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Abstract

Use of Traveling Salesman Problem Solvers in the Construction of

Genetic Linkage Maps

Construction of genetic linkage maps is an important tool for Biology. Researchers use a

variety of laboratory techniques to extract genetic marker data from an experimental cross

of a species of interest and then use these data to group the markers into chromosomes, and

then construct maps of the locations of the markers within the chromosomes. This in turn

allows them to determine which sections of the chromosomes are responsible for variation in

agricultural, medical or other traits of interest. The current methods of constructing genetic

linkage maps are tedious and time-consuming.

This thesis presents a method of utilizing the Hamiltonian path problem (HPP) to solve

the problem of genetic linkage mapping. Since solvers already exist for the traveling salesman

problem (LKH and Concorde), by casting the linkage mapping problem as a HPP we can

use these solvers to efficiently find the solution. To do this, the recombination frequencies

between genetic markers are treated as internode weights and the TSP solution gives the

lowest-cost path through the markers. By adding a dummy marker with zero weight to all

other markers, the TSP solution is made equivalent to a HPP.

The primary difficulty in constructing a linkage map is the fact that all data sets are

noisy: errors in laboratory techniques create uncertainty in the relationships between genetic

markers, so a straightforward HPP solution is not sufficient. This thesis describes a method

of using the HPP to separate the raw data into clusters so that the researcher can be sure

that the chromosomes are well-separated, the clusters can then be assembled into complete

chromosomes using existing TSP solvers.
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The results show that this method produces results which are equally as good as the

prevalent software in the field, while drastically decreasing the time required to run an

analysis.
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CHAPTER 1

Introduction

Deoxyribonucleic acid, or DNA, is the molecule which encodes the genetic information

within a living organism. Since the discovery of the double-helix structure in 1953, under-

standing the DNA structure of plants and animals has become a major area of research in

the biological sciences.

Understanding the order and structure of the genome of any organism is of paramount im-

portance when associating genotypes and phenotypes [1], or understanding the mechanisms

of adaptation of a species [2]. By identifying the parts of DNA that control variation in

traits of interest, agricultural researchers can exploit and strengthen these traits to improve

the quality of animals, crops and microorganisms.

1.1. Genetic Linkage Mapping

DNA is organized into a chain of chromosomes, which in turn are comprised of chains of

genes. It is difficult to directly identify the genes themselves, but there are genetic markers

within the chromosomes which are more easily detected. These markers may or may not

control the traits of the species (they are both within and between coding regions), but

understanding the structure of the genetic markers allows us to indirectly understand where

genes of interest are located [1].

Each genetic marker occupies a particular fixed location within the chromosome called

a locus (plural loci). During meiosis, the chromosomes of one parent are crossed with those

of the other parent such that the offspring have DNA comprised of various combinations of

the original genes, while maintaining the loci of the genetic markers. This is what allows for

genetic diversity in an offspring population. Without genetic crossover at the chromosomal
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Figure 1.1. A single chromosome from both parents.

level, all offspring of two parents would be identical to one of the parents (except for the

possible presence of mutations).

The goal here is to find the correct order and pairwise distance between all markers. This

is not a straightforward process: the process begins with two parent individuals, denoted A

and B. The chromosomes of these plants are analyzed and the genetic markers are identified,

which allows researchers to track from which parent a particular region of a chromosome is

inherited. It is important to keep in mind that, while the genetic markers can be identified,

their locations on the DNA strand is not known at the beginning of the analysis.

We can extract a sequence of markers, each at the appropriate locus, and each being

known to come from parent A. The first marker is the marker that originated in parent A

at locus 1, the second marker is the marker that originated in parent A at locus 2, etc. The

sequence extracted from parent B will be represented the same way (see Figure 1.1).

The two parents are then interbred to create a large population of offspring, and the off-

spring population is then interbred for several generations in order to achieve homozygocity.

At each locus of this chromosome, each plant in the final population will have inherited two

copies (homozygous) of a marker from either parent A or parent B, as shown in Fig 1.2.
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Figure 1.2. A single chromosome from several offspring.

Figure 1.3. A single crossover. The crossover point is indicated by the heavy
line between loci 3 and 4.

Here we see many various combinations of genetic markers from the two parents. Notice

that in some cases, an offspring plant may have a chromosome which only contains markers

from one parent or the other.

This phenomenon is known as genetic recombination and this forms the basis for the

method of constructing genetic linkage maps.

1.1.1. Genetic Recombination. Genetic recombination occurs during a process called

meiosis, wherein the corresponding chromosomes of the two parents will form one or more

temporary connections at arbitrary loci and then separate from each other so that each

chromosome connects to the corresponding segment of the other chromosome at that locus.

These points are known as crossover points, which are illustrated in Figure 1.3.
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In the Boveri–Sutton chromosome theory, also known as the chromosome theory of inher-

itance, it is assumed that loci are randomly chosen to be crossover points, and the crossover

points are evenly-distributed along the chromosome [3]. This leads to the hypothesis that if

two genetic markers are close together on the chromosome, they are less likely to be separated

by a crossover.

For example, consider the crossover shown in Fig 1.3. Since the crossover point occurs

between loci 3 and 4, these two markers are separated in the offspring (offspring #1 has

marker a in locus 3 and marker b in locus 4, and vice versa for offspring #2). However, if

the crossover point had occurred anywhere else along the chromosome, these two markers

would have ended up in the same offspring (one offspring would have inherited a markers at

loci 3 and 4 and the other offspring would have inherited b markers at loci 3 and 4). So we see

in this simple case of a single crossover event, there is only a 1

7
chance that two consecutive

markers will be separated due to recombination. Furthermore, as the distance between two

markers increases, so does the probability that they will be separated by a crossover event.

This leads to the concept of recombination frequency.

1.1.2. Recombination Frequency. As described above, the distance between two

markers within a chromosome effects how frequently those two markers will be separated

by a crossover event (meaning that the markers from a single parent end up in different

offspring). The reason for creating a large offspring population now becomes apparent: by

measuring how often two markers from the same parent end up in the same offspring, we

can estimate how likely they are to be separated by a crossover event. This probability is

known as the recombination frequency, or rf.

Consider the very simple example shown in Fig 1.4. We see that there are three offspring

where the markers are inherited from different parents (shown in bold), out of eight total
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Figure 1.4. Two example markers, measured across 8 offspring. The loca-
tions where the markers are inherited from different parents are shown in bold.
The recombination frequency of these two markers is 3

8
= 0.375.

offspring (in a real dataset there will be a much larger number of offspring). This gives a

recombination frequency of

(1) rf =
number of markers inherited from different parents

total number of offspring
=

3

8
= 0.375

By computing the recombination frequency between all pairs of markers, we are given a

clue as to which sets of markers reside on the same chromosome. The computation of the

rf value is simple: given two markers, we take the ratio of the number of times they are

inherited from different parents with the total number of offspring.

For two markers that are close to each other on the chromosome, the recombination fre-

quency will be a small value. As the distance between the two markers increases, so does

the probability of recombination. At very large distances, eventually we will be considering

two markers which are either very far apart on the same chromosome or on separate chro-

mosomes. In this case, recombination events are no longer correlated with the occurrence

of markers in the offspring chromosomes and the recombination frequency is approximately

50%.

1.1.3. Ideal Data. An idealized dataset would give us a perfect picture of the genetic

linkage map. Consider the rf matrix shown in Table 1.1. In the absence of any gaps or

noise in the data we could obtain such values which would allow us to immediately conclude
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Table 1.1. Table of rf values for an idealized data set. The neighbors of each
marker can be immediately determined simply by looking for the smallest
values. The markers at the ends of the chromosome (markers 1 and 50) have
a single neighbor with rf = 0.01. All other markers have two neighbors with
rf = 0.01. A simple greedy algorithm could be used to construct the genetic
linkage map for such an ideal data set.

Marker 2 3 4 5 ... 46 47 48 49 50
1 0.01 0.02 0.03 0.04 ... 0.45 0.46 0.47 0.48 0.49
2 0.01 0.02 0.03 ... 0.44 0.45 0.46 0.47 0.48
3 0.01 0.02 ... 0.43 0.44 0.45 0.46 0.47
4 0.01 ... 0.42 0.43 0.44 0.45 0.46
5 ... 0.41 0.42 0.43 0.44 0.45
...
46 0.01 0.02 0.03 0.04
47 0.01 0.02 0.03
48 0.01 0.02
49 0.01

which markers are adjacent to each other: marker 1 has a single neighbor with rf = 0.01,

indicating that this marker is on the end of the chromosome. Marker 2 has two neighbors

with rf = 0.01, both marker 1 and marker 3. Therefore, marker 2 would be between markers

1 and 3. In fact, for such data, every marker would have exactly two neighbors with rf =

0.01 (except for the markers on the ends of the chromosome) and a simple greedy algorithm

could be used to construct the linkage map.

Additionally, it should be noted that, in keeping with recombination theory, as markers

are located farther apart on the chromosome, the recombination frequency values get larger

and larger. The rf values of marker 1 as compared with markers 48, 49, and 50 are all

approximately 0.5. So even though these markers are located on the same chromosome, they

are far enough apart that their inheritance is completely uncorrelated with each other. This

will be an important phenomenon when we discuss missing data (Section 3.2).

1.1.4. Real Data. Table 1.2 shows some sample rf values from chromosomes #1 and

#3 of the arabidopsis genetic linkage map. Arabidopsis is a small flowering plant. It was the
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Table 1.2. Table of rf values for selected arabidopsis markers. Markers which
are close to each other have lower recombination frequency values. As markers
get farther apart, the rf value between them increases. The markers from
different chromosomes have rf values of approximately 0.5, indicating no cor-
relation between them.

Chromosome 1 3
Locus 1 2 5 9 10 3 4 7 10 11
Marker Name L1 1 L1 2 L1 5 L1 9 L1 10 L3 3 L3 4 L3 7 L3 10 L3 11
L1 1 0.028 0.063 0.08 0.10 0.537 0.542 0.545 0.545 0.544
L1 2 0.039 0.059 0.074 0.539 0.544 0.547 0.554 0.553
L1 5 0.030 0.045 0.531 0.535 0.540 0.553 0.552
L1 9 0.015 0.528 0.531 0.536 0.546 0.549
L1 10 0.521 0.520 0.526 0.537 0.542
L3 3 0.013 0.034 0.060 0.064
L3 4 0.022 0.049 0.052
L3 7 0.032 0.036
L3 10 0.011

first plant to have a fully-sequenced genome. Its genetic linkage map is well-established and

therefore it makes a good example for comparison when investigating a new technique. Also,

the arabidopsis dataset is fairly small (367 markers measured from 545 individual offspring

plants) and mostly complete, so we avoid the problems that arise with missing data (see

section 3.2).

The markers from chromosome #1 have low rf values with each other, but when com-

pared with the markers from chromosome #3 the rf values are all approximately 0.5. This

indicates that there is no correlation between the inheritance of the markers from different

chromosomes, which is expected since the crossover points from one chromosome do not

affect those from any other chromosome. Also, the markers from chromosome #3 are highly

correlated with each other.

