

Processor Allocation for Tasks that is Robust Against Errors
in Computation Time Estimates

Prasanna V. Sugavanam1, H. J. Siegel1,2, Anthony A. Maciejewski1, Syed Amjad Ali1,
Mohammad Al-Otaibi1, Mahir Aydin1, Kumara Guru1, Aaron Horiuchi3,

Yogish G. Krishnamurthy2, Panho Lee1, Ashish Mehta1, Mohana Oltikar1, Ron Pichel3,
Alan J. Pippin3, Michael Raskey4, Vladimir Shestak1, and Junxing Zhang5

Colorado State University
1Department of Electrical & Computer Engineering

2Department of Computer Science
Fort Collins, CO 80523-1373

{prasanna, hj, aam, sdamjad, motaibi, mahir, higuru, yogi,
leepanho, ammehta, mohana, shestak}@colostate.edu

Hewlett-Packard Company

3Systems & VLSI Technology Division
4Linux & Open Source Lab

Fort Collins, CO 80528
{akh, rgp, ajp}@fc.hp.com
michael.raskey@hp.com

5University of Utah
School of Computing

Salt Lake City, UT 84112
junxing@cs.utah.edu

Abstract

Heterogeneous computing systems composed of

interconnected machines with varied computational
capabilities often operate in environments where there
may be sudden machine failures, higher than expected
load, or inaccuracies in estimation of system
parameters. Makespan (defined as the completion time
for an entire set of tasks) is often the performance
feature that is optimized in such systems. It is important
that the makespan of a resource allocation (mapping)
be robust against errors in task computation time
estimates. The problem of optimally mapping tasks onto
machines of a heterogeneous computing environment
has been shown, in general, to be NP-complete.
Therefore, heuristic techniques to find near optimal
solutions to this mapping problem are required. The
goal of this research is to find a static mapping of tasks
so that the robustness of the desired system feature,
makespan, is maximized against the errors in task
execution time estimates. Seven heuristics to derive
near-optimal solutions and an upper bound to this
problem are presented and evaluated.

This research was supported by the Colorado State University Center
for Robustness in Computer Systems (funded by the Colorado
Commission on Higher Education Technology Advancement Group
through the Colorado Institute of Technology), and by the Colorado
State University George T. Abell Endowment.

1. Introduction and Problem Statement

Heterogeneous computing (HC) systems utilize
various resources with different capabilities to satisfy
the requirements of diverse task mixtures and to
maximize the system performance (e.g., [11, 18]). Such
systems often operate in an environment where certain
desired performance features degrade due to
unpredictable circumstances such as sudden machine
failures, higher than expected load, or inaccuracies in
the estimation of system parameters (e.g., [3, 4, 9, 24,
25, 33]). Thus, it becomes necessary to allocate
resources to tasks to maximize the robustness of the
allocation. This study focuses on this aspect of resource
allocation.

The act of assigning (matching) each task to a
machine and ordering (scheduling) the execution of the
tasks on each machine is known as mapping, resource
allocation, or resource management. An important
research problem is how to determine a mapping so as
to maximize the robustness of desired system features
against perturbations in system parameters [4]. In both
cases, the general problem of optimally mapping tasks
to machines in an HC environment has been shown to
be NP-complete (e.g., [13, 19, 21]). Thus, the
development of heuristic techniques to find near-
optimal solutions for the mapping problem is an active
area of research (e.g., [1, 2, 7, 8, 18, 20, 28, 41]).

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Static mapping is performed when the applications
are mapped in an off-line planning phase such as in a
production environment (e.g., [1, 10, 12, 35, 36, 39]).
Static mapping techniques take a fixed set of
applications, a fixed set of machines, and generate a
mapping. These heuristics determine a mapping off-line,
and must use estimated values of task computation
times. These techniques may be used to plan the
execution of a set of tasks for a future time period (e.g.,
the production tasks to execute on the following day).
Static mapping is also used for “what-if” predictive
studies. For example, a system administrator might
want to know the benefits of adding a new machine to
the HC suite to justify purchasing it. By conducting a
static mapping and then deriving the estimated system
performance for the set of applications, the impact of
the new machine can be approximated.

In this research, a metatask composed of a number
of independent tasks (i.e., no communication between
tasks are needed) is considered. Makespan is defined as
the completion time for the entire metatask. A mapping
is defined to be robust with respect to specified system
performance features against perturbations in specified
system parameters if degradation in these features is
limited when certain perturbations occur [4]. The
degree of robustness is the maximum amount of
collective uncertainty in perturbed system parameters
within which a user-specified level of system
performance can be guaranteed. In this system, it is
required that the makespan be robust against errors in
task execution time estimates. Specifically, the system
is considered robust if the actual makespan under the
perturbed conditions does not exceed the required time
constraint. The goal of this study is to find a static
mapping of all tasks to machines so that the robustness
of the mapping is maximized; i.e., to maximize the
collective allowable error in execution time estimation
for the tasks that can occur without the makespan
exceeding the constraint.

A description of the system model is now given. A
set of T tasks in the metatask is required to be allocated
to a set of M machines. Each machine executes a single
task at a time (i.e., no multitasking), in the order in
which the tasks are assigned. The estimated time to
compute (ETC) value for each task on each machine is
assumed to be known a priori. This assumption is
commonly made while studying mapping heuristics
(e.g., [23]). Approaches for doing this estimation are
discussed in [29]. Assume that unknown inaccuracies in
the ETC values are expected. Hence, it is required that
the mapping µ must be robust against them.
Specifically, the actual makespan of the mapping
(calculated considering the effects of ETC errors) must
be less than τ.

The FePIA procedure that was developed in [4] is
applied to determine the robustness metric for this

problem. Let est
iC be the ETC value for task i on the

machine where it is allocated. Let iC be equal to the

actual computation time for task i. The finishing time of
a given machine j, ,jF depends only on the actual

computation times of the tasks mapped to that machine.
Additionally, let estC be the vector of the est

iC values

such that 0 1 1 est est estest
TC C C C −= ⎡ ⎤⎣ ⎦ Similarly, let C be

the actual computation time vector such that

0 1 1= TC C C C −
⎡ ⎤⎣ ⎦ The performance feature (φ) that

should be limited in variation to ensure the makespan
robustness is the finishing times of the machines. That
is, { }= | 1 .jF j M≤ ≤φ The vector C is the

perturbation parameter for this study and Fj is a
function of C. To be robust (i.e., meet the time
constraint τ), it is required that Fj(C) ≤ τ for all j. That
is, Fj(C) = τ is the maximum allowed value for any Fj.

The robustness radius of Fj against C for mapping
µ, (,),µ jr F C is defined as the Euclidean distance that C

can change from the assumed value of estC without the
finishing time of machine j exceeding the tolerable
variation. Mathematically,

2
(,) = min .

