
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004 189

Comparison of Different Classification Algorithms for Underwater
Target Discrimination

Donghui Li, Mahmood R. Azimi-Sadjadi, and Marc Robinson

Abstract—Classification of underwater targets from the acoustic
backscattered signals is considered here. Several different classifi-
cation algorithms are tested and benchmarked not only for their
performance but also to gain insight to the properties of the fea-
ture space. Results on a wideband 80-kHz acoustic backscattered
data set collected for six different objects are presented in terms of
the receiver operating characteristic (ROC) and robustness of the
classifiers wrt reverberation.

Index Terms—K-nearest neighbor (K-NN) classifier, neural net-
works, probabilistic neural networks (PNNs), support vector ma-
chines (SVMs), underwater target classification.

I. INTRODUCTION

THE problem of classifying underwater targets from the
acoustic backscattered signals involves discrimination be-

tween targets and nontarget objects as well as the characteriza-
tion of background clutter. Several factors that complicate this
process include: nonrepeatability and variation of the target sig-
nature with aspect angles, range and grazing angle, competing
natural and man-made clutter, highly variable and reverberant
operating environment, and lack of any a priori knowledge about
the shape and geometry of the nontargets.

A number of different classification schemes have been de-
veloped in recent years. A good review of the previous methods
is provided in [1]. The method in this reference uses a wavelet
packet-based classification scheme to discriminate mine-like
and nonmine-like objects from the acoustic backscattered
signals. The classifier was a back-propagation neural network
(BPNN). A separate multiaspect fusion system was also imple-
mented to improve the classification accuracy by observing the
properties of the returns in several consecutive aspects. The test
results on an 80-kHz data set were presented, which showed
the promise of the system. With the exclusion of the work by
Carpenter and Streilein [2], which used an ARTMAP-based
classification system and provided reasonable single-aspect
and multiaspect results, all other schemes almost exclusively
used a BPNN classifier with different sets of features.

This brief paper studies the performance of other classifiers
that use different decision rules on this problem. The purpose is
to determine an optimum classification scheme for this problem,
and also to infer clues about the properties of the data and more
specifically the features. These clues could potentially provide
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helpful insight into the feature space and distribution of the
features, which in turn leads to a better understanding of this
complex problem. Several different classification algorithms are
considered and benchmarked. Among these are the multivariate
Gaussian classifier, the evidential K-nearest neighbor (K-NN)
classifier [4], probabilistic neural network (PNN) [5], [6] and
support vector machines (SVM) [7]–[9]. The performance of
these systems are then compared with that of the BPNN [1] on
the wideband (80 kHz) data set provided by Coastal Systems
Station (CSS), Panama City, FL.

II. BRIEF REVIEW OF DIFFERENT CLASSIFIERS

A brief review of different classification methods that are con-
sidered in this study is given here.

A. Multivariate Gaussian Classifier

This simple classifier [3] was used to give a benchmark for
comparison with the other more complicated ones. This classi-
fier works well when the data is assumed to be clustered in two
distinct groups with normal distribution. In other words, the fea-
ture vectors are assumed to be simply randomly corrupted ver-
sions of two prototype vectors. Clearly, in case of the acoustic
return features, this assumption is not a valid one as the change
in the scattering and physical properties of the objects as a func-
tion of aspect and grazing angles, etc. cannot be modeled by a
random process. In a two-class case (i.e. , ), a very
simple discriminant function

is used, where is the a priori condi-
tional probability density function (assumed to be normal) and

is the class prior probability.

