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The double Hermitian property of S; and the definition of] imply
that '1' = .:l,

We define the real and imaginary parts of the reflection coefficient
k; as ~n and 'YIn and set partial derivatives to zero
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We now return to (8) with this new expression for k.: Multiply­
ing the first of equations (8) by ~n and the second by 'YIn and adding
the two yields the cubic equation Q(w) = O. More specifically

Q(w) = -.:l(N - n)w3 + 1.:l1(2n - N)w 2

+ .:l(N + n)w + Nlrl
= nw(.:l + 21rlw + .:lw2

) + N(l - w2)(lrl + .:lw)

= O. (12)

Thus, we have reduced the determination of w, and hence the com­
plex reflection coefficient kn , to solution of a real cubic equation.
In this sense the complex RMLE algorithm is quite similar to Kay's
real version Pl.

Since the magnitude of the reflection coefficient kn equals the
magnitude of w, stability of this complex recursive maximum like­
lihood estimation procedure requires Iw I < 1, We would like to
be able to show, therefore, that there always exists a root of the
cubic polynomial Q(w) with magnitude less than unity, We have
failed to do this directly. But we can argue that the solution w, and
hence kn , must have this property by inspection of (7). Clearly the
quantity to be maximized ("cn) decreases to negative infinity as
Ik; I approaches unity due to the log (l - Ik« [2) term. Further­
more, even though On (== x t R;;.I X) is also a function of kn, we
know that On is positive since Rjn, and hence R;;.I, is positive def­
inite, The logarithm of N- 1On in (7) thus remains finite, Given that
"cn is real and finite within the unit circle in the complex plane
(I knI < 1) and approaches negative infinity on the unit circle, "cn
must attain a maximum value for Ikn I < 1.

III. SUMMARY

We have extended the recursive maximum likelihood estimation
algorithm conceived by Kay [1] to complex data sets. The complex
version requires the same level of computation as that for real data,
We have argued, without direct proof, that the algorithm is stable
in the sense that the magnitude of the reflection coefficient at each
step is less than unity.

(9)

(8)

(6)

( 11)
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ao ( 0 )t
at n = 2 Re * Snan
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a~n - On a~n

N-i-j

(Sn)" == L: x/+ixi+ j, /~ I

The notations "Re" and "1m" stand for real and imaginary parts,
respectively, The matrix] is the rank n reverse operator with ones
on the secondary diagonal and zeroes elsewhere [3], For example,
the order 3 matrix] is

Note that r is complex while .:l and '1' are real, Since we know
k:r to be real, we may define the real quantity wand, with no loss
of generality, state that

We now solve (8) for the real and imaginary parts of the reflec­
tion coefficient at step n (~n and 'YIn)' Multiplying the first of equa­
tions (8) by 'YIn and the second by ~n and subtracting the two shows
that the quantity k: r has zero imaginary part where we define r
(and other quantities) as

J~ G!D
Equations (9) employed the identity

a"cn __ !i aOn _ 2n'YIn 2 = o.
a'YIn - On a'YIn - (~~ + 'YIn)

Computing the derivatives of On explicitly, we find

Equation (6) is significant since we now have On as an explicit
function of the components of a (contained in the vector a). Though
not Toeplitz, S; possesses the important double Hermitian property
since (Sn)ij = (Sn»)f = (Sn):-j.n-i'

We continue with the maximization by combining (4) and (5)

e, = -N log (~On) + n log (1 - I k; 1
2

) + log 1Ri~-II '

(7)
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N

L.: »;
i=p+ I

(3)

(2)

R(O)

max - In IR(9)1 - tr [R- 1(9)S].

o

In general, this maximization requires solution of a set of nonlinear
equations, but for some models an explicit solution can be ob­
tained. Uniqueness and existence of solutions is addressed in [2]
and [13]. In this paper we represent R ( 9) by the linear model used
in [5]-[7], [10], and [II]:

Let IA I denote the determinant of A and tr A denote the trace of
A. Boldface is used to denote matrix and vector quantities, super­
scripts T and H denote matrix transpose and conjugate transpose,
respectively.

