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ABSTRACT OF DISSERTATION 

SCALABLE AND EFFICIENT TOOLS FOR MULTI-LEVEL TILING 

In the era of many-core systems, application performance will come from parallelism and data 

locality. Effective exploitation of these require explicit (re)structuring of the applications. Multi­

level (or hierarchical) tiling is one such structuring technique used in almost all high-performance 

implementations. Lack of tool support has limited the use of multi-level tiling to program opti­

mization experts. We present solutions to two fundamental problems in multi-level tiling, viz., 

optimal tile size selection and parameterized tiled loop generation. Our solutions provide scalable 

and efficient tools for multi-level tiling. 

Parameterized tiled code refers to tiled loops where the tile sizes are not (fixed) compile-time 

constants but are left as symbolic parameters. It can enable selection and adaptation of tile sizes 

across a spectrum of stages through compilation to run-time. We define a parametric version of 

the loop tiling transformation and present a symbolic extension of the Fourier-Motzkin elimina­

tion technique for generating parameterized tiled code. To overcome the efficiency and scalability 

problems of this technique, we introduce two polyhedral sets, viz., inset and outset, and use them 

to develop a variety of scalable and efficient multi-level tiled loop generation algorithms. The gen­

eration efficiency and code quality are demonstrated on a variety of benchmarks such as stencil 

computations and matrix subroutines from BLAS. Our technique can generate tiled loop nests 

with parameterized, fixed or mixed tile sizes, thereby providing a one-size-fits all solution ideal 

for inclusion in production compilers. 

Optimal tile size selection (TSS) refers to the selection of tile sizes that optimize some cost 

(e.g., execution time) model. We show that these cost models share a fundamental mathematical 

property, viz., positivity, that allows us to reduce optimal TSS to convex optimization problems. 

ni 



Almost all TSS models proposed in the literature for parallelism, caches, and registers, lend them­

selves to this reduction. We present the reduction of five different TSS models proposed in the 

literature by different authors in a variety of tiling contexts. We also present three case studies 

that illustrate the potential of convex optimization based TSS methods in solving a wider class of 

loop optimization problems. Our convex optimization based TSS framework is the first one to 

provide a solution that is both efficient and scalable to multiple levels of tiling. 

Lakshminarayanan Renganarayana 
Computer Science Department 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2008 
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CHAPTER 1 

Introduction 

"[...] a broad range of optimization techniques are, in essence, tiling. We argue that tiling 

should consider storage mapping, scheduling, and communication pipelining decisions; that 

it encompasses inspector/executor methods; that it can facilitate register allocation, storage 

compaction, instruction cache optimization, fault tolerance, and adaptive computing on het­

erogeneous platforms; and so on. " 

—Tiling, the Universal Optimization, Larry Carter [29] 

T ODAY'S general purpose computers have multi-core processors. As the number of cores on 

a chip doubles every year, very soon there will be a few hundred cores—called many cores—on a 

single chip. This trend of many-core general purpose processors has changed the primary mode 

of performance improvement—applications need to be explicitly restructured to exploit parallelism 

and memory hierarchy [120]. Such restructuring could be done automatically (by compilers or 

auto-tuners) or manually (by application/library developers). Program transformation tools that 

1 



CHAPTER 1. INTRODUCTION 2 

can aid in this restructuring play a fundamental enabling role in achieving the performance po­

tential of many-core systems. The lack of such tools is evident from the widening gap between 

peak performance of systems and the attained performance of real applications. 

The compute and data intensive parts of several important applications are loop kernels. 

High-performance implementations of these kernels directly translate to application level high-

performance. One of the important loop transformation used in high-performance implementa­

tions is tiling [62, 117, 78, 136]. Tiling matches program characteristics (locality, parallelism, etc.) 

to those of the execution environment (memory hierarchy, registers, number of processors, etc.). 

Often, multiple levels of tiling are used to account for the hierarchy of resources. Given a loop 

nest, tiling partitions its iterations into groups called tiles. These tiles form the execution units 

with improved performance. The improvement is through parallel execution and/or better data 

locality. 

Parallel systems include an hierarchy of resources: hundreds or thousands of processors, an 

interconnection network, an hierarchy of shared and private memories, tens of floating point 

registers, and pipelined superscalar functional units [30]. Figure 1.1 shows an example parallel 

system with three levels of resources. The bottom level represents the parallelism induced by a set 

of processors connected through an interconnection network. Here communication is expensive. 

Tiling has been used to coarsen the granularity of the computation blocks so that the frequency 

of communication is reduced. The middle level represents an hierarchy of private and shared 

memory (or caches). Tiling has been used in this context to improve data locality. The top level 

consists of registers and pipelined functional units. In this context, register tiling (also known as 

loop unrolling plus scalar replacement) is used to expose instruction level parallelism (ILP) and to 

promote array values to registers. 

High-performance implementations of loop programs typically employ multiple levels of 

tiling [30]. For example, the highly tuned matrix multiplication implementation generated by 

ATLAS or PHiPAC [126, 16] uses two levels of tiling: one for caches and another for registers 

and ILP. Furthermore, with the advent of multi-core processors in general purpose computers, 

an additional level of tiling for parallelism has become necessary. Multi-level tiling has almost be­

come a design pattern for high performance implementations. Whenever a programmer is faced 

with the problem of deriving a high-performance implementation from a sequential specification 
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Registers 
andILP 

Data locality 
(caches] 
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Grained 
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Cache Registers- Functional Units 

Figure 1.1. 
Tiling at various levels of a resource hierarchy. Top layer represents registers and functional units. 
Middle layer represents private or shared memories. The bottom layer represents the network 
that connects multiple processors. 

of an algorithm, multi-level tiling guides the structuring of the implementation. Language level 

abstractions such as hierarchical tiled arrays (HTA) [15] reify tiles as first class objects and directly 

support the use of multi-level tiling as a design pattern. 

To summarize, multi-level tiling is emerging as a standard structuring technique for high-

performance implementations. Effective use of it requires efficient and scalable tools for tiled 

code generation and tile shape/size selection. Tiled code generation involves the generation of the 

transformed or tiled loop nest and the loop body. The shape and size of the tiles are selected such 

that the resulting execution time is minimized. In this thesis, we focus on tile size selection and 

tiled loop generation. 

The rest of the chapter is organized as follows. The next section introduces the tile size selec­

tion problem, describes the limitations of the current approaches and presents an outline of our 

solution. Section 1.2 introduces the problem of tiled loop generation, describes the limitations 

of the current approaches and presents our technique for multi-level tiled loop generation. The 

chapter closes with an overview of the dissertation. 
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l.l\ Tile Size Selection 

Tile size selection has been studied for almost two decades now. As early as 1969, McKel-

lar and Coffman [84] studied how to match the organization of matrices and their opera­

tions to paged memory systems. Early studies of such matching, in the context of program 

transformation, were done by Abu-Sufah et al. [3] and Wolfe [130]. Solutions ranging from 

closed form solutions [4, 20, 26, 56, 91, 98, 12, 10, 134, 137, 138, 117] to heuristic algo­

rithms [78, 60, 33, 36, 99, 48, 115, 63, 77, 116, 85] to exhaustive search [126, 16, 72] have been 

proposed. Cost models that characterize the performance of a tiled loop nest in terms of tile 

sizes are used for selecting the best tile sizes. These cost models are closely tied to the execution 

platform (architecture, communication network, run time libraries, etc.). The two primary lim­

itations of current tile size selection methods are (i) non-extensibility to newer architectures and 

program classes and (ii) non-scalability to multiple levels of tiling. Given the rapidly changing 

landscape of multi-core systems, there will be considerable variation in processor architectures, 

and memory hierarchies will probably be deep and user managed. In such a scenario, effective use 

of tiling requires tile size selection frameworks which (i) allow extensions and adaptations of cost 

models and (ii) scale to multiple levels of tiling. 

1.1.1 Limitations of Current Approaches 

We first describe the design process used by current methods and identify their limitations. Opti­

mal Tile Size Selection (TSS) is the problem of selecting the tile sizes that are optimal with respect 

to a given cost model. For example, in the use of tiling to improve cache locality, consider the 

selection of sizes x and y which form the sides of a 2D tile. A widely used cost function is the 

number of cache misses. This cost function is used, together with the constraint that the data 

accessed by a given tile—tile footprint—fits in the cache. The corresponding optimal TSS problem 

can be stated as follows: 

select x,y which minimize Misses(x,y) (1.1) 

subject to FootPrint{x,y) <CacheCapacity 
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where, Misses(x,y) estimates the number of misses experienced with a tile of size x X y, 

FootPrint(x,y) estimates the number of cache lines touched by a tile of size x X y, and 

CacheCapacity is the capacity of the cache in number of lines. The cost function together 

with the constraint is called the cost model. One can view the optimal TSS problem as a con­

strained optimization problem and in such a view the cost function is also referred to as the 

objective function. 

All TSS solutions proposed currently in the literature follow a design process that can be 

summarized as follows: 

1. Design a cost model. This includes the design of a cost metric (objective function) that esti­

mates a desired quantity as a function of tile sizes and constraints that qualify tile sizes as 

valid or not. The cost models seek to estimate quantities that are related to the execution 

characteristics and hence are inherently strongly tied to the class of programs and architec­

tural features for which they are designed. 

2. Reason about the structure of the cost functions. For example, one can check whether the 

objective function is linear or quadratic in terms of the tile size variables. 

3. Exploit the properties of functions to derive a closed form solution or a heuristic/search algo­

rithm. 

As an illustration, consider the optimal tiling problem proposed by Andonov et al. [11]. They 

study the problem of tiling 2D iteration spaces with uniform dependencies for parallel SPMD 

style execution on distributed memory machines. They come up with a cost model, after a de­

tailed study of the class programs they want to tile, the architectural parameters, and the execution 

characteristics. The objective function T(x,y) estimates the total (parallel) execution time of the 

tile program and the goal is to pick the tile sizes that minimize this metric. The objective function 

and the constraints can be abstractly viewed as 

A D 
min. T(x,y) = \-Bxy + Cx-\ [-E 

xy y 

subject to x,y > 1, x,y 6 Z 

where x,y are the tile size variables and A, B,C,D,E are constants. Then they use the following 
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reasoning to obtain a closed form solution: for xy = K,K EM., the function T(x,y) monoton-

ically decreases with x. As a result, the optimal solution is on certain boundaries of the feasible 

space, and using this information, one of the variables can be eliminated, yielding a closed form 

solution for x and y. 

A subtle but important feature of the above process is the following: the cost model is strongly 

coupled to the program class/architectural features and the solution (method) is derived by ex­

ploiting the properties of the functions used in the cost model. Any extensions of the cost model 

to a different architecture, richer program class, or to multiple levels of tiling, change the structure 

of the functions used in the cost model, and hence leave the solution (method) inapplicable. For 

example, an extension of the Andonov et al.'s model to a richer program class, viz., 3D iteration 

spaces requires the solution of a completely different problem [12], 

All TSS solutions proposed in the literature are cost model specific and do not lend them­

selves to extensions. Any non-trivial extension typically requires an effort equal to or more than 

the earlier one, and are often publishable results (e.g., extension from direct mapped caches to 

set associative caches, from 2D to nD iteration spaces, etc.). Typically, one wants to use a TSS 

solution for a program class or architecture that is slightly different than the one considered by 

the author of the solution. But accounting for the differences lead to changes in the cost model, 

which leaves the solution inapplicable. This is in fact an important reason for the popularity of 

exhaustive search (run the program for different tile sizes and pick the best). 

Given the trend towards multi-core parallel architectures high-performance implementations 

use two to three levels of tiling [31,138,103]. For example, an outer level of tiling for parallelism, 

another level for cache locality, and another for registers and ILP are used. Mitchell et al. [85] 

have shown, in three different architectural scenarios, that the tiling parameters from different 

levels interact with each other and a level-by-level independent selection of the tile sizes will lead 

to sub-optimal performance. However, due to the non-scalability of the current optimal tiling 

solutions, such a level-by-level approach is very common. The scalability limitation of current 

approaches is once again due to their strong dependence on the properties used in the cost model. 

For example, in a 2D one level tiling, the optimal tiling problem has the two tile sizes as variables 

and functions used in the cost models are of degree at most two (linear, quadratic, etc.) and are 

easy to reason about. However, when we move to two levels of tiling there are four variables and 
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functions of four variables with degree up to four are much harder to reason about. 

To summarize, the cost-model specificity of the solution methods lead to their non-

extensibility and non-scalability. O u r framework overcomes these limitations by providing a 

cost-model independent solution method. When using our framework one does not have to per­

form the second and third steps of the traditional optimal TSS design process described above. 

Despite the aforementioned limitations, current methods are very efficient, whenever they 

are applicable. For example, an optimal tiling solution which provides closed form expressions 

for the optimal tile sizes is very efficient to use when compared to our approach which requires 

an optimization solver. Unfortunately, reusing such optimal tiling methods require significant 

extensions and adaptations. 

1.1.2 A Unified Tile Size Selection Framework 

O n a more fundamental note, one might speculate about the existence of a formalism that might 

allow the formulation and solution of tile size selection problems independent of the specific cost 

models used. To better understand this quest, consider the analogy of loop transformations. The 

class of linear transformations serve as foundational formalism for expressing and reasoning about 

a wide variety of loop transformations independent of what they are used for (parallelism, cache 

locality, register locality, etc.). We are asking whether we can find one such formalism for tile size 

selection. 

In this thesis we show that there exists one such formalism and that using it for modeling 

tile size selection leads to extensible models and a scalable solution method. Further, we show 

how the closure properties of the formalism can be exploited to design multi-level optimal tiling 

models from single-level models via composition. Even though this is the first time this formalism 

is proposed as a generic tile size selection method, almost all the optimal tiling models proposed 

in literature can be directly cast in this formalism and solved efficiently. In fact, many of them 

were already expressed in this formalism without knowing about it, and hence did not benefit 

from it earlier. 

We identify a fundamental property, viz., positivity, that is shared by many mathematical 

expression and terms used in a wide variety of optimal tiling models. Based on this positivity 

property, we identify a class of functions called posynomials that can serve as a formalism for spec-
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lfication of optimal tiling problems. By formulating a class of non-linear optimization problems 

using posynomials, we propose an efficient, scalable and cost-model independent framework for 

optimal tile size selection. We show that almost all the tiling models proposed in the literature can 

be cast into our framework. To substantiate this claim, we describe the reduction of five different 

tiling models (from a wide range of tiling contexts) to this framework. We also show how the 

closure properties of posynomials can be exploited to extend single level models and/or compose 

them to form multi-level tiling models. We have implemented a MATLAB based tool for using 

posynomials to model and solve optimal tiling problems. 

To the best of our knowledge this is the first framework that can scale to an arbitrary number 

of levels of tiling and still be efficient and extensible. Further, it is insightful to find that such a 

framework can be derived by exploiting a simple but fundamental property shared by all optimal 

tiling models. Note that the goal of our work is not to prove tiling is useful—several authors have 

shown this. Our goal is to propose a framework that not only unifies the variety of TSS models 

proposed in the literature, but also lays the foundations to build more sophisticated models. 

We got the insight about the positivity property only after developing posynomial based tile 

size selection models in three different contexts, viz., (i) multi-level tiling for parallel execution 

of 3D stencil computations [103]; (ii) tiling for registers and ILP [102]; (iii) multi-level tiling to 

improve data locality of uniform dependence computations [101]. These three solutions are also 

included in this thesis. 

1.2] Parameterized Tiled Loop Generation 

One of the important steps in application of tiling to a loop kernel is the generation of the tiled 

or transformed loop nest. Tiled loop generation refers to the generation of the bounds of the 

tiled loop nest. Parameterized tiled loop generation refers to the generation of tiled loop nests 

in which the tile sizes are not fixed, but left as symbolic parameters, which can be fixed/tuned 

at a later stage. First we motivate the need for parameterized tiled code and then present the 

limitations of current approaches. 

The optimal tile sizes are very sensitive to characteristics of the execution environment such 

as available cache size, processor work load, network latency, etc. Traditionally loop tiling has 
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been viewed as a static, compile time optimization. Compilers use analytical models to select tile 

sizes and generate tiled code with fixed tile sizes. Tile sizes that are selected and fixed at compile 

time can be far from optimal due to changes in execution environments. Such fixed tile size codes 

are rigid and cannot adapt themselves to changes in the execution environment. 