Furthermore, we see that the rf value between marker L1 1 and L1 2 is lower than the

rf value between L1 1 and L1 5. This is consistent with the fact that L1 1 and L1 2 are
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directly adjacent to each other (occupying loci 1 and 2, respectively), but L1 1 and L1 5 are

farther apart (loci 1 and 5, respectively).

Also, the rf value between L1 9 and L1 10 is small, due to that fact that they also are

directly adjacent to each other. The rf between L1 1 and L1 10, while still a relatively

small value, is clearly larger than any of the other rf values within chromosome #1 which

is consistent with what we expect.

The recombination frequencies between markers in chromosome 3 show similar relation-

ships in terms of the distances between them.

Since the recombination frequency matrix is large, it can be useful to visualize it using a

heat map. In this case the heat map is a 2D plot of a matrix which uses color to indicate the

relative values within the matrix. For visualizing a recombination frequency matrix, each

axis will represent the full array of markers. Each point on the plot therefore represents

the rf value between the marker at the x and y positions of that point. The points along

the diagonal x = y are the recombination frequency values of each marker with itself, and

therefore have the value 0 by definition. Values of low correlation (high recombination

frequency) are shown in blue, progressing through the color spectrum to lower-rf values,

where the highest correlation (rf = 0) is shown in red.

Figure 1.5 shows the heatmap of rf values for 295 markers of the arabidopsis species

(after markers of 99% similarity were removed - see section 3.1). Here it is clear where the

delineations are between the five chromosomes.

This heat map vividly shows the behavior of recombination frequency values, both within

a chromosome and between chromosomes. Within each chromosome we see obvious areas

of low-value rf, and beyond the limits of each chromosome there is no expectation of any

meaningful linkage between any markers.
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Figure 1.5. Heat map of recombination frequency values for the genetic link-
age map of arabidopsis. The x and y axes represent the full array of markers
and each point within the plot shows the recombination frequency between
the marker at point x and the marker at point y. The diagonal represents
the rf value of each marker with itself, which is always 0. High rf values are
shown in blue, rf = 0 is shown in red. The five chromosomes can be identified
by the five square-shaped areas of low-rf values along the diagonal, indicating
that the markers within these regions have low recombination frequency values
relative to each other (bright green, yellow, and red), and high recombination
frequency values relative to the markers in other regions (dark green and blue).

Not all data sets are so clean however. Figure 1.6 shows the heat map for IR64B, an

experimental mapping population of rice. The percentage of missing data is much higher in

the IR64B dataset, and it is clear that the heat map is not so smooth as that for arabidopsis.

1.2. Travelling Salesman Problem

The travelling salesman problem (TSP) is a well-known computational problem which

has been a major focus of optimization efforts for many years [8]. The TSP is formulated as
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Figure 1.6. The heat map for the IR64B data set, which contains 12 chromo-
somes. The chromosomes are not clearly segregated, but it is possible to rec-
ognize a few square-shaped areas indicative of a grouping of highly-correlated
markers. There are many areas far from the diagonal which show low recom-
bination frequency values (shown in bright green), indicating relatively high
correlation between markers that are located in different chromosomes.

a problem in which an agent wishes to visit a set of nodes at the lowest possible total cost.

This method can be applied to many different kinds of problems, including vehicle routing,

the order of drilling holes in PCB board manufacturing, and laying a network of fiber optic

cables. In this project, the TSP method is applied to the genetic linkage mapping problem.

The similarity between the TSP and genetic linkage map construction has been known for

quite some time [9]. By considering each marker to be a node in the TSP tour, the rf values

between markers represent the weights between these nodes. This allows the recombination

frequency matrix to serve as the weight matrix in the TSP, and the solution will give us the

lowest-cost path through the markers.
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(a) Standard TSP solution, a Hamiltonian cycle (b) Basic Hamiltonian path

(c) Hamiltonian cycle with dummy node Z (d) Hamiltonian path with dummy node Z

Figure 1.7. Hamiltonian cycle versus Hamiltonian path. The Hamiltonian
cycle (a) visits every node and terminates at the beginning node A, so the
weight of the edge AG is included in the total solution cost. A Hamiltonian
path (b) visits each node but does not terminate at the beginning node, so
the weight between nodes G and A does not affect the total cost. By adding
a dummy node Z (c) which has zero weight between all other nodes, the edge
cost of AG is removed from the total cost. Therefore, this configuration is
equivalent to the HPP (d) because of the presence of the dummy node Z.

The two most prevalent TSP solvers in use today are Lin-Kernighan-Helsgaun (LKH), a

heuristic solver, and Concorde, an exact solver.

1.2.1. Travelling Salesman Problem versus Hamiltonian Path Problem. In

the typical travelling salesman problem formulation, the solution is a Hamiltonian cycle

(Figure 1.7a). That is, a tour in which each node is visited exactly once and ends at the

beginning node, thus forming a complete cycle. In the case of a genetic linkage map, we have

no need to consider the linkage between the last marker in the chromosome and the first. In
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fact, allowing the TSP to run in this standard configuration will negatively impact the result

since the algorithm will include the value of this last edge when attempting to minimize the

total tour cost, and the rf value of the beginning node and ending node are expected to be

large since they are so far apart on the chromosome.

To eliminate this effect we convert TSP problem into a Hamiltonian path problem (HPP,

Figure 1.7b). To accomplish this, we introduce into the TSP weight matrix a dummy node

(Figure 1.7c) which has a zero-weight connection to all other nodes. The inclusion of this

node allows the TSP solver to connect the last node in the tour with the first without

incurring the large weight penalty associated with the rf value between two distant nodes,

in essence allowing the solver to construct a non-cyclic path [13]. Therefore, the Hamiltonian

cycle shown in Figure 1.7c is equivalent to the Hamiltonian path in Figure 1.7d.

By doing this, we can make use of existing TSP solvers without making any modifica-

tions to their algorithms. Throughout this thesis, the terms “TSP” and “HPP” are used

interchangeably since the conversion from TSP to HPP is incorporated into the algorithm.

1.2.2. Lin-Kernighan-Helsgaun (LKH). The basis of the Lin-Kernighan-Helsgaun

solver is the Lin-Kernighan heuristic [10]. This heuristic works by rearranging subtours of

a candidate TSP solution using a variable k -opt technique which allows the algorithm to

perform a kind of iterated local search, while ensuring that the local search does not get

stuck in local minima.

The LK heuristic was improved by K. Helsgaun [11]. LKH is an approximate method,

which allows it to run in significantly less time than an exact solver, such as Concorde.

However, the performance of LKH is still very good, and it is not unusual to obtain the

optimal solution using LKH for smaller datasets (n ≤ 1000). For the purposes of this

project, LKH is used in the early stages of the process, mainly to identify and separate the
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chromosome groups. Once these groups are identified, the final linkage map will be produced

by Concorde.

1.2.3. Concorde. Concorde is an exact solver based on the branch-and-bound method [12].

Branch-and-bound is a technique used to prune the search space and limit unnecessary ex-

ploration of areas of the state space which are guaranteed not to produce improvement on

an already existing result.

In the case of Concorde, as the algorithm explores the state space it keeps track of the

best-known (i.e., lowest-cost) solution that it has yet produced. As the algorithm explores

new areas of the state space, it checks to see if the newly-constructed partial candidate solu-

tion is determined to be worse than the current best solution. If so, there is clearly no point

in continuing to explore further, since any solutions containing that portion will necessar-

ily be higher-valued than the best known solution. Therefore, the algorithm eliminates the

entire branch of the solution space, thus avoiding spending time in pointless computation.

Because Concorde is an exact method, it is guaranteed to find the optimal TSP solution.

Because of this, its run time may be much longer than that of LKH, especially as the problem

size grows.

1.3. Current Approaches

The goal of constructing a genetic linkage map is to recover the marker order within each

chromosome from the recombination frequency values computed from the individual marker

data. The order of chromosomes within the DNA does not matter, but it is important to

note that the number of chromosomes will already be known prior to beginning the analysis.

1.3.1. JoinMap. The currently prevalent software tool for constructing genetic linkage

maps from recombination frequency data is a program called JoinMap [4]. The JoinMap
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technique takes place in two main steps: first the linkage groups are determined, and then

the linkage map is constructed for each group [5].

JoinMap is largely based on a statistical approach to genetic linkage map construction,

using a combination of four basic techniques to construct the linkage map: independence

test logarithm of odds (LOD) score, linkage LOD score, independence test P-value, and

recombination frequency.

LOD, or logarithm of odds, is a statistical technique that has been in use for genetic

linkage mapping since 1947 [6]. The LOD score for a pair of markers is an estimate of

the probability of observing the given dataset in the case the markers are uncorrelated.

This is calculated as the base-10 logarithm of the ratio of the probability of the given data

distribution in the case where the markers are linked with the probability of the given data

distribution in the absence of a link between the markers.

Once the linkage groups have been constructed, the individual linkage maps are built up

by adding markers one-by-one in a three-round process. In the first round, the algorithm

chooses which marker to add based on the LOD scores of all unmapped markers. Each

marker is added by computing a goodness-of-fit score at each possible position on the map,

and the best result is chosen. A marker may be removed from the map at this stage if it

leads to degradation in the solution quality.

The second round consists of an attempt to reintroduce the markers that were removed

from the linkage map in step 1. Since this stage begins with a more complete linkage map

(i.e., the map resulting from stage 1), there is the possibility that these markers may find

a place in the map where they improve the solution. However, this is not guaranteed and

markers which cannot be placed are discarded.
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In the final round, all markers previously removed from the map are added back into the

map in an attempt to gain some general knowledge about the location of the markers which

the algorithm is unable to properly map. This step is not meant to produce a high-quality

result.

It can be seen that the highly iterative nature of this process can be very time consuming,

taking several days for a data set of approximately 1,000 offspring with 2,000 markers.. Also,

removing duplicate markers is done manually in a tedious process. Because of this, it is

desirable to construct a new technique that is faster and simpler.

1.3.2. MSTmap. MSTmap attempts to construct the genetic linkage map using a mod-

ified minimal spanning tree [7]. The theoretical underpinning of MSTmap is that, in the

absence of noise the MST solution is identical to the TSP solution. On the other hand,

when noise is present in the data, the MST produces branching clusters which the MSTmap

algorithm then transforms into a linear path using iterative application of three heuristics:

2-opt, node relocation, and a block-optimization heuristic.

MSTmap converts the TSP clusters into Hamiltonian paths, then applies the 2-opt heuris-

tic by breaking the path into 3 pieces and swapping two of the pieces until the lowest-cost

permutation is found. Then, the node relocation heuristic operates by relocating each node

in the cluster to every other possible position to see if any improvement can be made. In the

final stage, MSTmap uses the block-optimization heuristic to break the clusters into blocks

consisting of low-cost subtours and rearranges the blocks until the smallest overall cost is

found.

