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Abstract 

 
Heterogeneous computing systems composed of 

interconnected machines with varied computational 
capabilities often operate in environments where there 
may be sudden machine failures, higher than expected 
load, or inaccuracies in estimation of system 
parameters. Makespan (defined as the completion time 
for an entire set of tasks) is often the performance 
feature that is optimized in such systems. It is important 
that the makespan of a resource allocation (mapping) 
be robust against errors in task computation time 
estimates. The problem of optimally mapping tasks onto 
machines of a heterogeneous computing environment 
has been shown, in general, to be NP-complete. 
Therefore, heuristic techniques to find near optimal 
solutions to this mapping problem are required. The 
goal of this research is to find a static mapping of tasks 
so that the robustness of the desired system feature, 
makespan, is maximized against the errors in task 
execution time estimates. Seven heuristics to derive 
near-optimal solutions and an upper bound to this 
problem are presented and evaluated. 
  
 
This research was supported by the Colorado State University Center 
for Robustness in Computer Systems (funded by the Colorado 
Commission on Higher Education Technology Advancement Group 
through the Colorado Institute of Technology), and by the Colorado 
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1. Introduction and Problem Statement 
 

Heterogeneous computing (HC) systems utilize 
various resources with different capabilities to satisfy 
the requirements of diverse task mixtures and to 
maximize the system performance (e.g., [11, 18]). Such 
systems often operate in an environment where certain 
desired performance features degrade due to 
unpredictable circumstances such as sudden machine 
failures, higher than expected load, or inaccuracies in 
the estimation of system parameters (e.g., [3, 4, 9, 24, 
25, 33]). Thus, it becomes necessary to allocate 
resources to tasks to maximize the robustness of the 
allocation. This study focuses on this aspect of resource 
allocation. 

The act of assigning (matching) each task to a 
machine and ordering (scheduling) the execution of the 
tasks on each machine is known as mapping, resource 
allocation, or resource management. An important 
research problem is how to determine a mapping so as 
to maximize the robustness of desired system features 
against perturbations in system parameters [4]. In both 
cases, the general problem of optimally mapping tasks 
to machines in an HC environment has been shown to 
be NP-complete (e.g., [13, 19, 21]). Thus, the 
development of heuristic techniques to find near-
optimal solutions for the mapping problem is an active 
area of research (e.g., [1, 2, 7, 8, 18, 20, 28, 41]).  
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Static mapping is performed when the applications 
are mapped in an off-line planning phase such as in a 
production environment (e.g., [1, 10, 12, 35, 36, 39]). 
Static mapping techniques take a fixed set of 
applications, a fixed set of machines, and generate a 
mapping. These heuristics determine a mapping off-line, 
and must use estimated values of task computation 
times. These techniques may be used to plan the 
execution of a set of tasks for a future time period (e.g., 
the production tasks to execute on the following day). 
Static mapping is also used for “what-if” predictive 
studies. For example, a system administrator might 
want to know the benefits of adding a new machine to 
the HC suite to justify purchasing it. By conducting a 
static mapping and then deriving the estimated system 
performance for the set of applications, the impact of 
the new machine can be approximated. 

In this research, a metatask composed of a number 
of independent tasks (i.e., no communication between 
tasks are needed) is considered. Makespan is defined as 
the completion time for the entire metatask. A mapping 
is defined to be robust with respect to specified system 
performance features against perturbations in specified 
system parameters if degradation in these features is 
limited when certain perturbations occur [4]. The 
degree of robustness is the maximum amount of 
collective uncertainty in perturbed system parameters 
within which a user-specified level of system 
performance can be guaranteed. In this system, it is 
required that the makespan be robust against errors in 
task execution time estimates. Specifically, the system 
is considered robust if the actual makespan under the 
perturbed conditions does not exceed the required time 
constraint. The goal of this study is to find a static 
mapping of all tasks to machines so that the robustness 
of the mapping is maximized; i.e., to maximize the 
collective allowable error in execution time estimation 
for the tasks that can occur without the makespan 
exceeding the constraint. 

A description of the system model is now given. A 
set of T tasks in the metatask is required to be allocated 
to a set of M machines. Each machine executes a single 
task at a time (i.e., no multitasking), in the order in 
which the tasks are assigned. The estimated time to 
compute (ETC) value for each task on each machine is 
assumed to be known a priori. This assumption is 
commonly made while studying mapping heuristics 
(e.g., [23]). Approaches for doing this estimation are 
discussed in [29]. Assume that unknown inaccuracies in 
the ETC values are expected. Hence, it is required that 
the mapping µ must be robust against them. 
Specifically, the actual makespan of the mapping 
(calculated considering the effects of ETC errors) must 
be less than τ.  

The FePIA procedure that was developed in [4] is 
applied to determine the robustness metric for this 

problem. Let est
iC  be the ETC value for task i on the 

machine where it is allocated. Let iC  be equal to the 

actual computation time for task i. The finishing time of 
a given machine j, ,jF  depends only on the actual 

computation times of the tasks mapped to that machine. 
Additionally, let estC  be the vector of the est

iC  values 

such that 0 1 1  ... .est est estest
TC C C C −= ⎡ ⎤⎣ ⎦  Similarly, let C be 

the actual computation time vector such that 

0 1 1=   ... .TC C C C −
⎡ ⎤⎣ ⎦  The performance feature (φ) that 

should be limited in variation to ensure the makespan 
robustness is the finishing times of the machines. That 
is, { }=  | 1    .jF j M≤ ≤φ  The vector C is the 

perturbation parameter for this study and Fj is a 
function of C. To be robust (i.e., meet the time 
constraint τ), it is required that Fj(C) ≤ τ for all j. That 
is, Fj(C) = τ  is the maximum allowed value for any Fj. 

