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ABSTRACT 

 
 

EVALUATING RISK FOR CURRENT AND FUTURE BROMUS TECTORUM INVASION AND 

LARGE WILDFIRES AT MULTIPLE SPATIAL SCALES IN COLORADO AND WYOMING, USA 

 
 
 
The Western United States is experiencing rapid ecologic change. These changes are driven 

largely by anthropogenic factors including introduction of alien invasive species, wildfire ignition 

and suppression, climate change, and feedbacks between these occurrences. Average 

temperatures in some areas of the Western U.S. increased as much as 1.1 °C between 2000 

and 2006. The advancement of spring also provides evidence for climate change in the region; 

earlier snowmelt and runoff has been documented in recent decades for areas of the 

Intermountain West. These rapid changes will certainly affect the distribution of the alien 

invasive B. tectorum and large wildfires in Colorado and Wyoming as well as their associated 

feedbacks and cascading ecosystem effects. Prompted and inspired by natural resource 

manager concerns, this research evaluates these ecological phenomena at three spatial scales: 

Rocky Mountain National Park, Colorado; a wildfire disturbance in Medicine Bow National 

Forest, Wyoming; and the area encompassed by these two states. The products from this 

research are maps that can be incorporated into decision support systems for land management 

and vulnerability assessments for climate change preparedness.  

An evaluation of the current and future suitable habitat for B. tectorum in Rocky Mountain 

National Park was conducted at a 90 m2 spatial resolution using a MaxEnt model fit with 

climatic, vegetation cover, and anthropogenic covariates (i.e. distance to roads as a surrogate 

for propagule pressure). One of the important considerations of this research was spatial scale; 

250 m2 and 1 km2 resolution climate surfaces cannot capture climate refugia in a small area 

such as Rocky Mountain National Park (1,076 km2) with high topographic heterogeneity (2,300 
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m to 4,345 m elevation). Based on model results, the suitable habitat for B. tectorum in the Park 

increases more than 150 km2 through the year 2050.  

Four multi-temporal and multiscale species distribution models were developed for B. tectorum 

in the Squirrel Creek Wildfire post-burn area of Medicine Bow National Forest using eight 

spectral indices derived from five months of 30 m2 Landsat 8 imagery corresponding to changes 

in species phenology and time of field data collection. These models were improved using an 

iterative approach in which a threshold for abundance (i.e. ≥40% foliar cover) was established 

from an independent dataset, and produced highly accurate maps of current B. tectorum 

distribution in Squirrel Creek burn with independent AUC values of 0.95 to 0.97. The most 

plausible model based on field observations showed the distribution of B. tectorum has 

increased 30% from pre-disturbance observations in the area. This model was incorporated in a 

habitat suitability model for B. tectorum in the same area using topographic covariates with 

inclusion of propagule dispersal limitations to provide an estimate of future potential distribution. 

Three historic (years 1991 – 2000) environmental suitability models for large wildfires (i.e. > 400 

ha) in Colorado and Wyoming were developed at a 1 km2 spatial resolution and tested using an 

independent dataset of large wildfire occurrence in the same area from the subsequent decade 

(years 2001 – 2010). The historic models classified points of known fire occurrence 

exceptionally well using decadal climate averages corresponding to the temporal resolution of 

wildfire occurrence and topographic covariates. When applied to an independent dataset, the 

test sensitivity was 0.91 for the best model (i.e. MaxEnt). We then applied the model to future 

climate space for the 2020s (years 2010-2039) and 2050s (years 2040-2069) using two future 

climate ensembles (i.e. two representative concentration pathways; RCP 4.5 and RCP 8.5 with 

ensemble average projections from 15 global circulation models) to rank areas for large wildfire 

risk in the future.  
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CHAPTER 1. BACKGROUND 

 
 

History and Ecology of Bromus tectorum in the Western United States 

Invasive plants are non-native species that negatively impact ecosystem structure and/or 

function. Traits common to invasive species that promote their success include asexual 

reproduction, rapid growth from seedling to sexual maturity, adaptation to environmental stress 

(phenotypic plasticity), high tolerance to environmental heterogeneity, and long-lived seed 

banks (Sakai et al. 2001). Bromus tectorum L. (common names downy brome or cheatgrass) is 

an invasive annual grass that possesses all of these characteristics except a long-lived seed 

bank (seeds remain viable in the soil around five years; (Mack 1981). B. tectorum is native to 

regions of Europe, northern Africa, and southwest Asia, and was first introduced into the 

Intermountain West in the 19th century (Mack and Pyke 1983, Bradford and Lauenroth 2006, 

Zouhar et al. 2008). Specifically in sagebrush steppe communities across the Western U.S. 

(hereafter the West), this non-native was considered naturalized in the 1940s (Stewart and Hull 

1949, Zouhar et al. 2008).  

The winter annual life history of B. tectorum is not common amongst grass species in the 

Intermountain West. It may germinate in autumn and overwinter as a semi-dormant seedling or 

germinate in spring and complete its life cycle as a spring annual, depending on temperature 

and water availability (Mack 1981, Bradford and Lauenroth 2006). If there is sufficient 

precipitation in late summer to autumn, B. tectorum will behave as a winter annual, germinating 

in autumn and overwintering as a semi-dormant seedling (Mack and Pyke 1983, Brown and 

Rowe 2004). Spring germinating seeds of B. tectorum reach reproductive maturity in just over a 

month given appropriate environmental conditions (Mack and Pyke 1983). These two variations 

in B. tectorum demography allow this invasive plant the opportunity to outcompete native 

grasses and shrubs, especially the fall germinating population because the seedlings are 
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already established in the spring and begin growing rapidly upon snow melt (Mack and Pyke 

1983, Brown and Rowe 2004).  

Land Managers’ Concerns Associated with B. tectorum Invasion 

Despite being considered naturalized in some plant communities in the West, B. tectorum 

continues to be problematic for land managers. Negative potential impacts of B. tectorum 

invasion include effects on ecosystem structure and function. B. tectorum may be implicated in 

altered nitrogen cycling and soil water content, interspecific competition with native plant 

species, altering wildlife forage and habitat quality, and increasing fire frequency and intensity 

(Mack 1981, Brown and Rowe 2004). Management of B. tectorum is thus of high importance to 

both natural areas and agroecosystems in the United States, where approximately 22.5 million 

hectares were affected by this alien invasive in 2005 (Duncan et al. 2004).  

History and Ecology of Large Wildfires in the West 

For the past 1,000 years, the reconstructed history of wildfires in the West follows climate trends 

and human development (e.g., suppression and ignition). During the “Medieval Warm Period”, 

(an elevated period of aridity with peaks between ca. 900 to 1300) there is evidence of 

megadrought conditions in the West (Cook et al. 2004, 2015). Based on dendrochronological 

analysis of fire scars, Trouet et al. (Trouet et al. 2010) found much of the West was still 

impacted by this extreme drought in the 1400s. This was followed by a decline in fire frequency 

in the late 16th century corresponding to declining temperatures of the “Little Ice Age” (ca. 1500 

to 1800; Trouet et al. 2010).  

Frequent, low-severity wildfires prior to the 20th century played important ecological roles in 

community structure, diversity, productivity, biogeochemical processes, hydrology, and wildlife 

habitat in low to mid-elevation forests of the West (Brown and Shepperd 2001, Kaufmann et al. 

2007). However, beginning in the late 19th century, European settlement in the West brought 

extensive land clearing (e.g., using fire; the American Indians were implementing this prior to 
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European settlement and logging) and livestock grazing that suppressed these natural regimes. 

In the year 1891, the Forest Reserve Act was established and forest fires were increasingly 

controlled, with the Clarke-McNary Act in 1924 effectively creating a national fire exclusion 

policy (Stephens 2005). This exclusion policy increased fuel loads in the ponderosa and mixed-

conifer forests but was likely suited to Rocky Mountain lodgepole pine forests that are adapted 

to high-severity crown fires with low frequency (Stephens 2005). Average annual area burned in 

the West continued to decrease through the 1960s (Brown et al. 2004). Then, in the mid-1980s 

the incidence of large wildfires (>400 ha) began rapidly increasing (Westerling et al. 2006). 

Additionally, wildfires began burning for a longer period of time, from an average of one week in 

the 1970s to five weeks in the 1980s (Westerling et al. 2006). The federal fire policy of 1995 

recognized wildfire as a critical ecosystem process; efforts have been made in recent decades 

to use wildfires in forest management and restoration (e.g., in 2002 the US National Fire Plan 

resulted in 1 million ha of thinning and prescribed fire across federal land; Schoennagel et al. 

2004). The extent of USFS area burned increased significantly across the West from 1940 to 

2000 with the exception of California (Stephens 2005). 

Land management concerns associated with cheatgrass – wildfire feedback 

Wildland fire (among other disturbances including human-induced) can promote invasion by 

non-native invasive plants (Brooks et al. 2004). After a fire, new sunlight and soil resources may 

become available to seedling establishment in an unoccupied niche. Two inorganic forms of 

nitrogen, ammonium (NH4+; product of combustion) and nitrate (NO3-; forms from the 

ammonium via nitrification) typically increase in soils following fires (Certini 2005). Nitrate 

typically leaches out in the soils, however the increased ammonium is readily available to plants 

as it is adsorbed to soil particles (much of this ammonium will eventually transform back to 

nitrate; Certini 2005). In one study, B. tectorum grown in burned soil had higher growth rates 

(seedlings had more leaves and were taller), N uptake and more enriched N than individuals 

grown in unburned soil (Johnson et al. 2010).  
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Wildfires are abiotic ecological processes that may be characterized as a function across 

ecological gradients. Invasive species may alter this function, affecting extent, frequency, 

intensity, or even the seasonality of fire (Freeman et al. 2007). Fires fueled by B. tectorum have 

historically cost the Great Basin as much as $10 million per year in control (Knapp 1996). In 

areas where B. tectorum is established and following the winter annual lifecycle, fire frequency 

and intensity may be expected to increase because the alien invasive grass creates a new 

abundance of fine fuel (i.e. standing dry biomass and litter; also referred to as the fuel packing 

ratio, or the amount of fuel per unit volume of space; Brooks et al. 2004) during a time of the 

year that corresponds to fire season (i.e. early summer through autumn). This fine fuel also 

increases the fuel surface-to-volume ratio, which may increase horizontal fuel continuity (Brooks 

et al. 2004) There has been evidence that B. tectorum greatly alters the natural fire cycle in 

sagebrush ecosystems; 60 to 500 year intervals between fires has become a three to five year 

interval in some B. tectorum dominated ecosystems (Knapp 1996, Chambers and Roundy 

2007). Fire intensity (i.e. the rate at which a fire produces thermal energy) may be affected by 

fuel packing ratio and/or the moisture content of live and dead fuel, factors that are altered in B. 

tectorum invaded ecosystems. Air temperature, humidity, wind speed, and topography are 

additional factors that may determine fire intensity at a given site (Certini 2005). Blach et al. 

(2013) concluded increased fire frequency, size, and duration were associated with B. tectorum 

in the Great Basin ecoregion. Rangelands dominated by B. tectorum in these systems were 

nearly four times more likely to burn than native land cover during the 2000s (Balch et al. 2013). 

Areas of the Rocky Mountain National Park that have been previously burned had four to five- 

times greater cover and mean patch area of B. tectorum than unburned areas (Banks and Baker 

2011).  

B. tectorum, large wildfire, and climate change 

Beginning with large scale industrialization in the mid-1800s, the human contribution to 

greenhouse gases in the atmosphere accelerated rapidly, trapping heat in the earth’s 
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atmosphere and altering the climate. Climate change is happening rapidly in the West; some 

areas increased as much as 1.1 °C between 2000 and 2006 (Hoerling and Eischeid 2007). 

Since the 1980s there have been significant snowpack declines along the entire Rocky 

Mountain range due to warmer spring temperatures (Pederson et al. 2013). The current 

advancement of spring in many areas will certainly have implications for germination and 

reproductive success of B. tectorum and could give this exotic an even greater advantage over 

slower-growing native grasses.  

Rapid climate change may facilitate invasive species such as B. tectorum with high phenotypic 

plasticity, rapid growth from seedling to sexual maturity (Mack 1981), and the potential to shift 

phenological development to maximize growth and reproduction (Zelikova et al. 2013). Any or 

all of these qualities may escalate the competitive advantage this grass has over native grasses 

under future novel climates. Clements and DiTommaso (2011) outlined plant traits that confer 

an advantage in novel climates, and some of these are consistent with Sakai et al. (2001): (1) 

high growth rate, (2) wide climatic or environmental tolerance, (3) short generation time, (4) 

prolific or consistent reproduction, (5) modified seed size, (6) effective dispersal, (7) uniparental 

reproduction capacity, (8) no specialized germination requirements, (9) high competitive ability, 

and (10) effective defenses against natural enemies. B. tectorum exemplifies all these traits 

except (8), as it has an after-ripening requirement before germination can occur (Mack 1981). 

Climate also affects wildfire regimes. Wildfires have been historically suppressed, resulting in 

infrequent, larger and more severe fires, in the western US. This has been compounded in the 

last decade by severe regional drought. The United States General Accounting Office reported 

annual wildland fire-suppression costs increased from $1.3 billion for the years 1996 through 

2000 to $3.1 billion for the years 2001 through 2005 (it must be noted that this increase is at 

least in part due to an increase in development at the wildland-urban interface). Wildfires even 

enhance drought through the absorption of solar radiation by smoke particles, as seen in a 
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simulation of radiative forcing and atmospheric response in the mid-latitudes of the U.S. (Liu 

2005). 

Species distribution and habitat suitability models as tools for assessing current risk and 

forecasting potential risk for invasive species and wildfires 

The field of macroecology is a rapidly emerging subdiscipline that addresses societal concerns 

of environmental problems at regional to continental scales (Heffernan et al. 2014). 

Methodological approaches in macroecology involve large quantities of data at multiple scales 

and advanced statistical analysis (Levy et al. 2014). Species distribution models and habitat 

suitability models have become widely used in macroecology. These models assume that we 

can predict the entire (or potential) spatial distribution of an ecological phenomenon by relating 

sites of known presence (and absence if available) to predictor variables known for these and all 

other sites of interest (Hijmans and Elith 2013). In 1869, Ernst Haeckel defined the term 

‘ecology’ as “the study of the natural environment including the relations of organisms to one 

another and their surroundings” (Odum and Barrett 2005). These relations are the foundation of 

species distribution models and habitat suitability models. Furthermore, understanding pattern 

and scale is of great importance in ecology (Elton 1927). Species distribution models are best 

distinguished from habitat suitability models by their use; the former typically assesses the 

current distribution of an ecological phenomenon such as a species on the landscape, while the 

latter follows Grinnellian niche theory, attempting to quantify the suitable habitat given 

constraints in the local environment that allow the population to grow (Hirzel and Le Lay 2008). 

There are many diverse applications of these models, increasing their use in both theoretical 

and applied ecology. Niche theory, metapopulation theory, and source-sink theory are examples 

of ecological theories often evaluated using these models, and they are also used to formulate 

hypothesis concerning biogeography, ecology, and evolution of flora and fauna (Guisan and 

Thuiller 2005, Franklin 2009). The growing popularity of these models has led to their continued 

methodological scrutiny, refinement, and improvement. 
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Two commonly used methods to develop species distribution models or habitat suitability 

models are regression and machine learning. Examples of regression methods include 

generalized linear models (GLM) and multivariate adaptive regression splines (MARS) (Franklin 

2009). Examples of machine learning methods include Boosted Regression Trees, Random 

Forests, and MaxEnt. Generalized Linear Model (GLM) is a generalized ordinary linear 

regression approach that specifies a relationship between the mean of a random variable and a 

function of the linear combination of predictors (McCullagh and Nelder 1989, Hijmans and Elith 

2013). Multivariate Adaptive Regression Splines (MARS) is a non-parametric regression 

technique that automatically models non-linearities and interactions between variables 

(Friedman 1991, Friedman and Roosen 1995). The recursive partitioning of MARS makes it 

capable of fitting complex, non-linear relationships between species and predictors. Boosted 

Regression Trees (BRT) is a stochastic additive regression model. It combines regression trees, 

which relate a response to a set of predictors using recursive binary splits, and boosting which 

is an adaptive combination of a wide array of simple models to increase predictive performance 

(De’ath 2007, Elith and Leathwick 2008, Elith et al. 2008). Random Forest (RF) is an ensemble 

decision tree method that utilizes a bagging approach, combining a multitude of trees and 

averaging to produce more accurate classifications (De’ath et al. 2000, Breiman 2001). Random 

Forest has high classification accuracy and the ability to model complex interactions among 

predictors, using an array of functions including regressions, classifications, survival analyses, 

and unsupervised learning. MaxEnt determines patterns in data given constraints placed on the 

system, and then selects the most likely configuration of the system based on maximizing 

Shannon’s entropy (Phillips et al. 2006, Merow et al. 2013). The MaxEnt approach is non-

parametric, therefore it works well with small sample sizes (Guisan and Thuiller 2005, Phillips 

and Dudík 2008).  
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Caveats in Modeling; model selection, scale, and environmental covariates 

Model selection, spatial and temporal scales, and environmental covariates are all important 

considerations when employing species distribution models or habitat suitability models. The 

RF, BRT, MARS, and GLM models can all be fit with presence-absence data for the ecological 

phenomenon being evaluated; BRT models are particularly useful when analyzing covariate 

interactions (Elith et al. 2006). Regression methods including GLM and MARS are robust with 

presence-background (or psueoabsence) data; however BRT and RF models can also be fit 

with this type of data and MaxEnt is a presence-only model. If there is interest in extrapolating to 

new, unsampled space, regression methods work well (Elith et al. 2006). In any of these 

methods, one inherent bias that is important to consider is that records of an observed 

phenomenon (i.e. a presence) may only provide a subset of sites that are actually occupied 

within the area of interest.  