MSTmap is geared for noiseless data, and uses an expectation-maximization (EM) algo-

rithm to extrapolate values for missing data.
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CHAPTER 2

Basic TSP Example

2.1. Clean Data - Arabidposis

The most basic approach is to simply run the rf matrix through the TSP solver to obtain

the Hamiltonian path. The path for the arabidopsis data set is shown in Figure 2.1. Using

the known genetic linkage map of arabidopsis, we can color the markers based on their true

chromosome membership in order the verify this solution. The x -axis shows the position of

each marker, in order, and the y-axis is the cumulative recombination frequency.

Since the goal of constructing a genetic linkage map is to find the marker order within

each chromosome, we need a method to identify and separate the chromosomes. The number

of chromosomes is known at the beginning of the process: in the case of arabidopsis, there

are five chromosomes. Since we know that the rf values between chromosomes should be

large, we identify the locations of the largest rf values in the Hamiltonian path and mark

these locations on the plot as candidate inter-chromosomal cutpoints. Since the theoretical

Figure 2.1. Hamiltonian path for arabidopsis, including cutpoints at the four
largest rf values. The markers are color-coded by chromosome as given by the
known genetic linkage map for this species. The cutpoints show the locations
of the four largest rf values (see Table 2.1).
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Table 2.1. Table of the 6 largest rf values in the HPP solution for the ara-
bidopsis genetic linkage map. The four largest values occur at the breakpoints
between chromosomes in the Hamiltonian path, shown as dotted lines in Fig-
ure 2.1. The fifth largest value is significantly smaller, indicating that it is
clearly not a breakpoint between chromosomes.

Marker Position Recombination Frequency
78 0.482
140 0.469
184 0.463
229 0.425
250 0.092
87 0.089

rf value of uncorrelated genetic markers is 0.5, the closer to this value the cutpoint values

are, the more confidence we have that it is a true breakpoint between chromosomes. These

cutpoints are shown in Figure 2.1 as dotted lines, and the rf cutpoint values are given in

Table 2.1.

We see that the four largest rf values in Table 2.1 are all well above 0.4, and the next

largest value is less than 0.1. This is a strong indication that the chromosomes are well-

separated and no further processing is necessary in order to identify the chromosome groups.

2.2. Noisy Data - IR64B

When we apply the same technique to the IR64B dataset, we get the results shown in

table 2.2 and figure 2.2. Here the results are not so clean. Because of the high levels of

missing data, the rf values between markers are less reliable in many places. When we

break apart the TSP solution into 12 groups, we see the first major problem that will be

encountered in this kind of analysis: one chromosome has been split into two pieces.

Notice the red-colored group inside the solid circle. There is a dotted line passing through

this group, indicating that one of the cutpoints from Table 2.2 occurs somewhere within the

interior of these points. These red markers are part of single chromosome, but the raw data
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Figure 2.2. TSP solution for IR64B, including cutpoints at the 11 largest rf
values, to create 12 groups. These cutpoints have not properly separated two
of the chromosomes (solid circle) and erroneously left two other chromosomes
in a single group (dotted circle).

is missing a large portion of markers in the middle of this chromosome (see Section 3.2).

This leads to a large recombination frequency between the markers at the edges of this gap,

which in turn prevents the algorithm from properly merging these two groups.

The second major problem that we encounter is a direct result of the first: since there is

a large break within the red chromosome, we have mistakenly identified this break as one of

the cutpoints that we need in order to produce 12 groups. Therefore, there is a true cutpoint,

i.e. a true inter-chromosome break, that has not been identified, leading to a group which

contains two different chromosomes (inside the dotted circle). This is the worse of the two

errors, as it is more damaging to downstream efforts to map traits and genes to chromosomes

if multiple chromosomes are fused than if a single chromosome is split.

To attempt to correct this problem we add another cutpoint at the next-largest rf value

from the Hamiltonian path. There are now 12 cuts and 13 groups, as shown in Figure 2.3, and

we see that the problem still remains: the new cutpoint cuts through the blue chromosome

instead of breaking apart the two chromosomes within the dotted circle.
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Table 2.2. Table of the largest 15 rf values in the TSP solution for the
IR64B genetic linkage map. The 11 largest values (above the horizontal line)
are chosen as cutpoints on Figure 2.2, separating the Hamiltonian path into 12
groups. There is no clear separation in this table between values which occur
between chromosomes and values within chromosomes, which is a consequence
of noise in the raw data.

Marker Position Recombination
within Hamiltonian Path Frequency

1405 0.487
300 0.484
1811 0.475
1164 0.468
957 0.466
1520 0.464
546 0.453
189 0.445
1743 0.393
1166 0.335
118 0.327
784 0.319
1943 0.319
76 0.266
573 0.266

Figure 2.3. TSP solution for IR64B, including cutpoints at the 12 largest
rf values, to create 13 groups. The addition of another cutpoint still has not
separated the two circled chromosomes.

The conclusion is that the basic TSP approach is only viable for an exceedingly noiseless

data set.
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CHAPTER 3

Algorithm Overview

The approaches in this thesis uses the LKH and Concorde TSP solvers to form genetic

linkage maps. The recombination frequency values are used as the inter-node weights, and

therefore the solution of the Hamiltonian path problem is the solution with the lowest overall

weight, which in turn is the best genetic linkage map since the markers will be placed

in the optimal order in terms of rf value. Since the genetic map is comprised of several

chromosomes, all of which are isolated from each other, this leads to a solution which is

actually a grouping of independent, smaller Hamiltonian paths, each separated from the

others buy a single, high-weight edge. This can be seen in Figure 1.5: since the markers

in different chromosomes have such high rf values relative to each other, the TSP solvers

will easily segregate each chromosome, leading to what is essentially a clustered travelling

salesman problem (Figure 3.1).

The structure of the linkage map data allows us to use a divide-and-conquer approch by

breaking the data into clusters

Figure 3.1. Example of a clustered traveling salesman problem. The clusters
are separated by single, high-weight edges. This allows each cluster to be
separated out and solved independently of the others, vastly decreasing the
runtime of the TSP solver.
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When applied to clean, well-behaved data, such as the arabidopsis dataset, we see the

clear results that we expect (Figure 2.1). However, for noisy datasets, it is not always clear

where the inter-chromosome breaks are (Figure 2.2). Because of this, the technique must be

made more robust to account for the possibility that the solution will not be well-behaved.

The outline of the method of creating a genetic linkage map using TSP solvers is as

follows (a diagram is shown in Figure 3.2.):

(1) Filter the raw data by removing duplicate markers and markers which are 99%

similar.

(2) Compute recombination frequency values between all pairs of markers.

(3) Using the recombination frequency matrix, the unordered dataset is broken into

large clusters which may contain markers from more than one chromosome.

(4) The clusters are subdivided further into smaller clusters so that no cluster contains

markers from more than one chromosome.

(5) The small clusters are merged together until all the markers from a single chromo-

some are contained within a single cluster.

(6) The final clusters are processed using Concorde to produce the optimal linkage map

for the given data.

There are two methods by which the unordered data set may be separated into small

clusters (steps 3 and 4): the first utilizes an LKH-based method (described in Chapter 4.1),

the other is based on a minimum spanning tree (Chapter 4.2).

3.1. Preprocessing and Data Filtering

Filtering the marker data is an essential part of genetic linkage map construction. An

individual marker is not highly valuable in and of itself and it is not uncommon for a
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Figure 3.2. Diagram describing the overview of the construction of a genetic
linkage map. First, the full data set is segregated into large clusters using either
a TSP or MST method. These groups are further subdivided until no cluster
contains markers from more than one chromosome. Finally, the clusters are
merged together until each chromosome is fully contained within a single clus-
ter.
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researcher to filter out a large percentage of the raw data before constructing the linkage

map, possibly as much as 90%. The IR64B dataset used in this thesis started out with over

4,000 markers but only 433 are used in the final analysis. The Hall’s panicgrass dataset had

over 3,500 markers in the raw dataset and only 880 made it to the final linkage map.

The more detailed aspects of filtering data is left to the agricultural sciences researchers as

it depends on their judgment and experience. Only the most basic data filtering techniques,

intended to remove redundant data, are included in this thesis.

3.2. Missing Data

In recent years, complexity reduction sequencing has emerged as a flexible and rapid

method for genome-wide genotyping. Often called “Genotyping by Sequencing”, this offers

a way to get large numbers of genome-wide markers. However these methods are often

implemented in a way that results in thousands to millions of individual markers, each of

which may have a large proportion of missing data. This means that, within the dataset,

we have to allow for the fact that an individual marker datum (known as a “call”) may be

missing for a particular offspring. In these cases, the simplest correction is to remove the

offspring in question from the rf calculation so that the computation of the recombination

frequency does not include the offending marker in the number of total offspring. Figure 3.3

shows an example where one of the calls from Marker 2 is missing. By removing offspring

5 from the rf calculation we are left with a total of 7 offspring, with two of them having

markers from different parents. This results in a recombination frequency of 2

7
= 0.286.

By comparison with Figure 1.4 (where the rf value was 0.375) we see that the rf value

between these two markers has now decreased, which would seem to indicate that the two

markers are now more closely correlated. This is due to the fact that the missing call
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Figure 3.3. Example of computing the recombination frequency between
two markers in the event of missing data. The locations where the markers
are inherited from different parents are shown in bold. Offspring 5 is missing
the call for marker 2, so this offspring will be omitted from the recombination
frequency calculation, reducing the value of the total number of offspring from
8 to 7. The recombination frequency of these two markers is 2

7
= 0.286.

Figure 3.4. Example of computing the recombination frequency between
two markers in the event of missing data. The locations where the markers
are inherited from different parents are shown in bold. Offspring 4 is missing
the call for marker 2, so this offspring will be omitted from the recombination
frequency calculation, reducing the value of the total number of offspring from
8 to 7. The recombination frequency of these two markers is 3

7
= 0.429.

represented a difference between Marker 1 and Marker 2 in the data shown in Figure 1.4.

By losing this information, we have negatively impacted the rf value by underestimating it.

In contrast, the missing call could instead have been in one of the locations where the two

markers originally were the same. Figure 3.4 shows an example of this, where the missing

call represented a similarity in the original data of Figure 1.4. In this case, after removing

offspring 4 from the rf calculation we are left with 7 total offspring which differ in 3 places,

resulting in a recombination frequency of 3

7
= 0.429, now an overestimation.

From this we see that the method of removing an offspring from the rf calculation will

always cause the value to be either overestimated or underestimated. Keeping in mind that

real datasets have many more offspring than these simple calculations, the effects of a single

missing marker will not be as drastic as these two examples show. Obviously, as the number

of missing calls grows there will be more uncertainty in the rf values. This is unavoidable
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in real-world situations and researchers are always faced with incomplete data sets. There is

an additional complication arising from this issue, however, that specifically affects the TSP

algorithm, which is addressed in the next section.