The robustness radius of Fj against C for mapping 
µ, ( , ),µ jr F C  is defined as the Euclidean distance that C 

can change from the assumed value of estC  without the 
finishing time of machine j exceeding the tolerable 
variation. Mathematically, 

2
( , ) = min .

: ( ) =
est

µ j
j

r F C C C
C F C τ

  −
   

                                                                                 (1) 

That is, if the Euclidean distance between any vector of 
actual computation times and the vector of estimated 
computation times is no larger than rµ(Fj, C), then the 
finishing time of the machine j will be at most the 
makespan constraint τ. As described in [4], equation (1) 
can be interpreted as the perpendicular distance from 
Cest to the hyperplane described by the equation 

( )est
jτ F C − = 0. Hence, equation (1) can be rewritten as 

[34], 
( )( )

( , ) = .
number of  tasks mapped to machine 

est
j

µ j

τ F C
r F C

j

 − 
          (2) 

The robustness metric, ( , ),µρ Cφ for the mapping is 

simply the minimum of all robustness radii over all 
machines [4]. If the Euclidean distance between any 
vector of the actual execution times and the vector of 
the estimated execution times is no larger than 

( , ),µρ Cφ then the actual makespan will be at most the 

constraint τ. Mathematically, 
( , ) = min ( , ).µ jµ

j
ρ C  r F C

F
  

 ∈  
φ

φ
                                                                        (3) 
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The performance metric that is used to evaluate the 
mapping is .( , )µρ Cφ It is obvious that the larger the 

robustness metric, the better the mapping.  
The goal for this study is to map all tasks to 

machines such that the makespan for the entire 
metatask is within the time constraint τ while 
maximizing .( , )µρ Cφ Seven static mapping schemes 

are studied in this paper: Max-Max, Greedy Iterative 
Maximization, Overhead Iterative Maximization, 
GENITOR, Memetic Algorithm, Ant Colony 
Optimization, and Hereboy Evolutionary Algorithm. 
The wall clock time for the mapper itself to execute is 
arbitrarily required to be less than or equal to 60 
minutes on a typical unloaded 3GHz Intel Pentium 4 
machine. Simulations are used to evaluate and compare 
the seven static heuristics studied in this paper.  

The remainder of this paper is organized in the 
following manner. The next section describes the 
simulation setup used for this research. Section 3 
provides literature related to this work. In Section 4, the 
heuristics studied in this research and an upper bound 
are presented. Section 5 discusses the results, and the 
last section gives a brief summary of this research work. 

 
2. Simulation Setup 
 

An HC system with eight machines and 1024 
independent tasks is simulated in this study. This large 
number of tasks is chosen to present a significant 
mapping challenge for each heuristic. 

The estimated execution times of all tasks taking 
heterogeneity into consideration are generated using the 
gamma distribution method described in [5]. Two 
different cases of ETC heterogeneities are used in this 
research, the high task and high machine heterogeneity 
(high-high) case and the low task and low machine 
heterogeneity (low-low) case. For both the cases, the 
ETCs are of “inconsistent” type [5]. The estimated 
execution time of task i on machine j is given by   
ETC(i, j). For this study, a total of 100 trials (50 trails 
for each of the cases) are run, where each trial 
corresponds to a different ETC matrix. 

A task mean and coefficient of variation (COV) are 
used to generate the ETC matrices. The high-high case 
uses a mean task execution time of 30 seconds and a 
COV of 0.9 (task heterogeneity) to calculate the values 
for all the elements in a task vector (where the number 
of elements is equal to the number of tasks). Then using 
the ith element of the vector as the mean and a COV of 
0.9 (machine heterogeneity), the ETC values for task i 
on all the machines are calculated. The low-low 
heterogeneity case uses a mean task execution time of 
30 seconds and a COV of 0.3 for task heterogeneity and 
0.3 for machine heterogeneity. 

The value of the time constraint τ is chosen to be 
5000 seconds so that it presents a feasible mapping 
problem for the heuristics to solve. A simple greedy 
mapping heuristic that minimized the makespan was 
used to determine the value of τ. The performance of 
each heuristic is studied across all 100 different 
scenarios, where each scenario is an ETC matrix of 
either the high-high or low-low case. 
 
3. Related Work 

 
The work presented in this paper is built upon the 

four step FePIA procedure detailed in [4]. The FePIA 
procedure describes a way to derive a generalized 
robustness metric and it is applied for the problem 
studied here. In the literature, a number of papers have 
studied the issue of robustness in distributed systems 
(e.g., [9, 14, 15, 17, 25, 27, 37]). Robust decision 
making formulations presented in [14, 24, 25] motivate 
building a robust suboptimal solution over a better 
performing solution that is less robust. 