A. Estimation of Structured Covariance Matrices

Let R (9) denote the covariance matrix of specified structure as
a function of the real parameter vector, 9. The maximum likelihood
estimation problem is to determine 9 so that (l) is maximized when
R is replaced by R (9). Taking the natural logarithm we write the
maximum likelihood problem as

II. BACKGROUND

The joint probability density function of a set of M independent
vector samples X m , 1 ~ m ~ M, drawn from a complex N-dimen­
sional zero mean Gaussian process (xm - N (0, R» is

P(XIo •• , ,XM) = 7r-
MN IR I-

M
exp [ - M tr (R - 1S) ] (I)

where R is the true covariance matrix and S is the sample covari­
ance matrix

Thus, the low rank model provides an accurate representation of x
if the N - P smallest eigenvalues of R are approximately zero.

Denote the covariance matrix corresponding to a unit power
white process on - W ~ f -s Was R w • Slepian [14] has shown that
for reasonably large N the first 2 NW eigenvalues of R; are close
to unity and the remainder are approximately zero. This suggests
that a bandpass white process is well modeled with p = 2 NW since
e~in == O. The eigenvectors of R; are termed discrete prolate sphe­
roidal sequences (DPSS).

Explicit solutions to (2) are obtained because of the form of the Qi'

B. Low Rank Modeling of Bandpass Signals

Let x represent data from a process which has all of its energy
concentrated in the spectral band - W ~ f ~ W. A low rank model
for x is i = Up where U is an N by p matrix having orthonormal
columns ( UH U = I) and p is a p by I vector of coefficients. The
mean square modeling error is '

e2 = E { 1 x - i 1

2
} = tr R - tr U HRU (4)

where R = E { xx'' }. It is well known that the error is minimized
by choosing the columns of U as the eigenvectors of R correspond­
ing to the p largest eigenvalues. Ordering the eigenvalues of R, Ai,
from largest to smallest, the minimum mean-square error is given
by

likelihood estimation of structured covariance matrices, low rank
modeling of narrow-band signals, and multiple window spectrum
analysis. The structured covariance approach to spectrum analysis
is developed in Section III and its relationship to multiple window
spectrum analysis is discussed. In Section IV, low rank models and
structured covariance matrix estimates are used to estimate the cen­
ter frequency of a bandpass signal in noise. A summary is given in
Section V.

I. INTRODUCTION

This correspondence illustrates the relationship between multi­
ple window spectrum analysis [I] and maximum likelihood (ML)
estimation of structured covariance matrices [2]-[7]. The approach
is based on low rank models for the covariance matrix correspond­
ing to narrow-band signals. As a special case, our results reproduce
those of Thomson [I]. The unifying theme is that data may be pro­
jected onto subspaces and manipulated in each subspace to obtain
the spectrum estimate. This view shows that spectrum estimation
fits into the framework proposed in [8] for low rank modeling of
stationary random vectors.

Structured covariance matrices have been studied in the statis­
tical literature [3]-[7] in the context of factor analysis and analysis
of variance. Estimates of structured covariance matrices are uti­
lized in the context of spectral estimation in [2] and [9]. In [2], a
Toeplitz constrained covariance matrix is estimated from the data
and used to estimate a maximum entropy spectrum. Toeplitz and
rank constraints are enforced in [9] and the estimated covariance
matrix is used in the MUSIC algorithm. Both of these represent
examples where constrained covariance estimates are employed
within spectrum estimation algorithms.

Estimates of a structured covariance matrix are used to directly
estimate spectra in [10] and [11]. This is accomplished by esti­
mating the variances associated with the components of distinct,
densely sampled Fourier models, each representing a part of the
Nyquist band. Here we replace the line spectrum model of [10] and
[11] with a continuous narrow-band model in order to estimate the
spectrum from the variance in an orthogonal, low rank, signal-plus­
noise model. The low rank model, representing a narrow frequency
band of the spectrum is swept throughout the entire frequency band
to obtain variance estimates as a function of frequency. Reduced
rank modeling is a general principle for exchanging model bias for
model variance [8].

The work presented here clearly illustrates the connection be­
tween rank reduction and the multiple window spectrum analysis
techniques proposed by Thomson [1].1 The multiple window ap­
proach estimates the spectrum using weighted combinations of ei­
genspectra, defined in [I] as the Fourier spectra obtained by win­
dowing the data with prolate spheroidal wave functions of
increasing order. Eigenspectra are defined here to be the norm of
the data after it has been projected onto a component of the low
rank signal space. We derive the ML estimate of the center fre­
quency of a bandpass signal in noise and show that it is based on
a weighted combination of eigenspectra. Although not further dis­
cussed in this paper, we note that there is a clear connection be­
tween the problems of estimating power in a narrow-band and of
detecting a narrow-band signal. Using the results of [12] (see [12,
eq. (9)]) it is easy to show that the likelihood ratio for detection of
a low rank signal in white noise is also given by a weighted com­
bination of eigenspectra.

