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ABSTRACT

DISCOVERING AND HARNESSING STRUCTURES IN SOLVING APPLICATION

SATISFIABILITY INSTANCES

Boolean satisfiability (SAT) is the first problem proven to be NP-Complete. It has become a

fundamental problem for computational complexity theory, and many real-world problems can

be encoded as SAT instances. Two major search paradigms have been proposed for SAT solving:

Systematic Search (SS) and Stochastic Local Search (SLS). SLS solvers have been shown to be

very effective at uniform random instances; SLS solvers are consistently the top winning entries

for random tracks at SAT competitions. However, SS solvers dominate hard combinatorial tracks

and industrial tracks at SAT competitions, with SLS entries being at the very bottom of the ranking.

In this work, we classify both hard combinatorial instances and industrial instances as Application

Instances. As application instances are more interesting from a practical perspective, it is critical to

analyze the structures in application instances as well as to improve SLS on application instances.

We focus on two structural properties of SAT instances in this work: variable interaction topology

and subproblem constrainedness.

Decomposability focuses on how well the variable interaction of an application instance can

be decomposed. We first show that many application instances are indeed highly decomposable.

The decomposability of a SAT instance has been extensively exploited with success by SS solvers.

Meanwhile, SLS solvers direct the variables to flip using only the objective function, and are

completely oblivious of the decomposability of application instances that is inherent to the original

problem domain. We propose a new method to decompose variable interactions within SLS solvers,

leveraging numerous visited local optima. Our empirical study suggests that the proposed method

can vastly simplify SAT instances, which further results in decomposing the instances into thousands

of connected components.
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Furthermore, we demonstrate the utility of the decomposition, in improving SLS solvers. We

propose a new framework called PXSAT, based on the recombination operator Partition Crossover

(PX). Given q components, PX is able to find the best of 2q possible candidate solutions in linear time.

Empirical results on an extensive set of application instances show PXSAT can yield statistically

significantly better results. We improve two of best local search solvers, AdaptG2WSAT and

Sparrow. PXSAT combined with AdaptG2WSAT is also able to outperform CCLS, winners of

several recent MAXSAT competitions.

The other structural property we study is subproblem constrainedness. We observe that, on

some application SAT instance classes, the original problem can be partitioned into several sub-

problems, where each subproblems is highly constrained. While subproblem constrainedness has

been exploited in SS solvers before, we propose to exploit it in SLS solvers using two alternative

representations that can be obtained efficiently based on the canonical CNF representation. Our

empirical results show that the new alternative representative enables a simple SLS solver to outper-

form several sophisticated and highly optimized SLS solvers on the SAT encoding of semiprime

factoring problem.
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Chapter 1

Introduction

Given a Boolean Formula F , Boolean Satisfiability (SAT) is the problem of deciding whether

there exists an assignment A to the Boolean variables such that F is true. SAT is the first problem

proven NP-Complete [2]. SAT has become a fundamental problem for computational complexity

theory. Any NP-Complete problem can be reduced in polynomial time to SAT and solved by a

SAT solver. In fact, SAT has also been used as the “gateway” problem for new problems (such as

the independent set problem) to enter the NP-Complete class by constructing a polynomial time

reduction from the new problem to SAT [3, 4]. Besides its theoretical importance, SAT also finds

many practical applications such as bounded model checking [5] and verification in hardware [6]

and software [7]. Erdős Discrepancy Conjecture, a longstanding mathematical conjecture proposed

by the famous mathematician Paul Erdős in 1930s, has recently been attacked successfully using a

SAT solver [8, 9].

1.1 Satisfiability

SAT problem instances are usually defined in Conjunctive Normal Form (CNF) : a conjunction

of clauses f =
∧

ci∈C

ci, where each clause ci is a disjunction of literals ci =
∨

lj∈Li

lj and each literal is

either a Boolean variable b or its negation b. MAX-SAT is an optimization version of SAT problem.

The goal of MAX-SAT is to find an variable assignment such that the number of satisfied clauses is

maximized. A more restricted form of MAX-SAT, called MAX-kSAT, requires the number of literals

in every clause is exactly k.

DIMACS format is the standard file format used to succinctly represent CNF instances [10].

With DIMACS format, each line represents a clause with a “0” as end-of-line delimiter. A clause is

defined by listing the index of each positive literal, and the negative index of each negative literal.

1



This way, conjunction operator
∧

and disjunction operator
∨

are implicitly encoded with the space

between literals in a line and the “0” between lines.

Listing 1.1 shows a simple CNF instance represented in DIMACS format. First line starting

with the character “c” is comment and is ignored by parsers. Line 2 starting with the character “p”

is a line shows that the problem has 3 variables and 2 clauses. Line 3 and Line 4 is the one actual

clause, representing the CNF instance (b1 ∨ b3) ∧ (b2 ∨ b3 ∨ b1).

Listing 1.1: A Simple CNF Instance in DIMACS Format.

c s imp le_v3_c2 . c n f

p c n f 3 2

1 −3 0

2 3 −1 0

1.2 Motivation

The two major search paradigms for SAT solving are 1) Systematic Search (SS) such as

Davis–Putnam–Logemann–Loveland (DPLL) [11], zChaff [12] and MiniSat [13], and 2) Stochas-

tic Local Search (SLS) such as GSAT [14], WalkSAT [15], AdaptG2WSAT [16] in UBCSAT

collection [17], and the more recent Configuration Checking with Aspiration (CCA) [18]. The

NP-completeness of SAT indicates that there is no known polynomial time algorithm; SAT solving

can take exponential time in the number of variables in the worst case.

The international SAT competition [19] is an annually held competition to keep up the driving

force in improving SAT solvers and to present the latest technical advancements to a broader

audience. The top SLS solvers in recent SAT competitions can reliably solve uniform random 3SAT

instances with 1 million variables and several million of clauses around the phase transition. Literals

for each clause are sampled uniformly randomly without replacement from all 2n literals . These

uniform random instances are in expectation the hardest around the phase transition region [20–22].

There are two other tracks in the SAT competitions: the Hard Combinatorial Track and the Industrial

Track. The Hard Combinatorial Track consists of instances encoding combinatorial problems that

2



are known to be difficult, such as the factoring problem [23] and the clique coloring [24]; The

Industrial Track consists of instances encoding industrial applications, such as cryptography [25] and

hardware verification [6]. The same state-of-art SLS solvers display drastically poorer performance

on the hard combinatorial track and the industrial track of SAT competitions. SS solvers instead

dominate hard combinatorial tracks and industrial tracks at SAT competitions, with all SLS entries

being at the very bottom of the ranking in terms of performance.

Uniform random instances are interesting mostly from a theoretical point of view. The principled

distribution used in generating uniform random instances make them a good platform for theoretical

analysis [26]. Hard combinatorial instances and industrial instances on the other hand provides a

better testbed for evaluating the feasibility of using SAT approach under industrial settings [27, 28].

In this work, we classify both hard combinatorial instances and industrial instances as Application

Instances. Application instances often have structure to them, which can be a result of the loosely

coupled components originated from the source problem domain [29, 30]; and/or the procedure

involved in translating a problem from the original domain into a SAT instance [31,32]. It is critical

to identify the problem structures in applications as well as to improve SLS on application instances.

Improving stochastic local search on structured problems by efficiently handling variable

dependencies has been considered one of the fundamental challenges in propositional reasoning and

search since 1997 [33,34]. After almost 20 years, according to the recent SAT competitions [19], the

current SLS solvers still struggle on application instances, and their performance is still dominated

by the SS solvers by a substantial margin. For instance (see Figure 1.1), the best SLS solver in

the Hard Combinatorial SAT track of SAT competition 2014 "CPSparrow sc14" solves 56 of

out 150 instances; The worst SS solver in the same track "SatUZK" solve 71 instances, while the

best solver in track "SparrowToRiss 2014" solves 107 instances. Interestingly, the worst 6

qualified entries (excluding 4 disqualified ones at the bottom of Figure 1.1) in the track are all SLS

solvers.

The gap between the SLS solvers and the SS solvers become even more pronounced in the indus-

trial track. In the Application SAT track of SAT competition 2014, there are only 3 standalone SLS
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Figure 1.1: Ranking of solvers in Hard Combinatorial SAT track of SAT Competition 2014. http:
//satcompetition.org/edacc/sc14/experiment/21/ranking/

solvers entering the track (see Figure 1.2). The best SLS solver is again "CPSparrow sc14"

that solves 29 instances out of 150 instances, tied with "sattime2014r"; The worst SS

solver "BFS-Glucose_mem_32_70 1.0cm" solves 79 instances and the best SS solver

"minisat_blbd 1.13" solves 110 instances. Improving SLS on application instances remains

a difficult challenge.

1.3 Contribution

We aim to address the following research questions:

1. What characteristics differentiate application instances from uniform random instances?

2. How can we leverage problem structure to improve SLS solvers on application instances?

In order to address the research questions, we focus on analyzing two structural properties:

1. Variable interaction graph [1, 35],

2. Subproblem constrainedness [36],
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Figure 1.2: Ranking of solvers in Industrial SAT track of SAT competition 2014. http://satcompetition.org/
edacc/sc14/experiment/18/ranking/

First, we propose to visualize the Variable Interaction Graphs [1] (VIG for short; the visualiza-

tion is also referred to as Variable Incidence Graph [35]) of the application instances. Treewidth is a

metric that indicates the decomposability of VIG. SS solvers have long exploited the decompos-

ability of application instances with success. We conjecture that SLS solvers can be improved by

exploiting the decomposability of application instances, and propose the first step toward exploiting

decomposability with SLS solvers using pseudo backbones [37]. We then propose two SAT-specific

optimizations that lead to provably better decomposition than on general pseudo Boolean opti-

mization problems. Our empirical study suggests that pseudo backbones can vastly simplify SAT

instances, which further results in decomposing the instances into thousands of connected compo-

nents. This finding serves as a key stepping stone for applying the powerful recombination operator,

partition crossover, to SAT domain.

We further propose a generic framework, PXSAT, based on PX that demonstrate the utility of

the decomposition. It applies Partition Crossover (PX) to local optima that are deemed difficult

to improve by local search. PX is a recent powerful recombination operator that decomposes a
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given instance into independent components, and is guaranteed to find the best solution among

an exponential number of candidate solutions in linear time. It thus offers new opportunities to

jump to new local optima. Empirical results on an extensive set of application instances show that

the proposed framework substantially improves two of best local search solvers (AdaptG2WSAT

and Sparrow) on many application instances and almost never worsens the performance. PXSAT

combined with AdaptG2WSAT is also able to outperform CCLS, winner of several recent MAXSAT

competitions. The new framework is orthogonal to any specific local search, therefore it can be

combined with any local search.

Finally, we observe that Conjunctive Normal Form (CNF) SAT encodings of application in-

stances often have a set of consecutive clauses defined over a small number of Boolean variables,

which leads to high subproblem constrainedness [36]. To exploit the high subproblem constrained-

ness in the context of SLS solvers, we propose a transformation of CNF to an alternative represen-

tation, Conjunctive Minterm Canonical Form (CMCF) [38]. We show empirically that a simple

SLS solver based on CMCF (CMCF-LS) can consistently achieve a higher success rate using fewer

evaluations than the SLS solver WalkSAT [15] on two representative classes of application SAT

problem. We further improve the CMCF representation by introducing Minterm Interaction Graph

(MIG), which effectively increases the cardinality of the objective function. With MIG representa-

tion, a straightforward SLS solver inspired by WalkSAT called Gforce solves semiprime instances

thousands of times faster than the highly optimized WalkSAT, scales better than sophisticated

SLS solvers SAPS [39] and AdaptG2WSAT [16], and compete well against the best SLS solver

Sparrow [40] in recent competitions, in terms of the raw CPU time.
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Chapter 2

Literature Review

This chapter presents a review on the structural properties of SAT instances investigated by

previous work. We focus on revisiting the previous efforts to address the two major research

questions that we proposed to study (see Section 1.3). A gap among the previous studies is identified

at the end of the chapter.

While structures within uniform random instances (in terms of clauses-to-variables ratio) has

been extensively studied both theoretically [22, 41] and experimentally [20, 42], we focus our

literature review on these studies directly relate to the two research questions that we aim to address.

Specially, the literature review covers the studies on 1) the differences in structures between uniform

random instances and application instances, 2) how the structural differences help to explain the

performance difference between SS solvers and SLS solvers, and 3) how to leverage the structures

to improve SLS on applications instances.

For the purpose of understanding the performance of SAT solvers on diverse problem instances,

numerous researchers have proposed and studied various structural properties from different perspec-

tives. In this section we present a taxonomy over these seemingly scattered structural properties. We

will review the structural properties from two perspectives: 1) the cost of discovering the structural

property and 2) the utility of the structural properties.

2.1 Backbone

Monasson et al. introduce the concept backbone from statistical physics to describe the set of

variables that have fixed values in all optimal solutions [22]. Computing a backbone intuitively

means obtaining all global optima and finding the shared variable assignment across all global

optima. This is of course expensive since finding all global optima is at least as hard as finding one

single global optimum, which is NP-Hard. Kilby et al. prove that even approximating the backbone

within a constant factor is NP-hard [43].
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Various heuristics are available for computing an approximate backbone. Dubois and Dequen

propose to compute a relaxed backbone associated with a subset of clauses [44]. By limiting the

consideration to a subset of clauses, the backbone computation becomes tractable. One advantage

of this approach is that the true backbone can only be a subset of relaxed backbone. Hsu et al. apply

probabilistic message-passing algorithms to estimate the backbone variables [45,46], which result in

higher estimation accuracy than Dubois and Dequen’s method. The accuracy for approximating the

assignment of backbone by Hsu’s method can be as low as 70% even with their best approximation

algorithm. While 70% might seem decent, the real problem is that any wrong assignment on a

backbone variable rules out all global optima, and it is unknown apriori which of the 70% variables

are assigned correctly. This empirical result conforms with the theoretical founding by Kilby et al.

that backbones are hard even to approximate. Zhang, Rangan and Looks [47, 48] instead propose

to approximate global optima using local optima. The local optima are then be used to extract

an approximate backbone. However, the accuracy of the pseudo backbone has not been studied

in [47, 48].

Besides heuristics, exact methods are available for backbone computation that require multiple

calls to a SAT solver [49]. Even though optimization can be made to reduce the number of calls

and share useful information between calls to improve efficiency, the exact method is not suitable

for improving SAT solving and is mostly of interest for applications where the exact backbone is

required such as product configuration [50].

Backbone information can be useful in two ways. First, the practical hardness of a SAT instance

can be explained using the backbone size [22]. As setting any backbone variable wrong can exclude

all global optimum, a larger backbone size suggests that global optima can be harder to find [51]. On

instances with a large backbone, SS solvers have many opportunities to make mistakes and to waste

time searching subspaces without any global optimum before correcting the wrong assignments;

SLS solvers can also struggle to find global optima because they are in expectation either scarce or

clustered, due to the large backbone size [52,53]. Kilby et al. [43] reports that backbone size is only

weakly correlated (correlation coefficients between 0.16 and 0.48) with the solving time of larger
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uniform random instances (with number of variables ranging from 100 to 225). On smaller uniform

random instances, the correlation becomes strongly negative (correlation coefficients between -0.46

and -0.88). Instance hardness in [43] is measured by the log of the number of search node by the

SS solver “Satz” [54]. Conversely, the correlation for SLS solvers appears more significant. Based

on 104 satisfiable instances sampled from phase transition region with 200 variables, Parkes [52]

shows that larger backbone size leads to drastic increase in median search time of the SLS solver

WalkSAT [15].

Second, backbone information can also be exploited to boost both the performance of both

SS solvers and SLS solvers. Dubois and Dequen improve the performance of a SS solver by

guiding variable selection with relaxed backbone on uniform random k-SAT instances [44, 55].

Their approach aims to minimize the search tree by selecting the variable that are most constrained

and therefore are more likely to be backbone variables. By assuming a uniform distribution for

constrainedness, Dubois and Dequen’s approach is specialized for uniform random instances. Indeed,

their solver is the winning SS solver of SAT’03, SAT’04 and SAT’05 competitions in the category

Random Benchmarks. How well can Dubois and Dequen’s approach generalize to application

instances is unknown. With improved accuracy of backbone estimation over Dubois and Dequen’s

approach, VARSAT by Hsu et al. manages to achieve up to 10× speedup over MiniSAT [13]

also on uniform random instances by exploiting probabilistically estimated backbones [45, 46].

Incorporating estimated backbone information appears to find little success in improving SS solvers

on application instances, whereas substantial improvement can be observed on application instances

for SLS solvers. Zhang, Rangan and Looks [47, 48] guide bit flips in the SLS solver WalkSAT [15]

with pseudo backbone estimated from local optima. The backbone guided SLS solver yields higher

success rates in finding a satisfiable solution on uniform random instances and better solution quality

(20% better on average) on application instances from the MAXSAT standpoint.
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2.2 Backdoor

2.2.1 Backdoor and SS Solvers

Modern SS solvers can solve application instances with up to millions of variables, which is far

beyond the limit suggested by the exponential worst-case complexity. For the purpose of advancing

the understanding of the typical-case complexity of modern SS solvers on application instances,

Williams, Gomes, and Selman propose the backdoor concept [56]. By definition, a weak backdoor

is the set of variables such that when assigned correctly, a sub-solver can solve the remaining

problem in polynomial time; a strong backdoor is the set of variables such that when assigned (in

any arbitrary way), the remaining problem becomes solvable (proven either SAT or UNSAT) in

polynomial time. A trial backbone is the set of all variables, as setting all variables correctly will

automatically solve the remaining empty problem. An instance with a small backdoor suggests that

there exists shortcuts to attack the entire problem.

Finding the smallest backbone in general is NP-Hard [43, 56–58]. Note that backdoor is

defined with respect to a subsolver, which in turn can be defined algorithmically or syntactically

[59]. Algorithmically-defined subsolvers are polynomial-time techniques of SAT solvers like unit

propagation, which propagates the assignments to single literals to simplify the Boolean formula.

Syntactically-defined subsolvers are known tractable classes, such as 2-SAT (each clause contains at

most two literals) and HORN (each clause contains at most one positive literal). If the backbone size

is known to be bounded, finding a syntactically-defined strong backdoor into tractable classes 2-SAT

and HORN is tractable, whereas finding a weak backdoor is not [60]. Finding a algorithmically-

defined weak backdoor typically involves finding a solution using a complete solver, saving the

decision variables (rather than the variables implied by propagation), and finally simplifying the set

of decision variables to obtain a smaller weak backdoor (SATZWEAK algorithm in [43]). Finding a

algorithmically-defined strong backdoor, in comparison, simply tests every combination of literals

up to a fixed cardinality (STRONGBACKDOOR algorithm in [43]). While it might look promising

that finding strong backdoors to 2-SAT and HORN is tractable, the found syntactically-defined
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strong backdoors are generally larger than algorithmically-defined strong backdoors, which limits

the utility of the found strong backdoors [61].

In fact, without the concept of backdoor in mind, SS solvers such as Satz-Rand [54, 62] already

implicitly search for a backdoor by prioritizing those variables that cause a large number of unit-

propagations and therefore simplifies the remaining problem to a tractable subproblem. Satz-Rand

is remarkably efficient at detecting small strong backdoors. Satz-Rand finds strong backdoors that

are in size less than 1% of the total number of variables on diverse application instances [61]. It is

important to note that the small strong backdoors detected are merely upper bounds on the smallest

strong backdoors. Li and Van Beek [59] propose an exact algorithm to find weak backdoor. They

found that application instances up to 1000 variables have smallest weak backdoors of size up to 3.

This suggests that many applications instances do have small backdoors.

On the other hand, there exist instances that do not have small backdoors, such as uniform

random instances or instances based on cryptographic protocols [63]. Such instances appear to be

inherently hard for SS solvers. For uniform random 3SAT problems, the backdoor appears to be a

constant fraction (roughly 30% to 60% depending on the clause-variable ratio) of the total number

of variables. This may explain why the current SS solvers have not made significant progress on

hard uniform random instances [64].

Even though the original intention of the backdoor concept is to explain the performance of

SS solvers on application instances, a limited number of statistical studies has been conducted on

the correlation between running time of SS solvers and the backdoor size of applications instances.

Ruan, Kautz, and Horvitz [65] report that there is no significant correlation between weak backdoor

size and instance hardness measured by the log of the median running time of SS solver Satz-Rand.

The only other statistical study that we are aware of is conducted by Kilby, Slaney, Thiébaux, and

Walsh [43]. They suggest that instance hardness appears to be correlated with the strong backdoor

size, and does not appear to be correlated with the weak backdoor size. Nonetheless, even the strong

backdoor size, which shows the best correlation, only shows correlation coefficients ranging from

0.37 to 0.78 on uniform random instances. No statistical correlation study were carried out by Kilby,

11



Slaney, Thiébaux, and Walsh for application instances due to the prohibitively high cost in detecting

a strong backdoor.

In addition to its utility in explaining the running time of SS solvers, Williams, Gomes, and

Selman [63] also establish the connection between heavy trail behavior [66] in SAT solving time

and backdoors. Having small backdoors in application instances explains how a SS solver can get

“lucky” on certain runs, where backdoor variables are identified early on in the search and set the

right way.

Finally, backdoors can be utilized to improve both the theoretical complexity and practical

performance of SS solvers. Given a problem with a small backdoor (i.e., backdoor size is O(log(n)),

where n is the number of variables), Williams, Gomes and Selman [56] prove that a variable

selection heuristic with restart strategy can solve the problem in polynomial time. The polynomial

bound improves over the 2n (n is the number of Boolean variables) worst-case complexity by

canonical SS solvers. Kottler, Kaufmann, and Sinz [67] exploit backdoors for a NP-Hard subclass

to obtain a better upper bound, O(1.427n ∗ p(n)) (p(n) is a polynomial in n), over the best upper

bound for deterministic algorithms O(1.4424n). Paris, Ostrowski, Siegel, and Sais demonstrate

that the practical performance of the SS solver Zchaff [12] can be improved by branching only on

the strong backdoor variables [58]. However, the (presumably large) overhead for detecting strong

backdoors is not disclosed by the authors.

Backbones remain an active research area since the emergence of the concept in 2003. Recent

efforts refine the backbone concept either to improve its instance hardness prediction power [68] or

to find a smaller backbone involving less variables [69, 70].

2.2.2 Variable Dependency

Backdoors shed light on why SS solvers performs so well on many application instances, but

not on uniform random instances. Interestingly, while backdoors can be exploited by modern SS

solvers, the existence of a special kind of strong backdoor, caused by variable dependency, has been

shown to impede SLS solvers [71].
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Encoding problems from other domains into SAT often introduces dependent variables [72],

whose values are defined by a Boolean function of other variables. These dependent variables

(also called “auxiliary variables”) are usually required by the well-known Tseitin encoding [73]

to achieve linear size conversion of propositional logic formulas to Conjunctive Normal Forms

(CNFs). In contrast, independent variables are those whose values cannot be determined as a simple

Boolean function of other variables. Independent variables are often the variables native to the

original problem before being converted to CNF. For example, the independent variables in the

application instance encoding a planning problem represent the various operators applicable in a

given state of the world, whereas the dependent variables encode the consequences of selecting

a particular operator [56]. Independent variables are a kind of strong backdoor in the sense that

once they are assigned, the values of the dependent variables can be determined accordingly and the

entire formula can be evaluated in polynomial time.

SS solvers can handle variable dependencies effectively by propagating independent variables

to dependent variables via unit propagation. Branching on dependent variables can be avoided by

employing a branching heuristic that places the independent variables before dependent ones [74].

On the contrary, by its iterative nature, an SLS solver takes longer to propagate dependencies.

Empirical results suggest that O(n2) (n is the number of variables) steps are required for the values

of the dependent variables to become aligned with independent variables [75]. Developing local

search techniques that can effectively handle variable dependencies has been considered to be a

fundamental challenge in propositional reasoning and search [33] [76].

Researchers have studied different ways of extracting various variable dependencies defined

as logic gates such as AND gates and XOR gates, to reduce search cost on dependent variables.

Note that there is a trade-off between two confounding factors. One factor is the types of target

Boolean functions to extract, which reduces the search space exponentially for SLS solvers; the

other factor is the time overhead required to extract them, which adds up to the overall search time.

Indeed, Lang and Marquis [77] show that the decision problem, whether y is a dependent variable

with respect to Boolean function f and independent variable x1, . . . , xi from a CNF formula (i.e.,
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y
?
≡ f(x1, ..., xi)) is coNP-Complete. coNP class is similar to NP class in that there is no known

polynomial time algorithm, with the difference being that a “Yes” answer in NP can be verified in

polynomial time, whereas a “No” answer in coNP can be verified in polynomial time. Taking the

Subset Sum problem as an example, the NP problem asks if there is a non-empty subset that sums

to zero; verifying a “Yes” solution can be done in polynomial time. The coNP variant asks whether

every non-empty subset sums to a non-zero number; verifying a “No” solution (counterexample) can

be done in polynomial time. In case of the decision problem y
?
≡ f(x1, ..., xi), a polynomial-time

verifiable counterexample is a single assignment on (x1, ..., xi) that corresponds to distinct values

of y.

Extracting variable dependencies allows SLS solvers to focus search on independent variables

and to align independent variables and their dependent variables in an explicit manner. Kautz,

McAllester and Selman propose DAGSAT [72], which represents Boolean formulas as Directed

Acyclic Graphs (DAGs) to encode the dependencies in a hierarchy. They define dependent variables

as the outputs of “AND” gates and “OR” gates. They use a heuristic to find AND gates and OR gates

in the CNF, and define the sink node (i.e., root variable) of the DAG to be the conjunction of all the

clauses which are not parts of the heuristically recovered logic gates. The “heuristic” shall extract

some of the logic gates within a reasonable amount of time. However, the details regarding the

heuristic is undisclosed and there is no report on the theoretical nor empirical overhead of extracting

variable dependencies. Empirical evaluation on DAGSAT show significant improvements (over

20× speedup in solving time) over the SLS solver WalkSAT [15] and the SS solver NTAB [78] on

instances with a large portion (up to 95%) of dependent variables. On instances that do not contain

many dependent variables, however, DAGSAT is instead 680× slower than WalkSAT.

Pham, Thornton and Satter [79]1 [80] extend DAGSAT [72] by also extracting “XNOR” gates

and “XOR” gates in the processing phase, and develop a dependency lattice similar to the DAG in

DAGSAT. By focusing search on the assignment of the independent variables, Pham et al. ’s SLS

solver improves upon the base SLS solver AdaptNovelty+ [81] on several classes of application

1The paper won best paper award at IJCAI 2007.
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instances with large portion of dependent variables (72% to 99% of all variables). With only a

fraction of a second runtime overhead in dependency extraction, Pham et al. ’s SLS solver can solve

instances up to 1400× faster. Compared with improvement achieved by DAGSAT over the base

solver WalkSAT (about 20 fold difference), considering more types of gates appear to boost the

performance over the base solver more. This is also intuitive since extracting more dependencies

result in less independent variables in expectation.