The Self Adapting Numerical Software (SANS) effort [41] is a strong evidence of the need for 

numerical software—primarily loop programs—to be more adaptive. An important parameter 

that is adapted/tuned in SANS is the tile size [39]. Further, tile size is also an important parameter 

tuned by iterative compilers [73] and the so called auto-tuners such as ATLAS [126],OSKI [124], 

and PHiPAC [16]. Run-time tile size adaptation has been shown to improve performance in the 

context of parallelism [83] as well as data locality in shared memory [90]. Another important 

use of tile size adaptation is in the context of utility computing, where programs are expected to 

be mobile—migrate and adapt to a new set of resources [46]. Such adaptations with respect to the 

number of processors and memory characteristics can be directly mapped to tile size adaptations. 

The above discussion shows a spectrum of stages at which tile sizes are tuned/fixed/adapted: 

classic compile-time by compilers; install time by auto-tuners; load-time (beginning of the execu­

tion) in parallel programs to adapt for number of available processors; during run-time for data 

locality in shared memory; and during reconfiguration time in mobile programs for adapting to a 

new set of resources. As discussed in previous sections, often multiple levels of tiling are used. In 

such a scenario, we need to generate a multi-level, parameterized tiled loop nest. 

1.2.1 Limitations of current approaches 

There is an easy solution to the parameterized tiled loop generation problem: simply produce 

a parameterized tiled loop for the bounding box of the iteration space, and introduce guards to 

test whether the point being executed belongs to the original iteration space. When the iteration 

space is itself (hyper) rectangular, as in matrix multiplication, this method is obviously efficient. 

However, many important computations, such as LU decomposition, triangular matrix product, 

symmetric rank updates, do not fall within this category. Moreover, even if the original iteration 

space is (hyper) rectangular, the compiler may choose to perform skewing transformations to 

exploit temporal locality or parallelism (e.g. stencil computations) thus rendering it parallelepiped 

shaped. Parallelepiped-shaped iteration spaces also occur when skewing is performed to make 
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(hyper) rectangular tiling legal. For such programs, the bounding box strategy results in poor code 

quality, because a number of so called "empty tiles" are visited and tested for emptiness. Another 

drawback for the bounding box strategy is that calculating the bounding box of arbitrary iteration 

spaces may be time-consuming. The worst-case time complexity of computing a bounding box is 

exponential [13]. 

The main difficulty with generating parameterized tiled loop code has been the fact that the 

Fourier-Motzkin elimination technique that is used for scanning polyhedra [9] does not naturally 

handle symbolic tile sizes, and leads to a nonlinear formulation. Amarasinghe proposed a sym­

bolic extension of the standard Fourier-Motzkin elimination technique [8, 7] and implemented it 

in the SUIF system [127]. It is well known that Fourier-Motzkin elimination has doubly expo­

nential worst case complexity. The symbolic extension inherits this worst case complexity, adds 

to the number of variables in the problem, and reduces the possibilities for redundancy elimina­

tion. 

Though multi-level tiling is widely used, the multi-level tiled loop generation problem has not 

been widely studied. In fact, we are aware of only one solution that can generate arbitrary levels 

of multi-level tiled code for general polyhedral iteration spaces [65]. Their technique is limited to 

the case when tile sizes are fixed at compile (tiled loop generation) time. 

1.2.2 Parameterized tiled loop generation using Outset 

We present a simple and efficient approach for generating parameterized tiled code that handles 

any polyhedral iteration space and parameterized (hyper) rectangular tilings. We show that the 

problem can be decomposed into two sub problems of generating: (i) loops that iterate over tile 

origins and (ii) loops that iterate over the points within tiles. These sub problems can be for­

mulated as a set of linear constraints where the tile sizes are parameters, similar to problem size 

parameters. This allows us to reuse existing code generators for polyhedra, such as CLooG [14], 

and implement our code generator through simple pre- and post-processing of the CLooG input 

and outputs. The key insight is expressing the bounds for the tile loops as a super set, called outset, 

of the original iteration space and then post processing the generated loops by adding a stride and 

modifying the computation of the lower bounds. 

We present an algorithm that generates tiled loops from any parameterized polyhedral iter-
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ation space, while keeping the tile sizes symbolic variables. The fact that our algorithm can be 

directly applied to the case when the tile sizes are fixed, makes our method a one-size-fits-all solu­

tion, ideal for inclusion in production compilers. We present an empirical evaluation on bench­

marks such as LUD and triangular matrix product show that our algorithm is both efficient and 

delivers good code quality. Our experiments present the first quantitative analysis of the cost of 

parametrization in tiled loops generation. We also present an algorithm that separates the loops 

into those that iterate over partial tiles and those that iterate over full tiles. Such a separation 

has the added benefit that it enables transformations like loop unrolling or software pipelining, 

(which are often applied only to rectangular loops) to be applied to the (rectangular) loops that 

iterate over the full tiles. Our implementation is available as open source software [55]. 

The concept of outset can also be used for generating multi-level tiled loops. We propose a 

technique for generating multi-level tiled loops where the tile sizes can be fixed (constants) or 

symbolic parameters or mixed. Our technique provides multiple-levels of tiling at the same cost 

of generating tiled loops for a single level of tiling. We propose a novel formalization of the classic 

tiling transformation [62,136] to multiple levels. We propose a method for separating partial and 

full tiles at any arbitrary level, without fixing the tile sizes. We have implemented all the proposed 

code generation techniques and the tool is available open source [55]. We present extensive evalu­

ation of both the generation efficiency and quality of the generated code on benchmark routines 

form BLAS, LUD, and stencil computations. 

1.3 Overview of the dissertation 

The dissertation is broadly separated into two independent parts: (i) tiled loop generation and (ii) 

optimal tile size selection. In the first part on tiled loop generation, we first introduce the basic 

concepts of inset and outset. We then present the tiled loop generation algorithms for single-level 

followed by its extension to multiple-levels. Then, we present the techniques used for separating 

full/partial tiles. 

In the second part on optimal tile size selection, we first present a survey of the current ap­

proaches. After introducing the background on posynomials, geometric programs and convex 

optimization, we present the optimal tile size selection framework. To show that appropriateness 
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of the framework for modeling a wide variety of TSS problems, we present the reduction of five 

different TSS models proposed by a different authors in the contexts of TSS for parallelism, data 

locality, and register locality and ILP. Then we present the three models: (i) multi-level tiling for 

parallel execution of 3D stencil computations [103]; (ii) tiling for registers and ILP [102]; and (iii) 

multi-level tiling to improve data locality of uniform dependence computations [101]. 
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CHAPTER 2 

Parameterized Tiling and Symbolic Fourier-Motzkin 

Elimination 

The formulation of a problem is often more essential than its solution, which may be 

merely a matter of mathematical or experimental skill. 

- Albert Einstein 

J L N this chapter we present an extension of the classic tiling transformation formulation [62, 

135] to the case where the tile sizes are not fixed but left as parameters. We present this for­

mulation and a Symbolic Fourier-Motzkin Elimination (SFME) algorithm for generating param­

eterized tiled code. We also present proofs of the correctness of the SFME algorithm and its 

applicability to the system of constraints resulting from the parameterized tiling transformation. 

This extension of tiling formulation to the parametric case has theoretical significance. However, 

for efficient practical code generation one should prefer the outset based methods presented in the 

subsequent chapters. 

The work presented in the chapter was done in collaboration with Michelle Mills Strout. 
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2.1 Background, program and tiling model 

The notat ion x indicates that x is a vector. 0 and 1 represent all-zero and all-one vectors, respec­

tively. The relational operators, < , = , > , < , and > , between two vectors are component-wise. For 

a EM. we write [a\ to denote its floor and \a] its ceiling, which respectively are, the largest integer 

not greater than a, and the smallest integer not smaller than a. When used in the context of vec­

tors, floor and ceiling functions are applied component-wise, for example: [x] = ( [ x j ] , . . . , [x n ] ) . 

We denote component-wise multiplication of two vectors x = (xl,...,xn) and y = (y\,---,yn) 

whhxoy=(x1y1,...,xnyn). 

The symbolic Fourier-Motzkin elimination algorithm takes advantage of the fact that the 

bounds for the tiled loop are bilinear with respect to the parameterized tile sizes. If V is a vector 

space over a ground fields (i.e., for this chapter the field is the set of real numbers), then a function 

/ : V —» K is called a linear function if for any two vectors x and y in V and a scalar a in K the 

following two properties f(x+y) = / ( x ) +f(y) and f(ax) = af(x) are satisfied. A function g is 

called affine if it can be written of the form g(x) = f{x) + c, for some linear function / and some 

constant c GK. For example, / ( x 1 ; x 2 ) = 3xj + 4x2 + 3 is an affine function. 

If Vx and V are two vector spaces over some ground field K, a function b : Vx x V —>• K 

is called bilinear if for a fixed v G Vx, h{v,y) is linear for all y € V and for a fixed it 6 V , 

h(x, u) is linear for all x £ Vx. Informally, for a fixed value of x, h() is linear in y, and vice-versa. 

For example, h(x1,x2,y],y2) = 2x j j j — 3 x 2 j 2
 1S a bilinear function, whereas ^ ' ( ^ i . ^ ' J i ' ^ ) = 

2Xjjj — ix2y2 is not. One can also define bi-affine functions in a fashion similar to that of affine 

functions. 

An inequality of the form f(x) < 0, for any affine function f{x) will be loosely called as 

a linear inequality, though strictly it should be called an affine inequality. In a similar vein, an 

inequality of the form h{x,y) < 0, where h{x,y) is a bilinear (or biaffine) function is called a 

bilinear inequality. 

O u r notat ion here closely follows that of Xue's [136]. A rectangular tiling is fully charac­

terized by the tile size vector ?, where s ; is the tile size for the zth dimension of the iteration 

space. 
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Figure 2.1. 
A 2D loop nest with triangular iteration space. 

Given an iteration space 

P = {i\Qi<q+Bp], 

a rectangular tiling r maps iterations of the n-dimensional iteration space P into a 2ra-dimensional 

iteration space. In general, T is defined as follows: 

(0 = 
[A (U\\ 

\e J V i J 

where t • identifies the index of the tile that contains the point i. 

The tiled iteration space, denoted by T, is the image of P by the tiling transformation T, and 

can be characterized by 

T = { {t,i) | Qi < q+Bp,?o t< i < To t + s- 1}, (2.1) 

where the bounds represented by Qi < q+Bp make sure that all i belong to the original iteration 

space P, and To t < i < To t + T — 1 defines the iterations that are contained in the tile t. In 

addition to the above constraints, the program parameters p and tile size parameters T will also 

have some linear constraints. For example, they must all be greater than 1. We gather all these 

linear constraints into a set C. When the tile sizes are fixed, i.e., ?is a vector of given constants, 

then T defines a convex polytope. 

The tiled iteration space of the triangular loop nest given in Figure 2.1, for fixed tile sizes 

Sj = 2 and s2 = 3, is given by 
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2tx < z'j - 1 < 2tj + 2 - l,3r2 < i2 - 1 < 3t2 + 3 - lj 

It is easy to note that this is a convex polyhedron of four dimensions. In addition to the above 

constraints we also have the following constraints on the program parameter Nt and the tile size 

parameters si and s2. 

Ctri = {Nvsvs2\Nx > 1,1 <s 1 > S 2<Ar,} . (2.2) 

The constraints Ctri can be viewed as the context in which the tiled iteration space Tf ri is defined. 

2.2 \ Parameterized Tiled Iteration Space 

When the tile sizes are not fixed, but used as symbolic parameters, the constraints that define T 

in Equation (2.1) are no longer affine, but bilinear. The inequalities that define the constraints 

are formed with functions that are bilinear over the index space spanned by (t,i) and the pa­

rameter space spanned by (p,s)- We will work with this parameterized tiled iteration space (PTIS), 

T(t, i,s,p), in which the tile sizes are symbolic parameters (not fixed constants). 

We can represent the set of bilinear inequalities that define the PTIS, T(t,i ,T,p) (c.f. Equa­

tion 2.1) in a matrix form as follows: 

(2.3) 

where S = diag(F) is a diagonal matrix with the tile sizes from T as its entries, and / is an identity 

matrix of appropriate size. For notational convenience we denote the matrix form in Equation 2.3 

by the following simpler form 

Tz<y, (2.4) 

where T is the matrix on the left hand side of Equation 2.3, z = (t i) , and y is the matrix 

0 
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expression on the right hand side of Equation 2.3. Hence a PTIS is completely characterized by 

Tz <y and the set of linear constraints on the program and tile size parameters C. 

2.2.1 Properties of a PTIS 

Let us consider a PTIS defined by Tz < y. A closer look at the definition of PTIS in Equation 2.1, 

and the expanded matrix form in Equation 2.3, reveals that the program size parameters p will 

always only appear as an additive part in y, and not in the bilinear part in T. The entries of T 

are either rational numbers (coming from the linear inequalities of the original iteration space, 

i.e., form Q) or linear functions of tile size variables ? (coming from the last two block rows of 

Equation 2.3). In fact, there is even more structure to T, which is stated in the following bilinear 

set property. 

Definition 2.2.1 (BLIS-PROPERTY). Let I be any column ofT. All the components of I are either 

exclusively rational numbers or exclusively zeros and linear functions of a single tile size variable, s^ 

for some k = 1 ...n. 

Note that PTIS (c.f. Equations. 2.1 and 2.3) satisfies BLIS-PROPERTY. The BLIS-PROPERTY is 

a fundamental property which is also preserved after every step of the symbolic Fourier-Motzkin 

elimination algorithm we propose. In a geometric sense, similar to the projections of polyhedra 

onto lower dimensions, one can view PTIS as a set, and observe that the operation projection onto 

lower dimensions preserves the BLIS-PROPERTY. 

2.2.2 PTIS of the Example 

Let us now look at the constraints that define the parameterized tiled space of the triangular loop 

nest given in Figure 2.1. We have 

1< j , <NV 1 <i2<h, 

s\h < h — 1 < V i +*i — 1. 

s2t2 < z2 — 1 — s2h + s2 ~ 1} 

Ttri(t,i,s",p) 
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where (t,i) — (t1,t2,ii,i2) and 7= (s^,s2), p — (N{). The constraints C on the program and 

tile size parameters are given by Equation (2.2). T[ri can be represented in matrix form of Equa­

tion (2.4) as follows: 
0 0 - 1 0 

0 0 1 0 

0 0 0 - 1 

0 0 - 1 1 

s, 0 - 1 0 

— 5, 0 1 0 

0 s2 0 - 1 

0 -s2 0 1 

One can observe that the bilinear set property BLIS-PROPERTY is satisfied in Ttri. 

Two properties of FME that have been very useful in the context of code generation are: 

Definition 2.2.2 (FME-PROPERTY 1). Given a system 5" = {z \ Tz < f } , let &" be the set of 

constraints after elimination of a variable z^. For every valid value of z of zt there exists a z' £ Sf' 

such that we can extend z' with z. to get a solution to the original system of constraints 5f. 

Definition 2.2.3 (FME-PROPERTY 2). The FME algorithm terminates with an inconsistent set of 

constraints if and only if the original set of constraints is inconsistent. 

In the next section we show how an extension of this classic method can be used to generate 

tiled loops with variable tile sizes. 

It is well known that FME is in spirit an elimination algorithm, whose principles are applicable 

to a broader class of quantifier elimination problems. Eaves and Rothblum [43, 44] studied the 

transfer of the elimination principles to other problems, such as elimination of variables in a 

system of linear constraints, where the coefficients of the linear constraints are not constants 

but parameters. Weispfenning [125] has proposed an efficient variant of FME which can also 

eliminate variables in a system of linear constraints where the coefficients in a linear constraint 

are polynomials of parameters. 

Such extensions of FME to parametric problems do not come for free! An important step in 

the FME algorithm is distinguishing the sign of the coefficient of a variable. When the coefficients 

are constants, as in the case of linear constraints, this is straight forward. However, when the co­

efficients are parameters, or polynomials of parameters, whose result could be of either sign, both 

the positive and negative cases need to be considered and this results in an exponential sized tree of 

( u \ 

\ h ) 

- 1 

0 

- 1 

s i 

- 1 
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cases which distinguish the sign of the coefficients. This explosion of cases makes it impossible to 

apply FME to any reasonable sized problem, when the sign of the coefficients are indeterminable. 