The spatial scale of a model is dependent on the size of the study area and how much detail is 

necessary to capture the environmental heterogeneity that influences where the ecological 

phenomenon being modeled occurs. For example, a temperature surface with a spatial scale of 

1 km2 means that there is one value for temperature per 1 km grid cell. This scale could be 

appropriate for a continental-scale model but is unlikely to capture the influence of temperature 

on an ecological phenomenon in a wildlife refuge. Spatial autocorrelation should also be 

considered in any species distribution or habitat suitability model; if presences or absences are 

“clumped” together, there may be more than one record for an environmental grid cell (Elith and 

Leathwick 2009). There are many ways to correct for this, including Moran’s I (Dormann et al. 

2013). Temporal scale is also important to consider in modeling; the time of occurrence data 

collection should match the relative time of environmental data being considered to produce a 

more robust model (Elith and Leathwick 2009). 
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Environmental covariates can come in the form of climate data, remotely sensed data, and 

anthropogenic land feature data among others. Prior ecological knowledge of the phenomenon 

being modeled is essential for collecting important environmental covariates. Climate data 

include variables such as annual, seasonal, or monthly temperature, precipitation, and growing 

degree day averages. For future potential climate, there are climate projections from climate 

modeling centers that focus on various emissions scenarios (IPCC 2013). Topographic data are 

typically derived from a remotely sensed digital elevation model (DEM). Elevation plays a role in 

microclimate, wind speed, and solar radiation, among other environmental variables (Rosenberg 

1983), and therefore may serve as a proxy for these constraints on habitat suitability. A DEM 

can be used to produce other topographic indices that serve as proxies for soil and water 

qualities on the landscape including slope, aspect, and compound topographic index (i.e. steady 

state wetness index; a function of both the slope and the upstream contributing area per unit 

width orthogonal to the flow direction) among others. Slope and wetness individually accounted 

for one-half of the variability in organic matter content, pH, extractable P, and silt and sand 

content across a 5.4-ha toposequence in Colorado (Gessler et al. 1995). Topographic 

covariates are commonly used for delineating the habitat of species or functional groups on the 

landscape (Franklin 2009). The Shuttle Radar Topography Mission (SRTM) was flown by the 

National Aeronautic and Space Administration (NASA) in 2000, and provides publically available 

DEMs for the entire globe at 90m pixel spatial resolution. Beginning in late 2014, NASA began 

releasing DEMs for the entire globe at 30m (1 arc-second) spatial resolution.  

In addition to DEMs, remote sensing provides other unique ways to detect ecological 

phenomenon. Spectral reflectance, transmittance, and absorption of plant leaves for ultraviolet, 

visible, and near infrared (IR) frequencies have been recognized as tools to distinguish 

vegetation on the since the 1960s (Gates et al. 1965, Myers and Allen 1968, Gausman et al. 

1969). Chlorophyll absorbs energy in the blue and red wavelength bands centered around 0.45 
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and 0.67 µm therefore healthy vegetation appears green, and unhealthy vegetation appears 

yellow as this absorption decreases. In the near IR portion of the spectrum (i.e. 0.7 to 1.3 µm), a 

healthy plant leaf reflects up to 50 percent of solar energy, with the total amount reflected 

greatly dependent on leaf structure. Thus, the near IR band may be used to distinguish specific 

plant species on the landscape based on leaf structure. For wavelength values greater than 1.3 

µm, leaf reflectance is inversely related to total water content of the leaf (Lillesand et al. 2008). 

Spectral vegetation indices are dimensionless measurements developed from mathematical 

ratios of these frequencies and require multispectral imagery of the earth’s surface. One of the 

first and most common vegetation indices used is the normalized difference vegetation index 

(NDVI = near infrared band – red band / near infrared band + red band) developed by Rouse et 

al. (1974). Since that time, many more useful vegetation indices have been developed to aide in 

mapping vegetation on the landscape. Similar to NDVI, the Normalized Burn Ratio (Key and 

Benson 2005) can be used to map fires on the landscape.  

The Landsat 8 satellite that was launched in 2013 provides multispectral, moderate spatial 

resolution imagery of earth’s surface at a temporal resolution of 16 days (an 8-day offset from 

the Landsat 7 satellite), making it an ideal tool for monitoring ecological phenomena on the 

landscape. The Operational Land Imager (OLI) on the Landsat 8 satellite provides images with 

nine spectral bands with a spatial resolution of 30 m2 for bands 1 through 7 and 9, and 15 m2 for 

band 8 (i.e. panchromatic band). The Landsat program has been operated by the US Federal 

Government since 1972, and images are archived and freely available from the United States 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) center. 

Applications  

Guisan et al. (2013) noted that although the last decade has seen a rise in the use of species 

distribution models and habitat suitability models in peer-reviewed literature, few of these 

studies include the perspective of practitioners and decision makers on their utility. The first two 
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Chapters of this dissertation address this challenge; the first was guided and inspired by the 

work of a land managers in Rocky Mountain National Park. The second was prompted by a 

Rangeland Management Specialist with the U.S. Forest Service in Medicine Bow National 

Forest, Wyoming, and became an iterative modeling process that considered and included 

valuable insights and data gained from a group of concerned land managers ranging from fire 

ecologists to wildlife biologists. The final chapter of this dissertation was not directly influenced 

by a practitioner, however work on the first two Chapters resulted in the development of 

hypotheses concerning wildfires that could be tested using the same methods, and the maps 

produced will provide a useful tool for future risk assessments. Finally, as demonstrated in the 

discussion and supplementary material, these models can provide the basis for developing new 

hypotheses concerning ecological phenomena. 
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CHAPTER 2. USING HIGH RESOLUTION FUTURE CLIMATE SCENARIOS FOR 

FORECASTING INVASION IN NATIONAL PARKS1 

 

 

Introduction 

Bromus tectorum L. is an invasive winter annual grass that was introduced into the United 

States from Eurasia in the late 19th century. While the current distribution of B. tectorum extends 

throughout the United States, it is particularly abundant in the Intermountain West (Mack 1981), 

and it is listed as a Class C noxious weed in the state of Colorado (“United States Department 

of Agriculture PLANTS database” 2014). Prior research has linked B. tectorum abundance and 

distribution to climate (Bradford and Lauenroth 2006, Bradley 2009), roads and trails (Bromberg 

et al. 2011, Banks and Baker 2011), elevation (Bromberg et al. 2011, Banks and Baker 2011), 

vegetation community type (Bromberg et al. 2011), and soils when moisture is limiting (Miller et 

al. 2006, Bradford and Lauenroth 2006).  

The winter annual life history of B. tectorum is not common amongst grass species in the 

Intermountain West. It may complete its life cycle as a winter or spring annual depending on 

temperature and water availability (Mack 1981, “United States Department of Agriculture 

PLANTS database” 2014). Autumn germinating individuals overwinter as semi-dormant 

seedlings; therefore these plants may begin growing earlier in the spring than native warm-

season grass seedlings. Plant traits that harbor an advantage in novel climates include (1) high 

growth rate, (2) wide climatic or environmental tolerance, (3) short generation time, (4) prolific or 

consistent reproduction, (5) modified seed size, (6) effective dispersal, (7) uniparental 

reproduction capacity, (8) no specialized germination requirements, (9) high competitive ability, 

                                                           
1 A version of this chapter was published in PLoS ONE: West AM, Kumar S, Wakie T, Brown 

CS, Stohlgren TJ, Laituri M, and Bromberg J (2015). Using high-resolution future climate 
scenarios to forecast B. tectorum invasion in Rocky Mountain National Park. PLoS ONE 10 (2): 
e0117839. doi:10.1371/journal.pone.0117893. 
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and (10) effective defenses against natural enemies (Clements and DiTommaso 2011). Seven 

of these traits are exemplified by Bromus tectorum (it has an after-ripening requirement that 

stimulates germination; (Mack 1981)). Furthermore, evidence from studies across a broad range 

of ecosystems suggests a significant shift upward (in elevation) and poleward (in latitude) for 

some plant species distribution in response to climate change (Davis and Shaw 2001, Lenoir et 

al. 2008), including B. tectorum, which has been documented recently at increasing elevations 

(Bromberg et al. 2011, Banks and Baker 2011). Rapid climate change may facilitate invasive 

species such as B. tectorum with high phenotypic plasticity and rapid growth from seedling to 

sexual maturity, increasing its competitive advantage over native species (Mack 1981).  

Species distribution models (SDMs) may enhance our understanding of the environmental 

variables that most influence the bioclimatic niche of a species, a subset of its fundamental 

ecological niche defined by associations between aspects of climate and known species 

occurrences (Araújo and Peterson 2012). The fundamental ecological niche of a species is 

defined as the multivariate space occupied by the species, including the environmental 

conditions associated with population maintenance (Hutchinson GE 1957). Through the 

inclusion of future climate variables in SDMs, we may visualize the potential future geographic 

distribution of a species (Jarnevich and Stohlgren 2008).  

The maximum entropy model or MaxEnt (Phillips et al. 2006), is a machine learning SDM that 

determines the probability distribution of a species over geographic space by estimating this 

distribution under the maximum entropy principle (i.e., exponential distribution given linear 

combination of features; equivalent to the Gibbs distribution). This SDM is of particular value 

when examining an introduced species such as B. tectorum because it requires only species 

presence data, whereas other SDMs such as logistic regression require presence and absence 

data. Models that include absence locations do not necessarily indicate unsuitable habitat, 
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rather that the species has not had time or resources for broad dispersal (Jiménez-Valverde et 

al. 2011).   

There are many reasons that MaxEnt was chosen for our study. MaxEnt is a non-parametric 

model and can automatically include interactions among both continuous (e.g., climate) and 

categorical (e.g., vegetation community type) variables (Phillips and Dudík 2008), is effective 

with small sample sizes (Hernandez et al. 2006, Pearson 2007, Wisz et al. 2008, Kumar and 

Stohlgren 2009), and has been shown to outperform or at least preform as well as many other 

modeling algorithms for SDMs of terrestrial plants, birds, bats, reptiles, and diseases (Elith et al. 

2006, Evangelista et al. 2008a, Kearney et al. 2010, Flory et al. 2012). In addition, inclusion of 

static and dynamic variables other than climate, such as vegetation community type and 

distance to roads may enhance the predictive capabilities of SDMs (Guisan and Thuiller 2005, 

Stanton et al. 2012). Similar to other species distribution models, MaxEnt can also be applied to 

future climate modeling (Hijmans and Graham 2006, Kearney et al. 2010). Process-based 

mechanistic niche models such as CLIMEX also provide powerful tools for evaluating the 

potential effects of climate change on species distributions (Shabani et al. 2012, 2014, Taylor et 

al. 2012); however these SDMs may not be ideal for use in a National Park. Correlative models 

such as MaxEnt can be fit to existing occurrence data whereas process-based models typically 

require detailed experimental data that may not be available for an introduced species in a 

National Park (Dormann et al. 2012). Furthermore, the finest resolution of the climate surfaces 

in CLIMEX are 1km (Kriticos et al. 2012), which may not be appropriate for modeling climate 

effects on species distribution in National Parks. 

When managing for invasive species at the landscape scale, regional weather patterns 

important to fecundity may not be captured in coarse-resolution data (Hamann and Wang 2006, 

Ashcroft et al. 2009, Delong 2010, Austin and Van Niel 2011). Capturing climate refugia for 

species in areas with widely varying elevation such as Rocky Mountain National Park may be 
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improved by using fine-scale data (Lenoir et al. 2008, Randin et al. 2009, Gillingham et al. 

2012b, Franklin et al. 2013). ClimateWNA software provides climate data for point locations, 

time series, and climate surfaces for Western North America (Wang et al. 2012). This software 

was developed using downscaling algorithms (delta approach; for methods see (Wang et al. 

2012)) where baseline climate data (PRISM and ANUSPLIN grids), historical data (CRU TS 

2.1), and future projected data (Coupled Model Intercomparison Project; IPCC 2007) are 

interpolated as the difference from a common reference period, with their accuracy tested 

against local weather station data. Furthermore, partial derivative functions of temperature 

change along elevation gradients are incorporated in these methods, making them ideal for 

areas such as Rocky Mountain National Park (Wang et al. 2012). 

Species distribution models are powerful tools in evaluating the bioclimatic niche of a species; 

however the assumption of niche conservatism should always be considered when projecting 

these models into future potential environmental space (Pearman et al. 2008). To address this 

concern, ordination methods may be used to estimate the maximum variance of climatic 

predictors and climatic niche overlap between current and future potential distributions 

(Broennimann et al. 2012). Thus, we may examine the ordinal climatic niche space of a species 

in a given area currently, overlay it with the ordinal climatic niche space of the same species 

given the future climate projections, and evaluate the overlap and shift of this niche space. 

These niche comparisons may elucidate the potential distributional progression of a species and 

are useful tools to augment SDMs.   

Based on preliminary analysis of current B. tectorum distribution in Rocky Mountain National 

Park (hereafter, the Park) and projected climate change in the Park, the primary hypothesis 

driving this study was that this alien invasive grass may continue to be problematic in current 

disturbed areas of the Park well into the future, and expand its bioclimatic niche as the climate 

changes in the Park. Our objectives were to: (1) evaluate the current bioclimatic niche including 
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climatic variables that have a significant influence on B. tectorum occurrence in the Park using 

MaxEnt and high-resolution climatic data generated from ClimateWNA, (2) model the potential 

bioclimatic niche of B. tectorum in the Park for the year 2050 based on climate change, and (3) 

create a high-resolution map of B. tectorum habitat in the Park both now and in the future for 

use by Park managers. We also sought to better understand the usefulness of ordination 

methods to evaluate niche dynamics in ordinal space.  

Methods 

Study Area 

Rocky Mountain National Park covers about 1,076 km2 in northern Colorado, USA, at 

approximate latitudes 40°10’N to 40°32’N. The elevation varies greatly in the Park, from 2,300 

m to 4,345 m at the summit of the highest peak (Longs Peak) and the Continental divide 

separates the Park with 60% on the east slope and 40% on the west slope. At Estes Park 

climate station (station #052759 at 2364 m elevation; (“Western Regional Climate Center” n.d.), 

mean annual temperature from 1981-2010 was of 6.9˚C, and mean annual precipitation was 

41.8 cm. Montane, subalpine, and alpine ecosystems blanket the Park, yielding habitat to a 

wide variety of flora. Rocky Mountain National Park lists 28 alien plant species as common to 

abundant including B. tectorum (“The National Park Service Rocky Mountain National Park 

Website” n.d.). The United States National Park Service defines an alien species as “those that 

occur in a given place as a result of direct or indirect, deliberate, or accidental actions by 

humans” (“The National Park Service Rocky Mountain National Park Website” n.d.). We 

received a scientific research and collecting permit from Rocky Mountain National Park to 

proceed with this study (ROMO-2013-SCI-0038). 

Species Occurrence Data 

Occurrence data for B. tectorum were combined from four prior field surveys in the Park 

conducted in 1996, 1999, 2007, and 2008 (n=211; (Bromberg et al. 2011)). These surveys were 
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conducted using a modified-Whittaker plot design (Stohlgren et al. 1995). We assumed these 

data were from populations that have not currently filled the entire bioclimatic niche due to 

dispersal limitations (Gallien et al. 2012). Additional B. tectorum occurrence data within a 

100,000 m perimeter of Park boundaries were evaluated for inclusion in the study; however it 

was concluded that no new ecosystem types would be represented by these locations.  

Environmental Variables 

We used current data (climate normals 1981-2010) encompassing 21 annual and 48 seasonal 

bioclimatic (continuous) variables at a 90 m resolution generated using ClimateWNA v. 4.72 

program (Wang et al. 2012), distance to roads and trails (continuous), and vegetation 

community type (categorical) variables (Appendix 2.1).  
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The 90-m2 spatial resolution was chosen for this study after an evaluation of climate data at 4 

km2 (“PRISM”; www.prism.oregonstate.edu) and 1 km2  (“WorldClim”; worldclim.org) determined 

finer climate refugia for the Park may not be captured at these spatial scales (Figure 2.1).

 

Figure 2.1. Comparison of mean annual temperature (MAT) at three spatial resolutions (4 
km, 1 km, and 90 m) for climate normals 1981-2010 in Rocky Mountain National Park, 
Colorado. Data Sources: PRISM Climate Group (www.prism.oregonstate.edu) WorldClim 
(www.worldclim.org) and ClimateWNA (http://climatewna.com/). 
 