Explicitly extracting variable dependencies can also improve SS solvers in a significant way.

Ostrowski et al. extend the dependency extraction in DAGSAT by also considering “XNOR” gates

(also known as equivalence gates) [82]. To reduce the number of required syntactical test on clauses

to extract logical gates, they construct a partial graph of clauses for detecting gates, since forming a

connected subgraph is a necessary condition for clauses to belong to a same gate. The empirical

study shows that it only takes 4.50 seconds on the largest tested instance with 5259 variables

and 55424 clauses. The method successfully detects the exact 32 independent variables of parity

learning problem that are native to the original problem domain [83], reducing the search space from

23176 to 232. Ostrowski et al. propose LSAT, which runs a SS solver on the remaining clauses and

checks that the current assignment does not contradict the extracted dependencies. Paying the small

upfront cost of dependency extraction turns into large improvement over state-of-the-art SS solvers.

LSAT solves some instances in less than 1 second, whereas other SS solvers take more than 16

minutes. However, the empirical evaluation is somewhat unconvincing because two benchmark sets,

one used by evaluating the dependency extraction preprocessor and the other used by evaluating

LSAT as whole, only shares a small overlap. Ostrowski et al. ’s dependency extraction techniques

are later employed by the well-known SatELite [84], which in turn is the built-in preprocessor of

the highly-influential SS solver MiniSAT [13].

Grégoire et al. [85] later discover that forming a connected subgraph is not truly a necessary

condition for clauses belong to a same gate (see Example 2 in [85]). Employing Boolean Constraint

Propagation enables extracting more gates. In additional, Grégoire et al. explore a heuristic to

break cycles in variable dependencies. They further show that the improved dependency extraction
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technique run in polynomial time. Empirically, the improved technique generally detects more

gates. However, there is no report on the additional dependency detection cost induced by the more

sophisticated technique, and how the increased number of detected gates translates into SAT solving

performance is also unknown.

2.2.3 Summary

Independent variables typically appears less expensive to detect than backdoor variables. Inde-

pendent variables can be detected locally only with respect to a (small) subset of clauses, such as

the clauses forming a connected partial graph. On the contrary, backdoor detection by definition

requires taking the entire instance into consideration. Williams, Gomes, and Selman report that

backdoors are smaller than the set of independent variables [63]. For example, in the logistics

planning domain, the set of independent variables is given by the number of operators applicable at

each time step. This set of total variables will generally be much larger than the minimal backdoor

set, which has only 12 variables. Nonetheless, detecting and respecting variable dependencies seems

to be a reasonable first step for SLS solvers to catch up with SS solvers on application instances.

Previous work only considers a very limited set of dependencies (at most four logic gates) and a

synthesis of existing empirical studies suggest that taking more types of dependencies into account

may further boost the performance of SLS solvers on application instances.

2.3 Variable Interaction

Although backbones and backdoors are somewhat correlated with instance hardness, they are

computationally prohibitive to acquire and offers no apriori criteria to gauge the computational

difficulty of a given instance. Variable interaction is another key property influencing the difficulty of

SAT problem instances, and can be retrieved in polynomial time. Two variables depend if and only

if they co-occur in some clause. In fact, given a SAT instance that only involves binary clauses (with

just pairwise interactions), its satisfiability can be determined in polynomial time [86]. Moreover,

experiments with uniform random instances from the (2 + p)-model (problems with a fraction of
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p ternary clauses and (1 − p) binary clauses) indicate that uniform random instances with up to

40 percent of 3-clauses (p ≤ 0.4) appear computationally tractable [22]. A Variable Interaction

Graph2 (VIG) is typically used to model variable interaction [87]. Every variable is represented by

a vertex in VIG and an edge is established between two vertices if the two corresponding variables

interact. Given a CNF formula F with m clauses and the length of clauses is bounded by k, VIG

can be obtained in m× 2k time, by extracting at most 2k pairwise interactions from each of the m

clauses [88].

2.3.1 Variable Interaction Graph Visualization

The first step toward analyzing the VIG is visualization. Sinz introduces DPvis, a tool that

initiates the study on VIG for explaining the difference performance of SS solvers between uniform

random instances and application instances [1, 89, 90]. Sinz suggests VIGs to be laid out using

a force-directed graph drawing algorithm by Fruchterman and Reingold [91] that are known to

reflect graph clustering and symmetry. Fruchterman and Reingold’s graph layout algorithm runs in

polynomial time, O(V + E), where V is the number of vertices and m is the number of edges in

the given VIG.

After assigning only three decision variables, Sinz makes two observations that links to the

performance of SS from the remaining VIGs solvers: 1) the remaining VIGs of easy application

instances are greatly simplified and sometimes the initial connected VIG graph decomposes into

several connected components; the remaining VIGs of hard instances instead exhibit a lower

reduction rate and resemble the shape of original VIGs. 2) On an easy application instance, the

branching decision has major impacts on both the size and the VIG of the remaining formula.

The observations made by Sinz resonate with the weak backdoor concept, which suggests that on

instances with small weak backdoors, selecting the right set of variables and setting them correctly

greatly simplifies the problem instance.

2The graph is also referred as Variable Incidence Graph with the same acronym “VIG”.
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2.3.2 Complex Network Analysis

Besides intuitive visualization, well established methodologies from Complex Network research

field have been brought to perform principled quantitative analyses on VIGs of SAT instances.

A Complex Network is a network (graph) with non-trivial topology features that do not occur in

simple graphs like random graphs, but which often occur in graphs modeling real systems such as

the World Wide Web (WWW) and Social Networks [92,93]. Walsh pioneered applying complex

network analysis to graph representation of combinatorial search problems including graph coloring,

timetabling and quasigroup problems [94, 95].

10 years after Walsh’s seminal work [94], Ansótegui, Bonet, and Levy are the first that we

are aware of to leverage complex network analysis methods in SAT domain, discovering the

existence of scale-free structures in many application SAT instances [27]. The scale-free structures

are not found in uniform random instances. The Scale-free structure is initially proposed by

Albert, Jeong, and Barabási to model the topology of WWW. It is characterized by the power law

distribution (i.e., p(k) ∼ k−α) of vertex degrees of a complex network [96]. Applying the concept to

graph representations of SAT instances, a scale-free structure suggests that variable frequencies of

application instances follow a power law distribution. Implied by its name, scale-free graphs exhibit

some kind of self-similarity, meaning that removing some vertices results in a similar graph but at a

smaller scale. Interestingly, the scale-free structure is preserved even during the execution of a SS

solvers, as shown in Figure 2.1. This result resonates with the observation made by Sinz through

visualization, that hard application instances exhibits self-similarity [1]. Apart from showing the

existence of scale-free structure in applications, Ansótegui, Bonet, and Levy do not address the

connections between the scale-free structure and instance hardness.

Ansótegui, Giráldez-Cru, and Levy continue applying complex network analysis to SAT in-

stances to discover another structural property, Community Structure, which can be found in

application instances but not in uniform random instances [97]. Community structure concept

generalizes the concept of connected components [98] by allowing (a few) connections between com-
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Figure 2.1: A uniform random 3SAT instance after three decisions in a systematic search [1].

munities. A graph has community structure if the graph divides naturally into groups (communities)

of vertices with dense connections internally and sparse connections between communities.

Modularity is a metric evaluating the quality of community structure. Modularity is defined

as the fraction of the edges that fall within the given communities minus the expected fraction if

edges were distributed at random. The value of modularity is in the range [−1
2
, 1), with 1 indicating

the strongest community structure [99]. Since the quality of community structure is subject to the

partition of vertices, the modularity of a graph is defined as the maximal modularity for all possible

partitions of the vertices [99]. Even though the decision version of modularity maximization is

NP-Complete [100], fast heuristics, in which the cost of each iteration is linear in the number of

edges, for computing a lower bound on modularity are available and viable for large instances

SAT [101].

Ansótegui, Giráldez-Cru, and Levy report several findings on how SS solvers affect community

structures in application instances. First, 15 out of 16 families of application instances from 2010

SAT Race 3 have a clear community structure, as indicated by the high lower bounds (around 0.8)

of modularity. In contrast, uniform random instances at phase transition have lower bounds of

modularity at about 0.15. Second, the use of the preprocessor SATElite [102] preserves the high

3http://baldur.iti.uka.de/sat-race-2010/
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modularity in application instances, and eliminate almost all the small isolated components. This

suggests SATElite can reduce the size of an instance without disrupting the community structure.

Third, 72% of the learnt clauses by a conflict-driven clause learning SS solver “picosat” [103]

are constructed locally on one of the communities. Since learnt clauses are built from the list of

assigned decision variables, it implies that branching heuristics in SS solvers tend to branch on

variables that are within a community. The authors do not present any study on the correlation

between instance hardness and modularity in [97].

The correlation between instance hardness and community structure is later studied by Newsham

et al. in [104] 4. They extend the previous work [97] in three ways. First, they find that the number

of communities and modularity were more correlated with the running time of the popular SS solver

MiniSAT [13] than traditional features like number of variables, clauses or the clause-variable

ratio. However, there is no direct comparison with more recent features such as backbone [22] and

backdoor [56]. Moreover, as pointed out by Mull, Fremont, and Seshia [105], community structure

alone is not sufficient for fully predicting the performance of SS solvers.

Second, they report a strong correlation between the quality of a learnt clause, as indicated by

Literal Block Distance (LBD) [106], and the number of communities the learnt clause connects.

LBD is a new metric for the quality of learnt clauses. LBD score a learnt clause based on the

number of distinct decision levels that it is involved. The smaller LBD indicates a learnt clause

with higher quality. This allows LBD to “glue” decision variables and variables implied by unit

probation together. In modern SS solvers, learnt clause are periodically deleted according to the

quality measure, due to memory constraint and the efficiency concern associated with propagating

a large set of clauses. By using LBD instead of the learnt clause activity as the quality measure,

Glucose [106] improve over previous SS solvers, including MiniSAT [13] and picosat [103]. This

improvement is achieved by implicitly exploiting the community structure using LBD and keeping

the learnt clauses that stay within a few communities. The fact that learnt clauses that are localized

4The paper won the Best Student Paper Award at SAT 2014
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to a small set of communities potentially enabling the solver to essentially partition the problem

into many small set of communities and solve them one at a time.

Third, the authors describe a method of generating random instances with controllable modularity

and find that the running time of MiniSAT is highest when modularity is 0.05 and 0.13. This

observation in part agrees with the finding in [97]. According to [97], uniform random instances,

which are hard for SS solvers, have modularity at around 0.15.

Most recent works [107, 108] seek ways to explicitly exploit community structures to boost

the performance of SS solvers. Inspired by the strong correlation between learnt clause quality

(LBD) and the number of communities the learnt clause connects [104], Ansótegui, Giráldez-

Cru, Levy, and Simon propose to use community structure to detect relevant learnt clauses [107],

therefore proactively avoiding destroying community structures with learnt clauses. They propose

a preprocessor modprec, which employs SS solvers to solve subformulas that contains pairs of

connecting communities and insert the learnt clauses into the original formula, for the purpose of

preventing learnt clauses being constructed across multiple communities during the actual solving.

With the added community-respecting learnt clauses, two top SS solvers in SAT Competitions,

glucose [106] and MiniSAT-Blvd [109] are further improved on instances from the application track

of SAT competitions, taking the overhead of modprec into account.

2.3.3 Treewidth

The VIG also leads to another structural concept, treewidth (denoted as tw) [110], that is

linked to instance hardness. It has been shown that SAT can be solved in time exponential only in

treewidth using dynamic programming [111, 112]. It has two major implications. First, it presents

an improvement over the worse-case complexity for traditional SAT solving, namely, 2tw <= 2n.

Second, if the treewidth of the VIG of an instance is bounded by a constant, the instance can be

solved in polynomial time. Treewidth measures the “tree-likeness” of a graph G and is defined over
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Figure 2.2: A graph with eight vertices (left subfigure), and an optimal tree decomposition of it onto a tree
with six nodes (right subfigure). Treewidth = 3− 1 = 2.

a Tree Decomposition of G. A Tree Decomposition5 is a mapping from G to a tree T that satisfies

three conditions:

1. Every vertex of G is in some tree node;

2. any pair of adjacent vertices in G should be in the same tree node;

3. the set of tree nodes containing a vertex v in G forms a connected subtree.

The width of a tree decomposition is maximum size of tree node minus one. The treewidth of G

is the minimal width over all its possible tree decomposition. Figure 2.2 illustrates an optimal

tree decomposition of a graph. The exact treewidth is NP-Hard to compute [114] and is also

NP-hard to approximate with any constant factor [115]. Both polynomial-time heuristics for

approximate treewidth computation [116] and efficient complete algorithms for exact treewidth

computation [117–119] are available. The fastest time bound for computing exact treewidth is

O(1.8899n), due to Fomin et al. [118]. Moreover, given that treewidth is bounded by a constant,

exact treewidth computation can be done in quadratic time by Robertson and Seymour [110] and

even in linear time by Bodlaender [120].

5Tree decomposition is also called junction trees, clique trees, or jointree in machine learning literature [113].
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Even though a dynamic programming approach has been shown to solve SAT in time exponential

only in treewidth, Mateescu [121] reports that treewidth is not a good indicator for practical running

time of the SS solver “precosat” [122] on instances from the application track (which precosat won)

of the SAT competition 2009. This observation is not surprising, since treewidth is a good measure

for dynamic programming type algorithms (e.g., ones that fully traverse a tree decomposition of the

problem), and most modern SS solvers do not exploit the tree decomposition.

Treewidth also finds various applications in accelerating SAT solving. One important concern

when using tree decomposition is whether the instance has a small treewidth. One would expect

that instances with small treewidth and yet hard for modern SS solvers should be suitable for the

application of tree decomposition guided heuristics.

Bjesse et al. present empirical evidence that there are application instances with small treewidth

[123]. The Dubois family of UNSAT instances 6, where the number of variables ranges from 150 to

6000, all have a constant treewidth of 4. Other application instances with 253 to 4566 variables have

treewidth from 18 to 170. Bjesse et al. employ tree decomposition to guide variable ordering and

conflict clause generation such that construction of clauses is restricted within one tree node. Despite

the somewhat large treewidth, the tree-based approach method decreases the number of necessary

decisions by one or more orders of magnitude. However, on one large instance, the tree-based

method is about 4× slower than the base SS solver. The authors conjecture that it becomes harder

for the tree decomposition engine to find a high quality decomposition as the problem size increases,

although there are other larger instances that the tree-based method performs better. Moreover, the

authors do not reveal the overhead for tree decomposition. Finally, comparing the two tree-based

method and traditional SS solver in terms of number of decisions is also unfair, since traversing the

tree decomposition is likely to induce extra runtime overhead.

Huang and Darwiche employed a dtree, a bottom-up binary tree decomposition with each leaf

node corresponding to a single clause [124], to compute the semi-static group variable ordering [125].

6Originally contributed by Olivier Dubois to the DIMACS collection, http://www.cs.ubc.ca/~hoos/SATLIB/
Benchmarks/SAT/DIMACS/DUBOIS/descr.html.
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Their group branching heuristic statically organizes variables into groups (each group corresponds

to one tree node) according to dtree, and variables within the same group are dynamically ordered.

The authors demonstrate that, by employing the group branching heuristic, a SS solver produces a

divide-and-conquer behavior in which the instance is recursively decomposed into smaller problems

that are solved independently. They show experimentally that integrating the group branching

heuristic into the SS solver ZChaff [12] significantly improves performance in terms of CPU time

on a range of benchmark problems that exhibit structure. The overhead of dtree computation is

small and beneficial supported by the substantial speedup in the actual SAT solving. For instance,

the largest CPU overhead is 66 seconds and tree-based dtree-ZChaff takes 4206 seconds, whereas

the base solver ZChaff takes 28495 seconds.

Li and Beek extends Huang and Darwiche’s work [124] with a fully dynamic branching heuristic

with on-the-fly tree decomposition along with SAT solving [126]. Their dynamic branching heuristic

is inspired by the observation made by Sinz [89] that the VIG changes drastically over the course

of SAT solving. Their dynamic branching heuristic take a top-down approach. It dynamically

computes the separator variables, the variables that decompose the graph, based on the remaining

formula. The remaining formula is updated every time a decision variable is assigned by removing

the assigned decision variables and the implied variables assigned by unit propagation, as well as the

clause satisfied by decision variables and implied variables. This way, a full tree decomposition is

not needed, and the decomposition always consider the latest VIG. An empirical study on instances

from application track of SAT competition 2002 demonstrates the dynamic branching heuristic

can reduce the number of decisions needed to solve an instance. In terms of CPU time, ZChaff

with dynamic ordering outperform the original ZChaff on 7 of 13 instance families, and outperform

Dtree-Zchaff on 8 of 12 instance families.

Habet, Paris, and Terrioux [127] further advance static tree decomposition guided SAT solving

by learning “goods” (partial assignments that lead to a satisfying assignment) and “nogoods” (partial

assignments that lead to a conflict) for separator variables. Similar to [125], Habet, Paris, and

Terrioux utilize a static tree decomposition to generate a variable ordering. Tree decomposition
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guided satz [54] outperforms the base SS solver satz on 10 out of 21 instance families. The result

might seem unremarkable. However, it can outperform all the other state-of-the-art SS solvers (at

that time) including MiniSAT [13], Rsat [128], and ZChaff [12]. Process saving with the static tree

decomposition is straightforward, but how to perform process saving in the context of dynamic

decomposition (see for example [126]) remains an open question.

In the face of large application instances, Monnet and Villemaire propose a scalable tree

decomposition [129]. The complexity of the scalable tree decomposition heuristic is O(log(n) ∗

(n+m)), where n is the number of variables and m is the number of clauses. In practice, Monnet

and Villemaire’s tree decomposition heuristic scales to application instances from various SAT

competitions with hundreds of thousands of variables and millions of clauses, and the computation

can be done in less than 0.25 second, while the other decomposition methods [124, 130] run out

of memory on most instances. Empirical data also demonstrate that the scalable decomposition

leads to encouraging improved performance of MiniSAT [13]. On most of the instances from four

application domains, the tree-based MiniSAT performs the original MiniSAT by a large margin.

The tree-based MiniSAT solves one of the bounded model checking instance (n = 118, 426 and

m = 375, 699) in 0.42 seconds, whereas the original MiniSAT runs out of time.

2.3.4 Summary

While applying apriori structural analysis to variable interaction topology to understand how

SS solvers works and improve the performance of SS solvers has been a highly fruitful topic, we

are not aware of any existing work that applies similar techniques to SLS solvers. How to leverage

complex network inspired structures for SLS solvers remains an open question.
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2.4 SLS Search Space

Previous structural properties are instance-specific, in the sense that they characterize an in-

stances itself, independent of the methods that are employed to solve it 7. In this section, we

instead review the structural properties obtained from posteriori analysis that are unique to SLS

solvers; they characterize how SLS solvers “see” a problem instance. An SLS solver employs an

objective function8 to rank states (a complete assignment to variables of the formula), and picks a

“neighboring” state by flipping a variable in the current state that maximizes the improvement to

the objective function [131]. The objective function for a CNF-based SLS solver for unweighted

MAXSAT (take WalkSAT [15] for example) is typically the number of unsatisfied clauses, while

a global optimum is a state where the objective function evaluates to zero, i.e., all clauses are

satisfied. SLS solvers frequently encounter a sequence of states in which it is impossible to reduce

the number of unsatisfied clauses. Moves through these regions, called plateau moves, usually

dominate the running time of SLS solvers [132]. Analyzing the search space of a SAT instance is

critical for developing more efficient local search operators. Enumerating the entire exponential

search space is prohibitively expensive; the problem within the reach of enumeration is only up to

50 variables [133]. Exhaustive enumeration of the space space is also unnecessary, since not all

part of search space are equally hard or interesting. More specifically, the part of search space that

contains no plateau is easy, and the part of search that contains only states of high evaluations (large

number of unsatisfied clauses) is uninteresting. Researchers therefore identify search space features

that impact the performance of SLS solvers.

Frank, Cheeseman, and Stutz present the first study into the search space of SAT problems

from the perspective of plateaus [134]. Plateau moves represent a balanced act. On one hand,

continuing to explore a plateau that contains exits can be rewarded with a better state. On the other

hand, giving up on a plateau that is large and yields no exits can save substantial computational

7Strictly speaking, the original backdoor concept is subject to the subsolver being used. Nevertheless, we can also
view backdoor as the intrinsic shortcut to solving an instance, for the sake of unity.

8Objective function is also called “evaluation function” or “cost function”.
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resources for other more fertile plateaus. The authors present a systematic study of plateaus on three

randomly generated instance families (SAT, UNSAT, and Cluster). To cope with the exponential

size search space, the authors employ GSAT [14] to samples states. Several findings are reported by

the authors. First, local optima (plateaus without exits) tend to be small but occasionally may be

very large. Second, plateaus with exits, called benches, tend to be much larger than local optima,

and some benches have very few exit states which local search can use to escape. The first two

findings suggest that it might not be a good idea to explore plateaus looking for exits, at least on

the three studied instance families. Third, local optima can be escaped without unsatisfying a large

number of clauses. This suggests a complete restart might not be necessary. Finally, global optima

of randomly generated problem instances form clusters, which behave similarly to local optima.

The last finding indicates that ideas like tunneling between local optima might be able to effectively

“jump” between the clusters of local optima by recombining local optima [135, 136]. Experiments

conducted by Zhang [48] agrees that local minima from WalkSAT [15] form large clusters, and their

search space constitute big valleys, where high quality local optima typically share large partial

solutions with optimal solutions. The tunneling idea has also been shown to be useful in Traveling

Salesperson Problem [137] and NK-Landscape [138], and we are not aware of any work that apply

this idea to SAT domain. Apart from the interesting observations, Frank, Cheeseman, and Stutz

do not demonstrate how the plateau features impact the practical performance of SLS solvers. In

addition, the observation on random instances might not generalize to application instances, on

which SLS solvers struggle.

Hoos [139] presents an empirical study on the connections between the performance of the SLS

solver WalkSAT [15] and search space features, on the two SAT-encodings (sparse and compact)

of two respective NP-problems: Random Binary Constraint Satisfaction Problem and Random

Hamilton Circuit Problem. Three search space features are studied by Hoos: 1) solution density;

2) standard deviation of objective function (denoted as sdnclu in [139]); and 3) the number of

neighbors with the same evaluation (denoted as blmin in [139]). sdnclu and blmin characterize the

overall ruggedness of the search space; a rugged search space offers more gradient for SLS solvers
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to follow, and is expected to be easier. Through the comparison of the performance of WalkSAT

between the two encodings of the NP-Hard problems, the author finds that the search space induced

by the sparse encoding is easier for WalkSAT to navigate, even though the compact encoding yields

lower solution density achieved by reducing the number of variables. This (a bit counter-intuitive)

observation can be explained by the ruggedness of the search space, as indicated by sdnclu and

blmin. The search space of the compact encoding has significantly lower sdnclu and substantially

higher blmin, which indicates a flatter search space. However, the author does not present any utility

of the search space features in boosting the performance of SLS solvers, and leaves it as an open

research question. Hoos, Smyth, and Stützle also study autocorrelation [140] and fitness distance

correlation [141] as instance hardness measures on unweighted and weighted random MAX-SAT

problem, and find fitness distance correlation to be a better measure [142]. Nonetheless, we are not

aware of any work that employ the two features for explaining instance hardness in SAT domain.

Schuurmans and Southey propose three characteristics for the effectiveness of SLS solvers, then

demonstrate substantial correlations with the performance of SLS solvers in terms of number of bit

flips, and finally employ the characteristics to drive the design of a new SLS solver SDF that conform

the performance predictions made by the characteristics. [143, 144]9. The three characteristics

are depth, mobility and coverage. Depth measures how many clauses remain unsatisfied as the

search proceeds, and it indicates how "deep" the local search is in the space. Mobility measures

how rapidly a local search moves in the space, and it is computed by calculating the Hamming

distance between states that are sampled from every k steps. Coverage measures how systematically

the local search explores the entire space, and a rate of coverage is estimated by how fast is the

gap between two most distant states (the gap is conceptually similar to graph diameter [145])

being reduced. The authors show that the poor indication under any one of the characteristics

leads to poor performance in overall SAT solving, i.e., necessity. The authors further demonstrate

that simultaneously good depth, mobility, and coverage scores is sufficient to ensure that overall

effective problem solving performance is obtained, independent of other algorithmic details. Driven

9The conference paper won the Outstanding Paper Award in AAAI’2000.
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Table 2.1: Summary of Structural Properties. “Inst-Spec” indicates whether the structural property is instance-
specific. “NP-Hard” indicates whether acquiring the exact structural property is NP-Hard. “Heuristic”
indicates whether polynomial-time heuristics is available. “SS Perm” (or “SLS Perm”) indicates weather
the structural property can be used to explain the performance of SS (or SLS) solvers. “Impr SS” (or “Impr
SLS”) indicates weather the structural property has been exploited to improve the performance of SS (or
SLS) solvers.

Struc Prop Inst Spec NP-Hard Heuristic SS Perm Impr SS SLS Perm Impr SLS
Backbone Yes Yes Yes Yes Yes Yes Yes
Backdoor Yes Yes Yes Yes Yes No No
Var Dep Yes Yes Yes Yes Yes Yes Yes
VIG Viz Yes No N/A Yes No No No

Com Struc Yes Yes Yes Yes Yes No No
Treewidth Yes Yes Yes Yes Yes No No

Search Space No N/A N/A No No Yes Yes

by the proposed characteristics, the authors design a new SLS solver, SDF, which employs a

smoothed version of the standard GSAT [14] objective function to obtain better depth scores, and

simultaneously uses multiplicative clause weight updating to obtain better mobility and coverage

scores. The improved characteristic scores of SDF are confirmed empirically, which in return leads

to effectiveness improvement in terms of number of bit flips over other SLS solvers including the

best SLS solver at the time DLM [146] and Novelty+ [147], on a range of instances. However, the

improvement in number of bit flips does not translate into an advantage in raw solving time, because

SDF is consistently a factor of three to four times slower than DLM in flipping one bit.