A key insight that makes such parametric FME work for our problem, at no additional com­

plexity than FME for simple linear constraints, is the following. The sign of coefficients in the 

bilinear constraints that define a PTIS (c.f Eq. 2.4) can always be determined. Further, this property is 

preserved across elimination of variables. This is formally stated and proved in Section 2.5. 

The general FME style elimination algorithms considered by Weispfenning [125] and Eaves 

and Rothblum [43, 44] also enjoy the two important properties, namely FME-PROPERTY 1 and 

FME-PROPERTY 2. This allows us to use the SFME algorithm to check whether the given input 

set of constraints is feasible or not, and also for removing redundant constraints, as shown in 

Section 2.7. 

2.2.3 The SFME Algorithm 

The Symbolic Fourier Motzkin Elimination (SFME) algorithm is given in Algorithm 1. It takes 

two inputs: (i) an m x (n + 1) column augmented matrix T constructed from T and y related by 

a system Tz < y and (z i) a set of linear constraints C on the program and tile size parameters. It 

eliminates zn from the system T. It returns Ln, Un and Y' as results, which respectively are, the 

lower bounds on zn, upper bounds on zn, and the set of constraints on the remaining {zx,..., zn _ j) 

variables. Note that these are also in column augmented form. 

2.3 [ Symbolic FME Algorithm 

We successively call the SFME until all variables are eliminated. Let <% be the list that collects 

all the lower and upper bounds of all the eliminated variables. After the last variable, i.e., z, is 

eliminated, the resulting set of constraints in r ' (returned by the last call to SFME) are constraints 

involving the program and tile size parameters, i.e., p and ?. If these constraints are inconsistent, 

then the original system of constraints given to SFME is inconsistent. After all the variables are 

eliminated, we have their bounds in £$. We perform a global redundancy check among the bounds 

in £$ as discussed in 2.7. After performing this check, we generate loops for each variable using 

bounds in £$, as discussed in 2.6. A detailed description of the steps in the SFME algorithm 
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Algorithm 1 Symbolic Fourier Motzkin Elimination (SFME) algorithm. Eliminates one variable 
from a given system of constraints. 

Input: A m x (n + 1) column augmented matrix T, related to a system Tz < y. T is the matrix Y 
augmented with the column y. A set of linear constraints C on the program and size parameters. 
Output: Ln,Un, and r ' . Ln and Un are matrices with the lower and upper bound rows of zn, the 
eliminated variable, respectively. The new set of rows that constitute the bounds of the remaining 
variables (Zj, . . . , zn _ 1) is returned in (the column augmented matrix) T'. 

1. Compute lower and upper bound matrices. 
Ln <— {r+ n\Yl n < 0}. (lower bound rows) 
Un <— {F^ n |r(- n > 0}. (upper bound rows) 
Rn *~ {Ti,n\Ti,n = °} ' (reSt °fthe r0WSJ 

2. E l i m i n a t e R e d u n d a n t s ( L n , C ) 
(eliminate redundant lower bounds ofzn) 
E l i m i n a t e R e d u n d a n t s ( [ / K , C ) 
(eliminate redundant upper bounds of zn ) 

3. For each pair of rows {la,uy) :laELn and Uy 6 Un do 
(to compare la and Uy, scale them first and then add them) 

[\K,n\ 'lila,r> is rational 

(a) Pl+~\ k , „ | \Ua<n=aajlxsk, 

\ for some s^. 

(extract abs. value of coefficient ofla J 

( \Hb,n\ if Hb,n
 lsrational 

\ab,»\ 'liub,n=:ab,nXSk> 

for some 5^. 

(extract abs. value of coefficient of Uy J 

(c) g ^ g c d ^ , / ? , ) 

(scale the pair of rows and add them to get the new row in which the coefficients ofzn is 
canceled out) 

(e) if (no tRedundant (x ,C)) 
Add the new row x to T'. 

(ignore x if it is a bound implied by the constraints on the parameters C) 

4. Add rows R„ to V. 
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follows. 

In step (1), the rows from T that correspond to the lower and upper bounds of zn are calculated 

and stored respectively in Ln and U„. The rows that do not contribute towards any bound for zn 

are stored in Rn. Notice that in this step we should be able to determine the sign oiTl n, for all 

i = 1.. . m, so that we can categorize it as a lower or upper bound. We will always be able to do 

this as discussed and proved in Section 2.5. 

In step (2), the redundant lower bounds are eliminated. Intuitively, if a lower bound x is 

always greater than another lower bound y, for all values of z, and the parameters p and 7, then we 

can eliminate x, since it will never be the binding one. Note that we are only doing a local check 

for redundancy, i.e., within the lower bounds in Ln. In a similar fashion, the redundant upper 

bounds in Un are also eliminated. Redundancy elimination is further discussed in Section 2.7. 

In step (3), pairs of rows, {la,tty) such that la 6 Ln and uh 6 Un are considered. The first 

goal is to eliminate the zn components from la and Uy. To achieve this, we seek to scale la n and 

Uy n appropriately by some factor, so that when the two rows are later added the n-th component 

will cancel out. Since, the coefficient of la n and uy n could be either a rational number or a 

linear function, computing the appropriate scaling factor is little involved, and steps are outlined 

below. However, note that there always exists a scaling factor that can be used to cancel out the 

zn components in I and uy . 

If zn is an index from i (an element loop index) then la n and uy n are just rational numbers, 

but if zn is an index from t (an tile loop index) then I = aa x sk and uy = ay x sk are linear 

functions of some tile size variable 5^. To compute the scale factors we extract the coefficients of 

lan and Hyn and assign them to Pi and / ? a , respectively. /?/ is equal to \la^\ if /„ „ is a rational 

number, otherwise, it is equal of \aa \, the coefficient of the linear function la n. The actual scale 

factor for la and uy are respectively, — and —, where g = gcd(/3;,/3a). Steps (3.a — 3.c) compute 

these scale factors. In step (3.d), the rows la and Uy are scaled and added together to obtain a new 

row x, in which the zn component is guaranteed to be 0. 

In step (3.e), the new row x checked for redundancy. Here we check whether the row x 

corresponds to a constraint on the parameters, for example, 5, > 1. The motivation behind this 

check is that often comparisons of lower and upper bounds (la and Uy) result in cancellation of all 

the components leading to a a constraint on the parameters. This type of redundancy elimination 
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is further discussed in Section 2.7. 

In step (4), the rows, Rn, that did not contribute towards a lower or upper bound of zn, are 

added to T'. 

2.4\ Complexity of the SFME Algorithm 

Since we can determine the signs of the coefficients (step (1)) we do not have to maintain a tree of 

sign distinguishing cases. Hence, the worst case time complexity of SFME is the same as the stan­

dard FME algorithm for linear constraints, viz., doubly exponential on the number of constraints. 

However, for the kind of problems encountered in loop transformations, FME has been used very 

successfully by many research and production compilers. With regards to the space complex­

ity, the standard FME for linear constraints uses matrices with rational elements, but ours uses 

matrices with symbolic elements. Hence, SFME would require more space. 

We check for redundant constraints at every step of elimination and eliminate as many as 

possible. We have observed that this interlacing of redundancy check with every elimination 

step substantially improves both the running time and memory space, since less the number of 

constraints, lesser the time and space required. 

2.51 Sign determination always possible 

Determination of the signs of the coefficients (entries of T) is required (in step (1) of SFME) to 

categorize the constraints into lower and upper bounds of a given variable. We now show that we 

can always determine the sign of the coefficients and hence categorize the constraints. Observe 

that whenever BLIS-PROPERTY is satisfied, we can always determine the sign of the coefficients, 

i.e., entries of F. In fact, we will show that BLIS-PROPERTY is an invariant that is maintained by 

the SFME algorithm, whenever its input system T satisfies the property. Let us formally state and 

prove the invariant. 

Theorem 2.5.1. If the input matrix T has the BLIS-PROPERTY, i.e., every column of it either exclu­

sively contains rational numbers or linear functions of a single tile variable, then the output matrix 

T' returned by SFME will also satisfy the same property. 
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Proof. We prove by showing that the new rows (constraints) created by SFME posses the BLIS-

PROPERTY. Now, consider a row x, created by SFME on step (3.d) with 

x< xla + —xuh. 
g g 

The operations used are multiplication by a constant — (or —) and component-wise addition of 

the rows la and Uy. Both the operations will preserve the type of the components of the rows, since 

both rational numbers and linear functions are closed under scalar multiplication and addition. 

We also need to show that if the z-th component of la and uy were functions of a tile variable s , 

then we the z'-th component of x is also a function of the same tile variable s . This is indeed the 

case, since addition of two linear functions of a single variable w, produces another expression 

linear in the same variable, w. • 

The first call to SFME is with the constraints that define the PTIS (ci. Eqns. 2.1, 2.3). BLIS-

PROPERTY shows that PTIS satisfies the invariant mentioned above. Successive calls to SFME are 

with the outputs of previous calls to itself, which are guaranteed to have the property. 

2.61 Loop generation from computed bounds 

For every variable z^, V& = 1.. . 2ra, we have lower and upper bounds, L^ and Uk, computed with 

the SFME algorithm. We generate loop lower bounds of a index variable zk by taking the maxima 

of all its lower bounds, i.e., 

LBk=mzx(l:,l2,...,llLkl) 

where/x € Lk, Vx = 1. . . \Lk \ and \Lk \ denotes the total number of lower bounds of zk. In a similar 

fashion, we generate the upper bounds of an index variable zk by taking the minima of all its upper 

bounds, i.e., 

UBk =min(«1 ,K2 , . . .«|j / t | ) 

where«x 6 U^, Vx = 1. . . | Uk \ and | U^ \ denotes the total number of upper bounds of zk. Some of 

the upper (lower) bounds might contain divisions by tile sizes, for such upper (lower) bounds we 

use the floor (ceiling) functions to round them to integers. 
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2.7 Redundancy elimination 

The criteria for redundancy is simple: A constraint X is redundant in a system of constraints K if X 

is implied by A — {X}. The computationally expensive but sure way of performing this check is to 

use the criteria: X is redundant in A if and only if the conjunction of the negation of X with A — {X} 

is infeasible. Such a feasibility test can be done by using SFME itself - recall the FME-PROPERTY 2 

from Section 2.3. 

A naive way would be to first apply SFME to compute the lower and upper bounds of all the 

variables, and then check for redundancy of the constraints in this set. In such a method, we carry 

the redundant constraints produced in every step all the way till the end. Due to the nature of FME 

method, the redundant constraints at any step gets compared with other constraints, resulting in a 

larger and larger set of redundant constraints. Though this method would detect all the redundant 

constraints, due to the huge number of constraints, it is very expensive both in terms of time and 

memory requirements. 

In SFME, to avoid this explosion of constraints, we interleave the elimination steps with local 

redundancy checks (c.f. steps (2,3.e)). These local redundancy checks act as filters and do not nec­

essarily detect all redundant constraints. However, we found them to very effective in removing 

almost 80% of the redundant constraints. The redundancy check performed in step (2), consid­

ers the given set of lower bounds, Ln, in the context of the constraints on program and tile size 

parameters, C, to see whether some bounds are redundant. The criteria used here is: if a lower 

bound x is smaller than another lower bound y,for all values of the index variables, and parameters 

from C, then x is redundant, since it will never be the binding constraint. A similar criteria is used 

to check redundancy of upper bounds in Un. 

For example, during the elimination of i2 from the PTIS of Ttri, we get two lower bounds 

for i2 : {1, s2 x t2 + 1}. By applying the criteria described above, with the knowledge that t2 > 0, 

and s2 > 1 from C, we can conclude that s2 x t2 + 1 > 1, for all values of s2 and t2. Hence, we 

can eliminate 1 form the lower bounds. For a more involved example, consider the following two 
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upper bounds (encountered during the bounds computation of the 3D stencil example): 

«, = 2s, xtl+2sl+N)+Nl-3 

«2 = 2N; + 2s • + 2s; f; + 5y - 5 

We want the smaller upper bound, and hence would like to check whether »j < 2̂> f° r a u values 

of S;,s,,N:,N;, and £,-. Observe that «, < «7 <=> 0 < N: + s- — 2, but from the constraints of 

parameters A/- and s. (given in C) we know that N:,S: > 1. With this knowledge we can easily 

infer that 0 < N.•+ 5 • — 2, and hence prove that Kj < u2 for all the values of 5,, s •, A/ , A/,-, and tt. An 

important feature of this kind of redundancy elimination is that the question whether an upper 

bound «2 is redundant with respect to another upper bound ux is reduced to a question on the 

constraints on the parameters, i.e., Â  and s here. Since, the constraints on the parameters are 

just linear, we can check these constraints very efficiently. 

The redundancy check performed at step (3.e), considers the situation in which a new con­

straint obtained by comparing a lower and a upper bound, is redundant with respect to the con­

straints on the parameters, C. In practice, we have found this check to be very effective. For 

example, consider the following pair of lower and upper bounds (encountered during the bounds 

computation of the 3D stencil example discussed in): 

/ = SjXtj+4-Nj-ik 

u = s} x tj+Sj+2-ik. 

When we compare / < u, we get 2 < N• + s.-. We first note that the constraints do not involve 

any index variable and are on the parameters, A/ and s ;, only. Hence, we do not add it to the 

result r ' in SFME (step (3.e)). Further, this constraint is implied by the constraints N;-,s- > 1 

in C. Hence, we can throw away this constraint. Again, checking whether such a constraint on 

the parameters is implied by the constraints in C can be done very efficiently since these are just 

linear constraints. 

We use the aforementioned local redundancy checks as filters during every elimination step. 

We use the global redundancy check (discussed above - negate a constraint and check for the 
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feasibility of it with the rest of the constraints) on the final set of constraints we obtain with 

lower and upper bounds of all the variables. 

2.8 Related Work 

There has been relatively little work for the case where tile sizes are symbolic parameters, except 

for the very simple case of orthogonal tiling: either rectangular loops tiled with rectangular tiles, 

or loops that can be easily transformed to this. For the more general case, the standard solution, 

as described in Xue's text [136] has been to simply extend the iteration space to a rectangular one 

(i.e., to consider its bounding box), apply the orthogonal technique with appropriate guards to 

avoid computations outside the original iteration space. 

Amarasinghe and Lam [7, 8] implemented, in the SUIF tool set, a version of FME that can 

deal with a limited class of symbolic coefficients (parameters and/or block sizes), but the full 

details have not been made available. 

GroElinger et al. [53] proposed an extension to the polyhedral model, in which they allow 

arbitrary rational polynomials as coefficients in the linear constraints that define the iteration 

space. Their genericity comes at the price of requiring computationally expensive machinery 

like quantifier elimination in polynomials over the real algebra, to simplify constraints that arise 

during loop generations. Due to this their method does not scale with the number of dimensions 

and the number of non-linear parameters. 

2.9 Discussion 

The concepts presented in this chapter form the mathematical foundation for parameterized 

tiling. The definition of parameterized tiling as a transformation, its bilinear property, and the 

SFME algorithm, together provide a foundation for the extension of the loop transformations to 

the case where the tile sizes are not fixed. For example, what is the result of applying a linear trans­

formation such as skewing to the PTIS? Does the resulting PTIS still have the bilinear property 

which would allow the use of SFME? We conjecture that PTIS is closed under linear transforma­

tions, i.e., the result of a linear transformation of the PTIS with BLIS property is another PTIS 

which also has the BLIS property. 
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The SFME algorithm inherits the super-exponential complexity of the FME.. Further, it also 

requires symbolic arithmetic during its elimination steps. Due to this, we believe that the outset 

based methods (presented in the next two chapters) for parameterized tiled loop generation are 

more efficient than SFME. 



CHAPTER 3 

Parameterized Tiled Loop Generation 

"By no longer requiring the effect of an optimization to persist indefinitely, we can 

allow executables adapt to changes in their usage and environment. [...] this view 

helps us to regain the original promise of software—that it is flexible and easy to 

change. " 

—Overcoming the challenges to feedback-directed optimization, Michael Smith [118] 

T 
_1_ ILED loop generation involves the generation of the tiled loop bounds. In this chapter we 

describe a technique for generating tiled loops which can be used for when the tile sizes are fixed, 

compile time constants or not fixed but left as symbolic parameters. We first discuss the structure 

of tiled loops and then present our method for tiled loop generation. The efficiency of our tech­

nique is demonstrated via experimental evaluation on kernels from linear algebra computations 

from BLAS3 and stencil computations. Our technique provides parameterized tiled loops for free 

in the sense that it takes a comparable amount of time to generate the loops and the quality of 

the generated code is comparable, if not better. We then discuss a technique for separating par­

tial (boundary) tiles from full (interior) tiles—an enabling step for optimizations such as register 

tiling. Finally, we discuss related work. 