: () =
est

µ j
j

r F C C C
C F C τ

 −

 (1)

That is, if the Euclidean distance between any vector of
actual computation times and the vector of estimated
computation times is no larger than rµ(Fj, C), then the
finishing time of the machine j will be at most the
makespan constraint τ. As described in [4], equation (1)
can be interpreted as the perpendicular distance from
Cest to the hyperplane described by the equation

()est
jτ F C − = 0. Hence, equation (1) can be rewritten as

[34],
()()

(,) = .
number of tasks mapped to machine

est
j

µ j

τ F C
r F C

j

 −
 (2)

The robustness metric, (,),µρ Cφ for the mapping is

simply the minimum of all robustness radii over all
machines [4]. If the Euclidean distance between any
vector of the actual execution times and the vector of
the estimated execution times is no larger than

(,),µρ Cφ then the actual makespan will be at most the

constraint τ. Mathematically,
(,) = min (,).µ jµ

j
ρ C r F C

F

 ∈
φ

φ
 (3)

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

The performance metric that is used to evaluate the
mapping is .(,)µρ Cφ It is obvious that the larger the

robustness metric, the better the mapping.
The goal for this study is to map all tasks to

machines such that the makespan for the entire
metatask is within the time constraint τ while
maximizing .(,)µρ Cφ Seven static mapping schemes

are studied in this paper: Max-Max, Greedy Iterative
Maximization, Overhead Iterative Maximization,
GENITOR, Memetic Algorithm, Ant Colony
Optimization, and Hereboy Evolutionary Algorithm.
The wall clock time for the mapper itself to execute is
arbitrarily required to be less than or equal to 60
minutes on a typical unloaded 3GHz Intel Pentium 4
machine. Simulations are used to evaluate and compare
the seven static heuristics studied in this paper.

The remainder of this paper is organized in the
following manner. The next section describes the
simulation setup used for this research. Section 3
provides literature related to this work. In Section 4, the
heuristics studied in this research and an upper bound
are presented. Section 5 discusses the results, and the
last section gives a brief summary of this research work.

2. Simulation Setup

An HC system with eight machines and 1024
independent tasks is simulated in this study. This large
number of tasks is chosen to present a significant
mapping challenge for each heuristic.

The estimated execution times of all tasks taking
heterogeneity into consideration are generated using the
gamma distribution method described in [5]. Two
different cases of ETC heterogeneities are used in this
research, the high task and high machine heterogeneity
(high-high) case and the low task and low machine
heterogeneity (low-low) case. For both the cases, the
ETCs are of “inconsistent” type [5]. The estimated
execution time of task i on machine j is given by
ETC(i, j). For this study, a total of 100 trials (50 trails
for each of the cases) are run, where each trial
corresponds to a different ETC matrix.

A task mean and coefficient of variation (COV) are
used to generate the ETC matrices. The high-high case
uses a mean task execution time of 30 seconds and a
COV of 0.9 (task heterogeneity) to calculate the values
for all the elements in a task vector (where the number
of elements is equal to the number of tasks). Then using
the ith element of the vector as the mean and a COV of
0.9 (machine heterogeneity), the ETC values for task i
on all the machines are calculated. The low-low
heterogeneity case uses a mean task execution time of
30 seconds and a COV of 0.3 for task heterogeneity and
0.3 for machine heterogeneity.

The value of the time constraint τ is chosen to be
5000 seconds so that it presents a feasible mapping
problem for the heuristics to solve. A simple greedy
mapping heuristic that minimized the makespan was
used to determine the value of τ. The performance of
each heuristic is studied across all 100 different
scenarios, where each scenario is an ETC matrix of
either the high-high or low-low case.

3. Related Work

The work presented in this paper is built upon the

four step FePIA procedure detailed in [4]. The FePIA
procedure describes a way to derive a generalized
robustness metric and it is applied for the problem
studied here. In the literature, a number of papers have
studied the issue of robustness in distributed systems
(e.g., [9, 14, 15, 17, 25, 27, 37]). Robust decision
making formulations presented in [14, 24, 25] motivate
building a robust suboptimal solution over a better
performing solution that is less robust.

In [9], given an allocation for an augmented
dependency graph, an analytic measure of the
vulnerability of the allocation to hazards (uncertainties
in estimated execution times of tasks) is devised. They
introduced the concept of critical component in the
execution path based on the spare time and slack. Their
robustness metric is problem specific and cannot be
applied to our system.

The research in [14] considers a single machine
scheduling environment where the processing times of
individual jobs are uncertain. Given the probabilistic
information about processing time for each job, the
authors in [14] determine the normal distribution that
approximates the flow time associated with a given
schedule. The risk value is calculated by using the
approximate distribution of flow time. The robustness
of a given schedule is then given by 1 minus the risk of
achieving substandard flow time performance. In our
work, no such stochastic specification of the
uncertainties is assumed. Furthermore, our environment
involves multiple machines.

The study in [15] explores slack-based techniques
for producing robust resource allocations in a job-shop
environment. The central idea is to provide each task
with extra time (defined as slack) to execute so that
some level of uncertainty can be tolerated without
having to reallocate. The study uses slack as its measure
of robustness, which is simpler and different from our
measure.

The research in [17] considers reactive scheduling
to unexpected events that may cause a constraint
violation in a shop floor environment. They define
repair steps if a job takes longer than expected so that
the new evaluation of constraint would be as good as or
better than the old evaluation. Our work explores robust

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

resource allocation techniques to maximize the
cumulative errors in ETCs so that the specified
performance is guaranteed in a heterogeneous
computing environment; thus, our problem differs in
many ways from scheduling machines in a shop.

In [24], the authors assume a scenario based
approach to represent the input data uncertainty to their
robustness decision model job shop environments. In
their robust decision making framework, they present
three critical elements: (a) use of scenario planning
approach to structure data uncertainty for the decision
situation; (b) choice of appropriate robustness criterion;
and (c) the formal development of a decision model.
Our work differs from the types discussed in [24]
because our environment is heterogeneous computing
and no mathematical characterization of the possible
uncertainties in ETC values is assumed.

The study in [25], considers a two-stage flow shop
where the processing times of individual jobs are
uncertain. The authors structure the uncertainty in two
ways: the first approach assumes a set of discrete
processing time scenarios, each of which specifies the
processing time for each job on each machine under
that scenario; the second approach assumes a set of
independent processing time intervals, which define the
minimum and maximum processing time that can be
realized for each job on each machine. Our work differs
from [25] for reasons similar to those stated for [24].

The work in [27] develops a mathematical
definition for the robustness against machine
breakdowns in a job-shop environment. The authors
assume a certain random distribution of the machine
breakdowns and a certain rescheduling policy in the
event of breakdowns. In our paper, we consider
uncertainties in ETCs of tasks for heterogeneous
computing.

In [37], it is attempted to calculate the stability
radius of an optimal schedule in a job-shop
environment. The work in [37] is specific to their
environment, but our work is based on [4] because it is
more general and considers system requirements to
generate the robustness metric. In our paper, heuristic
approaches are explored to allocate resources in a
robust manner based on the metric derived using the
work done in [4].