2.5 Identifying a Gap in Previous Works

The structural properties we reviewed are summarized in Table 2.1. We can identify several

interesting trends in Table 2.1. First, most structural properties are instance-specific, meaning

that they reveal certain aspects of a problem instance’s characteristics. Second, even though most

instance-specific structural properties are NP-Hard to acquire exactly, heuristics are available. Third,

all instance-specific structural properties can help explain and understand the performance of SS

solvers, while only backbone and variable dependency are used to explain the performance of SLS

solvers. Finally, most instance-specific structural properties can be utilized to improve SLS solvers,

whereas only backbone and variable dependency have been exploited by SLS solvers before.
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In addition to the studies on structural property that are well classified in our taxonomy, more

recent works tend to bridge between different structural properties. Zabiyaka and Darwiche [148]

point out that when variable dependence is present, problems with high treewidths can still be solved

efficiently. Ansótegui et al. [149] establish a new problem hardness measure based on backdoor

and treewidth, while Gaspers and Szeider [150] study the size of backdoor, given that treewidth is

bounded. Newsham et al. [35] present a visualization of how a popular branching heuristic selects

branching variables with respective to the community structures.

We have conducted a synthesis of large number of existing works, which enables us identify a

gap in previous work. Recall that backbone, backdoor, variable dependency, variable interaction,

community structure and treewidth are all instance-specific structural properties. These instance-

specific structural properties reveal the characteristics of an instance in many different aspects.

In contrast to the enormous existing works that investigate the way instance-specific structural

properties impact the performance of SS solvers and demonstrate that the instance-specific structural

properties can be leveraged to improve the performance of SS solvers, rare existing works have

exploited the instance-specific structural properties for SLS solvers. We are only aware of three

works [48, 72, 79] that explicitly exploit instance-specific structural properties of instances to

improve the performance of SLS solvers. Linking SLS solvers that are oblivious to instance-specific

structural properties with the fact that SLS solvers fall far behind SS solvers on application instances,

we conjecture that SLS solvers can be improved through exploiting instance-specific structural

properties.

The success of the only three structure-aware SLS solvers and the abundance of instance-

specific structural properties have inspired our proposed work in the following way. Chapter 3

studies the decomposability of VIGs with pseudo backbone constructed from good local optima.

Chapter 4 demonstrates the utility of the decomposition in improving SLS solvers. Chapter 5

explores alternative representations that automatically respect variable dependencies defined by

arbitrary Boolean functions. Empirical studies demonstrate that the advantage of the alternative

representations over the traditional CNF representations.
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Chapter 3

Decomposing Variable Interaction Graphs with

Pseudo Backbones

The decomposability of SAT instances have been extensively exploited with success by SS

solvers [107,108,123,125–127,129] (see Subsection 2.3.2 and Subsection 2.3.3 for detailed reviews).

Community structures [104] and treewidth [150] are two major structural properties that can be used

to quantify the decomposability of a graph. Meanwhile, SLS SAT solvers direct which variables

to flip using only the objective function, and are completely oblivious of the decomposability

of application SAT instances that is inherent to the original problem domain. Combining the

absence of decomposibility exploiting strategies in SLS solvers with the fact that SLS solvers are

dominated by SS solvers on application instances, we conjecture that SLS solvers can be improved

by exploiting the decomposability of application instances. In this chapter, we propose a first step

toward exploiting decomposability with SLS solvers.

Our proposed work is two-fold. First, we study the feasibility of decomposing SAT instances in

the context of SLS solvers. Decomposing SAT instances with SS solvers is straightforward, since an

SS solver assigns one decision variable at a time, and the assigned variables and variables implied

through unit propagation can be used to simplify the Variable Interaction Graphs (VIGs) of instances,

which naturally leads to decomposition. On the contrary, SLS solvers search in the space of tentative

assignments to all variables. How to “fix” variables so that a VIG can be decomposed in the context

of SLS solvers is non-trivial. Inspired by Zhang’s success in guiding SLS solvers with pseudo

backbones extracted from good local optima [48] and by the definition that backbone variables

are fixed variable assignments across all global optima [22], we propose to decompose VIGs with

pseudo backbones sampled by SLS solvers. We then propose two SAT-specific optimizations that

lead to better decomposition than on general pseudo Boolean optimization problems. Our empirical
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study suggests that pseudo backbones can vastly simplify SAT instances, which further results in

decomposing the instances into thousands of connected components.

Second, we demonstrate the utility of the decomposition obtained from pseudo backbone, in

improving SLS solvers. Our work is motivated from two lines of prior works. One line of prior

works suggests that local optima and global optima appear to form clusters. This observation has

been reported independently in different contexts by Frank, Cheeseman, and Stutz in [134] on

search space analysis, by Parkes in [52] on the impact of large backbones on the performance of

SLS solvers, by Zhang in [48] on pseudo backbone guided SLS solvers, and by Qasem and Prugel-

Bennett in [151] on MAX-SAT fitness landscapes. The other line of works suggests tunneling

through local optima can be achieved using partition crossover [88, 135, 136]. Partition Crossover

fixes pseudo backbone variables (i.e., variable assignments shared between two local optima) to

decompose the VIG into independent connected components, and then recombines partial solutions

to different components, for the purpose of effectively “jumping” through the clusters of local

optima. Partition crossover has been shown to be useful in Traveling Salesperson Problem [137]

and NK-Landscape [138], and we are not aware of any work that apply this idea to SAT domain.

We propose to fill this gap by applying partition crossover to exploit the decomposability obtained

from pseudo backbone. Our finding serves as a key stepping stone for applying the powerful

recombination operator, partition crossover, to SAT domain.

3.1 Feasibility of Decomposing VIGs with Pseudo Backbones

Our goal in this chapter is to demonstrate the feasibility of decomposing VIGs with pseudo

backbones. We conjecture that good local optima sampled by an SLS solver will share some

common variable assignments, i.e., pseudo backbones are non-empty. Moreover, the pseudo

backbone can be used to simplify VIGs of application instances by removing assigned pseudo

backbone variables as well as the clauses satisfied by assigned pseudo backbone variables, and

possibly decomposing the VIGs.
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We will approach the goal by taking the following three steps. First, we will start by identifying

a selected set of application instances that demonstrate potential decomposability, namely, having

small treewidths. Our initial pool of application instances include all 299 satisfiable instances from

both hard combinatorial track and industrial track in SAT Competition 201410, where the hard

combinatorial track contains 150 satisfiable instances and the industrial track contains 149 satisfiable

instances11. Second, we run one of the best performing SLS solver on application instances [152],

AdaptG2WSAT [16], on the selected instances to collect good local optima at low evaluation

level, and then extract shared variable assignments from the local optima to construct pseudo

backbones. Finally, we further propose two SAT specific optimizations that lead to provably better

decomposition than on general pseudo Boolean optimization problem, and evaluate how well the

pseudo backbones decompose the VIGs, by comparing the original VIGs with the simplified VIGs

from two aspects: the visualization of the remaining VIGs, the number of connected components.

3.1.1 Identifying Application Instances with Potential Decom-

posability

Preprocessors like the well-known SATElite [102] and the more recent Coprocessor [153] are

commonly used by SS solvers to simplify an instance by reducing the number of variables and

the number of clauses, which leads to smaller search space and more efficient unit propagation.

The impact of preprocessing on the treewidths of application instances is unknown, which leads to

Question 1.

Question 1. Can a preprocessor reduce the treewidth of application instances?

10http://www.satcompetition.org/2014/

11The original benchmark set in the industrial track contains 150 satisfiable instances. However, openstacks-
sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-SAT.cnf and openstacks-p30_3.085-SAT.cnf are
identical instances, despite their different names.
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To Question 1, we compute the treewidths for 299 satisfiable application instances before and

after being preprocessed by SATElite12. The treewidths are computed using the treed library

authored by Subbarayan 13. treed library provides a C++ implementation of several tree decomposi-

tion heuristics, including Maximum Cardinality Search, Minimum Degree, Minimum Fill-in. The

details about the heuristics can be found in [116]. The Minimum Degree heuristic is used in our

experiments, because it appears to scale the best among the all heuristics implemented in treed on

large graphs with up to millions of vertices. The time spent on tree decomposition is limited to be

one hour. All experiments in this proposal are run on HP XW6600 workstations each equipped with

two Intel Xeon E5450 processors running at 3.0GHz and 16GB of memory.

Despite using the most scalable tree decomposition heuristic Minimum Degree, 20 out of 149

industrial instances cannot finish tree decomposition within the one hour limit. Applying the

preprocessor reduces the number of timed-out industrial instances by one. The preprocessor further

solves 2 industrial instances without branching on any decision variable, i.e., the 2 instances have

both a backdoor of size zero. This leads to 128 instances where we have valid treewidths on both

the original instances and the preprocessed instances. The comparison between the treewidths of

128 industrial instances before and after preprocessing is reported in Figure 3.1. Figure 3.1 suggests

that applying the preprocessor can reduce treewidths of industrial instance by a notable margin,

with the median of treewidths reduced from 815 to 718.

On the 150 original hard combinatorial instances, only 10 of them cannot finish tree decomposi-

tion within one hour. Applying the preprocessor again eliminates one of the timed-out instance, and

it further solves 11 more instances. On the remaining 130 instances, their per instance comparison

in terms of treewidth is reported in Figure 3.2. On the hard combinatorial instances, Figure 3.2

suggests that preprocessing has minimal impact on the treewidths, which is also confirmed by the

fact that the median treewidths before and after be preprocessed are almost the same (290 versus

12In this proposal, we use the SATElite implementation that is built into MiniSAT 2.2. http://minisat.se/MiniSat.html

13http://www.itu.dk/people/sathi/treed/
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Figure 3.1: The impact of preprocessing on the treewidths (computed by the Minimum Degree heuristic) of
128 satisfiable instances from industrial tracks of SAT Competition 2014. The diagonal line is the y = x.
Each point represents a pair of treewidths of an original instance and the corresponding preprocessed instance.
Points below (above) indicates the treewidth of the original instance is larger (smaller).
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291). Nevertheless, preprocessing is still advantageous on hard combinatorial instances, because it

solves a significant number (11) of the instances without branching.

Supported by the empirical analysis on the two sets of experiments, we have an empirical answer

to Question 1: preprocessing can reduce and almost never increase the treewidths of application

instances. We hence use the preprocessed instances instead of the original application instances for

our future studies in this chapter. The set of 258 preprocessed application instances include 128

preprocessed industrial instances and 130 preprocessed hard application instances.

Treewidth quantifies the size of the most densely connected and indecomposable subgraph

(i.e., size of the largest tree node), and can be used as a metric of the inherent decomposability

of a graph [150]. Assigning all variables in any tree node guarantees to decompose the graph. A

small treewidth suggests that assigning a small set of variables corresponding according to the

tree decomposition can guarantee to decompose the graph. Meanwhile, we notice that there is

a high variation in the size of preprocessed instances, i.e., the number of variables for the 258

preprocessed application instances varies vastly from 55 to 1,471,468 with an average of 47,724

and a standard deviation of 174,429. To accommodate the variation, we use normalized treewidth,

i.e., treewidth to number of variables ratio (denoted as tw.n.pre), as a metric between zero and one

for evaluating inherent decomposability for the preprocessed application instances. We therefore

select application instances that are known to have small tw.n.pre (i.e., highly decomposable) as

the first step demonstrating the feasibility of decomposing VIGs with pseudo backbones. In other

words, if pseudo backbones can not decompose VIGs with small tw.n.pre, it would be even less

likely to decompose VIGs with larger tw.n.pre.

To study the distribution of tw.n.pre in the preprocessed application instances, we plot the

histogram in Figure 3.3. The histogram indicate that highest frequency of tw.n.pre is within the

range from 0.00 to 0.01 (the first bar has a frequency of 28). This suggests there are 28 preprocessed

application instances that can be decomposed when assigning at most 1% variables. We also observe

that tw.n.pre for 199 out of the 258 application instances are less than 0.4. This is encouraging
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Figure 3.2: The impact of preprocessing on the treewidths (computed by the Minimum Degree heuristic) of
128 satisfiable instances from hard combinatorial tracks of SAT Competition 2014. The diagonal line is the
y = x. Each point represents a pair of treewidths of an original instance and the corresponding preprocessed
instance. Points below (above) indicates the treewidth of the original instance is larger (smaller).
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because many real world application instances from a wide variety of domains are indeed highly

decomposable.

We select the 28 preprocessed application instances with tw.n.pre < 0.01 as the testbed

for exploring the feasibility of decomposition with pseudo backbones. We list the details on

the selected instances in Table 3.1. We note that the 28 selected instances come from only 6

problem domains: LABS (Low Autocorrelation Binary Sequence), prime (semiprime factoring

problem), atco (Air Traffic Controller shift scheduling problem), SAT-instance (autocorrelation in

combinatorial design), AProVE (termination analysis of JAVA program), and aaai-ipc (planning).

The instance with smallest tw.n.pre is LABS_n088_goal008, in which there are 182,015 variables,

and yet its treewidth is only 203.

To illustrate how the variable interaction topologies of the 28 selected instances lead to the small

tw.n.pre, we generate their VIGs using force-directed graph layout algorithm14, following Sinz’s

methodology in [1]. We notice that, among the 28 selected instances, the VIGs of instances from

the same class are visually similar. Therefore, one representative VIG is picked from each of 6

problem domains. The 6 representative VIGs are presented in Figure 3.4, Figure 3.5 and Figure 3.6,

in which a red dot represents a variable and a black line between two red dots represents the two

relative variables co-occur in some clause.

The presented VIGs illustrates the decomposability nature of the variable interaction topologies

of the selected preprocessed application instances. atco_enc3_opt1_13_48 (Figure 3.4 top) consists

of several linear topologies that loosely interleaves. LABS_n088_goal008 (Figure 3.4 bottom)

exhibits a densely connected “core” at its center, and the connections become progressively sparser

as being away from the core. SAT_instance_N=49 (Figure 3.5 top) appears axisymmetric with two

cores on each side and the connections between the two cores are sparser. aaai10-ipc5 forms several

layers of “clusters” with looser connections between clusters. The aforementioned 4 VIGs exhibits

high visual decomposability. Surprisingly, prime2209-98 (Figure 3.5 top) is already separated into

14We use the Python package graph-tool (https://graph-tool.skewed.de/). Graph-tool is known for its efficiency on
large graphs, due to its C++ core implementation.
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Figure 3.3: Normalized Treewidths of 258 preprocessed application instances. Each bar counts the frequency
of the normalized treewidths being within an interval of size 0.01.
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Table 3.1: Detailed statistics on the 28 selected preprocessed application instances, sorted by tw.pre.n. “inst”
indicates the instance name. “track” indicates the track from which the application instance is: “comb”
means hard combinatorial track; “indu” means industrial track. “n.pre” indicates the number of variables.
“m.pre” indicates the number of clauses. “tw.pre” indicates the treewidth. “tw.pre.n” indicates the normalized
treewidth.

inst track n.pre m.pre tw.pre tw.n.pre
LABS_n088_goal008 comb 182015 638771 203 0.0011
LABS_n082_goal007 comb 147213 509579 192 0.0013
LABS_n081_goal007 comb 138803 479962 186 0.0013
LABS_n078_goal006 comb 118601 405972 179 0.0015
prime2209-98 comb 16758 88592 33 0.0020
LABS_n066_goal005 comb 71336 245401 146 0.0020
atco_enc3_opt2_18_44 indu 1067657 4305314 2494 0.0023
atco_enc3_opt2_05_21 indu 1293612 5193145 3090 0.0024
atco_enc3_opt1_03_53 indu 991419 3964576 2369 0.0024
atco_enc3_opt1_04_50 indu 1320073 5313526 3167 0.0024
atco_enc3_opt1_13_48 indu 1471468 5921783 3575 0.0024
LABS_n052_goal004 comb 34674 120036 115 0.0033
LABS_n051_goal004 comb 32522 112980 116 0.0036
SAT_instance_N=111 comb 72001 287702 269 0.0037
SAT_instance_N=99 comb 57407 229153 239 0.0042
SAT_instance_N=93 comb 49745 199060 221 0.0044
LABS_n045_goal003 comb 22095 76929 102 0.0046
SAT_instance_N=85 comb 41562 166062 203 0.0049
LABS_n044_goal003 comb 20259 70752 100 0.0049
AProVE09-06 indu 37726 192754 206 0.0055
SAT_instance_N=77 comb 34129 136225 189 0.0055
SAT_instance_N=75 comb 32356 129290 187 0.0058
SAT_instance_N=69 comb 27286 109087 165 0.0060
SAT_instance_N=72 comb 29289 117013 184 0.0063
SAT_instance_N=63 comb 22780 90906 153 0.0067
aaai10-ipc5 indu 308480 2910796 2254 0.0073
SAT_instance_N=55 comb 17272 68977 145 0.0084
SAT_instance_N=49 comb 13766 54806 125 0.0091
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Figure 3.4: Variable interaction graphs of preprocessed application instances atco_enc3_opt1_13_48 (top)
and LABS_n088_goal008 (bottom).
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Figure 3.5: Variable interaction graphs of preprocessed application instances SAT_instance_N=49 (top) and
aaai10-ipc5 (bottom).
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Figure 3.6: Variable interaction graphs of preprocessed application instances: prime2209-98 (top) and
AProVE09-06 (bottom).
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over a hundred independent densely connected components. It appears that such instances might

be hard to be decomposed further. Lastly, AProVE09-06 seems uniformly and densely connected

at its large core. In this case, it might be difficult to exploit its decomposability, despite its small

normalized treewidth.

Through the visual analysis on the VIGs, we find that (normalized) treewidth, while reveals

the potential decomposability of an instance, does not always tell the full story. Visualization

of VIGs can help gain more intuitive insights, which can sometimes contradict to the intuitions

based on treewidth suggests. We will further learn how well can a VIG be decomposed in practice

with pseudo backbones in Subsection 3.1.3, and compare the practical decomposability against the

theoretical indicators such as the treewidth and the visualization of VIGs.

3.1.2 Computing Pseudo Backbone from Good Local Optima

In contrast to the backbone that is extracted from all global optima, pseudo backbones are

approximated from local optima with low evaluations (aka “Good Local Optima”) [48]. We employ

AdaptG2WSAT [16] from the UBCSAT implementation [17] to find good local optima, because both

our preliminary experiments and previous study by Kroc et al. [152] indicate that AdaptG2WSAT is

one of the best performing SLS solvers on application instances. We run AdaptG2WSAT for up to

1000 seconds, record the best local optima found during the run, and repeat the run ten times with

different random seeds for each of the 28 preprocessed application instances. As a result, 10 good

local optima are collected for each instance.

Table 3.2 presents statistics on how “good” the local optima are. Interestingly, AdaptG2WSAT

reliably finds a global optima in all 10 runs within 1000 seconds on prime2209-98. Except for the

5 atco instances, AdaptG2WSAT finds local optima with at most hundreds of unsatisfied clauses,

on instances with up to about 3 million clauses. Although these are somewhat good local optima,

we also find considerable room for improving upon AdaptG2WSAT , which is one of the best SLS

solvers, on application instances that exhibit high potential decomposability.
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Table 3.2: Quality of the best local optima found by AdaptG2WSAT over 10 of 1000-second runs, on the
28 selected preprocessed application instances with small tw.n.pre. It is a minimization problem with 0
being a global optimum, where the evaluation of a candidate solution is the number of unsatisfied clauses.
“inst” indicates the instance name. “n.pre” (“m.pre”) indicates the number of variables (clauses). “eval.mean”
(“eval.std”) indicates the mean (standard deviation) evaluations of the best local optima over 10 runs.

inst n.pre m.pre eval.mean eval.std
aaai10-ipc5 308480 2910796 21.50 1.08
AProVE09-06 37726 192754 472.90 14.49
atco_enc3_opt1_03_53 991419 3964576 494523.10 449.40
atco_enc3_opt1_04_50 1320073 5313526 775484.80 922.17
atco_enc3_opt1_13_48 1471468 5921783 906206.90 529.18
atco_enc3_opt2_05_21 1293612 5193145 755748.10 449.16
atco_enc3_opt2_18_44 1067657 4305314 555417.40 906.20
LABS_n044_goal003 20259 70752 4.80 1.55
LABS_n045_goal003 22095 76929 6.30 1.57
LABS_n051_goal004 32522 112980 5.60 1.26
LABS_n052_goal004 34674 120036 6.30 1.25
LABS_n066_goal005 71336 245401 10.80 1.14
LABS_n078_goal006 118601 405972 11.50 1.78
LABS_n081_goal007 138803 479962 75.20 7.30
LABS_n082_goal007 147213 509579 167.80 10.71
LABS_n088_goal008 182015 638771 654.10 67.13
prime2209-98 16758 88592 0.00 0.00
SAT_instance_N=49 13766 54806 117.90 9.26
SAT_instance_N=55 17272 68977 141.30 10.03
SAT_instance_N=63 22780 90906 193.50 15.99
SAT_instance_N=69 27286 109087 239.10 6.71
SAT_instance_N=72 29289 117013 264.10 9.10
SAT_instance_N=75 32356 129290 288.00 11.72
SAT_instance_N=77 34129 136225 303.60 11.87
SAT_instance_N=85 41562 166062 358.80 9.96
SAT_instance_N=93 49745 199060 442.70 10.19
SAT_instance_N=99 57407 229153 467.00 44.59
SAT_instance_N=111 72001 287702 617.90 18.30
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Here we employ the pseudo backbone concept differently from Zhang’s approach [48]. In

Zhang’s work [48], all local optima are used to compute an empirical probability distribution,

pseudo backbone frequency, which estimates the likelihood of a variable assigned to true in the

true backbone. In our case, however, we instead prefer to maximize the pseudo backbone size for

decomposition purpose. We expect that the using more distinct local optima leads to smaller pseudo

backbone sizes. We present an analysis of the similarity between the all pairs of local optima as

well as the number of fixed variable assignments across all 10 local optima in Table 3.3. From

Table 3.3 we observe that, considering the pairs of local optima instead of the 10 local optima all

together indeed yields larger sets of fixed variable assignments. We also notice that the variation in

the number of fixed variable assignments across all 10×(10−1)
2

= 45 pairs of local optima is small, as

indicated by the small standard deviations (“std.fixed”) and the small difference between “min.fixed”

and “max.fixed”. Meanwhile, the difference between “mean.fixed” and “all.fixed” is much more

pronounced. On atco instances, the typical number of fixed variable assignments of pairs of local

optima (as indicated by “mean.fixed”) is more than 100× larger than that of all 10 local optima (as

indicated by “all.fixed”). For the purpose of fixing as many pseudo backbone variables as possible

to increase the chance of decomposing a given VIG, we choose the pseudo backbone of the pair of

local optima that yields “max.fixed” for simplifying VIGs.

In addition to the finding in Table 3.2 that AdaptG2WSAT consistently finds a optimal global

optimum with 1000 seconds in all 10 runs on prime2209-98, Table 3.3 further indicates that

AdaptG2WSAT in fact finds the same global optimum in all 10 runs. This excludes the instance

prime2209-98 (the corresponding row is grayed out in Table 3.3) from future experiments on

exploiting decomposability with pseudo backbones, since AdaptG2WSAT can only find one global

optimum and hence the pseudo backbone contains all variables, leaving an empty graph after

assigning pseudo backbone variables.
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Table 3.3: Statistics (“min.fixed”, “mean.fixed”, “std.fixed”, and “max.fixed” columns) on numbers of fixed
variable assignments in every pair of local optima, and the number of fixed variable assignments across all
local optima (“all.fixed” column).

inst
Between pairs of local optima

all.fixed
min.fixed mean.fixed std.fixed max.fixed

aaai10-ipc5 271741 272964.09 585.12 274056 231715
AProVE09-06 20676 21407.02 335.39 22026 2669
atco_enc3_opt1_03_53 495853 497323.18 629.96 498900 2768
atco_enc3_opt1_04_50 660175 661204.38 587.74 662712 3570
atco_enc3_opt1_13_48 736017 736955.64 574.38 738506 3910
atco_enc3_opt2_05_21 646598 648166.36 621.79 649557 4061
atco_enc3_opt2_18_44 533617 535064.49 597.61 536835 3162
LABS_n044_goal003 16626 17130.02 184.58 17661 11915
LABS_n045_goal003 18141 18702.04 253.46 19412 13163
LABS_n051_goal004 27368 27956.42 249.63 28465 20389
LABS_n052_goal004 29194 29747.98 265.32 30397 21513
LABS_n066_goal005 61959 63082.53 445.85 64135 49308
LABS_n078_goal006 104272 105496.04 569.01 106950 83702
LABS_n081_goal007 121057 122232.29 773.69 124133 95655
LABS_n082_goal007 127530 129640.62 1466.40 132499 102097
LABS_n088_goal008 134971 152445.31 7437.70 160520 103838
prime2209-98 16758 16758.00 0.00 16758 16758
SAT_instance_N=49 7500 7971.16 209.61 8356 1017
SAT_instance_N=55 9543 10189.20 332.91 10852 1513
SAT_instance_N=63 12717 13285.69 308.04 14071 1875
SAT_instance_N=69 15294 15824.64 332.64 16663 2008
SAT_instance_N=72 16407 16984.73 336.49 17879 2196
SAT_instance_N=75 17807 18750.04 417.89 19487 2224
SAT_instance_N=77 18924 19685.49 410.88 20473 2300
SAT_instance_N=85 22810 24243.04 551.84 25229 3232
SAT_instance_N=93 27198 28693.51 705.01 30307 3050
SAT_instance_N=99 33073 34138.16 610.53 35594 5534
SAT_instance_N=111 41011 42401.62 683.94 44759 5986

47



3.1.3 Improving Decomposition on SAT Instances

Selecting the pair of local optima that leads to the largest pseudo backbone does not necessarily

decompose a given VIG. Two additional confounding factors also come into play. First, the

distribution of pseudo backbone variables over the VIG is critical. The pseudo backbone variables

might scatter over many tree nodes in the tree decomposition, which impairs the decomposition.

Taking Figure 2.2 for an example, assigning variables B and C decomposes the graph into two

independent components, whereas assigning variables C and G does not. Second, assigning some

variables can lead to considerable applications of unit propagations, which can further simplify

the VIG and facilitate the decomposition. In this section, we first introduce two SAT-specific

optimizations that lead to better decomposition than on general pseudo Boolean optimization

problems in Subsubsection 3.1.3, and then conduct an empirical study in Subsubsection 3.1.3 to

evaluate the practical decomposability of VIGs with pseudo backbones we collected in the previous

section.

Theoretical Analysis

In general pseudo Boolean optimization, fixing the assignment to a variable triggers the removal

of that variable and all edges incident to it [88]. Due to the specialty of SAT problem, we introduce

two optimizations that promotes the decomposition of VIGs, and is not available in general pseudo

Boolean optimization.