B. Evidential K-Nearest Neighbor (K-NN) Classifier

In our two-class classification problem, , where
the possible hypotheses are either target or nontarget, an eviden-
tial K-NN classifier [4] finds the nearest neighbors (training
samples) of an unknown pattern and then prescribes a belief and
plausibility measure to each neighbor or item of evidence. To
each item of evidence, a basic belief assignment (BBA) is as-
signed. A common approach [4] is to find some type of a dis-
tance measure from the unknown pattern to each piece of ev-
idence and then use where
is the BBA for the item of evidence in the neighborhood,

is the class label of this item of evidence, is a
constant, is a class dependant constant, is an integer con-
stant (typically 1 or 2) and is a distance measure
(e.g. Euclidean distance) between the evidence belongs to
class and the unknown pattern . The remaining belief not

1045-9227/04$20.00 © 2004 IEEE



190 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

assigned to class is assigned to the set of classes , of which
is a subset. Thus, . Clearly, the

farther away a piece of evidence is from the unknown sample,
the less effect it will have on the belief in a class and it will be
assigned completely to the set of classes . For this two-class
problem the belief caused by each evidence is placed in the same
class, which is known from the training labels. Then, the BBA
of all the neighbors are combined using the Dempster’s rule
of combination [4]. Using this “orthogonal sum of the beliefs”
rule, the BBAs, and , associated with two independent
items of evidence can be combined to produce the BBA for the
collective evidence, i.e., by

(1)

Then, the class with the highest pignistic probability is declared
as the winner. This probability is defined as

(2)

where represents the cardinality of .

C. PNN

PNN was introduced [5], [6] to implement the Parzen
nonparametric probability density function (pdf) estimation
method. To overcome the structural and computational (during
the testing phase) of this network Streit et al. [12] introduced
a modified version of the PNN that substantially reduces the
number of neurons in the recognition layer by using Gaussian
mixture models and the expectation maximization (EM) algo-
rithm to estimate the network parameters. This algorithm not
only reduces the computational costs during the training, but it
also overcomes the issues with unbalanced training problems
and the optimal kernel selection.

In this algorithm, for any class , the class con-
ditional distribution is modeled approximately by a Gaussian
mixture as

(3)

where is the number of Gaussian components in class
that is generally decided experimentally, ’s are the weights
of the components (note, that ), )
denotes the multivariate Gaussian density function of the
component in class with and being its mean vector and
covariance matrix, respectively. The algorithm in [12] achieves
the maximum likelihood (ML) estimates of these parameters via
iterative computation when the observations can be viewed as
incomplete data.

If the Gaussian mixture model is a good assumption, the mod-
ified PNN classifier will achieve high classification accuracy.
Although the number of Gaussian components can always be
increased so that the mixture model can better approximate the
distribution, the computational cost may become unacceptable.

D. SVM

SVM [7]–[9] are powerful learning systems primarily for
two-class problems. SVM maps the input patterns into a higher
dimensional feature space through some nonlinear mapping
chosen a priori. A linear decision surface is then constructed
in this high dimensional feature space. Thus, SVM is a linear
classifier in the parameter space, but it becomes a nonlinear
classifier as a result of the nonlinear mapping of the space of
the input patterns into the high dimensional feature space. The
process involves solving a quadratic programming problem.
SVM has been shown [7] to provide high generalization ability.

For a two-class problem, assuming the optimal hyperplane in
the feature space is generated, the classification decision of an
unknown pattern will be made based on

(4)

where , are nonnegative Lagrange mul-
tipliers that satisfy ,
are class labels of training patterns , and

for represents a symmetric positive
definite kernel function that defines an inner product in the fea-
ture space [9]. This shows that is a linear combination of
the inner products or kernels.

Note that output corresponds to the distance of the
unknown pattern to the hyperplane in the feature space where
the distance of the support vectors to the hyperplane is presumed
to be 1.

The kernel function enables the operations to be carried out in
the input space rather than in the high-dimensional feature space.
Some typical examples [7] of kernel functions are

(linear SVM); (polynomial SVM
of degree ); (RBF SVM);

(two layer neural SVM) where
, , and are constants. However, a proper kernel function for

a certain problem is dependent on the specific data and till now
there is no good method on how to choose a kernel function. In
this paper, the choice of the kernel functions was studied em-
pirically and optimal results were achieved using second-order
polynomial kernel function .