Another effect of missing data is that a single chromosome may be missing so many

markers that it splits in two and cannot be reconciled into a single chromosome, since the

markers of a single chromosome are uncorrelated when they are far enough apart (see Section

1.1.3). When this occurs, it is a problem with the raw data and cannot be rectified by any

of the known algorithms.

3.3. Data Correction

As we have seen in section 3.2, missing data can cause recombination frequencies to be

underestimated or overestimated, depending on whether or not the missing call represents a

difference or similarity between the two markers.

Consider the case in Figure 3.5. If we use the method of removing offspring from the rf

calculation, these markers will produce the recombination frequency values shown in Table

3.1. This gives a recombination frequency of zero between markers 1 and 3, and between

markers 2 and 3 as well. However, the recombination frequency between markers 1 and 2

is 0.5, indicating that they are not correlated and should not be near each other within the

linkage map. Since the TSP solver has no way of accounting for this, it will treat marker

3 as a zero-weight node between markers 1 and 2 and produce results where marker 1 is

adjacent to marker 3, which itself is adjacent to marker 2. Since markers 1 and 2 are clearly

not correlated (rf = 0.5), this will be a source of error in the TSP solution.

To correct for this, we consider the two extreme possibilities for the values of the missing

calls in Marker 3, shown in Figure 3.6. Either the missing calls all match the calls in Marker
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Figure 3.5. Example of how missing data can cause the TSP algorithm to
produce incorrect results. The rf value between Marker 1 and Marker 2 is
0.5, but the rf value between Markers 1 and 3, and Markers 2 and 3 are both
0. This can cause the TSP algorithm to produce a result where these three
markers are linked, when clearly Markers 1 and 2 are uncorrelated.

Table 3.1. Table of rf values for the markers shown in Figure 3.5.

Marker 1 2 3
1 0.5 0
2 0

1, giving the smallest possible rf value, or they all differ, giving the largest possible rf value.

The true value of the recombination frequency between these two markers must lie within

this range.

To account for this uncertainty, recombination frequency values for markers with missing

data are adjusted to lie at the midpoint of the possible range. Therefore, for the markers

shown in Figure 3.5, the rf values between Markers 1 and 3 is adjusted to be

(2)
rf

max
− rf

min

2
=

0.5− 0.0

2
= 0.25

instead of 0 (likewise for the rf value between Markers 2 and 3) to avoid feeding artificially

small rf values into the TSP solver (see Table 3.2).

It should be noted that the exact problem described here would not occur in a real

analysis because Marker 3 would be removed from the data due to the fact that all of its

information is contained within Marker 1. However, the principle is still valid and markers
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Figure 3.6. The two extreme possibilities for the missing calls for Marker 3 in
Figure 3.5. In the first case, all missing calls match the calls in Marker 1, giving
a minimum possible recombination frequency of rf

min
= 0. In the second case,

all missing calls differ from the calls in Marker 1, giving a maximum possible
recombination frequency of rf

max
= 0.5. The true value of the recombination

frequency must lie within the range of these two values.

Table 3.2. Table of corrected rf values for the markers shown in Figure 3.5.

Marker 1 2 3
1 0.5 0.25
2 0.25

with missing data could still result in artificially low rf values, thus forcing the TSP solver

to produce poor solutions.

3.4. Duplicate and Similar Markers

When comparing two markers and ignoring the individuals with missing calls, the re-

maining individuals may have the same calls at each loci (see Figure 3.7). In this situation,

the marker which is missing more data is removed at the beginning of the analysis since it

adds no information.

Furthermore, we can measure the similarity between two markers by calculating the

percentage of calls which are the same between the two markers. Markers which are 99%

similar or higher are omitted from the analysis. Other similarity thresholds may be applied,

but here we use 99%.

Also, it is worth noting that it is possible that there are some elements within the data

set that may merely be incorrect. The laboratory methods have a small margin of error,
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Figure 3.7. Example of duplicate markers. Offspring 3, 5, and 6 are excluded
from the comparison since at least one of the individuals is missing data at
these locations. Of the remaining calls, they are identical between the two
markers. Marker 1 will be discarded from the analysis since it contains less
data.

which means that it is possible that an individual marker can be misread within a given

offspring. Ideally, filtering out duplicate markers helps to minimize this effect, but this can

still represent a source of noise within the data and cannot be avoided.

3.5. Value Inflation

Our understanding of recombination frequency values tells us that as markers become

farther apart, the rf value increases until it reaches a theoretical maximum of 0.5. From the

heat map in figure 1.5, we can further see that rf values that are relevant to the construction

of the linkage map are actually far below the 0.5 threshold. Therefore, we do not need to

keep these relatively large values in the recombination frequency matrix when calling the

TSP solver. In fact, it is detrimental to the performance of the TSP solver to allow these

values to remain in the analysis.

The reason for this is that the TSP solver will attempt to find the best overall solution

by optimizing all of the values it is given. As far as the TSP algorithms are concerned, any

improvement to the Hamiltonian path is worthwhile, so for the relatively large weights in

the path the solver will try to reduce these as much as possible, even though it does not

matter for the genetic linkage map. Therefore, we simply choose a threshold and inflate all

values above that threshold to an arbitrarily large value, such as 0.5. In this way, we relieve

the TSP solver of the responsibility of optimizing these useless values, since they only serve
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Figure 3.8. Arabidopsis heat map with rf value inflation. All recombination
frequency above the 15th percentile were replaced with a value of 0.5.

to segregate the chromosome groups from each other and do not represent a meaningful

improvement to the genetic linkage map.

Figure 3.8 shows the recomputed heat map for arabidopsis after value inflation. It is clear

that, for this well-behaved data set, the technique of value inflation strongly simplifies the

problem. All of the inter-chromosome variation in rf values from Figure 1.5 is gone, which

will allow Concorde to perform its branch-and-bound operations much more efficiently.

For IR64B, the new heat map in Figure 3.9 shows improvement, but as we expect it is

not as much as for arabidopsis. Because of the noise in this dataset, there are many low-

value rf areas scattered throughout the data space, but nevertheless the improvement is still

beneficial.
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Figure 3.9. The heat map for the IR64B data set with value inflation. The
green sections throughout the graph show areas of low recombination frequency
between markers in different chromosomes. This indicates the presence of noise
in the data.

Caution must be used at this stage, as setting the threshold too low can begin to affect

the clustering and the final ordering of markers within the chromosome. This is especially

true for noisy data sets, since meaningful rf values may be relatively high when there is a

lot of noise in the data.

For the heatmaps in the previous section, the threshold for value inflation was chosen by

choosing the average of the 15th percentile rf value for each marker. This value was chosen

semi-empirically, and may need to be tailored to the data set in use.
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3.6. Implementation

This project was implemented in R. However, due to R’s inefficiency with iterated tasks,

the algorithms which identify duplicate markers and compute the recombination frequency

matrix were implemented in C and are called via R’s built-in C interface.
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CHAPTER 4

Cluster Separation

The primary goal of separating the data set into clusters is to ensure that the resulting

clusters do not contain markers from more than one chromosome. There are two methods

described here: the first utilizes the LKH solver, and the second utilizes a minimum spanning

tree.

It is important to understand what we expect to see when we begin separating the data

into clusters. We know that our end goal is a number of clusters equal to the number of

chromosomes, so this process must produce at least that many clusters.

The size of the individual chromosomes is unknown at the beginning of the process. How-

ever, we assume that no chromosome should contain a number of markers that is exceedingly

small relative to the total number of markers in the data. To help guide the initial cluster

separation stage, a guess is made as to the expected minimum size of a chromosome. If m

represents the number of markers and k represents the number of chromosomes then the

expected minimum size s of a chromosome is defined to be half of the average cluster size,

i.e.

(3) s =
m

2k

To begin, both methods break apart the data set into 1.5× k clusters (see the following

sections for an explanation of how the breaks are made). Of these, there will most likely be

several clusters which are very small, consisting of only a handful of markers. We would not

consider such a small cluster to represent a significant portion of a chromosome. Therefore, to
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Figure 4.1. Cluster containing markers from two different chromosomes.
The Hamiltonian path of this cluster contains an edge with a large recom-
bination frequency value. This is indicative of the presence of markers from
two different chromosomes. If this rf value meets or exceeds the user-defined
threshold, this cluster will be separated into smaller clusters.

simply consider the number of clusters without also taking into account their size would not

be wise. Instead, if a cluster meets or exceeds the size s, it is considered to be a reasonably-

sized cluster and probably contains a significant portion of the markers from at least one

chromosome. The cluster separation stage begins by producing a number of reasonably-sized

clusters that is equal to the number of chromosomes.

It is likely that some of the larger clusters will contain markers from more than one

chromosome. When this occurs, there will be a large recombination frequency value between

the two chromosomes in the Hamiltonian path, as shown in Figure 4.1. A predetermined

threshold is used to decide whether or not the cluster should be separated at this point (this

threshold has a default value of 0.30, but can also be specified by the user). Each method

applies this threshold to the clusters in a different way to insure that no clusters contain

markers from more than one chromosome (see the following sections for more details).
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Figure 4.2. Flowchart of the cluster separation algorithm, TSP-based.

4.1. LKH-Based

The method of using the LKH solver to separate the markers into clusters is outlined in

Figure 4.2. The data are first processed with LKH to get the Hamiltonian path for the full

dataset. All recombination frequency values in this path are sorted in descending order and

all values above the rf threshold (provided by the user) are used as cutpoints. If this results

in a number of cutpoints that is less than 1.5× k, then the largest 1.5× k rf values are used

instead. This results in the Hamiltonian path being separated as shown in Figure 4.3.

If the initial separation step results in at least k clusters of size s or greater, then the

algorithm terminates and the clusters are considered to be well-separated. Otherwise, the

next-largest rf value is added to the list of cutpoints until the condition is reached, or until
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Figure 4.3. Hamiltonian path for IR64B dataset with 1.5*k cutpoints, where
k is the number of chromosomes.

the total number of clusters reaches 2×k. If the algorithm cannot produce enough significant

clusters by this point, this may be an indication that the data set is too fractured to produce

a reasonable result.

Since the Hamiltonian path has been created at the beginning of this method, we know

with certainty whether or not all edges above the threshold have been cut, and the individual

clusters do not need to be further subdivided.

4.2. Minimum Spanning Tree

The second method uses a minimum spanning tree to produce the clusters and is vi-

sualized in Figure 4.4. This method is broken into two stages. The first stage begins by

constructing the minimum spanning tree and breaking it apart at the largest 1.5× k recom-

bination frequency values. If this does not produce k significant clusters, the next-largest rf
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Figure 4.4. Flowchart of the cluster separation algorithm, MST-based.

value is added to the cutpoint list. This is repeated until k significant clusters have been

produced.

The second stage involves running each cluster through LKH and checking for rf values

that exceed the threshold, similar to the approach described in the previous section. When

such a value is detected, the cluster is broken apart to make sure that the final clusters do

not contain markers from more than one chromosome.