First, we remove clauses satisfied by the assigned variables. Assigning a pseudo backbone

variable v can possibly satisfy a clause C, which leads to direct removal of the entire clause C from

the formula. Note that each clause forms a clique in the VIG, since every pair of variables in a

clause interacts. Suppose C contains k variables and v only appears in C, assigning v removes up to

k×(k−1)
2

edges (i.e, the number of edges in a clique of size k) from the VIG. Now consider a similar

pseudo Boolean optimization problem, in which a variable v only appears in a subfunction C that

contains k variables. Assigning v in the general pseudo Boolean optimization problem, however,

only removes v from C, which leads to the deletion of only the k − 1 edges incident to v.
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Second, we apply unit propagation after assigning pseudo backbone variables. Unit propagation

can also imply the assignments of extra variables besides the pseudo backbone variables. The

implied variables again can satisfy some clauses, simplifying and possibly decomposing the VIG

even more. In this sense, unit propagation reinforces the first optimization. Given the same VIGs,

SAT instances clearly have better theoretical potential of being decomposed than general pseudo

Boolean optimization instances.

Empirical Results

Recall that every pair of 10 local optima generates a pseudo backbone. On each application

instance, 10 local optima result in 10×(10−1)
2

= 45 pairs, which are further used to generate 45 pseudo

backbones. We then use the pseudo backbones to simplify each of the application instances, which

leads to 45 simplified instances for every application instance. For each application instance, the

statistics (min, median and max) on the number of connected components of the instance simplified

using 45 different pseudo backbones are presented in Table 3.4.

We present the median instead of the mean, because we notice a large variance in the number of

connected components on many instances. Taking LABS_n052_goal004 for example, the maximum

number of components is 548× the minimum number of components. In fact, we argue that the high

variance on the number of connected components is an empirical indicator for partition crossover to

be more powerful on SAT than on other pseudo Boolean optimization problems like NK-landscapes.

The maximum of number of connected components across all 27 non-empty simplified instances

varies from 21 to 2084. By [88], partition crossover can find the best of 2q possible offsprings on

q connected components in O(n) time, where n is the number of Boolean variables. This means

there is always an opportunity for applying partition crossover. In some cases, one application of

partition crossover can return the best among 22084 offsprings. As for the typical case scenarios, the

median number of connected components varies from 0 to 1373, with an average of 249.

We notice that some instances are drastically simplified. The min and median number of

components for two acto instances are zero, meaning that the two simplified instances are com-
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Table 3.4: Statistics (“min, “median and “max columns) on numbers of connected components after
decomposition using pseudo backbones.

inst min median max
aaai10-ipc5 7 20 38
AProVE09-06 11 1373 1620
atco_enc3_opt1_03_53 937 1020 1090
atco_enc3_opt1_04_50 1023 1087 1164
atco_enc3_opt1_13_48 1193 1287 1365
atco_enc3_opt2_05_21 0 0 37
atco_enc3_opt2_18_44 0 0 21
LABS_n044_goal003 1 52 374
LABS_n045_goal003 1 52 419
LABS_n051_goal004 1 69 544
LABS_n052_goal004 1 77 548
LABS_n066_goal005 100 133 1012
LABS_n078_goal006 156 179 1566
LABS_n081_goal007 146 291 394
LABS_n082_goal007 168 251 1435
LABS_n088_goal008 231 371 2084
SAT_instance_N=111 34 55 1218
SAT_instance_N=49 0 26 156
SAT_instance_N=55 0 39 186
SAT_instance_N=63 21 32 392
SAT_instance_N=69 28 51 519
SAT_instance_N=72 12 40 370
SAT_instance_N=75 25 41 345
SAT_instance_N=77 0 41 719
SAT_instance_N=85 27 48 707
SAT_instance_N=93 16 46 408
SAT_instance_N=99 36 54 1075
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pletely empty. Note that pseudo backbones on average only consists of roughly 50% of the

variables (648166/1293612 = 0.501 for atco_enc3_opt2_05_21 and 535064/1067657 = 0.501 for

atco_enc3_opt1_13_48). Therefore, the other half of variables are all implied by unit propagation.

This suggests that maximizing pseudo backbone size does not always translate into the maximum

number of connected components. There is a trade-off between simplifying a graph so that it can

be decomposed, and avoiding over-simplifying a graph that leads to fewer or no connected compo-

nents. Fortunately, the maximum number of connected components for atco_enc3_opt2_05_21 and

atco_enc3_opt1_13_48 is 37 and 21, meaning that there are still chances where partition crossover

can be applied.

In Figure 3.7, Figure 3.8 and Figure 3.9, we present the decomposed VIGs that yields the median

number of connected components. There are several interesting patterns. First, three instances,

atco_enc3_opt1_13_48, LABS_n088_goal008 and SAT_instance_N=49, are decomposed into

mostly linearly connected components. Second, even though the pseudo backbone for aaai10-ipc5

contains 88% of the variables, the instance still has a large connected component that contains

the majority of the remaining variables. Notice that there are several weak links in the largest

components that could have been removed using a pseudo backbone, leading to more connected

components. This indicates that pseudo backbone indeed can miss some “low-hanging fruit” for

further decomposing a VIG, because it is oblivious of the tree decomposition. Third, recall that

the VIG of AProVE09-06 before simplification (see Figure 3.6) appears difficult to decompose.

Indeed, although the simplified VIG shows that AProVE09-06 is decomposed into many connected

components, some of the connected components are non-trivially large and complex, indicating its

limited potential of being decomposed further. Visualization can indeed complement treewidth in

identifying instances with potential decomposability.

3.2 Conclusion

Our work serves as a key stepping stone for applying partition crossover to SAT. In fact, given

the promising theoretical principles and the encouraging empirical results, we argue that SAT is
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Figure 3.7: Decomposed Variable interaction graphs of representative application instances,
atco_enc3_opt1_13_48 (top) and LABS_n088_goal008 (bottom), that yields the median number of connected
components.
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Figure 3.8: Decomposed Variable interaction graphs of representative application instances,
SAT_instance_N=49 (top) and aaai10-ipc5 (bottom), that yields the median number of connected com-
ponents.
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Figure 3.9: Decomposed Variable interaction graphs of representative application instance AProVE09-06
that yields the median number of connected components.

even more suitable for applying partition crossover than general pseudo Boolean optimization

problems. Our ultimate goal is to narrow the gap in performance between SLS solvers and SS

solvers on application SAT instances. Navigating through local optima is known to dominate the

running time of SLS solvers [134]. Many local optima are visited during the course of SAT solving

with SLS solver. Abandoning the valuable information carried in the local optima seems unwise.

Now that we have shown that application instances can be decomposed using pseudo backbone

constructed from local optima, applying partition crossover to leverage the numerous local optima

while exploiting decomposability of application SAT instances is our proposed work.
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Chapter 4

Partition Crossover for Improving Stochastic Local

Search SAT Solvers 15

Boolean Satisfiability (SAT) is the first problem proven NP-Complete [2]. Maximum Satisfiabil-

ity (MAXSAT) is the optimization version of SAT. The goal of MAXSAT is to find an assignment

that satisfies the maximal number of clauses. An efficient way of solving many optimization

problems, such as automated design debugging [155] and the maximum clique problem [156], is by

converting these problems into MAXSAT and applying a MAXSAT solver. MAXSAT-based ap-

proaches can even outperform specialized solvers in areas like nonlinear dimensional reduction [157]

and Bayesian network learning [158].

The two major search paradigms for solving MAXSAT are Systematic Search such as branch-

and-bound solvers [159] and local search algorithms such as the ones in UBCSAT collection [17].

Note that from the perspective of local search, SAT instances are also viewed as optimization

problems, since local search finds a satisfiable solution by flipping one bit at each iteration, contin-

uously seeking solutions with fewer unsatisfied clauses. Local search can reliably solve uniform

random instances with one million variables and several million clauses to optimality in recent SAT

competitions16. Despite its demonstrated raw power in solving difficult uniform random instances,

local search still suffers from the following two prominent issues.

1. Local search solvers frequently encounter a sequence of states where it is difficult to reduce

the number of unsatisfied clauses. Moving through these regions, called plateau moves,

usually dominates the running time of local search solvers [132, 160]. Furthermore, the

valuable history of information accumulated after high quality solutions are visited is typically

abandoned, which seems unwise.

15This chapter is based on paper [154].

16http://satcompetition.org/
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2. Local search solvers have poor performance on application SAT instances. Application

SAT instances often have internal structure. Decomposability focuses on how well the

variable interactions of an application instance can be decomposed. Decomposability has

been extensively studied and exploited by systematic SAT solvers with success [107, 125]. In

contrast, local search solvers completely ignore structure and potential decomposability of

application instances.

We present a new framework called PXSAT, based on the recombination operator Partition

Crossover (PX) [88]. The notion of “recombination" (i.e., “crossover") is borrowed from genetic

algorithms. However, in this case the operator is deterministic, not stochastic, and PX offers

performance guarantees. PX is also designed to be used in combination with local search.

PX takes as input two solutions which are local optima, or otherwise are good solutions found

on a plateau of the search space. We can prove that PX is able to create a “tunnel” that directly

moves from two known locally optimal solution to arrive at new local optima in O(n) time. It has

been used successfully on combinatorial optimization problems such as the Traveling Salesman

Problem [161] and NK-Landscapes [162]. It has not previously been applied to MAXSAT. Previous

experiments conducted by [48] and [151] provide evidence that high quality local optima typically

share partial solutions with optimal solutions. Applying PX to MAXSAT has the potential of finding

improving moves that tunnel from one plateau to a better plateau by changing hundreds (or even

thousands) of variables at the same time.

PX can also be used to exploit the decomposability of MAXSAT application instances. PX fixes

what can be considered pseudo backbone variables (i.e., variable assignments shared among local

optima [22]), to locally decompose the Variable Interaction Graph (VIG) into q components that

are independent from each other. PX then recombines partial solutions from different components

such that the best solution among all possible 2q reachable solutions. This occurs in O(n) time.

Previous studies report that many application instances do have high decomposability and can be

decomposed into up to thousands of components [37, 98]. These results suggest that PX has the

potential to be very useful on MAXSAT application instances.
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Table 4.1: An Example of MAX-3SAT Instance.

a: 1 -3 6 l: -6 10 13 q: -11 16 17 v: -15 -7 -13

b: 2 -1 6 m: 8 -18 6 r: 12 -10 17 w: 16 -9 -11

c: -1 2 4 n: 7 -12 -15 s: -13 -12 15 x: 17 -5 -16

d: -4 1 14 o: 9 11 14 t: 14 -4 16 y: -18 -7 13

e: -5 4 2 p: -10 -2 17 u: -9 14 16 z: 3 6 -14

While applying PX to MAXSAT is in principle simple, doing so while also controlling execution

costs is not trivial. State-of-art local search MAXSAT solvers are highly optimized, so that each

improving move takes only O(1) time. Each applications of PX takes O(n) time. How to best

balance the use of local search and PX on MAXSAT is a nontrivial question. In the current

implementation, PX is only triggered when there is no improvement in evaluation in the past α ∗ n

iterations.

Another problem in applying PX to MAXSAT is deciding what candidate solutions to recombine.

When there are well defined local optima, this is less of a problem. New theoretical finding can

guide the design of the PXSAT to avoid triggering unproductive applications of Partition Crossover.

Empirical results on an extensive set of application instances show combining Partition Crossover

with the local search algorithms can yield substantially better results. We improve two of best local

search solvers, AdaptG2WSAT and Sparrow. PXSAT combined with AdaptG2WSAT is also able to

outperform CCLS, winners of several recent MAXSAT competitions.

4.1 Variable Interaction and Tunneling

Let f(x) be the evaluation function for an assignment x ∈ Bn, where f(x) counts the number

of unsatisfied clauses. Consider the following MAX-3SAT function composed of the following

clauses in Table 4.1.

A clause a: 1 -3 6 has a label a and variables 1 -3 6. A positive variable (e.g. 1) is satisfied by

an assignment of True. A negated variable (e.g. -3) is satisfied by a False assignment. Each clause

is in Conjunctive Normal Form; at least one literal must be satisfied for the clause to be satisfied.
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Figure 4.1: An illustration of the VIG.

The goal is to maximize the number of satisfied clauses. Let m denote the number of clauses, and n

denote the number of variables.

From these clauses, we can extract the nonlinear interactions between the variables. An exact

way to compute the nonlinear interactions is to use a discrete Fourier transform to generate a discrete

Fourier polynomial; this can be done in O(n) time assuming m = O(n). We can be less exact and

assume that if two variable appear together in a single clause, there is a nonlinearity between those

variables. The true nonlinear interactions must be a subset of this set. This leads to the following

definition:

Definition 1 (Variable Interaction Graph (VIG)). A variable interaction graph has a set of vertices

which are the variables of a MAXSAT instance. If two variables, xi and xj appear together in a

clause, there is an edge ei,j in the VIG.

The VIG has at most 3m = O(n) edges for MAX-3SAT. Figure 4.1 presents the VIG for

Table 4.1. Assume we have two candidate solutions P1 and P2 to Table 4.1 that have been found

by local search, where neither solution can be improved by a single bit flip.

P1 = 00000 00000 00000 000

P2 = 11100 01110 11101 101

P1 satisfies all of the clauses except clause o but flipping bits 9 or 11 or 14 causes clauses q or

u or z respectively to be unsatisfied. P2 satisfies all of the clauses except clause v but flipping bits

15 or 13 or 7 causes clauses s or y or m to be unsatisfied.
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Figure 4.2: The Recombination Graph with three separable recombining components for the parent
P1 = 00000 00000 00000 000 and P2 = 11100 01110 11101 101.

Clearly, x4 = x5 = x6 = x10 = x14 = x17 = 0 in SP1 and P2. For all other bits, xi = 0 in P1,

and xi = 1 in P2. The two solutions are contained in the hyperplane ***000***0***0**0* where

∗ denotes the bits that are different in the two solutions, and 0 marks the positions where variables

share the same assignment.

We use the hyperplane ***000***0***0**0* to decompose the VIG to generate a recombination

graph. We remove all of the variables (vertices) that have the same assignments and remove the

edges incident on the removed vertices. The Recombination Graph is shown in Figure 4.2.

The recombination graph breaks the VIG into connected subgraphs, which we will define as

recombining components. In Figure 4.2 there are q = 3 recombining components. Variables that are

connected in the recombination graph represent complementary partial solutions. The recombination

graph also decomposes the evaluation function f(x) into linearly separable subfunctions. Thus, in

Table 4.1 we can define a new subfunction g(x′) such that

g(x′) = a+ g1(x9, x11, x16) + g2(x1, x2, x3)

+ g3(x7, x8, x12, x13, x15, x18)

where a is a constant and g(x′) = f(x) but where the domain of function g(x′) is restricted to the

largest hyperplane subspace containing strings P1 and P2. Since clause o unsatisfied by P1 and

clause v unsatisfied by P2 are in different components of recombination graph in Figure 4.2, the

offspring (e.g., 00000 00010 10000 100) is guaranteed to improve upon both parents. In this case,

PX instantly jumps to the global optimum with all clauses satisfied.
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In general the recombination graph induces a new evaluation function

g(x′) = a+

q
∑

i=1

gi(x
′) = f(x)

where each subfunction gi(x′) evaluates one connected recombining component of the recombination

graph. Let Gi denote the recombining component corresponding to subfunction gi(x
′). Note that if

there are 2 parents and q recombining components, these partially solutions can be recombined in

2q ways; we refer to this as the set of reachable solutions. We can now prove the following result:

Theorem 1 (PX Theorem [88]). Given a recombination graph with q recombining components,

Partition Crossover (PX) returns the best of 2q reachable solutions in O(n) time.

Proof. Because the function g(x′) is linearly separable, we can greedily select the best partial

solution from P1 and P2 independently for each subfunction gi. The q greedy choices yields the

best of 2q reachable solutions.

Of course, an improvement only occurs if P1 and P2 have recombining components that also

have different evaluations, even when f(P1) = f(P2).

4.1.1 Tunneling between Local Optima

Tunneling methods in the form of PX are able to take two solutions as input that are locally

optimal, and return a new solution that is also a local optimum in g(x′). Thus, tunneling is able to

do something that local search cannot: move directly from known local optima to new local optima

in one step.

Tunneling methods have already been developed for the Traveling Salesman Problem (TSP) and

are a critical part of the Lin Kernigham Helsgaun (LKH) algorithm [163], the best iterated local

search algorithm for the TSP. Tunneling methods have also been developed for general k-bounded

pseudo-Boolean optimization problems.
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Because MAX-kSAT problems are characterized by numerous large plateaus, it is more difficult

to characterize the “tunneling” behavior of PX on MAX-kSAT. But for Weighted MAX-kSAT (and

k-bounded pseudo-Boolean optimization problems in general) we can prove the following result.

Theorem 2 ( [88]). Assume that solutions P1 and P2 are well defined local optima on a Weighted

MAX-kSAT instance. All of the 2q reachable solutions are also local optima under function g(x′).

Proof. Assume bit xb is referenced by both f(x) and g(x′). Because g(x′) is linearly separable xb

appears in only one subfunction gi(x
′). Flipping bit xb in f(x) will not yield an improving move

since P1 and P2 are local optima; thus, flipping bit xb in gi(x
′) also cannot yield an improving

move.

To be clear, a solution that is locally optimal in g(x′) might not be locally optimal in f(x),

but if a solution is not locally optimal in f(x) the improving move can only result from flipping

a bit assignment shared in common by P1 and P2. We have examined hundreds of k-bounded

pseudo-Boolean functions, and empirically we find that the best of the 2q reachable solutions is also

a local optimum in f(x) more than 80 percent of the time.

Since the proof of Theorem 2 is expressed in terms of improving moves, we also automatically

get the following result for free. Theorem 3 implies that PX is efficient in the sense that it is difficult

to further improve any of the 2q reachable solutions using local search.

Theorem 3 ( [88]). Assume that solutions P1 and P2 are on plateaus such that there is no improving

move from solution P1 or from P2. There are no improving moves from any of the 2q reachable

solutions under the function g(x′).

This implies that Partition Crossover is efficient in the sense that it is difficult to further improve

any of the 2q reachable solutions using local search.

4.1.2 The Cost of PX compared to Local Search

Modern MAXSAT local search algorithms are able to find Hamming distance 1 improving

moves in O(1) time using techniques like gradient-based promising variable selection [164]. This
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Figure 4.3: This figure illustrates how PX is combined with local search. The dashed line tracks changes
in f(x). When a plateau is reached, a solution P1 is captured. After αn moves with no improving moves,
another solution P2 is selected, and PX is used to recombine P1 and P2.

means that PX should only be applied when local search has difficulty finding an improving move,

which typically means that search has become stuck on a plateau. PX has the potential to find

tunneling moves to an improved solution on a better plateau.

A illustration of how PX is combined with local search appears in Figure 4.3. When a new

plateau is reach, a solution P1 is recorded. If an improving move is not found after αn moves,

another solution on the plateau, P2 is selected. Note there are αn moves separating P1 and P2,

which also implies that local search cannot easily escape from the plateau. P1 is then recombined

with P2.

We can efficiently evaluate recombining components of the recombination graph using the

Score vector used by all modern local search algorithms to track improving moves (i.e., “makes"

and “breaks"). Assume there are candidate solutions P1 and P2 which decomposes the VIG into q

partitions. Assume the current Score vector is defined related to the current solution P2. Note that

the solution P1 and P2 have complementary assignments for each subfunction gi(x
′). To evaluate

the recombining component Gi (i ∈ [1, q]), flip all of the bits in Gi, updating the Score vector

after each bit flip. The sum of the changes provided by the Score vector is equal to the change in

evaluation between gi(P2) and gi(P1). While this reduces the runtime, this cost of PX is still O(n).

The following theorem addresses the trade-off in applying PX or doing θ(n) steps of local

search.

62



Theorem 4. Given θ(n) time, where n is the number of variables, local search with gradient-based

variable selection checks θ(n2) candidate solution, while PX checks θ(2q) candidate solutions,

where q is the number of components in the recombination graphs.

Proof. In local search with gradient-based promising variable selection, an improving move among

n neighbor solutions can be discovered in θ(1) time. Given θ(n) time, θ(n) such moves can be

performed. A total of θ(n2) candidate solutions can thus be checked given θ(n) time. For PX,

only θ(1) crossovers can be performed in θ(n) time, so that a total of θ(2q) candidate solutions are

checked.

4.1.3 Equal Move for PX on Plateau

The search space for MAXSAT is known to contains many neighboring states that share the

same evaluation [134]. Such state is called plateau. Since local search has no gradient to follow

on plateaus, taking equal moves that no change in evaluation certain chance for escaping plateaus.

Prior studies [165, 166] have shown that accepting equal moves improve the performance of local

search. Plateau can be defined similarly for PX.

Definition 2 (Component Score). Given two candidate solutions P1 and P2, where P1, P2 ∈ Bn,

the pseudo backbone formed by P1 and P2 decomposes the VIG into q partitions. For a given

component Gi (i ∈ [1, q]), the contribution of variable assignments from P1 on Gi is denoted as

gi(P1). Component Score, denoted as Score(Gi), going from P1 to P2 on Gi is defined as

Score(Gi) = gi(P1)− gi(P2) (4.1)

Similar to the definition of the Score vector in local search [14], component score is the change

in Gi(x) when moving from P1 to P2. Assuming minimization, if the component score is positive,

the assignment to Gi in P2 is selected. Otherwise, the assignment to Gi in P1 is selected.

Definition 3 (PX Plateau). Given two candidate solutions P1 and P2 with f(P1) = f(P2), P1

and P2 are on a PX plateau if ∀i ∈ [1, q], Score(Gi) = 0.
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Algorithm 1 Equal Move for Plateau PX

1: while P1 and P2 on PX plateau and equal move i exist and P1[i] = P2[i] do

2: P2[i]← 1− P2[i]

Intuitively, PX plateau means taking partial solutions from either parents makes no different in

evaluation function, therefore recombination cannot yield an improving offspring. Now consider an

equal move mechanism for escaping PX plateaus in 1. The idea is to keep flipping one common

bit, so that the two parents become more distant in the search space while remaining equal in

evaluation, until it yields an improving offspring by using PX or equal moves are exhausted. While

Algorithm 1 provides a seemingly good strategy for escaping PX plateau by increasing the number

of components in the recombination graph, Theorem 5 shows it can never yield an improving

offspring. Nevertheless, this new theoretical finding can be used to avoid unproductive application

of PX.

Theorem 5. Using Algorithm 1, two candidate solutions P1 and P2 that are on a PX plateau can

never escape the plateau.

Proof. Flipping a common variable adds one vertex v back to the recombination graph. Two

situations are possible. First, v is isolated from the existing components. The previous components

are unaffected by v, and remain the zero in component score. v becomes an isolated component G∗

with a single variable. Since flipping v doesn’t change the evaluation, the score of G∗ is also zero.

All components remain zero in score. Second, v joins one of existing components Gi. Flipping all

variables in Gi is known to not change the evaluation by the definition of PX Plateau. Provided

that flipping v also does not change the evaluation, flipping variables in the augmented component

Gi ∪ {v} does not change the evaluation.

4.2 PXSAT

In light of the theoretical results, we discuss how they are used to develop guidelines for PX

application, which drives the design of our successful PX-based framework for MAXSAT. By
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uncovering the design process, we hope to inspire future refinements to PX for MAXSAT as well as

new applications of PX to more problem domains.

Choice of Parents. According to Theorem 4, q needs to be as large as possible in order to achieve

maximal efficiency of PX. For a given instance, q depends on the choices of the two parents P1 and

P2. The hamming distance between P1 and P2, denoted as D(P1, P2), determines the number of

vertices in the recombination graph, since variables that share assignments are removed. Consider

two extreme cases. One is when D(P1, P2) 0, P1 and P2 have almost identical assignments,

there are few vertices left in the recombination graph. The nearly empty recombination graph

contains few independent components. The other extreme case is when D(P1, P2) n, P1 and

P2 have little in common. Few vertices have been removed in recombination graph, which stays

mostly connected. In this case, PX loses its purpose of decomposing VIG using pseudo backbone.

Rule 1. D(P1, P2) should neither be too small nor too large.

Another important guideline on the choice of parents is that P1 and P2 need to be close in

evaluation for a better chance of yielding an improving offspring. Consider the situation where

f(P1) ≪ f(P2). Partial solutions from P1 probably dominate P2 in all components. Denote

px(P1, P2) as the resulting offspring after applying PX to two parents P1 and P2. In such cases,

px(P1, P2) selects partial solutions exclusively from P1. Thus, px(P1, P2) = P1. No improving

offspring can be discovered via PX.

Rule 2. f(P1) ≈ f(P2).

Finally, discovering an improving offspring that is better than both parents P1 and P2 in terms

of evaluation is not sufficient. More importantly, px(P1, P2) needs to improve upon the best-so-far

solution bsf. This requires P1 and P2 to already contain partial solutions of good quality. The

global evaluation of P1 and P2 should be close to bsf .

Rule 3. f(P1) ≈ f(bsf ) and f(P2) ≈ f(bsf ).

When to Apply PX. The purpose of this paper is to demonstrate the utility of PX in complementing

local search in escaping plateaus. We are not replacing local search completely with PX. Instead, we
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Algorithm 2 PXSAT: A Generic Framework based on PX

1: x← rand(); ⊲ random initialization
2: xbest ← x; ebest ← f(x); i← 0; ibest ← 0;
3: while termination condition not met do

4: x← LS(x); ⊲ one bit flip by local search
5: if f(x) < ebest then ⊲ improvement
6: xbest ← x; ebest ← f(x); ibest ← i;
7: else if i > ibest + αn then ⊲ stagnation
8: x← px(x, xbest);
9: ⊲ reset regardless of outcome of PX

10: xbest ← x; ebest ← f(x); ibest ← i;

11: i← i+ 1

present a generic framework that incorporates PX on top of local search. We design the framework

with simplicity in mind, hoping that the framework can be incorporated into any existing local

search solvers with ease. With the introduction of PX, some of computational resources previously

spent on local search inevitably needs to be allocated for PX. Inspired by Theorem 4, we cautiously

apply PX when there is no improvement in evaluation for the past α ∗ n iterations. Doing this

has two benefits. First, the cost of one application of PX can be amortized over α ∗ n iterations,

resulting in an amortized cost per iteration for PX. Second, since local search operators is unable to

find a new better solution in the last α ∗ n iterations, introducing PX offers new opportunities of

exploring a very different set of candidate solutions on plateaus that are deem difficult to escape by

local search.

We now present PXSAT framework in Algorithm 2. xbest keeps tracks of the best candidate

solution the best solution within a variable-length interval. At initialization, randomly generate the

current solution x. xbest is set to x. When local search improves and updates xbest in less than α ∗ n

steps, the interval keeps expanding. Otherwise, when there is no improvement over xbest for α ∗ n

steps, a stagnation is detected. In case of stagnation, apply PX to xbest and x, reset xbest to x which

start a new interval.