The paper is outlined as follows. Section II reviews maximum

lThe relationship between rank reduction and multiple window spectrum
analysis has recently been discussed in the context of quadratic estimators
of power spectra in [17].

mum likelihood estimates of structured covariance matrices. The power
in a narrow spectral band is estimated by estimating the variances in
a low rank signal plus noise covariance model. This model is swept
through the entire frequency band to obtain an estimate of power as a
function of frequency. The resulting spectrum estimates are given by
weighted combinations of eigenspectra. Each eigenspectrum results
from projecting the data onto an orthogonal component of the signal
subspace and squaring. The multiple window spectrum estimates of
Thomson correspond to a particular choice for the low rank signal
model. The low rank modeling and structured covariance matrix
framework is also used to derive the maximum likelihood estimate for
the center frequency of a signal in noise. This estimate is also obtained
from a weighted combination of eigenspectra.
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(7)
(12)

Suppose the bandpass process has f.0wer spectrum S(I). Let­
ting d( I) = [1 eih!ei47f! ... ei(N - I) 7f!]H, R is expressed in terms
of S(f) as

Expressing (4) in terms of (5) we obtain

e2 = [wS(f)[trd(f)dH(f)- tr UHd(f)dH(f)U] df (6)

The DPSS minimize e2 for S(f) = 1. Ifp = 2NW, then the brack­
eted term in the integrand is approximately zero for all - W :s; I
:s; W. Thus, the DPSS provide a good low rank model for bandpass
signals even if S(f) is not white.

C. Multiple Window Spectrum Analysis

Multiple window spectrum estimates are. derived in [1] using a
weighted eigenfunction expansion to obtain an approximate solu­
tion to the fundamental equation of spectrum estimation

y(f) = rl
/

2
si~ N7r(f - v) dZ(v).

J-1/2 sm 7r(f - v)

where U is an N by p (p < N) matrix satisfying UHU = I. Ullm
represents a low rank model for the signal and nm represents noise
where noise is defined as any data component not represented by
the low rank signal model. If U represents all the energy within a
frequency band, then noise corresponds to energJ exterior to the
band. Define an N by N - p matrix Y such that Y Y = 1 and y H U
= O. Y provides a low rank model for the noise: nm = YYm' Ilm
and Ym are assumed to be samples from p and N - p dimensional
uncorrelated (E{ IlmY~} = 0), zero mean Gaussian random pro­
cesses. Let E{ Ilmll~} = B and E{ymY~} = G. The data covari­
ance, R = E {xmx~}, is thus modeled by

R = UBUH + YGyH (11)

where Band G are unknown and are estimated from the data. The
power associated with the signal is tr UBUH = tr B while the noise
power is tr G.

Let iJ and {; denote the ML estimates of Band G. They are
obtained from (2) as follows. The orthogonality of the columns of
U and Y implies that

A [B 0]det R = det 0 G = det G det B

and

is proposed in [1]. The k th eigenspectrum IYk(f) 1
2 is given by

y (I) is the discrete Fourier transform of the N point data sequence
x ( n) and dZ ( I) is a zero mean orthogonal increment process re­
lated to the spectrum S(f) by S(f) df = E { I dZ(f) 12

} . This
equation is "solved" in a local region (10 - w, 10 + W) about
some frequency of interest, 10.

A solution for S(I) of the form

(8)

(9)

tr[R-1S] = tr[UB-1UHS] + tr[YG-1yHS]. (13)

Substituting (13) and (12) into (2) gives

max - In (det B) - tr [B-1SU ] - In (det G) - tr [G-1S,,]
B.G

(14)

where Su = UHSU and Sf' = y HSY. Equation (14) represents two
separate unconstrained maximizations. Both maximization are
identical to maximizing likelihood when estimating an unstructured
covariance matrix as discussed in [2] except that the transformed
sample covariance matrices Su, Sv are present instead of S. Thus,
application of the results in [2] to this problem gives the ML esti­
mates

Equations (16a) and (16b) are written in terms of projection oper-
~nu •

where A = diag (AI> A2' ... , Ap ) and cf) = diag (cPl> cP2' •• "

cPN-p)' Substituting (18) into (2) gives the maximum likelihood
estimates

where P' = UUH and P", = VVH are projection operators onto the
signal and noise spaces. Note that as a result of the definitions of
Yand U we have P" + P' = 1 and therefore 0'; + O'~ = tr S.