The work presented in this chapter was done in collaboration with DaeGon Kim and Michelle 

29 
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f o r (k = 1; k <= Nk;k++) 
f o r ( i = k + 1; i <= k+iV,; i + + ) 

S I ( k , i ) ; 

Figure 3.1. 
2D iteration space found commonly in stencil computations. The body of the loop is represented 
with the macro SI for brevity. 

Mills Strout. It was presented in [104]. 

3.11 Anatomy of Tiled Loop Nests 

Tiling is an iteration reordering transformation that transforms a d-depth loop nest into one of 

depth up to 2d. In this section we study the structure of tiled loops and develop an intuition for 

the concepts involved in generating them. In later sections, these concepts are formalized and used 

in deriving a simple and efficient algorithm for the generation of tiled loops. 

Consider the iteration space of a 2D parallelogram such as the one shown in Figure 3.1, which 

is commonly found in stencil computations [78]. Figure 3.2 shows a geometric view of the iter­

ation space superimposed with a 2 x 2 rectangular tiling. Observe that there are three types of 

tiles: full—which are completely contained in the iteration space, partial—which have a partial, 

non-empty intersection with the iteration space, and empty—which do not intersect the iteration 

space. The lexicographically earliest point in a tile is called its origin. The goal is to generate a set 

of loops that scans (i.e., visits) each integer point in the original iteration space, based on the tiling 

transformation, where the tiles are visited lexicographically, and then the points within each tile 

are themselves visited lexicographically. We can view the four loops that scan the tiled iteration 

space as two sets of loops each, where the first set of two loops enumerates the tile origins and 

the next set of two loops visits every point within a tile. We call the loops that enumerate the tile 

origins the tile-loops and those that enumerate the points within a tile the point-loops. 

3.1.1 Bounding Box Method 

One solution for generating the tile-loops is to have them enumerate every tile origin in the 

bounding box of the iteration space and push the responsibility of checking whether a tile con-
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Figure 3.2. 
A 2 x 2 rectangular tiling of the 2D stencil iteration space with Nt = A^ = 6 is shown. The 
bounding box of the iteration space together with full, partial, and empty tiles and their origins 
are also shown. 
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f o r (kT = 1; kT <= Nk; kT += Sk) 
f o r ( iT = 2 ; iT <= Ni+Kk; iT += S i ) 

f o r (k= max(kT , 1) ; k<=min ( k T + S k - 1 , Nk) ;k++) 
f o r ( i = m a x ( i T , k + 1) , - i<-min ( iT + S i - 1 , k+Ni) ; i + + ) 

SI < k , i ) ; 

Figure 3.3. 
Tiled loops generated using the bounding box scheme. 

tains any valid iteration to the point-loops. The tiled loop nest generated with this bounding box 

scheme is shown in Figure 3.3. The first two loops (kT and iT) enumerate all the tile origins in 

a bounding box of size N^ X (Ni + N^) and the two inner loops (k and i ) scan the points within 

a tile. A closer look at the point-loop bounds reveals its simple structure. One set of bounds are 

from what we refer to as the tile box bounds, which restrict the loop variable to points within a 

tile. The other set of bounds restricts the loop variable to points within the iteration space. Com­

bining these two sets of bounds we get the point loops that scan points within the iteration space 

and tiles. Geometrically, the point loop bounds correspond to the intersection of the tile box (or 

rectangle) and the iteration space, here the parallelogram in Figure 3.2. 

The bounding box scheme provides a couple of important insights into the tiled loop genera­

tion problem. First, the problem can be decomposed into two independent problems: generation 

of tile-loops and the generation of point-loops. Such a decomposition leads to efficient loop gen­

eration, since the time and space complexity of loop generation techniques is doubly exponential 

in the number of bounds. The second insight is the scheme of combining the tile box bounds 

and iteration space bounds to generate point-loops. Another important feature of the bounding 

box scheme is that tile sizes need not be fixed at loop generation time, but can be left as symbolic 

parameters. This feature enables generation of parameterized tiled loops, which has many applica­

tions as discussed in Chapter 1. However, the bounding box scheme can suffer from inefficiency 

in the generated loops in that the tile-loops can enumerate many empty tiles. 

3.1.2 When Tile Sizes Are Fixed 

When the tile sizes can be fixed at the loop generation time an exact tiled-loop nest can be gener­

ated. Tile-loops that only enumerate origins of tiles that have a non-empty rational intersection 

with the iteration space are exact. Ancourt and Irigoin [9] proposed the first and now classic 
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fo r (kT=C 
f o r ( i T = 

f o r ( k = 
f o r ( i 

;kT< = [ (Nk /2 ) j ; k T + + ) 
m a x ( l , kT) 
max (max (1 
= m a x ( 2 * i T 

S I ( k , i ) 

iT< = 
2*kT) 
k + 1) ; 

m i n ([ (2*kT+Ni + 
, 2 * i T - N i ) , 

i< = =min (2 * 
k<= 

iT+] 

D / 2 J , [_Nk+Ni/2j) 
min (min (2*kT + l , 
, k+Ni ; i + +) 

; iT++) 
2 * i T ) , Nk) • k + + ) 

Figure 3.4. 
Tiled loops generated for fixed tile sizes using the classic scheme. 

solution for generating the exact tiled loops when the tile sizes are fixed. In this case the tiled 

iteration space can be described as a set of linear constraints and the loops that scan this set can be 

generated using Fourier-Motzkin elimination [9,136]. The exact tiled loop nest for the 2D stencil 

example is shown in Figure 3.4. Note that the efficiency due to the exactness of the tile-loops has 

come at the cost of fixing the tile sizes at generation time. Such loops are called fixed tiled loops. 

The classic scheme, in addition to requiring fixed tile sizes, also suffers from loop generation 

inefficiency. It takes as input all the constraints that describe the bounds of the 2d loops of the 

tiled iteration space, where d is the depth of the original loop nest. Since the method is doubly 

exponential on the number of constraints, this increased number of constraints might lead to 

situations where the loop generation time may become prohibitively expensive [51]. 

Goumas et al. [51] improve on the classic scheme by dividing the loop generation problem 

into two subproblems, similar to the approach taken with bounding box, but their generated code 

visits fewer empty tiles than bounding box. However, their solution is still only applicable to fixed 

tile sizes. 

3.1.3 Best Of Both 

We propose a tiled code generation method that achieves the best of both worlds: the simple 

decomposed loop structure used by the bounding box method and the Goumas et al. technique, 

the code quality provided by the fixed tile size methods, and the benefits of parameterized tile 

sizes provided by the bounding box method. We develop the necessary theory and use it to derive 

a method which provides efficient generation of efficient parameterized tiled loops. 

The key insight is the construction of a set called the outset, which contains all possible tile 

origins for non-empty tiles. The outset is similar to the Tile Origin Space (TOS) constructed 

by Goumas et al. [51], but there are two important differences. First, the outset we construct 
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A 2 x 2 rectangular tiling of the 2D stencil iteration space with A/,- = A/ = 6. The outset and 
bounding box are also shown. Compare the number of empty tile origins contained in each of 
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kTLB = -
f o r ( k T = 

iTLB = 
f o r ( i T 

f o r (k= 

-Sk+2; kTLB = 
= kTLB; 
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Figure 3.6. 
Parameterized tiled loops generated using outset. The variables kTLB and iTLB are used to shift 
the first iteration of the loop so that it is a tile origin, and explained later (Section 3.2.2.2). 

includes the tiles sizes as parameters. Second, we feed the outset to any code generator capable of 

scanning polyhedra, and then simply post-process the resulting code to add a step size and shift 

the lower bounds of the tile loops. Goumas et al. generate tile loops that iterate over the image of 

the TOS after applying tiling, and this is expensive. 

The outset has all the benefits of a bounding box, but enumerates very few empty tiles. In 

general, it is parameterized by the tile size, but for illustration purposes Figure 3.5 shows the 

outset instantiated for the 2D stencil example and 2 x 2 tiles. In this example, the outset includes 

only one empty tile origin at (0,0), far fewer than the number of empty tiles that the bounding 

box includes. 

Geometrically, the outset construction can be viewed as shifting of the hyper-planes that de­

fine the lower bounds of the loops. For our 2D example, we shift the left vertical line and the two 

45 degree lines, where the left vertical line and the top 45 degree line constitute the lower bound 

of k, and the bottom 45 degree line forms the lower bound for i. These lines are shifted out by a 

distance that ensures that they will contain the origin of any tile which has a non-empty intersec­

tion with the iteration space, i.e., any tile that would contain a valid iteration point. Loops that 

scan the outset are post-processed and then used as the tile-loops. The tiled loops generated by 

scanning the outset are shown in Figure 3.6. 

The outset has several important properties. It can be constructed without fixing the tile sizes, 

hence can be used for generating parameterized tiled loops. Second, it can be constructed very 

efficiently—in time and space linear in the number of loop bounds. In comparison, automatic 

construction of the bounding box is more expensive—we are not aware of any linear time algo­

rithm that constructs a bounding box given the constraints that define an iteration space. Third, 

the outset can be used to decompose tiled loop generation into separate tile-loop and point-loop 
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generation. Fourth, it can be used efficiently in cases when the tile sizes are fixed, parameterized 

or mixed, i.e., some are fixed and some are left as parameters. These properties lead to a sin­

gle simple efficient algorithm for both parameterized as well as fixed tiled loop generation. The 

following sections discusses these properties in more detail. 

3.2\ Generating the Tile-Loops with Outset 

In this section, we describe our method for generating the tile-loops. We first formally define 

the set that contains all the non-empty tile origins and then motivate an approximation of this 

set which can be computed efficiently. We then reduce the problem of generating tile-loops to 

one of generating loops that scans the intersection of the outset polyhedron and a parameterized 

lattice. We describe a single method that can be used to generate tile-loops for both fixed as well 

as parameterized tile sizes. 

Our input model is perfectly nested loops. Our techniques are applicable to cases where 

rectangular tiling is valid or can be made valid by any loop transformation, which we assume has 

been done in a preprocessing step. Many important applications contain loops of this kind. 

3.2.1 The Outset and its Approximation 

For correctness, tiled code should visit all the tiles that contain points in the original iteration 

space. To generate the tile loops separately from the point loops, we visit all tile origins within a 

polyhedron we call the outset. The outset includes all possible tile origins where the tile for that 

tile origin includes at least one point from the original iteration space. 

The original loop is represented as a set of inequalities 

PiUr = {z\Qz>(q+Bp)}, 

where z is the iteration vector of size d, Q is a mxd matrix, each row of which defines a constraint 

on the iteration space, ^*is a constant vector of size m, p is a vector of size n containing symbolic 

parameters for the iteration space, and B is a m x n matrix. The tile sizes are represented by a 

vector T, where for i = 1.. . d, si indicates the size of the tile in dimension i. 
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The outset polyhedron is defined as the set of points in the original iteration space that, if they 

were tile origins, would define a tile that includes at least one point in the original iteration space. 

Formally, let tile(x) specify the set of points that belong to the tile whose origin is x, 

tile(x) — {z\x<z<x+s }, 

~~*i - * ~ * . ~ * 

where s = s — 1 with 1 being a size d vector containing all ones. The true outset is 

P0Ht={x\tile(x)nPiter^HI}. 

Pout as defined above is a union of all tiles whose intersection with P^[er is non-empty. Com­

puting this set explicitly is very expensive. So, we derive a reasonably tight approximation of Pout 

that is a single polyhedron and can be directly computed from the constraints of Piter- We denote 

this approximation by Pout. As a comparison, one could also view the bounding box as a very 

loose approximation of P0Ht. Pout can be computed in time and space linear in the number of 

constraints in P , f e r . Henceforth we call Pout the outset. The outset discussed in previous sections 

also refers to Pout. 

We compute the outset, Pout, by shifting all the lower bounds of the original iteration space 

along the normal that faces out of the iteration space. The outset is defined as 

P^t={x\Qx>(q+Bp)-Q+P}, 

where Q + is a m x d matrix defined as follows: 

' ; \ o, ifQi;<o 

Note that the Pout is defined using the constraint matrix, Q of the iteration space polyhedron. 

We can compute Q + with a single pass over the entries of Q and hence in time linear on the 

number of constraints of Piter. We now formally prove that Pout contains all the non-empty tile 

origins. 



CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 38 

Theorem 3.2.1. Pout£POHt. 

Proof: 

If a point x i s in Pout, then there exists a point fsuch that z*is in Piter, zis in tile(x), and 

z = x + i, where 0 < i < s'. Since z*is in P-lter, the following is true: 

Qz>(q+Bp). 

Substituting zby x + i, we derive the following: 

Qx + Qi>{q+Bp), forO<f<s ' . 

Since all the entries in i are non-negative and the fact that Q + > Q, it follows that Q+s > Qi, 

and so the point x is also in P0Ht: 

Qx + Q+P>(q+Bp). 

Thus, each point that is in Pout is also in Pout. I 

Notice that though the tile sizes are not fixed and are included as parameters, the outset is 

still a polyhedron, albeit parameterized by the tile sizes. This key property enables us to generate 

parameterized tile-loops, for now we can use all the theory and tools developed for generating 

loops that scan parameterized polyhedra. 

3.2.2 Generating tile-loops 

The tile-loops enumerate the tile origins. Two choices are available: (i) enumerate the tile origins 

as coordinates in the tile space or (ii) enumerate the tile origins in the coordinates of the original 

iteration space. When the former is chosen, we need additional transformations to map the tile 

origins from the tile space to tile origins in the iteration space coordinates. Our method avoids 

this transformation and generates loops that directly enumerate the tile origins in the original 

iteration space coordinates. 

We can view the set of tile origins as the points in a lattice whose period is the tile sizes. We 
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Figure 3.7. 
Intersection of a tile origin lattice for 2 x 3 tiles and the outset is shown. The original iteration 
space is omitted for ease of illustration. Note that the first iteration of the loops that scans the 
outset could be a non-tile origin. We need to shift this iteration to the next iteration that is tile 
origin. 

define the tile origin lattice, i£^s), as the lattice whose period is given by the symbolic tile size 

vector T. Since we do not fix the tile sizes, •££(?) is actually a. parameterized tile origin lattice. We 

also do not require that the tile origin lattice start at any particular coordinate. 

The outset contains all the non-empty tile origins and also other points which are not tile 

origins. Formally, we want to visit the points in the intersection of the outset and the tile origin 

lattice, i.e., P0Ht n 5£(T). The key insight is to generate loops that scans the whole of outset and 

modify them so that they skip the iterations that are not tile origins. 

3.2.2.1 Striding the loops 

Figure 3.7 shows an outset and a tile origin lattice for a 2 x 3 tiling. Let us call the loops that scan 

all the integer points in the outset as outset-loops. For the moment assume that the first iteration 
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of every loop is aligned with a tile origin. Then we can skip the non-tile origins by just adding a 

stride to the loop variable with the corresponding tile size parameter. Such an addition of strides is 

sufficient because we are interested in the canonical tile lattice (induced by the rectangular tiling). 

This simple post-processing of the loops that scans the outset gives us the loops that scans the 

intersection of outset and tile origin lattice. Note that the stride can be a fixed constant or a 

symbolic parameter. This allows us to use the same method for generating tile loops for both 

fixed and parameterized tile sizes. 

3.2.2.2 Shifting Lower Bounds 

We now address the issue of aligning the first iteration of the outset-loops to a tile origin. Fig­

ure 3.7 shows two non-tile origins that correspond to first iterations of the i loop. We need to 

shift the lower bound to an iteration that corresponds to the next tile origin. Let LB- be the lower 

bound of a loop variable i. Note that LBt could be a function of the outer loop indices and pa­

rameters. The required shift can be thought of as the difference between the value of LBi and the 

next tile origin. This shift can be computed as —'-\ xs,-. Since this shift can be generated for 

fixed as well as parameterized tile sizes, we have a single method for both fixed and parameterized 

tiled loop nest generation. 