In PXSAT, α is a constant that can be used to indirectly control D(x, xbest) such that Rule 1 is

conformed. As revealed later in the empirical results section, the optimal setting for α varies by

problem instances. Notice that PXSAT applies PX to x and xbest rather than the true best-so-far
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solution bsf. It is because the evaluation of bsf is much better than x in most cases, which breaks

Rule 2. x and xbest, however, are no more than α ∗ n iterations away and are expected to be close in

evaluation. Furthermore, using xbest to approximate bsf also conforms to Rule 3.

4.3 Empirical Results

PXSAT is first used to improve two of best performing local search SAT solvers on application

instances, AdaptG2WSAT [16] and Sparrow [40]. This shows relative performance improvement

achieved by incorporating PXSAT into existing solvers. We then demonstrate that the improvement

achieved by PXSAT is remarkable by comparing AdaptG2WSAT-PX and Sparrow-PX with CCLS

[167], a state-of-art local search solver designed specifically for MAXSAT. This exhibits the absolute

performance of PXSAT. Empirical results show that the performance of a 10-year-old SAT solver

AdaptG2WSAT can be lifted by PXSAT so that the new algorithm even outperforms the state-of-art

MAXSAT solver on every instance tested. Finally, we establish a theoretical model for predicting

and understanding the success of PXSAT.

4.3.1 Setup

To select a wide variety of application instances without biasing any particular class of instances,

the benchmark set is constructed as follows. From 150 satisfiable instances from the crafted track

and 150 satisfiable instances from the industrial track in the SAT competition 2014, sample three

instances (smallest/median/largest in size in terms of number of variables) from each class if there

are more than three, otherwise select all instances. We only selected the satisfiable instances so

that the optimum is known to have a zero evaluation. This yields 102 instances, excluding nine

instances whose VIGs are too large to process under the 8GB memory limit. All 102 selected

instances are preprocessed offline by SatELite [102]. We also evaluated PXSAT on crafted instances

and industrial instances from MAXSAT Evaluation 201617. However, these instances were not

17http://maxsat.ia.udl.cat
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challenging enough; local search is usually able to find an improving solution within α ∗n iterations.

Therefore, PX is rarely triggered.

Preliminary experiments indicate that the parameter α varies by instance classes. As the

benchmark set covers a variety of instances from different classes, the parameter α in PXSAT is

fixed to be 1, 2, 4, 8 and 16 on each instance, and the best performance among the five settings are

used for comparison with the original SAT solvers. The average of best solutions found over 10

trials are first compared. Moreover, we have also learned from our studies that there is a bell-shape

relationship between α and the number of components. Finding the optimal setting of α can be

achieved by performing a golden section search that successively narrows the range containing the

optimal α.

4.3.2 Improving State-of-Art Local Search SAT Solvers

PXSAT is implemented into AdaptG2WSAT [16] and Sparrow [40]. AdaptG2WSAT has been

found to be one of the best performing local search solvers on application instances [152]. Sparrow,

on the other hand, performs the best among all local search solvers in both crafted SAT track and

application SAT track in SAT Competition 201418. Both solvers are available from the UBCSAT

website 19 [17]. UBCSAT provides an efficient implementation of many local search solvers with a

unified interface, allowing straightforward incorporation of PXSAT.

Table 4.2 summarizes the impact of PXSAT when incorporated into AdaptG2WSAT and Sparrow.

There are 13 instances for AdaptG2WSAT and 11 instances for Sparrow that are easy enough to

solve without any stagnation of over αn iterations. On the remaining instances, PXSAT has a

strong positive influence on both average solution quality and average solving time. Mann-Whitney

test [168] is employed to test whether the differences in averages are statistically significant,

assuming a significance level of 0.05. We use percentage improvement to measure the improvements.

It is defined as

18http://www.satcompetition.org/2014/

19https://github.com/dtompkins/ubcsat/releases/tag/v1.2beta18
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Table 4.2: Comparing PXSAT versions with the original local search solvers. “#No Diff (No PX)”: number
of instances where PX is never triggered. “#No Diff (PX Ties)”: number of instances where PX is triggered
and average solving time and average solution quality are tied between the original solver and its PXSAT
version. “# Better (Worse) ∆sol”: number of instances where the PXSAT version has better (worse) average
solution quality. “# Faster (Slower) ∆time”: number of instances where the PXSAT version has faster
(slower) average solving time.

Base Solver AdaptG2WSAT Sparrow

#No Diff (No PX) 13 11
#No Diff (PX Ties) 4 2
# Better ∆sol (Total) 63 73
# Better ∆sol (Sig) 38 40
# Worse ∆sol (Total) 8 6
# Worse ∆sol (Sig) 2 0
# Faster ∆time (Total) 11 8
# Slower ∆time (Total) 3 2

∆ = (orig − pxsat)/orig × 100%, (4.2)

where orig is the metric (∆sol denotes solution quality and ∆time denotes solving time) for the

base solver and pxsat is for its PXSAT version.

PXSAT improves AdaptG2WSAT on 63 instances in terms of average solution quality; it is

worse on only 8 instances. The percentage improvement in average solution quality is 22.4%. The

improvements in solution quality achieved by PXSAT on 38 instances are statistically significant.

AdaptG2WSAT-PX is only significantly worse on two instances. Considering only the instances

where the differences are statistically significant, the percentage improvements in solution quality

boosts to 27.2%. This is a substantial improvement considering how difficult it is for AdaptG2WSAT

to find a better solution. On average, AdaptG2WSAT stagnates through the last 54.9% of total

solving time and local search is unproductive. On the instance 5-SATISFIABLE, AdaptG2WSAT

fails to find any improving solution in the last 4965 (= 99.3% × 5000) seconds. PXSAT also

accelerates AdaptG2WSAT on 11 instances, and slows down AdaptG2WSAT on 3 instances, with

an average time reduction of 25.6%. However, due to the stochastic nature of local search where

fluctuation in solving time is high, there are only a couple of instances whose solving time differences

are statistically significant.
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Figure 4.4: Comparing PXSAT versions with the original local search solvers on instances where the average
solution quality differences are statistically significant.

For Sparrow, PXSAT improves on 73 instances in terms of average solution quality, out of which

40 are statistically significant. There is not a single instance where adding PXSAT results in poorer

average solution quality. The average percentage improvement in solution quality over all instances

with statistically significant differences is 26.4%. Despite an average improvement of 25.1% on 10

instances where the solving times are different, none of the difference is statistically significant.

Interestingly, for both AdaptG2WSAT and Sparrow, there are 40 instances where the differ-

ences in solution quality are statistically significant. Are the set of 40 instances the same for

AdaptG2WSAT and Sparrow? Figure 4.4 details the differences on the theses instances. When
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PXSAT makes a significant impact on the solution quality, it is almost always a positive impact

across the board, except on only two instances. Moreover, the decrease in solution is rather small

(3% and 5% respectively), compared with the gain in all the other instances. There are 33 overlap-

ping instances between the two sets. This suggests that PXSAT is particularly useful for a specific

set of instances. We next study the common properties they share and how the properties benefit

PXSAT.

4.3.3 Why and When PXSAT works?

Using Theorem 4, we attempt to understand why PXSAT can improve the solution quality

on many instances. The benefit of applying PX τ times can be quantified in terms of number of

inspected candidate solutions as

r =

∑τ

i=1 2
qi

τ × n2
, (4.3)

where
∑τ

i=1 2
qi can be prohibitively large. Instead, we record the average number of component

p =
∑τ

i=1 qi/τ , and prove that p can be used to derive a lower bound of r.

Theorem 6. Let ř =
2p

n2
, then ř ≤ r.

Proof. ř ≤ r is equivalent to

2
1

τ

∑τ
i=1

qi ≤
1

τ

τ
∑

i=1

2qi . (4.4)

Jensen’s inequality [169] states, if X is a random variable and ϕ is a convex function,

ϕ (E[X]) ≤ E [ϕ(X)] (4.5)

where the equality holds if and only if x1 = x2 = ... = xn or ϕ is linear. Let ϕ(q) = 2q. Since

exponential function is a convex function, we have

2
1

τ

∑τ
i=1

qi = ϕ (E[q]) ≤ E [ϕ(q)] =
1

τ

τ
∑

i=1

2qi . (4.6)
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Figure 4.5: Empirical ∆sol versus theoretically approximated ľr for Sparrow. Left subfigure has a scale of
[-50,50] on X-axis, while right subfigure has a scale of [50,650] on X-axis. Points with ∆sol > 0 (∆sol < 0)
are colored blue (red).

In practice, we find that ř is still too large to process, as p can be over 1000. We apply log10

transformation to ř, and define the result as ľr.

ľr = log10(ř) = p× log10(2)− log10(n2). (4.7)

ľr is now manageable for processing.

Based on the empirical results and the number of components collected for Sparrow, we perform

a correlation analysis between ∆sol and ľr. Figure 4.5 presents the outcome. The figure is split

into two subfigures with different scales on X-axis, because ľr on some instances, whose names

are labeled in the right subfigure, are exceptionally large. This is actually a good news. Take

aaai10-ipc5, the one with largest ľr (= 626) for example. This means, given same amount of

time, the number of candidate solution inspected is at least ř = 10626 times more than the greedy

operators in modern local search. This is a result of the instance decomposed into as many as over

2117 components in one application of PX.
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Table 4.3: Summary statistics on number of components (q) and PX Success Rate at finding improving
moves for Sparrow-PX.

Min Median Mean Max
q 2.000 16.707 129.482 2897.361

Success Rate 0.01% 50.2% 43.2% 96.6%

There is a clear positive correlation between ∆sol and ľr, which is confirmed by Spearman

correlation of 0.65620. Given an instance, increasing the number of component is indeed critical for

the performance of PXSAT. On the 27 instances where ľr > 0, PXSAT always improves ∆sol.

Interestingly, there are 35 instances where ľr < 0 (which suggests PXSAT inspects less candidate

solutions) and yet ∆sol > 0 (empirical results show PXSAT improves the performance). Two

(non-exclusive) reasons exist. First, qi across multiple applications of PX is probably very different,

thus ř underestimates r, which results into a smaller ľr. Second, PXSAT is exploring a neighborhood

that is drastically different from the one-bit neighborhood in local search solvers. Using PXSAT is

beneficial because PX can find improving moves when local search cannot, even if PXSAT checks

fewer candidate solutions.

Table 4.3 presents summary statistics on number of components and success rate of PX ap-

plications. Despite small median number of components (≈ 16), PXSAT manages to achieve a

median success rate of 50.2% on PX applications. This is impressive because PX is only triggered

on plateaus that are difficult to escape for local search.

Figure 4.6 visualizes the VIG and the decomposed recombination graph of the instance where

Sparrow-PX has the largest performance gain. The original graph appears axisymmetric with two

densely connected cores on each side and the connections between the two cores are sparser. PX

successfully breaks one of the cores, leading to 842 components. One application of PX yields

an instant improvement of 316 additional satisfied clauses, while Sparrow fails to discover any

improving move in the last 72001 bit flips.

20A Spearman correlation of 1 results when the two variables are monotonically related.
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Figure 4.6: The VIG (top) and the decomposed recombination graph (bottom) for SAT_instance_N=111. In
this instance, tunneling will return the best of 2842 solutions.

Using a force-directed graph layout algorithm21, Figure 4.6 visualizes the VIG and the recombi-

nation graph of the instance where Sparrow-PX has the largest performance gain. The original graph

appears axisymmetric with two densely connected cores on each side and the connections between

the two cores are sparser. PX successfully breaks one of the cores, leading to 842 components. This

single application of PX yields an instant improvement of 316 in evaluation, whereas Sparrow fails

to discover any improving move in the last 72001 iterations.

21We use the library graph-tool (https://graph-tool.skewed.de/).
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Table 4.4: Comparing AdaptG2WSAT , Sparrow and their PXSAT versions with CCLS. “# Better (Worse)
∆sol”: number of instances where the PXSAT version has better (worse) average solution quality. “# Faster
(Slower) ∆time”: number of instances where the PXSAT version has faster (slower) average solving time.

Compared with CCLS AdaptG2WSAT AdaptG2WSAT-PX Sparrow Sparrow-PX

# Better ∆sol (Total) 72 80 53 58
# Better ∆sol (Sig) 68 77 50 53
# Worse ∆sol (Total) 9 0 33 27
# Worse ∆sol (Sig) 7 0 27 22
# Faster ∆time (Total) 14 15 10 11
# Slower ∆time (Total) 4 4 3 3

Overall, ľr is very conservative predictor for the success of PXSAT. When ľr > 0, PXSAT

always improves the performance in the empirical study. When ľr < 0, there is still a good chance

of making a positive impact. PXSAT improves 35 out of 41 instances with ľr < 0.

4.3.4 Competing with State-of-Art MAXSAT Solver

CCLS [167] is one of the best solvers designed specifically for MAXSAT, and has won several

categories of the incomplete algorithms track of MaxSAT Evaluation 2013 to 2016. CCLS22 is

evaluated on the same benchmark for comparison, in order to access the absolute performance of

PXSAT-equipped local search solvers.

Table 4.4 summarizes the results. CCLS has significantly better average solution quality than

the original AdaptG2WSAT and Sparrow on 7 instances and 27 instances, respectively. Thanks to

PXSAT, AdaptG2WSAT-PX consistently outperforms CCLS on every single instance tested, while

Sparrow-PX takes the lead on five additional instances.

4.4 Conclusions

PXSAT employs a powerful recombination operators, Partition Crossover (PX), to exploit

decomposability on application instances and to escape plateaus. PX uses common assignments

22As the source code is not publicly available, we used the binary obtained from
http://lcs.ios.ac.cn/~caisw/Code/CCLS2015.
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among local optima to decompose Variable Interaction Graphs (VIGs) into q components. The

best solution of 2q candidate solutions can be greedily constructed in linear time. Empirical studies

on an extensive set of application instances show PXSAT statistically significantly improves the

performance of two best local search solvers, AdaptG2WSAT and Sparrow, on application instances.

The improvement in solution quality is as much as 80%.

We present theoretical analysis for highlighting the search efficiency of PXSAT as well as

guiding the design of PXSAT. A theoretical performance model is developed to understand why

and when PXSAT is useful. The model successfully predicts when PXSAT is likely to improve the

performance. The model shows, given the same amount of time, the number of candidate solutions

inspected by PXSAT is up to 10626 times more than the greedy operators in modern local search

solvers.
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Chapter 5

Exploiting Subproblem Constrainedness with

Alternative Representations

The previous chapters exploit the decomposability of the variable interaction graph of application

SAT instances for improving SLS solvers. This chapter investigates a structural property that is

based on formula partitioning: subproblem constrainedness. We observe that, on some application

SAT instance classes, the original problem can be partitioned into several subproblems, where each

subproblems is highly constrained. Under Conjunctive Normal Form (CNF) representation, the

high constrainedness of a subproblem is indicated by the fact that the set of clauses forming the

subproblem are defined over only a small number of Boolean variables [170]. While subproblem

constrainedness has been exploited in SS solvers before [29, 36], we propose to exploit it in SLS

solvers using two alternative representations that can be obtained efficiently based on the canonical

CNF representation.

The first alternative representation is Conjunctive Minterm Canonical Form (CMCF) [38]. The a

transformation of CNF into CMCF can be accomplished using a two-step process: CNF clauses are

first partitioned into disjoint blocks such that each block contains CNF clauses with shared Boolean

variables. CNF clauses in each block are then replaced by Minterm Canonical Form (i.e., the set of

all partial solutions), which is found by enumeration. The intuition behind CMCF representation is

as follows. CNF representation is more compact for instances with low subproblem constrainedness,

because fewer number of CNF clauses are required for representing the small number of constraints.

On the contrary, for instances with high subproblem constrainedness, looking at the complement

representation makes more sense. We show empirically that a simple Stochastic Local Search (SLS)

solver based on CMCF can consistently achieve a higher success rate using fewer evaluations than

the SLS solver WalkSAT on two representative classes of structured SAT problems.
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The second alternative representation is Minterm Interaction Graph (MIG) that aims to refine

CMCF by increasing the cardinality of the objective function. The MIG is a graph, where each

represents a block and there is an edge between two vertices if they share at least one Boolean

variable. Considering the pairwise interaction between blocks effectively increases the cardinality

of the objective function over CMCF. With MIG representations, a straightforward SLS solver

inspired by WalkSAT called Gforce solves semiprime factoring instances thousands of times

faster than the highly optimized WalkSAT, scales better than sophisticated SLS solvers SAPS [39]

and AdaptG2WSAT [16], and compete well against the best SLS solver Sparrow [40] in recent

competitions, in terms of the raw CPU time.

A major strength of CMCF and MIG is that they implicitly exploit the variable dependencies.

Encoding structured problems into SAT problems often introduces dependent variables [72], whose

values are defined by a Boolean function of other variables. These dependent variables are usually

required by the well-known Tseitin encoding [73] to achieve linear size conversion of propositional

logic formulas to CNFs. SS solvers can handle variable dependencies by propagating independent

variables to dependent variables via unit propagation. On the contrary, SLS solvers takes longer

to propagate dependencies by its iterative nature. Developing SLS techniques that can effectively

handle variable dependencies has been considered to be a fundamental challenge in propositional

reasoning and search [76]. With the minterms in CMCF and MIG, literals in a minterm are treated as

a single entity, therefore CMCF and MIG link dependent Boolean variables with independent ones.

The variable dependencies defined by arbitrary Boolean function are automatically and implicitly

respected in satisfying minterms.

5.1 Related Work

Subproblem constrainedness has been studied by Amir and McIlraith [29, 36]. They decompose

the set of clauses of a SAT instance into subproblems that are loosely related, order the subprob-

lems in descending c/v ratio (clause-variable ratio), solve the subproblem using a SAT procedure

according to the ordering, and finally join [171] the partial solutions to all subproblems following
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the subproblem order to obtain all models to the original instance. However, joining all partial

solutions to different subproblems, despite finding all models, can lead to state explosion [172]. In

this chapter, we propose to use local search to find a compatible full assignment.

Previous research on handling variable dependencies in SLS solvers has focused on explicitly

extracting a predefined set of Boolean circuit gates and searching only on independent variables.

McAllester and Selman propose DAGSAT [72], which represents “AND” gates and “OR” gates

as Directed Acyclic Graphs (DAGs) to encode the variable dependencies in a hierarchy. Pham,

Thornton and Satter extend DAGSAT by also extracting “XNOR” gates and “XOR” gates [79] [80].

Our research differs from the dependency extraction research in two ways: 1) we do not require a

predefined and limited set of Boolean circuit gates as the target for extraction. We instead encode

the highly constrained subproblems using satisfying minterms, which can be arbitrary Boolean

functions; 2) rather than explicitly searching on independent variables, we link independent variables

and dependent variables using satisfying minterms and so variable dependencies are respected

implicitly.

Roussel [173] proposed a transformation that uses a local model enumeration similar to ours.

Roussel’s encodes sets of clauses using prime implicants, while ours encodes them as satisfying

minterms. However, Roussel did not show the utility of the new representation in search.

5.2 Exploit Subproblem Constrainedness using Conjunctive

Minterm Canonical Form

SAT problem instances are usually defined in CNF: a conjunction of clauses F =
∧

ci∈C

ci, where

C is the set of all clauses, each clause ci is a disjunction of literals ci =
∨

lj∈Li

lj , and each literal is

either a Boolean variable bj or its negation bj . 23 The DIMACS format is the standard file format

used to succinctly represent CNF instances [10]. In the DIMACS format, each line represents a

23In this chapter, italicized letters such as v present single elements, capitalized bold font such as V represents a
vector, capitalized blackboard font such as V represents a set and |V| represents the cardinality of the set V.
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clause with a “0” as the end-of-line delimiter. A clause is defined by listing the index of each

positive literal, and the negative index of each negated literal.

Application instances often contain blocks of clauses consisting of a small set of variables

with different combinations of signs. The pattern demonstrate that some subproblems are highly

constrained in application instances. To illustrate this pattern, Snippet 1 shows a portion of a

DIMACS formatted SAT encoding of the problem of factoring semiprime 1003. 24

Snippet 1 The 5th to 12th clauses (c5 to c12) of factoring-1003.cnf.
−123 24 33 0
−123 −24 −33 0

123 24 −33 0
123 −24 33 0

−24 −33 124 0
24 33 −124 0
24 −124 0
33 −124 0

One can observe from Snippet 1 that the set of 4 clauses M1 = c5 ∧ c6 ∧ c7 ∧ c8 contains

exactly three Boolean variables {b123, b24, b33}, and each clause has a different combination of

signs on the three Boolean variables. The same pattern also applies to the other set of clauses:

M2 = c9 ∧ c10 ∧ c11 ∧ c12. Denote the formula in Snippet 1 as F ′, then F ′ = M1 ∧M2. This pattern

indicates high subproblem constrainedness, which often appears in the SAT-encoded factoring

instances. In fact, in many of the SAT-encoded structured instances, clauses appear to be generated

such that those CNF clauses that share variables appear consecutively [170].

5.2.1 Sources for the Highly Constrained Subproblems

The observed highly constrained subproblems could be a coincidence or an artifact of some

ordering decisions in the generation code, in which case it would not represent exploitable problem

structure. By analyzing how SAT encoding is performed, we discover three possible sources for the

highly constrained subproblems in application instances: 1) Tseitin encoding of propositional logic

24The SAT-encoded CNF instance is generated by ToughSAT [23].
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formulas; 2) CNF encoding of Constraint Satisfaction Problem (CSP); 3) intrinsic loosely coupled

components in the original problem.

Tseitin Encoding. Perhaps the most well-known and widely used method for converting logic

circuit to CNF is Tseitin encoding [73]. It generates a linear number of CNF clauses by introducing a

linear number of auxiliary variables, which avoids producing exponentially large CNFs. Consider the

propositional formula b1 → (b2∧b3), its Tseitin encoding is (b2∨b4)∧(b3∨b4)∧(b2∨b3∨b4)∧(b1∨b4),

where b4 is an auxiliary variable introduced during the encoding process. The CNF formula exhibits

the high subproblem constrainedness, i.e., four clauses containing the same four variables.

CNF Encoding of CSP. One way of encoding a structured problem as SAT is to first model it

as a Constraint Satisfaction Problem (CSP) and then to encode the CSP as a SAT problem [32]. A

finite-domain CSP has multi-value variables vi, each associated with a finite domain dom(vi). CSP

constraints describe prohibited combinations of assignments. The most natural and widely used

SAT encoding of CSP is the direct encoding, in which a SAT Boolean variable bv,i is true if and

only if the CSP multi-valued variable v is assigned to i. Suppose we have a CSP variable v1 where

dom(v1) = {1, 2, 3}. The direct SAT encoding enforces the exactly-one constraint on the Boolean

variables that encode the same CSP variable: at any given time, any CSP variable are assigned to

one single value. In the example, exactly one of b1,1, b1,2, b1,3 is set to true. Encoding the exactly-one

constraint on v1 results in the clauses (b1,1 ∨ b1,2 ∨ b1,3) ∧ (b1,1 ∨ b1,2) ∧ (b1,1 ∨ b1,3) ∧ (b1,2 ∨ b1,3).

This set of four clauses contains just 3 variables. Again, the subproblem is highly constrained, in

the sense that the set of four clauses can only be satisfied in 3 ways.

Intrinsic loosely coupled components in the original problems. Besides the CNF encoding

process that introduces highly constrained subproblems, the source problem may already include

intrinsic loosely coupled components, in which each component (subproblem) are highly constrained.

The original problem may contain multiple knowledge databases that have overlap in content [29].

Each knowledge database as a subproblem is highly constrained. One prominent example for such

case is the commonsense theories found in the DARPA High Performance Knowledge Base (HPKB)

program [36].
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b123 b24 b33
s1,1 0 0 0
s1,2 0 1 1
s1,3 1 1 0
s1,4 1 0 1

(a) M1

b24 b33 b124
s2,1 0 0 0
s2,2 1 0 0
s2,3 0 1 0
s2,4 1 1 1

(b) M2

Figure 5.1: Satisfying minterms (the set of all partial solutions) to M1 and M2 of F ′ shown in Snippet 1,
respectively. Each row represents a satisfying minterm to the block. A “1” under Boolean variable bi means
the bi is set true in the partial solution, otherwise bi is set false; si,j is the jth partial solution to Mi.

5.2.2 Exploiting High Subproblem Constrainedness: From

CNF to CMCF

A number of application SAT instances exhibit high subproblem constrainedness in the way that

CNF instances are generated. We next explore how this pattern can be exploited. To illustrate the

idea, we enumerate satisfying minterms (partial solutions) to the blocks (groups of clauses) found

in Snippet 1. In figure 5.1 clauses c5, c6, c7, c8 are grouped into block M1; clauses c9, c10, c11, c12

clauses are grouped into block M2. Each block induces a highly constrained subproblem. A closer

look at the two blocks reveals that M1 is an XOR gate b123 = XOR(b24, b33), and M2 is an AND

gate b124 = AND(b24, b33). The AND gate defines b124 as a dependent variable whose value is

determined by b24 and b33. For the XOR gate, any one of the three Boolean variables can be

considered as the dependent variable in terms of the other two. Instead of flipping one Boolean

variable to satisfy one clause, we can now change multiple variables at a time to guarantee satisfying

all of the clauses in the block. In this way, although we are not looking for any specific kinds of

variable dependencies, dependencies are automatically and implicitly respected.

In this work, two steps are taken for transforming CNF into CMCF: formula partitioning which

partitions the set of all clauses into disjoint blocks; minterm enumeration where each block is solved

optimally using enumeration.
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Formula Partition

Definition 4 (Partition). A partition over a set is a grouping of the set’s elements into non-empty

disjoint subsets.

Denote the set of all clauses as C, formula partition applies a partition operation P to group C

into disjoint subsets. For instance, the partition for F ′ in Snippet 1 is {{5, 6, 7, 8}, {9, 10, 11, 12}}.

A block Mi is a conjunction of the clauses in a proper subset Ci ( C:

Mi =
∧

cj∈Ci

cj, (5.1)

where
∨

Ci = C and Ci

∧

i 6=j

Cj = ∅. Each block Mi can be considered as a subproblem. The

original problem is therefore partitioned into |P | subproblems with overlaps between them. The

quality of a partition is assessed based on the degree of overlap between the subproblems, which is

further measured by the number of variables shared by different blocks. The goal is to partition C

such that the overlap between subproblems is minimal.

In the current work, we use a straightforward greedy partitioning method as a starting point.