The generalization ability of the SVM is controlled by two
different factors: the training error rate and the capacity of the
learning machine measured by its VC dimension [9]. The smaller
the VC dimension of the function set of the learning machine, the
larger the value of training error rate. We can control the tradeoff
between the complexity of decision rule and training error rate
by changing a parameter [8] in the SVM.

III. RESULTS AND DISCUSSIONS

To examine the effectiveness of the above-mentioned clas-
sifiers, the algorithms were tested and benchmarked on the
wideband 80 kHz data set provided by CSS. This data set
contains backscattered signals corresponding to six different
objects—two mine-like namely a bullet-shape metallic object
and a truncated-cone-shape plastic object; and four nonmine-
like, namely a water-filled drum, an irregular shape limestone
rock, a smooth granite rock, and a water-saturated wooden
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Fig. 1. Feature extraction and reduction processes.

log. The transmit signal was a linear frequency modulated
(LFM) up-sweep with frequency range from 30 to 110 kHz.
Each object was insonified at aspect angles from 0 to 355
with 5 separation. This resulted in 72 aspect angles out of
which the even-angles were used in the training data set while
the odd-angle samples were used as the testing samples. As a
result, for each object there were 36 patterns (at different aspect
angles) in the training or testing data sets. The training data
set contained the feature vectors of backscattered data with
synthesized reverberation effects with signal-to-reverberation
(SRR) that corresponds to nominal operating condi-
tions. The procedure for generating synthesized reverberation
involves convolving the transmit signal with a random sequence
and scaling the resultant signal according to the specified SRR
[1]. The synthesized reverberation signal is then added to the
backscattered signal to generate one “noisy realization.” The
process is repeated for every aspect angle multiple times in
order to generate a statistically rich data set for determining the
generalization ability of the classifier. The testing data in our
study contained two sets of ten and 50 noisy realizations with

for each aspect angle in the testing data in order
to obtain statistically significant results.

The steps involved in the front-end feature extraction and
selection system are shown in Fig. 1. A five-level wavelet
packet (WP) decomposition [10] was applied to decompose
the frequency spectra of the acoustic backscattered signals into
several subbands. The subband features can provide sufficient
discriminatory clues that aid target/nontarget discrimination.
Only 12 subbands that reside within the frequency range of
the transmit signal (i.e., 30–110 kHz) were selected. The
transmit signal was also decomposed using the same WP tree
structure. A third-order linear autoregressive (AR) model was
employed to represent the spectral behavior of the signals. The
AR coefficients were then used as features for classification.
This led to a total of 48 features. To select an appropriate set of
features, a function can be used to provide the discriminatory
power of the individual features. In this study, the Batcharayan
discriminant function [3] was used to evaluate the distance
between the two classes for each feature and select 22 (out of
48) features with high discriminatory power. This measure was
chosen based upon the observation of the histograms of the
features exhibit a unimodal Gaussian distribution.

A. ROC Analysis and Classification Error of Different
Classifiers

The classifiers are benchmarked on a data set containing ten
noisy realizations with in terms of their re-
ceiver operating characteristics (ROC) curves and the error loca-

Fig. 2. Classification results of the multivariate Gaussian.

tion plots versus aspect angle. The ROC curve is the plot of the
probability of correct classification rate versus probability
of false-alarm . The “knee point” of this ROC is particu-
larly important. This point corresponds to a decision threshold
leading to . The error location plot, on the other
hand, gives the corresponding classification error locations and
their frequencies versus aspect angles for each object. In this
plot, each ring corresponds to a particular object (i.e., objects
1–6) and each grid on the ring represents an aspect angle. In the
counter-clockwise direction, the aspect angles start from 5 to
355 with 10 separation since there are 36 odd aspect angles for
every object in the test set. The gray levels in each grid, which
can vary from 0 to 10, represents the frequency of classification
error at that particular aspect angle.

1) Multivariate Gaussian: As mentioned before, this clas-
sifier works well when the data is assumed to be clustered in
two distinct groups with normal distribution. Fig. 2(a) shows
the ROC curve for this classifier. At the knee point we have

and . Fig. 2(b) shows the corre-
sponding error location plot. As evident from this plot the mis-
classification for this classifier occurs only for the first three ob-
jects. The less than adequate results of this classifier for this data
set can be blamed on several factors including: improperness of
Gaussian assumption, inseparability of the clusters and the fact
that the patterns are not randomly corrupted versions of some
prototype vectors.