If the components within the signal and noise spaces are as­
sumed to be uncorrelated, then the model for the data covariance
is expressed as

(18)

(17a)

(15)

(16a)

(17b)

(16b)

1 M
0'2 = - L; xHpn x

n Mm~1 m m

1 M
0'2 = - L; xHp"x

s Mm~1 m m

N-p

O'~ = tr {; = L; vfSv;.
i=l

iJ = s,
{; = s;

The signal and noise power estimates are given by
p

0'; = tr iJ = L; ufSu;
;=1

A. Fixed Covariance Matrix Models

This subsection presents the model and derives the maximum
likelihood estimates of the model parameters for covariance matri­
ces corresponding to fixed frequency bands. In the following sub­
section these models are swept through the entire frequency band
to obtain spectrum estimates.

Assume the observed data vectors, x m 1 -s m -s M, are modeled
by

Thus each eigenspectrum is the magnitude squared of a windowed
(Vk (n» discrete Fourier transform of the data. Thomson chooses
the DPSS as the window sequences and suggests several methods
for determining the weights Wk ( I). Note that the multiple window
spectrum analysis technique consists of combining the spectra ob­
tained by applying different windows to the data.

III. STRUCTURED COVARIANCE MATRIX ANALYSIS WITH

FREQUENCY SWEEPING

We view spectrum analysis as the problem of determining the
power present in narrow frequency bands given a finite number of
observations from a process. This is consistent with historical ap­
proaches to the subject and with Thomson's perspective [1]. In this
section we employ maximum likelihood estimates of structured
covariance matrices to estimate power in narrow spectral bands.
Power is estimated from the variances associated with signal and
noise components in a low rank signal plus noise model. Several
low rank signal and noise models corresponding to different co­
variance structure assumptions are studied. The correspondence to
multiple window spectrum analysis is illustrated and the section is
concluded with a discussion.

( 10) (19a)
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¢i = V~SVi'

I'

&~ = 2.: s;
i= I

.s i s: N - P (19b)

(19c)

E( f) V. Define eigenspectra as

1Y1(j)1 2
= U~EH(j)SE(j)Ui'

Iy;(f) 12
= V~EH(j)SE(f)Vi'

::s ::s p (24a)

::s i ::s N - p . (24b)

B. Swept Frequency Cases

Apply a complex frequency shift to the model in (9). This is
accomplished by multiplying the data by the matrix E( f) = N- I

/2

diag {I, ei h J, eJ 4 7ff
, •• " ei27rJIN-I)}. The covariance matrix (II)

as a function of frequency becomes

(26)

(25)

I ::s i ::s p (27)

Iy~(f) 1

2
= I U~EH(f)xI2

N-I
= ~ 2.: x(n)ui(n)e-j 27r/il,

N ,,~o

C Discussion

The advantage of low rank modeling is a trade of model bias for
model variance [8]. Here model bias corresponds to error in rep­
resenting the signal components in a band with a low rank model.
Model variance corresponds to leakage of power from outside the
band of interest to the estimate of in band power. Thomson [I]
refers to model bias and variance as local and broad-band bias.
Model bias results because U does not span all the components of
a perfectly band-limited signal, unless p = N. Thus, some fraction
of the power in the band is not represented. Model variance results
because U is not perfectly band-limited and spans components
which lie outside the band. As model rank (p) increases, model
bias decreases but the model variance increases. The model vari­
ance also depends on the spectral level outside the band of interest
and increases as the overall exterior spectrum level increases.