The code previously presented in Figure 3.6 showing the parameterized tiled loops for the 

2D stencil example (Figure 3.1) was generated using the scheme described above. Note how the 

skipping of the non-tile origins naturally translates into parametric strides of the loop variables. 

Also note how the lower bound shifts can be expressed as loop variable initializations. 

3.2.2.3 Implementation 

O u r code generator takes as input the constraints that define Piter. It constructs the outset (Pout), 

which is parameterized by the program and tile parameters. The outset-loops are generated using 

a standard loop generator for parameterized polyhedra. Thanks to our theory, all that is required 

to turn them into tile loops is a simple post-processing, actually pretty-printing, to add strides and 

lower bound shifts. These tile loops are then composed with the point-loops whose generation is 

described in the next section. 
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3.3 Generating the Point Loops 

The point-loops make up a loop nest that enumerates all the points within a tile. To ensure that 

they scan points only in the original iteration space, their bounds are composed of tile bounds as 

well as iteration space bounds. When the point-loops are generated separately, the tile origin is 

not known. 

Consider the triangular iteration space shown in Figure 3.8. Essentially, the intersection of 

a tile (without fixing the tile origin) and the iteration space is the set of points to be scanned 

by point-loops. To generate them, we can construct the intersection that is now parameterized 

by both program parameters and tile origin index. This approach does, however, increase the 

number of dimensions, which is a major factor at code generation time. 

Since the tile bounds for rectangular tiling are simple, we can optimize the generation of 

the point loops. We first construct a loop nest that scans the original iteration space. Then for 

each lower bound /&,, we add the tile lower bound, tlbi to produce the point-loop lower bound 

max(l b^tlbr Similarly, for each upper bound ub-, we add the tile upper bound tlbi+sl — \ {si 

is the tile size of i-th dimension) to produce the point-loop upper bound min{ubi,tlbi +si — 1). 

The point-loops for the example in Figure 3.8 are given below, with iT and jT representing the 

tile origin indices, and S i and S j representing the sizes of the tiles along the z and j dimensions. 

for i=max(1, iT) to min(N,iT+Si-1) 

for j=max(l,jT) to min(i,jT+Sj-1) 

body; 

In addition, we can also generate simple point loops where iteration space bounds are not 

included. As shown in Figure 3.8, if a tile is a full tile, i.e., a subset of the iteration space, then the 

bounds for the original iteration space are not necessary. Such simple point loops are useful for 

the optimization described in Section 3.5. 

3.41 Implementation and Experimental Results 

We implemented four different tiled loop generators: two for fixed tile sizes and two for param­

eterized tile sizes. The loop generators are available as open source software [55]. For fixed-size 
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j 
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1 

Figure 3.8. 
A triangular iteration space and tiles 

tiles, we implement the classic and decomposed methods. For the classic method, the constraints 

that represent the tiled iteration space are constructed from the original loop bounds and then fed 

to CLOOG [14] to generate the tiled loops. For the decomposed method, we construct an outset 

with fixed tile sizes and use them to generate tile-loops and generate the point loops separately as 

discussed in the previous sections. For parameterized tiled code generation, we implement the pa­

rameterized decomposed method presented earlier in this chapter and the bounding box method. 

For the bounding box method, we assume that the bounding box is provided as an input. The 

bounding box is used in the place of outset to generate tile-loops and the parameterized point 

loops are generated as in the fixed methods except the tile sizes are now symbolic parameters for 

the point loops. For the parameterized decomposed method, we first generate the outset from the 

input loop bounds and use it to generate the tile-loops. We then generate the parameterized point 

loops and embed them in the tile-loops to get the final tiled loop nest. 

The experiments compare the various loop generating techniques in terms of the quality of 

the generated tile code and the efficiency of the tiled loop generation. Both of these measures 

depend heavily on the underlying code generator, because the techniques presented in this chapter 

enable the implementation of parameterized decomposed tiling to use any loop generator capable 

of generating loops that scan a polyhedron as a black box. For generating the loops that scan a 

polyhedron we use the CLOOG loop generator, which has been shown to quickly generate high 

quality loops [14]. However, it is possible to replace the CLOOG generator with a different code 

generator such as the Omega code generator [70]. 

t i l e s 
( n , n ) 
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SSYRK 
LUD 
STRMM 
3D Stencil 

Description 

Symmetric Rank k Update. 
LU decomposition of a matrix without pivoting. 
Triangular matrix multiplication. 
Gauss-Seidel Style 2D/3D stencil computation. 

Loop depth/ # tiled 
loops 

3 / 2 
3 / 2 
3 / 2 
3 / 3 

Table 3.1 
Benchmarks used for code quality evaluation. 

3.4.1 Experimental Setup 

To evaluate the quality of the generated code, we use linear algebra computation kernels from 

BLAS3 and a stencil computation, as listed in Table 3.1. The stencil computation has a 3D itera­

tion space, and operates on two dimensions of data. It is necessary to skew the stencil computation 

before applying tiling. Column 3 in Table 3.1 indicates the loop depth of the original loop, and 

the number of loops that are tiled. 

We ran the experiments on an Intel Core2 Duo processor running at 1.86 GHz with an L2 

cache of size 2MB. The system is running SMP Linux. For compiling our tiled loop nests we used 

g++ version 4.1.1. with the highest optimization level (-03). The timings use gettimeofdayO-

3.4.2 Results 

For each combination of benchmark and implemented tiled code generation method, we time an 

approximation of loop overhead, the total run of the tiled benchmark, and the time required to 

generate the tiled code. 

Figure 3.9 shows the loop overhead for SSYRK (symmetric rank k update) as a percentage of 

the total loop execution time. We time the execution time of the tiled loop bounds with only a 

counter as the body and divide the measured execution time by the execution time for the loop 

with the full body including the loop counter. The loop overhead is only approximate, because 

in the loop with the full loop body some of the loop bound instructions can be scheduled with 

instructions from the body, therefore this measure is an upper bound on the loop overhead. The 

approximate loop overhead on average can be as high as 40%. Figure 3.10 shows the total execution 
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Comparison of generated loops for SSYRK 

m Param Outset 
H Param Bbox 
• Fixed Classic 
• Fixed Decom 

1 
2 4 8 16 32 64 128 256 512 

Square Tile Sizes 

Figure 3.9. 
Percentage loop overhead =(counter / body and counter)x 100 of the SSYRK for matrices of size 
3000 x 3000. 

time for the SSYRK as the tile sizes vary. Notice that as the tile sizes become large enough to result 

in improved performance of the overall loop, the approximate percentage of time spent on loop 

overhead increases. 

Figures 3.10-3.13 show the total execution time for the various benchmarks as the tile size 

varies. The cache effect that occurs as the tile size better uses cache can most clearly be seen for 

STRMM, 3D Stencil, and SSYRK. In general, the quality of the generated tiled code is comparable. 

The outliers occur at smaller tile sizes, where the parameterized tiled code generator based on 

bounding box significantly increases the running time for all benchmarks. For cache tiling, the 

smaller tile sizes do not experience the best performance improvement; however, smaller tile sizes 

are critical for register tiling [64]. Our parameterized decomposed method performs much better 

than bounding box at smaller tile sizes. 

We also performed the same set of experiments on an AMD Opteron dual core processor 

running at 2.4 GHz with a cache of size 1MB, and obtained similar results as presented here. 

The compilation time (the average, in milliseconds over five runs for each benchmark) for the 

four tiled loop generation methods, viz., fixed classic, fixed decomposed, parameterized bounding 
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Comparison of generated loops for SSYRK 

SI Param Outset 
D Param Bbox 
• Fixed Classic 
• Fixed Decom 
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8 16 32 64 128 256 512 

Square Tile Sizes 

Figure 3.10. 
Total execution time for symmetric rank k update for matrices of size 3000 x 3000. 

Comparison of generated loops for LUD 

I i 

• 
a 

• 
• 

Param Outset 
Param Bbox 
Fixed Classic 
Fixed Decom 

2 4 8 16 32 64 128 256 512 

Square Tile Sizes 

Figure 3.11. 
Total execution time for LUD on a matrix of size 3000 x 3000. 



CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 46 

Comparison of generated loops for STRMM 

M Param Outset 
O Param Bbox 
Q Fixed Classic 
• Fixed Decom 

1111 
16 32 64 128 256 512 

Square Tile Sizes 

Figure 3.12. 
Total execution time for STRMM for matrices of size 3000 x 3000. 

Comparison of generated loops for 3D Stencil 

B Param Outset 
H Param Bbox 
D Fixed Classic 
D Fixed Decom 

16 32 64 128 256 512 

Cubic Tile Sizes 

Figure 3.13. 
Total execution time for 3D Stencil on a 2D data grid of size 3000 x 3000 over 3000 time steps. 
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fClassic 
fDecom 
pBbox 

pOutset 

LUD 

32.4 
55.2 
53.5 
52.0 

SSYRK 

28.6 
51.0 
53.2 
53.8 

STRMM 

29.0 
50.4 
51.2 
52.1 

3D Stencil 

26.0 
45.0 
54.0 
54.1 

Table 3.2 
Tiled loop generation times (in milliseconds) of the four methods on the four benchmarks. The 
four methods fixed classic, fixed decomposed, parameterized bounding box, and parameterized 
outset are denoted by fClassic, fDecom, pBbox, and pOutset respectively. 

box, and parameterized outset are shown in Table 3.2. The timings include file IO. Further, 

the timings for the parameterized bounding box method do not include the time to generate the 

bounding box from the iteration space polyhedron. For the experiments it was given as user 

input. In a fully automated scenario, this additional time for generating the bounding box will 

add to the generation time of the bounding box method. 

Overall, the cost of code generation for the three methods, viz., fixed decomposed, bounding 

box, and parameterized outset, falls within the range of 45 to 55 milliseconds. Hence they have 

very comparable generation efficiency (even when the time to generate the bounding box is not 

included). Though the fixed classic method seems to be significantly more efficient than the fixed 

decomposed method, as observed by Goumas et al. [51] and us [71], it has scaling problems as 

the number of number of tiled loops increase. 

In summary, the parameterized decomposed method generates code with performance com­

parable if not better than both fixed and parameterized tiled code generation methods. For pa­

rameterized tiled code generation, the parameterized decomposed method based on the outset is 

clearly better than the traditional bounding box method, especially for smaller tile sizes. The code 

generation time for all of the methods is comparable and quite small. 

3.5] Finding Full Tiles Using the Inset 

One possible reason for loop overhead is the presence, within the loop bounds for each tile, of 

the bounds for the original iteration space as well as the tile so that no iterations outside of the 

original iteration space are executed. Ancourt and Irigoin [9] suggest that tiled code may be 
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optimized by generating different code for full tiles versus partial tiles. Previous work [64] uses 

index set splitting to break the iteration space into full and partial tiles so that iteration bounds can 

be removed from the bounds for the full tiles. Other work [51] indicates that they differentiate 

between full and partial tiles, but details are not provided. Since distinguishing between full 

and partial tiles is also important for register tiling and possibly hierarchical tiling, we present 

two possible approaches for doing just that. Both approaches are based on constructing the inset 

polyhedron such that any tile origins within the inset polyhedron Pin are tile origins for full tiles. 

As before, our challenge comes from the fact that we seek to do this for parameterized tile sizes, 

and our solution again yields us a polyhedron with the tile sizes as additional parameters, thus 

enabling us to build on well developed theory and tools. 

Distinguishing between full and partial tiles is applicable to all of the tiled code generation 

techniques discussed in Section 3.1. The inset can be computed as quickly as the outset, and it is 

possible to show that points are in the calculated inset if and only if they are possible tile origins 

for full tiles. Once the inset has been computed, it is possible to leverage existing code generators 

to generate the tile loops that traverse the inset executing only full tiles and the outset minus the 

inset executing partial tiles. 

3.5.1 Algorithm for Computing Inset 

As in Section 3.1, the original loop in question is represented as a set of inequalities 

Piter = {z\Qz>(q+Bp)}, 

where z is the iteration vector of size d, Q is a m x d matrix, q is & constant vector of size m, 

p is a vector of size n containing symbolic parameters for the iteration space, and B is a m x n 

matrix. The vector ? specifies the (hyper) rectangle tiling, with st indicating the tile size for the 

zth dimension of the iteration space. 

We define the inset polyhedron Pin such that any tile origins that lie within the inset polyhe­

dron are tile origins for full tiles. All the points in a tile satisfy an inequality constraint if and only 

if the extreme points for the tile satisfy the constraint. The extreme points of a (hyper) rectangle 

tile can be calculated as follows. Let s' = T— 1 and let S' = dia,g(s — 1). Then S' times any binary 
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vector of size d is an extreme point of the tile. Formally, the inset is 

Pin = {z\ Mb E {0,l}d,Q(z + S'b) > (q+Bp)}, 

It is possible to compute the inset directly from the definition, but that would result in m*2 

constraints, with many of them being redundant. Instead, we calculate a matrix Q~ from the Q 

matrix in the constraints for the original iteration space, such that 

Q - = / Q ' 7 ' i f Q i ; < 0 
11 | 0, i f Q , ; > o ' 

The algorithm for computing Q~ is 0{md) and results in m constraints for the inset, 

P^n = {z\Q?<(q+Bp)-Q-(P-l)}, 

where 5* is the size d vector of tile sizes and 1 is a size d vector containing all ones. 

Theorem 3.5.1. P^n-Pin. 

Proof: The proof proceeds by construction. First, we write each bound for Ptn on a separate line. 

( Qns'nb, ... qxds'idbd \ 

\QAK ••• Qmds'ddh ) 

>{q+Bp)-Qz 

Note that the above inequality is true for all binary vectors b. Each row represents 2 constraints: 

one for each possible value of the binary vector b. Since all of the entries in the S' matrix are 

non-negative, it is possible to select a particular binary vector for each row that results in the 

least possible value for each entry and therefore provides a tight bound for all the constraints 

represented by that row. Specifically that binary vector has entry b- equal to one if and only if 

Q; is negative. Selecting the binary vector for each row, which results in the tightest bound is 

equivalent to calculating the matrix Q~. 
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For all binary vectors b, the following is true: 

/ qns'xxh, ... Qus>ddbd \ 

>Q~s'>(q+Bp)-Q?, 

where s' = F— 1. Therefore, P-n is Pin with all redundant bounds removed. 1 

3.5.2 Code Generation Implementation 

One property of an inset Pin is that tile(z)f)Piter = tile(z) for all z E Pin. In other words, 

constraints on the iteration space are redundant for any tile whose origin is in the inset. By 

removing these unnecessary loop bounds in the point loops, we can possibly reduce the loop 

overhead further. One may perform this optimization by checking whether a tile origin belongs 

to the inset before executing point loops or by splitting the inset from the outset. 

To use the check approach, code must be generated that determines if a particular iteration 

lies within the inset. The other approach is to split the inset from the outset. Consider the fact 

that Pin C Pout. We associate a statement Xx with Pin and a statement X2 with Pout and feed 

both polyhedra to a code generator. Now, if a loop nest scans both Pgut and Pin without guards, 

then loops that scan the inset must include both statements. Another advantage is easiness of 

incorporating. Consider the containment relation of Pout and Pin. Clearly, Pin C Pout- Now, 

if a loop nest scans both P0Ht and Pin without guards assuming that these are associated to two 

different statements, then loops that scan the inset must have two statements. Now, we know that 

iteration constraints are redundant whenever there are two statements in the loop since P- C 

Pout. Therefore, we replace the loop bodies with statements X1 and X2 with the tile loops for full 

tiles, and we replace the loop bodies with statement X2 only with tile loops for partial tiles. 

This splitting scheme based on the union of inset and outset provides a way to enable a full 

versus partial tile optimization for parameterized tile code. Also, it is easy to incorporate this 

scheme using existing code generators. Note that many code generators have been designed and 

developed to remove guards by splitting the iteration space into disjoint regions associated to 

different sets of statements. 
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The tradeoff between splitting and inserting a check has not been fully explored. For regis­

ter tiling, it would seem that checking each tile to determine if it is full clearly introduces too 

much overhead. However, splitting can result in significant blowup in code size, which can cause 

instruction cache problems. An advantage of splitting over checking is that it reduces loop over­

head without introducing additional overhead although checking is preferable in terms of code 

size. 

3.6 Related Work 

Ancourt and Irigoin proposed a technique [9] for scanning a single polyhedron, based on Fourier-

Motzkin elimination over inequality constraints. Le Verge et al. [79, 80] proposed an algorithm 

that exploits the dual representation of polyhedra with vertices and rays in addition to constraints. 