2) Evidential K-NN: When using the evidential K-NN, sev-
eral parameters need to be preselected. We chose ,

and can be found heuristically for each class by esti-
mating , where is the mean of the distances between
all combinations of two training vectors belonging to class . A
gradient descent algorithm [4] can also be used to find the op-
timum value of over the training set. This method is based
upon minimizing classification error by finding the optimum .
These methods were tested for various K ranging from 7 to
25 and the results indicated that the gradient-based approach
performed slightly better than the heuristic-based method. This
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(a) (b)

Fig. 3. Classification results of the evidential K-NN:K = 7with optimized 
 .

(a) (b)

Fig. 4. Classification results of the original PNN (� = 2).

study also revealed that the best results are obtained for .
The performance slightly degrades as K increases. Fig. 3(a), (b)
shows the ROC and error location plots for this classifier. At the
knee point, we have and . From
the corresponding error location plot, it is interesting to see that
the errors are concentrated only on a few aspects of objects 1, 2,
5, and 6 with high frequency of occurrence. This is in contrast to
the multivariate Gaussian classifier where the errors were more
widely spread among aspects of objects 1–3.

3) PNN: First, the original PNN [2] was implemented. The
effects of the smoothing factor, on the performance of the
PNN was studied first. It was empirically determined that the
minimum classification error rate (6.16%) was achieved at

. Unlike BPNN, whose output units directly provide the
a posteriori class conditional probabilities, the output units of
the PNN are only proportional to these probabilities. Thus, the
output units of PNN had to be scaled so that the sum of the
outputs equals 1. In this case, the outputs could be compared
with those of the BPNN and SVM. Fig. 4(a) shows the ROC
curve of this PNN ( ) with and
at the knee point. Fig. 4(b) shows the corresponding error loca-
tion plot based upon the decision threshold at the knee point of
the ROC. Comparing this figure with Fig. 3(b) for evidential
K-NN, it is clear that PNN has a slightly inferior performance.
In particular, object 3 (water-filled drum) has a large number of
classification errors, while the evidential K-NN had none. Note
that although the error location plot in Fig. 3(b) was generated
using the hard-limiter decision, this comparison is fair since we
consider the optimal performance of each classifier irrespective
of the choice of the decision threshold.

Since a PNN creates a pool of neurons for each class, the
training data should be balanced to avoid disparity in approx-
imating different density functions. In this application, the

Fig. 5. Performance plots of the EM-PNN.

training was not balanced. To study the effect of the balanced
data on the PNN, one half of the training samples for the
nontargets were removed. Thus, the training set was left with
72 aspects of targets and 72 aspects of nontargets. For this
balanced training set, a provided the best results. The
minimum classification error for this choice of was 6.25%,
only 0.09% less than the unbalanced data. On the ROC curve,
the knee point was located at and .
This is an improvement of just above 2% over the unbalanced
training set. These changes are very slight and from this obser-
vation it can be concluded that the unbalanced training set has
very little impact on these results and that the poor performance
of the PNN must be attributed to some other reasons.

The modified PNN using Gaussian mixture models and EM
training was examined next. The purpose of the study was to
determine if the relatively poor performance of the original
PNN can indeed be attributed to the optimum kernel selection
and/or the unbalanced training data problems. During the
training phase, EM-PNN algorithm automatically selects the
number of Gaussian mixtures to model the distribution of the
training data for each class. For this particular application only
2 mixtures were selected for each class. Again the outputs of
the EM-PNN were scaled and normalized so that they could be
compared with the other classifiers. Fig. 5(a) shows the ROC
curve of this EM-PNN. At the knee point of this curve, we have