This suggests that the rank of the model should be chosen by
considering the relative level of the spectrum within the band of
interest to that outside the band of interest. When tlre internal spec­
trum level is large relative to the external level, the model variance
will be small and a large rank model should be chosen to minimize
model bias. When the internal spectrum level is small relative to
the external level, the model variance is dominant and a small rank
should be chosen. This rank reduction principle is evident in the
adaptive weighting scheme of Thomson [I], as the higher order

where Pi (f) is a projection onto the space spanned by E ( f) u..
The norm of the data projected onto the space spanned by E (f) u,
corresponds to the magnitude squared of the Fourier transform of
the windowed data (see (27». Thus, multiple window spectrum
analysis is interpreted as defining a low rank model, projecting onto
the components of this model and taking a weighted combination
of the norm of the projected components as the spectrum estimate.
A comparison of (8) and (26) indicates that the weightings Wk (f)
are equivalent to (p Ak) -I in the structured covariance matrix model
of (21).

where u, (n) represents the nth element of u7, The eigenspectra
represent windowed periodograms of the data. As previously noted,
the DPSS provide a basis for low-pass signals which are white on
the band. Therefore, choosing the DPSS as a basis U results in
Thomson's [I] eigenspectra. For M > I, (24) corresponds to an
average of M windowed periodograms.

The eigenspectra are also expressed as

u 2 I M H

Iy,(f) I = MmL;:1 xmPi(f)xm (28)

I I' I
S(f) = -2.: -IY~'(f) 1

2
•

p ,~I Ai

In both cases the spectrum is estimated as a weighted combination
of eigenspectra.

Consider the eigenspectra for M = I (S = xx H). Rewrite (24a)
as

In the model of (18) the eigenspectra correspond to fl. i in (l9a) so
the spectrum estimate is also given by (25). The spectrum estimate
corresponding to (22a) is

Equation (l6a) now becomes the spectrum estimate

(22b)

(20a)

(20b)

( 19d)

,2 I -I H
a" = --- tr <D V Sv.

N - P

N-p

a;' = ~ ¢i'
i= 1

I' I IN-I . 1

2

2.: - 2.: x(k)eihkl,/N
i~1 N k~O

&;, = f ~ INi=1 X(k)elhkl'/NI2
i~l'+ I N k~O

where the integers I" I ::s i -s p ; and I" p + I ::s i ::s N, represent
frequencies in the signal and noise bands, respectively. The signal
and noise powers are the ayerage ,of the periodogram over the ap­
propriate frequencies. The Ai and </>i represent estimates of the spec­
trum at index I, and are given by the periodogram of the data.

Now consider the case where the covariance matrices corre­
sponding to signal and noise components are known except for
level. Represent B = (J~ A and G = a~ <D with the diagonal matri­
ces A and <D known. The data covariance is modeled by

R = a~U A UH + a;'V<DVH. (21)

This model corresponds to signal and noise components with known
spectral shape but unknown power level. It is straightforward to
show that the maximum likelihood estimates are given by

&2 = !trA-IUHSU (22a).\ p

If U is a basis for signals which lie in the frequency band - W ::s
f::S W, then E (fa) U is a basis for signals which lie in the fre­
quency band - W + fa ::s f ::s W + fa. Estimating &; (f) as
R(j) is swept over { -1/2 ::s f::S 1/2} provides an estimate of
the spectrum S(j).

The maximum likelihood estimates derived earlier in this section
utilize weighted combinations of u7 SUi and v7 Su.. Since both
E ( f) U and E ( f) V have orthonormal columns, estimates as a
function of f are obtained by replacing U by E (f) U and V by

The A -I and <D - I operations represent a whitening of the signal
( UHSU) and noise (VHSV) components of the data.

Note that in the three models described by (II), (18), and (21),
the signal and noise powers are estimated based on weighted com­
binations of U~ SUi and v~ Su; Furthermore, &~ and &~ are not de­
pendent on each other as a result of the orthogonality of signal and
noise space bases ( U and V).

Note that the estimates for a~ and a;, are identical to the general
case in (16a), (16b) and the estimates for Ai and </>, correspond to
the diagonal elements of fj and G.

Example: Periodogram Analysis: As an example, we apply the
results obtained here to the problem studied in [15], where R is
assumed circulant. U and V are composed of subsets of the DFT
vectors corresponding to the frequencies in the signal and noise
bands. Consider M = I with XI composed of the time series sam­
ples XI = [x(O)x( I) ... x(N - I) ]r. It is easy to verify that
(l9c), (l9d) become
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Substituting (34) into (33) and simplifying we obtain

A ML estimate of center frequency is achieved by estimating f in
the model of (30).