The 90-m spatial resolution resulted in 133,849 (90 x 90 m) grid cells, each with a unique value 

for the 71 variables. Distance to roads and trails was included as a surrogate for B. tectorum 

propagule pressure; the seeds of B. tectorum readily attach to vehicle tires, hiking boots, and 

animal fur (Bromberg et al. 2011, Banks and Baker 2011). Elevation data (“CGIAR_CSI 

Geoportal” n.d.), a proxy for climate, was not included in model development, but was used to 
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extract all data from ClimateWNA, and evaluated post-modeling to gain insight concerning the 

potential elevational limits of B. tectorum in the Park.  

Future climate scenarios (year 2050) from six global circulation models (GCMs) were extracted 

at a 90 m resolution from ClimateWNA. These included two runs of CCCMA (Canadian Centre 

for Climate Modeling and Analysis), MIROC-H (Centre for Climate Research, Japan), MRI 

(Meteorological Research Institute, Japan), BCCR (Bjerknes Centre for Climate Research, and 

GFDL (United States National and Atmospheric Administration Geophysical Fluid Dynamics 

Laboratory). Global circulation models incorporate energy flux measurements between the sun, 

atmosphere, and earth’s surface in algorithms that compute surface conditions. For all GCMs 

used in this model, the A2 climate change scenario was selected as this scenario follows 

observed trends in atmospheric carbon dioxide concentrations in the mid-2000s (Raupach et al. 

2007). All variables considered were projected in Universal Transverse Mercator (UTM) 

coordinates in NAD83 datum (to match the B. tectorum occurrence data) using geographic 

information system format (ArcGIS v.10; ESRI, Redlands, CA, USA). Although there is 

uncertainty associated with any future climate scenario, these data provide the most reasonable 

predictions given our current understanding of future conditions. 

Statistical Analysis and Spatial Modeling  

We used R v.3.0.1 statistical software (R Core Team 2012) to calculate Pearson correlations 

(Hmisc package; Frank Harrell) among the 69 climatic variables. All correlation values (r) were 

statistically significant (p < 0.001). When two or more variables were highly correlated (|r| ≥ 

0.70), variables with the lower biologic relevance to B. tectorum was dropped (Dormann et al. 

2013). Highly correlated variables do not add new information to SDMs, and their exclusion is 

the first step in determining the most parsimonious model. The distance to roads and trails and 

vegetation community type variables were not included in the Pearson correlation analysis (the 

former was retained to represent propagule pressure; the latter was a categorical variable). The 
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correlation analysis resulted in nine variables for inclusion in the initial SDM: mean annual 

temperature, continentality (temperature difference between mean warmest month temperature 

and mean coldest month temperature, °C), summer chilling degree-days, beginning of frost-free 

period, mean summer precipitation, spring heating degree days, winter reference evaporation, 

distance to roads, and vegetation community type. 

These nine variables were included in MaxEnt along with the B. tectorum occurrence data. An 

initial SDM was run in MaxEnt (one run; raw output setting) to acquire lambda values used in 

ENMTools v.1.3 (Warren et al. 2010) to calculate Akaike’s Information Criterion (AIC; Anderson 

and Burnham 2002) for a model fit with all nine variables, eight, seven, six, five, four, three, two, 

and one of the variables, respectively (Table S2). This method selects the fitted approximating 

model that is estimated to be closest to the unknown truth on average (i.e. the most 

parsimonious model). The model that was most parsimonious in our case (lowest AIC value) 

had six variables: mean annual temperature, continentality, beginning of frost-free period, mean 

summer precipitation, spring heating degree days, and distance to roads and trails. 

These six variables were then incorporated into MaxEnt along with the B. tectorum occurrence 

data. The same six variables were included as projection layers for the year 2050 for all six 

GCMs. MaxEnt requires the user to specify a background for the study area from which the 

algorithm will select random points that are assumed as ‘pseudo-absences’. We set MaxEnt to 

select 10,000 random background points from the entire Park. The B. tectorum occurrences 

used in this study were collected using stratified random sampling in the Park, and personal 

communication with Park staff verified that these invaded areas were the only ones reported for 

the Park at the time these occurrences were sampled, justifying this background point selection 

method. MaxEnt allows the user to change default settings based on study objectives (Phillips 

and Dudík 2008, Merow et al. 2013). We changed the following settings: (1) created response 

curves to evaluate B. tectorum response to individual variables, (2) conducted jackknife 
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procedure to measure variable importance, (3) selected a random seed, (4) set random test 

percentage at 10 to evaluate model performance and reduce bias (90% of the data trained the 

model), (5) set replicates at 100 so that model results would not be dependent on a single 

sample and to ensure variability, (6) replicated run-type was set as subsample, (7) chose that 

plot data be written, (8) set maximum iterations to 5,000 allowing the model adequate time for 

convergence (prevents over- or under- prediction of correlations), (9) selected that background 

predictions be written, and (10) conducted ‘fade by clamping’ to ensure consistency in 

probabilities for the future climate projections.  

MaxEnt produced seven continuous surface ASCII files; one for current probabilities of 

occurrence and one for each year 2050 GCM (i.e. six future climate scenarios). These ASCIIs 

contained relative probabilities of B. tectorum presence predicted for each 90-m pixel of the 

study area. Using ArcGIS v.10, the seven ASCII files were converted to binary maps in raster 

format, where 1= suitable habitat and 0= unsuitable habitat. This classification was based on the 

10th percentile training presence logistic threshold (= 0.32) produced by the MaxEnt model. 

Finally, the six year 2050 GCM rasters were combined and reclassified into non-habitat, 

decreasing, increasing, and stable habitat for B. tectorum in the Park using an ensemble 

approach (Araújo and New 2007).  

Model evaluation  

To evaluate the final MaxEnt model with six variables compared to random expectations we 

calculated a partial AUC (area under receiver operating characteristic curve) ratio (pAUC) 

following (Peterson et al. 2008). A pAUC value of 1 indicates the model preformed no better 

than random; values >1 indicate the model performed better than random. Partial AUC 

considers only the portion of the AUC curve that corresponds to model predictions rather than 

commission error rate (i.e. ratio of incorrectly predicted absence data to all absence data), 

which is not applicable for presence-only SDMs. For the pAUC analysis, 80% of the B. tectorum 
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occurrence data (n = 169) were randomly selected to train a MaxEnt model using 10-fold cross 

validation . The remaining 20% of the data (n = 42) were used to test the logistic predictions of 

this model. The modeled suitability values of each testing point are used to calculate pAUC, and 

we ran 1000 iterations with 50% of the points resampled with replacement for each bootstrap. 

To prepare data for a principle components analysis (PCA), 10,000 random points were 

selected from the entire study area of the Park, and current and future (year 2050; ensemble 

from averaging six GCMs) values for the five non-correlated climatic variables were extracted 

for these points in ArcMap v.10. Using R v.3.0.1, a PCA analysis was conducted for these 

variables to reduce dimensionality; multivariate attributes were reduced to two values (each 

variable was regarded as constituting a different dimension, in a p-dimensional hyperspace). 

The niche.overlap, occ.prep, and niche.dynamic functions in R were utilized and code was 

modified from (Broennimann et al. 2012). This method converted the B. tectorum presence 

points (n = 211) to density values via kernel smoothing. The density values were then ordered 

along PCA axes of the current environmental grid (10,000 random background points) and then 

the future (2050) environmental grid (same 10,000 random background points). The current and 

2050 models were overlaid to determine the extent of B. tectorum niche overlap in ordinal 

space, between current and future climates. This PCA does not substantiate the results of the 

MaxEnt model; rather it provides another tool to evaluate the potential future niche of a species 

in ordinal space (i.e., the fundamental niche) rather than geographic space.  

Results 

Variable correlation and parsimony analysis 

Out of 69 climatic variables, seven were found to be uncorrelated using Pearson correlation (|r| 

≤ 0.70): mean annual temperature, continentality (temperature difference between mean 

warmest month temperature and mean coldest month temperature, ˚C), summer chilling 

degree-days, beginning of frost-free period, mean summer precipitation, spring heating degree 
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days, and winter reference evaporation. The AIC analysis indicated a model with five of these 

seven climatic variables (mean annual temperature, continentality, beginning of frost-free 

period, mean summer precipitation and spring heating degree days) and the distance to roads 

and trails variable would be most parsimonious. Thus, these six variables were used in the final 

MaxEnt model. 

Final MaxEnt model with six variables 

The average pAUC value for the best model was 1.77 (± 0.0005), indicating the MaxEnt 

algorithm performed exceptionally well in discriminating areas as suitable B. tectorum habitat. 

Mean annual temperature had the greatest contribution to the model (43.7%), followed by spring 

degree days below 18˚C (19.5%; Table 2.1). 

Table 2.1. Variables and their relative contribution in the final MaxEnt model.
Variable Percent Contribution2 Permutation Importance 

Mean annual temperature 43.7 17.2 

Spring degree days below 18˚C 19.5 5.1 

Distance to roads 13.5 34.1 

Beginning of frost-free period 13.5 6.4 

Mean summer precipitation 6.3 23.7 

Continentality  3.5 13.4 

 
Distance to roads and beginning of frost-free period contributed equally to the model (13.5%), 

and mean summer precipitation contributed 6.3%. Continentality only contributed 3.5% to the 

model; however we felt confident in its inclusion because of the low AIC value associated with 

the six variable model compared to a model with more or fewer variables. Model response to 

the top predictor variable (i.e. mean annual temperature) indicated the probability of B. tectorum 

                                                           
2 Percent contribution is calculated as the increase in regularized gain added to the contribution 

of the corresponding variable for each of the 5000 iterations of the model (subtracted if the 
change to the absolute value of lambda is negative). 
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presence in a given cell is greater than 50% when mean annual temperature is between 5.5 and 

7.5˚C. Likewise, spring degree days below 18˚C between 1000 and 1200 yielded at least 50% 

logistic probability, as well as beginning of frost-free period Julian date between 145 and 165, 

and distance to roads less than 1000 m. Mean summer (May – Sept.) precipitation and 

continentality showed the most conservative thresholds for B. tectorum response. Mean 

summer precipitation greater than 250 mm and less than 300 and continentality greater than 

21˚C but less than 22˚C yielded greater than 50% logistic probability, and while their 

significance in the model was lower than the other four variables these narrow thresholds merit 

further investigation. Jackknife output confirmed the importance of mean annual temperature, 

spring degree days below 18˚C, and beginning of frost free period to the final model (i.e., higher 

training gain and test AUC value; Figures 2.2 a, b).  
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Figure 2.2. Variable contribution to (a) training gain and (b) AUC (area under curve). Light 
gray bars indicate how well the model performs with only that variable versus a full 
model, which are the dark gray bars. Values shown are averaged over 100 replicate 
MaxEnt model runs. 
 

Current and future potential suitable habitat of B. tectorum in the Park 

The current suitable habitat for B. tectorum in the Park is 62.2 km2, and in the future (year 2050) 

our ensemble model indicated 219.4 km2 of the Park as suitable habitat (Figures 2.3a, b).  
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Figure 2.3. Bromus tectorum current suitable habitat in Rocky Mountain National Park 
and (a) increasing, decreasing, stable, and unsuitable habitat for the year 2050 (b) based 
on MaxEnt model outputs. Elevation has been included for reference. Coordinate system 
NAD 1983 UTM Zone 13 N. 
 
In the future model, 5.5% of the Park currently suitable remains stable habitat for B. tectorum 

(59.1 km2) while 0.3% decreases in suitability (3.1 km2). An additional 14.9% of the Park 

becomes suitable habitat (160.3 km2) compared to current conditions. Although elevation (a 

proxy for climate) was not included in the model, we overlaid the final model results on a digital 

elevation model of the Park to evaluate the potential elevational limits of B. tectorum given 

future climates. Currently, B. tectorum has been found up to 2,800 m elevation in the Park, and 

the current suitable habitat MaxEnt results agree with this. The future ensemble model indicates 

B. tectorum may reach nearly 3,300 m in elevation by the year 2050. 
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Principle components analysis 

Relative occupancy for the current realized and year 2050 projected realized niches of B. 

tectorum in the Park are shown along each axis of the PCA model (Figure 2.4).  

 

Figure 2.4. PCA of niche overlap (blue) for B. tectorum in Rocky Mountain National Park 
based on current (green) and future (red) climate space. Averages for five climatic 
variables from six global circulation models (GCMs) were included in this analysis: mean 
annual temperature, spring degree days below 18˚C, beginning of frost-free period, mean 
summer (May-Sept.) precipitation, and continentality (see methods for description of 
GCMs). 
 
The PCA indicated both niche conservation (D = 0.22 or 22% overlap between current climate 

niche space and future ordinal niche space) and a shifting niche for B. tectorum in the Park 

between current and future conditions. Thus, 22% of the ordinal climatic niche of this species 

may remain in the Park under future climates, and 78% of this niche space may shift.  
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Discussion  

In this study we used MaxEnt model to integrate species occurrences and high-resolution (i.e. 

90 m) current and future climatic and other environmental data layers to develop current and 

future potential habitat distribution maps for B. tectorum. Compared to current conditions, in the 

year 2050 an additional 14.9% of the Park will be suitable habitat for B. tectorum (160.3 km2). 

Interestingly, the final MaxEnt model indicated some areas of the Park that are currently suitable 

may no longer be suitable B. tectorum habitat in the future. Therefore, it is likely one of the most 

significant climatic variables may surpass an upper or lower value threshold for B. tectorum 

survival given its probability of presence. For example, the strongest predictor in the MaxEnt 

model, mean annual temperature may exceed the upper threshold of 7.5˚C under future 

potential conditions in some areas of the Park. The distribution of both C3 and C4 grasses has 

been explained in previous studies primarily by mean annual temperature (Paruelo and 

Lauenroth 1996, Bremond et al. 2012). Bromus tectorum is a C3 grass, a group whose relative 

abundance tends to decrease with increasing mean annual temperature (Paruelo and 

Lauenroth 1996). The raw ClimateWNA data indicated that mean annual temperature will 

increase for most of the Park in all six GCMs. Our model forecasts suitable habitat for B. 

tectorum at increasing elevations in the Park for the year 2050, suggesting this alien grass may 

respond to increasing mean annual temperatures by moving upward in elevation to maintain its 

niche space. This model showed suitable habitat for B. tectorum up to 3,300 m elevation, 

indicating this invasive grass may become problematic in subalpine ecosystems of the Park. 

Bromus tectorum has already been found at 3,000 m elevation in the Himalayan mountains 

(Upadhyaya 1986).  

The significance of all six variables that were selected through our parsimony analysis to B. 

tectorum ecology indicates the importance of careful scrutiny and correlation analysis of 

available environmental data for a study site of interest a priori, as other authors have indicated 
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(Kumar et al. 2009, Sheppard 2013). In particular, mean annual temperature, spring degree 

days below 18°C, beginning of frost-free period and distance to roads and trails have relevant 

ecological importance to the distribution of this alien invasive grass species. While prior 

research has indicated vegetation community type is important in determining habitat suitability 

for B. tectorum, we were not concerned when this variable was dropped based on AICc values; 

this variable is not static given future potential climates and disturbances such as fire and pine 

beetle outbreaks in the Park. The logistic probability response indicated 1000 and 1200 spring 

degree days below 18°C (also known as heating degree days) increases the likelihood of B. 

tectorum presence, and this finding is supported by (Ball et al. 2004), whose study across 

Western US States including Colorado supported the hypothesis that seed development for this 

alien grass can be related to cumulative growing degree days at a given geographic location. 

Furthermore, the current advancement of spring (warmer average temperatures earlier in the 

year) in the study area will certainly have implications for green-up and reproductive success of 

B. tectorum. Since the 1980s, there have been significant snowpack declines along the entire 

Rocky Mountain range due to warmer spring temperatures (Pederson et al. 2013), which may 

give this alien an even greater advantage over slower-growing native grasses(Compagnoni and 

Adler 2014).  

Beginning of frost-free period and distance to roads/trails variables contributed equally to the 

MaxEnt model and should be considered as indicators of B. tectorum distribution in the Park. 

Beginning of frost-free period is important when considering release from temperatures that may 

damage plant tissue. The inclusion of distance to roads in the final model was consistent with 

prior research of B. tectorum distribution in the Park (Bromberg et al. 2011); the seeds of B. 

tectorum easily attach to vehicle tires and hiking shoes, making roads a key mechanism in its 

dispersal. 



30 

A bioclimatic model at ~4 km spatial resolution was developed for the Great Basin ecoregion of 

the US that indicated summer, annual, and spring precipitation and winter temperatures were 

the best predictors of B. tectorum distribution(Bradley 2009). Coarser resolution SDMs (e.g., 

greater than 1 km2) are useful for large areas such as the Great Basin, but are likely to have 

greater inherent prediction error in smaller study areas and areas with higher elevational range 

and topographic heterogeneity such as Rocky Mountain National Park (Gillingham et al. 2012a). 

The B. tectorum occurrence locations used in this study were spread across a broad elevation 

gradient, making a finer-scaled SDM important (Randin et al. 2009). The 90 m resolution grid 

cells used in our model combined with climate data that included local weather station data 

were more likely to capture small areas of climate refugia for B. tectorum than coarse-scale 

models that are often used in SDMs.   