The general code generation problem for affine control loops requires scanning unions of polyhe­

dra. Kelly et al. [70] solved this by extending the Ancourt-Irigoin technique, and together with 

a number of sophisticated optimizations, developed the widely distributed Omega library [93]. 

Quillere et al. proposed a dual representation algorithm [94] for scanning the union of polyhedra, 

and this algorithm is implemented in the CLooG code generator [14] and its derivative Wloog is 

used in the WRaPTT project. 

Techniques for generating loops that scan polyhedra can also be used to generate code for 

fixed tile sizes, thanks to Irigoin and Triolet's' proof that the tiled iteration space is a polyhedron 

if the tile sizes are constants [62]. Either of the above tools may be used (in fact, most of them 

can generate such tiled code). However, it is well known that since the worst case complexity 

of Fourier-Motzkin elimination is doubly exponential in the number of dimensions, this may 

be inefficient. Methods for generating code for non-unimodular transformations use techniques 

similar to ours, however they use fixed lattices and we use a parameterized lattice. 

Our work is similar in scope to that of Goumas et al. [51], who decompose the generation 

into two subproblems, one to scan the tile origins, and the other to scan points within a tile, 

thus obtaining significant reduction of the worst case complexity. They proposed a technique 

to generate code for fixed-sized, parallelogram tiles. Their technique computes an approximation 

to the outset, similar to our Pout. Specifically, they compute the image of Pout by the tiling 
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transformation, H, and generate code to scan this image. Because of this, their code has ceiling 

and floor operations, and the loop body must compute an affine function of the loop indices to 

determine the tile origins. Their method can handle arbitrary parallelogram shaped tiles, and 

they also use a technique similar to our inset to optimize the code. Note however, that all their 

techniques are applicable only to fixed tile sizes. 

In contrast, our algorithm handles parameterized tile sizes. The key insight is that we view 

the outset as a polyhedron with, other than the program parameters, n additional parameters, 

namely the tile sizes. This allows us to efficiently leverage most of the well developed tools, and 

our technique performs as well as, if not better than, all others, at no additional cost. 

There are also a number of additional differences. Our algorithm generates tile loops whose 

indices always remain in the coordinate space of the original loop. This avoids floor and ceiling 

functions, and enables us to generate tile loops through a very simple post-processing: adjust the 

lower bounds, and introduce a stride corresponding to the tile size. Our method is restricted to 

transformations that can be expressed as a composition of a unimodular transformation, followed 

by a rectangular tiling (blocking). 

The work by Amarasinghe and Lam [7, 8] and GrofSlinger et al. [53] are related and were 

discussed in the previous chapter. 

Jimenez et al. [64] develop code generation techniques for register tiling of non-rectangular 

iteration spaces. They generate code that traverses the bounding box of the tile iteration space to 

enable parameterized tile sizes. The focus of their paper is applying index-set splitting to tiled code 

to traverse parts of the tile space that include only full tiles. Their approach involves less overhead 

in the loop nest that visits the full tiles; however, they experience significant code expansion. We 

suggest two possible approaches for differentiating between full and partial tiles: either generate a 

check to determine if the tile being visited is a full tile, or associate two different loop bodies with 

the inset and outset and let any polyhedra scanning code generator generate the appropriate code. 

The trade-off between the overhead due to the check versus the cost due to code expansion that 

occurs using index-set splitting or loops that scan the union of polyhedra is unclear and an area 

for further study. 
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3.7 \ Discussion 

The two polyhedral sets, viz., outset and inset, introduced in this chapter play a fundamental role 

in tiled code generation. First, as shown in this chapter, the outset is useful for efficient generation 

of high quality parameterized tiled loop nests. The inset is useful in characterization of a linear 

condition which are satisfied by the full tile origins. We show in the next chapter how these sets 

enable efficient tiled loop generation for multi-level tiling and also separation of full and partial 

tiles at any arbitrary level of tiling. 



CHAPTER 4 

Multi-level Tiled Loop Generation 

I N this Chapter we propose a technique for generating multi-level tiled loops where the tile 

sizes can be fixed (constants) or symbolic parameters or mixed. Our technique provides multiple-

levels of tiling at the same cost of generating tiled loops for a single level of tiling. We propose 

a novel formalization extending the classic tiling transformation [62, 136] to multiple levels. We 

propose a method for separating partial and full tiles at any arbitrary level, without fixing the tile 

sizes. We have implemented all the proposed code generation techniques and the tool is available 

open source [55]. Our technique provides m levels of tiling at the price of one. This claim is 

justified via a theoretical complexity analysis of our technique and extensive evaluation of both 

the generation efficiency and quality of the generated code on benchmark routines form BLAS, 

LUD, and stencil computations. 

The work presented in the chapter was done in collaboration with DaeGon Kim, Dave Ros-

tron, and Michelle Mills Strout. It was presented in [71]. 

4.1\ Multi-level Tiling 

The input is a perfect loop nest, and it is appropriately transformed so that rectangular tiling is 

valid. In this section, we describe two multi-level tiling approaches. The first one is an extension 

54 
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of the classic tiling transformation [136] to multiple levels and is restricted to the case of where 

the tile sizes are fixed. The second one is based on the concept of the outset (introduced in the 

previous Chapter) and can be used when the tile sizes are symbolic parameters or fixed constants 

or mixed. 

Our input model is perfectly nested loops. Our techniques are applicable to cases where rect­

angular tiling is valid or can be made valid by an appropriate preprocessing transformation (e.g., 

skewing). We assume that this has already been done. The input loop of depth d is represented as 

a set of m inequalities 

Plter = {z\Q?>(q+Bp)}, 

where z is the iteration vector of size d,Q'iszmxd matrix, qis a constant vector of size m, p is 

a vector of size n containing symbolic parameters for the iteration space, and B is a m x n matrix. 

The tile sizes are represented by the vector ?; we use s' to denote f — 1. 

4.1.1 Multi-level tiling for fixed tile sizes 

We start with the classic definition of single-level rectangular tiling [136]. Given an iteration 

space Plter and a vector i*of fixed tile sizes, the tiled iteration space is given by 

PtUed = {(f> *) I F ° f ^ ? - ° ^ T° f + ? - *>Se Pner\ 

where o is an offset and the operator o denotes component wise multiplication of vectors. The 

tiles are enumerated by t and the points within a tile are represented by z. The tiled iteration 

space denoted by P .. , is a polyhedron (as the tile sizes are fixed). Generating the tiled loop nest 

is now reduced to generating loops that scan the polyhedron P1.. ,. There are standard tools such 

as OMEGA [70] and CLOOG [14] which can be used for to generate such loops. Note that Px., , 

is a polyhedron only when the tile sizes are fixed and hence the approach is not applicable when 

the tile sizes are symbolic parameters. 

We can extend the definition to multiple levels of tiling as follows. Given an iteration space 
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Plter and a list of tile size vectors s[,...,Im,a. multi-level tiling can be described in a similar way. 

P?iUd = {(h,-..,Cz)\Vi = l,...,m-l: (4.1) 

si ° h < t^ - o, ; , < 57 o tt+57 - 1 , 

where o,- is an offset at the appropriate level. All tile sizes are integer constants. Also, note that 

actual tile sizes are a product of all inner tile sizes because tiling at level k is a tiling on the (k + 1) 

tiled space, not the original iteration space. Although this formulation is a direct extension of 

Xue's definition of single level tiling [136], to the best of our knowledge, this is first formalization 

and presentation of it—other formulations [65] of multi-level tiling are based on the strip-mine 

and interchange view of tiling. Now given the fact that this set Pm. , is a polyhedron, the scanning 

loops can be easily generated by existing tools, such as OMEGA test and CLOOG. Our generator 

for this method uses CLOOG. 

4.1.2 Multi-level tiling using the outset 

Another view of tiled loop generation is based on the outset method as described in the previous 

section, where the coordinates of the tile origins are obtained by intersecting the outset Pout with 

a parameterized lattice Lattice(T). This method does not require the tile sizes to be fixed. Multi­

level tiling in this method can be viewed geometrically as shown in Figure 4.1. We start with 

the first level of tiling of the iteration space and the first level tiles are further tiled to achieve the 

second level of tiling. In Figure 4.1, the first level of tiling uses 4 x 4 tiles and the second level uses 

2 x 2 tiles. The geometric view not only aids visualization but also gives a mathematical view of 

the multi-level tiling: the tile origins at a given level k of tiling can be viewed as the intersection 

of the tiles at the previous (k — 1) level and the lattice parameterized by the tile sizes of level k. 

To exploit the geometric view for tiled loop generation we need to handle one important issue. 

Consider the outer level of tiling shown in Figure 4.1. There are three partial outer-tiles and one 

full outer-tile. When we apply another inner-level of tiling the outer-tiles become the iteration 

space for them, and we need to able to handle the different shapes of the partial outer-tiles. We 

handle this by (over) approximating the partial outer-tiles by full tiles. Such an approximation 
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Figure 4.1. 
Multi-level tiling as repeatedly tiling each tile on a triangular iteration space 

/ / Outermost tile loops that 
f o r (£.' = 1; tl <= 8 ; tx += 4) 

f o r U ' = l ; t1 <= min([ . ' + 4 , 8 ) 

/ / T i l e loops that scans 
f o r (£?=£.'; t2 <= r.1 + 3 ; 

f o r U 2 = t ' ; t2 <= t1 + 3 
I I I 1 

s c a n t h e outset 

; t' += 4) 

4 x 4 tiles by 2 x 2 t i l e s 
t2 += 2 ) 

; t2 += 2 ) 

// Point loops that scans the intersection of 
// a 2 x 2 tile and iteration space 
f o r ( i=max ( 1 , t2) ; i <= 

f o r ( j=max ( 1 , f2) ; j 

S ( i , j ) ; 

min U2 + l , 8) ; i + +) 

<= m i n U 2 + l , i + 1 , 8 ) ; j + + ) 

Figure 4.2. 
A loop nest corresponding to the multi-level tiling in Figure 4.1 

allows a uniform treatment of the further levels of tiling. The 2-level tiled loop nest generated 

using this method for the example is shown in Figure 4.2. Note that the tile-loops at the second 

level treat partial tiles as full tiles. The general structure of the multi-level tiled loops generated 

using this method is shown in Figure 4.3. The outermost tile-loops are generated using the outset 

and all inner-level tile-loops are generated using the bounds of a full-tile, referred to as Box-tile-

loops. The innermost loop nest consists of the point-loops which have the both the tile bounds 

and the iteration space bounds. We expect the execution time overhead due to the approximation 

of inner-level partial tiles by full tiles to be insignificant. Our expectation is confirmed by our 

experimental results as discussed in Section 4.4.2. 
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tile-loops scanning outset 
Box-tile loops 

Box-tile loops 

Point-loops 

Figure 4.3. 
Structure of multi-level tiled loops generated with the outset method when partial and full tiles 
are not separated. 

Multi-level tiling based on outset can be formalized as follows. Given an iteration space Ptter 

and a list of tile size vectors s^,..., s^, the tiled iteration space can be expressed as follows: 

Kled = {{il,...Xm,?)\Vi=2,...,m: 

zePiterntile(i[,s-'i)n~-r\tile(£,sl), 

£*€ tile(il,s'l)r\---r\tile(ti~li,sil1) n 

Lattice^,t^_x)} (4.2) 

where Lattice^, t^) is the set of points generated by $7 ° * + ^ - i for any integer vector x, 

and s* can be a vector of either symbolic tile size parameters, constants, or a mixture of both. 

Note that the offset of the lattice depends on the origin of each tile at the previous level. Given 

a tile, fz/e(r!,5(), the first tile at level (z + 1) that is contained in ti/e(r j ,5 i) must be £z7e(^-,sl+1) 

because ti is still the lexicographical minimum of (£,•,$,-)• Otherwise, some points in the iteration 

space will not be scanned. Correctness of this formulation follows directly from the fact that 

Pout contains origins of the tiles whose union is a super-set oi Piter. Further, by including in the 

formulation, the constraints that define Plter we guarantee that only valid iteration points in the 

tiles are enumerated. Also note that the formulation does not impose the restriction that outer 

tile sizes are multiples of inner tile sizes. 

In most practical cases, tile sizes s[ are component-wise multiples of s-^j for all i = 1,... m — 1. 
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tile-loops scanning outset 

Box tile-loops-Ll 

Box tile-loops-Lk 
if ( FULL(Lk-tile) ) { 

Box-tile loops-Lm 
point-loops with tile bounds 

} else { // partial-tile-Lk. 
Point-loops 

} 

only 

Figure 4.4. 
Structure of multi-level tiled loops generated with the outset method when the partial and ful 
tiles are separated at some tiling level k. 

The constraints of the tiled iteration space in (4.2) for this case can be simplified to: 

Kled = {ti,"..C*)|Vi=2,...,m: 

i[ 6 tile(^Ij,5^,)nLattice(s[,t[ix)} (4.3) 

Note that the constraints from all the previous level tilings become redundant with this assump­

tion on tile sizes. From now on for ease of description, we assume that the tile sizes at an outer 

level are component-wise multiples of all the inner level tile sizes. However, our method does not 

impose this restriction. 

4.21 Separating partial & full tiles 

As discussed earlier, separation of partial and full tiles has several applications. In this section, 

we discuss how the inset (introduced in Chapter 3.5) is used for separation. Separation at any 

level k implies that the further tilings (for levels k + 1. . . m) are performed only on full tiles of 

level k. The partial tiles of level k are not further tiled. Consider the number of full and partial 

outer-tiles in Figure 4.1. There is one full outer-tile and three partial outer-tiles. If we separate 

full tiles from partial tiles at the outer level of tiling, then there are only four full inner-tiles, since 

only the full outer-tiles are tiled further. However, we can see that there are 10 full inner-level 
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tiles in the iteration space. By separating the partial and full tiles at the inner-level (and not at the 

outer-level) we can actually recognize all the 10 inner-level tiles as full. However, separation at 

the inner-level leads to more inner-level full tiles but also results in enumeration of more empty 

inner-tiles. Hence, there is a trade-off between more inner-level tiles versus enumeration of empty 

tile origins. Further, we can also apply splitting multiple times if needed. 

The general structure of such a multi-level tiled loop nest with separation of partial and full 

tiles at an arbitrary level k is shown on Figure 4.4. Note that the partial tiles at level k are not 

further tiled and they execute the standard point-loops. On the other hand, the full tiles of level k 

are further tiled and their body contain a special form of point-loops called box-point-loops. These 

box-point-loops are the loops in which the iteration space bounds are omitted. 

To recall, the inset Pin represents the set which contains all the full-tile origins. Let us denote 

by Pln(Jk)tne i n s e t computed using the tile sizes of level k and the iteration space Piter. Now we 

can check at any level I whether a tile origin represents a full tile or not by checking whether it 

belongs to Pin(T[) or not. This is the key idea underlying our separation algorithm. For any user 

specified level k of separation we generate the outset P,-„(4) a n d use it to test whether a tile is full 

or partial. This test corresponds to the FULL ( L k - t i l e ) test in Figure 4.4. 

When the separation happens at level k, the set of points in the full tiles at level k can be 

described as follows: 

{{h,...,Cl,tn+x)\Vi=2,...,m + \ : 

h^PoutnLattlce(s1>o), h € PL> 

ti S tile(ti_1,siZ\)(^Lattice(s"l,ti_-l)} 

where 5OT̂ j is 1. The set of points in the partial tiles can be described as follows: 

{(t~[,...,tl,z)\Vi=2,...,k: 

t~[£P0UtnLattice(s-;,d~),tltPl, 

zePiterntile(t"k,s1), 

tt e tile(ti_^,siZ\)r\Lattice(s"l,tlZi)}-

& full 

par tial 
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Different levels of separation may be preferred, based on the context in which separation is 

used. For example, for a 2-level tiling in the context of caches and registers an inner-level of tiling 

might be preferred. An example of this is shown in our experiments on cache and register tiling. 

4.3 I The loop generation algorithm 

Now we present our algorithm for generating multi-level tiled loop nests with parameterized, 

fixed, or mixed tile sizes. It is given in Algorithm 2 and its input is the original iteration space, 

number of levels of tiling, whether the loops are to be split for partial vs. full tile separation, and 

if so, what is the level at which this split needs to be performed. The output of the algorithm is 

the multi-level tiled loop nest. 