The literature was examined to select a set of
heuristics appropriate for the HC environment
considered here. The Max-Max is a variation of the
Min-Min that has proven to be a good heuristic for
static and dynamic mapping problems (e.g., [12, 21,
41]). The Iterative Maximization (IM) techniques are a
variation of the iterative deepening and random search
techniques used in [16]. The GENITOR-style genetic
algorithm used here is an adaptation of [40]. GENITOR
is a steady-state genetic algorithm (GA) that has been
shown to work well for several problem domains,

including resource allocation, and job shop scheduling
and hence, chosen for this problem. Memetic Algorithm
(MA) [6, 30, 31], also called the hybrid GA, applies a
separate local search process (hill-climbing) to refine
individuals. Combining global and local search is a
strategy used by many successful global optimization
approaches [6]. The Ant Colony Optimization (ACO)
[31, 32, 38] metaheuristic has been used previously to
map tasks onto heterogeneous machines, like Max-Max
and GENITOR. In [32], the performance of ACO is
compared to some of the heuristics described in [12].
The authors proved that the ACO heuristic perform well
for a similar problem setup given in [12] although it is
very time consuming to build good solutions. The
heuristic formulation of ACO used here is a variation of
[32]. The HereBoy Evolutionary Algorithm used here is
a combination of GA and Simulated Annealing (SA)
and is an adaptation of [26] that was applied to the
evolvable hardware problem. This fast evolutionary
algorithm is shown to be well suited for exploring large
spaces and can be applied to a wide range of
optimization problems.

4. Heuristics Descriptions

Both of the Iterative Maximization (IM) heuristics
start with an initial solution and try to improve the
solution by “local” modifications similar to the iterative
improvement techniques used in [16]. The initial
solution can be constructed randomly or by using some
heuristic method. To modify a mapping, a number of
different techniques can be applied, e.g., exchange of
machine assignments of two tasks, the move of a task
from one machine to another machine. The choice of
how to modify a mapping can be made randomly or
with some “constructive” criteria-based method. The
Greedy Iterative Maximization (GIM) and Overhead
Iterative Maximization (OIM) heuristics predominantly
use the following two procedures during an iteration:
reassignment and swapping. In reassignment, a task is
picked from a machine i arbitrarily or procedurally, and
moved to the target machine j such that the robustness
metric of the mapping is improved. In swapping, a task
is chosen from a machine i and another task is chosen
from a different machine j, both tasks are chosen
arbitrarily or procedurally, and then swapped such that
the robustness of the mapping is improved.

In the IM heuristics and in Ant Colony
Optimization (ACO), the term min-radius machine is
the machine that determines the robustness metric of
the mapping, that is, the one that has the minimum
robustness radius over all machines. Execution of the
reassignment procedure followed by swapping was
used in both the IM heuristics because it yielded better
results than performing them in reverse order and also
was better than using only one of the two.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Reassignment aggressively tries to maximize
robustness radius by increasing the numerator and
simultaneously reducing the denominator of equation
(2). Swapping can be interpreted as a fine tuning
procedure where the number of tasks on each machine
is unaltered.

This section describes seven heuristics for the
problem of finding a robust static allocation. Also, a
mathematical upper bound on performance is derived.

4.1. Max-Max

The Max-Max heuristic is based on the Min-Min
(greedy) concept in [21]. In step 2 of the Max-Max
heuristic, to find the fitness function for assigning a
given task i to a given machine j, the robustness radius
of machine j given by equation (2) is evaluated based
on the tasks already assigned to machine j and the
possible assignment of task i to machine j.

The Max-Max heuristic can be summarized by the
following procedure:
1. A task list is generated that includes all the

unmapped tasks.
2. For each task in the task list, the machine that gives

the task its maximum fitness value (first “Max”) is
determined (ignoring other unmapped tasks).

3. Among all the task/machine pairs found in the
above step, the pair that gives the maximum fitness
value (second “Max”) is chosen.

4. The task found in step 3 is then removed from the
task list and is mapped to its paired machine.

5. Repeat steps 2 to 4 until all the tasks are mapped.

4.2. Greedy Iterative Maximization

The Greedy Iterative Maximization (GIM)
heuristic loops through the sequence of initial mapping
generation and robustness improvement until the wall
clock time of one hour expires. The first initial mapping
for GIM is generated using the Min-Min heuristic
similar to [21] based on the completion times. The other
initial mappings are generated using the Minimum
Completion Time (MCT) heuristic that was used in [12]
so that the makespan constraint is satisfied. Tasks are
considered in a different order every time a new
mapping is generated for MCT. The Min-Min and MCT
mapping generation procedures are shown in Figures 1
and 2, respectively.

The GIM heuristic can be summarized by the
following procedure.
1. An initial mapping is generated as described above.
2. The robustness metric and min-radius machine for

the current mapping is found.
3. Generate a task list containing all tasks on the min-

radius machine not yet considered for reassignment.

4. A task is chosen arbitrarily from the task list and
considered for reassignment to all other machines.

5. Reassign the task to the machine that improves the
robustness metric the most and go to step 2; if the
reassignment does not improve the mapping,
remove the task from the task list and go to step 4
until there are no tasks in the task list.

6. The robustness metric and min-radius machine for
the current mapping is determined.

7. Generate a task list containing all tasks on the min-
radius machine not yet considered for swapping.

8. A task is chosen arbitrarily from the task list and
considered to be swapped to all tasks on all other
machines.

9. The chosen task from the task list is swapped with
the first task that will increase the robustness
metric by traversing through all the tasks in
arbitrary order on all other machines and go to step
6; if the chosen task could not be swapped with any
other task, remove the task from the task list and go
to step 8 until the task list is empty.

10. Repeat steps 1-9 until the one hour time constraint
has expired.

Figure 1: Pseudo-code for the Min-Min
heuristic.

One variation tried was to select the “best” task

that improves the robustness during swapping in step 9
and was found to perform slightly worse than the
“arbitrary order” swap method. It is observed that, in
general, the robustness of the initial mapping did not
impact the robustness of the final mapping; however, if
the robustness of the initial mappings are good, more
iterations of steps 1 through 9 can be performed in the
given time constraint.

1. A task list is generated that includes all
unmapped tasks.

2. Find the completion time of each
unmapped task on each machine (ignoring
other unmapped tasks).

3. Find the machine that gives the minimum
completion time for each task.

4. Among all the task/machine pairs found in
3, find the pair that gives the minimum
completion time.

5. Remove the above task from the task list
and map it to the chosen machine.

6. Update the available time of the machine
on which the task is mapped.

7. Repeat steps 2-6 until all the tasks have
been mapped.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Figure 2: Pseudo-code for the MCT heuristic.

In another variation, GIM is initialized with the
Max-Max heuristic. For this variation, the reassignment
scheme is the same as before and swapping is done in
the following way. For an arbitrary task i on the min-
radius machine, a task x that is mapped on any other
machine for which min-radius machine is the minimum
execution time (MET) machine is chosen such that
ETC(x, min-radius machine) is less than ETC(i, min-
radius machine).