4.2.1. First Stage - Coarse Cuts. Figure 4.5 shows the MST for the arabidopsis

data set, color-coded by chromosome. In this case, the markers from each chromosome cluster
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Figure 4.5. The minimum spanning tree for the arabidopsis data set, color-
coded by chromosome. The largest-weight edges are marked in red. For these
data, cleaving the MST at the red edges will completely separate the chro-
mosomes into individual groups. This occurs because the arabidopsis data set
has very little noise.

together due to the absence of noise within this data set, and the highest-weight edges are

the connecting edges between these clusters (shown in red). Therefore, for a dataset that is

very clean and complete, breaking the MST into k groups is enough to cleanly separate the

chromosomes.

On the other hand, when dealing with noisy data, it is possible that some of these

large-weight cutpoints will not be true breaks between chromosomes. In other words, it

is possible that some intra-chromosome rf values may be larger than one or more of the

inter-chromosome cutpoints.

As an example, see the minimal spanning tree for the IR64B genome, shown in Figure 4.6.

The IR64B dataset is a fairly dirty dataset, with many individuals missing data. Because of

this, it is a challenging dataset to process and gives a good example of the kinds of difficulties

researchers will encounter while using this new processing technique. Figure 4.6 shows the
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Figure 4.6. The minimum spanning tree for the IR64B data set, color-coded
by chromosome. The largest-weight edges are marked in red. The symbol
borders have been eliminated so that they do not cover the interior colors,
due to the number of data points. The circled groups contain markers from
multiple chromosomes. Cleaving the MST at the red edges will not cleanly
separate all chromosomes into individual groups, due to the amount of noise
in this data set.

MST separated into 12 groups by exploding the 11 highest-weight edges. The reason 12

groups are shown is because IR64B contains 12 chromosomes.

In Figure 4.6, two groups are circled in black. These two groups contain markers from

two different chromosomes, as evidenced by the different colors in the cluster. This behavior

is the reason that the clusters are run through the second stage (described below), which

will analyze individual clusters and break them apart at large rf values.

4.2.2. Second Stage - Fine Cuts. After the first stage, we will have several clusters

which may or may not be properly separated according to chromosome. In order to determine

whether or not this is the case, we do TSP runs on each cluster using LKH, since it is the

faster solver (see section 1.2.2). The goal here is to see if any of the individual clusters
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Figure 4.7. The minimum spanning tree for the IR64B data set when di-
vided into 18 groups (1.5 times the number of chromosomes). No single group
contains markers from more than one chromosome.

produce a TSP tour with markers from more than one chromosome in it. The Hamiltonian

path for each cluster is checked for any recombination frequency values which exceed the

user-defined rf threshold. When these values are found, the cluster is broken apart at that

point (see Figure 4.1).
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CHAPTER 5

Cluster Merging

Once the markers have been broken into well-separated clusters, the next step is to merge

clusters which belong together. Clusters are processed in order of increasing size, since a

small cluster is more likely to need to be merged with a larger cluster (two large clusters will

probably not merge with each other, since they most likely contain markers from different

chromosomes). Each cluster is processed through three stages to determine which cluster it

should be merged with, each stage representing a higher computational cost than the last.

The first stage involves direct examination of the rf matrix to see if the cluster can be

directly merged with another without any further analysis (Section 5.1). The second stage

involves combining clusters pairwise and processing them with LKH to see if the Hamiltonian

path clearly indicates whether the clusters should be merged (Section 5.2). Finally, if a cluster

does not pass the criterion for being merged in stage 2, the third stage attempts to verify

which cluster it belongs to using reciprocal matching technique of the most likely candidate

cluster (Section 5.2). If a cluster does not meet any of these criteria, it is consider to be a

complete chromosome.

5.1. Merge Clusters by Shortest Connecting Edges

We would like to directly merge clusters at a very low computational cost. To do this, we

find the smallest rf value between any marker in one cluster to any marker in every other

cluster, as shown in Figure 5.1. To determine whether or not two clusters can be merged

at this phase, the smallest of these values (x) is compared to the second-smallest (y). If

x ≤ 1

2
y, then we merge the clusters without any further testing since this indicates that x is

significantly smaller than all other values.
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Figure 5.1. Example of testing for the smallest edge connections between
clusters. The connection between the test cluster and cluster D is significantly
smaller than all other values, so these two groups can be merged without fur-
ther testing. Since this only involves examining the recombination frequency
matrix, the computation cost is very low.

Consider the example values shown in Table 5.1. Here we wish to merge the clusters A,

B, and C with the clusters 1, 2, 3, 4, and 5. The values in the table shown the smallest edge

weights between any marker pair in these clusters.

For cluster A, the values between cluster A and clusters 1, 3, and 5 are all 0.50, indicating

that there is no recombination frequency between the markers in these clusters with any of

the markers within cluster A that is less than 0.50. This allows us to eliminate these clusters

as possible candidates by simple inspection of the rf matrix. For clusters 2 and 3, the

smallest recombination frequency value to cluster A is x = 0.10 and the second-smallest is

y = 0.22. Since x ≤ 1

2
y, clusters A and 2 will be merged with no further testing.

Cluster B we have x = 0.15 and y = 0.22. Here the x ≤ 1

2
y condition is not satisfied.

For cluster C, all values in the table are 0.50 except for the edge to cluster 1 (x =

0.25). Again we have the case where x ≤ 1

2
y so these clusters will be merged. Since the

recombination frequency matrix was capped at a value of 0.50, the largest intercluster rf

value that could cause two clusters to be merged at this stage is 0.25.

For cluster D, the smallest value is above 0.25, so it will not be merged at this stage.
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Table 5.1. Example values of the smallest connecting edges between several
clusters. If the smallest recombination frequency value in a row is less than
half of the second-smallest value, the two clusters are merged.

Cluster 1 2 3 4 5
A 0.50 0.10 0.45 0.22 0.50
B 0.40 0.42 0.50 0.15 0.22
C 0.25 0.50 0.50 0.50 0.50
D 0.50 0.50 0.36 0.50 0.50

Since this process only involves looking up values in the recombination frequency matrix,

the computational cost is very low.

5.2. Cluster Merging with LKH

The second stage involves merging pairs of clusters and processing them with LKH. This

is essentially the reverse of the technique described in Figure 4.1 - if we merge two clusters

that belong to the same chromosome then the resulting Hamiltonian path will not exhibit

any large jumps. An example of this stage is shown in Figure 5.2.

To choose which cluster is the candidate to be merged with another cluster, we again

start with the smallest. We combine the candidate cluster in turn with every other cluster

and run them through LKH. The largest rf values from the Hamiltonian path resulting from

each combination are compared, and we again use the x ≤ 1

2
y criterion to determine if the

clusters should be merged.

In Figure 5.2, the largest rf value from each Hamiltonian path is printed beneath the

combined plots. The smallest is x = 0.18 and the largest is y = 0.39. In this case the

condition is satisfied and the groups will be merged.

5.3. Reciprocal Cluster Merging

The third stage is the final attempt to merge a cluster into another cluster. At this stage,

the cluster which has the smallest value in the Hamiltonian path from stage 2 is used as the
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Figure 5.2. Cluster merging using LKH. A given cluster is separately merged
with each of the other clusters and run through LKH. The largest rf value of
the resulting Hamiltonian path indicates how closely related the two clusters
are. Since the smallest of these values is less than half of the next largest
value, the two clusters are merged.

new candidate solution (see Figure 5.3). This cluster is then put through the same process,

and if the result indicates that the original cluster has the lowest maximum rf value in the

combined Hamiltonian path, then the two clusters are merged.
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Figure 5.3. Cluster merging using LKH, in the event that no cluster is clearly
the best match. Cluster 1 is separately merged with each of the other clusters
and processed with LKH (top half of the figure). The largest rf value within
the Hamiltonian path indicates how closely the two clusters are related. The
process is repeated for the cluster which has the closest relationship to the
original cluster (in the bottom half of the figure). If this step indicates the
original cluster (cluster 1), the two clusters are merged.
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CHAPTER 6

Final TSP Runs with Concorde

Once we are satisfied that we have merged the groups such that each group contains a

single, complete chromosome, we find the final Hamiltonian path for each individual chromo-

some using Concorde. Since Concorde is a complete solver, we are assured that the solution

for each group will be the best possible Hamiltonian path for that group of markers. Assum-

ing that the filtering and grouping processes have correctly merged all markers for a single

chromosome, this will be the best genetic linkage map that can be produced from the overall

data set.
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CHAPTER 7

Results

To evaluate the quality of the final solution of each chromosome, we compare the order of

the markers to the order in the solution produced by the JoinMap program. Since JoinMap

is the industry standard, this is the best indicator we have of the solution expected by plant

sciences researchers. The comparison is made by constructing a plot of the marker order

in the solution versus the marker order in the JoinMap solution. When the two solutions

match perfectly, the plot will be a straight line.

Even though the chromosomes have been separated and independently processed with

Concorde, for simplicity all chromosomes are shown on a single plot. The vertical lines show

the breakpoints between chromosomes.

To quantitatively measure the quality of a solution, the number of erroneous pairs E is

computed. This number is the number of pairs of markers which appear in reversed order

as compared to some reference solution [7].

7.1. Simulated Data

Datasets were simulated using the R/qtl package [14]. All simulated datasets contain a

total number of markers m of 1,000, 5,000, or 10,000 evenly distributed across five chromo-

somes.

Various values of genotype error rates (η) and the rate of missing genotypes (γ) were

used to evaluate the performance of the current algorithm and MSTmap, shown in Table

7.1. Five datasets were created for each configuration using 300 individuals. Markers are

evenly divided among five chromosomes, but not evenly spaced.
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Table 7.1 shows several important results. First, the runtimes of the current algorithm

are almost always significantly less than those of MSTmap. The exception to this is seen in

the 10000 marker datasets, but only for very low values of γ when η = 0.0.

Second, the number of erroneous markers E is lower for the current algorithm in al-

most every case. Therefore, even if the user were to accept the longer runtime required by

MSTmap, the solution quality is almost guaranteed to be worse.

Finally, the MSTmap results show significant difficulty with producing the correct number

of chromosomes c. In situations where the number of groups produced is far less than the

actual number of chromosomes, the E value could not be calculated, denoted by an asterisk.

The current algorithm produced the correct number of chromosomes in every case except

η = 0.10 and γ = 0.10.
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Table 7.1. Average runtimes for simulated datasets with various genotyping
error rates (η) and rates of missing data (γ). E is the average number of
erroneous pairs, c is the average number of clusters in the result, m is the
average number of markers in the data after removing duplicates. An asterisk
shows that E could not be evaluated because the result did not produce the
correct number of chromosomes. Runtimes do not include removal of duplicate
markers since this was done before both algorithms were run.