Suppose X is a clause or a set of clauses, V ars(X) represents the set of Boolean variables

in X . We limit the maximum of number of Boolean variables in each block to be 6, namely,

max(|V ars(Mi)|) = 6. On instances that have clauses longer than 6, we introduce auxiliary

variables to break the clauses until they are within the limit. Initially, a new empty block M1 is

created. It iterates through all clauses, if the current block Mi can take the clause cj without breaking

the limit, cj is added to the current block. Otherwise, a new Mi+1 is created to take cj .

Minterm Enumeration

Definition 5 (Minterm [174]). Given a Boolean function F , a minterm for F is a the conjunction

of literals, in which every variable in F appears exactly once in either its original or negated form.
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Any Boolean functionF can be designated using the disjunction of the minterms that evaluates F

to true. In other words, the satisfying minterms are the solutions to F . Enumerating partial solutions

to a block Mi encodes the subproblem in terms of satisfying minterms. From this perspective, a

block Mi can also be defined as disjunction of satisfying minterms:

Mi =
∨

sj∈Si

sj, (5.2)

where Si is set of all satisfying minterms to Mi. Having the two equivalent definitions of Mi as

shown in equation 5.1 and equation 5.2, we can then replace blocks that are defined using the first

definition of Mi (as in CNF) with its equivalent second definition. Now for every block, replace the

conjunction of clauses
∧

cj∈Ci

cj with disjunction of satisfying minterms
∨

sj∈Si

sj . We call the resulting

representation a Conjunctive Minterm Canonical Form (CMCF), in the sense that it is a conjunction

of Boolean functions defined by disjunction of satisfying minterms.

Definition 6 (CMCF). Given a partition P over the set of all clauses set C of formula F , the

Conjunctive Minterm Canonical Form (CMCF) of F is
∧

Mi∈P

(
∨

sj∈Si

sj), where Mi is a nonempty

subset of the partition and Si is the set of satisfying minterms to Mi.

5.2.3 Constraint Propagation over Minterms

The use of minterms allows straightforward constraint propagation. We introduce two forms of

constraint propagations: Value Constraint Propagation and Equivalency Constraint Propagation.

Value Constraint Propagation. A Boolean variable bi that has a consistent truth value in a

block Mj indicates that it is the only way bi can be set to satisfy Mj , which is also a necessary

condition for satisfying the entire formula F . We can then propagate the assignment to other blocks.

Take Figure 5.2 for an example, b3 is assigned to 0 consistently across all satisfying minterms in

M1, which suggests that b3 must be assigned to 0 in a solution (if it exists) to F . We can therefore

fix the b3 to 0, and propagate the assignment to other blocks that also contain b3. Later we discover
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that M2 also contains b3 and it has a minterm that contradicts the assignment b3 = 0. The minterm

b3 ∧ b4 ∧ b5 can thus be eliminated.

M1

b1 b2 b3
0 0 0
1 0 0
0 1 0
1 1 0

=⇒M2

b3 b4 b5
0 0 0
0 0 1
0 1 0
1 1 0

Figure 5.2: An example illustrating value constraint propagation. Each row represents a satisfying minterm
to the block.

Equivalency constraint propagation. When two Boolean variables bi and bj satisfy the

equivalency bi ⇐⇒ bj or negative equivalency bi ⇐⇒ bj constraint in a block Mk, bj can

be eliminated by replacing all occurrences of bj with bi or bi, which can further lead to possible

elimination of incompatible minterms.

Take Figure 5.3 for an example, M1 exhibits one equivalency constraint b3 ⇐⇒ b1 and one

negative equivalency constraint b2 ⇐⇒ ¬b1, which can be used to eliminate b2 and b3. In this case,

b2 in M2 is replaced with ¬b1, flipping the truth values assigned to b2 in the minterms in M2. M2

then contains two columns of b1. Any incompatible assignment to b1 can be eliminated, i.e., b1 can

not be true and false simultaneously. The incompatible minterm b1 ∧ b1 ∧ b4 is therefore eliminated.

M1

b1 b2 b3
0 1 0
1 0 1
0 1 0
1 0 1

b2 ⇐⇒ ¬b1

b3 ⇐⇒ b1
M2

b1 b2 b4
0 0 1
1 0 1
0 1 0
1 0 0

M2

b1 b1 b4
0 1 1
1 1 1
0 0 0
1 1 0

Figure 5.3: An example illustrating equivalency constraint propagation. Each row represents a satisfying
minterm to the block.

Eliminating minterms using one constraint propagation potentially opens up new opportunities

for the application of the other constraint propagation. In the current work, the two constraint

propagations are repeated alternatively, until there is no change in CMCF representation of F .
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5.2.4 Local Search over CMCF

Rather than explicitly natural joining minterms from every block as in [36], which can lead

to state explosion, we employ a simple local search, CMCF-LS, to find a valid combination of

minterms. CMCF-LS is an SLS analogous to WalkSAT [15] to search over CMCF representation.

We chose WalkSAT, because it has a straightforward form, and is very effective at solving uniform

random SAT instances. It is a good basis for designing SLS on the new representation that exploits

subproblem constrainedness. The search space explored by CMCF-LS is the different from the one

explored by WalkSAT. This leads to the following designs in CMCF-LS.

Representation of a Candidate Solution. With the CMCF representation, every block Mi

contributes exactly one minterm si,j , where si,j ∈Mi. A candidate solution in the search space of

CMCF-LS is a vector of minterms si,j , where i ∈ [1, |P |]. SAT solving under CMCF representation

is to find a combination of minterms, one from from each block, that have a consensus on setting all

Boolean variables.

For a given block Mi, there are |Si| choices of minterms. Any combination of choices drawn

from all blocks is a candidate solution. Multiplying the number of choices over all blocks gives

the size of the search space under CMCF representation,
∏

Mi∈P

|Si|. To reduce the search space,

we apply the two constraint propagations in Subsection 5.2.3 as a preprocessing step to eliminate

minterms in blocks, effectively reducing |Si|.

Consensus Constraint. A minterm si,j from a block Mi votes for the truth assignment for

the Boolean variables in Mi. Different blocks that share a Boolean variable can possibly vote the

variable differently. We call this discrepancy on Boolean variables. For example, the candidate

(s1,2, s2,2) of F ′ from Figure 5.1 votes for b123 = 0, b24 = 1, b33 = 1 by s1,2, and votes for

b24 = 1, b33 = 0, b124 = 0 by s2,2. The only discrepancy is at b33, since b33 receives one positive

vote from s1,2 and one negative vote from s2,2. Each Boolean variable bi imposes a Consensus

Constraint on candidate solutions, such that bi should only receives a single kind of vote, either

true or false. The number of consensus constraints thus equals to the number of Boolean variables.
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A candidate solution without violating any consensus constraint is a valid solution, i.e., reaching

consensuses on setting all Boolean variables.

Evaluation Function. The evaluation of a candidate solution goes through every Boolean

variable to collect the true votes and false votes from all blocks. For a Boolean variable bi, we use

the smaller of two counts to represent the degree of discrepancy, since it indicates the minimal

number of minterms that need to change to satisfy the consensus constraint on bi. The evaluation is

then the summation of the smaller vote counts over all Boolean variables. We call this evaluation

function MinVote. The process for evaluating candidate solution (s1,2, s2,2) of F ′ from Figure 5.1 is

shown in Table 5.1. The evaluation of (s1,2, s2,2) is therefore 0 + 0 + 1 + 0 = 1.

Table 5.1: Demonstration of Calculation of MinVote evaluation of candidate solution (s1,2, s2,2) for F ′ as
shown in Figure 5.1.

Boolean Variables b123 b24 b33 b124

True Votes 0 2 1 0
False Votes 1 0 1 1

MinVote 0 0 1 0

SLS Operators. In each iteration of WalkSAT [15], it first selects an unsatisfied clause, then

either makes a random move that flips a random variable in the clause with probability p, or

with probability (1 − p) makes a greedy move that flips the variable that results in the highest

improvement in the evaluation function.

CMCF-LS works in a way similar to WalkSAT, it first selects a Boolean variable bi that has a

discrepancy. With probability p, CMCF-LS makes a random move that forces all blocks containing

bi to reach a consensus state on a random truth assignment; with probability (1− p), CMCF-LS

makes a greedy move that select the minterm from all blocks containing bi such that it yields the

highest improvement in the evaluation function.
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5.2.5 Empirical Results on CMCF-LS

The transformation from CNF to CMCF alters the search space for SLS. The CMCF-based

constraint propagations then reduce the overall size of the CMCF search space. The paramount

issue is whether this process leads to an improvement in the success of SLS. At this point, we have

a straightforward implementation of our solver as a proof of concept, and so focus our evaluation

on demonstrating the utility of the approach. We consider two questions:

• Does the preprocessing step using CMCF-based constraint propagations effectively reduce

the size of the search space?

• Can CMCF-LS show an improvement over the CNF-based solver WalkSAT?

Problem Instances

Two classes of structured instances are used in our empirical study: Semiprime Factoring

and Parity Learning. The CNF encodings of both exhibit a high subproblem constrainedness.

Factoring large semiprimes is a difficult problem with no known method for quick solution [175].

In fact, its difficulty is the basis of the assumed security for RSA public key cryptography. We

randomly generated 50 pairs of distinct primes and multiplied each pair to obtain 50 semiprimes.

The ToughSAT generator (with “Factoring 2” as problem type) [23] is used to encode the semiprime

factoring problem.

The Minimal Disagreement Parity learning problem is a class of hard satisfiability problems [83].

Given a m × n matrix of Boolean variables bij (i ∈ [1,m], j ∈ [1, n]), a vector y = (y1, . . . , ym)

and an error tolerance level k, the parity learning problem is to find a vector of Boolean variables

a = (a1, . . . , an) such that |i : parity(a · xi) 6= yi| ≤ k. These problems are hard for SLS, due to

many local minima which are close to the optimum [76]. The encoding of the parity constraints

creates a long chain of variable dependencies [71]. We test on the five uncompressed 8-bit parity

learning instances available from SATLIB [176].
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Table 5.2: Problem instance sizes as measured by number of variables, number of clauses for CNF, number
of blocks for CMCF encodings, and average number of CNF clauses per Block.

Variables CNF Clauses (|C|) CMCF Blocks (|P |) Clauses per Block
factoring 347.2(89.9) 1740.7(474.7) 169.9(44.4) 10.24
par8-1 350 1149 144 7.97
par8-2 350 1157 144 8.03
par8-3 350 1171 145 8.07
par8-4 350 1155 142 8.13
par8-5 350 1171 146 8.02

Search Space Reduction

The search space size for CNF encoding of SAT is familiar. But what happens with our proposed

transformation? To assess this, we collected data on instance size after the transformation and the

constraint propagations. To show the overhead, we also collected data on the CPU time required for

the transformation.

How the problem size changes. Table 5.2 shows the problem sizes as measured in number

of variables and number of clauses for the original CNFs and the CMCF transformations. The

semiprime factoring instances are captured by the mean and standard deviation (with form “mean

(std)”) across the 50 instances; each parity instance is listed separately. The number of variables

remains the same in each representation. The straightforward partition method works reasonably

well in practice, resulting in good compression rate (from 7.97 to 10.24) over CNF clauses. It

suggests that the partition method is able to group many clauses that involve at most 6 Boolean

variables together in one block, which reveals the high subproblem constrainedness in the CNF

encoding.

The partition step organizes the CNF clauses into blocks. Then, CMCF-based constraint propaga-

tions reduce the number of candidate solutions by eliminating minterms. For the semiprime factoring

instances, Figure 5.4 shows the size of the search space after partitioning (before.CMCF.CP) and

then after constraint propagation (after.CMCF.CP). The parity instances show similar reductions in

each instance, e.g., from 1.43e+ 130 to 5.07e+ 45 for par8-1, which is substantially smaller than
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Figure 5.4: Search space size on log-10 scale before and after CMCF-based constraint propagations on
semiprime factoring problem instances.

the CNF search space 2350 = 2.29e+ 105. Constraint propagation leads to substantial search space

reduction.

How much CPU time is required. Figure 5.5 shows the runtime overhead of CMCF-based

constraint propagations, as measured in CPU seconds, as a function of the number of variables in

the original CNF representation for the semiprime factoring problems. The CPU times are all very

small, with the highest runtime overhead being 0.00129 seconds on the factoring-2419 instance

with 470 Boolean variables. The code was run on shared machines which produced some of the

variability in the times. An adjusted R-square of 0.8241 suggests a strong linear trend in problem

size. The five parity learning instances required less than 0.0005 CPU seconds. On these problems,

CMCF-based constraint propagations appears to have low runtime overhead.
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Figure 5.5: Runtime overhead for CMCF-based constraint propagations on semiprime factoring problem
instances as a function of the number of variables in the original CNF version. The line is a linear least
squared fit with adjusted R-squared of 0.8241.

SLS Comparison

There are many SLS solvers for SAT. We chose WalkSAT for the comparison because it has

a straightforward algorithm, has been influential in the design of subsequent SLS solvers and

provided the basis for CMCF-LS. We implemented CMCF-LS from scratch in C++ and used the

UBCSAT [17] implementation of WalkSAT, which is considered to be one of the most optimized

implementations. We ran both CMCF-LS and WalkSAT for 50 independent runs with different

seeds; each run allows for 100 million evaluations.

CMCF-LS and WalkSAT are compared on two aspects: effectiveness and cost of search. SLS

solvers prove satisfiable for a given satisfiability problem instance by finding a satisfying assignment.

The success rate (% of runs in which the SLS solver found a solution) is reported as the metric

for effectiveness. CMCF-LS explores a neighborhood of size different from WalkSAT’s. In each

greedy pick of CMCF-LS, it examines all minterms in all the blocks that contain unsigned Boolean

variables, and selects a minterm from a block with the highest evaluation. WalkSAT only evaluates

all Boolean variables in an UNSAT clause to find the one with the highest evaluation. CMCF-LS

is obviously more expensive than WalkSAT in performing the greedy pick. The random picks for
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both require no evaluation of any candidate solution. For a fair comparison, we use the number of

evaluated candidate solutions and the CPU time as the metric for the cost of search.

Effectiveness of Search. It is difficult to predict how an alternative or more compact represen-

tation will impact solver performance. For example, using a preprocessor such as SatElite [102] to

reduce the problem size does not always translate into a speedup in the solver.

Figure 5.13 reports the success rate of 50 independent runs of both CMCF-LS and WalkSAT

over the semiprime factoring instances, which are ordered by the semiprime values. The two curves

generated by local polynomial regression fitting [177] show a clear advantage of CMCF-LS over

WalkSAT; CMCF-LS consistently solves instances of semiprime smaller than 1000 in almost all of

the runs, while WalkSAT’s success rate degrades more quickly with semiprimes higher than 500.

Once the semiprimes surpass 1500, the success rate of WalkSAT drops below 0.15 with WalkSAT

almost never solving instances for semiprimes larger than 2000. CMCF-LS, on the other hand,

solves 9 instances of factoring semiprimes over 1000 and still solves the three largest problems (of

semiprimes 3127, 3233 and 3599) in at least one of the runs.
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Figure 5.6: Success Rate on 50 Semiprime Factoring Problem Instances. The two trend curves are constructed
using local polynomial regression fitting.
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Figure 5.7 shows the success rate for the five parity instances. CMCF-LS consistently solves all

5 instances in all runs. In contrast, the highest success rate of WalkSAT is 0.68 on par8-1. WalkSAT

can solve par8-5 in only one run.
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Figure 5.7: Success rate for the five parity learning instances.

Number of Evaluated Candidate Solutions. Although the SLS solvers are given up to 100

million evaluations, each run finishes when a satisfiable variable assignment is found. Figure 5.8

presents the number of evaluations required by each of the solvers (CMCF-LS in blue and WalkSAT

in red) on each of the semiprime factoring instances. On the three smallest instances (namely 58, 82

and 94), WalkSAT actually takes fewer evaluations, as measured by the median, than CMCF-LS.

The advantage flips on the first instance larger than 100 (namely 141). CMCF-LS does equal to

or better than WalkSAT on all instances larger than 100. The shape of the two curves after 100 is

also similar, which makes sense since the algorithmic framework of random and greedy moves is

common to both.

For the parity learning problems, there is only one instance (par8-1) for which WalkSAT has a

median lower than the 100 million cutoff. On par8-1, the median number of evaluations spent by

WalkSAT is more than 95 times that of CMCF-LS (52,970,392
5,534,32

= 95.7). On par8-5, the best (and the
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Figure 5.8: Number of Evaluations spent by CMCF-LS and WalkSAT on Semiprime Instances. Boxplot
shows the distribution over 50 runs. Lines connect the medians.

only successful) run of WalkSAT needs 3,983,883 evaluations, which is over 150× more than that

of CMCF-LS (26,521 evaluations).

CPU Time. Even though substantial advantage of CMCF-LS over the base solver WalkSAT

in term of number of evaluations has been observed, we doubt this advantage will also turn into

improvement in terms of the raw CPU time. WalkSAT is highly optimized by design [15], and

continues to receive performance optimization updates due to the fact that it is the basis for many

best performing SLS solvers.

Figure 5.10 reports the CPU time comparison between CMCF-LS and WalkSAT on semiprime

factoring instances. We observe that WalkSAT consistently takes less CPU time than CMCF-LS,

confirming our speculation. CMCF-LS, in its current unoptimized form, cannot match the raw

performance of WalkSAT on semiprime factoring instances.

Figure 5.11 represents the CPU time comparison between CMCF-LS and WalkSAT on parity

learning instances. Surprisingly, the unoptimized CMCF-LS can match the performance of the

highly optimized WalkSAT, even in terms of CPU time. On par8-1 for instance, the median CPU

time of CMCF-LS is 1.476 seconds, which is only 40% of 3.635 seconds by WalkSAT.

The empirical results showed the potential of CMCF-LS, even in its present straightforward

and unoptimized form. The simple partitioning method can group many related clauses together

in one group. The constraint preprocessing under the CMCF representation eliminated substantial
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Figure 5.9: Number of Evaluations for CMCF-LS and WalkSAT on parity instances. Boxplot shows the
distribution over 50 runs.

amount of minterms, enabling drastic reduce in search space in the preprocessing step. Moreover,

the reduced search space in CMCF encoding translated into fewer number of evaluation and higher

success rate of SAT solving on two classes of application SAT instances. Finally, the unoptimized

CMCF-LS was able to match the raw performance of the highly optimized WalkSAT, thanks to

CMCF-LS’ superior representation.

5.3 Minterm Interaction Graph for Improving CMCF

Although CMCF showed significant promise in the previous section, it is far from being perfect.

We ultimately hope to make the alternative representation-based local search solver beat not only

the base solver WalkSAT [15] in terms of raw CPU time, but also the best performing SLS solver on

application instances, like AdaptG2WSAT [16]. In this section, we focus on two targets to improve

upon CMCF. The first target is to refine the CMCF representation by increasing the cardinality

of the evaluation function, so that the plateaus would be less troublesome for local search. The

second target is to reduce the CPU time of the alternative representations by sourcing optimization

techniques from CNF representation.
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Figure 5.10: CPU Time spent by CMCF-LS and WalkSAT on Semiprime Instances. Boxplot shows the
distribution over 50 runs. Lines connect the medians.

5.3.1 Increasing the Cardinality of Evaluation Function

One prominent issue that makes local search on SAT hard is the neural landscape that leads to

extensive search on plateaus, which dominates the running time of SLS solvers [134]. One way to

alleviate the neutrality of search landscape is to increase the cardinality of the evaluation. Increasing

the cardinality of the evaluation in expectation gives more gradient information on plateaus, and

potentially leads to faster escape from plateaus.

Theory

Given a function f with discrete outputs, the cardinality of f is the number of its distinct outputs.

We first study the cardinality of the MinVote evaluation function in CMCF-LS:

Lemma 1. Let κi be the number of blocks that contains a given Boolean variable bi, the cardinality

of the MinVote evaluation function in CMCF-LS is
1

2

∑

bi∈B

κi.

Proof. bi receives κi votes during evaluation, divided into pi positive votes and ni negative votes,

where pi + ni = κi. Consider the MinVote evaluation function min(pi, ni) for bi. If pi ≤ ni,

min(pi, ni) = pi, maximum of pi is reached when pi = ni =
κi

2
. This applies similarly to the case

where pi ≥ ni. Therefore, maximum of the MinVote evaluation min(pi, ni) for is κi

2
. Summing over

the maximum for each variable, the maximum output for MinVote evaluation function is 1
2

∑

bi∈B
κi.
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Figure 5.11: CPU Time spent by CMCF-LS and WalkSAT on parity instances. Boxplot shows the distribution
over 50 runs.

Since the MinVote evaluation function can output any integer between 0 and the maximum value

1
2

∑

bi∈B
κi, its cardinality is 1

2

∑

bi∈B
κi (omitting the constant term 1).

The result in Lemma 1 is in line with the intuition that the maximum of evaluation function is

reached when there are equal number of positive votes and negatives.

We now consider the consensus constraints between interacting minterms that share Boolean

variables, which gives rise to provably increased cardinality of evaluation function. We call two

blocks, Mi and Mj , interacts if the two blocks that they share some Boolean variable. We propose a

new, refined representation: Minterm Interaction Graph25.

25It is called “Minterm Interaction Graph” rather than “Block Interaction Graph”. This is because “minterm” is a
well-known and unambiguous term, while “block” is a more general term that can be used in different circumstances.
Moreover, any two minterms, si from Mi and sj from Mj , interact ⇐⇒ Mi and Mj interact.
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Definition 7 (Minterm Interaction Graph (MIG)). Minterm Interaction Graph is a graph, in which

each vertex represent a block and an edge is established between two vertices if they share at least

one Boolean variables.

The representation of a candidate solution in the MIG remains the same as in CMCF. One

minterm is selected from each block. The consensus constraint is now transferred onto the edges

in the MIG. An edge that connects minterms si and sj satisfies the consensus constraint, if the

shared Boolean variables between si and sj are assigned consistently. Notice that there can be

multiple Boolean variable shared across two interacting blocks, even though the goal of partitioning

method is to minimize the number of shared Boolean variables between blocks and to reduce the

interactions between subproblems. Under the MIG representation, the evaluation function, called

EdgeCount, is defined as the number of edges that violate the consensus constraint.

Theorem 7. Let κi be the number of blocks that contains a given Boolean variable bi, and suppose

the number of Boolean variables shared by any two blocks is bounded by a constant σ, the cardinality

of the EdgeCount evaluation function for MIG is at least
1

4σ

∑

bi∈B

κ2
i .

Proof. The vertices (blocks) that containing any given Boolean variable bi forms a clique of size κi

in MIG; this is immediate from Definition 7. Let Vi be the number of violated consensus constraints

in the clique induced by bi. EdgeCount can be computed based on the sum of Vi over all Boolean

variables, i.e.,
∑

bi∈B
Vi. As having multiple inconsistent Boolean variables on one edge is only

counted once in EdgeCount,
∑

bi∈B
Vi overestimates EdgeCount. In the worst case, every violated

consensus constraint is counted exactly σ times in
∑

bi∈B
Vi. Therefore, 1

σ

∑

bi∈B
Vi gives a lower

bound for EdgeCount.

We now consider the maximum for Vi in any candidate solution. In other words, we want to

assign each vertex either true or false in the clique of size κi, such that there are as many edges that

connects two vertices with different labels as possible. This is essentially a graph vertex coloring

problem [178]. A clique of size κi is κi-colorable, which means the maximum for Vi can never be

as large as
(

κi

2

)

for κi > 2. Therefore, we need to remove as few edges as possible (corresponding

to satisfying consensus constraints) in the clique to make the remaining graph becomes 2-colorable.
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In fact, the 2-colorable graphs are exactly the bipartite graphs. Our problem now reduces to

finding a complete bipartite graph on κi vertices, such that number of edges in the bipartite graph is

maximal (an edge in the bipartite graph represents a violated consensus constraint). Let pi (number

of positive votes) be the number of vertices on one side of the complete bipartite graph, and ni

(number of negative votes) be the number of vertices on the other side of the complete bipartite graph.

The number of edges in the complete bipartite is then pi×ni, which is maximized when ni = pi =
κi

2
.

The maximum for Vi is then κ2

i

4
. The maximum for EdgeCount is at least 1

σ

∑

bi∈B
Vi =

1
4σ

∑

bi∈B
κ2
i .

Since the EdgeCount evaluation function can output any integer between 0 and the maximum

1
4σ

∑

bi∈B
κ2
i , the cardinality for EdgeCount function is 1

4σ

∑

bi∈B
κ2
i (omitting the constant term

1).

Comparing the results in Lemma 1 and Theorem 8, we can conclude that EdgeCount in MIG

increases the cardinality of the evaluation than MinVote in CMCF, especially when κi is large and σ

is small. Fortunately, both are true in our case. On one hand, equivalence constraint propagations

(see Subsection 5.2.3) replace the all (negative) equivalent variables using a representative variable,

resulting in increase κi for the Representative Boolean variable. On the other hand, σ is limited to

6 in the greedy partitioning method we used (see Subsubsection 5.2.2). In practice, we find that

the number of Boolean variables shared across two blocks is mostly 1, seldom 2, and never more

than 2. σ is very small (for example, 2) in practice. Both the large κi and the small σ enhance the

advantage of EdgeCount over MinVote in terms of cardinality.

Local Search over MIG. We now discuss how to perform local search over the refined repre-

sentation MIG. First generate a random initial vector of minterms, one minterm from each block.

With fixed probability p, a greedy move is perform: randomly choose an inconsistent edge e. Select

the minterm greedily from both vertices adjacent to e such that it yields the best evaluation. Or, with

probability (1− p), a random force move is performed: randomly choose an inconsistent Boolean

variable v, and force all vertices containing v to a randomly chosen Boolean value. We call this

local search Gforce.
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M1

b1 b2 b3
0 0 0
1 0 1
0 1 0
1 1 0

⇐⇒M2

b2 b3 b4
1 0 0
0 1 1
0 1 0
1 1 1

Figure 5.12: An example illustrating arc consistency propagation. Each row represents a satisfying minterm
to the block.

Arc Consistency Propagation. Modeling the interaction between minterms using MIG inspires

us to introduce a third constraint propagation to MIG, Arc Consistency Propagation. The concept

of arc consistency is borrowed from the Constraint Satisfaction Problem (CSP) community [179].

Definition 8 (Arc Consistency). Let Si (or Sj) be set of all satisfying minterms to block Mi (or Mj),

an edge (Mi,Mj) in MIG is arc consistent, if for each sα ∈ Si there is some sβ ∈ Sj such that

(sα, sβ) satisfies the consensus constraint on edge (Mi,Mj), and vice versa.

Any minterm that is not arc-consistent can never yield a valid solution, and thus can be eliminated.

Arc Consistency Propagation is the process of eliminating minterms that are not arc consistent, until

the all edges in the MIG are arc consistent. Together with Constraint Propagation and Equivalency

Constraint Propagation (see Subsection 5.2.3), the three constraint propagations are all repeated

successively, until no more minterm can be eliminated.