4.3. Overhead Iterative Maximization

The Overhead Iterative Maximization (OIM)
heuristic starts with the MET mapping that was used in
[12], where all the tasks are mapped to their fastest
execution time machines. During an iteration, the
robustness overhead, defined as the change in the sum
of robustness radii of the machines after task
reassignment or swapping, is maximized. For each task
on the min-radius machine, OIM reassigns it to the
machine that maximizes the robustness overhead if it
will improve the robustness metric. Similar to the task
reassignment procedure, each task on the min-radius
machine is considered for swapping with a task on
another machine.

The OIM heuristic can be summarized by the
following procedure.
1. The MET mapping is generated and the robustness

metric of the mapping is determined.
2. The min-radius machine for the mapping is found.
3. For each task on the min-radius machine, it is

considered to be reassigned to all other machines.
4. If reassignment will increase the robustness metric,

robustness overhead is recorded in a list C for each
reassignment.

5. The task is reassigned to the machine that
maximizes the robustness overhead the most and
the list C is emptied.

6. Repeat steps 2-5 until no task can be reassigned
from the current min-radius machine to improve
the robustness metric.

7. The robustness metric and min-radius machine of
the current mapping are determined.

8. For each task on the current min-radius machine, it
is considered to be swapped with any task on other
machines.

9. If swapping will increase the robustness metric,
robustness overhead is recorded in a list C for each
swap.

10. The relocation in C that has the maximum
overhead is made and the list C is emptied.

11. Repeat steps 7-10 until no task swapping can be
done.

4.4. GENITOR

GENITOR is a general optimization technique that

is a variation of the genetic algorithm approach. It
manipulates a set of possible solutions. The method
studied here is similar to the standard GENITOR
approach used in [40]. Each chromosome represents a
possible complete mapping of tasks to machines.
Specifically, the chromosome is a vector of length |T|.
The ith element of the vector is the number of the
machine to which task i is assigned. The GENITOR
operates on a fixed population of 200 chromosomes.
The population includes one chromosome (seed) that is
the Max-Max solution and the rest of the chromosomes
are generated by randomly assigning tasks to machines.
The entire population is sorted (ranked) based on their
fitness (robustness metric) values. Chromosomes that
do not meet the makespan constraint are allowed to be
included in the population. The ranking is constructed
so that all chromosomes that meet the constraint are
listed first, ordered by their robustness metric value
(highest first). The chromosomes that do not meet the
makespan constraint are then listed, again ordered by
their robustness metric value.

Next, a special function (described later) is used to
select two chromosomes to act as parents. These two
parents perform a crossover operation, and two new
offspring are generated. The offspring are then
evaluated and must immediately compete for inclusion
in the population. If the new offspring has a higher
fitness than the poorest member in the population, the
offspring is inserted in sorted order in the population,
and the poorest chromosome is removed. Otherwise,
the new offspring is discarded.

The special function for selecting parent
chromosomes is a linear bias function, used to provide a
specific selective pressure [40]. For example, a bias of
1.5 implies that the top ranked chromosome in the
population is 1.5 times more likely to be selected for a
crossover or mutation than the median chromosome.
The linear bias value of 1.5 was used to select
chromosomes for crossover and mutation. Elitism, the
property of guaranteeing the best solution remains in

1. A task list is generated that includes all
unmapped tasks.

2. Choose a task arbitrarily from the task list.
3. Find the machine that gives the minimum

completion time for the chosen task.
4. Remove the task from the task list and map

it to the chosen machine.
5. Update the available time of the machine

on which the task is mapped.
6. Repeat steps 2-5 until all the tasks have

been mapped.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

the population, is implicitly implemented by always
maintaining the ranked list.

In the crossover step, for the pair of the selected
parent chromosomes a random cut-off point is
generated that divides the chromosomes into top and
bottom parts. For the parts of both chromosomes from
that point to the end of each chromosome, crossover
exchanges machine assignments between corresponding
tasks producing two new offspring.

After each crossover, the linear bias function is
applied again to select a chromosome for mutation. A
mutation operator generates a single offspring by
perturbing the original chromosome. A random task is
chosen for the chromosome and the mutation operator
randomly reassigns it to a new machine. The resultant
offspring is considered for inclusion in the population
in the same fashion as for an offspring generated by
crossover.

This completes one iteration of the GENITOR. The
heuristic stops when the criterion of 250,000 total
iterations is met.

4.5. Memetic Algorithm

The Memetic Algorithm (MA) metaheuristic [30]
combines population-based global search with local
search made by each of the individuals. Each individual
represents a complete mapping of tasks to machines,
and is the same as GENITOR chromosomes. The local
search hill climbing is a process that starts at a certain
solution, and moves to a neighboring solution if it is
better than the current solution until a stopping criterion
is reached. The interactions between individuals are
made with the use of a crossover operator. Later, an
individual is mutated by partly modifying an existing
solution. Hill climbing is done on all individuals in the
initial population and also on the offspring generated
after crossover and mutation.

The MA heuristic can be summarized by the
following procedure.
1. Generate initial population, as in GENITOR.
2. Hill climb on each member of the population.

While (stopping criteria (i.e., 500 iterations) not
met)
{
a. Select two tasks arbitrarily and their machine

assignments are swapped.
b. If (robustness metric of offspring > robustness

metric of original individual),
replace the original individual, otherwise
ignore the offspring.

}
3. Evaluate robustness metric for each individual.
4. Rank population based on robustness metric, as in

GENITOR.

5. While (stopping criteria (i.e., 100,000 iterations)
not met)
{
a. Perform crossover, as in GENITOR.
b. After crossover operation, perform step 2 (hill

climb) on the offspring.
c. Perform mutation, as in GENITOR.
d. After mutation operation, perform step 2 (hill

climb) on the offspring.
e. The population size stays fixed at the best 200

individuals, as in GENITOR.
}

6. Output the best solution.

4.6. Ant Colony Optimization

The Ant Colony Optimization (ACO) metaheuristic
has been shown to be an effective strategy for several
problems closely related to scheduling jobs in an HC
environment [32]. The ACO algorithm implemented
here is a variation of the ACO algorithm design
described in [32]. The first step in the ACO algorithm
design is to define the pheromone trail. The pheromone
trail will enable the ants to share useful information
about good solutions. Similar to [32], because of the
nature of the problem, it would be useful to store
information about good machines for each task. Here,
the pheromone value τ(i, j) represents the “goodness”
of a particular machine j for a particular task i. Hence,
the pheromone table will have an entry for each task on
each machine similar to the ETC matrix. The
information in the pheromone table will be shared by
all the ants. At a high level, the ACO heuristic works in
the following way. A certain number of ants are
released to find different complete mapping solutions.
Based on the mapping of the individual ants, the global
pheromone trail is updated (procedure described later).
This procedure is iterated for a predefined number of
times. The final mapping solution is determined by
mapping each task to its highest pheromone value
machine.