Our PCA results indicated that some of the ordinal niche space of B. tectorum may be 

conserved in the Park, however a larger portion of this space will shift under future climate 

conditions. Given the increased within-population genetic variation of B. tectorum in North 

American populations and the high phenotypic plasticity of this alien invasive grass (Novak et al. 

1993, Ellstrand and Schierenbeck 2006, Leger et al. 2009), the future potential shift of its 

bioclimatic niche space merits constant monitoring for new populations in the Park. One study 

cited that although B. tectorum already occurs in Canada, it has the potential to expand this 

range due to “weedy” genotypes (Clements and DiTommaso 2011). A more recent study 

indicated B. tectorum has the potential to shift phenological development to maximize growth 

and reproduction (Zelikova et al. 2013). Although quantifying evolutionary adaptations has yet to 

be realized in SDMs, supplementing these models with PCA may fill the gap in uncertainties 

associated with niche conservation. 

Existing research indicates that climate and soil disturbance are main drivers for successful B. 

tectorum invasion (D’Antonio and Vitousek 1992, Bradford and Lauenroth 2006). Future 
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research modeling B. tectorum distribution in the Park may incorporate measurements such as 

soil disturbance that may result in bare ground or loss of competing vegetation, as well as slope 

and aspect to provide an even stronger case for monitoring particular areas within the Park. 

Bromus tectorum grows in a broad range of soil types; however it is intolerant of shade (Mack 

1981). A niche model incorporating variables such as slope and light exposure as proxies for 

shade may provide further inference to B. tectorum distribution in the Park (Austin and Van Niel 

2011).  

The SDM methods outlined in this study provide useful tools for land managers to plan for future 

potential climates across space and time. An ensemble of six different global circulation models 

takes into consideration the varying sensitivities to model input among extrapolated climates, 

thus reducing uncertainty in our projections. This method combined with fine-resolution data 

from ClimateWNA and the inclusion of annual climate, seasonal climate, and distance to 

roads/trails produced the most robust estimates of current and future habitat for B. tectorum in 

the Park. These maps can improve the efficiency and lower the cost of future surveys. Our 

methodology can be adopted to generate high resolution species distribution maps under 

current and future climate scenarios for small study areas and other species, such as the 27 

additional invasive species in Rocky Mountain National Park. Land managers can incorporate 

the maps created from these models into integrated pest management regimes, and further 

tailor them based on what is already known about an area, keeping in mind that the models 

must be used in an iterative manner to improve their accuracy. Finally, maps such as these may 

be displayed to the public to increase awareness of climate change implications in National 

Parks and beyond.  
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Appendices 

Appendix 2.1. Environmental variables (n = 71) evaluated for inclusion in the model1. 

Variable description and units of measurement 

Annual Variables 

Mean annual temperature (°C) 

Mean warmest month temperature (°C) 

Mean coldest month temperature (°C) 

Continentality (°C; difference between MWMT and MCMT) 

Mean annual precipitation (mm) 

Mean summer (May to Sept.) precipitation (mm) 

Annual heat: moisture index (MAT+10)/(MAP/1000) 

Summer heat:moisture index ((MWMT)/(MSP/1000)) 

Degree days below 0°C 

Degree days above 5°C 

Degree days below 18°C 

Degree days above 18°C 

Number of frost-free days 

Frost-free period (FFP) 

Julian date on which FFP begins 

Julian date on which FFP ends 

Precipitation as snow (mm) between Aug and July 

Extreme minimum temperature over 30 years 

Extreme maximum temperature over 30 years 

Hargreaves reference evaporation 

Hargreaves climatic moisture deficit 
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Seasonal Variables 

Winter (Dec.(prev. yr) - Feb.) mean temperature (°C) 

Spring (Mar. - May) mean temperature (°C) 

Summer (Jun. - Aug.) mean temperature (°C) 

Autumn (Sep. - Nov.) mean temperature (°C) 

Winter mean maximum temperature (°C) 

Spring (Mar. - May) mean maximum temperature (°C) 

Summer (Jun. - Aug.) mean maximum temperature (°C) 

Autumn (Sep. - Nov.) mean maximum temperature (°C) 

Winter (Dec.(prev. yr) - Feb.) mean minimum temperature (°C) 

Spring (Mar. - May) mean minimum temperature (°C) 

Summer (Jun. - Aug.) mean minimum temperature (°C) 

Autumn (Sep. - Nov.) mean minimum temperature (°C) 

Winter (Dec.(prev. yr) - Feb.) precipitation (mm) 

Spring (Mar. - May) precipitation (mm) 

Summer (Jun. - Aug.) precipitation (mm) 

Autumn (Sep. - Nov.) precipitation (mm) 

Winter (Dec.(prev. yr) - Feb.) degree days below 0°C 

Spring (Mar. - May) degree days below 0°C 

Summer (Jun. - Aug.) degree days below 0°C 

Autumn (Sep. - Nov.) degree days below 0°C 

Winter (Dec.(prev. yr) - Feb.) degree days above 5°C 

Spring (Mar. - May) degree days above 5°C 

Summer (Jun. - Aug.) degree days above 5°C 

Autumn (Sep. - Nov.) degree days above 5°C 
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Winter (Dec.(prev. yr) - Feb.) degree days below 18°C 

Spring (Mar. - May) degree days below 18°C 

Summer (Jun. - Aug.) degree days below 18°C 

Autumn (Sep. - Nov.) degree days below 18°C 

Winter (Dec.(prev. yr) - Feb.) degree days above 18°C 

Spring (Mar. - May) degree days above 18°C 

Summer (Jun. - Aug.) degree days above 18°C 

Autumn (Sep. - Nov.) degree days above 18°C 

Winter (Dec.(prev. yr) - Feb.) number of frost-free days 

Spring (Mar. - May) number of frost-free days 

Summer (Jun. - Aug.) number of frost-free days 

Autumn (Sep. - Nov.) number of frost-free days 

Winter (Dec.(prev. yr) - Feb.) precipitation as snow 

Spring (Mar. - May) precipitation as snow 

Summer (Jun. - Aug.) precipitation as snow 

Autumn (Sep. - Nov.) precipitation as snow 

Winter (Dec.(prev. yr) - Feb.) Hargreaves reference evaporation 

Spring (Mar. - May) Hargreaves reference evaporation 

Summer (Jun. - Aug.) Hargreaves reference evaporation 

Autumn (Sep. - Nov.) Hargreaves reference evaporation 

Winter (Dec.(prev. yr) - Feb.) Hargreaves climatic moisture deficit 

Spring (Mar. - May) Hargreaves climatic moisture deficit 

Summer (Jun. - Aug.) Hargreaves climatic moisture deficit 

Autumn (Sep. - Nov.) Hargreaves climatic moisture deficit 

Other Variables 
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Distance to roads (m) 

Vegetation Community Type (categorical) 

1Source: ClimateWNA (Wang et al. 2012). 

Appendix 2.2. Akaike’s Information Criterion (AICc) values for a MaxEnt model with 

differing numbers of variables. 

Number of Variables in MaxEnt Model AICc score 

9 3975.36 

8 3934.77 

7 3933.65 

6 3918.85 

5 3936.18 

4 3944.69 

3 3984.79 

2 4081.40 

1 4084.35 
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CHAPTER 3. INCORPORATING MULTI-TEMPORAL SPECTRAL INDICES IN AN ITERATIVE 

SPECIES DISTRIBUTION MODEL FOR AN INVASIVE SPECIES IN A POST-WILDFIRE 

LANDSCAPE3 

 

 

Introduction 

The western United States has experienced an increasing trend in large wildfire frequency in the 

last 30 years (Westerling et al. 2006, Dennison et al. 2014). Wildland fires are naturally 

occurring, managed, and prescribed across vast landscapes in the West. However, the 

introduction of invasive species such as Bromus tectorum (cheatgrass) has the potential to alter 

any of these fire regimes. Wildfires are abiotic ecological processes that may be characterized 

as a function across ecological gradients. Invasive species such as cheatgrass alter this 

function, affecting extent, frequency, intensity, or even the seasonality of fire (Freeman et al. 

2007). Following disturbance, new sunlight and soil resources become available to seedling 

establishment in an unoccupied niche (Stohlgren and Binkley 1999). This may be exemplified in 

sagebrush steppe and ponderosa pine communities of Wyoming. Two inorganic forms of 

nitrogen, ammonium (NH4
+; product of combustion) and nitrate (NO3

-; forms from the ammonium 

via nitrification) may increase post-fire in soils (Certini 2005). Nitrate typically leaches out in the 

soils; however the increased ammonium is readily available to plants as it is adsorbed to soil 

particles, and rapidly growing species such as cheatgrass may take advantage of these 

resources. In one study, cheatgrass grown in burned soil had higher growth rates, N uptake and 

more enriched N than individuals grown in unburned soil (Johnson et al. 2010).  

In areas where cheatgrass is established and following the winter annual lifecycle, fire 

frequency and ground fire intensity may be expected to increase because the alien invasive 

grass creates a new abundance of fine fuel (i.e. standing dry biomass and litter; also referred to 

                                                           
3 Coauthors: Paul Evangelista, Catherine Jarnevich, Sunil Kumar, Aaron Swallow, Matt Luizza, 
and Stephen Chignell  
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as the fuel packing ratio, or the amount of fuel per unit volume of space (Brooks et al. 2004)) 

during a time of the year that corresponds to wildfire season. This fine fuel also increases the 

fuel surface-to-volume ratio, which may increase horizontal fuel continuity (Brooks et al. 2004). 

Litter per acre produced by cheatgrass has been reported from 118 to 293 pounds (Uresk et al. 

1979).There has been evidence that B. tectorum greatly alters the natural fire cycle in 

sagebrush ecosystems; 60 to 500 year intervals between fires has become a three to five year 

interval in some B. tectorum dominated ecosystems (Knapp 1996, Chambers and Roundy 

2007). Using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for 2000–

2009, Balch et al., 2013 concluded increased fire frequency, size, and duration were associated 

with cheatgrass cover in the Great Basin ecoregion. Cheatgrass dominated rangelands in these 

systems were nearly four times more likely to burn than native land cover during the 2000s.  

Not only has cheatgrass has been implicated in altering fire regimes, nitrogen cycling, and soil 

water content, the invasion of this species is also associated with interspecific competition with 

native grass and forb species, degrading range site productivity, depleting wildlife forage, and 

diminishing habitat quality. Management of B. tectorum is of high importance to both natural 

areas and agro-ecosystems in the United States, where approximately 22.5 million hectares 

were affected by this alien invasive in 2005 (Duncan et al. 2004).  

Remote Sensing provides a unique tool for detection of invasive plants (for a review see 

Bradley, 2013). Spectral reflectance, transmittance, and absorption of plant leaves for 

ultraviolet, visible, and near infrared (IR) frequencies have been recognized as useful tools to 

distinguish vegetation on the landscape since the 1960s (Gates et al. 1965, Myers and Allen 

1968, Gausman et al. 1969). Chlorophyll absorbs energy in the blue and red wavelength bands 

centered around 0.45 and 0.67 µm; therefore, healthy vegetation appears green, and unhealthy 

vegetation appears yellow as this absorption decreases. In the near IR portion of the spectrum 

(i.e. 0.7 to 1.3 µm), a healthy plant leaf reflects up to 50 percent of solar energy, with the total 
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amount reflected greatly dependent on leaf structure. Thus, the near IR band may be used to 

distinguish specific plant species on the landscape based on leaf structure. For wavelength 

values greater than 1.3 µm, leaf reflectance is inversely related to total water content of the leaf 

(Lillesand et al. 2008). Spectral vegetation indices are dimensionless measurements developed 

from mathematical ratios of these frequencies and require multispectral imagery of the earth’s 

surface. One of the first and most common vegetation indices used is the normalized difference 

vegetation index (NDVI; Rouse et al., 1974). Since that time, many more useful vegetation 

indices have been developed to assist in mapping vegetation on the landscape. The Landsat 8 

satellite that was launched in 2013 provides multispectral, moderate spatial resolution imagery 

of the earth’s surface at a temporal resolution of 16 days (an 8-day offset from the Landsat 7 

satellite), making it an ideal tool for monitoring vegetation on the landscape. The Operational 

Land Imager (OLI) on the Landsat 8 satellite provides images with nine spectral bands with a 

spatial resolution of 30 m for bands 1 through 7 and 9, and 15 m for band 8 (i.e. panchromatic 

band).   

Spectral indices provide powerful tools for assessing the current distribution of plant species on 

the landscape; however, management goals for invasive species may also often center on 

delineating their suitable habitat for risk assessment. Following Grinnellian niche theory, we can 

attempt to quantify the suitable habitat for a species on the landscape given constraints in the 

local environment that allows the population to grow (Hirzel and Le Lay 2008). Topographic 

covariates are commonly used for delineating the habitat of species or functional groups on the 

landscape (Franklin 2009). Although climate and soils play a major role in suitable habitat for 

plant species, these data are rarely available at the fine to moderate spatial scale (e.g. 30 m 

pixel of a Landsat image) needed for spatial analysis of habitat suitability in regional areas such 

as a National Forest. Elevation plays a role in macroclimate, wind speed, and solar radiation, 

among other environmental variables (Rosenberg 1983), and therefore may serve as a proxy for 
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these constraints on habitat suitability. Digital elevation models can be used to produce other 

topographic indices that serve as proxies for soil and moisture properties on the landscape 

including slope, aspect, and compound topographic index among others.  

Fires fueled by cheatgrass have historically cost the Great Basin as much as $10 million per 

year in control (Knapp 1996), therefore it is easily understood that risk assessments of 

cheatgrass cover are a high priority to land managers. These approaches often begin with a 

quantification of the entire area invaded to determine management objectives and potential cost 

of treatment methods, and are complimented by maps of potential suitable habitat based on 

biogeographical information (Pearson 2007). A cheatgrass population may be spectrally distinct 

at three stages in its annual lifecycle; the “boot stage” or formation of grass spikelets; the 

“purple to red stage” and the “brown stage” to senescence. This attribute makes multi-temporal 

spectral analysis of remotely sensed imagery a powerful tool for estimating cheatgrass cover on 

the landscape, and several methods have been evaluated. One study reported a 77% overall 

accuracy using multi-temporal stacking with linear spectral unmixing of Landsat 7 imagery to 

detect cheatgrass, and a 66% overall accuracy in detection using the difference in NDVI 

between two Landsat 7 images (i.e. June 26 – April 23) (Singh and Glenn 2009). Another study 

analyzed cover of cheatgrass from two Landsat 7 ETM+ images using tobit regression, with the 

final model using MNDVI (i.e. modified NDVI for quadratic modeling; 1- ∆NDVI), late season 

green band, and elevation as covariates, and reported r = 0.71 with 9% RMSE (Peterson 2005). 

Phenological indices derived from 1km MODIS satellite imagery were important among a suite 

of predictors for cheatgrass presence in an ensemble model (Stohlgren et al., 2010), and 

MODIS was used to relate cheatgrass cover to fire in the Great Basin (Balch et al. 2013). 

Research has also indicated elevation to be a primary determinant of cheatgrass abundance 

(Bradley and Mustard 2006, Bromberg et al. 2011, Sherrill and Romme 2012).   
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Land managers need time- and cost- effective approaches to evaluate risk of invasive species, 

particularly following disturbance. Our primary objective in this study was to create a highly 

accurate map of cheatgrass cover in a post-wildfire landscape that could be used by land 

managers in an environmental impact statement and for targeted aerial herbicide spraying in an 

area with high topographic heterogeneity. We sought to develop a method using freeling 

available data to predict the distribution of invasive species accurately in a way that could be 

easily replicated by land managers across time and space. We also sought to evaluate the 

added confidence in species distribution model output when a threshold for percent cover is 

established through a novel iterative approach. Finally, we investigated cheatgrass habitat 

suitability using topographic covariates and dispersal limitations to evaluate future invasion risk. 

Methods 

Study Site  

Medicine Bow National Forest comprises 561,729 ha of public land in Wyoming, USA. The 

elevation in this area ranges from approximately 1,005 m to 3,948 m, lending to a broad range 

of habitat types with dominant lodgepole pine (Pinus contorta) forests. Subalpine fir (Abies 

lasiocarpa) and Engelmann spruce (Picea engelmannii) may also be found at the highest 

elevations and a mixture of trees including aspen (Populus tremuloides), Douglas fir 

(Pseudotsuga menziesii) and ponderosa pine (P. ponderosa) are more common at the mid-

elevations. Sagebrush steppe comprised of Artemesia sp., and grasslands dominate the mid- to 

lower- elevations, and riparian habitats with willows (Salix sp.), narrowleaf cottonwood (Populus 

angustifolia), and wetland forbs at the lowest elevations. Mammals in Medicine Bow National 

Forest serve important ecologic and economic (i.e. game species) roles, including elk (Cervus 

canadensis), mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), and moose 

(Alces alces).   
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The Squirrel Creek wildfire (41.12°N latitude, -106.069°W longitude) began on June 30th, 2012 

and was contained within 10 days (http://inciweb.nwcg.gov/incident/2970/; accessed 1/7/2015). 