Using (30) in (2) gives

max - In IR(f)1 - tr R-1(f)S (31)
f

for the ML estimate of f. The determinant of R( f) is invariant to
f so the maximization occurs only over the second term. Define V
as before and write il.- I ( f) as
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This corresponds to the well-known result that the ML estimate of
the frequency of a complex exponential in white noise is given by
the frequency at which the periodogram is maximum [16].

V. SUMMARY

This paper presents an approach to spectrum analysis based on
maximum likelihood estimation of a structured covariance matrix.
The structured covariance matrix is a low rank approximation of
the covariance matrix for a narrow-band signal in noise, and the
power in narrow bands which are swept in frequency provide the
spectrum estimate. The ML estimate of the power in each band is
obtained by projecting the data onto the components of the low
rank model and taking a weighted combination of the power in each
model component. This is equivalent to estimating the spectrum as
a weighted combination of eigenspectra and is intimately related to
the multiple window spectrum analysis techniques of Thomson [1].
The maximum likelihood estimate of center frequency for a low
rank signal with known spectral shape in white noise is also given
by a weighted combination of eigenspectra. The use of low rank
models permits the trading of modeling error within the band for
leakage from outside the band of interest.
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(37)

(35)

(34)

(32)

(30)

(36)

I and

For M = I

R(O) = a~ll H + anI

where 1 is a vector with all unity elements. In this case p
U = N- 1 /21. Equation (35) becomes

max Iy~(f) (
f

Substituting (32) into (31) and simplifying yields

p I 2 I N-p 2

m)n i~l Ai +an ly~(f)1 +;;: i~l Iy!'(f)! (33)

where I y;' (f) 1
2 and 1 y;' ( f) 1

2 are eigenspectra as defined in (24).
It is straightforward to show that

N-p p

.~ I yr (f) 1

2
= tr S - .~ I y;' (f) 1

2
•

1= 1 1= 1

Thus, the ML estimate of center frequency is given by the fre­
quency at which a weighted combination of eigenspectra is maxi­
mum. The weighting is proportional to the ratio of signal-to-signal
plus noise power in each component of U. If the noise power. is
very small relative to the Ai, the eigenspectra are weighted uni­
formly, but if an is very large relative to Ai' the eigenspectra are
weighted proportionally to the signal eigenvalues ( Ai)'

Example: Complex Exponential in Noise: The covariance ma­
trix for a complex exponential located at f = 0 in white noise is
given by

eigenspectra are weighted less in regions where the spectrum is
small.

IV. CENTER FREQUENCY ESTIMATION OF A SIGNAL WITH

KNOWN SPECTRAL SHAPE

In this section, the swept frequency structured covariance matrix
model is used to obtain the ML estimate of the center frequency of
a signal with known spectral shape in white noise. As in the pre­
vious section, the estimate depends on a weighted combination of
eigenspectra. The section concludes with an example of estimating
the frequency of a complex exponential in white noise.

Assume that the covariance matrix of a rank p signal model in
white noise for a center frequency off = 0 is given by

R(O) = U A UH + a,J (29)

where U is N by P and A is p by p. Both are assumed known since
they can be computed from the known spectral shape. Apply a
complex frequency shift to obtain the covariance matrix as a func­
tion of center frequency.
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[1s:Ls:5-1,0s:KSL-I] (3')

where the first swap in (3') occurs when 0 is the central bit and the
second swap occurs when I is the central bit.

and then we obtain (5 = N 1/ 2 , W = 25)

m = L . W + Ps(K) .... n = K . W + Ps(L)

and m + 5 .... n + 5

or

[8-1 ,Ps(O)] [8-1,P8(K)] [8-1,P8(8-1)]

TABLE I
PARAMETERIZATION OF SWAPS

K 0 K 8-1
L

0 [O'ps(O)] [0,Ps(1)] .... [O,Ps(K)] .... [0,Ps(8-1)]

[1,Ps(O)] [1,Ps(1)] "" [1,P s(K)] .. ,. [1,P s(8-1)]

2 [2,Ps(0)] [2,Ps(1)] .... [2,Ps(K)] .... [2,P8(8-1)]

..........................