In Figure 5.12, M1 and M2 share two Boolean variables b2 and b3. There is no corresponding

minterm from M2 to work with b1 ∧ b2 ∧ b3 from M1 to satisfy the consensus constraint between

M1 and M2. Therefore, no valid solution can possibly contain the minterm b1 ∧ b2 ∧ b3, and it can

be eliminated from M1. Similarly, b1 ∧ b2 ∧ b3 can also be eliminated from M2.

Empirical Results

The local search operations used by Gforce is very similar to the ones in CMCF-LS, both

following the framework of WalkSAT. In fact, the random move in Gforce and CMCF-LS are

identical, i.e., forcing all blocks containing a randomly chosen Boolean variable bi to reach a

consensus state on a random truth assignment. The greedy moves in Gforce and CMCF-LS, on the
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other hand, are conceptually similar. Both select the best available minterm that yields the highest

improvement in the evaluation function. The major difference between Gforce and CMCF-LS is

therefore the definition of evaluation function. We have shown that the evaluation function in Gforce

has a provably higher cardinality than the one in CMCF-LS. The question now becomes whether

the increased cardinality will improve performance.

We perform empirical study to address the question. For a fair comparison we also intro-

duce the arc consistency propagation to CMCF-LS. CMCF-LS and Gforce are then compared on

semiprime factoring instances and parity learning instances in terms of success rate and the number

of evaluations using the same 100 million evaluation cutoff.

Effectiveness of Search. Similar to the experimental protocol in Subsection 5.2.5, the success

rates of the 50 runs are used for measuring the effectiveness of search. Figure 5.13 reports the

empirical results. Thanks to the increased cardinality of evaluation function, Gforce vastly and

consistently improves over the success rate of CMCF-LS. For instance, Gforce solves the largest

semiprime factoring instance (factoring 3599) reliably in all 50 runs, whereas CMCF-LS can solve it

in only 3 out of 50 runs. The advantage of Gforce over CMCF-LS becomes more pronounced as the

instances get larger. On the 5 parity learning instances, we found that both CMCF-LS and Gforce

can consistently solve the all instances in all 50 runs. We next look at the number of evaluations to

compare the two SLS solvers to learn which one requires less computational resources to solve the

instances.

Number of Evaluated Candidate Solutions. Figure 5.14 shows a more detailed picture on

the improvement of Gforce of CMCF-LS on semiprime factoring instances. We observe that the

median of the number of evaluations by Gforce stay well below CMCF-LS on most instances. The

advantage of Gforce over CMCF-LS in terms of number of evaluations can be up to one order of

magnitude.

Despite the fact that both CMCF-LS and Gforce can solve all 5 parry learning instances reliably

in all 50 runs, Figure 5.15 reveals that Gforce still uses less median number of evaluations on 4 out

of the 5 parity learning instances than CMCF-LS.
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Figure 5.13: Success Rate on 50 Semiprime Factoring Problem Instances. The two trend curves are
constructed using local polynomial regression fitting.
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Figure 5.14: Number of Evaluations spent by CMCF-LS and Gforce on Semiprime Instances. Boxplot
shows the distribution over 50 runs. Lines connect the medians.
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Figure 5.15: Number of Evaluations for CMCF-LS and Gforce on parity instances. Boxplot shows the
distribution over 50 runs.

We have demonstrated that, by increasing the cardinality of evaluation function using MIG,

Gforce shows significant improvement over CMCF-LS in terms of number of evaluations needed to

solve an instance. In practice, however, the performance of a SAT solver is often measured by the

raw CPU time. In the next subsection, we will study how to improve the raw CPU time, for the

purpose of competing Gforce with the most advanced CNF-based SLS solvers.

5.3.2 Reducing Running Time with Partial Updates

Theory

As SAT solvers in practice are usually measured by the raw CPU time needed to solve an

instance, the best performing SLS solvers for SAT are usually highly optimized with respect to the

running time. GSAT [14] is one of the first SLS SAT solvers; it has a significant impact on the

design and implementation of a wide range of SAT solvers. GSAT always randomly select a variable

that minimize the number of unsatisfied clauses. One key aspect of an efficient implementation of

GSAT is caching and updating the variable score vector (i.e., the gradient with respect to current

candidate solution under one-bit flip neighborhood) that form the basis for selecting the variable to
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be flipped in each search step. A naive implementation requires scanning and evaluating all Θ(n)

variables, in which every evaluation takes Θ(n) time. The time complexity for taking one move

in a naive implementation is therefore Θ(n2) (see Section 6.2 in [131]). Maintaining the variable

score vector eliminates the need for scanning every variable for selecting the best move. Given

the number of occurrence of any variable is bounded by a constant, (approximate) best improving

moves can be identified in Θ(1) rather than Θ(n2) in an naive implementation [132].

In the case of Gforce, maintaining a score vector is not immediately obvious, due to nature of

MIG representation being rather different from the canonical CNF representation. As a first step,

we introduce a straightforward optimization to Gforce, called partial update, to reduce the running

time of evaluating candidate solutions.

Recall that the evaluation function in Gforce is the number of edges that violates the consensus

constraint. A naive implementation iterates over all edges to check whether their corresponding

consensus constraints are violated (see Algorithm 3). Let E be the number of edges in a given MIG.

Evaluating a candidate solution in the naive implementation takes Θ(E) time.

Algorithm 3 A naive implementation of the evaluation function EdgeCount
1: Inputs: A MIG: G

A candidate solution: S
2: Outputs: The EdgeCount evaluation of S: edgeCount
3: edgeCount← 0
4: for e ∈ Edges(G) do

5: if ViolateConsensusConstraint(e, S) then edgeCount← edgeCount + 1

6: return edgeCount

Evaluating a candidate solution with partial update instead only checks the adjacent edges to the

blocks that change their selected minterms. Algorithm 4 gives the pseudo code for implementing

EdgeCount using partial update. The idea is that the new evaluation after changing a minterm are

computed on the basis of the old evaluation, rather than computing the evaluation every time from

scratch. Partial update requires the evaluation of the old candidate solution before the minterm

changes. Partial update is achieved by adding “breaks” (constraints that were previously satisfied and
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now violated, see line 3 of Algorithm 4) and subtracting “makes” (constraints that were previously

unsatisfied and now satisfied, see line 6 of Algorithm 4). Calculating “makes” and “breaks” after

each move requires keeping track of consensus constraint violation status for every edge. The

Boolean vector V is maintained for this purpose.

Algorithm 4 An improved implementation of the evaluation function EdgeCount using partial
update

1: Inputs: A MIG: G
The EdgeCount evaluation of the old candidate solution before changing the selected
minterm in block m: oldEdgeCount
The new candidate solution after changing the selected minterm in m: S
The vector of consensus constraint violation flags for every edge: V

2: Outputs: The EdgeCount evaluation of S
3: edgeCount← oldEdgeCount
4: for e ∈ IncidentEdges(m, G) do

5: if ViolateConsensusConstraint(e, S) and V [e] = false then

6: edgeCount← edgeCount + 1
7: V [e]← true
8: else if not ViolateConsensusConstraint(e, S) and V [e] = true then

9: edgeCount← edgeCount - 1
10: V [e]← false

11: return edgeCount

Comparing Algorithm 4 with Algorithm 3 shows that the running time reduction with partial

update is achieved by only checking the edges incident to the changed minterm. Lemma 2 rigorously

addresses the correctness of this running time reduction technique.

Lemma 2. After changing the selected minterm in a block m, only the edges incident to m in the

MIG can change their consensus constraint violation statuses.

Proof. Proof by contradiction. Assume e′ is an edge that is not incident to m and changes its

consensus constraint violation status after m selects a different minterm. Since e′ changes its

constraint violation status, at least one of two blocks incident to e′ must have changed their selected

minterm. As m is the only block among all blocks that changes its selected minterm, m is incident

to e′. This is a contradiction to our assumption.
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We now study how focusing on checking the edges incident to the changed minterm, as in

line 2 of Algorithm 4, gives rise to an asymptotic improvement in time complexity for evaluating

a candidate solution. As the number of incident edges to a block can vary depending on the

connectivity of the MIG, we conduct an amortized analysis over several iterations of Gforce under a

mild assumption.

Theorem 8. Let β be number of blocks in a given MIG G with E edges, and c be a constant, where

1 < c < β. Suppose in a sequence of µ (µ > β) iterations, each block is changed at most κ times,

where κ be a constant that satisfies
µ

β
< κ < c

µ

β
. The amortized number of checked edges over µ

iterations using partial update is O(E
β
).

Proof. Let us first consider a simpler case, where each minterm changes exactly once in a sequence

of β iterations, the number of checked edges using partial update is

∑

m∈M

deg(m) = 2E, (5.3)

where deg(m) is the degree of vertex (block) m in G.

Now consider the extreme case where every block changes exactly κ times. This requires more

than µ moves (i.e., κβ > µ), because there are β blocks. The extreme case thus gives an upper

bound on the running time cost of µ iterations. The number of checked edges in the extreme case is

∑

m∈M

κ× deg(m) = 2κE < 2c
µ

β
E. (5.4)

Amortizing the cost over µ evaluations, the number of checked edges in the extreme case is

O(
2cµE

β
×

1

µ
) = O(

2cE

β
) = O(

E

β
).

Recall that the naive implementation requires checking Θ(E) edges. Using partial update, which

checks O(E
β
), clearly yields an asymptotic improvement over the naive implementation. We next

demonstrate via empirical study how the asymptotic improvement turns into practical performance

in terms of CPU time.
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Empirical Results

In previous empirical study, we only compare the SLS solvers based on the alternative repre-

sentations against the base solver WalkSAT. As the search operators in CMCF-LS and Gforce are

both based on the framework of WalkSAT, the empirical comparison highlights the utility of the

alternative representations, i.e., effectively reducing the number of evaluated candidate solutions to

solve an application instance. Also recall that CMCF-LS in its naive implementation was unstable

to match the raw performance of the highly optimized WalkSAT in terms of CPU time (see Subsec-

tion 5.2.5). Since the introduction of the partial update technique, we evaluate Gforce on semiprime

factoring instances, to study how Gforce equipped with a straightforward optimization technique

stands against the highly optimized CNF-based WalkSAT, in terms of CPU time. Moreover, we also

compare the mildly optimized Gforce against three best performing SLS solvers on application SAT

instances: SAPS [39], AdaptG2WSAT [16] and Sparrow [40].

SAPS has been considered as one of the best performing local search solver on structured

benchmarks [152]. AdaptG2WSAT won several medals in SAT competitions. It won silver and

bronze medals in 2007 SAT competition, and bronze medal in 2009 SAT competition. Sparrow won

the Random SAT track from the SAT Competition 2011, and was also the best performing SLS in

the crafted SAT track and application SAT track of SAT competition 2014. We use the UBCSAT

(version v1.2beta18) [17] implementation, the most efficient implementation that we are aware of,

in our empirical study.

As the SLS solvers in this study are much more powerful now, we generate 27 larger semiprime

factoring instances. Before going into the details of how the 27 instances are selected, we need to

address the relationship between semiprime to factor and the number of Boolean variables needed to

encode the semiprime factoring problem in CNF representation. Figure 5.16 show the relationship

for all semiprimes up to 65509. It appears like a step function; we only need more variables to

encode the problem when the semiprime surpasses a certain point. There are only 9 discrete levels

for number of Boolean variables, which divides the semiprimes into 9 groups. Assuming the number
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Figure 5.16: Relationship between semiprime to factor and the number of Boolean variables needed to
encode the semiprime factoring problem in the CNF representation.

of Boolean variables indicates the difficulty of the problem, we randomly sample 3 instances from

each of the 9 groups, resulting in 27 instances.

We run the 4 CNF-based SLS solvers and Gforce on the 27 instances for 10 runs, each run is

limited to one hour, and record the CPU time spent by each solver to solve the instance. The success

rate out of the 10 runs for each solver is reported in Figure 5.17. Using the simple framework of

WalkSAT and the straightforward optimization, Gforce outperforms 3 highly efficient SLS solvers

(WalkSAT, SAPS and AdaptG2WSAT ) on the semiprime factoring, and matches the performance

of the recent winner of SAT competitions (Sparrow). Gforce and Sparrow consistently solve all 27

instances in every of the 10 runs within the one hour limit. WalkSAT, which SLS framework is the

basis for Gforce, already cannot reliably solve the instance of semiprime 1673 in all 10 runs, and fail

to solve instance of any semiprime larger than 5951 in any of the 10 runs. Gforce demonstrates very
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good capability at solving semiprime factoring problems, which rivals the recent SAT competition

winner Sparrow, despite its simple form and straightforward optimization.

Now that both Gforce and Sparrow can both reliably all 27 factoring instances, we next study

which one solves them faster. Figure 5.18 reports a comparison on the CPU time spent by Gforce and

the 4 CNF-based rivals. The CPU time distribution boxplots demonstrate an even more pronounced

lead of Gforce over its based solver WalkSAT. WalkSAT starts to fail to solve the instance factoring

semiprime 1673 with the one hour limit, while the median CPU time for Gforce to solve the same

instance is just 0.49 seconds. The instance factoring 5951 is the first one that WalkSAT cannot solve

in any of the 10 runs, while Gforce reliably solves the same instance with median CPU time of 7.06

seconds. Compared with SAPS and AdaptG2WSAT , Gforce not only solves more instances, but

also solves the instances faster. On instances where both SAPS and AdaptG2WSAT have a median

solving time lower than the one hour limit, the speedup of Gforce in terms of median solving time

is up to 129× over AdaptG2WSAT , and up to 21× over SAPS. Finally, Gforce is neck and neck

with the recent competition winner Sparrow. In term of median solving time, Gforce is faster than

Sparrow on 13 out of 27 instances. What is encouraging is that Gforce is actually 6.17× faster than

Sparrow on the instance factoring the largest semiprime in our experiment 44003.

The empirical results have shown that, despite the fact that the time complexity per evaluation

O(E
β
) is not as good as O(1) in many highly optimized CNF-based solver and that the current

local search frame in Gforce is just as straightforward as in WalkSAT, Gforce manages to beat

its base solver WalkSAT, two good performing SLS solvers on application instances SAPS and

AdaptG2WSAT , and competes well with the winner of several recent SAT competitions Sparrow.

The encouraging results highlight the utility of the alternative representation MIG for improving

the performance of the SLS solvers on application instances, and also leave considerable room for

further improvement.
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Chapter 6

Conclusion and Future Work

Systematic Search (SS) solvers have been exploiting various structural properties with success

on application instances. Stochastic Local Search (SLS) solvers, on the hand, drop their performance

drastically on application instances. We hypothesize that SLS solvers can be improved by leveraging

structural properties on application instances. We focus on two structural properties of SAT instances

in this work: variable interaction topology and subproblem constrainedness. By analyzing and

exploiting the two structural properties, we have successfully improve upon the state-of-art SLS

solvers on a diverse set of application instances. Despite the promising results we have achieved

by exploiting structural properties, there are various ways the current line of work can be further

improved.

6.1 Future Work

6.1.1 Partition Crossover for SLS SAT Solvers

Our promising pilot work in Chapter 4 on improving SLS SAT solvers with Partition Crossover

(PX) opens up many interesting future directions that requires further investigation. PX takes linear

time to decompose the VIGs, as it is currently employing a top-down approach for decomposition.

The current PX starts from the original VIG and removes the vertices whose assignment is shared

among local optima. As an alternative, we can construct the decomposition in a bottom-up manner

by tracking how the second parent deviates from the first parent, and incrementally add vertices to

the recombination graph. This could potentially result in a reduction of the time complexity from

O(n) to O(1).

In addition, we have learned from our empirical studies that there is a bell-shape relationship

between α and the number of components. Finding the optimal setting of α can be achieved by

performing golden section search that successively narrows the range containing the optimal α.
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6.1.2 Local Search over Minterm Interaction Graphs

As shown in Chapter 5, Minterm Interaction Graph (MIG) is a promising presentation alternative

to the canonical CNF representation in improving the performance of SLS solvers on application

SAT instances. We also identify several ways to further explore the utility of MIG.

Comparison with Preprocessors

Using minterms as the infrastructure allows multiple straightforward and yet effective constraint

propagations for reducing search space. Although the constraint propagations techniques are natural

components of Gforce, they can also be viewed as a preprocessor since they are only invoked once

upfront. Preprocessors also exist for CNF representation that usually involve unit propagation and

resolution. It would be interesting to address the following questions:

1. Is the advantage of Gforce over WalkSAT a result of the use of the preprocessor in Gforce?

2. Can the minterm-based preprocessor complement the CNF-based preprocessor to further

reduce the search space?

The first question can be answered by incorporating CNF-based preprocessors into WalkSAT.

One can test two wide-used CNF-based preprocessors: SatElite [102] and Coprocessor [153]. One

can compare the Gforce and WalkSAT equipped with the preprocessors in terms of success rate

and CPU time on the semiprime factoring instances and parity learning instances. We expect to

understand how much the preprocessors can lift the performance of WalkSAT and whether WalkSAT

can beat Gforce with the help of the CNF-based preprocessors.

The second question can be addressed by running both the minterm-based preprocessor and CNF-

based preprocessors and comparing the result with the one using only CNF-based preprocessors.

One can also investigate which preprocessor should be invoked first. The utility of the hybrid

preprocessor can be evaluated in two metrics: the size of the formula after preprocessing, and the

total running time of the solver including the preprocessing phase.
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Transferring Advanced Techniques in CNF-based SLS Solvers

Despite the simple local search framework inherited from WalkSAT and the straightforward

optimization with partial update, Gforce already outperforms several highly optimized SLS solvers

and rivals the best performing CNF-based SLS solver Sparrow, thanks to the power of the alternative

representation MIG. Meanwhile, Li and Huang [164] point out that the greedy move in WalkSAT

can possibly select an unsatisfied clause that only contains disimproving move, even though improve

moves are available in other clauses. G2WSAT [164] enhances the greedy move of WalkSAT by

employing a gradient-based approach that guarantees to find all improving moves efficiently. In fact,

Whitley, Howe and Hains show that approximate best improving move and first improving move

can be identified in constant time [132]. Empirical results confirm that G2WSAT is substantially

better than WalkSAT on a wide variety of problem instances.

The limitation of the greedy move in WalkSAT still remains in the MIG representation; Gforce

can possibly select an edge whose incident vertices containing no improving minterm. We can

introduce the gradient-based greedy move from G2WSAT to Gforce to unleash more potential of

the MIG representation.

Implementing the gradient-based greedy move in MIG is non-trivial. Let n be the number of

Boolean variables in a given instance. The neighborhood in CNF representation is simply all n

variables. The gradient-based method allows efficient identification of improving moves among the

n neighbors. It is achieved by maintaining a score vector of size n, in which every element stores the

change in evaluation function upon moving towards a neighbor. In case of MIG representation, the

neighborhood has a two-level structure: first selecting a block, and then selecting a minterm from

that block. We can flatten two-level structure. Let Si be set of all satisfying minterms to a block Mi,

there are (|Si| - 1) neighbors associated with Mi (excluding the currently selected minterm). The

size of total neighborhood (i.e., the length of score vector in MIG) is
∑

Mi∈P

(|Si|−1) =
∑

Mi∈P

|Si|−P .

After introducing gradient-based greedy move, we expect Gforce to enhance its success on

semiprime factoring instances, possibly outperforms the recent competition winner Sparrow. In

fact, G2WSAT is one of major components in Sparrow. Implementing gradient-based greedy move
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in Gforce also sets a foundation for bringing more advanced techniques from Sparrow to the MIG

representation.

Better Partitioning

The future work in Subsection 6.1.2 is expected to enhance the success of Gforce in the current

benchmarks, namely semiprime factoring instances and parity learning instances. We can potentially

extend the success of MIG to more application instances.

We are currently using a simple greedy partitioning method (see Subsubsection 5.2.2). It is a

reasonable starting point, given that we have seen natural blocking in several application instance

classes. However, if the clauses belonging to one block are scattered across the instances, the greedy

partitioning method will probably fail to group them into one block. To resolve this issue and to make

the minterm-based alternative representation more applicable, we can formulate the partitioning

of CNF clauses as a clustering problem. We define the distance between two CNF clauses as the

number of different variables, i.e., dist = (V ars(ci) \ V ars(cj))
⋃

(V ars(cj) \ V ars(ci)). For

example, when two clauses involves the exact same set of variables, the distance between them is

zero. We can then run adaptive k-means [180, 181] to partition the CNF clause set in a principled

fashion. Even though exact k-means clustering is NP-hard [182], efficient heuristic algorithms exist.

In practice, Lloyd’s algorithm is considered to be of linear time complexity [183].

The new clustering formulation of the partitioning problem also allows removing the limitation

that every block contains at most 6 variables. We have observed in several application instance

classes (e.g., crypto-sha instances in the industrial track of 2014 SAT competition) that contain

natural blocks with more than 6 variables. On such cases, the current greedy partition method

will disrupt the natural blocks by breaking long clauses into smaller clauses such that each smaller

clauses containing at most 6 variables. The clustering-based approach instead preserves the natural

blocking structure and is capable of grouping the long clauses into the same block for minterm

enumeration, as they all shared the same set of variables.
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Finally, the clustering formulation leads to a hybrid representation that allows CNF clauses

to co-exist with minterm-based blocks. Ansótegui, María and Levy reports that the CNF clause

length in application instances typically follow a power law distribution, where a small number of

exponentially long clauses exist [27]. In expectation, such exponentially long clauses are easier to

satisfy; setting any literal to true among the many literals in the clauses is sufficient. As a result, it

makes more sense to keep the long clauses as they are, rather than breaking them into fixed-length

clauses and enumerating the numerous minterms associated with them. With hybrid representation,

local search is performed in the minterm-based blocks only. Whenever a solution is found, it is

checked against the CNF clauses. Only if the solution also satisfies the CNF long clauses, it is a

valid solution to the original formula.
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219–226. Springer International Publishing, Cham, 2014.

[9] Boris Konev and Alexei Lisitsa. Computer-aided proof of erdos discrepancy properties.

Artificial Intelligence, 224:103 – 118, 2015.

[10] David S. Johnson and Michael A. Trick. Satisfiability Suggested Format. In Second DIMACS

Implementation Challenge, 1992.

117



[11] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-

proving. Commun. ACM, 5(7):394–397, July 1962.

[12] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Annual Design

Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

[13] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia and

Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, volume 2919

of Lecture Notes in Computer Science, pages 502–518. Springer Berlin Heidelberg, 2004.

[14] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard satisfia-

bility problems. In Proceedings of the Tenth National Conference on Artificial Intelligence,

AAAI’92, pages 440–446. AAAI Press, 1992.

[15] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search.

In Proceedings of the Twelfth National Conference on Artificial Intelligence (vol. 1), AAAI

’94, pages 337–343, Menlo Park, CA, USA, 1994. American Association for Artificial

Intelligence.

[16] Chu Min Li, Wanxia Wei, and Harry Zhang. Combining adaptive noise and look-ahead

in local search for SAT. In João Marques-Silva and Karem A. Sakallah, editors, The 10th

International Conference on Theory and Applications of Satisfiability Testing, volume 4501

of Lecture Notes in Computer Science, pages 121–133. Springer, 2007.

[17] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation and experimenta-

tion environment for SLS algorithms for SAT and MAX-SAT. In Revised Selected Papers

from the Seventh International Conference on Theory and Applications of Satisfiability

Testing (SAT 2004), pages 306–320, 2005.

[18] Shaowei Cai and Kaile Su. Configuration checking with aspiration in local search for sat,

2012.

118



[19] Hans van Maaren and John Franco. The International SAT Competitions Webpage. http:

//www.satcompetition.org/.

[20] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard Problems

Are. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,

IJCAI-91, Sydney, Australia, pages 331–337, 1991.

[21] Ian P Gent and Toby Walsh. The sat phase transition. In ECAI, volume 94, pages 105–109.

PITMAN, 1994.

[22] Remi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror Troyansky.

Determining computational complexity from characteristic ‘phase transitions’. Nature,

400(6740):133–137, July 1999.

[23] Henry Yuen and Joseph Bebel. ToughSAT Generation. https://toughsat.appspot.com/, 2011.

Accessed: April 11th, 2016.

[24] Norbert Manthey. Generating clique coloring problem formulas. In Anton Belov, Daniel

Diepold, Marijn J.H. Heule, and Matti Järvisalo, editors, Proceedings of SAT Competition

2014, volume B-2014-2 of Department of Computer Science Series of Publications B, page 89.

University of Helsinki, Helsinki, Finland, 2014.

[25] Chu-Min Li and Bing Ye. Sat-encoding of step-reduced md5. In Anton Belov, Daniel

Diepold, Marijn J.H. Heule, and Matti Järvisalo, editors, Proceedings of SAT Competition

2014, volume B-2014-2 of Department of Computer Science Series of Publications B, page 94.

University of Helsinki, Helsinki, Finland, 2014.

[26] Carla Gomes and Toby Walsh. Randomness and structure. Handbook of Constraint Pro-

gramming, pages 639–664, 2006.

[27] Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. On the structure of industrial sat in-

stances. In International Conference on Principles and Practice of Constraint Programming,

pages 127–141. Springer, 2009.

119

http://www.satcompetition.org/
http://www.satcompetition.org/
https://toughsat.appspot.com/


[28] Ignasi Abío Roig et al. Solving hard industrial combinatorial problems with SAT. PhD thesis,

Universitat Politècnica de Catalunya, 2013.

[29] Eyal Amir and Sheila McIlraith. Partition-based logical reasoning for first-order and proposi-

tional theories. Artificial intelligence, 162(1):49–88, 2005.

[30] Vijay Durairaj and Priyank Kalla. Guiding cnf-sat search via efficient constraint partitioning.

In Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design,

pages 498–501. IEEE Computer Society, 2004.

[31] Alan M Frisch, Timothy J Peugniez, Anthony J Doggett, and Peter W Nightingale. Solving

non-boolean satisfiability problems with stochastic local search: A comparison of encodings.

Journal of Automated Reasoning, 35(1-3):143, 2005.

[32] Steven David Prestwich. CNF Encodings. Handbook of Satisfiability, 185:75–97, 2009.

[33] Bart Selman, Henry Kautz, and David McAllester. Ten challenges in propositional reasoning

and search. In Proceedings of the 15th International Joint Conference on Artifical Intelligence

- Volume 1, IJCAI’97, pages 50–54, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc.

[34] Henry Kautz and Bart Selman. Ten challenges redux: Recent progress in propositional

reasoning and search. In Principles and Practice of Constraint Programming–CP 2003,

pages 1–18. Springer, 2003.