This fire burned 4,450 ha of forested and un-forested areas typical of the Medicine Bow National 

Forest in an area managed primarily for deer and elk crucial winter range, and to a lesser 

degree dispersed recreation. Burn severity was categorized as low to moderate. The dominant 

fuels of the Squirrel Creek wildfire were timber (litter and understory), grass, timber grass 

understory, timber litter, and light logging slash. Cheatgrass populations prior to the burn were 

estimated to cover 10% of the total Squirrel Creek wildfire area (personal communication). 

Initial Field Data Collection 

Beginning in May 2014 and ending July 2014, we conducted field surveys in the Squirrel Creek 

Wildfire post-burn. To ensure we captured the high degree of heterogeneity in topography 

across the study area without biasing sampling toward roads and trails, we sampled 7.32 m 

plots (Stohlgren et al., 2010) randomly stratified (Hirzel and Guisan 2002) across North-South 

transects, spaced 1,000 m apart (n = 184 plots). We recorded cover (as a percent of the total 

plot from 0 to 100) for five distinct categories in each plot: cheatgrass, other forbs and grasses, 

shrub and woody, rock, and bare ground. In this study we only considered cheatgrass cover. 

The decision to place transects 1,000 m apart was based on study area and sampling time 

constraints, which typifies sampling efforts across a broad range of agencies. To minimize 

spatial autocorrelation, all samples were taken at a distance greater than 30 m from the next 

closest sample (i.e. corresponds with the 30 m2 pixel resolution of a Landsat image). 

Data processing 

Cheatgrass may germinate at any time of the year. Therefore, in order to avoid confounding 

spectral absorption and reflection with other ground cover, we compiled Landsat 8 OLI imagery 

for five months of the growth cycle (i.e. Path 35 Row 31; May – Sept. 2014, which also 

corresponds to time of field data collection). All images had less than 10% cloud cover for both 
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study areas. Eight spectral indices were derived from combinations of the blue, green, red, near 

IR, short-wave infrared 1 and 2 bands in ENVI v.5.1 (Exelis Visual Information Solutions, 

Boulder, Colorado; Table 3.1).  

Table 3.1. Indices derived from Landsat 8 imagery. 
Index Equation 

Normalized Difference Vegetation Index 

(NDVI) 

NDVI = ρNIR – ρRed/ ρNIR – ρRed 

Soil-Adjusted Vegetation Index (SAVI) [(ρNIR – ρRed) x (1 + L) / (ρNIR + ρRed+L)] 

Enhanced Vegetation Index (EVI) [(ρNIR – ρRed) / (ρNIR + C1∗ ρRed − C2 ∗ 

ρBlue + L)14 

Normalized Difference Water Index (NDWI)  ρGreen – ρNIR / ρGreen + ρRed 

Modified Normalized Difference Water Index 

(MNDWI) 

MNDWI = ρGreen – ρSWIR1 / ρGreen + 

ρSWIR1 

Tasseled cap soil brightness (TCAP bright) weighted composite of six bands into one 

orthogonal band5 

Tasseled cap vegetation greenness (TCAP 

green) 

weighted composite of six bands into one 

orthogonal band2 

Tasseled cap soil/vegetation wetness (TCAP 

wet) 

weighted composite of six bands into one 

orthogonal band2 

 
We downloaded a 30 m digital elevation model (DEM) collected from the NASA Shuttle Radar 

Topography Mission (SRTM) that included the Squirrel Creek Wildfire from EarthExplorer 

(http://earthexplorer.usgs.gov/). From this DEM, we developed seven continuous topographic 

surfaces in ArcMap v.10.2 (ESRI, Redlands, CA, USA; Table 3.2). 

                                                           
4 C1 = atmospheric resistance red correction coefficient, C2 = atmospheric resistance red 

correction coefficient, L = canopy background brightness correction factor (L = 1) 
5 Coefficients from Baig et al. (2014). 
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Table 3.2. Indices derived from digital elevation model (DEM). 

Index Equation/description 

Elevation Derived directly from DEM 

Slope Derived from DEM16 

Aspect Derived from DEM1 

SDS Second derivate of slope27 

COS Cosine transformation of aspect2 

SIN Sine transformation of aspect2 

Compound topographic index (CTI) CTI = (As / (tan (beta)) where As = area value 

calculated as (flow accumulation + 1 ) * (pixel 

area in m2) and beta is the slope expressed in 

radians)2 

Heat Load Index (HLI) Derived through “folding” the aspect so the 

highest values are SW and lowest values are 

NE; accounts for steepness of slope2 

TRASP Linear transformation of circular aspect; value 

of 0 for land oriented in a N-NE direction 

(typically coolest and wettest orientation); 

value of 1 for S-SW direction (hotter, dryer 

slopes)2 

 

Preliminary Species Distribution Modeling  

To develop preliminary current species distribution models for cheatgrass in the Squirrel Creek 

Wildfire, we executed regression and machine-learning statistical models using the multi-

temporal, multispectral indices from Landsat 8 OLI imagery and cheatgrass presence and 

                                                           
6 Topographic covariates derived using ArcMap v. 10.2.  
7 Geomorphology and Gradient Metrics Toolbox for ArcGIS (Evans et al. 2014). 
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absence data in the USGS Software for Assisted Habitat Modeling (SAHM; Morisette et al. 

2013). The SAHM program is an open source modeling platform that expedites pre-processing 

and execution of species distribution models and habitat suitability models. First, we used the 

Project, Aggregate, Resample, and Clip tool (PARC) module within SAHM to ensure 

consistency between all remotely sensed and topographic indices. The Covariate Correlation 

and Model Selection module was then applied to evaluate cross-correlation among all variables 

and address the issue of multicollinearity (Dormann et al. 2013). When two variables had a 

Pearson, Spearman, or Kendall correlation coefficient, |r| ≥ 0.70, only one of the pair was 

selected for model development, based on percent deviances explained from a univariate GAM 

with the predictor, relative importance of each variable, and expert knowledge of cheatgrass 

phenology in the study area. We retained seven variables for model development: May TCAP 

wet, May SAVI, July TCAP wet, July TCAP bright, August MNDWI, August TCAP wet, and 

August NDVI.  

Using this subset of variables, we fit four species distribution models in SAHM for the Squirrel 

Creek Wildfire: Boosted Regression Trees (BRT), Random Forest (RF), Generalized Linear 

Model (GLM), and Multivariate Adaptive Regression Spline (MARS). BRT is a stochastic 

additive regression model. It combines regression trees, which relate a response (i.e. 

cheatgrass presence and absence) to a set of predictors (i.e. remotely sensed indices) by 

recursive binary splits, and boosting which is an adaptive combination of a wide array of simple 

models to increase predictive performance (De’ath 2007, Elith and Leathwick 2008, Elith et al. 

2008). RF is an ensemble decision tree method (similar to BRT) that utilizes a bagging 

approach, combining a multitude of trees and averaging to produce more accurate 

classifications (De’ath et al. 2000, Breiman 2001). RF is known to have high classification 

accuracy and the ability to model complex interactions among predictors, using an array of 

functions including regressions, classifications, survival analyses, and unsupervised learning. 
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Generalized Linear Model (GLM) is a generalized ordinary linear regression approach that 

specifies a relationship between the mean of a random variable and a function of the linear 

combination of predictors (McCullagh and Nelder 1989, Hijmans and Elith 2013). MARS is a 

non-parametric regression technique that automatically models non-linearity and interactions 

among variables (Friedman 1991, Friedman and Roosen 1995). The recursive partitioning of 

MARS makes it capable of fitting complex, non-linear relationships between species and 

predictors. The GLM, MARS, and RF models were left at default settings. The BRT model was 

optimized through testing learning rate values between 0.0005 and 0.01 and tree complexity 

values between one and five (Elith and Leathwick 2008). For model fitting, we partitioned the 

cheatgrass occurrence data into training and test subset and employed ten-fold cross validation, 

in which a different 90% of the data were used to train the models and 10% of the data were 

used to test the models for each of ten runs. It is important to note here that we had two primary 

objectives in developing the preliminary models; (1) to prioritize areas for additional sampling to 

test model results, and (2) as a basis for developing a threshold for percent cheatgrass cover 

necessary for detection at the 30m2 spatial resolution of Landsat 8 imagery. The Landsat 8 

scenes available at the time of preliminary model development were for May, July and August 

months.  

Threshold Development 

The four preliminary models (i.e. BRT, RF, GLM, and MARS) were based on presence and 

absence rather than percent cover measurements recorded from the sampling plots. To 

determine a threshold for percent cover necessary to distinguish the spectral reflection and 

absorption of cheatgrass from other vegetation, we first extracted values from the probability 

surface produced by the RF preliminary model in Squirrel Creek Wildfire at locations where the 

independent test data were collected (n = 81). Next, we used a simple linear regression to 

evaluate how well this model predicted percent cheatgrass cover from these locations.  
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Final Species Distribution Modeling  

We ran the four SDMs (i.e. BRT, RF, GLM, and MARS) with cheatgrass presence defined as 

plots with cover greater than or equal to the threshold. In these models, absence was defined as 

any cover below the threshold. At this time, we also added June and September indices derived 

from Landsat 8 OLI imagery (i.e. these images were not available during preliminary model 

development). After covariate correlation analysis we retained 11 variables: May NDWI, June 

TCAP bright, June TCAP green, July TCAP green, July TCAP wet, July TCAP bright, August 

TCAP wet, August MNDWI, August NDWI, September TCAP bright, and September MNDWI. 

Once again, we calculated a simple linear regression using the independent test data and 

predicted probability values to evaluate how well the model predicted cheatgrass cover, and 

how much model fit improved using the threshold.  

Secondary Field Data Collection and Independent Test of the Final Models 

To test the final models, we collected an independent set of random points in the Squirrel Creek 

Wildfire. One of the outputs from SAHM is a geospatial probability surface for each model (i.e. a 

grid with cell values between 0 and 1, where 0 = no probability of species occurrence and 1 = 

100% probability of species occurrence). We discretized the probability surfaces for each of the 

four final models (i.e. BRT, RF, GLM, and MARS) using the threshold where sensitivity equals 

specificity to assign a binary value of cheatgrass present or cheatgrass absent, and then 

combined them into a frequency histogram ensemble (i.e. shows the number of models 

forecasting cheatgrass presence at any pixel on the map) using raster calculator in ArcMap 

v.10.2 (Crall et al., 2013; Stohlgren et al., 2010). We generated random points within this 

ensemble raster based on the multivariate environmental similarity surface (MESS) maps 

produced by SAHM. The MESS maps indicate areas where the models are forecasting into 

novel conditions (i.e. those not observed in the training data, thus sampling these areas will add 

new information to the models). Additionally, we added random points in areas where only one 
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or two of the models agreed on cheatgrass presence. We surveyed these random points using 

the same 7.32 m plots used in the transect surveys in September 2014 (n = 81). 

Habitat Suitability Modeling Analysis 

To evaluate habitat suitability for cheatgrass in the Squirrel Creek Wildfire we incorporated 

topographic covariates in the models as predictors rather than remotely sensed indices used for 

mapping distribution. These included elevation, slope, aspect, second derivative of slope (SDS), 

cosine (COS), and sine (SIN) transformations of aspect, compound topographic index (CTI), 

heat load index (HLI), and a linear transformation of aspect (TRASP; Table 3.2). Six of these 

variables were retained after covariate correlation analysis: elevation, slope, second derivative 

of slope, COS, CTI, and HLI. These variables were used to fit the four SDMs (i.e. BRT, RF, 

GLM, and MARS) in SAHM. Risk of invasion for species such as cheatgrass intuitively depends 

on propagule pressure and seed dispersal. To account for this, we developed a geospatial 

buffer in ArcMap v.10.2 around the final RF model of current cheatgrass distribution based on 

the maximum distance that cheatgrass seeds may disperse via wind in areas following fire (i.e. 

2.13 m; Monty et al. 2013). We then overlaid the ensemble map with the dispersal layer and 

delineated locations where dispersal was probable and the ensemble map had a value > 0 to 

quantify the area at highest risk for cheatgrass invasion in the Squirrel Creek Wildfire in the near 

future.  

Evaluation of model performance 

To evaluate model performance, we used four accuracy measures: test area under the receiver 

operating characteristic curve (AUC), sensitivity, specificity, and true skill statistic. Test area 

under the receiver operating characteristic curve (AUC; Swets, 1988) is a commonly used 

metric in evaluation of species distribution models fit to true presence and absence data. This 

metric measures the ability of model predictions to discriminate between observed presence 

and absence for the test data (i.e. the data held aside in the ten-fold cross validation split), 
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regardless of the absolute value of the predictions (Fielding and Bell 1997, Elith and Graham 

2009). An AUC value of 0.5 shows that model predictions are not better than random; less than 

0.5 are worse than random; 0.5–0.7 indicates poor performance; 0.7–0.9 reasonable/moderate 

performance; and .0.9, high performance (Peterson et al. 2011). Sensitivity measures the 

percentage of presences correctly classified. Specificity measures the percentage of absences 

correctly classified. The true skill statistic (TSS = sensitivity + specificity – 1) places more weight 

on model sensitivity than specificity, with values ranging between -1 and 1 (Allouche et al. 

2006). Values above zero indicate better model performance than chance alone. This accuracy 

measure is less sensitive to changes in prevalence (ratio of presence to absence data) within 

the model than other commonly used accuracy measures such as Cohen’s Kappa (Allouche et 

al. 2006). 

Results 

Evaluation of the four preliminary cheatgrass distribution models (i.e. BRT, RF, GLM, and 

MARS) developed with transect data (i.e. cheatgrass presence and absence, where ≥1% 

cheatgrass cover is present) revealed moderate performance across models (Table 3.3).  

Table 3.3. Evaluation of preliminary cheatgrass distribution model performance.  

 
Preliminary Models 

Model8 AUC9 (±SD) Sensitivity (±SD) Specificity (±SD) TSS10 (±SD) 

BRT 0.76 ± 0.10 0.68 ± 0.11 0.69 ± 0.13 0.37 ± 0.14 

RF 0.81 ± 0.09 0.80 ± 0.07 0.63 ± 0.18 0.44 ± 0.18 

GLM 0.74 ± 0.08 0.72 ± 0.11 0.71 ± 0.11 0.43 ± 0.15 

MARS 0.76 ± 0.10 0.80 ± 0.14 0.70 ± 0.09 0.50 ± 0.15 

 
Cross-validation AUC values ranged between 0.76 and 0.81 for the four models. The simple 

linear regression we developed using probability values from RF and cheatgrass cover from the 

                                                           
8 Models included Boosted Regression Tree (BRT), Random Forest (RF), Generalized Linear 

Model (GLM), and Multivariate Adaptive Regression Spline (MARS).  
9 AUC represents the area under the receiver operating characteristic curve. 
10 TSS represents True Skill Statistic. 
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independent data indicated that the model would be improved by setting a threshold (R2 = 0.36; 

Figure 3.1).  

 

Figure 3.1. Simple regression analysis of test data applied to the preliminary Random 
Forest Model (i.e. model developed using field plots with ≥ 1% cheatgrass cover). 
 
We chose a 40% threshold for cheatgrass cover to be considered a “presence” based on the 

simple regression model in concert with the minimum amount assumed detectable by the 

Landsat 8 OLI sensor and with the management objectives (personal communication). 

Evaluation of the four final cheatgrass distribution models (i.e. BRT, RF, GLM, and MARS) 

developed with transect data (i.e. cheatgrass presence and absence, where ≥40% cheatgrass 

cover is present) revealed moderate performance across models (Table 3.4).  

  

y = 0.0078x + 0.3413

R² = 0.36

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 20 40 60 80 100

P
re

d
ic

te
d

 P
ro

b
a

b
il

it
y

 o
f 

C
h

e
a

tg
ra

ss
 C

o
v

e
r

Actual Cheatgrass Cover (%)

Actual Response

Predicted Response



50 

 

Table 3.4. Evaluation of final cheatgrass distribution model performance.  

 Final Models with Threshold 

Model11 AUC12 Sensitivity Specificity TSS13 

BRT 0.87 ± 0.11 0.79 ± 0.18 0.81 ± 0.14 0.60 ± 0.29 

RF 0.86 ± 0.12 0.54 ± 0.24 0.92 ± 0.10 0.46 ± 0.27 

GLM 0.88 ± 0.09 0.76 ± 0.21 0.79 ± 0.11 0.55 ± 0.27 

MARS 0.87 ± 0.10 0.72 ± 0.15 0.82 ± 0.16 0.54 ± 0.26 

 
Cross-validation AUC values ranged between 0.86 and 0.88 for the four models. The simple 

linear regression we developed using probability values from RF and cheatgrass cover from the 

independent data indicated that the model was greatly improved from setting a 40% threshold 

as we expected (R2 = 0.92; Figure 3.2).  

 

Figure 3.2. Simple regression analysis of test data applied to the final Random Forest 
Model (i.e. model developed using field plots with ≥ 40% cheatgrass cover). 
 

                                                           
11 Models included Boosted Regression Tree (BRT), Random Forest (RF), Generalized Linear 

Model (GLM), and Multivariate Adaptive Regression Spline (MARS).  
12 AUC represents the area under the receiver operating characteristic curve. 
13 TSS represents True Skill Statistic. 
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When the four models were applied to the independent test dataset, the AUC values indicated 

excellent performance, ranging between 0.95 and 0.97 (Table 3.5). 