The ants build their solution based on (a) problem-
specific information (robustness radius) and (b)
pheromone table information, in a heuristic fashion.
The ant procedure is as follows. Similar to the Max-
Max two phase greedy heuristic, the ant procedure
involves two phases. Initially, a task list is created that
has all the unmapped tasks. Let n be the number of
tasks in the task list at any given instance. In Phase 1,
for each task in the task list, the machine that gives the
maximum robustness radius is determined just as in
step 2 of the Max-Max heuristic. The robustness radius
of each task is then normalized with respect to the
robustness radius of the “best” task (found by looping
through all the tasks in the task list). This value for task
i is termed as the worth of the task and represented as

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

η(i). In Phase 2, an unmapped task is stochastically
selected (procedure described later) and assigned to the
machine that gave its maximum robustness radius. The
mapped task is removed from the task list. The
procedure is repeated until all the tasks in the task list
are mapped. The fitness function of the ant s, f(s), is the
robustness metric at the end of the ant procedure.

To allow all the ants to share information about
good solutions, the pheromone trail must be updated.
Instead of allowing all the ants to leave pheromone
values, only the best ant of the iteration is allowed. This
variation is shown to improve the performance of ACO
algorithms significantly [32, 38]. Only the best ant

bests of the iteration is allowed to update the pheromone

table. The global best ant, ,gbs of the ACO procedure is

the one that has the maximum robustness radius among
all the ants so far (including all the previous iterations).
To allow the ants to “forget” poor information, each
pheromone value is decayed with a parameter ρ that
takes values between 0 and 1. The pheromone trail
update at the end of each iteration is given by equation
(4). It is done for all i and j.

()
 . (,) if task is allocated

()(,) to machine in (4)
 . (,) otherwise

best

gb best

f s
i j i

f si j j s
i j

ρ τ
τ

ρ τ

+
=

⎧
⎪
⎨
⎪⎩

 The stochastic task selection rule used by
traditional ACOs is called the random-proportional rule.
For each task i, let i

bestp be the machine that maximizes

the robustness radius for task i. Let α be the pheromone
value weight and β be the weight value given to the
heuristic information (robustness radius). For this study,
the values of α and β are constrained such that α + β =
1. The probability of selecting task i, prob(i), to map
next is given by the following equation.

1

=0

[(,)] . [()]
()

[(,)] . [()]

i
best

n k
best

k

i p i
prob i

k p k

α β

α β

τ η

τ η
−=
∑

 (5)

That is, the next task is selected randomly such that
tasks with a higher prob(i) have a higher probability of
selection. The pheromone table is initialized to 1 and
then seeded with the Max-Max solution. Seeding means
that

 if task is allocated to
machine by Max-Max(,)

 otherwise

1 i
ji j

ρ
τ

ρ

+
=

⎧⎪
⎨
⎪⎩

 (6)

A local search strategy, similar to the reassignment
procedure of the IM heuristics, is incorporated. This
strategy tries to move a task from the min-radius
machine to any other machine that gives the best
improvement in the robustness metric. This local search

is applied to each of the ant solutions before the
pheromone update stage to try to take the ant solution to
its local optimum in the search space.

The α and β values determine the extent to which
the pheromone information and heuristic information,
respectively, will be used by the ants to build their
solution. The α value was determined experimentally
by incrementing from 0 to 1 in steps of 0.1. The α value
of 0.1 and β value of 0.9 was found to give good results.
By similar experiments, the pheromone decay factor ρ
of 0.75 was selected. There are 250 iterations with 10
ants in each iteration (kept constant). These values were
chosen to a give good solution in the wall clock time
constraint of one hour for the heuristic running time.

4.7. HereBoy Evolutionary Algorithm

HereBoy is a fast evolutionary algorithm that
combines the features of GA and SA [26]. Unlike GA,
there is only a single individual undergoing
optimization, not a population. The individual or the
chromosome is a task to machine mapping similar to
the GENITOR and MA. Because there is only one
individual, the search space is explored only using
chromosome mutation. Mutations are kept if they
produce an individual that performs better than its
parent. The poor performers are discarded although
some can be kept based on a probability test analogous
to the SA approach.

HereBoy starts with an MCT mapping. An
adaptive mutation scheme is employed by the HereBoy
heuristic. In this scheme, the number of tasks to be
mutated at each iteration or the mutation rate (γ) is
given by (8). Mutation is applied by randomly selecting
a task on the chromosome and changing its machine
assignment. The task chosen is first unmapped from its
currently assigned machine, and mapped to the machine
that maximizes the robustness metric. Randomly
assigning the chosen task to a new machine was also
tried, but it performed poorly and so was not used. The
mutation rate is determined by two terms: the maximum
mutation rate, α, which is the product of the user
defined fraction and the number of tasks |T|, and the
fraction β that reduces the number of tasks mutated as
the current robustness approaches the upper bound
(UB) value on the robustness metric. Mathematically,
the fraction β is calculated based on the equation given
below.

()UB (,)

UB

ρ Cµβ
−

=
φ

 (7)

 . γ α β= (8)
The chromosome mapping solution is evaluated at

the end of each mutation. A probability test is
performed to accept poorer solutions so that the

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

surrounding neighborhood is searched for better
opportunities. The test probability starts with a high
value and reduces over time and is referred to as the
cooling schedule [12]. Typically cooling schedules are
predefined, although it has been shown that adaptive
schedules produce better results [26].

An adaptive scheme is employed by HereBoy to
reduce the search probability (η). The search
probability is given by equation (9) that is similar to the
adaptive mutation rate formula. The search probability
is the product of the user defined value maximum
search probability (ρ) and the fractional term β defined
earlier. Notice that the probability of accepting poor
solutions reduces as better solutions are produced.
η = ρ . β (9)

As a result of experimentation, HereBoy is run
with a 5% maximum mutation rate α. The maximum
search probability ρ is set to 0 for this problem because
accepting poor solutions did not improve the final
mapping. The stopping criteria for the heuristic are a
total of 100,000 iterations or no change in the
chromosome for 10,000 successive iterations.

4.8. Upper Bound

The method developed for estimating an upper
bound on the robustness metric for this study assumes a
homogeneous MET system in which the execution time
for each task on all machines is the same and equal to
the minimum time that the task would take to execute
across the original set of machines. The minimum
execution time of task i, METi, is given by the
following equation.
METi = min (,)ETC i j over all j (10)

The upper bound for the robustness metric of the
homogeneous MET system is equal to or better than the
upper bound for the robustness metric of the original
system because of the impact of the MET values in
equation (2). The tasks in the MET system are arranged
in ascending order of their execution times. Then, the
robustness upper bound is calculated as follows.

Let N = ⎣|T|/|M|⎦. The first N tasks in the sorted
order are stored in a list S. For the purposes of this
mathematical upper bound derivation, the same N tasks
in S are assumed to be on all the machines so that Fj =
Fi, 1 ≤ i,j ≤ |M|. Thus, the upper bound for robustness
is given by equation (11).

| | 1

=0UB =

S

i
i

N

τ MET

−⎛ ⎞
 −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

 (11)

Proof by contradiction:

Assume that there is another solution whose
robustness metric is greater than UB and has machines

with fewer tasks than N. If there is a machine with tasks
fewer than N, then there must be a machine mx with
more than N tasks mapped on to it. So,

.number of tasks on xm Ν > Because the list S
consists of the N tasks with the smallest ETC values,
and machine mx has more than N tasks, its completion
time must be greater than the sum of the execution time

of all tasks in S. Thus,
1

=0
. >

S

ix
i

F MET
−

∑ Therefore,

rµ(Fx, C) < UB. Because the machine with the least
robustness radius determines the robustness metric of
the entire system, there cannot be a mapping without
tasks equally distributed to have robustness greater than
UB.