In [9], given an allocation for an augmented 
dependency graph, an analytic measure of the 
vulnerability of the allocation to hazards (uncertainties 
in estimated execution times of tasks) is devised. They 
introduced the concept of critical component in the 
execution path based on the spare time and slack. Their 
robustness metric is problem specific and cannot be 
applied to our system.  

The research in [14] considers a single machine 
scheduling environment where the processing times of 
individual jobs are uncertain. Given the probabilistic 
information about processing time for each job, the 
authors in [14] determine the normal distribution that 
approximates the flow time associated with a given 
schedule. The risk value is calculated by using the 
approximate distribution of flow time. The robustness 
of a given schedule is then given by 1 minus the risk of 
achieving substandard flow time performance. In our 
work, no such stochastic specification of the 
uncertainties is assumed. Furthermore, our environment 
involves multiple machines. 

The study in [15] explores slack-based techniques 
for producing robust resource allocations in a job-shop 
environment. The central idea is to provide each task 
with extra time (defined as slack) to execute so that 
some level of uncertainty can be tolerated without 
having to reallocate. The study uses slack as its measure 
of robustness, which is simpler and different from our 
measure. 

The research in [17] considers reactive scheduling 
to unexpected events that may cause a constraint 
violation in a shop floor environment. They define 
repair steps if a job takes longer than expected so that 
the new evaluation of constraint would be as good as or 
better than the old evaluation. Our work explores robust 
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resource allocation techniques to maximize the 
cumulative errors in ETCs so that the specified 
performance is guaranteed in a heterogeneous 
computing environment; thus, our problem differs in 
many ways from scheduling machines in a shop.  

In [24], the authors assume a scenario based 
approach to represent the input data uncertainty to their 
robustness decision model job shop environments. In 
their robust decision making framework, they present 
three critical elements: (a) use of scenario planning 
approach to structure data uncertainty for the decision 
situation; (b) choice of appropriate robustness criterion; 
and (c) the formal development of a decision model. 
Our work differs from the types discussed in [24] 
because our environment is heterogeneous computing 
and no mathematical characterization of the possible 
uncertainties in ETC values is assumed. 

The study in [25], considers a two-stage flow shop 
where the processing times of individual jobs are 
uncertain. The authors structure the uncertainty in two 
ways: the first approach assumes a set of discrete 
processing time scenarios, each of which specifies the 
processing time for each job on each machine under 
that scenario; the second approach assumes a set of 
independent processing time intervals, which define the 
minimum and maximum processing time that can be 
realized for each job on each machine. Our work differs 
from [25] for reasons similar to those stated for [24]. 

The work in [27] develops a mathematical 
definition for the robustness against machine 
breakdowns in a job-shop environment. The authors 
assume a certain random distribution of the machine 
breakdowns and a certain rescheduling policy in the 
event of breakdowns. In our paper, we consider 
uncertainties in ETCs of tasks for heterogeneous 
computing. 

In [37], it is attempted to calculate the stability 
radius of an optimal schedule in a job-shop 
environment. The work in [37] is specific to their 
environment, but our work is based on [4] because it is 
more general and considers system requirements to 
generate the robustness metric. In our paper, heuristic 
approaches are explored to allocate resources in a 
robust manner based on the metric derived using the 
work done in [4]. 

The literature was examined to select a set of 
heuristics appropriate for the HC environment 
considered here. The Max-Max is a variation of the 
Min-Min that has proven to be a good heuristic for 
static and dynamic mapping problems (e.g., [12, 21, 
41]). The Iterative Maximization (IM) techniques are a 
variation of the iterative deepening and random search 
techniques used in [16]. The GENITOR-style genetic 
algorithm used here is an adaptation of [40]. GENITOR 
is a steady-state genetic algorithm (GA) that has been 
shown to work well for several problem domains, 

including resource allocation, and job shop scheduling 
and hence, chosen for this problem. Memetic Algorithm 
(MA) [6, 30, 31], also called the hybrid GA, applies a 
separate local search process (hill-climbing) to refine 
individuals. Combining global and local search is a 
strategy used by many successful global optimization 
approaches [6]. The Ant Colony Optimization (ACO) 
[31, 32, 38] metaheuristic has been used previously to 
map tasks onto heterogeneous machines, like Max-Max 
and GENITOR. In [32], the performance of ACO is 
compared to some of the heuristics described in [12]. 
The authors proved that the ACO heuristic perform well 
for a similar problem setup given in [12] although it is 
very time consuming to build good solutions. The 
heuristic formulation of ACO used here is a variation of 
[32]. The HereBoy Evolutionary Algorithm used here is 
a combination of GA and Simulated Annealing (SA) 
and is an adaptation of [26] that was applied to the 
evolvable hardware problem. This fast evolutionary 
algorithm is shown to be well suited for exploring large 
spaces and can be applied to a wide range of 
optimization problems.  
  