L [L,Ps(O)] [L,Ps(1)] .... [L,Ps(K)] .... [L,Ps(8-1)]

8-1

II. PROGRAMMING AND TIMING

Programming of (3) and (3 ') is quite simple. In Table II there is
a compiled BASIC program FPW which was used in timing exper­
iments. The permutation Ps ( ) is called J ( ) in FPW. The com­
putation of J ( ) is a version of a program of Buneman (see [3])
which was given to me by Bracewell [4]. The variable names M7
(also M6) and N6 correspond to m and n in (3) and (3'). Variable
names M5 and N5 correspond to m + 5 and n + 5 in (3'), while
N9 is used for 5 in (3) and (3') and N8 is used for Win (3').
Programming was done so that multiple additions are performed
instead of (often more time-consuming) multiplications. A precom­
piled version of FPW was timed against a precompiled BASIC ver­
sion of Evans' algorithm (see [2, pp. 119-120, lines 9412-9429]

Each element [L, Ps (K)] in Table 1 determines a swap m .... n
defined by

m = L . 5 + Ps(K) .... n = K . 5 + Ps(L)

[0 -s L -s 5 - 1,0 s: K -s 5 - I]. (2)

The upper triangular portion of Table I [I -s K s: 5 - I, 0 s: L
s: K - I] determines the same set of swaps {m .... n} as the lower
triangular portion [I s: L s: 5 - I. 0 s: K s: L - I 1. While, as
stated above, the main diagonal of Table I [0 s: L = K -s 5 - I]
determines the unnecessary swaps n .... n. Due to this symmetry,
and the fact that all swaps in PN are determined by (2), it follows
that the pairs

m = L . 5 + Ps(K) .... n = K . 5 + Ps(L)

[1s:Ls:5-1,0s:Ks:L-I] (3)

describe all the swaps that occur in PN . Moreover, since there are
5(5 - 1)/2 = (N - N 1/2)/2 swaps in PN (ignore the 5 = N I

/ 2

reflexive numbers and group the remaining N - N 112 elements in
pairs) and the same number of swaps is given in (3), it also follows
that (3) describes all the swaps in PN in a one to one fashion.

For N = 2R
, where R is odd, the mirror would fall on the central

bit in the number (the arrows indicate the mirror positions)

A New Bit Reversal Algorithm

JAMES S. WALKER

.... YI ••• Yk-IYkXI ••• Xk-IXk = PN(m).

In ordinary notation this looks like (5 = N 1/ 2 )

m = L . 5 + M .... PN(m) = Ps(M) . 5 + P\(L)

[0s:LS:5-1,0s:MS:S-I]. (I)

This factors PN into two bit reversals Ps where 5 = N 1
/ 2 .

Our discussion, up to this point, is the same as the initial dis­
cussion in [I, sec. II]. Evans' program, see especially [2. pp.
119-120, lines 9412-9429], is an implementation of (I).

We will now discuss an alternative to programming (I). To de­
scribe this alternative, we will use the notation m .... n to denote a
pair of indices whose data. /,,, and /,,, are to be swapped. For con­
venience, we will simply refer to m .... n as a swap, even though
/,,, and /" are actually swapped.

The alternative to programming (I) arises by parameterizing the
set of swaps, {m .... n}. The key to this is the reflexive numbers,
those numbers for which m = PN(m). Clearly, those numbers have
the !orm m = L . 5 + Ps(L) [0 s: L s: 5 - I]. There are precisely
NI/- = 5 of these reflexive numbers, which, if we label them by
[L, Ps(L)], lie along the main diagonal of the pairs in Table I.

I. INTRODUCTION

We shall concentrate on radix 2, since radix B involves no great
changes and radix 2 is very widely used for fast Fourier transforms
(FFT's) and fast Hartley transforms (FHT's). In almost all FFT's
and FHT's, either the input or output is permuted according to the
reverse ordering of the binary expansions of the data indices. If a
data index m has the binary expansion m = Z I Z2 ••• ZR _ I ZR (base
2) where each Z; is 0 or I and N = 2R (N being the number of
elements in the data), then the digits (bits) of m are reversed, ob­
taining PN(m) where PN(m) = ZRZR-I ... Z2Z1 (base 2). The data
having index m is then swapped with the data having index PN(m).

We will now describe an efficient means of performing this per­
mutation. Suppose N = 2R where R is even (the case of R odd will
be discussed later). Then a typical index m will have a binary ex­
pansion m = Xk •.• XI Yk ••• YI (base 2) where k = R /2. Then
PN(m) is obtained by drawing a mirror through the middle of its
bits and doing a reflection (the first arrow indicates the mirror po­
sition)

m =XkXk-I'" XllYkkk-I'" YI
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