Now, assume a different solution Sol* has N tasks
on each of the machines and has a robustness metric
greater than UB. Thus, by equation (2), the finishing
time of all machines for Sol* must be less than

1

=0
.

S

i
i

MET
−

∑ But this summation is the smallest possible

Fj for any j. Hence, there cannot be a mapping with N
tasks on each machine and a robustness metric larger
than UB.

The method used to construct this mathematically
sound upper bound results in a loose upper bound.
Furthermore, the greater the heterogeneity, the looser
the bound.

5. Experimental Results

The simulation results are shown in Figures 3 and 4.

All the heuristics are run for 100 different scenarios and
the average values and 95% confidence intervals [22]
are plotted. The running times of the heuristics
averaged over 100 trials, mapping 1024 tasks onto eight
machines, are shown in Table 1.

The GIM and OIM are among the best heuristics
for both of the high-high and low-low cases studied
here. The IM heuristics that make use of the tailored
search technique (as opposed to the general search used
by GENITOR) proved to be very effective. The “best”
swap variation of the GIM arrived at a good solution
faster than the “arbitrary order” swap; however, the
latter performed more beneficial swaps and showed a
gradual increase in the robustness better than the former.
The third variation of the GIM heuristic that is seeded
with the Max-Max solution is less than 2% of the
“arbitrary swap” variation. In this approach, not many
beneficial swaps could be made and hence, a poor
initial solution did not perform comparably to the other
variations.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

0

35

70

105

140

175

210

M
ax

-M
ax

G
IM

O
IM

G
EN

IT
O

R

M
A

A
C

O

H
er

eB
oy

ro
bu

st
ne

ss
high-high low-low

Figure 3: The simulation results for robustness.
The average UB values are 416.54 for high-
high heterogeneity and 313.83 for low-low
heterogeneity.

The GENITOR and MA performed comparably to
the IM heuristics. Both of the heuristics are seeded with
the Max-Max solution and used the concept of elitism.
The ACO solution was within 12% of the best heuristic
(OIM) solution. In the ACO heuristic, seeding the
pheromone trial with the Max-Max mapping and the
use of the local search technique improved the solution
on average by 27%.

The makespan results of all the heuristics are
similar and in agreement with the robustness metric
results. Notice that for a similar makespan, the GIM
heuristic showed 6% better robustness for the hi-hi case
and 2% better robustness for the low-low case over the
Max-Max heuristic. This clearly implies that even
though the makespan and robustness of a mapping are
related, minimizing the makespan does not
automatically maximize the robustness.

The Max-Max and HereBoy are the fastest among
all of the heuristics studied here. Among the faster
heuristics, the two-phase greedy heuristic (Max-Max)
performed better than the fast evolutionary algorithm
(HereBoy). The HereBoy heuristic performed the worst
among all of the heuristics. The upper bound used here
is a loose upper bound (considering all the assumptions
made in the derivation), and hence, the adaptive

mutation technique that uses the upper bound value did
not prove useful.

0

500

1000

1500

2000

2500

3000

3500

M
ax

-M
ax

G
IM

O
IM

G
EN

IT
O

R

M
A

A
C

O

H
er

eB
oy

m
ak

es
pa

n

high-high low-low

Figure 4: The simulation results for
makespan, which is constrained to be ≤ 5,000
(= τ).

heuristic

average execution
times (seconds)

Max-Max 0.52
Greedy IM 3600
Overhead IM 600
GENITOR 3000
Memetic Algorithm 3000
Ant Colony Optimization 3200
HereBoy 2.2

Table 1: The average execution times of the
heuristics averaged over 100 trials (using a
typical unloaded 3 GHz Intel Pentium 4
machine).

6. Summary

This paper presents seven static heuristics for

maximizing the robustness of a mapping against errors
in the ETC values using the HC environments presented.
A system of independent tasks is mapped onto a set of
heterogeneous machines using the heuristics described
in this research.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

The best robustness metric is obtained by using the
Overhead Iterative Maximization heuristic. The Greedy
Iterative Maximization, GENITOR, and Memetic
Algorithm performed comparably with their robustness
metric within 2% of the Overhead Iterative
Maximization. However, the execution times for the
heuristics themselves are much higher as compared to
the Overhead Iterative Maximization heuristic. Thus,
Overhead Iterative Maximization is a good choice for
the given problem.

Acknowledgments: The authors thank Shoukat Ali and
Jay Smith for their valuable comments.

References

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A.Maciejewski, N.

Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, “Characterizing
resource allocation heuristics for heterogeneous
computing systems,” Computer Architecture, A. R.
Hurson, ed., a volume of Advances in Computers,
Elsevier, New York, NY, to appear in 2005.

[2] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y.

Yu, S. B. Gundala, S. Gertphol, and V. Prasanna,
“Greedy heuristics for resource allocation in dynamic
distributed real-time heterogeneous computing
systems,” 2002 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2002), June 2002, pp. 519–530.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,

“Robust resource allocation for sensor-actuator
distributed computing systems,” The 2004
International Conference on Parallel Processing
(ICPP 2004), Aug. 2004, pp. 174–185.

[4] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,

“Measuring the robustness of a resource allocation,”
IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 7, July 2004, pp. 630–641.

[5] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and

S. Ali, “Representing task and machine
heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and
Engineering, Special 50th Anniversary Issue, Vol. 3,
No. 3, Nov. 2000, pp. 195–207 (invited).

[6] S. Areibi, M. Moussa, and H. Abdullah, “A

comparison of genetic/memetic algorithms and
heuristic searching,” International Conference on
Artificial Intelligence (IC-AI 2001), June 2001.

[7] H. Barada, S. M. Sait, and N. Baig, “Task matching

and scheduling in heterogeneous systems using
simulated evolution,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), Apr. 2001.

[8] I. Banicescu and V. Velusamy, “Performance of
scheduling scientific applications with adaptive
weighted factoring,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), Apr. 2001.

[9] L. Bölöni and D. C. Marinescu, “Robust scheduling of

metaprograms,” Journal of Scheduling, Vol. 5, No. 5,
Sep. 2002, pp. 395–412.

[10] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A.

Legrand, Y. Robert, “Scheduling strategies for master-
slave tasking on heterogeneous processor platforms”,
IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 4, Apr. 2004, pp. 319–330.

[11] T. D. Braun, H. J. Siegel, and A. A. Maciejewski,

“Heterogeneous computing: Goals, methods, and open
problems,” 2001 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2001), June 2001, pp. 1–12
(invited keynote paper).

[12] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.

Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys, and Bin Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June 2001,
pp. 810–837.

[13] E. G. Coffman, Jr. ed., Computer and Job-Shop

Scheduling Theory, John Wiley & Sons, New York,
NY, 1976.

[14] R. L. Daniels and J. E. Carrilo, “β-Robust scheduling

for single-machine systems with uncertain processing
times,” IIE Transactions, Vol. 29, No. 11, Nov. 1997,
pp. 977–985.