4. Heuristics Descriptions 
 

Both of the Iterative Maximization (IM) heuristics 
start with an initial solution and try to improve the 
solution by “local” modifications similar to the iterative 
improvement techniques used in [16]. The initial 
solution can be constructed randomly or by using some 
heuristic method. To modify a mapping, a number of 
different techniques can be applied, e.g., exchange of 
machine assignments of two tasks, the move of a task 
from one machine to another machine. The choice of 
how to modify a mapping can be made randomly or 
with some “constructive” criteria-based method. The 
Greedy Iterative Maximization (GIM) and Overhead 
Iterative Maximization (OIM) heuristics predominantly 
use the following two procedures during an iteration: 
reassignment and swapping. In reassignment, a task is 
picked from a machine i arbitrarily or procedurally, and 
moved to the target machine j such that the robustness 
metric of the mapping is improved. In swapping, a task 
is chosen from a machine i and another task is chosen 
from a different machine j, both tasks are chosen 
arbitrarily or procedurally, and then swapped such that 
the robustness of the mapping is improved.  

In the IM heuristics and in Ant Colony 
Optimization (ACO), the term min-radius machine is 
the machine that determines the robustness metric of 
the mapping, that is, the one that has the minimum 
robustness radius over all machines. Execution of the 
reassignment procedure followed by swapping was 
used in both the IM heuristics because it yielded better 
results than performing them in reverse order and also 
was better than using only one of the two. 
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Reassignment aggressively tries to maximize 
robustness radius by increasing the numerator and 
simultaneously reducing the denominator of equation 
(2). Swapping can be interpreted as a fine tuning 
procedure where the number of tasks on each machine 
is unaltered.  

This section describes seven heuristics for the 
problem of finding a robust static allocation. Also, a 
mathematical upper bound on performance is derived. 

 
4.1.  Max-Max  
 

The Max-Max heuristic is based on the Min-Min 
(greedy) concept in [21]. In step 2 of the Max-Max 
heuristic, to find the fitness function for assigning a 
given task i to a given machine j, the robustness radius 
of machine j given by equation (2) is evaluated based 
on the tasks already assigned to machine j and the 
possible assignment of task i to machine j. 

The Max-Max heuristic can be summarized by the 
following procedure: 
1. A task list is generated that includes all the 

unmapped tasks. 
2. For each task in the task list, the machine that gives 

the task its maximum fitness value (first “Max”) is 
determined (ignoring other unmapped tasks). 

3. Among all the task/machine pairs found in the 
above step, the pair that gives the maximum fitness 
value (second “Max”) is chosen. 

4. The task found in step 3 is then removed from the 
task list and is mapped to its paired machine. 

5. Repeat steps 2 to 4 until all the tasks are mapped. 
 

4.2.  Greedy Iterative Maximization 
 

The Greedy Iterative Maximization (GIM) 
heuristic loops through the sequence of initial mapping 
generation and robustness improvement until the wall 
clock time of one hour expires. The first initial mapping 
for GIM is generated using the Min-Min heuristic 
similar to [21] based on the completion times. The other 
initial mappings are generated using the Minimum 
Completion Time (MCT) heuristic that was used in [12] 
so that the makespan constraint is satisfied. Tasks are 
considered in a different order every time a new 
mapping is generated for MCT. The Min-Min and MCT 
mapping generation procedures are shown in Figures 1 
and 2, respectively.  

The GIM heuristic can be summarized by the 
following procedure. 
1. An initial mapping is generated as described above.  
2. The robustness metric and min-radius machine for 

the current mapping is found. 
3. Generate a task list containing all tasks on the min-

radius machine not yet considered for reassignment. 

4. A task is chosen arbitrarily from the task list and 
considered for reassignment to all other machines. 

5. Reassign the task to the machine that improves the 
robustness metric the most and go to step 2; if the 
reassignment does not improve the mapping, 
remove the task from the task list and go to step 4 
until there are no tasks in the task list.  

6. The robustness metric and min-radius machine for 
the current mapping is determined. 

7. Generate a task list containing all tasks on the min-
radius machine not yet considered for swapping. 

8. A task is chosen arbitrarily from the task list and 
considered to be swapped to all tasks on all other 
machines. 

9. The chosen task from the task list is swapped with 
the first task that will increase the robustness 
metric by traversing through all the tasks in 
arbitrary order on all other machines and go to step 
6; if the chosen task could not be swapped with any 
other task, remove the task from the task list and go 
to step 8 until the task list is empty. 

10. Repeat steps 1-9 until the one hour time constraint 
has expired. 
 

 
 
 
Figure 1: Pseudo-code for the Min-Min 
heuristic.  

 
One variation tried was to select the “best” task 

that improves the robustness during swapping in step 9 
and was found to perform slightly worse than the 
“arbitrary order” swap method. It is observed that, in 
general, the robustness of the initial mapping did not 
impact the robustness of the final mapping; however, if 
the robustness of the initial mappings are good, more 
iterations of steps 1 through 9 can be performed in the 
given time constraint. 
 

1. A task list is generated that includes all 
unmapped tasks. 

2. Find the completion time of each 
unmapped task on each machine (ignoring 
other unmapped tasks). 

3. Find the machine that gives the minimum 
completion time for each task.  

4. Among all the task/machine pairs found in 
3, find the pair that gives the minimum 
completion time. 

5. Remove the above task from the task list 
and map it to the chosen machine. 

6. Update the available time of the machine 
on which the task is mapped. 

7.     Repeat steps 2-6 until all the tasks have 
been mapped. 
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Figure 2: Pseudo-code for the MCT heuristic.  
 