MST-based Method MSTmap

Problem Size m γ η Runtime (s) E c Runtime (s) E c

1000 925.2 0.00 0.00 8.4 9.2 5.0 12.7 175 4.6
1000 0.00 0.01 11.4 61.0 5.0 15.5 210 5.0
1000 0.00 0.05 14.1 149.2 5.0 15.6 236.2 5.0
1000 0.00 0.10 17.0 329.8 5.0 20.1 381.0 5.0
1000 0.05 0.00 9.9 78.8 5.0 12.0 193.0 5.0
1000 0.05 0.01 9.8 96.2 5.0 18.0 285.6 5.0
1000 0.05 0.05 15.9 217.8 5.0 25.0 332.8 4.2
1000 0.05 0.10 16.1 365.2 5.0 24.6 421.2 5.0
1000 0.10 0.00 12.7 90.4 5.0 11.6 204.0 5.0
1000 0.10 0.01 11.8 106.4 5.0 15.2 157.4 4.2
1000 0.10 0.05 16.8 207.8 5.0 25.0 380.8 5.0
1000 0.10 0.10 16.7 403.2 5.0 32.7 529.4 5.0

5000 4626 0.00 0.00 176.1 28.6 5.0 241.0 732.0 5.0
4998.5 0.00 0.01 251.0 316.5 5.0 336.9 903.8 5.0
5000 0.00 0.05 409.3 759.5 5.0 384.2 1049.5 4.6
5000 0.00 0.10 506.1 1538.2 5.0 689.1 1857.0 4.0
5000 0.05 0.00 325.9 316.0 5.0 314.9 915.0 4.0
5000 0.05 0.01 327.5 379.0 5.0 436.7 1229.0 4.0
5000 0.05 0.05 325.3 819.0 5.0 2161.5 * 1.0
5000 0.05 0.10 428.5 1704.5 5.0 1563.0 * 3.0
5000 0.10 0.00 324.0 440.0 5.0 314.5 851.0 4.0
5000 0.10 0.01 326.7 536.0 5.0 1135.9 * 1.0
5000 0.10 0.05 534.2 1020.0 5.0 3303.5 * 1.0
5000 0.10 0.10 323.0 2052.5 5.0 6264.1 * 1.0

10000 9252.5 0.00 0.00 1195.3 51.3 10.0 697.0 1435.3 9.2
9997.3 0.00 0.01 1553.4 624.3 10.0 966.5 1926.5 9.4
10000 0.00 0.05 1762.6 1444.0 10.0 1155.7 2175.5 8.0
10000 0.00 0.10 2922.2 1581.6 10.0 1547.0 3614 9.0
10000 0.05 0.00 1353.7 643.0 10.0 2707.5 * 3.0
10000 0.05 0.01 1327.7 846.0 10.0 2788.0 * 4.0
10000 0.05 0.05 1390.4 1656.0 10.0 10275.7 * 1.0
10000 0.05 0.10 1439.6 3509.0 10.0 16608.2 * 2.0
10000 0.10 0.00 1440.4 863.0 10.0 4063.9 * 1.0
10000 0.10 0.01 1949.4 1059.0 10.0 5399.5 * 1.0
10000 0.10 0.05 1639.0 2097.8 10.0 18976.4 * 2.0
10000 0.10 0.10 2479.8 3969.3 10.2 43394.4 * 1.6
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7.2. Real Data

Table 7.2 shows a comparison of the runtimes for the current algorithm and MSTmap.

Runtimes for JoinMap are difficult to accurately report, since JoinMap can only construct

one chromosome at a time. This means that the user has to set the program to run on

one chromosome, then return to start the process on the next chromosome. For a dataset

consisting of a few hundred markers (arabidopsis, barley, clean IR64B) the overall process

takes several hours. For a larger dataset (dirty IR64B) the entire process can take a full day.

Table 7.2. Run times for the current algorithm (both MST-based and TSP-
based methods) and MSTmap, shown in seconds. JoinMap runtimes are not
reported as they are vastly larger (on the order of hours to days). m is the
number of markers in the dataset, E is the number of erroneous pairs when
compared to the JoinMap solution.

MST-based TSP-based MSTmap
Species m Runtime Runtime E Runtime E
Arabidopsis 295 2 2 0 5 13
Barley 481 4 4 2 3 23
Hall’s Switchgrass 880 12 10 5 10 275
IR64B (clean) 433 19 18 0 13 177
IR64B (dirty) 2,217 218 260 5294 460 9001

The reported runtimes include detecting and removing duplicate/similar markers, and

computing the recombination frequency matrix. There is no difference in the solution results

between the TSP-based cluster separation method and the MST-based cluster separation

method.

7.3. Arabidopsis

The arabidopsis data set consists of 295 markers. The current algorithm produces a

linkage map which is identical to that produced by JoinMap (Figure 7.1a).

The MSTmap result (Figure 7.1b) is also very close to the JoinMap result, producing

only 13 erroneous pairs of markers.
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(a) Current algorithm compared to JoinMap result. E = 0, runtime = 2 seconds.

(b) MSTmap result compared to JoinMap result. E = 13, runtime = 5 seconds.

Figure 7.1. Arabidopsis results.
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7.4. Barley

The barley data set consists of 481 markers. The current algorithm produces a linkage

map which nearly identical to that produced by JoinMap (E = 2, Figure 7.2a).

The MSTmap result (Figure 7.2b) is slightly worse, producing 23 erroneous pairs.

7.5. Hall’s Switchgrass

The Hall’s switchgrass data set consists of 880 makers. The linkage map is nearly identical

to that produced by JoinMap (E = 5, Figure 7.3a). This dataset was provided by Dr. John

Lovell at the University of Texas.

The MSTmap result (Figure 7.3b) shows a moderate degradation in solution quality,

producing 275 erroneous marker pairs.

7.6. IR64B (Clean Dataset)

This is the result after fully filtering the IR64B dataset (filtered with techniques not

included in this thesis), leaving 433 markers. The IR64B linkage map is identical to that

produced by JoinMap (Figure 7.4a). This dataset was provided by Drs. John McKay and

Paul Tanger at Colorado State University.

Here we see that MSTmap has not produced the correct number of chromosomes (Figure

7.4b). Three chromosomes are merged into a single group. However, within this group the

markers of each chromosome are in relatively good order. To compute E, each chromosome

was manually separated so that the E value was not affected by the improper grouping.

7.7. IR64B (Dirty Dataset)

This linkage map was constructed from a less-strictly filtered version of the IR64B dataset,

containing 2,217 markers. This is done to show the capability of the current algorithm in
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(a) Current algorithm compared to JoinMap result. E = 2, runtime = 4 seconds.

(b) MSTmap result compared to JoinMap result. E = 23, runtime = 3 seconds.

Figure 7.2. Barley results.
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(a) Current algorithm compared to JoinMap result. E = 5, runtime = 12 seconds.

(b) MSTmap result compared to JoinMap result. E = 275, runtime = 10 seconds.

Figure 7.3. Hall’s switchgrass results.
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(a) Current algorithm compared to JoinMap result. E = 0, runtime = 19 seconds.

(b) MSTmap result compared to JoinMap result. E = 177, runtime = 13 seconds.

Figure 7.4. IR64B result (clean dataset) results. Note that MSTmap did
not produce the correct number of chromosomes as there is a single group
containing 3 chromosomes. However, within that group the markers of each
chromosome are in relatively good order.
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processing a larger dataset in much less time as compared to JoinMap, and to show that the

results are similar to the JoinMap result.

There are several differences between the current algorithm and the JoinMap solutions

(Figure 7.5a), mostly in the gold, light blue, and dark blue chromosomes. It should be

noted that there is no way to verify whether or not JoinMap produced a correct solution, so

these differences can not be used to state which algorithm produces a more correct solution.

The important thing to note is that both algorithms produce results which overall are very

similar, so there is not a huge difference in solution quality.

There was a large chunk of missing markers in the middle of one of the red chromosome,

so the analysis was run with 13 chromosomes instead of 12. This was a known problem with

the dataset and the JoinMap linkage map produced 13 chromosomes as well.

The MSTmap result (Figure 7.5b) is again not properly separating the chromosomes. As

in Section 7.6, each chromosome was manually separated in order to compute E. Also, the

MSTmap runtime is more than double that of the current algorithm.
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(a) Current algorithm compared to JoinMap result. E = 5295, runtime = 218 seconds.

(b) MSTmap result compared to JoinMap result. E = 9001, runtime = 460 seconds.

Figure 7.5. IR64B result (dirty dataset) results. This linkage map was con-
structed on 13 chromosomes due to a large number of markers missing from
the interior of the red chromosome.
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7.8. Evaluation of Filtering on JoinMap Solution Quality

Figure 7.5a shows a comparison between the linkage maps produced by the current algo-

rithm and JoinMap for the dirty IR64B dataset (2,217 markers). There are several significant

differences, but keeping in mind that we do not know the true solution, this raises the ques-

tion of which solution is causing the discrepancies.

To investigate this, Figure 7.6 shows both solutions compared to the JoinMap solution on

the more highly-filtered data set (433 markers). The top plot shows the JoinMap solution for

the dirty dataset compared to the JoinMap solution for the clean dataset. The bottom plot

show the current algorithm’s solution for the dirty dataset also compared to the JoinMap

solution for the clean dataset. Note that only markers which appear in the smaller dataset

are included in the plot.

The top plot indicates that the JoinMap solutions for the two datasets show disagreement,

indicating that the less-filtered dataset causes JoinMap to produce a linkage map which does

not agree with the linkage map produced by the more highly-filtered dataset. However, the

lower plot shows that the current algorithm does not exhibit this problem. The dirty dataset

produces a result which shows perfect agreement with the JoinMap solution for clean data,

suggesting that the discrepancies shown in Figure 7.5a might be due more to JoinMap rather

than the results produced by the current algorithm.
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(a) JoinMap solution (dirty data) vs JoinMap solution (clean data). E = 438.

(b) Current algorithm (dirty data) vs JoinMap (clean data). E = 0.

Figure 7.6. Comparison of results for dirty data compared to the JoinMap
solution for clean data (IR64B).
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CHAPTER 8

Conclusions

8.1. Summary of Results

The method presented here produces results which are very similar to the results of

JoinMap, and often identical. Since JoinMap is the standard software used by agricultural

science researchers, this new method could be used instead with no loss of solution quality.

Furthermore, the runtime of the new method is drastically less than that of JoinMap.

Genetic linkage maps can now be constructed in seconds rather than hours. Also, since

the new method can construct the linkage map for all chromosomes without constant user

intervention, the usability is much greater than that of JoinMap.

A more practical concern is that JoinMap is closed-source, proprietary software. Since

the software in this thesis has been written in R and is available on the internet, researchers

can tailor it to their specific needs. Also, since JoinMap was written in the 1990’s its

scalability is limited, and the time is rapidly approaching that the larger and larger datasets

which researchers want to use will be too large for JoinMap to handle. The new method can

handle a vastly larger number of markers than JoinMap.

8.2. Future Work

Future work would largely focus on adding advanced data filtering techniques to the

software package. One of the issues that could be addressed immediately is the detection of

markers which have high correlation to multiple chromosome groups. This kind of detection

is clearly impossible to do before the chromosome groups are formed, and since the procedure

is so labor-intensive in JoinMap it is time-prohibitive. Since approximate chromosome groups
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can be formed quickly using LKH, these kind of markers could be detected very quickly and

removed before running a full linkage map construction.
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[12] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, Finding cuts in the TSP (A prelim-

inary report), vol. 95. Citeseer, 1995.