and , which provides substantially
worse performance comparing to the original PNN. Fig. 5(b)
shows the corresponding error location plot based upon a
hard-limiting threshold. As can be seen from Fig. 5(b), a large
amount of errors are made for the targets. Since the EM-PNN
does not require even training sets, one can conclude that this is
not the reason for poor performance on the targets in the testing.
To stay consistent, however, an EM-PNN was trained on the
balanced data set of 72 aspects of both targets and nontargets.
As expected, the results were very similar. The unbalanced data
set had a hard-limiter threshold correct classification rate of
88.5%, while the performance on the balanced data improved
by half a percentage point. From these results one can conclude
that the poor performance of the PNN-type networks is not
caused by the unbalanced data set or the choice of kernel.

4) SVM: The choice of parameter [4] in SVM is very crit-
ical in order to have a properly trained SVM. Our studies on this
problem indicated that when the value of is in the range of

to 0.001, the classification error rate of SVM remains rela-
tively constant. When the value of further decreases, the per-
formance of SVM degrades rapidly. Moreover, when ,
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(a) (b)

Fig. 6. Classification results of the SVM (C = 0:001).

(a) (b)

Fig. 7. Performance plots of the BPNN.

the number of support vectors in SVM training was found to be
between 25 and 27. For , the number of support vec-
tors increased to 39 and the performance of SVM was slightly
improved. Also, the training error rate for was 0, i.e.,
SVM was perfectly trained. For larger values of , the number
of support vectors increased but the performance of SVM dete-
riorated drastically. Thus, the SVM for was chosen
for the rest of this study.

Fig. 6(a) shows the ROC curve of the SVM for .
At the knee point of this curve, we have and

. As mentioned in Section III-C, the output of the
original SVM relates to the distance, , of the test pattern to the
decision boundary where the distance of the support vectors to
the decision boundary is assumed to be 1. The transformation

, where is the new output of the SVM, was
used in order to generate output values that can be
compared with those of the other classifiers, i.e. PNN and BPNN
and to generate the ROC. Fig. 6(b) is the error location plot for the
decision threshold corresponding to the ROC knee point. These
results indicate excellent performance of SVM on this data set.
Most of the classification errors for this classifier occur for ob-
jects 2 (truncated-cone-shape target) and 4 (limestone rock).

5) BPNN: As a benchmark, a two-layer BPNN with struc-
ture 22-42-2 was also used in this study. This network was
trained using the standard BPNN training algorithm using
an adaptive learning rate and momentum factor of . Ten
different weight initialization trials were implemented and the
network with the best performance on the validation data set
was chosen. Fig. 7(a) shows the ROC curve of the BPNN for ten
noisy realizations. At the knee point, we have and

. Fig. 7(b) is the corresponding error location plot
at the ROC knee point. As can be observed for this classifier
most of the errors occurred for the mine-like object 1 and
nonmine-like objects 3 and 6. This is an interesting observation

TABLE I
COMPARISON OF ROBUSTNESS OF DIFFERENT CLASSIFICATION ALGORITHMS

FOR 50 NOISY REALIZATIONS (%)

since the errors of all these classifiers occur for different objects
and at different aspect angles. This suggests the possibility that
further improvements could potentially be gained by fusing the
results of these classifiers.

B. Robustness Analysis of Different Classifiers

To study the robustness and generalization of different clas-
sifiers to reverberation, we have studied the error rate statistics
for a larger number of trials. For a given set of input pattern vec-
tors, the number of misclassifications can be viewed as a random
variable resulting in a randomly varying empirical error rate. In
[15], irrespective of the pattern source and the type of the classi-
fier, it is shown that this random variable follows a binomial dis-
tribution. For a very large number of patterns, this distribution
approaches normal distribution. To estimate the error rate sta-
tistics of the classifiers, fifty different Monte Carlo trials were
performed. For each trial, a different testing set with different
reverberation realizations was used. As before, each set con-
tained 216 backscattered signals corresponding to odd aspect
angles and different synthesized reverberation sequences with