In another variation, GIM is initialized with the 
Max-Max heuristic. For this variation, the reassignment 
scheme is the same as before and swapping is done in 
the following way. For an arbitrary task i on the min-
radius machine, a task x that is mapped on any other 
machine for which min-radius machine is the minimum 
execution time (MET) machine is chosen such that 
ETC(x, min-radius machine) is less than ETC(i, min-
radius machine).  
 
4.3.  Overhead Iterative Maximization 
 

The Overhead Iterative Maximization (OIM) 
heuristic starts with the MET mapping that was used in 
[12], where all the tasks are mapped to their fastest 
execution time machines. During an iteration, the 
robustness overhead, defined as the change in the sum 
of robustness radii of the machines after task 
reassignment or swapping, is maximized. For each task 
on the min-radius machine, OIM reassigns it to the 
machine that maximizes the robustness overhead if it 
will improve the robustness metric. Similar to the task 
reassignment procedure, each task on the min-radius 
machine is considered for swapping with a task on 
another machine.  

The OIM heuristic can be summarized by the 
following procedure. 
1. The MET mapping is generated and the robustness 

metric of the mapping is determined. 
2. The min-radius machine for the mapping is found. 
3. For each task on the min-radius machine, it is 

considered to be reassigned to all other machines. 
4. If reassignment will increase the robustness metric, 

robustness overhead is recorded in a list C for each 
reassignment. 

5. The task is reassigned to the machine that 
maximizes the robustness overhead the most and 
the list C is emptied. 

6. Repeat steps 2-5 until no task can be reassigned 
from the current min-radius machine to improve 
the robustness metric. 

7. The robustness metric and min-radius machine of 
the current mapping are determined. 

8. For each task on the current min-radius machine, it 
is considered to be swapped with any task on other 
machines. 

9. If swapping will increase the robustness metric, 
robustness overhead is recorded in a list C for each 
swap. 

10. The relocation in C that has the maximum 
overhead is made and the list C is emptied. 

11.  Repeat steps 7-10 until no task swapping can be 
done. 

 
4.4.  GENITOR 

 
GENITOR is a general optimization technique that 

is a variation of the genetic algorithm approach. It 
manipulates a set of possible solutions. The method 
studied here is similar to the standard GENITOR 
approach used in [40]. Each chromosome represents a 
possible complete mapping of tasks to machines. 
Specifically, the chromosome is a vector of length |T|. 
The ith element of the vector is the number of the 
machine to which task i is assigned. The GENITOR 
operates on a fixed population of 200 chromosomes. 
The population includes one chromosome (seed) that is 
the Max-Max solution and the rest of the chromosomes 
are generated by randomly assigning tasks to machines. 
The entire population is sorted (ranked) based on their 
fitness (robustness metric) values. Chromosomes that 
do not meet the makespan constraint are allowed to be 
included in the population. The ranking is constructed 
so that all chromosomes that meet the constraint are 
listed first, ordered by their robustness metric value 
(highest first). The chromosomes that do not meet the 
makespan constraint are then listed, again ordered by 
their robustness metric value. 

Next, a special function (described later) is used to 
select two chromosomes to act as parents. These two 
parents perform a crossover operation, and two new 
offspring are generated. The offspring are then 
evaluated and must immediately compete for inclusion 
in the population. If the new offspring has a higher 
fitness than the poorest member in the population, the 
offspring is inserted in sorted order in the population, 
and the poorest chromosome is removed. Otherwise, 
the new offspring is discarded. 

The special function for selecting parent 
chromosomes is a linear bias function, used to provide a 
specific selective pressure [40]. For example, a bias of 
1.5 implies that the top ranked chromosome in the 
population is 1.5 times more likely to be selected for a 
crossover or mutation than the median chromosome. 
The linear bias value of 1.5 was used to select 
chromosomes for crossover and mutation. Elitism, the 
property of guaranteeing the best solution remains in 

1.    A task list is generated that includes all 
unmapped tasks. 

2.    Choose a task arbitrarily from the task list. 
3.    Find the machine that gives the minimum 

completion time for the chosen task. 
4.    Remove the task from the task list and map 

it to the chosen machine. 
5.    Update the available time of the machine 

on which the task is mapped. 
6.    Repeat steps 2-5 until all the tasks have 

been mapped. 
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the population, is implicitly implemented by always 
maintaining the ranked list. 

In the crossover step, for the pair of the selected 
parent chromosomes a random cut-off point is 
generated that divides the chromosomes into top and 
bottom parts. For the parts of both chromosomes from 
that point to the end of each chromosome, crossover 
exchanges machine assignments between corresponding 
tasks producing two new offspring. 

After each crossover, the linear bias function is 
applied again to select a chromosome for mutation. A 
mutation operator generates a single offspring by 
perturbing the original chromosome. A random task is 
chosen for the chromosome and the mutation operator 
randomly reassigns it to a new machine. The resultant 
offspring is considered for inclusion in the population 
in the same fashion as for an offspring generated by 
crossover. 

This completes one iteration of the GENITOR. The 
heuristic stops when the criterion of 250,000 total 
iterations is met.  
 