Table 3.5. Evaluation of final cheatgrass distribution model performance based on 
independent test data.  

 Final Models Applied to Independent Data 

Model14 AUC15 Sensitivity Specificity TSS16 

BRT 0.95 0.87 0.84 0.7 

RF 0.95 0.93 0.88 0.81 

GLM 0.95 0.87 0.86 0.73 

MARS 0.97 0.93 0.91 0.85 

 
In the Squirrel Creek Wildfire, 18.16 km2 are currently invaded by cheatgrass based on the 

threshold to discretize the predicted probabilities where sensitivity equals specificity (i.e. 0.49) 

for the best model, RF (Figure 3.3). 

                                                           
14 Models included Boosted Regression Tree (BRT), Random Forest (RF), Generalized Linear 

Model (GLM), and Multivariate Adaptive Regression Spline (MARS).  
15 AUC represents the area under the receiver operating characteristic curve. 
16 TSS represents True Skill Statistic. 
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Figure 3.3. Probability of cheatgrass cover ≥ 40% in the Squirrel Creek Wildfire post-burn 
area based on transect data (purple dots). Test data (blue dots) were collected for model 
evaluation. Note the northern section of the study area was not sampled due to 
inaccessibility. 
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We chose RF as the best model based on evaluation statistics and ecoplausability (i.e. the final 

output probability map that makes the most ecological sense based on field observation).  

September TCAP bright was the most important variable across models. The RF model retained 

all predictors (Table 3.6).   

Table 3.6. Relative importance of final predictors in final Random Forest model for 
cheatgrass in the Squirrel Creek Wildfire.   

 
The BRT model retained September TCAP bright (87.5% relative influence) and June TCAP 

bright (12.5% relative influence), agreeing with the top two predictors in the RF model. The GLM 

model retained September TCAP bright, August TCAP wet, September MNDWI, and August 

NDWI (listed in order of decreasing relative importance). The MARS model retained September 

TCAP bright, June TCAP bright, September MNDWI, and July TCAP wet (listed in order of 

decreasing relative importance).   

                                                           
17 Mean decrease in accuracy is a measure of how much inclusion of this predictor in the model 

reduces classification error.  
18 Mean decrease in Gini is a sum of the decreases for each individual variable over all trees in 

the forest (Breiman 2001). For descriptions of variables refer to Table 3.1. 
 

Variable Mean Decrease Accuracy17 Mean Decrease Gini18 

September TCAP bright 31.47 8.31 

June TCAP bright 19.16 4.87 

June TCAP green 15.36 3.81 

August TCAP wet 13.60 3.42 

September MNDWI 12.30 2.92 

July TCAP green 10.94 2.65 

May NDWI 10.90 3.55 

July wet 8.66 2.85 

July bright 8.02 2.74 

August MNDWI 7.40 2.40 

August NDWI 7.27 2.70 
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Based on topography, areas with at least 40% current cheatgrass cover, and potential seed 

dispersal via wind, the total suitable habitat for cheatgrass in the Squirrel Creek Wildfire for the 

near future is 42.72 km2 (Figure 3.4). 

 

Figure 3.4. Suitable habitat for cheatgrass in the Squirrel Creek wildfire post-burn area, 
Wyoming based on current distribution, topography, and potential for wind-dispersal of 
seeds. Ensemble model results (red) is overlaid on a Landsat image (9/12/2014) in Google 
Earth.   
 
We overlaid ensemble model results in Google Earth to assess how well the model 

distinguished areas with dense forest cover (i.e. cheatgrass does not grow in a monoculture in 

areas with dense tree canopy; Upadhyaya 1986), and we were satisfied with the results. We 

also evaluated a soils layer provided by the US Forest Service to include in the habitat suitability 

model; however, there was no correlation between soil texture and cheatgrass presence or 

absence. There were three taxonomic classes where cheatgrass was recorded present; gravelly 

sandy loam to very gravelly sandy loam and very cobbly loam. The topographic covariates we 

incorporated in model development stand as proxies for water collection and soil attributes on 
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the landscape (Moore et al. 1993, Yang et al. 2006). The two most important topographic 

covariates across models were elevation and COS (cosine transformation of aspect). 

Discussion 

Spectral indices that incorporate different combinations of bands 2-7 from Landsat 8 over the 

entire growing season for cheatgrass produced four highly accurate species distribution models 

in a post-wildfire landscape, and the RF model stood out among these models as the best fit 

based on our familiarity with the study area and evaluation metrics. Further, all four models 

suggest these methods work well when relatively small amounts of data are available (i.e. n = 

44 with presence defined as ≥ 40% cheatgrass cover). The evaluation statistics for the models 

applied to a new independent test dataset and new monthly indices confirm not only that these 

models are robust when fit to remotely sensed indices matching time of field data collection, but 

also that they may be improved through an iterative approach as new location data and 

predictor variables become available.  

Species occurrence is observably distinct from species cover or abundance on the landscape 

(Brown 2007). In the case of invasive species, eradication can be an unattainable management 

target (Rejmánek and Pitcairn 2002), therefore setting a threshold for cover is common practice 

to maximize treatment efficacy and minimize off-target effects (i.e. herbicide treatment; (Mealor 

et al. 2013). The threshold we developed in this study not only ensures that the spectral 

reflection and absorption of cheatgrass is distinguished from surrounding vegetation and land 

cover, it also adheres to a potential management regime (e.g., areas with greater than 40% 

cheatgrass cover prioritized for control).  

Using Landsat 8 images that corresponded to the dates of field survey collection increases our 

confidence in the results for the Squirrel Creek Wildfire. As an annual invasive species which is 

highly dependent on seasonal moisture availability, cheatgrass populations may experience 

strong year-to-year fluctuations in abundance. Fortunately, the 16-day temporal resolution of 
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Landsat imagery and quick availability (i.e. images are typically available at EarthExplorer 24 

hours post-collection) makes coupling these data with the time of field data collection highly 

efficient. In addition to the independent data assessments, personal observations also 

contributed to our confidence in the models. The northernmost section of the Squirrel Creek 

Wildfire was largely inaccessible due to time constraints; however, personal field observations 

during the time of year that corresponds to the “red stage” of cheatgrass, when it is easily 

distinguishable from other vegetation on the landscape, indicated cheatgrass presence in areas 

predicted by the model.   

The variables that contributed most to the Random Forest model are evidence that 

combinations of Landsat 8 TM bands other than NDVI are important when evaluating the 

distribution of cheatgrass in post-disturbance areas; particularly indices that account for soil 

background. These included soil brightness (TCAP bright), vegetation greenness (TCAP green), 

and soil/vegetation wetness (TCAP wet) which are weighted composites of six Landsat bands 

into three orthogonal bands (Crist and Cicone 1984). Modified Normalized Difference Water 

Index (MNDWI) was introduced by Xu (2006) to improve the accuracy of Normalized Difference 

Water Index (NDWI) in built-up land areas and suppress soil and vegetation noise.  

Cheatgrass is listed as a noxious weed in Albany County, WY, where the Squirrel Creek Wildfire 

occurred. The current distribution map we developed from the Random Forest model creates a 

robust tool for land managers to develop management plans for cheatgrass in this area. The 

probability surface from this model is georeferenced, therefore in the case of targeted aerial 

herbicide spraying a land manager may enter this information into a helicopter global positioning 

system (GPS). Additionally, the potential habitat suitability model provides a forecast of areas 

that may be monitored for cheatgrass invasion in future seasons. In the habitat suitability model, 

we assumed wind to be the primary mode of cheatgrass seed dispersal in the Squirrel Creek 

Wildfire. However, cheatgrass seeds have long awns that stick to animal fur, hiking boots, and 
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tires which are other potential mechanisms for long-distance dispersal that were not considered 

in our risk model (Banks and Baker, 2011; Mack, 1981). 

The habitat suitability model agreed with prior studies correlating cheatgrass occurrence to 

elevation (Bromberg et al. 2011, Banks and Baker 2011, Sherrill and Romme 2012). We find it 

interesting that COS (cosine transformation of aspect) was also important across all four 

models. To our knowledge, this variable has not been correlated with cheatgrass distribution in 

existing research. The COS values range from -1 (at due south) to 1 (at due north) and account 

for interactions with slope (Stage 1976, Evans et al. 2014). We discovered habitat suitability for 

cheatgrass decreases with increasing COS values; these values ranged between -0.8 (i.e. 90% 

probability of cheatgrass occurrence) and 0.5 (i.e. 30% probability of cheatgrass occurrence) in 

the Squirrel Creek Wildfire. 

Cheatgrass was documented as covering 10% of the Squirrel Creek Wildfire prior to the fire. 

However, with the current abundance of this invasive species and potential risk, up to 40% of 

the total post-disturbance area is suitable habitat for cheatgrass. This risk may have both 

societal and cascading ecosystem effects. There are several ranching families in the area that 

recognize cheatgrass as an aggressive plant that poses not only a threat to important grazing 

land for cattle, but a potential link to mule deer decline they have observed in recent years 

(personal communication). When there are large cheatgrass monocultures such as the ones 

observed in the Squirrel Creek Wildfire, elk rely more on dead forage with lower nutritional 

quality (Kohl et al. 2012) and mule deer might behave similarly. Other wildlife populations may 

experience habitat loss due to the conversion of these habitats from perennial- to annual – 

dominated communities, including greater sage grouse, Gunnison sage grouse, pygmy rabbits, 

and rodents (Duncan et al. 2004, Pyke 2011). Finally, leaving cheatgrass unmanaged in either 

study area is likely to increase risk of future fire, as cheatgrass dominated areas create a more 

continuous fuel source than sagebrush cover (Brooks et al. 2004). In a field study 90 km south 
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of the Squirrel Creek Wildfire, previously burned areas of Rocky Mountain National Park, 

Colorado had four to five- times greater cover and mean patch area of cheatgrass than 

unburned areas (Banks and Baker 2011). Leafy spurge (Euphorbia esula), various thistles 

(Carduus and Cirsium sp.), knapweed (Centaurea sp.), and toadflax (Linaria sp.) are examples 

of other exotic species of concern in the Medicine Bow National Forest that may be evaluated 

using this methodology. The methods we employed are easily transferable to other landscapes 

and species, and the remotely sensed data and modeling tools we used are feely available, 

making this a powerful tool in environmental impact assessments and developing future 

management plans.   

Conclusions 

Multi-temporal spectral indices from freely available Landsat 8 imagery are powerful tools in 

evaluating cheatgrass cover in post-wildfire landscapes. Employing spectral indices beyond the 

commonly used NDVI such as TCAP brightness, greenness, and wetness, and MNDWI can aid 

in distinguishing foliar cover from soil background in these areas. As evidenced by our study, 

applying an iterative approach when employing these indices in species distribution models 

strengthens their power, especially when a threshold for foliar cover is established. The RF and 

BRT models preformed especially well in this study compared to the MARS and GLM models, 

and the current distribution map of cheatgrass cover ≥ 40% produced from the RF model closely 

followed our observations in the Squirrel Creek Wildfire. Topographic indices and dispersal 

limitations can be used to augment spectral indices and create habitat suitability models for 

invasive plant species such as cheatgrass. The maps produced from these models are 

georeferenced and provide valuable tools for natural resource management.  
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CHAPTER 4. DECADAL CLIMATE AVERAGES AND TOPOGRAPHIC ROUGHNESS 

FORECAST LARGE WILDFIRES IN COLORADO AND WYOMING, USA19 

 
 

Introduction 

Taken in aggregate, the western United States (hereafter the West), has experienced an 

increasing trend in large wildfire frequency in the last 30 years (Westerling et al. 2006, Dennison 

et al. 2014). Globally, an increase in large wildfires has been observed in recent decades, 

resulting in major environmental, economic, and human losses (Pechony and Shindell, 2010; 

UNFAO 2010). Understanding the drivers and potential distribution of large wildfire risk in the 

future is imperative to ecosystem management and human development. 

The reconstructed history of wildfires in the West is complex; their frequency follows climate 

trends and human development (e.g., suppression and ignition). For the past 6000 years, fire 

regimes in subalpine forests of Colorado have been indirectly impacted by changing vegetation 

and climate (Higuera et al. 2014). Often referred to as the “Medieval Warm Period”, an elevated 

period of aridity with peaks between ca. 900 to 1300 parallels the megadrought epoch in the 

West with frequent wildfires (Cook et al. 2004, 2015). Based on dendrochronological analysis of 

fire scars in the interior West, Trouet et al. (2010) found that in the 1400s, much of the West 

remained impacted by extreme drought, and that overall fire activity remained high during this 

time period. There was a decline in fire frequency in the West in the late 16th century that 

corresponds to declining temperatures of the “Little Ice Age” (ca. 1500 to 1800; (Trouet et al. 

2010)). These periods of declining temperatures result in fuel accumulation increases 

(Schoennagel et al. 2004, Littell et al. 2009). 

Low to mid-elevation ponderosa pine (Pinus ponderosa) and mixed conifer subalpine forests in 

the West experienced frequent, low-severity wildfires prior to the 20th century that played 

                                                           
19 Coauthors: Sunil Kumar and Catherine Jarnevich 
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important ecological roles in community structure, diversity, productivity, biogeochemical 

processes, hydrology, and wildlife habitat (Brown and Shepperd 2001, Kaufmann et al. 2007). 

Additionally, American Indians used fire to clear land. By the late 19th century, European 

settlement in the West brought more extensive land clearing through fire, logging, and livestock 

grazing that altered existing wildfire regimes, particularly in the low to mid-elevation forests. In 

the year 1891, the United States Federal Forest Service (USFS) was established and forest 

fires were increasingly suppressed, with the Clarke-McNary Act in 1924 effectively creating a 

national fire exclusion policy (Stephens 2005). This exclusion policy increased fuel loads in the 

ponderosa and mixed-conifer forests, but was likely suited to lodgepole pine forests that are 

adapted to high-severity crown fires with low frequency (Stephens 2005). Average annual area 

burned in the West continued to decrease through the 1960s (Brown et al. 2004), but incidence 

large wildfires (>400 ha) began rapidly increasing in the mid-1980s (Westerling et al. 2006). 

Additionally, burn time began increasing from an average of one week in the 1970s to five 

weeks in the 1980s. Efforts have been made in more recent decades to use wildfires in forest 

management and restoration (i.e. the federal fire policy of 1995 recognized wildfire as a critical 

ecosystem process and in 2002 the USA National Fire Plan resulted in 1 million ha of thinning 

and prescribed fire across federal land; Schoennagel et al., 2004). The extent of USFS area 

burned increased significantly across the West from 1940 to 2000 with the exception of 

California (Stephens 2005). 

The impacts from historical wildfire management in the West were compounded in the last 

decade by severe regional drought. Trends in increasing large wildfire occurrence in the West 

from the years 1984-2011 correspond to trends in increasing drought severity (Dennison et al. 

2014). Wildfires even enhance drought through the absorption of solar radiation by smoke 

particles, as seen in a simulation of radiative forcing and atmospheric response in the mid-

latitudes of the USA (Liu 2005). Annual wildland fire-suppression costs for the years 2004 – 
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2014 increased by approximately 1.9 times the costs for the previous decade (i.e. 

$16,877,035,000 USD for 2004 – 2014 and $8,918,124,000 for 1993 – 2003, respectively) and 

equaled more than the combined total cost for the previous 18 years (Figure 4.1). The trend in 

total acres burned in the USA follows a similar pattern (i.e. 76,578,801 for 2004 – 2014 and 

70,234,744 for 1985 – 2003; Figure 4.1).  

Figure 4.1. Federal Firefighting Suppression Costs, USA years 1985-201420 

 
 

Increases in natural area use, development, and area distinguished as wildland-urban interface 

(WUI; Theobald and Romme, 2007)) are factors that will continue to alter area burned and cost 

of suppression for wildfires in the West; however, climatic conditions are also a driving force in 

large wildfires (Brown et al. 2004, Westerling et al. 2006, Littell et al. 2009, Liu et al. 2010, 

Trouet et al. 2010, Barbero et al. 2014, Dennison et al. 2014, Wing and Long 2015), and the 

climate can mute or amplify anthropogenic effects (Swetnam and Betancourt 2010). In some 

instances, these two factors may be coupled, such as alterations in fuel load quantity increasing 

forest sensitivity to climate variability (Westerling et al. 2006).  

                                                           
20 Acres include private, state, and Federal lands; cost does not include inflation. Created by A. 

West; data from National Interagency Fire Center; 

http://www.nifc.gov/fireInfo/fireInfo_statistics.html. 
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The influence of climate on wildfire varies across spatial and temporal scales. After analyzing 

large wildfires (> 400 ha) in Oregon and Washington, USA, Wing and Long (2015) did not find a 

significant correlation between fire occurrence and size with monthly climate variables; however, 

they discovered evidence of correlation between fire severity and monthly climate. Dennison et 

al. (2014) used primarily seasonal climate variables including temperature, precipitation, and 

Palmer Drought Severity Index matched with year of fire in quantile regression to analyze trends 

in wildfire activity by ecoregion in the West from the years 1984-2001, and found ecoregions 

with the largest increases in fire activity trended toward hotter, dryer conditions relative to 

ecoregions not experiencing significant changes in these variables. Westerling et al. (2006) 

concluded that in mid-elevation ecosystems in the Northern Rockies, historical wildfires were 

strongly associated with increased spring and summer temperatures and an earlier spring 

snowmelt, but not land use.  