[15] A. J. Davenport, C. Gefflot, and J. C. Beck, “Slack-

based techniques for robust schedules,” 6th European
Conference on Planning, Sep. 2001, pp. 7–18.

[16] J. Dorn, M. Girsch, G. Skele, and W. Slany,

“Comparison of iterative improvement techniques for
schedule optimization,” European Journal on
Operations Research, Vol. 94, No. 2, Oct. 1996, pp.
349–361.

[17] J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive

scheduling: Improving the robustness of schedules and
restricting the effects of shop floor disturbances by
fuzzy reasoning,” International Journal on Human-
Computer Studies, Vol. 42, No. 6, June 1995, pp. 687–
704.

[18] M. M. Eshaghian, ed., Heterogeneous Computing,

Norwood, MA, Artech House, 1996.

[19] D. Fernandez-Baca, “Allocating modules to

processors in a distributed system,” IEEE Transaction

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427–1436.

[20] I. Foster and C. Kesselman, eds., The Grid: Blueprint

for a New Computing Infrastructure, San Fransisco,
CA, Morgan Kaufmann, 1999.

[21] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for

scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280–289.

[22] R. Jain, The Art of Computer Systems Performance

Analysis Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley, New
York, 1991.

[23] M. Kafil and I. Ahmad, “Optimal task assignment in

heterogeneous distributed computing systems,” IEEE
Concurrency, Vol. 6, No. 3, July-Sep. 1998, pp. 42–51.

[24] P. Kouvelis and G. Yu, Robust Discrete Optimization

and Its Applications, Dordrecht, Kluwer, 1997.

[25] P. Kouvelis, R. Daniels, and G. Vairaktarakis, “Robust

scheduling of a two-machine flow shop with uncertain
processing times,” IIE Transactions, Vol. 38, No. 5,
May 2000, pp. 421–432.

[26] D. Levi, “Hereboy: A fast evolutionary algorithm,” 2nd

NASA/DoD Workshop on Evolvable Hardware
(EH ’00), July 2000, pp. 17–24.

[27] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness

measures and robust scheduling for job shops,” IIE
Transactions, Vol. 26, No. 5, Sep. 1994, pp. 32–43.

[28] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and

R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, Nov. 1999, pp. 107–121.

[29] M. Maheswaran, T. D. Braun, and H. J. Siegel,

“Heterogeneous distributed computing,” Encyclopedia
of Electrical and Electronics Engineering, J. G.
Webster, ed., Vol. 8, John Wiley & Sons, New York,
NY, 1999, pp. 679–690.

[30] P. Moscato, On Evolution, Search, Optimization,

Genetic Algorithms, and Martial Arts: Towards
Memetic Algorithms, Technical Report, Caltech
Concurrent Computation Program C3P 826, California
Institute of Technology, Pasadena, CA, 1989.

[31] G. C. Onwubolu and B. V. Babu, New Optimization

Techniques in Engineering, Springer-Verlag, New
York, NY, 2004.

[32] G. Ritchie and J. Levine, “A hybrid ant algorithm for

scheduling independent jobs in heterogeneous
computing environments,” 3rd Workshop of the UK

Planning and Scheduling Special Interest Group
(PLANSIG 2004), Dec. 2004.

[33] M. Sevaux and K. Sörensen, “Genetic algorithm for

robust schedules,” 8th International Workshop on
Project Management and Scheduling (PMS 2002),
Apr. 2002, pp. 330–333.

[34] G. F. Simmons, Calculus with Analytic Geometry,

Second Edition, New York: McGraw-Hill, 1995.

[35] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski,

T. Banka, K. Chindam, S. Dussinger, P. Pichumani, P.
Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam, and J. Velazco, “Static
mapping of subtasks in a heterogeneous ad hoc grid
environment,” 13th IEEE Heterogeneous Computing
Workshop (HCW 2004), Santa Fe, NM, Apr. 2004.

[36] S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Banka,

K. Chindam, S. Dussinger, A. Kutruff, P. Penumarthy,
P. Pichumani, P. Satyasekaran, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam, and J. Velazco, “Mapping
of subtasks with multiple versions in a heterogeneous
ad hoc grid environment,” 3rd International Workshop
on Algorithms, Models, and Tools for Parallel
Computing on Heterogeneous Networks (HetroPar
2004), Cork, Ireland, July 2004.

[37] Y. N. Sotskov, V. S. Tanaev, and F. Werner,

“Stability radius of an optimal schedule: A survey and
recent developments,” Industrial Applications of
Combinatorial Optimization, Vol. 16, 1998, pp. 72–
108.

[38] T. Stützle and H. Hoos, “Max-min ant system,”

Future Generation Computer Systems, Vol. 16, No. 8,
2000, pp. 889–914.

[39] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.

Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a
genetic-algorithm-based approach,” Journal of
Parallel and Distributed Computing, Special Issue on
Parallel Evolutionary Computing, Vol. 47, No. 1, Nov.
25, 1997, pp. 8–22.

[40] D. Whitley, “The GENITOR algorithm and selective

pressure: Why rank based allocation of reproductive
trials is best,” 3rd International Conference on Genetic
Algorithms, June 1989, pp. 116–121.

[41] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-

min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 375–385.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Biographies

Prasanna V. Sugavanam is pursuing his M.S. degree
in Electrical and Computer Engineering at Colorado
State University, where he is currently a Graduate
Teaching Assistant. He received his Bachelor of
Engineering in Electrical and Electronics from
Bharathiar University, India in 2001. His research
interests include resource management in distributed
computing systems, computer architecture, and fault-
tolerant computing systems. His previous projects
include resource management for clusters for IBM
Corporation, Boulder. He is student member of IEEE.

H. J. Siegel holds the endowed chair position of Abell
Endowed Distinguished Professor of Electrical and
Computer Engineering at Colorado State University
(CSU), where he is also a Professor of Computer
Science. He is the Director of the CSU Information
Science and Technology Center (ISTeC). ISTeC a
university-wide organization for promoting, facilitating,
and enhancing CSU’s research, education, and outreach
activities pertaining to the design and innovative
application of computer, communication, and
information systems. Prof. Siegel is a Fellow of the
IEEE and a Fellow of the ACM. From 1976 to 2001, he
was a professor in the School of Electrical and
Computer Engineering at Purdue University. He
received a B.S. degree in electrical engineering and a
B.S. degree in management from the Massachusetts
Institute of Technology (MIT), and the M.A., M.S.E.,
and Ph.D. degrees from the Department of Electrical
Engineering and Computer Science at Princeton
University. He has co-authored over 300 technical
papers. His research interests include heterogeneous
parallel and distributed computing, communication
networks, parallel algorithms, parallel machine
interconnection networks, and reconfigurable parallel
computer systems. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and has
been on the Editorial Boards of both the IEEE
Transactions on Parallel and Distributed Systems and
the IEEE Transactions on Computers. He was Program
Chair/Co-Chair of three major international conferences,
General Chair/Co-Chair of six international conferences,
and Chair/Co-Chair of five workshops. He is currently
on the Steering Committees of three continuing
conferences/workshops. He is a member of the Eta
Kappa Nu electrical engineering honor society, the
Sigma Xi science honor society, and the Upsilon Pi
Epsilon computing sciences honor society. An up-to-
date vita is available at www.engr.colostate.edu/~hj.