4.5. Memetic Algorithm 
 

The Memetic Algorithm (MA) metaheuristic [30] 
combines population-based global search with local 
search made by each of the individuals. Each individual 
represents a complete mapping of tasks to machines, 
and is the same as GENITOR chromosomes. The local 
search hill climbing is a process that starts at a certain 
solution, and moves to a neighboring solution if it is 
better than the current solution until a stopping criterion 
is reached. The interactions between individuals are 
made with the use of a crossover operator. Later, an 
individual is mutated by partly modifying an existing 
solution. Hill climbing is done on all individuals in the 
initial population and also on the offspring generated 
after crossover and mutation. 

The MA heuristic can be summarized by the 
following procedure.  
1. Generate initial population, as in GENITOR. 
2. Hill climb on each member of the population. 

While (stopping criteria (i.e., 500 iterations) not 
met) 
{ 
a. Select two tasks arbitrarily and their machine 

assignments are swapped. 
b. If (robustness metric of offspring > robustness 

metric of original individual), 
replace the original individual, otherwise 
ignore the offspring. 

} 
3. Evaluate robustness metric for each individual. 
4. Rank population based on robustness metric, as in 

GENITOR. 

5. While (stopping criteria (i.e., 100,000 iterations) 
not met) 
{ 
a.     Perform crossover, as in GENITOR. 
b. After crossover operation, perform step 2 (hill 

climb) on the offspring. 
c. Perform mutation, as in GENITOR. 
d. After mutation operation, perform step 2 (hill 

climb) on the offspring. 
e.     The population size stays fixed at the best 200 

individuals, as in GENITOR. 
} 

6. Output the best solution. 
 
4.6.  Ant Colony Optimization 
 

The Ant Colony Optimization (ACO) metaheuristic 
has been shown to be an effective strategy for several 
problems closely related to scheduling jobs in an HC 
environment [32]. The ACO algorithm implemented 
here is a variation of the ACO algorithm design 
described in [32]. The first step in the ACO algorithm 
design is to define the pheromone trail. The pheromone 
trail will enable the ants to share useful information 
about good solutions. Similar to [32], because of the 
nature of the problem, it would be useful to store 
information about good machines for each task. Here, 
the pheromone value τ(i, j) represents the “goodness” 
of a particular machine j for a particular task i. Hence, 
the pheromone table will have an entry for each task on 
each machine similar to the ETC matrix. The 
information in the pheromone table will be shared by 
all the ants. At a high level, the ACO heuristic works in 
the following way. A certain number of ants are 
released to find different complete mapping solutions. 
Based on the mapping of the individual ants, the global 
pheromone trail is updated (procedure described later). 
This procedure is iterated for a predefined number of 
times. The final mapping solution is determined by 
mapping each task to its highest pheromone value 
machine.   

The ants build their solution based on (a) problem-
specific information (robustness radius) and (b) 
pheromone table information, in a heuristic fashion. 
The ant procedure is as follows. Similar to the Max-
Max two phase greedy heuristic, the ant procedure 
involves two phases. Initially, a task list is created that 
has all the unmapped tasks. Let n be the number of 
tasks in the task list at any given instance. In Phase 1, 
for each task in the task list, the machine that gives the 
maximum robustness radius is determined just as in 
step 2 of the Max-Max heuristic. The robustness radius 
of each task is then normalized with respect to the 
robustness radius of the “best” task (found by looping 
through all the tasks in the task list). This value for task 
i is termed as the worth of the task and represented as 
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η(i). In Phase 2, an unmapped task is stochastically 
selected (procedure described later) and assigned to the 
machine that gave its maximum robustness radius. The 
mapped task is removed from the task list. The 
procedure is repeated until all the tasks in the task list 
are mapped. The fitness function of the ant s, f(s), is the 
robustness metric at the end of the ant procedure.  

To allow all the ants to share information about 
good solutions, the pheromone trail must be updated. 
Instead of allowing all the ants to leave pheromone 
values, only the best ant of the iteration is allowed. This 
variation is shown to improve the performance of ACO 
algorithms significantly [32, 38]. Only the best ant 

bests of the iteration is allowed to update the pheromone 

table. The global best ant, ,gbs  of the ACO procedure is 

the one that has the maximum robustness radius among 
all the ants so far (including all the previous iterations). 
To allow the ants to “forget” poor information, each 
pheromone value is decayed with a parameter ρ that 
takes values between 0 and 1. The pheromone trail 
update at the end of each iteration is given by equation 
(4). It is done for all i and j. 

( )
 . ( , )      if  task  is allocated       

( )( , )  to machine  in  (4)
 . ( , )                     otherwise

best

gb best

f s
i j i

f si j j s
i j

ρ τ
τ

ρ τ

+
=

⎧
⎪
⎨
⎪⎩

                           The stochastic task selection rule used by 
traditional ACOs is called the random-proportional rule. 
For each task i, let i

bestp  be the machine that maximizes 

the robustness radius for task i. Let α be the pheromone 
value weight and β be the weight value given to the 
heuristic information (robustness radius). For this study, 
the values of α and β are constrained such that α + β = 
1. The probability of selecting task i, prob(i),  to map 
next is given by the following equation. 

