult to isolate. This is 

highly relevant in the context of global change given that the provision of ecosystem 

services provided by soil biota are contingent upon a specific ecosystem process or set of 

processes; these in turn depend upon the ability of organisms to properly carry out 

ecosystem functions. Thus, if we are to preserve the capacity of soil organisms to 

contribute to such services and avoid societal consequences from their reduction, it is 



	
   42	
  

necessary to further our understanding of species to community-level responses to 

changing environmental conditions and the impacts on ecosystems that follow. 
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