. The histograms of the classification errors for
the multivariate Gaussian, evidential K-NN, PNN, EM-PNN,
SVM, and BPNN classifiers were then formed for 50 error mea-
surements. These were obtained under the assumption that false
positive and negative errors have the same weighting, i.e., the
false alarm and misclassification errors are summed up to a total
classification error. The classification decision was made based
on hard-limit threshold operation. The threshold associated with
the “knee” point of the ROC curve was not used since each clas-
sifier has a different knee point and hence different threshold.
Table I summarizes the classification error statistics, i.e., the
mean, , and the standard deviation ), extracted from the his-
togram associated with each classifier. The results in this table
reinforce the fact that SVM gave the best overall results on this
wideband data set. Although, PNN gave inferior results, com-
paring to all other classifiers except the multivariate Gaussian,
the online updating feature of this classifier makes it attractive
for in situ underwater target classification applications.

C. Discussion and Analysis

Each of these classification schemes and their respective re-
sults give insights into the 22-dimensional feature space of this
complex problem. Even though the features are fairly unimodal
individually, the distribution of these features in the 22-dimen-
sional space will not necessarily follow a multivariate Gaussian
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(a)

(b)

Fig. 8. Scatter plots of the first two features.

distribution for each class. Based upon the poor results of the
multivariate Guassian and the PNN classifiers, namely those of
the EM-PNN, it can be argued that the distribution in each class
cannot be represented by Gaussian mixtures. The fact that the
original PNN provided somewhat better results is an indication
that the data is not clustered, rather it is scattered in the feature
space. To promote this belief, the scatter plots of the first two fea-
tures with high discriminatory ability are presented in Fig. 8(a)
and (b) for the training and testing data sets, respectively. It must
be mentioned that there were several widely scattered points
that could not have been included in these plots. Although, these
plots present only the distributions of the first two features, they
clearly show the scattered nature of this data set.

The evidential K-NN relies on the closeness of the applied
pattern to the training samples in order to provide good perfor-
mance. Although in certain regions of the feature space most of
the nearby training samples to an unknown pattern are of the rep-
resentative class, in the others proximity measure does not nec-
essarily dictate to a stronger evidence of class membership. This
implies that the features are mixed together in the feature space,
and that the closest neighbors may not always give the best clues
pertaining to class membership. As the size of the neighbor-
hood (i.e., K) increased, performance decreased, inferring that
the mixing of features is throughout the space. The fact that the
two-layer BPNN performs better suggests that the features are
fairly separable with a multidimensional convex-type decision
regions. The SVM maps the features to a higher dimensional
space and then uses an optimal hyperplane in the mapped space.
This implies that though the original features carry adequate in-
formation for good classification, mapping to a higher dimen-
sional feature space could potentially provide better discrimi-
natory clues that are not present in the original feature space.
Thus, each of these classifiers provides hints about the proper-
ties of the data in the 22-dimensional space and from these hints

it may be possible to devise a classification paradigm that will
give perfect classification results on this data.

IV. CONCLUSION

In this brief paper, four different classification algorithms,
namely multivariate Gaussian, evidential K-NN, PNN, and
SVM are examined on a wide-band 80-kHz acoustic backscat-
tered data set. The performance of these classifiers was then
compared together and with those of the BPNN. The robustness
and statistical confidence of these results were studied on a
large number of trials. This study indicated that the wideband
insonification provides much better robustness to reverberation
when compared to the results on the 40-kHz data in [1]. Addi-
tionally, the results of these classifiers point to this interesting
hypothesis that the data in this 22-dimensional feature space
has very complex scattered as well as clustered natures. This,
to some extent, explains the great performance of the SVM
classifier, which maps the features to a higher dimensional
space. Clearly, the choice of the kernel function has an impor-
tant impact on the overall performance. The performance of the
PNN and multivariate Gaussian were not as good as the other
classifiers. This may be attributed to several factors including
the scattered and mixed nature of the features, invalidity of the
Gaussian assumption, and the unbalanced number of training
samples for the target and nontarget classes (for the original
PNN). Certainly, the behavior of each classifier gave valuable
insights to the properties of the feature space.
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