Beginning with large scale industrialization in the mid-1800s, the human contribution to 

greenhouse gases in the atmosphere accelerated rapidly, trapping heat in the earth’s 

atmosphere and altering the climate. Since the 1980s there have been significant snowpack 

declines along the entire Rocky Mountain range due to warmer spring temperatures (Pederson 

et al. 2013). Stewart et al. (2005) analyzed data from streamflow gauges throughout the West 

for the period 1948 – 2002, and the onset of snowmelt and streamflow occurred one to four 

weeks earlier at the end of the study period compared to the beginning. Average temperatures 

in some areas of the West increased as much as 1.1 ˚C between 2000 and 2006 (Hoerling and 

Eischeid, 2007). These rapid changes will certainly have implications wildfire season length. 

Westerling et al. (2006) reported the large wildfire (> 400 ha) season length (i.e. the time period 

between the first wildfire discovery date and the last wildfire control date) in the West increased 

by 78 days for the period 1987 to 2003 compared to 1970 to 1986.  
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Efforts are underway to forecast the likely effects of ongoing climate change on the frequency of 

wildfires, fire severity, and the total area burned in a given year. In one analysis, the relative 

probability for very large wildfires (i.e. > 20,234 ha) increases by at least 30% for the West 

across 14 different global circulation models (Stavros et al. 2014). Liu et al. (2010) projected fire 

potential will increase overall from low to moderate in the United States under future climates 

(i.e. 2070-2100). Although the current drought in the West has not extended over hundreds of 

years like the megadrought during the Medieval warming period, a business-as-usual future 

climate model (i.e. the Parallel Climate Model) indicated changing relative humidity and drying in 

the West through the year 2089 when compared to the 1975-1996 base period (Brown et al. 

2004). Based on historical drought reconstruction, Cook et al. (2015) reported future drought 

risk will likely exceed the Medieval megadrought over the Central Plains and Southwest during 

the late 21st century based on two different Coupled Model Intercomparison Project Phase 5 

(CMIP5) emissions scenarios from 17 Global Circulation Models (GCMs). This will have 

profound impacts on large wildfire occurrence, wildfire-drought feedbacks, vegetation 

community structure, wildlife habitat, natural resource management, biogeochemical cycling, 

hydrology, human life and property loss, and wildfire suppression costs. Additional tools are 

needed to evaluate areas most at risk for large wildfires in the future. 

In this study, we evaluated the applicability of three niche modeling techniques to forecasting 

the likely extent and spatial distribution of wildfires in the West as climate change continues 

through the mid-21st century. Niche modeling (also referred to as species distribution modeling 

or habitat suitability modeling) relates the presence of a species to its environment in 

geographic space (Araújo and Peterson, 2012; Evangelista et al., 2013, 2008; Flory et al., 2012; 

Hijmans and Graham, 2006; Jarnevich and Stohlgren, 2008; Kumar et al., 2014; West et al., 

2015). Similar to a species, a wildfire can be viewed as having a niche in environmental and 

geographic space. Although wildfires are typically ignited by lightning or anthropogenic sources, 
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suitable environmental conditions must also exist for fires to persist (Swetnam and Betancourt 

2010). Therefore, methods such as MaxEnt (Phillips et al. 2006, Parisien and Moritz 2009, 

Parisien et al. 2012, Paritsis et al. 2013, Peters et al. 2013, Arnold et al. 2014, Arpaci et al. 

2014), generalized linear models (GLM; (Syphard et al. 2008, Stan et al. 2014, Stavros et al. 

2014, Bistinas et al. 2014)), and multivariate adaptive regression splines (MARS; (Balshi et al. 

2009, Boulanger et al. 2014)) have been used to develop relationships between wildfire 

occurrence and environmental covariates. We compared these three methods for large wildfire 

environmental suitability models in Colorado and Wyoming, USA.  

Our primary hypothesis was that the environmental suitability for large wildfires in these states 

can be forecasted using decadal climate averages in combination with topography. Our primary 

objective was to use the best environmental suitability model to forecast areas in Colorado and 

Wyoming most at risk for large wildfires given future potential climates.  

Methods 

Study Area 

Our study area encompassed the states Colorado and Wyoming, USA, an area approximately 

520,000 km2 between 35⁰ N to 45⁰ N and 100⁰ W to 115⁰ W with elevation from 945 to 4,401 

meters (Figure 4.2). The Continental Divide runs through both states.   
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Figure 4.2. Study area including Colorado and Wyoming, USA. 
 
The wide variation in elevation and topography across the study area makes it difficult to divide 

the states into homogenous climatological areas (Western Regional Climate Center; 

www.wrcc.dri.edu). The states are bisected by the Rocky Mountains running in a roughly north 

to south direction; therefore, air masses from the Pacific Ocean are largely blocked resulting in 

considerably more winter moisture on the western slopes. East of the Rocky Mountains, most 

precipitation comes in spring and summer. The landscape heterogeneity is well represented by 

the diversity of ecosystems in the study area; there are 35 and 39 level IV ecoregions in 

Colorado and Wyoming, respectively (Environmental Protection Agency; 

www.epa.gov/wed/pages/ecoregions). Examples of these ecoregions range from the alpine 
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zone along mountain peaks to lush subalpine forests, shrublands, volcanic plateaus, 

grasslands, and shale deserts.  

Wildfire occurrence Data 

Using burned area boundaries mapped from satellite remote sensing data (i.e. normalized 

difference burn ratio from Landsat imagery), we created polygons of wildfire occurrence for the 

years 1991-2000 and 2001-2010 for the study area (n = 149 and 240, respectively; data source: 

Monitoring Trends in Burn Severity [MTBS] website (http://www.mtbs.gov/) using ArcGIS v.10.2 

[ESRI; Redlands, CA, USA]) These wildfires were greater than or equal to 400 ha and 

categorized as wildfire, wildland fire use, or unknown on both public and private lands in the 

MTBS query builder (i.e. we did not incorporate prescribed fire). In ArcMap, we generated 

random points within these polygons that were at least one kilometer apart, and then used the 

Optimized Hot Spot Analysis tool to remove points that were spatially autocorrelated with a 

statistical confidence level of 0.95. This resulted in n = 647 points for 1991-2000 and n = 951 

points for 2001-2010.  

We developed kernel density estimator (KDE) surfaces in ArcGIS v.10.2 to create a probability 

surface for model background point selection. Rather than using a presence-absence approach, 

we selected a presence-background (i.e. pseudo-absence) approach because fires with 

anthropogenic causes may have been present at background locations (Moritz et al. 2012). The 

KDE surface is a tool that can be used in SDMs built on presence-only data to prioritize 

background point selection within areas with greater confidence in species absence (Elith et al. 

2011). We randomly selected 10,000 background points from each KDE surface during the 

MDS Builder in the Software for Assisted Habitat Modeling (SAHM; (Morisette et al. 2013)). 

Climate Data 

Using ClimateWNA v.5.10, we generated 166 unique climate variables at a 1 km2  

spatial resolution including directly calculated and derived yearly, seasonal, and monthly  
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averages for the two decades (i.e. 1991 – 2000 and 2001 – 2010) corresponding to the  

wildfire occurrence data (Appendix 2.1; (Wang et al. 2012)). Next, we downloaded the  

same variables for the 2020s (2010-2039) and 2050s (2040-2069) from two future  

climate ensembles (i.e. two representative concentration pathways; RCP 4.5 and RCP  

8.5 with ensemble average projections from 15 global circulation models [GCMs]:  

CanESM2, ACCESS1.0, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, CCSM4, HadGEM2- 

ES, CNRM-CM5, CSIRO Mk 3.6, GFDL-CM3, INM-CM4, MRI-CGCM3, MIROC-ESM, CESM1- 

CAM5, and GISS-E2R). These GCMs were chosen to represent all major clusters of similar 

AOGCMs and had high validation stats in their CMIP3 equivalents (Knutti et al. 2013). The RCP 

4.5 and RCP 8.5 were chosen to represent a moderate (i.e. radiative forcing level leading to 4.5 

W/m2 greenhouse gas levels or ~650 ppm CO2 eq by year 2100) and high radiative forcing level 

(i.e. 8.5 W/m2 or ~1370 ppm CO2 eq by year 2100), respectively (van Vuuren et al. 2011). 

Raster layers were created from all climate data (n= 470,614 1km2 cells for each raster) in 

ArcMap v.10.2.  

Topographic data 

A digital elevation model (DEM) with 1 km2 spatial resolution to match the climate data was 

acquired from the Global Multi-resolution Terrain Elevation Data (GMTED 2010), a high-quality 

elevation dataset that incorporates global Digital Terrain Elevation Data (DTED®) from the 

Shuttle Radar Topography Mission (SRTM), Canadian elevation data, Spot 5 Reference3D 

data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Using this digital 

elevation model, we developed 12 unique topographic raster layers in ArcGIS v. 10.2 (Appendix 

2.2). We selected topographic indices as proxies for wind movement, wind speed, and surface 

water across the study area. 

Modeling framework 

We used the Software for Assisted Habitat Modeling (SAHM; Morisette et al., 2013) to develop 

three models; MaxEnt, MARS, and GLM. The SAHM program is an open source modeling 
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platform that expedites pre-processing and execution of species distribution models. First, we 

used the Project, Aggregate, Resample, and Clip (PARC) module within SAHM to ensure 

consistency between the rasters (n = 179 unique climatic and topographic predictors; 

Appendices 1 and 2). The Merged Dataset (MDS) builder was then incorporated to develop 

10,000 random background points within the inverse KDE probability surface we created (see 

Wildfire Occurrence) and extract values from the 179 rasters at the presence (i.e. wildfire 

occurrence) and pseudo-absence (i.e. 10,000 random background) points. The Covariate 

Correlation and Model Selection module was then applied to evaluate cross-correlation among 

all 179 variables and address the issue of multicollinearity (Dormann et al. 2013). When two 

variables had a Pearson, Spearman, or Kendall correlation coefficient, |r| ≥ 0.70, only one of the 

pair was selected for model development, based on percent deviances explained from a 

univariate generalized additive model (GAM) with the predictor and relative importance of each 

variable. As a result of this correlation analysis, we retained 10 variables; April relative humidity 

(rh04), June relative humidity (rh06), August relative humidity (rh08), August precipitation 

(ppt08), spring (i.e. March through May) precipitation (ppt_sp), mean summer (i.e. May through 

September) precipitation (msp), March climatic moisture deficit (cmd03), Winter (i.e. Dec-Mar) 

climatic moisture deficit (cmd_wt), June solar radiation (rad06), and topographic roughness. 

Using this subset of variables, we fit three models in SAHM; MaxEnt, MARS, and GLM. All 

models were trained using a 10-fold cross validation split for testing and a threshold that 

maximizes the sum of sensitivity and specificity divided by 2 (Freeman and Moisen 2008, Liu et 

al. 2013). The three models were tested with an independent dataset for large wildfire 

occurrence for the years 2001 – 2010. 

MaxEnt is a widely used niche modeling algorithm developed by Phillips et al (Phillips et al. 

2006). It is a machine-learning, non-parametic method that estimates the geographic distribution 

of a response variable (e.g. a species or in this case a wildfire) using the principle of maximum 
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entropy (i.e., exponential distribution given linear combination of features and equivalent to the 

Gibbs distribution). To optimize MaxEnt model settings, we used the ENMEval code in R 

statistical software (Appendix 4.1; Muscarella et al., 2014). The MARS is a non-parametric 

regression technique that automatically models non-linearity and interactions between variables 

(Friedman 1991, Friedman and Roosen 1995). The recursive partitioning of MARS makes it 

capable of fitting complex, non-linear relationships between a response variable and predictors. 

The GLM is a generalized linear regression approach that specifies a relationship between the 

mean of a random variable and a function of the linear combination of predictors (McCullagh 

and Nelder 1989). 

We used AUC (area under the receiver operating characteristic curve), percent correctly 

classified, sensitivity, specificity, and true skill statistic to evaluate the models. The AUC is 

threshold-independent and is used to evaluate the ability of a model to discriminate presence 

from absence (or background). An AUC value of 0.5 indicates model predictions are not better 

than random; values less than 0.5 are worse than random; values between 0.5 and 0.70 

indicate poor performance; and values increasing from 0.70 to 1.0 indicate progressively higher 

performance (Anderson et al. 2003). Sensitivity measures the percentage of presences correctly 

classified. Specificity measures the percentage of absences correctly classified. The true skill 

statistic (TSS = sensitivity + specificity – 1) places more weight on model sensitivity than 

specificity, with values ranging between -1 and 1 (Allouche et al. 2006). Values above zero 

indicate better model performance than chance alone. This accuracy measure is less sensitive 

to changes in prevalence (ratio of presence to absence data) within the model than other 

commonly used accuracy measures such as Cohen’s Kappa (Allouche et al. 2006). 

Results 

The three historical environmental suitability models had area under the reciever operating 

characteristic curve (AUCCV) values greater than 0.91 (Table 4.1).  
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Table 4.1. Model results 

Model AUC21 %Correctly 
Classified 

Sensitivity Specificity 
True Skill 
Statistic 

MaxEnt CV 
0.93 ± 
0.007 

85.86 ± 1.21 
0.90 ± 
0.02 

0.84 ± 0.01 
0.75 ± 
0.03 

MaxEnt TEST 0.93 86.16 0.91 0.85 0.75 

GLM CV 
0.91 ± 
0.008 

84.48 ± 1.19 
0.89 ± 
0.02 

0.83 ± 0.01 
0.72 ± 
0.03 

GLM TEST 0.66 72.60 0.53 0.82 0.35 

MARS CV 
0.94 ± 
0.006  

86.22 ± 0.64 
0.88 ± 
0.02 

0.86 ± 0.01 
0.73 ± 
0.01 

MARS TEST 0.94 86.30 0.89 0.85 0.74 

 

When applied to an independent dataset (i.e. large wildfire occurrence for the years 2001 – 

2010 and climate averages for the same years), the MaxEnt and MARS models outperformed 

the GLM model, with AUC TEST values of 0.93 and 0.94, test sensitivity values of 0.91 and 0.89, 

and TSS values of 0.75 and 0.74, respectively. The GLM model performed poorly on the 

independent test dataset, with an AUC TEST value of 0.66, sensitvity of 0.53, and TSS value of 

0.35. One possible reason the GLM model performed poorly is that this method does not 

include non-linear interactions between covariates. We selected the MaxEnt and MARS models 

to project into future potential climatic conditions based on the evaluation metrics. 

For the three models, April relative humidity (rh04) had a greater relative contribution than the 

other nine variables. April relative humidity also had the greatest permutation importance (i.e. 

drop in training AUC resulting from random permutation of presence and background values) 

across these three models. For MaxEnt, March climatic moisture deficit (cmd03), August relative 

humidity (rh08), and spring precipitation (ppt_sp) also had high permutation importance 

(Appendix 4.2). For MARS, August precipitation (ppt08) and March climatic moisture deficit also 

had high permutation importance. The MaxEnt and MARS response curves for April relative 

                                                           
21 AUC  s the average value for the test area under the reciever operating characteristic curve 

over ten model runs. CV is 10-fold cross validation; TEST is the AUC value for the independent 

test dataset). 
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humidity indicated an increasing relative suitability for large wildfire occurrence with increasing 

April relative humidity values; conversely, the response curves for August relative humidity 

indicated an increasing relative suitability for large wildfire occurrence with decreasing August 

relative humidity values (Figures 4.3a. and 4.3b.).  

 

 
Figures 4.3a and 4.3b. Response curve for (a.) April relative humidity (decadal average; 
years 1991 – 2000) and (b.) August relative humidity (decadal average; years 1991 – 2000) 
based on the MaxEnt and MARS relative suitability models for large wildfires in Colorado 
and Wyoming. 
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We expected low relative humidity to be correlated with large wildfire occurrence and the 

response curve for August follows this hypothesis. Additionally, the number of large wildfires 

included in all models was greater in the month of August compared to the month of April 

(Figure 4.4). 

 

Figure 4.4. Number of wildfires per month in the two decadal time periods analyzed: 1991 
– 2000 and 2001 – 2010. 
 
MaxEnt transforms the exponential Gibbs distribution into a logistic output using a robust Bayes 

approach (for details see Elith et al., 2011; Phillips et al., 2006). MARS produces gridded values 

of the additive and second order ANOVA functions (Friedman 1991, Friedman and Roosen 

1995, Elith and Leathwick 2007). We combined the MaxEnt and MARS model outputs in an 

ensemble to create relative rank-based maps for the current and future potential risk for large 

wildfire (Figures 4.5 a-e.).  
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Figures 4.5 a-e. Relative ranking of large wildfire risk (i.e. > 400 ha) in Colorado and 
Wyoming, USA based on and ensemble of MaxEnt and MARS model results. At each 
1km2 cell, the ranking can be interpreted as the relative environmental suitability for large 
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wildfires. The years 2001 – 2010 model was produced from 1991 – 2000 large wildfire 
occurrence data and tested using the independent test dataset shown (i.e. random points 
within 2001 – 2010 wildfires > 400 ha). 
 