[13] G. L. Thompson and S. Singhal, “A successful algorithm for the undirected hamiltonian

path problem,” Discrete applied mathematics, vol. 10, no. 2, pp. 179–195, 1985.
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APPENDIX A

Basic Usage of R Package

This code demonstrates the most basic functionality of the R package.

# −−−−−−−−−− Get the Package working −−−−−−−−−−−−−−

# Do ONE of these two opt ions )

# a f t e r you have done one o f the se once , you can sk ip th i s , and

# ju s t load the l i b r a r y ( un l e s s the package i s updated )

# OPTION 1 IF YOU HAVE R >= 3 . 1 . 2

# You only need to do t h i s once , or i f package i s updated .

system (”R CMD INSTALL TSPmap”)

dyn . load (”TSPmap/ s r c /TSPmap. so ”)

# You need to do t h i s every time you s t a r t R

l i b r a r y (TSPmap)

# OPTION 2 IF YOU HAVE R < 3 . 1 . 2

# You need to do t h i s every time you s t a r t R

# go to the r i g h t d i r e c t o r y with the c code

setwd (”TSPmap/ s r c /”)

system (”R CMD SHLIB r f . c ”)
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dyn . load ( ” . . / s r c / r f . so ”)

# then would need to source f i l e s . .

# now change to the d i r e c t o r y with the R code

setwd ( ” . . /R/”)

source ( ’ cu tpo in t s .R’ )

source ( ’ dup l i ca temarker s .R’ )

source ( ’ r e a d f i l e .R’ )

source ( ’ r fmat r i x .R’ )

source ( ’ TSPinter face .R’ )

setwd ( ” . . / . . / ” )

# −−−−−−−−−− General S t u f f −−−−−−−−−−−−−−−−−−−−−−−−−−

# everyth ing assumes you are in the working d i r e c t o r y f o r the repo

# i f you aren ’ t change i t here :

# setwd (”/ path/ to /TSPmap/”)

# −−−−−−−−−− Def ine v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−

# Def ine your path to the data d i r e c t o r y

# th i s i s where input and output f i l e s are l o ca t ed
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# We’ l l use the joinmap demo data . .

datapath = ”JM20/”

# with in t h i s d i r e c to ry , we recommend the f o l l ow i n g :

# /rawdata/

# / r e s u l t s /LKH

# / r e s u l t s /Concorde

# /TSPf i l e s /

# LKH l o c a t i o n

# there are two v e r s i o n s o f the LKH and Concorde executab le s ,

# one f o r mac , one f o r l i nux :

# so you have to p ick one o f the se :

i f ( Sys . i n f o ( ) [ ’ sysname ’ ] == ”Darwin ”)

{

# mac

LKHpath = ”TSPmap/ exec /LKH mac”

Concordepath = ”TSPmap/ exec / concorde mac”

} e l s e {

# l inux

LKHpath = ”TSPmap/ exec /LKH linux”

Concordepath = ”TSPmap/ exec / conco rde l i nux ”

}
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 1 read in data f i l e

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# format can be e i t h e r comma separated or tab de l im i t ed

# rows are i n d i v i d u a l s in the populat ion , columns are markers

# I f the second column isn ’ t a ” C l a s s i f i c a t i o n ” column f o r

# joinmap , then s e t the f l a g to f a l s e :

rawdata = readF i l e ( paste0 ( datapath ,

” rawdata/JM20Demo rawinput . t sv ”) ,

c l a s s i f i c a t i o n F l a g=F)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 2 check and remove dup l i c a t e markers

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I f you don ‘ t want to save the dup l i c a t e l i s t to a f i l e :

# f i r s t , d e f i n e the l i s t o f p o s s i b l e c a l l s

# the f i r s t 3 items in the l i s t can be anything , in any order

# the l a s t item i s what you use to d e f i n e miss ing data

c a l l l i s t = c (” a ” , ”b” , ”” , ”−”)
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dup l i c a t e s = f inddups ( rawdata , c a l l l i s t , th r e sho ld = 99)

# i f you a l s o want a l i s t o f dup l i c a t e s exported , you can do t h i s

# in s t ead :

# de f i n e where you want i t saved

f i l e p a t h = ” r e s u l t s /”

dup l i c a t e s = f inddups ( rawdata , c a l l l i s t , th r e sho ld = 99 ,

f i l ename=paste0 ( datapath , f i l e p a t h ,

paste (”JM20dups” ,” t sv ” , sep =”.”) ) )

# Remove dup l i c a t e markers from rawdata .

rawdata = removedups ( rawdata , dup l i c a t e s )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 3 ca l c u l a t e recombinat ion f requency matrix

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Compute recombinat ion f requency matrix .

rfmat = computeRFmat ( rawdata , c a l l l i s t )

# i t i s e a s i e r to look at i f you c l ean i t up :
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r fmatc l ean = c leanr fmat ( rfmat )

r fmatc l ean = addMarkerNames ( r fmatc lean , rawdata )

# OPTIONAL: Write out the RF matrix a f t e r running computeRFmat .

# de f i n e what you want to c a l l the f i l e

# f i l ename = addStampToFilename (”JM20RFmatrixFromTSPmap”)

f i l e p a t h = ” r e s u l t s /”

# you can ’ t use the r fmatc l ean here , though obv ious ly you could

# wr i t e r fmatc l ean to a f i l e as we l l

writeRFmat ( paste0 ( datapath , f i l e p a t h ,

paste (”JM20RFmatrixFromTSPmap” ,

” csv ” , sep =”.”) ) , rawdata , rfmat )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 4 cr ea t e TSP f i l e f o r the s o l v e r ( e i t h e r LKH or Concorde )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# f i l ename = addStampToFilename (” TSPf i l e ”)

f i l ename = ”JM20 TSPfile ”

f i l e p a t h = ” So l v e rF i l e s /”

# This conver t s the r f matrix to an i n t e g e r matrix that the TSP

# s o l v e r s need and saves i t as a f i l e
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pathAndNameOfTspFile = createTSPFi le ( rawdata , rfmat , f i l ename ,

paste0 ( datapath , f i l e p a t h ) )

# pathAndNameOfTspFile keeps t rack o f where that f i l e i s .

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 5 run the s o l v e r ( depending on s i z e o f data se t t h i s could take

# some time )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# f i r s t d e f i n e where the output f i l e w i l l be saved

outputPath = paste0 ( datapath , ” r e s u l t s /LKH/”)

# run LKH and time i t in seconds

# th i s i s the only s tep that should take some time

ptm <− proc . time ( )

pathAndNameOfLKHSolutionFile = callLKH (LKHpath ,

pathAndNameOfTspFile , paste0 ( datapath , f i l e p a t h ) )

proc . time ( ) − ptm

# pathAndNameOfLKHSolutionFile keeps t rack o f output f i l e LKH

# created

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# 6 save the r e s u l t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# read in the so lu t i on , get the r f and c a l c u l a t e cumulat ive r f

# t h i s i s the marker order , but no groups have been de f i n ed yet

# we ’ l l d e f i n e groups by look ing f o r l a r g e r f va lue s

LKHMarkerlist = processLKHOutput ( pathAndNameOfLKHSolutionFile ,

rawdata , rfmat )

# th i s i sn ’ t super u se fu l , but i f you need to check something you

# can save t h i s

f i l ename = ”JM20 LKHmarkerlist”

f i l e p a t h = ” r e s u l t s /LKH/”

writeOutput ( paste0 ( datapath , f i l e p a t h , f i l ename , ” . csv ”) ,

Sh i f t e dMark e r l i s t )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 7 so r t the r e s u l t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# In order to p roce s s the r e s u l t s , we need to s o r t the r f matrix

# so that i t i s in the same order as the s o l u t i o n .

sortedMatr ix = sortRFmatrix ( rfmat , Sh i f t e dMark e r l i s t )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 8 de f i n e number o f groups you expect ( g en e r a l l y the number o f

# chromosomes )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Choose number o f cu tpo in t s

numberOfCutpoints = 5

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 9 cut in to the de f i n ed number o f groups

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Find l i s t o f cu tpo in t s ( use e i t h e r Concorde or LKH r e s u l t ) .

cu tpo in t s = f i nd cu t s ( Sh i f t edMarke r l i s t , numberOfCutpoints )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 10 examine whether the se groups make sense

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# In t h i s p lot , you should see b ig jumps in the y ax i s

# corre spond ing to l a r g e r f va lue s

# these are the l i k e l y breaks between groups

# remember , the s o l u t i o n wraps around , so part o f one group may

# appear at the beg inn ing and end o f the x ax i s

plotTSPsoln ( Sh i f t edMarke r l i s t , ”JM20” , ”LKH”)

# f o r the JM20 data , you should see 5 groups

# to make i t e a s i e r to v i s u a l i z e , you can c o l o r the groups

# here are 15 c o l o r b l i n d s a f e c o l o r s :

c o l o r s = c(”#C0C0C0” ,”#808080” ,”#000000” ,”#FF0000” ,”#800000” ,

”#FFFF00” ,”#707030” ,”#00EE00” ,”#009000” ,”#00EEEE” ,

”#00A0A0” ,”#0000FF” ,”#000080” ,”#FF00FF” ,”#900090”)

# pick randomly enough c o l o r s f o r each cutpo int

c o l o r v e c t o r = sample ( co l o r s , numberOfCutpoints )

# c r ea t e an index f o r each marker o f what c o l o r i t should be

co l o r i ndex = ColorGroupsinPlot ( Sh i f t edMarke r l i s t , c o l o r v e c t o r )

# p lo t with c o l o r s
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plotTSPsoln ( Sh i f t edMarke r l i s t , ”JM20” , ”LKH” , co l o r i ndex )

# you can add l i n e s to i d e n t i f y each cutpo int :

f o r ( i in cu tpo in t s [ , 2 ] )

{

ab l i n e (h=Sh i f t e dMark e r l i s t [ i , 4 ] , c o l=”blue ” , l t y =2)

}

# or j u s t look at the Marke r l i s t ob j e c t and compare with your

# marker names f o r us , our marker names t e l l us what

# chromosome on the r e f e r e n c e genome they belong

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 11 try s t ep s 8−10 un t i l you are s a t i s f i e d

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 12 compute g en e t i c d i s t an c e s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# haldane

LKHHaldanelist = computeHaldane ( Sh i f t edMarke r l i s t , cu tpo in t s )
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# kosambi

LKHKosambilist = computeKosambi ( Sh i f t edMarke r l i s t , cu tpo in t s )

# i f a group i s in the wrong order , you can r ev e r s e i t :

# here , we are r e v e r s i n g group 4

reversedMarkerData = reverseGroup ( Sh i f t edMarke r l i s t , cutpo ints , 4 ,

rfmat )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 13 save r e s u l t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# f i l ename = addStampToFilename (” Lovel lsConcordeOutput ”)

wr i t e . t ab l e ( Sh i f t edMarke r l i s t , paste0 ( datapath , f i l e p a t h ,

” JM20LKHfinalresults . t sv ”) , sep=”\t ” , row . names=F, na=””)

# f o r the JM20 data , you can compare to the joinmap r e s u l t s here :

setwd = ”JM20/ r e s u l t s /JoinMap/”
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APPENDIX B

Advanced Usage

This code demonstrates the usage of the advanced features of the R package.