Anthony A. Maciejewski received the B.S.E.E, M.S.,
and Ph.D. degrees in Electrical Engineering in 1982,
1984, and 1987, respectively, all from The Ohio State

University under the support of an NSF graduate
fellowship. From 1985 to 1986 he was an American
Electronics Association Japan Research Fellow at the
Hitachi Central Research Laboratory in Tokyo, Japan
where he performed work on the development of
parallel processing algorithms for computer graphic
imaging. From 1988 to 2001, he was a Professor of
Electrical and Computer Engineering at Purdue
University. In 2001, he joined Colorado State
University where he is currently the Head of the
Department of Electrical and Computer Engineering.
Prof. Maciejewski’s primary research interests relate to
the analysis, simulation, and control of robotic systems
and he has co-authored over 100 published technical
articles in these areas. He is an Associate Editor for the
IEEE Transactions on Robotics and Automation, a
Regional Editor for the journal Intelligent Automation
and Soft Computing, and was co-guest editor for a
special issue on “Kinematically Redundant Robots” for
the Journal of Intelligent and Robotic Systems. He
serves on the IEEE Administrative Committee for the
Robotics and Automation Society and was the Program
Co-Chair (1997) and Chair (2002) for the International
Conference on Robotics and Automation, as well as
serving as the Chair and on the Program Committee for
numerous other conferences. An up-to-date vita is
available at www.engr.colostate.edu/~aam.

Syed Amjad Ali is currently pursuing a M.S. degree in
Computer Information Systems at Colorado State
University. He received his Bachelor’s in Computer
Science and Engineering from BAM University in India.
His research interests include computer architecture,
grid computing, and heterogeneous computing. He is
currently involved with IBM to setup a grid system at
the CSU College of Business.

Mohammad Al-Otaibi is currently pursing his Ph.D.
in the Department of Computer Science at New Mexico
Institute of Mining and Technology. He received his
M.S. in Electrical and Computer Engineering from
Colorado State University and B.S. in Computer
Engineering from King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia. He worked with
Lucent Technologies in Saudi Arabia as a Computer
Network Engineer from 1998 to 1999. His research
interests are in the field of computer networks,
heterogeneous computing and reconfigurable
computing.

Mahir Aydin is pursuing his Ph.D. degree in Electrical
and Computer Engineering at Colorado State University.
He is also working for Premiere Systems in Fairfax,
Virginia as a software engineer. He received his
Bachelor of Engineering degree in Computer
Engineering and his Master of Science degree in

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

computer science from Union College, Schenectady,
New York. His current interests include computer
architecture, software engineering, microprocessors,
networks, database design, and VLSI design.

Kumara Guru is a graduate student of Colorado State
University pursuing his M.S in Electrical and Computer
Engineering. He received his B.E degree in Electronics
and Communication from the University of Madras in
2003. His research interests include computer
architecture, heterogeneous computing, and optics.

Aaron Horiuchi is currently a Masters of Engineering
student at CSU and a ASIC R&D engineer at Hewlett
Packard. He obtained a B.S.E. with an Electrical
Specialty in Dec 2001 at the Colorado School of Mines.
His research interests include signal integrity, analog
circuit design, and VLSI systems.

Yogish G. Krishnamurthy graduated from the
Department of Computer Science at Colorado State
University, where he received his Masters in Computer
Science in Dec. 2004. He received his Bachelor of
Engineering in Computer Science and Engineering
from Vishweshariah Technological University, India in
June 2002. He is currently employed in Level 3
Communications as a Software developer working on
core business applications.

Pan Ho Lee is a Ph.D. student in Electrical and
Computer Engineering at Colorado State University. He
received his B.S and M.S degrees in Computer
Engineering from Kwang Woon Univeristy, Seoul,
Korea in 1992 and 1994, respectively. From 1994 to
2003, he worked for Daewoo Telecom and LG
Electronics as a research staff member. His current
research interests are in the field of overlay transport
and network protocols, sensor networks and distributed
computing.

Ashish Mehta is a graduate student of Colorado State
University pursuing his M.S. degree in Electrical and
Computer Engineering. He received a B.E degree in
Electronics Engineering from Fr. Conceicao Rodrigues
College of Engineering, Mumbai, India. His fields of
interest are heterogeneous computing, computer
architecture, computer networks, and embedded
systems.

Mohana Oltikar is pursuing a M.S. degree in
Electrical and Computer Engineering at Colorado State
University, where she is currently a Graduate Research
Assistant. She has completed her bachelor’s degree in
Electronics Engineering from University of Mumbai,
India. She is currently working on the robustness of
heterogeneous systems.

Ron Pichel received his B.S. degree in Electrical
Engineering in 2001 from Valparaiso University in
Indiana. He started graduate studies in computer
engineering at Colorado State University. Currently, he
is enrolled in National Technological University in
pursuit of his M.S. degree in Computer Engineering.
He is employed by Hewlett-Packard Company, where
he works as a verification engineer for high-end server
ASICs.

Alan Pippin is a member of the Systems-VLSI Lab at
Hewlett-Packard in Fort Collins Colorado. He is
involved in the design of chipsets for high end servers
there. He received his bachelor's degree in Electrical &
Computer Engineering from Brigham Young
University in 2001. He is currently working on a
Master's degree in Electrical Engineering at Colorado
State University. He is also a member of the IEEE.

Michael Raskey received a B.S. in Electrical
Engineering from Valparaiso University, and is
currently a graduate student at Colorado State
University pursing a M.S. in Electrical Engineering.
Michael also currently works for Hewlett-Packard
Company in Fort Collins, Colorado, as a
Systems/Software Engineer working on Linux Quality
Assurance for Integrity Servers. Michael's technical
interests include computer architecture, internet
engineering, and open source software.

Vladimir V. Shestak is pursuing a Ph.D. degree from
the Department of Electrical and Computer Engineering
at Colorado State University, where he has been a
Research Assistant since August 2003. His current
projects include resource management for clusters for
IBM, Boulder. He received his M.S. degree in computer
engineering from New Jersey Institute of Technology in
May 2003. Prior to joining the New Jersey Institute of
Technology he spent three years in industry as a
Network Engineer working for CISCO Business Unit in
Moscow, Russia. He received his BS degree in
electrical engineering from Moscow Engineering
Physics Institute, Moscow, Russia. His research
interests include resource management within
distributed computing systems, algorithm
parallelization, and computer network design and
optimization.

Junxing Zhang is currently pursuing his Ph.D. in the
School of Computing at University of Utah. He
received his M.S. in Computer Science from Colorado
State University and B.E. in Computer Engineering
from Beijing University of Posts and
Telecommunications. His research interests include
distributed and heterogeneous computing, software

configuration management, computer networking, and
data management systems.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