Discussion 

Our results indicate the area at high relative risk for large wildfires in Colorado and Wyoming 

may change in the near future based on an ensemble of average projections from 15 global 

circulation models. The RCP 4.5 and RCP 8.5 ensemble models show much agreement for the 

2020s. These results are consistant with CMIP5 projections; the two RCPs do not significantly 

diverge until after the year 2050 (van Vuuren et al. 2011).The relative high risk for large wildfires 

increases most dramatically in northern Wyoming; these results agree with Westerling et al 

(2011). Many areas in southern Colorado decrease from high to relative risk to moderate, 

moderate-low, and even low relative risk for large wildfire across future models.  

It is important to note that these estimates of relative risk are best examined as environmental 

suitability models for large wildfires; the total area at high risk will not necessarily burn. This 

study does not resolve the degree to which observed climate and future potential climate 

contribute to large wildfire occurrence relative to anthropogenic disturbance or management, 

decadal atmospheric cycles, lightning and other ignition sources, and fuel availability. However, 

proxies for some of these regimes are included in our models, including topographic roughness 

and decadal relative humidity and precipitation averages. Topographic roughness is a measure 

of the variability in landscape surface, and is linked to many abiotic components across 

ecological scales. Hansen and Sutera (1995) found evidence of topographic forcing in the low-

frequency variability of a global circulation model. Topographic roughness has been cited as a 

proxy for variability in temperature, precipitation, vegetative propagation, and disturbance 

including wildfire return interval (Stambaugh and Guyette 2008).  

We used decadal averages to project into potential climate space that was averaged over 30 

years; therefore, it should also be noted that there is a temporal mismatch in the climate data. 
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We considered adding 1981 – 1990 wildfire occurrence and climate data to the historical model 

to correct for this, however MTBS data are only available post – 1984. Nonetheless, these 

models of relative suitability for future large wildfires in Colorado and Wyoming provide a 

starting point for evaluating areas most at risk given our current understanding of future climate 

change. 

Model response curves for April relative humidity versus August relative humidity provided an 

interesting comparison; the former result was not expected. There are several possible 

explanations for this phenomenon. Across much of Colorado and Wyoming, moist, warm air 

frequently moves in from the south in the spring, particularly east of the Rocky Mountains 

(Western Regional Climate Center; www.wrcc.dri.edu). The decadal average we used may 

serve as a proxy for fuel load, as areas with higher spring relative humidity likely experience 

greater net primary productivity. Northerly slopes in the interior West have higher relative 

humidity, lower average temperatures, and less direct solar radiation which results in different 

forest community structure compared to southerly slopes; the former slopes typically have 

denser vegetation (Heyerdahl et al. 2001). Furthermore, both the MaxEnt and MARS models 

incorporate non-linear interactions between variables, and can capture complex relationships 

between climatic variables and topography (i.e. topographic roughness). Large wildfies occur 

more frequently in August in Colorado and Wyoming compared to other months of the year. 

Previous research has evaluated the broad-scale effects of El Niño – Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO) on fire regimes (Westerling and Swetnam 

2003, Schoennagel et al. 2005, Kitzberger et al. 2007, Kipfmueller et al. 2012). Westerling and 

Swetnam (2003) indicated that fire extent increases when the negative PDO phase coincides 

with La Niña in the southwestern USA and the southern Rockies (Arizona, Nevada, Utah, 

Colorado, and Wyoming) and during the positive PDO phases coinciding with El Niño events in 

the pacific northwest. Schoennagel et al. (2005) supported these results for negative PDO 
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phases in Colorado. However, in contrast to Westerling and Swetnam (2003), Schoennagel et 

al. (2005) discovered the occurrence of high-elevation fires in north-western Wyoming may 

actually increase during the positive PDO phase. The ENSO has a strong influence on wildfire 

in the Southwestern USA, but not in the Pacific Northwest, Northern California, or the Interior 

West (Trouet et al. 2010). However, other research provides evidence that PDO has little effect 

on wildfire occurrence and model results depend on choice of historical reconstruction of PDO 

(Kipfmueller et al. 2012). 

Despite evidence for relationships between these oscillations and wildfire, the drivers of ENSO 

and PDO are still poorly understood and cannot be forecasted into future potential climates. Our 

models show that 10-year climate averages can be used to predict large wildfire occurrence at 

the same temporal scale. These data in combination with topography are appropriate for future 

large wildfire projections given the lack of our current ability to model future climate cycle events 

such as El Niño. Furthermore, these 10-year climate averages (particularly relative humidity) 

can capture at least some of the influence of these oscillations, as the ENSO and PDO operate 

at temporal scales of 2-7 years and 20-30 years, respectively.  

After examining the raw data, we found the upper and lower value for April relative humidity is 

greater for the RCP 8.5 ensemble than the RCP 4.5 ensemble. Across GCMs, there is 

agreement in continued warming for these states; however, the percent change in precipitation 

is more uncertain, ranging from a five percent decrease to a six percent increase (Lukas et al. 

2014). Nonetheless, the projected increase in temperatures will affect snowpack, snowmelt, and 

runoff, increasing the likelihood for depleted soil moisture. Finally, it must be recognized that 

one source of bias for modeling future climatic changes is the potential for change in the 

intrinsic covariance structure for future models compared to the observational data the GCMs 

were trained on, and the ground-level albedo effects of less snowpack and more snowmelt are 

one example of a complication in this covariance structure (Stavros et al. 2014).  
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Based on MTBS data, the actual area burned by large wildfires in Colorado and Wyoming 

increased almost 50% in the 2001 – 2010 decade compared to the 1991 – 2000 decade, from 

368,900 ha to 526,400 ha. The continued increase in large wildfires has implications beyond 

state borders. Forests sequester 20 to 40% of carbon pools in the USA, and increasing wildfire 

frequency, extent, and season in the West may transition forests from carbon sinks to carbon 

sources (Pacala et al. 2001, Schimel and Braswell 2005, Kashian et al. 2006, Smithwick et al. 

2009). Furthermore, emissions from wildfires add to the concentration of carbon in the 

atmosphere and are a source of atmospheric aerosol (Yue et al. 2013). These effects modify 

atmospheric circulation, degrade air quality, and feedback to climatic change. In turn, climate 

feedbacks to fire frequency and extent have the potential to reduce fire rotation and can lead to 

novel vegetation assemblages (Hurteau 2014). Abrupt changes in vegetation communities will 

inevitably have cascading ecosystem impacts; one example in the West is the cheatgrass 

invasion – wildfire feedback (D’Antonio and Vitousek 1992, Brooks et al. 2004, Freeman et al. 

2007, Balch et al. 2013). 

Conclusion 

In conclusion, we find these modeling methods are an extremely useful tool in evaluating future 

large wildfire risk and can only enhance our preparedness for an uncertain future. Map output 

from our results can be used to enhance climate change vulnerability assessments. These 

models may be further refined at regional levels using land use and land cover data, as not all 

areas defined at risk based on climate and topography are necessarily suitable for large 

wildfires (e.g. some areas may be impervious surface or managed croplands). Notably, our 

results indicate that areas in northern Wyoming may need to be prioritized for large wildfire 

mitigation and monitoring in the coming decades. 
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Appendices 

Appendix 4.1. Climate Variables Included in Initial Models1. 

Variable description and units of measurement 

Annual Variables 

Mean annual temperature (°C) 

Mean warmest month temperature (°C) 

Mean coldest month temperature (°C) 

Continentality (°C; difference between MWMT and MCMT) 

Mean annual precipitation (mm) 

Mean summer (May to Sept.) precipitation (mm) 

Annual heat: moisture index (MAT+10)/(MAP/1000) 

Summer heat:moisture index ((MWMT)/(MSP/1000)) 

Number of frost-free days (FFP) 

Frost-free period 

Julian date on which FFP begins 

Julian date on which FFP ends 

Precipitation as snow (mm) between Aug and July 

Extreme minimum temperature over 30 years 

Extreme maximum temperature over 30 years 

Hargreaves reference evaporation 

Hargreaves climatic moisture deficit 

Mean annual relative humidity (%)  

Seasonal Variables 

Winter (Dec.(prev. yr) - Feb.) mean temperature (°C) 

Spring (Mar. - May) mean temperature (°C) 

Summer (Jun. - Aug.) mean temperature (°C) 

Autumn (Sep. - Nov.) mean temperature (°C) 

Winter mean maximum temperature (°C) 

Spring (Mar. - May) mean maximum temperature (°C) 

Summer (Jun. - Aug.) mean maximum temperature (°C) 

Autumn (Sep. - Nov.) mean maximum temperature (°C) 

Winter (Dec.(prev. yr) - Feb.) mean minimum temperature (°C) 

Spring (Mar. - May) mean minimum temperature (°C) 

Summer (Jun. - Aug.) mean minimum temperature (°C) 

Autumn (Sep. - Nov.) mean minimum temperature (°C) 

Winter (Dec.(prev. yr) - Feb.) precipitation (mm) 

Spring (Mar. - May) precipitation (mm) 

Summer (Jun. - Aug.) precipitation (mm) 

Autumn (Sep. - Nov.) precipitation (mm) 

Winter (Dec.(prev. yr) - Feb.) number of frost-free days 

Spring (Mar. - May) number of frost-free days 

Summer (Jun. - Aug.) number of frost-free days 



79 

Autumn (Sep. - Nov.) number of frost-free days 

Winter (Dec.(prev. yr) - Feb.) precipitation as snow 

Spring (Mar. - May) precipitation as snow 

Summer (Jun. - Aug.) precipitation as snow 

Autumn (Sep. - Nov.) precipitation as snow 

Winter (Dec.(prev. yr) - Feb.) Hargreaves reference evaporation 

Spring (Mar. - May) Hargreaves reference evaporation 

Summer (Jun. - Aug.) Hargreaves reference evaporation 

Autumn (Sep. - Nov.) Hargreaves reference evaporation 

Winter (Dec.(prev. yr) - Feb.) Hargreaves climatic moisture deficit 

Spring (Mar. - May) Hargreaves climatic moisture deficit 

Summer (Jun. - Aug.) Hargreaves climatic moisture deficit 

Autumn (Sep. - Nov.) Hargreaves climatic moisture deficit 

Winter (Dec.(prev. yr) - Feb.) solar radiation (MJ m‐2 d‐1) 

Spring (Mar. – May) solar radiation (MJ m‐2 d‐1) 

Summer (Jun. - Aug.) solar radiation (MJ m‐2 d‐1) 

Autumn (Sep. - Nov.) solar radiation (MJ m‐2 d‐1) 

Winter (Dec.(prev. yr) - Feb.) relative humidity (%) 

Spring (Mar. - May) relative humidity (%) 

Summer (Jun. - Aug.) relative humidity (%) 

Autumn (Sep. - Nov.) relative humidity (%) 

Monthly Variables 

January – December mean temperatures (°C) 

January – December maximum mean temperatures (°C) 

January – December minimum mean temperatures (°C) 

January – December precipitation (mm) 

January – December precipitation as snow (mm) 

January – December solar radiation (MJ m‐2 d‐1) 

January – December Hargreaves reference evaporation (mm) 

January – December Hargreaves climatic moisture deficit (mm) 

January – December relative humidity (%) 
1Source: ClimateWNA v.5.10; (Wang et al. 2012) 

Appendix 4.2. Topographic variables included in initial models 

Elevation1 

Mean Slope2 

Aspect2 

Topographic roughness2 

Cosine transformation of aspect3 

Sine transformation of aspect3 

Heat load index2 

Integrated moisture index2 

Flow accumulation2 

Flow direction2 
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1 Source of digital elevation model (DEM): Global Multi-resolution Terrain                                                              

Elevation Data (GMTED2010; http://topotools.cr.usgs.gov/gmted_viewer/). 
2 Derived from DEM using ArcGIS v.10.2 system tools.  

3 Derived from DEM using Geomorphology and Gradient Metrics Toolbox for                                                    

ArcGIS (Evans et al. 2014). 

Appendix 4.3. Output from ENMEval (modified from Muscarella et al 2014) used to 

parameterize the MaxEnt models1.  

 

1LQP is a MaxEnt model fit with linear, quadratic, and product features; LQPH is a MaxEnt 

model fit with LQP features and hinge features; delta.AICc is change in corrected Akaike’s 

information criterion (Hurvich et al. 1998); mean.AUC is mean area under the receiver operating 

curve value. 

Appendix 4.4. Variable permuation importance in training (Train) and 10-fold cross 

validation test (CV) splits of the final MaxEnt model1.  
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1The variables listed are April relative humidity (rh04), June relative humidity (rh06), August 
relative humidity (rh08), August precipitation (ppt08), spring (i.e. March through May) 
precipitation (ppt_sp), mean summer (i.e. May through September) precipitation (msp), March 
climatic moisture deficit (cmd03), Winter (i.e. Dec-Mar) climatic moisture deficit (cmd_wt), June 
solar radiation (rad06), and topographic roughness (roughness). 
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Appendix 4.5. Variable permuation importance in training (Train) and 10-fold cross 

validation test (CV) splits of the final MARS model1.  

 

1The variables listed are April relative humidity (rh04), August precipitation (ppt08), March 

climatic moisture deficit (cmd03), August relative humidity (rh08), June solar radiation (rad06), 

mean summer (i.e. May through September) precipitation (msp), topographic roughness 

(roughness), and June relative humidity (rh06). 
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CHAPTER 5. SYNTHESIS 

 
 

In an era of rapid environmental change, land managers need the best tools available to 

examine how the distribution of ecological phenomena are also changing. The results of this 

dissertation research indicate species distribution models and habitat suitability models can 

meet this challenge when parameterized based on the region of concern. In each of these 

studies we found selection of the appropriate scale (i.e. spatial and temporal) and relevant 

environmental covariates are crucial decisions that affect model outcome and efficacy.  

In the second chapter five uncorrelated variables captured the current bioclimatic niche of the 

alien invasive Bromus tectorum in Rocky Mountain National Park, Colorado: mean annual 

temperature, continentality, beginning of frost-free period, mean summer precipitation, and 

spring heating degree days. These variables were selected after a detailed literature review of 

B. tectorum biology, covariate correlation analysis, and Akaike’s Information Criterion 

calculations. Distance to roads and trails was also important in the model and served as a 

surrogate for propagule pressure. These variables were projected into the year 2050 using 

future potential climate data from six global circulation models (GCMs) and an ensemble of 

model outputs revealed an additional 14.9% of the Park will be suitable habitat for B. tectorum. 

This result must be taken with caution; we are assuming bioclimatic niche conservatism for B. 

tectorum over time. However, this methodology provides a useful tool that can be adopted to 

generate high resolution species distribution maps under current and future climate scenarios 

for other invasive species in National Parks. Land managers can incorporate the maps created 

from these models into integrated pest management regimes, and further tailor them based on 

what is already known about an area, keeping in mind that the models are not precise 

probabilities of species occurrence but rather ranking of suitable habitat. These maps may also 
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be displayed to the visiting public to increase awareness of climate change implications in 

National Parks. 

In the third chapter, eleven distinct vegetation indices derived from Landsat 8 remotely sensed 

imagery were used by a Random Forest model to determine the current distribution of B. 

tectorum in a post-wildfire disturbance area of Medicine Bow National Forest, Wyoming. This 

study highlighted the importance of temporal matching of species phenology and using multiple 

unique spectral indices when employing remotely sensed data in species distribution models. It 

also supported the use of an iterative approach in which a threshold for vegetation cover should 

be established to increase accuracy of these models. The georeferenced B. tectorum 

distribution map will be used by land managers with the U.S. Forest Service in targeted invasive 

species control efforts with the goal of restoring native vegetation in areas deemed critical winter 

habitat for mule deer (Odocoileus hemionus) and elk (Cervus canadensis). Wealso incorporated 

this model in a habitat suitability assessment using topographic covariates and seed dispersal 

limitations to determine the total area at risk for future invasion of B. tectorum within the 

disturbed area. 

The fourth chapter used decadal climate averages corresponding to the temporal resolution of 

wildfire occurrence and topographic covariates to produce pyrogeographic models for large 

wildfires in Colorado and Wyoming following a similar methodology to chapter one. April relative 

humidity, March climatic moisture deficit, and August relative humidity were the three most 

important covariates in the best model (i.e. MaxEnt). This is the first regional model for Colorado 

and Wyoming to forecast future potential wildfire extent, and our novel methodology provides a 

tool that can be modified for other regions of North America.  

The methods outlined in this dissertation can be used as starting points for developing 

distribution models for other ecological phenomena, however we emphasize that approaching 
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each new study as an iterative process is crucial; careful scrutiny and refinement of the models 

result in the most robust maps. Results from these studies provide foundations on which further 

hypotheses can be tested and evaluated. As an example of extending these results, we 

superimposed a model for current suitable B. tectorum habitat in Colorado and Wyoming on the 

wildfire model for the same time period in geographic space (Figure 5.1). From this map, we can 

begin to ask questions about the areas that could be at high risk in the future for invasion-

wildfire feedback.  
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Figure 5.1. Preliminary analysis of wildfire model from Chapter 3 overlaid with a Bromus 

tectorum habitat suitability model (B. tectorum model used with permission from C. 
Jarnevich 2015; In Prep). 
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