# −−−−−−−−−− General S t u f f −−−−−−−−−−−−−−−−−−−−−−−−−−

# everyth ing assumes you are in the working d i r e c t o r y f o r the repo

# i f you aren ’ t change i t here :

# setwd (”/ path/ to /TSPmap/”)

# −−−−−−−−−− Def ine v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−

# Def ine your path to the data d i r e c t o r y

# th i s i s where input and output f i l e s are l o ca t ed

# We’ l l use the joinmap demo data . .

datapath = ”JM20/”

# with in t h i s d i r e c to ry , we recommend the f o l l ow i n g :

# /rawdata/

# / r e s u l t s /LKH

# / r e s u l t s /Concorde

# /TSPf i l e s /
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# LKH lo c a t i o n

# there are two v e r s i o n s o f the LKH and Concorde executab le s ,

# one f o r mac , one f o r l i nux :

# so you have to p ick one o f the se :

i f ( Sys . i n f o ( ) [ ’ sysname ’ ] == ”Darwin ”)

{

# mac

LKHpath = ”TSPmap/ exec /LKH mac”

Concordepath = ”TSPmap/ exec / concorde mac”

} e l s e {

# l inux

LKHpath = ”TSPmap/ exec /LKH linux”

Concordepath = ”TSPmap/ exec / conco rde l i nux ”

}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 1 read in data f i l e

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# format can be e i t h e r comma separated or tab de l im i t ed

# rows are i n d i v i d u a l s in the populat ion , columns are markers
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# I f the second column isn ’ t a ” C l a s s i f i c a t i o n ” column f o r joinmap ,

# then s e t the f l a g to f a l s e :

rawdata = readF i l e ( paste0 ( datapath ,

” rawdata/JM20Demo rawinput . t sv ”) ,

c l a s s i f i c a t i o n F l a g=F)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 2 f i nd and remove dup l i c a t e markers

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I f you d o n t want to save the dup l i c a t e l i s t to a f i l e :

# f i r s t , d e f i n e the l i s t o f p o s s i b l e c a l l s

# the f i r s t 3 items in the l i s t can be anything , in any order

# the l a s t item i s what you use to d e f i n e miss ing data

c a l l l i s t = c (” a ” , ”b” , ”” , ”−”)

dup l i c a t e s = f inddups ( rawdata , c a l l l i s t , th r e sho ld = 99)

# I f you a l s o want a l i s t o f dup l i c a t e s exported , you can do

# th i s i n s t ead :

# de f i n e where you want i t saved

f i l e p a t h = ” r e s u l t s /”
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dup l i c a t e s = f inddups ( rawdata , c a l l l i s t , th r e sho ld = 99 ,

f i l ename=paste0 ( datapath , f i l e p a t h ,

paste (”JM20dups” ,” t sv ” , sep =”.”) ) )

# Remove dup l i c a t e markers from rawdata .

rawdata = removedups ( rawdata , dup l i c a t e s )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 3 ca l c u l a t e recombinat ion f requency matrix

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Compute recombinat ion f requency matrix .

# We w i l l use the op t i ona l c o r r e c t i o n f l a g parameter . This f l a g

# s l i g h t l y mod i f i e s the recombinat ion f requency matrix to

# avoid s i t u a t i o n s where markers with miss ing c a l l s might

# act as a br idge between other markers , r e s u l t i n g in f a l s e

# c o r r e l a t i o n s between markers which should not be

# r e l a t e d .

# This does not a f f e c t runtime but may a f f e c t s o l u t i o n qua l i ty ,

# e s p e c i a l l y in data s e t s with many miss ing c a l l s .

rfmat = computeRFmat ( rawdata , c a l l l i s t , co r rF lag=T)
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# i t i s e a s i e r to look at i f you c l ean i t up :

r fmatc l ean = c leanr fmat ( rfmat )

r fmatc l ean = addMarkerNames ( r fmatc lean , rawdata )

# OPTIONAL: Write out the RF matrix to a f i l e a f t e r running

# computeRFmat .

# de f i n e what you want to c a l l the f i l e

# f i l ename = addStampToFilename (”JM20RFmatrixFromTSPmap”)

f i l e p a t h = ” r e s u l t s /”

# you can ’ t use the r fmatc l ean here , though obv ious ly you could

# wr i t e r fmatc l ean to a f i l e as we l l

writeRFmat ( paste0 ( datapath , f i l e p a t h ,

paste (”JM20RFmatrixFromTSPmap” ,

” csv ” , sep =”.”) ) , rawdata , rfmat )

# Now we s e t an upper l im i t on the meaningful r f va lue s . Any

# recombinat ion f requency va lues above t h i s th r e sho ld are too

# l a r g e to con t r i bu t e to the format ion o f the l i nkage groups , so

# they are e f f e c t i v e l y equ iva l en t and w i l l be r ep l a ced with a

# value o f 0 . 5 . This a l l ows the TSP s o l v e r to run more

# e f f i c i e n t l y in order to reduce runtime . I f t h i s th r e sho ld i s s e t

# too low , u s e f u l in fo rmat ion may be l o s t and the l i nkage
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# groups may be i n c o r r e c t . I f t h i s th r e sho ld i s s e t too high , the

# TSP so l v e r w i l l take l onge r to run .

rfCap = 0 .4

cappedrfmat = capRFmat( rfmat , rfCap , 0 . 5 )

# The capped RF matrix w i l l be used in a l l computations from th i s

# point onward .

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 4 l i nkage group format ion

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# de f i n e how many chromosomes in your s p e c i e s

numChromosomes = 5

# Break in to smal l c l u s t e r s . This i s the f i r s t s tep in forming

# l i nkage groups and ensure s that the markers from

# d i f f e r e n t l i nkage groups are a l l wel l−separated .

# The inte rna lRfThre sho ld va r i a b l e s e t s the upper l im i t on the

# recombinat ion f requency va lues that w i l l be a l lowed with in a

# c l u s t e r o f markers . I f t h i s va lue i s s e t too high , the l i nkage
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# groups may not be wel l−separated and the l i nkage groups

# w i l l be i n c o r r e c t . I f t h i s va lue i s s e t too low , many smal l

# c l u s t e r s w i l l be formed r e s u l t i n g in l onge r run t imes .

r awc l u s t e r s = autoClusterMST ( rawdata , cappedrfmat , numChromosomes ,

LKHexec , in t e rna lRfThre sho ld =0.4)

# warning i s ok :

# Warning message :

# In c lu s t e rOrde r [ i ] = which ( c l u s t e r S i z e s == so r t e dS i z e s [ i ] ) :

# number o f i tems to r ep l a c e i s not a mu l t ip l e o f replacement

# length

# then merge the c l u s t e r s i n to the f i n a l l i nkage groups . This w i l l

# c r e a t e a number o f c l u s t e r s equal to the value o f numChromosomes .

mergedc lu s t e r s = autoMergeClusters ( rawc lu s t e r s , cappedrfmat ,

LKHexec , numChromosomes , rfCap )

# f o r each l i nkage group , compute the f i n a l l i nkage map .

f inalMap = l i s t ( )

f o r ( i in 1 : l ength ( mergedc lu s t e r s ) )

{

f inalMap [ [ i ] ] = createMap ( rawdata , cappedrfmat ,
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mergedc lu s t e r s [ i ] , Concordepath )

}

# remove empty elements , i f n ece s sa ry

f inalMap = finalMap [ ! sapply ( finalMap , i s . nu l l ) ]

# a l s o with in t h i s loop i t c a l c u l a t e s the g en e t i c d i s t anc e . can

# do kosambi instead , i f d e s i r ed .

newdf = data . frame ( )

f o r ( i in 1 : l ength ( f inalMap )){

# pr in t ( i )

temp = as . data . frame ( computeHaldane ( f inalMap [ [ i ] ] ) )

temp$groupname = i

newdf = rbind ( newdf , temp)

}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 5 examine whether the se groups make sense

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# i f a group i s in the wrong order , you can r ev e r s e i t :

# here , we are r e v e r s i n g group 4
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f inalMap [ [ 4 ] ] = r ev e r s eC l u s t e r ( f inalMap [ [ 4 ] ] , r fmat )

# Def ine a l i s t o f c o l o r s to be used on p lo t s , i f d e s i r ed .

c o l o r s = c (” red1 ” , ” green ” , ” l i g h t b l u e ” , ” blue ” , ” orange ”)

# These v a r i a b l e s w i l l be used to c r e a t e an o v e r a l l p l o t o f a l l

# l i nkage groups .

ful lMap = l i s t ( )

fu l lCo l o rVec = l i s t ( )

# Create i nd i v i dua l p l o t s o f the cumulat ive r f f o r each l i nkage

# group .

f o r ( i in 1 : l ength ( f inalMap ) )

{

# Create a c o l o r vec to r f o r each p l o t :

co lorVec = rep ( c o l o r s [ i ] , l ength ( f inalMap [ [ i ] ] [ , 1 ] ) )

plotTSPsoln ( f inalMap [ [ i ] ] , ”JM20” , ”Concorde ” , co lorVec )

# This saves the p l o t s .

f i l ename = paste0 (”JM20/ r e s u l t s /JM20” , i , ” . png ”)

dev . copy (png , f i l ename , width=8, he ight=8, un i t s=”in ” , r e s =100)

dev . o f f ( )
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# Update the l i s t s f o r the o v e r a l l p l o t .

ful lMap = c ( fullMap , as . numeric ( f inalMap [ [ i ] ] [ , 4 ] ) )

f u l lCo l o rVec = c ( fu l lCo lo rVec , l i s t ( co lorVec ) )

}

ful lMap = un l i s t ( ful lMap )

fu l lCo l o rVec = un l i s t ( f u l lCo l o rVec )

# Create the o v e r a l l p l o t .

p l o t ( fullMap , cex =.5 , c o l = fu l lCo lorVec , xlab = ”Marker Pos i t i on ” ,

ylab = ”Marker Pos i t i on in JoinMap So lu t i on ” , pch = 19)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 6 save r e s u l t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f i l ename = addStampToFilename (” f i n a l i s t ” , ” r ob j e c t ”)

save ( newdf , f i l e=paste0 (”JM20/ r e s u l t s /” , f i l ename ) )

f i l ename = addStampToFilename (” f i n a l i s t ” , ” t sv ”)

writeOutput ( f i l e=paste0 (”JM20/ r e s u l t s /” , f i l ename ) , newdf )
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