1

=0

[ ( , )]  . [ ( )]
( )  

[ ( , )]  . [ ( )]

i
best

n k
best

k

i p i
prob i

k p k

α β

α β

τ η

τ η
−=
∑

                                              (5) 

That is, the next task is selected randomly such that 
tasks with a higher prob(i) have a higher probability of 
selection. The pheromone table is initialized to 1 and 
then seeded with the Max-Max solution. Seeding means 
that  

      if  task  is allocated to   
machine  by Max-Max( , )  

         otherwise

1 i
ji j

ρ
τ

ρ

+
=

⎧⎪
⎨
⎪⎩

                (6) 

A local search strategy, similar to the reassignment 
procedure of the IM heuristics, is incorporated. This 
strategy tries to move a task from the min-radius 
machine to any other machine that gives the best 
improvement in the robustness metric. This local search 

is applied to each of the ant solutions before the 
pheromone update stage to try to take the ant solution to 
its local optimum in the search space. 

The α and β values determine the extent to which 
the pheromone information and heuristic information, 
respectively, will be used by the ants to build their 
solution. The α value was determined experimentally 
by incrementing from 0 to 1 in steps of 0.1. The α value 
of 0.1 and β value of 0.9 was found to give good results. 
By similar experiments, the pheromone decay factor ρ 
of 0.75 was selected. There are 250 iterations with 10 
ants in each iteration (kept constant). These values were 
chosen to a give good solution in the wall clock time 
constraint of one hour for the heuristic running time. 
 
4.7.  HereBoy Evolutionary Algorithm 
 

HereBoy is a fast evolutionary algorithm that 
combines the features of GA and SA [26]. Unlike GA, 
there is only a single individual undergoing 
optimization, not a population. The individual or the 
chromosome is a task to machine mapping similar to 
the GENITOR and MA. Because there is only one 
individual, the search space is explored only using 
chromosome mutation. Mutations are kept if they 
produce an individual that performs better than its 
parent. The poor performers are discarded although 
some can be kept based on a probability test analogous 
to the SA approach.  

HereBoy starts with an MCT mapping. An 
adaptive mutation scheme is employed by the HereBoy 
heuristic. In this scheme, the number of tasks to be 
mutated at each iteration or the mutation rate (γ) is 
given by (8). Mutation is applied by randomly selecting 
a task on the chromosome and changing its machine 
assignment. The task chosen is first unmapped from its 
currently assigned machine, and mapped to the machine 
that maximizes the robustness metric. Randomly 
assigning the chosen task to a new machine was also 
tried, but it performed poorly and so was not used. The 
mutation rate is determined by two terms: the maximum 
mutation rate, α, which is the product of the user 
defined fraction and the number of tasks |T|, and the 
fraction β that reduces the number of tasks mutated as 
the current robustness approaches the upper bound 
(UB) value on the robustness metric. Mathematically, 
the fraction β is calculated based on the equation given 
below. 

( )UB  ( , )
  

UB

ρ Cµβ
−

=
φ

                                                                    (7) 

  . γ α β=                                                                                            (8) 
The chromosome mapping solution is evaluated at 

the end of each mutation. A probability test is 
performed to accept poorer solutions so that the 
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surrounding neighborhood is searched for better 
opportunities. The test probability starts with a high 
value and reduces over time and is referred to as the 
cooling schedule [12]. Typically cooling schedules are 
predefined, although it has been shown that adaptive 
schedules produce better results [26].  

An adaptive scheme is employed by HereBoy to 
reduce the search probability (η). The search 
probability is given by equation (9) that is similar to the 
adaptive mutation rate formula. The search probability 
is the product of the user defined value maximum 
search probability (ρ) and the fractional term β defined 
earlier. Notice that the probability of accepting poor 
solutions reduces as better solutions are produced.  
η = ρ . β                                                                                          (9) 

As a result of experimentation, HereBoy is run 
with a 5% maximum mutation rate α. The maximum 
search probability ρ is set to 0 for this problem because 
accepting poor solutions did not improve the final 
mapping. The stopping criteria for the heuristic are a 
total of 100,000 iterations or no change in the 
chromosome for 10,000 successive iterations. 
 
4.8.  Upper Bound 
 

The method developed for estimating an upper 
bound on the robustness metric for this study assumes a 
homogeneous MET system in which the execution time 
for each task on all machines is the same and equal to 
the minimum time that the task would take to execute 
across the original set of machines. The minimum 
execution time of task i, METi, is given by the 
following equation.  
METi = min ( , )ETC i j  over all j                               (10) 

The upper bound for the robustness metric of the 
homogeneous MET system is equal to or better than the 
upper bound for the robustness metric of the original 
system because of the impact of the MET values in 
equation (2). The tasks in the MET system are arranged 
in ascending order of their execution times. Then, the 
robustness upper bound is calculated as follows. 