[35] Zack Newsham, William Lindsay, Vijay Ganesh, Jia Hui Liang, Sebastian Fischmeister, and

Krzysztof Czarnecki. Satgraf: Visualizing the evolution of sat formula structure in solvers. In

International Conference on Theory and Applications of Satisfiability Testing, pages 62–70.

Springer, 2015.

[36] Eyal Amir and Sheila Mcilraith. Solving satisfiability using decomposition and the most

constrained subproblem. In in LICS workshop on Theory and Applications of Satisfiability

Testing (SAT, 2001.

120



[37] Wenxiang Chen and Darrell Whitley. Decomposing sat instances with pseudo backbones.

In Bin Hu and Manuel López-Ibáñez, editors, Evolutionary Computation in Combinatorial

Optimization: 17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands,

April 19-21, 2017, Proceedings, pages 75–90, Cham, 2017. Springer International Publishing.

[38] Wenxiang Chen, L. Darrell Whitley, Adele E. Howe, and Brian Goldman. Stochastic

local search over minterms on structured SAT instances. In Jorge A. Baier and Adi Botea,

editors, Proceedings of the Ninth Annual Symposium on Combinatorial Search, SOCS 2016,

Tarrytown, NY, USA, July 6-8, 2016., pages 125–126. AAAI Press, 2016.

[39] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic smooth-

ing: Efficient dynamic local search for sat. In Proceedings of the 8th International Conference

on Principles and Practice of Constraint Programming, CP ’02, pages 233–248, London,

UK, UK, 2002. Springer-Verlag.

[40] Adrian Balint and Andreas Fröhlich. Improving stochastic local search for sat with a

new probability distribution. In International Conference on Theory and Applications of

Satisfiability Testing, pages 10–15. Springer, 2010.

[41] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic solution of

random satisfiability problems. Science, 297(5582):812–815, 2002.

[42] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distributions of sat

problems. In AAAI, volume 92, pages 459–465, 1992.

[43] Philip Kilby, John Slaney, Sylvie Thiébaux, Toby Walsh, et al. Backbones and backdoors in

satisfiability. In AAAI, volume 5, pages 1368–1373, 2005.

[44] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of hard

3-sat formulae. In IJCAI, volume 1, pages 248–253, 2001.

121



[45] Eric I. Hsu, Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith. Probabilistically

Estimating Backbones and Variable Bias: Experimental Overview, pages 613–617. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008.

[46] Eric I Hsu and Sheila A McIlraith. Varsat: Integrating novel probabilistic inference techniques

with dpll search. In International Conference on Theory and Applications of Satisfiability

Testing, pages 377–390. Springer, 2009.

[47] Weixiong Zhang, Ananda Rangan, and Moshe Looks. Backbone guided local search for

maximum satisfiability. In Georg Gottlob and Toby Walsh, editors, Proc. International Joint

Conference on Artificial Intelligence (IJCAI), pages 1179–1186. Morgan Kaufmann, 2003.

[48] Weixiong Zhang. Configuration landscape analysis and backbone guided local search: part i:

Satisfiability and maximum satisfiability. Artificial Intelligence, 158:1–26, September 2004.

[49] Mikoláš Janota, Inês Lynce, and Joao Marques-Silva. Algorithms for computing backbones

of propositional formulae. AI Communications, 28(2):161–177, 2015.

[50] Don Batory. Feature models, grammars, and propositional formulas. In International

Conference on Software Product Lines, pages 7–20. Springer, 2005.

[51] Toby Walsh and John Slaney. Backbones in optimization and approximation. In Proceedings

of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), 2001.

[52] Andrew J Parkes. Clustering at the phase transition. In AAAI/IAAI, pages 340–345. Citeseer,

1997.

[53] Josh Singer, Ian P. Gent, and Alan Smaill. Backbone fragility and the local search cost peak.

Journal of Artificial Intelligence Research (JAIR), 12:235–270, 2000.

[54] Chu Min Li and Anbulagan Anbulagan. Heuristics based on unit propagation for satisfiability

problems. In Proceedings of the 15th international joint conference on Artifical intelligence-

Volume 1, pages 366–371. Morgan Kaufmann Publishers Inc., 1997.

122



[55] Gilles Dequen and Olivier Dubois. Kcnfs: An efficient solver for random k-sat formulae. In

International Conference on Theory and Applications of Satisfiability Testing, pages 486–501.

Springer, 2003.

[56] Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. In

IJCAI, volume 3, pages 1173–1178. Citeseer, 2003.

[57] Stefan Szeider. Backdoor sets for dll subsolvers. Journal of Automated Reasoning, 35(1-

3):73–88, 2005.

[58] Lionel Paris, Richard Ostrowski, Pierre Siegel, and Lakhdar Sais. Computing horn strong

backdoor sets thanks to local search. In 2006 18th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI’06), pages 139–143. IEEE, 2006.

[59] Zijie Li and Peter Van Beek. Finding small backdoors in sat instances. In Canadian

Conference on Artificial Intelligence, pages 269–280. Springer, 2011.

[60] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with

respect to horn and binary clauses. SAT, 4:96–103, 2004.

[61] Bistra Dilkina, Carla P Gomes, and Ashish Sabharwal. Tradeoffs in the complexity of

backdoor detection. In International Conference on Principles and Practice of Constraint

Programming, pages 256–270. Springer, 2007.

[62] Carla P Gomes, Bart Selman, Henry Kautz, et al. Boosting combinatorial search through

randomization. AAAI/IAAI, 98:431–437, 1998.

[63] Bart Selman Ryan Williams, Carla Gomes. On the connections between heavy-tails, back-

doors, and restarts in combinatorial search. In SAT, 2003.

[64] Yannet Interian. Backdoor sets for random 3-sat. In SAT, pages 231–238, 2003.

[65] Yongshao Ruan, Henry A Kautz, and Eric Horvitz. The backdoor key: A path to understand-

ing problem hardness. In AAAI, volume 4, pages 118–123, 2004.

123



[66] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed phenomena

in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning,

24(1/2):67–100, 2000.

[67] Stephan Kottler, Michael Kaufmann, and Carsten Sinz. A new bound for an np-hard subclass

of 3-sat using backdoors. In International Conference on Theory and Applications of

Satisfiability Testing, pages 161–167. Springer, 2008.

[68] Marko Samer and Stefan Szeider. Backdoor trees. In AAAI, volume 8, pages 13–17, 2008.

[69] Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In The Multivariate Algorithmic

Revolution and Beyond, pages 287–317. Springer, 2012.

[70] Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Živny.

Backdoors into heterogeneous classes of sat and csp. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence, pages 2652–2658. AAAI Press, 2014.

[71] Steven David Prestwich. Variable dependency in local search: Prevention is better than cure.

In João Marques-Silva and Karem A. Sakallah, editors, Proceesing of The International

Conferences on Theory and Applications of Satisfiability Testing, volume 4501 of Lecture

Notes in Computer Science, pages 107–120. Springer, 2007.

[72] Henry Kautz, David McAllester, and Bart Selman. Exploiting variable dependency in local

search. In Proceeding of Poster Sessions of the Fifteenth International Joint Conference on

Artificial Intelligence, 1997.

[73] G.S. Tseitin. On the complexity of derivation in propositional calculus. In JörgH. Siekmann

and Graham Wrightson, editors, Automation of Reasoning, Symbolic Computation, pages

466–483. Springer Berlin Heidelberg, 1983.

[74] Joao Marques-Silva. Search algorithms for satisfiability problems in combinational switching

circuits. PhD thesis, University of Michigan, 1995.

124



[75] Christos H Papadimitriou. On selecting a satisfying truth assignment. In Proceedings of

32nd Annual Symposium on Foundations of Computer Science, pages 163–169. IEEE, 1991.

[76] Henry Kautz and Bart Selman. The state of SAT. Discrete Applied Mathematics,

155(12):1514 – 1524, 2007.

[77] Jérome Lang and Pierre Marquis. Complexity results for independence and definability in

propositional logic. KR, 98:356–367, 1998.

[78] James M Crawford and Larry D Auton. Experimental results on the crossover point in

random 3-sat. Artificial intelligence, 81(1):31–57, 1996.

[79] Duc Nghia Pham, John Thornton, and Abdul Sattar. Building Structure into Local Search for

SAT. In Proceedings of the 20th International Joint Conference on Artificial Intelligence,

volume 7, pages 2359–2364, 2007.

[80] Duc Nghia Pham, John Thornton, and Abdul Sattar. Efficiently Exploiting Dependencies

in Local Search for SAT. In Proceedings of the Twenty-Third Conference on Artificial

Intelligence, pages 1476–1478, 2008.

[81] Holger H. Hoos. An adaptive noise mechanism for WalkSAT. In Rina Dechter and Richard S.

Sutton, editors, AAAI/IAAI, pages 655–660. AAAI Press / The MIT Press, 2002.

[82] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recovering and

exploiting structural knowledge from cnf formulas. In International Conference on Principles

and Practice of Constraint Programming, pages 185–199. Springer, 2002.

[83] James M Crawford, Michael J Kearns, and RE Shapire. The minimal disagreement parity

problem as a hard satisfiability problem. Computational Intell. Research Lab and AT&T Bell

Labs Technical Report, 1994.

[84] Fahiem Bacchus and Jonathan Winter. Effective preprocessing with hyper-resolution and

equality reduction. In Enrico Giunchiglia and Armando Tacchella, editors, Theory and

125



Applications of Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science,

pages 341–355. Springer Berlin Heidelberg, 2004.

[85] Éric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar Saïs. Automatic extraction

of functional dependencies. In International Conference on Theory and Applications of

Satisfiability Testing, pages 122–132. Springer, 2004.

[86] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Information Processing Letters,

8(3):121–123, 1979.

[87] Irina Rish and Rina Dechter. Resolution versus search: Two strategies for sat. Journal of

Automated Reasoning, 24(1-2):225–275, 2000.

[88] Renato Tinós, Darrell Whitley, and Francisco Chicano. Partition crossover for pseudo-

boolean optimization. In Proceedings of the 2015 ACM Conference on Foundations of

Genetic Algorithms XIII, pages 137–149. ACM, 2015.

[89] Carsten Sinz. Visualizing the internal structure of SAT instances (preliminary report). In SAT

2004 - The Seventh International Conference on Theory and Applications of Satisfiability

Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004.

[90] Carsten Sinz and Edda-Maria Dieringer. Dpvis–a tool to visualize the structure of sat

instances. In International Conference on Theory and Applications of Satisfiability Testing,

pages 257–268. Springer, 2005.

[91] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed place-

ment. Software: Practice and experience, 21(11):1129–1164, 1991.

[92] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks.

nature, 393(6684):440–442, 1998.

126



[93] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews

of modern physics, 74(1):47, 2002.

[94] Toby Walsh. Search in a small world. In IJCAI, volume 99, pages 1172–1177, 1999.

[95] Toby Walsh. Search on high degree graphs. In IJCAI, volume 1, pages 266–274. Citeseer,

2001.

[96] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the world-

wide web. Nature, 401(6749):130–131, 1999.

[97] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of sat

formulas. In International Conference on Theory and Applications of Satisfiability Testing,

pages 410–423. Springer, 2012.

[98] Armin Biere and Carsten Sinz. Decomposing SAT problems into connected components.

JSAT, 2(1-4):201–208, 2006.

[99] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in

networks. Physical review E, 69(2):026113, 2004.

[100] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner.

On modularity - NP-Completeness and beyond. Technical Report 2006-19, Faculty of

Informatics, Karlsruher Institut für Technologie (KIT), 2006.

[101] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to

detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

[102] Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through Variable and Clause

Elimination. In Proceedings of the 8th International Conference on Theory and Applications

of Satisfiability Testing, SAT’05, pages 61–75, Berlin, Heidelberg, 2005. Springer-Verlag.

[103] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computa-

tion, 4:75–97, 2008.

127



[104] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent Simon.

Impact of community structure on sat solver performance. In International Conference on

Theory and Applications of Satisfiability Testing, pages 252–268. Springer, 2014.

[105] Nathan Mull, Daniel J Fremont, and Sanjit A Seshia. On the hardness of sat with community

structure. In International Conference on Theory and Applications of Satisfiability Testing,

pages 141–159. Springer, 2016.

[106] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers.

In IJCAI, volume 9, pages 399–404, 2009.

[107] Carlos Ansótegui, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon. Using community

structure to detect relevant learnt clauses. In International Conference on Theory and

Applications of Satisfiability Testing, pages 238–254. Springer, 2015.

[108] Robert Ganian and Stefan Szeider. Community structure inspired algorithms for sat and#

sat. In International Conference on Theory and Applications of Satisfiability Testing, pages

223–237. Springer, 2015.

[109] Jingchao Chen. A bit-encoding phase selection strategy for satisfiability solvers. In T. V.

Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Appli-

cations of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai, India,

April 11-13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages

158–167. Springer, 2014. minisat-blbd reference.

[110] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms, 7(3):309–322, 1986.

[111] Stefan Szeider. On fixed-parameter tractable parameterizations of sat. In International

Conference on Theory and Applications of Satisfiability Testing, pages 188–202. Springer,

2003.

128



[112] Hans L Bodlaender. Dynamic programming on graphs with bounded treewidth. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 105–118. Springer,

1988.

[113] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective. Academic

Press, 2015.

[114] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding

embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,

1987.

[115] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of treewidth and

related problems. Journal of Artificial Intelligence Research, 49:569–600, 2014.

[116] Hans L Bodlaender. Discovering treewidth. In International Conference on Current Trends

in Theory and Practice of Computer Science, pages 1–16. Springer, 2005.

[117] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proceed-

ings of the 20th conference on Uncertainty in artificial intelligence, pages 201–208. AUAI

Press, 2004.

[118] Fedor V Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact algorithms for

treewidth and minimum fill-in. SIAM Journal on Computing, 38(3):1058–1079, 2008.

[119] Rong Zhou and Eric A Hansen. Combining breadth-first and depth-first strategies in searching

for treewidth. In IJCAI, volume 9, pages 640–645, 2009.

[120] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[121] Robert Mateescu. Treewidth in industrial sat benchmarks. Technical report, Technical report,

Microsoft Research, 2011.

129



[122] Armin Biere. Precosat system description. SAT Competition, solver description, 2009.

[123] Per Bjesse, James Kukula, Robert Damiano, Ted Stanion, and Yunshan Zhu. Guiding SAT

diagnosis with tree decompositions. In International Conference on Theory and Applications

of Satisfiability Testing, pages 315–329. Springer, 2003.

[124] Adnan Darwiche and Mark Hopkins. Using recursive decomposition to construct elimina-

tion orders, jointrees, and dtrees. In European Conference on Symbolic and Quantitative

Approaches to Reasoning and Uncertainty, pages 180–191. Springer, 2001.

[125] Jinbo Huang and Adnan Darwiche. A structure-based variable ordering heuristic for SAT. In

IJCAI, volume 3, pages 1167–1172, 2003.

[126] We Li and Peter Van Beek. Guiding real-world sat solving with dynamic hypergraph

separator decomposition. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE

International Conference on, pages 542–548. IEEE, 2004.

[127] Djamal Habet, Lionel Paris, and Cyril Terrioux. A tree decomposition based approach to

solve structured sat instances. In 2009 21st IEEE International Conference on Tools with

Artificial Intelligence, pages 115–122. IEEE, 2009.

[128] Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. SAT competition,

7, 2007.

[129] Anthony Monnet and Roger Villemaire. Scalable formula decomposition for propositional

satisfiability. In Proceedings of the Third C* Conference on Computer Science and Software

Engineering, pages 43–52. ACM, 2010.

[130] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko

Samer. Heuristic methods for hypertree decomposition. In Mexican International Conference

on Artificial Intelligence, pages 1–11. Springer, 2008.

130



[131] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Application.

Morgan Kaufmann, 1 edition, September 2004.

[132] Darrell Whitley, Adele E. Howe, and Doug Hains. Greedy or not? best improving versus first

improving stochastic local search for maxsat. In Marie desJardins and Michael L. Littman,

editors, AAAI. AAAI Press, 2013.

[133] Doug Hains. Structure in combinatorial optimization and its effect on heuristic performance.

PhD thesis, Colorado State University. Libraries, 2007.

[134] Jeremy D. Frank, Peter Cheeseman, and John Stutz. When gravity fails: Local search

topology. Journal of Artificial Intelligence Research, 7:249–281, 1997.

[135] Darrell Whitley, Doug Hains, and Adele Howe. Tunneling between optima: partition

crossover for the traveling salesman problem. In Proceedings of the 11th Annual conference

on Genetic and evolutionary computation, pages 915–922. ACM, 2009.

[136] Gabriela Ochoa, Francisco Chicano, Renato Tinós, and Darrell Whitley. Tunnelling crossover

networks. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, GECCO ’15, pages 449–456, New York, NY, USA, 2015. ACM.

[137] Shen Lin. Computer solutions of the traveling salesman problem. The Bell System Technical

Journal, 44(10):2245–2269, 1965.

[138] Stuart Kauffman and Simon Levin. Towards a general theory of adaptive walks on rugged

landscapes. Journal of Theoretical Biology, 128(1):11–45, 1987.

[139] Holger H Hoos. Sat-encodings, search space structure, and local search performance. In

IJCAI, volume 99, pages 296–303. Citeseer, 1999.

[140] Edward Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the

difference. Biological Cybernetics, 63(5):325–336, September 1990.

131



[141] Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of problem

difficulty for genetic algorithms. In Larry J. Eshelman, editor, International Conferecen on

Genetic Algorithm (ICGA), pages 184–192. Morgan Kaufmann, 1995.

[142] Holger H. Hoos, Kevin Smyth, and Thomas Stützle. Search Space Features Underlying the

Performance of Stochastic Local Search Algorithms for MAX-SAT. In Xin Yao, Edmund K.

Burke, JoséA. Lozano, Jim Smith, JuanJulián Merelo-Guervós, JohnA. Bullinaria, JonathanE.

Rowe, Peter Tin̆o, Ata Kabán, and Hans-Paul Schwefel, editors, Parallel Problem Solving

from Nature - PPSN VIII, volume 3242 of Lecture Notes in Computer Science, pages 51–60.

Springer Berlin Heidelberg, 2004.

[143] Dale Schuurmans and Finnegan Southey. Local search characteristics of incomplete sat

procedures. In Henry A. Kautz and Bruce W. Porter, editors, AAAI/IAAI, pages 297–302.

AAAI Press / The MIT Press, 2000.

[144] Dale Schuurmans and Finnegan Southey. Local search characteristics of incomplete sat

procedures. Artificial Intelligence, 132(2):121–150, 2001.

[145] Frank Harary et al. Graph theory, 1969.

[146] Zhe Wu and Benjamin W Wah. An efficient global-search strategy in discrete lagrangian

methods for solving hard satisfiability problems. In AAAI/IAAI, pages 310–315, 2000.

[147] Holger H Hoos. On the run-time behaviour of stochastic local search algorithms for sat. In

AAAI/IAAI, pages 661–666, 1999.

[148] Yuliya Zabiyaka and Adnan Darwiche. Functional treewidth: Bounding complexity in the

presence of functional dependencies. In International Conference on Theory and Applications

of Satisfiability Testing, pages 116–129. Springer, 2006.

[149] Carlos Ansótegui, María Luisa Bonet, Jordi Levy, and Felip Manya. Measuring the hardness

of sat instances. In AAAI, volume 8, pages 222–228, 2008.

132



[150] Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT. In Founda-

tions of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 489–498.

IEEE, 2013.

[151] Mohamed Qasem and Adam Prugel-Bennett. Learning the large-scale structure of the

max-sat landscape using populations. IEEE Transactions on Evolutionary Computation,

14(4):518–529, 2010.

[152] Lukas Kroc, Ashish Sabharwal, Carla P. Gomes, and Bart Selman. Integrating systematic and

local search paradigms: a new strategy for MaxSAT. In Proceedings of the 21st international

jont conference on Artifical intelligence, IJCAI’09, pages 544–551, San Francisco, CA, USA,

2009. Morgan Kaufmann Publishers Inc.

[153] Norbert Manthey. Coprocessor 2.0–a flexible CNF simplifier. In International Conference

on Theory and Applications of Satisfiability Testing, pages 436–441. Springer, 2012.

[154] Wenxiang Chen and Darrell Whitley. Tunneling between local optima and plateaus on

max-ksat using partition crossover. In Submitted to the 32nd AAAI Conference on Artificial

Intelligence, 2018.

[155] Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G. Veneris. Automated

Design Debugging With Maximum Satisfiability. IEEE Trans. on CAD of Integrated Circuits

and Systems, 29(11):1804–1817, 2010.

[156] Chu-Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on maxsat for

the maximum clique problem. In AAAI Conference on Artificial Intelligence, 2010.

[157] Kerstin Bunte, Matti Järvisalo, Jeremias Berg, Petri Myllymäki, Jaakko Peltonen, and Samuel

Kaski. Optimal neighborhood preserving visualization by maximum satisfiability. In AAAI

Conference on Artificial Intelligence, pages 1694–1700. AAAI Press, 2014.

[158] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning Optimal Bounded Treewidth

Bayesian Networks via Maximum Satisfiability. In Samuel Kaski and Jukka Corander,

133



editors, Proceedings of the Seventeenth International Conference on Artificial Intelligence

and Statistics, volume 33 of Proceedings of Machine Learning Research, pages 86–95,

Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

[159] André Abramé and Djamal Habet. Ahmaxsat: Description and evaluation of a branch

and bound max-sat solver. Journal on Satisfiability, Boolean Modeling and Computation,

9:89–128, 2015.

[160] Bart Selman and Henry A. Kautz. An empirical study of greedy local search for satisfiability

testing. In Proceedings of the Eleventh National Conference on Artificial Intelligence,

AAAI’93, pages 46–51. AAAI Press, 1993.

[161] Renato Tinós, Darrell Whitley, and Gabriela Ochoa. Generalized asymmetric partition

crossover (GAPX) for the asymmetric TSP. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pages 501–508. ACM, 2014.

[162] Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós. Optimizing one

million variable nk landscapes by hybridizing deterministic recombination and local search.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,

pages 753–760, New York, NY, USA, 2017. ACM.

[163] Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman

heuristic. European Journal of Operational Research, 126(1):106 – 130, 2000.

[164] Chu Min Li and Wen Qi Huang. Diversification and determinism in local search for satisfia-

bility. In Proceedings of the 8th International Conference on Theory and Applications of

Satisfiability Testing, SAT’05, pages 158–172, Berlin, Heidelberg, 2005. Springer-Verlag.

[165] Ian P. Gent and Toby Walsh. An empirical analysis of search in gsat. J. Artif. Int. Res.,

1(1):47–59, September 1993.

[166] Monaldo Mastrolilli and Luca Maria Gambardella. Maximum satisfiability: How good are

tabu search and plateau moves in the worst-case? European Journal of Operational Research,

134



166(1):63 – 76, 2005. Metaheuristics and Worst-Case Guarantee Algorithms: Relations,

Provable Properties and Applications.

[167] Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: an efficient local search

algorithm for weighted maximum satisfiability. IEEE Trans. Computers, 64(7):1830–1843,

2015.

[168] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1):50–60,

1947.

[169] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta

Mathematica, 30(1):175–193, December 1906.

[170] Darrell Whitley. Mk Landscapes, NK Landscapes, MAX-kSAT: A Proof That the Only

Challenging Problems Are Deceptive. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, GECCO ’15, pages 927–934, New York, NY, USA,

2015. ACM.

[171] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Vol. I. Computer

Science Press, Inc., New York, NY, USA, 1988.

[172] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on the

state explosion problem in model checking. In Informatics, pages 176–194. Springer, 2001.

[173] Olivier Roussel. Another SAT to CSP conversion. In Proceedings of 16th IEEE International

Conference on Tools with Artificial Intelligence, pages 558–565. IEEE, 2004.

[174] Frederick J. Hill and Gerald R. Peterson. Introduction to Switching Theory and Logical

Design. John Wiley & Sons, Inc., New York, NY, USA, 3rd edition, 1981.

135



[175] João Carlos Leandro da Silva. Factoring semiprimes and possible implications for RSA. In

Proceedings of 2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel,

pages 000182–000183. IEEE, 2010.

[176] H. Hoos and T. Stutzle. SATLIB: An Online Resource for Research on SAT. In H. van

Maaren I. P. Gent and T. Walsh, editors, SAT2000, pages 283–292. IOS Press, 2000.

[177] William S Cleveland, Eric Grosse, and William M Shyu. Local regression models. Statistical

models in S, 2:309–376, 1992.

[178] Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John Wiley & Sons,

2011.

[179] Rina Dechter. Constraint processing. Morgan Kaufmann, 2003.

[180] Greg Hamerly and Charles Elkan. Learning the k in k-means. In S. Thrun, L.K. Saul,

and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages

281–288. MIT Press, 2004.

[181] Sanjiv K Bhatia. Adaptive k-means clustering. In FLAIRS Conference, pages 695–699, 2004.

[182] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean

sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

[183] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137, 1982.

136


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Satisfiability
	Motivation
	Contribution

	Literature Review
	Backbone
	Backdoor
	Backdoor and SS Solvers
	Variable Dependency
	Summary

	Variable Interaction
	Variable Interaction Graph Visualization
	Complex Network Analysis
	Treewidth
	Summary

	SLS Search Space
	Identifying a Gap in Previous Works

	Decomposing Variable Interaction Graphs with Pseudo Backbones
	Feasibility of Decomposing VIGs with Pseudo Backbones
	Identifying Application Instances with Potential Decomposability
	Computing Pseudo Backbone from Good Local Optima
	Improving Decomposition on SAT Instances

	Conclusion

	Partition Crossover for Improving Stochastic Local Search SAT Solvers
	Variable Interaction and Tunneling
	Tunneling between Local Optima
	The Cost of PX compared to Local Search
	Equal Move for PX on Plateau

	PXSAT
	Empirical Results
	Setup
	Improving State-of-Art Local Search SAT Solvers
	Why and When PXSAT works?
	Competing with State-of-Art MAXSAT Solver

	Conclusions

	Exploiting Subproblem Constrainedness with Alternative Representations
	Related Work
	Exploit Subproblem Constrainedness using Conjunctive Minterm Canonical Form
	Sources for the Highly Constrained Subproblems
	Exploiting High Subproblem Constrainedness: From CNF to CMCF
	Constraint Propagation over Minterms
	Local Search over CMCF
	Empirical Results on CMCF-LS

	Minterm Interaction Graph for Improving CMCF
	Increasing the Cardinality of Evaluation Function
	Reducing Running Time with Partial Updates


	Conclusion and Future Work
	Future Work
	Partition Crossover for SLS SAT Solvers
	Local Search over Minterm Interaction Graphs


	Bibliography