Let N = ⎣|T|/|M|⎦. The first N tasks in the sorted 
order are stored in a list S. For the purposes of this 
mathematical upper bound derivation, the same N tasks 
in S are assumed to be on all the machines so that Fj = 
Fi, 1 ≤  i,j ≤  |M|. Thus, the upper bound for robustness 
is given by equation (11). 

| | 1

=0UB = 

S

i
i

N

τ MET
   

−⎛ ⎞
  −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

                                                                   (11) 

 
Proof by contradiction: 

Assume that there is another solution whose 
robustness metric is greater than UB and has machines 

with fewer tasks than N. If there is a machine with tasks 
fewer than N, then there must be a machine mx with 
more than N tasks mapped on to it. So, 

.number of tasks on xm Ν      >   Because the list S 
consists of the N tasks with the smallest ETC values, 
and machine mx has more than N tasks, its completion 
time must be greater than the sum of the execution time 

of all tasks in S. Thus, 
1

=0
. > 

S

ix
i

F MET
−

∑  Therefore,   

rµ(Fx, C) < UB. Because the machine with the least 
robustness radius determines the robustness metric of 
the entire system, there cannot be a mapping without 
tasks equally distributed to have robustness greater than 
UB. 

Now, assume a different solution Sol* has N tasks 
on each of the machines and has a robustness metric 
greater than UB. Thus, by equation (2), the finishing 
time of all machines for Sol* must be less than 

1

=0
.

S

i
i

MET
−

∑  But this summation is the smallest possible 

Fj for any j. Hence, there cannot be a mapping with N 
tasks on each machine and a robustness metric larger 
than UB. 

The method used to construct this mathematically 
sound upper bound results in a loose upper bound. 
Furthermore, the greater the heterogeneity, the looser 
the bound. 

 
5. Experimental Results 

 
The simulation results are shown in Figures 3 and 4. 

All the heuristics are run for 100 different scenarios and 
the average values and 95% confidence intervals [22] 
are plotted. The running times of the heuristics 
averaged over 100 trials, mapping 1024 tasks onto eight 
machines, are shown in Table 1.  

The GIM and OIM are among the best heuristics 
for both of the high-high and low-low cases studied 
here. The IM heuristics that make use of the tailored 
search technique (as opposed to the general search used 
by GENITOR) proved to be very effective. The “best” 
swap variation of the GIM arrived at a good solution 
faster than the “arbitrary order” swap; however, the 
latter performed more beneficial swaps and showed a 
gradual increase in the robustness better than the former. 
The third variation of the GIM heuristic that is seeded 
with the Max-Max solution is less than 2% of the 
“arbitrary swap” variation. In this approach, not many 
beneficial swaps could be made and hence, a poor 
initial solution did not perform comparably to the other 
variations.  

0-7695-2312-9/05/$20.00 (c) 2005 IEEE



 

0

35

70

105

140

175

210

M
ax

-M
ax

G
IM

O
IM

G
EN

IT
O

R

M
A

A
C

O

H
er

eB
oy

ro
bu

st
ne

ss
high-high low-low

 
Figure 3: The simulation results for robustness. 
The average UB values are 416.54 for high-
high heterogeneity and 313.83 for low-low 
heterogeneity. 
 

The GENITOR and MA performed comparably to 
the IM heuristics. Both of the heuristics are seeded with 
the Max-Max solution and used the concept of elitism. 
The ACO solution was within 12% of the best heuristic 
(OIM) solution. In the ACO heuristic, seeding the 
pheromone trial with the Max-Max mapping and the 
use of the local search technique improved the solution 
on average by 27%.  

The makespan results of all the heuristics are 
similar and in agreement with the robustness metric 
results. Notice that for a similar makespan, the GIM 
heuristic showed 6% better robustness for the hi-hi case 
and 2% better robustness for the low-low case over the 
Max-Max heuristic. This clearly implies that even 
though the makespan and robustness of a mapping are 
related, minimizing the makespan does not 
automatically maximize the robustness. 

The Max-Max and HereBoy are the fastest among 
all of the heuristics studied here. Among the faster 
heuristics, the two-phase greedy heuristic (Max-Max) 
performed better than the fast evolutionary algorithm 
(HereBoy). The HereBoy heuristic performed the worst 
among all of the heuristics. The upper bound used here 
is a loose upper bound (considering all the assumptions 
made in the derivation), and hence, the adaptive 

mutation technique that uses the upper bound value did 
not prove useful. 
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Figure 4: The simulation results for 
makespan, which is constrained to be ≤ 5,000 
(= τ). 
 

 
heuristic 

average execution 
times (seconds) 

Max-Max 0.52 
Greedy IM 3600 
Overhead IM 600 
GENITOR 3000 
Memetic Algorithm 3000 
Ant Colony Optimization 3200 
HereBoy 2.2 

 
Table 1: The average execution times of the 
heuristics averaged over 100 trials (using a 
typical unloaded 3 GHz Intel Pentium 4 
machine). 
 
6. Summary 

 
This paper presents seven static heuristics for 

maximizing the robustness of a mapping against errors 
in the ETC values using the HC environments presented. 
A system of independent tasks is mapped onto a set of 
heterogeneous machines using the heuristics described 
in this research. 
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The best robustness metric is obtained by using the 
Overhead Iterative Maximization heuristic. The Greedy 
Iterative Maximization, GENITOR, and Memetic 
Algorithm performed comparably with their robustness 
metric within 2% of the Overhead Iterative 
Maximization. However, the execution times for the 
heuristics themselves are much higher as compared to 
the Overhead Iterative Maximization heuristic. Thus, 
Overhead Iterative Maximization is a good choice for 
the given problem. 
 
Acknowledgments: The authors thank Shoukat Ali and 
Jay Smith for their valuable comments. 
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