We illustrate the steps of the algorithm on the 2D Stencil example. We seek to generate a 2-

level tiled loop nest where full and partial tiles are split at the first level. We first compute an outset 

of the iteration space with the outer-tile sizes. Then, we generate the point loops whose bounds 

consists of iteration space bounds and the surrounding tile bounds. The split level determines the 

tile bounds used in the point-loops generation as shown in lines 2-5 of the algorithm. These loops 

are generated by a call to CLOOG. Next, we compute the inset of iteration space with respect to 

the split level (here, first) tile sizes and indices as shown in lines 6-7. The bounds of the inset are 

shown below. 

Pin = {{h^i)\\<hMk + sk-\<Nk; (4.4) 

where sk and si are symbolic tile size parameters along k and i dimensions, respectively. The guard 

for splitting partial and full tiles is obtained directly from the inset. The complete multi-level tiled 

loop nest for the 2D Stencil example with separation at the first level is shown in Figure 4.5. At 

line 9 we see that the guard is a direct translation from the inset in (4.4). 

Once the point-loops and inset based on a split level are generated we can generate all the 

loops. The construction of the inner-level tile-loops, the guards and the box-tile-loops can be 

done through a simple pretty printing using the appropriate bounds. Combing these with the 
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Algorithm 2 An algorithm for generating multi-level tiled loops based on outset approach 

INPUT : Plter : Iteration space matrix, 
tileSizes[l...m] : tile size (integer or symbolic parameter) vector, 
tilelndexes[l...m] : tile index name vector, 
split : a boolean value whether full and partial tiles are split 
splitLevel: level at which full and partial tiles are split 

BEGIN 
Matrix outset, inset; 
VectorOfString pLoops, comLoops; 

/ / Compute Pout 

1: outset = computeOutset(PJter, tileSizes[l],tileIndexes[l]); 

/ / Scan Plter, add tile bounds with appropriate level 
2: If (split = = true) 
3: pLoops = generatePointLoops(Pj£er, tileSizes[m],tileIndexes[m]); 
4: else 
5: pLoops = generatePointLoops(P;ter,tileSizes[splitLevel], tilelndexes[splitLevel]); 

/ / Compute Pin when split is greater than 0 
6: If (split = = true) 
7: inset = computeInset(P;((,r, tileSizes[splitLevel],tileIndexes[splitLevel]); 

/ / Combine point-loop, box-loop and guard for split 
8: comLoops = combine(pLoops, tileSizes[l...m],tileIndexes[l...m], splitLevel, inset); 

/ / Generate loops that scans outset while printing 
/ / comLoops instead of point-loop 

9: printScanningLoops(outset, comLoops); 
END 

previously generated point-loops (as shown in line 8) we get all the loops except the outer-most 

tile-loops. This is generated by a call to CLOOG to generate loops that scan the outset and post­

processing it to add lower bound shifts and strides. The resulting tile-loops are shown in lines 2-5 

of Figure 4.5. Finally we compose these outermost tile-loops to obtain the complete tiled loop 

nest with separation of partial and full tiles. 

4.3.1 Complexity & scalability of the algorithm 

Let us first consider the case where no full vs. partial tile separation is performed. Intuitively, 

the key steps are computing the outset to generate the outermost tile-loops and constructing all 
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// Outermost tile loops that scan the outset 
TlkLB = -Slk+2; TlkLB = LB_SHIFT(TlkLB,Slk); 
for (Tlk = TlkLB; Tlk <= Nk; Tlk += Slk) { 

TliLB = Tlk-Sli+2; TliLB = LB_SHIFT(TliLB,SIi); 
for (Tli = TliLB; Tli <= Tlk+Ni+Slk-1; Tli += Sli) { 

// Is (Tlk, Tli) a full tile at level 1? 
if ( Tlk-1 >= 0 \s\s -Tlk+Nk-Slk+1 >= 0 U\s 

-Tlk+Tli-Slk >= 0 \s\s Tlk-Tli+Ni-Sli+1 >= 0 ) f 
// Box-loops scanning origins of level 2 tiles. 
for (T2k = Tlk ; T2k<=Tlk+Slk-l ; T2k += S2k ) 
for (T2i = Tli ; T2i<=Tii + Sli-l ; T2i += S2i ) 
// Box-loops scanning points in level 2 tiles. 
for (k = T2k ; k<=T2k+S2k-l ; k++ ) 
for (i = T2i ; i<=T2i+S2i-l ; i++ ) 

SI ; 
) else ( // (Tlk, Tli) is a partial tile at level 1 
// Point loops scanning partial tiles at 1st level. 
for (k= max(Tlk, 1) ;k<=min (Tlk + Slk-l,Nk) ;k + +) 
for (i= max(Tli, k + 1) ; i<=min (Tli + Sli-1, k+Ni) ; i + + ) 

SI ; 
} 

) } 

Figure 4.5. 
A multi-level tiled loop for the 2D Stencil. The body of the loop is by SI. 

the box-tile-loops and constructing the point-loops. The construction of the outset can be done 

in time linear on the number of bounds on the original loop nest. Further, the construction of 

the box-tile loops is a simple pretty-printing using the tile indices and sizes. The construction 

of the point-loops and the tile-loops using the outset are done via CLOOG. The complexity of 

each of these calls to CLOOG is exponential in the number of bounds of the original loop nest, 

not the number of bounds in the tiled loop nest. Hence, the entire multi-level tiled loop nest 

construction involves two calls to an exponential function and a couple of functions that are 

linear on the number of bounds on the original loop nest and the number levels of tiling. The 

key point to note is that the number of calls to the exponential function do not depend on the 

number of levels. In fact, for any arbitrary number of levels of tiling, exactly two calls are made to 

the exponential-time function. Now, if we consider separation of partial and full tiles, all that is 

required is the computation of the inset (which can be done in linear time) and the pretty printing 

of it as a guard. On the whole, the time complexity of our algorithm is determined by the time 

taken by the two calls to CLOOG, and is constant with respect to the number of levels of tiling. 

The experimental results in Section 4.4.1 confirm this, and also further validate our claim that we 

can generate multi-level tiled loops at the cost of a single-level tiled loops. 

In contrast the time for the classic method depends on the number m of multi-level tiling. 
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For an original loop nest of depth d, the number of dimensions and constraints increase by md 

and 2md, respectively, as the level of tiling increase to m (assuming all the dimensions are tiled). 

This results in an exponential space/time complexity which grows with the number of levels of 

tiling. The experimental results in Section 4.4.1 show how this exponential growth with respect 

to number of levels renders the technique inapplicable beyond two levels of tiling. The multi-level 

tiled loop generation method proposed by Jiminez et al. [65] has an exponential time complexity 

at each level of tiling, and this grows linearly with the number of levels of tiling. 

4.41 Experimental Validation 

We implement three different multi-level tiled loop generators. The first generator is for the case 

when the tile sizes are fixed, and uses the classic tiling method discussed in Section 4.1.1. The sec­

ond generator is capable of generating tiled code with the tile sizes that are fixed or parameterized 

or mixed and is based on the method discussed in Section 4.1.2. The third generator implements 

the additional feature of splitting (or separating) partial and full tiles at some user specified level. 

The generators are implemented in C+-1-. The CLOOG [14] loop generator is used internally 

to generate the point-loops and the loops that scan the outset. Our technique is independent of 

the internal code generator and for example, we could use OMEGA [70] instead of CLOOG. We 

chose CLOOG for its robustness across several benchmarks and its code generation speed (up to 

4xfaster than OMEGA [14]). 

To evaluate the generation efficiency and the quality of the generated code we conduct three 

sets of experiments. The benchmarks used for the experiments are given in Table 4.1. The bench­

marks 2D Stencil and 3D Stencil correspond to a Gauss-Siedel style stencil where a ID array (or 

2D array resp.) is updated over a time step loop. For these two benchmarks, we first applied 

skewing to make rectangular tiling valid and then used the skewed iteration space as input to our 

generator. The skewing makes the iteration space non-rectangular. The benchmark LUD is LU 

decomposition computation without pivoting. The benchmarks SSYRK and STRMM are rou­

tines from BLAS3 and correspond to symmetric rank k update and the triangular matrix product 

computations, respectively. The loop nest depth of the benchmarks is shown in the third column 

of Table 4.1 and for the experiments, all the loops are tiled at all the levels for all the benchmarks. 
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Figure 4.6. 
Generation time for multi-level tiling of 2D Stencil. 

The three sets of experiments we conduct are aimed at evaluating the (i) the generation efficiency 

of loop generators, (ii) the cost of parameterization, i.e., what is the execution time cost for not 

fixing the tile sizes and leaving them as parameters, and (in) the effect of the level at which partial 

and full tiles are separated. The following sections discuss each of these experiments. 

4.4.1 Generation efficiency 

We evaluate two aspects of the generation efficiency. First, we evaluate how our method scales 

with respect to the number of levels of tiling. Second, we compare the generation times for the 

parameterized and the fixed method. The second comparison also evaluates the overhead due 

to the over-approximation of the inner-level partial tiles by full tiles (cf. Section 4.1.2). All the 

generation efficiency experiments were run on an Intel Core2 Duo processor running at 1.86 GHz 

with an L2 cache of size 2MB. We used g++ 4.1.1. with - 0 3 optimization level to compile our 

loop generators. The timings use g e t t i m e o f day () . Our code generator supports arbitrary 

(hyper-)rectangular tiles. For ease of experimentation we have used square tile sizes. 

The generation times for the five benchmarks, 2D Stencil, LUD, SSYRK, 3D Stencil, and 

STRMM are shown in Figures 4.6,4.7, 4.8,4.9, and 4.10. The %-axis represents the number of 

levels of tiling and the y-axis represents the generation time (including file IO) in milliseconds. 

The generation time labeled No Split refers to the case where there is no-splitting of partial and 

full tiles and the other two - SplitLevel=l and SplitLevel=Innermost - represent the generation 

2D Stencil - Tiled loop generation time 

^ ^ ^ -

~ e - No Split 
: SplJtLevel=1 

-¥r- Splitl_evel=lnnerm 

Number of levels of liling 
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2D Stencil 
LUD 
SSYRK 
STRMM 
3D Stencil 

Description 

Gauss-Siedel Style 2D stencil computation 
LU decomposition of a matrix without pivoting 
Triangular matrix multiplication 
Symmetric Rank k Update 
Gauss-Siedel Style 3D stencil computation 

Loop 
depth 

2 
3 
3 
3 
3 

Table 4.1. 
Benchmarks used for evaluating generation efficiency and code quality. 

LUD - Tiled loop generation time 

o 

-p^lzil^" 

- e ~ No Split 
-—• SplJtLeve!=1 
- * * - SplitLevel= Innermost 

1 1 

Number of levels of tiling 

Figure 4.7. 
Generation time for multi-level tiling of LU decomposition. 

SSYRK - Tiled loop generation time 

/ > > 

- * - No Split 
-"••• Spl i tLeveNl 
- * — SpIitLevel=Innermost 

Number of levels of tiling 

Figure 4.8. 
Generation time for multi-level tiling of symmetric rank k update (SSYRK). 
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Figure 4.9. 
Generation time for multi-level tiling of 3D Stencil. 

S T R M M - T i l e d l o o p g e n e r a t i o n t i m e 

0 2 4 6 8 

Number of levels of liiing 

Figure 4.10. 
Generation time for multi-level tiling of triangular matrix multiplication (STRMM). 

where the splitting is done at level 1 (outermost) and at the innermost level, respectively. Note 

that the case of a single level of tiling with no splitting corresponds to the experiments from 

the previous Chapter on parameterized single level tiled loop generation. The main observation 

from the graphs is that the generation time is fairly flat as the number of tiling levels increase. 

Almost all the generation times are within the range of 40 to 60 milliseconds. This experimentally 

confirms our claim that our technique provides a method that can generate multi-level tiled loops 

at the price of a single-level tiled loop nest. Further, the graphs also show that splitting does not 

introduce any additional generation cost. 

The generation times for the classic method for fixed tile sizes is shown in Figure 4.11 (the 

3D Stencil - Tiled loop generation time 

5 ~ ^ x > r - x = * ^ 

- e ~ - No Split 
SplitLevel=1 

—X— SplitLevel-lnnerm 

Number of levels of tiling 
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Tiled loop generation time using Classic method 

- * - 2D Stencil 
----- LUD 

o - - K - SSYRK 
M STRMM 

• • • ™ - 3D Stencil 

3 4 5 6 7 9 9 10 

Depth of loop nesls in tiled code 

Figure 4.11. 
Generation time for multi-level tiling of classic method. The x-axis of the graph is the number of 
loops in the tiled loop nest. The j-axis is the code generation time in seconds. 

scale of x-axis is now in seconds). Note that the x-axis shows the number of loops in the tiled 

loop nest and not the number of levels tiled. For example, when a 3D loop nest is tiled two 

levels we will have 9 loops on the tiled loop nest. We show the number of loops in the tiled loop 

nest, because it is a finer granularity than the number of levels of tiling and shows clearly the 

exponential (w.r.t. the number of loops) nature of the method. The graph clearly shows that the 

generation time grows exponentially when the number of loops is 9 or higher. Hence, we could 

not obtain the generation times beyond two levels of tiling for this method. Although, it is not 

clear in the graph, the generation time grows exponentially even with smaller number of loops, 

but the difference of generation time among them is negligible. 

4.4.2 Cost of parameterization 

We evaluate the cost of parameterization by comparing the execution time of tiled code with fixed 

tile sizes and parameterized tile sizes. We use two levels of tiling one for the TLB and another for 

cache. This choice is motivated by our goal to compare two-level fixed and parameterized tiled 

codes where the differences due to the loop bounds computation can be easily quantified. O the r 

choices for two level tiling such as tiling for parallelism and caches or tiling for caches and registers 

introduce many factors that influence the execution time and hence measuring the execution time 

difference due to the loop bounds computation becomes hard. The experiments are done on an 

Intel Pentium 4 at 3.2 GHz a 512 K L2 Cache and a TLB with 64 entries and pages of size 4K. We 
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2D Stencil - Exe. Times of 2 Level Tiled Code 

B Fixed 
• Parameterized 

2 4 8 16 32 64 128 256 512 

Inner Level Square Cache Tile Sizes 

Figure 4.12. 
Total execution time for 2D Stencil on a data array of size 65536. The x-axis shows the inner 
(cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512. 

used g++ 4.1.1. compiler with - 0 3 optimization. 

Figures 4.12, 4.13, 4.14 and 4.15 show the execution times of the two-level tiled loops for the 

2D Stencil, LU decomposition, SSYRK and 3D Stencil benchmarks, respectively. For the results 

the shown in the graphs the inner (cache) tile sizes were varied from 2 to 512 and the outer (TLB) 

tile size is fixed at 512. We also experimented with other outer (TLB) tile sizes and the results 

are similar to the ones presented here. We can observe that for small tile sizes the parameterized 

tiled loops are better and the for larger tile sizes they are comparable to the fixed tiled loops. At 

smaller tile sizes the ceilO and floorO functions used in the classic method induce higher overhead 

and hence result in slower execution time. Overall, the cost of parameterization seems to be 

negligible and hence we conclude that parameterized tiled codes should be the preferred choice. 

4.4.3 Effect of separation level 

We evaluate the effect of separating partial and full tiles at different levels tiling. We use the 

STRMM benchmark, and we tiled it two levels: one for cache and another for registers. The 

register tiles were (manually) fully unrolled and the array references were replaced by scalars to 

facilitate register promotion. The running times for two different cubic register tile sizes ( 2 x 2 x 2 

and 3 x 3 x 3 ) are shown in Figure 4.16. Also shown is the running time for one level of tiling 
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LUD - Exe. Times of 2 Level Tiled Code 
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• Parameterized 
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inner Level Cubic Cache Tile Sizes 

Figure 4.13. 
Total execution time for LU decomposition on a matrix of size 2048 x 2048. The x-axis shows the 
inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512. 

SSYRK - Exe. Times of 2 Level Tiled Code 

B Fixed 
D Parameterized 

2 4 8 16 32 64 128 256 512 

Inner Level Cubic Cache Tile Sizes. 

Figure 4.14. 
Total execution time for symmetric rank k update (SSYRK) for matrix of size 2048 x 2048. The 
x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512. 



CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 

3D Stencil - Exe. Times of 2 Level Tiled Code 

B Fixed 
• Parameterized 

h 111111 
4 8 16 32 64 128 256 512 

Inner Level Cubic Cache Tile Sizes. 

Figure 4.15. 
Total execution time for 3D Stencil for a data array of size 2048 x 2048 over 2048 time steps. The 
x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512. 

for caches. First, the results clearly show (although this is orthogonal to our study) that tiling for 

both cache and registers gives better performance. Second, they also show how splitting at the 

second level achieves the best performance (around 13 seconds) when compared to others. 

4.5 \ Related Work 

Techniques related to parameterized tiled loop generation, particularly for a single level of tiling, 

were discussed in the previous chapter. Here we discuss the ones related to multi-level tiling. 

Rivera and Tseng [108] studied the effect of multiple levels of tiling for improving locality on 

multi-level caches. Multi-level tiled loop generation was not their focus. For simple rectangular 

iteration spaces, multi-level tiled loop generation is straightforward and has been used by several 

tools. However, for arbitrary polyhedral iteration spaces, there has not been much work. Jiminez 

et al. [65] propose a technique for arbitrary polyhedral iteration spaces but for the fixed tile sizes 

case. Their technique is based on the strip-mine and interchange view of tiling. Their technique 

has a exponential complexity that grows with the number of levels of tiling. First, our technique 

can handle both fixed as well as parameterized tile sizes. Second, the exponential time complexity 

of our algorithm is fixed and does not grow with the number of levels. Third, we also propose a 
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STRMM - Compar ison of Different Levels of Tiling STRMM - Compar ison of Different Levels of Tiling 

& Cache Only 
E3 Cache+Registers SplFtLevel=1 
• Cache+Registers Splitl_evel=2 

UJIUHJlLIKJlUKJllJilUIiJIi l 
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Cubic Cache-Tile Sizes 

® Cache Only 
n Cache+Registers SplitLevel=1 
• Cache+Regislers Splitl_evel=2 

6 12 18 24 48 96 180 270 360 432 512 

Cubic Cache-Tile Sizes 

Figure 4.16. 
Total execution time for triangular matrix multiplication for matrices of size 2048 x 2048. Two 
levels of tiling for cache and registers is used. The x-axis shows the cubic cache-tile sizes. The 
graph on the left is for a register-tile size of 2 x 2 x 2 and the one on the right is for 3 x 3 x 3. 

method to separate full and partial tiles at any arbitrary level. 

4.6 Discussion 

Multi-level tiling is an important technique for mapping iterative computations to computer ar­

chitectures with many levels of parallelism and memory hierarchy. We have described a method 

for automatically generating multilevel tiled code for any polyhedral iteration space where the 

tile sizes can be fixed or parameterized at each level. We have shown that parameterized multi­

level tiled code can be generated at the same cost as a single-level tiled code. The code generation 

scheme can be easily incorporated into existing general compilers and domain-specific code gener­

ators. To the best of our knowledge, ours is the first technique proposed for multi-level tiled loop 

generation with parameterized tile sizes and also the first method to separate partial and full tiles 

when the tiles sizes are not fixed. 

Two important extensions are possible. First, our techniques can be extended to case of imper­

fect loop nests—possibly, first for a single level and then to multiple levels. Second, the techniques 

can be extended to the generation of complete multi-level tiled code with both the tiled loops and 

the appropriate transformed loop body. 
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CHAPTER 5 

A Unified Framework for Optimal Tile Size Selection 

A moment's insight is sometimes worth a life's experience. 

— Oliver Wendell Holmes 

A 
JL \ . S discussed in Chapter 1, the cost-model specificity of the tile size selection (TSS) solu­

tion methods lead to their non-extensibility and non-scalability. In this chapter we present a 

TSS framework that overcomes these limitations by providing a cost-model independent solution 

method. Our framework relieves the user from the tedious process of reasoning about the func­

tions used in the cost model and exploiting their properties to derive a closed form or heuristic 

search algorithm for finding the best tile sizes. 

First we describe the positivity property shared by the terms widely used optimal TSS models. 

We then introduce the class of functions called posynomials and the related class of optimization 

problems called Geometric Programs. To demonstrate the suitability of posynomials for optimal 

TSS, we present the reduction, to our framework, of five optimal TSS models proposed in the 

literature by a different authors in the context of using tiling for register reuse to cache locality to 

coarse-grained parallelism. 

74 
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Machine and system 
parameters used in models 

Cache/TLB miss penalty 
Cache/TLB sizes 
Number of registers 
Number of functional units 
Latency of functional units 
Network latency 
Network bandwidth 
MPI Call start-up cost 

Functions modeling 
quantities of interest 

Tile volume 
Number of tiles 
Number of cache misses 
Cache/register foot print 
Idle time in parallel execution 
Communication volume 
Loop overhead 
Temporary storage size 
Array pad size 

Table 5.1 
These parameters and functions are widely used in TSS models. What is the mathematical prop­
erty common to all these? 

5.1 J A Fundamental Property 

Several authors have exploited particular properties such as linear, quadratic, hyperbolic, etc., of 

cost functions to derive optimal TSS solutions. Instead of exploiting the specific properties of a 

cost model to derive a solution, we ask a fundamentally different question. Is there a mathematical 

property that is inherent to the TSS models? Surprisingly yes! There is a simple property that is 

shared by almost all the TSS models proposed in the literature. Table 5.1 lists several functions and 

parameters that are used in TSS models. There is a fundamental mathematical property shared 

by all them. The property is positivity. All the machine and system parameters are positive 

quantities and the functions model positive quantities. The tile sizes which appear as variables in 

these functions are also positive. Essentially, the functions used in TSS models estimate positive 

quantities using positive parameters and positive variables. This positivity property might seem to 

be a simple one, but it has deep implications. This property distinguishes the class of optimization 

problems that are solvable in polynomial time and those that are not1 [22]. As we show in 

the coming sections we can use this property as a basis to identify a class of polynomials called 

posynomials which can be used to formulate optimal TSS problems that can be solved efficiently. 

'Use of polynomial functions with this property leads to convex optimization problems which can be solved for 
real solutions in polynomial time. On the other hand, optimization problems formulated with arbirtrary polynomials 
are not solvable in polynomial time. 
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5.2 Posynomials and Geometric Programs 

We first introduce the basic building blocks of our formalism—monomials and posynomials—and 

present their closure properties. After that we introduce a particular class of convex optimiza­

tion problems called Geometric Programs [42]. Monomials and posynomials are used in building 

the cost models and geometric programs are used in formulating the optimal TSS problem as a 

constrained optimization problem. 

5.2.1 Posynomials 

Let x denote the vector {xx, x2,..., xn) of n real, positive variables. A function / is called a posyn-

omial function of x if it has the form 

f(x1,X2,...,Xn) = Y]ckX"'kx22k---Xn"k 

k=l 

where c > 0 and or, G R. Note that the coefficients ck must be non negative, but the exponents 

orj can be any real numbers, including negative or fractional. When there is exactly one nonzero 

term in the sum, i.e., t = 1 and c, > 0, we call / a monomial function.2 For example, 0.7 4-

2xj/x2 + x°'3 is a posynomial (but not a monomial); 2.3(x1/x2)15 is a monomial (and, hence a 

posynomial); while 2xj /x 2 — x° 3 is neither. 

Monomials and posynomials enjoy a rich set of closure properties, which are very useful in 

composition of smaller (say single level) optimal TSS models to build larger (multi-level) ones. 

Monomials are closed under product, division, non-negative scaling, power and inverse. Posyn­

omials are closed under sum, product, non-negative scaling, division by monomials, and positive 

integer powers. 

2Note that this definition of monomial is different from the standard one used in algebra. 
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5.2.2 Geometric Programs 

A geometric program (GP) is an optimization problem of the form 

mimimize fo(x) 

subject to fi(x)<\, i = 1, ...,m 

gi(x) = l, i = l,..., p (5.1) 

xl > 0, i = 1, . . . , n 

where f0,...,fmnre posynomial functions and g\,---,gp are monomial functions. If Vz = 1. . . n : 

xi € Z, we call the GP an Integer Geometric Program (IGP). As presented by Boyd et al. [21] 

several extensions (e.g., max()of posynomials) of GPs can be easily handled. 

5.2.3 Efficient solutions via Convex Optimization 

Recent advances [22] in convex optimization provide efficient polynomial time solution methods. 

GPs can be transformed into convex optimization problems using a variable substitution and 

solved efficiently using polynomial time interior point methods [74, 22]. The positivity property 

of the posynomials is extensively exploited in this transformation of GPs to convex optimization 

problems. The computational complexity of solving GPs are similar to that of solving linear 

programs [74]. Continuous real solutions can be found in polynomial time. Integer solutions 

need a branch and bound style algorithm, which in the worst-cast can take exponential time. 

However, we have found (cf. Sec 5.5) that for optimal TSS problems the IGPs are very small (few 

tile size variables and constraints) and solutions can be found quickly. Further, in the context 

of optimal TSS, it is very common to solve for real solutions and round them to obtain integer 

solutions. In such an approach we can obtain the solution in polynomial time irrespective of the 

complexity of the model. 

53 I Posynomials and TSS models 

Posynomials are well suited for describing TSS models. The suitability is evident from the fact 

that almost all optimal TSS cost functions considered in the literature turn out to be posynomials. 



CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 78 

A few of them are discussed in this section. 

• Models for data locality: In general, as observed by Hsu and Kremer [59], the objective 

functions used in the context of tile size selection are all functions of the tile variables, 

cache capacity and cache line size. Due to the positivity of both the tile size variables and 

the cache parameters, these functions turn out to be posynomials. For example, as shown 

in Table 5.2 the cost functions used in several widely used optimal TSS models [77, 36, 45, 

87, 33, 128, 107, 85] turn out to be posynomials. In addition to this, the TSS models used 

in the IBM XL compiler as described in [114] and the multi-level data locality tiling model 

proposed in [101] use posynomials and can be reduced to an IGP. 

• Models for parallelism. Similar to data locality models, several important and popular 

models used in TSS for parallelism can be reduced to IGPs. Here, the TSS models are for­

mulated with quantities such as tile volume, number of tiles, idle time in parallel execution, 

etc. and parameters such as network bandwidth/latency, MPI communication call cost, etc. 

Due to the positivity of the parameters and quantities they use and the tile size variables, 

these functions turn out to be posynomials. In particular, the commonly used commu­

nication minimal tiling for rectangular tiles [98, 20, 134] can be directly cast as an IGP. 

Other models that can also be reduced to IGPs include optimal orthogonal tiling [11], 2D 

semi-oblique tiling [10] and the Multi-level tiling model for 3D stencil computations [103]. 

• Register tiling, auto-tuners, and Multi-level cost models. The register tiling models 

proposed in [115] and [102] can be reduced to IGPs. The cost model used for generating 

high performance BLAS as described in [138] and the multi-level cost model [85] used for 

quantifying the multi-level interactions of tiling, can also be directly reduced to IGPs. 

The fact that such a large number of TSS models—proposed across two decades by a several differ­

ent authors—can all be reduced to single framework shows the generality and wide applicability 

of the GP framework. The fact that the functions used (without the knowledge of posynomi­

als) in these models turn out to be posynomials indicates their suitability for TSS and makes one 

wonder whether they could be the language of optimal tiling! 
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Cost Model Reference 
ESS [45] 

LRW [77] 
TSS [36] 

EUC [107] 
MOON [87] 

TLI [33] 
WMC [128] 
MHCF [85] 

Cost function used for selecting the optimal tile size 
C/(h * w) 

l/h + \/w + (2h + w)/C 
(2h + w)/h * w 

l/h + \/w 
l/h + \/w + (h + w)/C 

\/h + \jw + (h + w)/C + h* w/C2 

C jh*w 
(l/h + l/w)(\/n + l/l) + 2/(h * w) 

Table 5.2 
Cost functions used in the literature for optimal cache locality tiling are shown, where C is the 
cache size, h, w represent the height and width of the rectangular tile, n represents the size of a 2D 
array and / represents the cache line size. A simple inspection shows that they are all posynomials. 
This table is derived from Hsu and Kremer [59, table 2]. 

5.4 Models From Literature 

In the following sections we discuss in detail five models from a variety of tiling contexts. The 

goal is to provide an intuition for why all these models use posynomials and how the optimal 

TSS problems can be cast as an GR Our discussion and reasoning about the posynomial nature of 

the functions used in these models are limited by the amount of details publicly available about 

them. The following models were chosen for detailed discussion because of their generality, use 

in production compiler, or uniqueness. 

5.4.1 Cache locality model 

In this section we show how the cost model proposed by Sarkar and Meggido [116], also used in 

the IBM XL FORTRAN compiler [114], can be reduced to an IGP. This cost model is applicable 

to a general class of loops and to tiling of double or triple loops. We chose this cost model for 

detailed discussion because of its applicability to a general class of loops and its use in a production 

compiler. Our description is aimed at illustrating how their formulation directly maps to an IGP. 

Further, we also illustrate how a change in the number of loops tiled affects the structure of 

their cost model and necessitates a new solution method. Whereas such changes can be easily 

accommodated in our GP based framework. 

The overall strategy of Sarkar and Meggido [116] is to estimate the average memory cost per 
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parameter (n=400) 

real*4 b(n,n), c(n,n) 

real*8 a(n,n) 

do i = 1,n 
do k = 1,n 
a(j,i)=a(j,i)+b(i,k)*c(k,j) 

end do 
end do 

Effective Cache Size (ECS) = 512 lines. 
Cache line size (L) = 128 bytes. 
TLB page size = 4096 bytes. 
Effective TLB size = 128 entries. 
Cache miss penalty {JJC) — 15 cycles. 
TLB miss penalty (fJp) = 50 cycles. 

Figure 5.1. 
This figure is based on the example given by Sarkar and Meggido [116]. Example loop nest and 
hardware parameters are shown on the left. The optimization problem (Eq. 5.4) for selecting the 
tile sizes is shown on the right. 

iteration and select the tile sizes that minimize it. The memory cost of a tile (s) is calculated as 

ftc x DL(s) + jjpX DP(F), where DL(F) and DP(T) are the number of distinct cache lines and pages 

touched by a tile, respectively, and JJC and fjtp are the cache and TLB miss penalties, respectively. 

The average memory cost per iteration is calculated by dividing the memory cost of tile by the 

tile volume. 

Consider tiling the two (i and k) loops (cf. Figure 5.1) with a tile of size st x sk. A row of a 

is computed using a column of c and s- rows with sk columns of b . The arrays are laid out in 

column major order and observe that the line size (128 bytes) is much smaller than column size 

(n). Since every access to a will come from a distinct line, there will be si lines touched to access 

a row of si elements. On the other hand, since we access a column of c , it will touch consecutive 

memory locations and hence will hit -^| lines, where 4 denotes the bytes per array element and 

128, the cache line size. A similar analysis will show that accesses to b will hit T ^ S^ lines. The 

sum of these three quantities is DL(5,-,5^), (cf. Eq. 5.2). A similar reasoning with the TLB page 

size yields DP(st,sk). Further details can be found in the original papers [116, 114]. To the make 

the functions DL() and DP() tractable the authors use the following continuous approximation: 

DL(s„5t = S: + 
' 4 s , • 

128 ** + 128 

(s, + 3 % 
S: + h • 

32 32 

(5.2) 

DP(5i,it) 
3200s, 

4096 

4s, +16005^ 

4096 

" 4h 
4096 

(5.3) 

100s +28 s + 400s. 4-623 s, 4-1023 
. + J * + .* 

128 1024 1024 

minimize 

subject to 

,"c*DL(s,,<t)+^xPP(',-* t) 

D L ( $ , . , J J < E C S 

l <s ; , s 4 <400 

s,,s,eZ 

(5.4) 
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I f 1 * a + / - 1 , w h e n b > 0. These approximations are also shown in Eqns. (5.2) and (5.3). The 

resulting optimization problem for picking the tile sizes is shown in Eq. (5.4). 

A closed form solution for tiling double loops is derived by exploiting the following obser­

vation: the objective function of the optimization problem has the structure —| 1 \- D, 

where A,B, C, and D are constants and sx and s2 are tile sizes. One can observe this structure in 

Eq. (5.4). However, when tiling three loops this structure of the objective function is lost—the 

tile volume îS253 appears in the denominator of a term (cf. Sarkar and Meggido [116]). Due to 

this, a closed form solution is no longer available. Hence, for finding optimal tile sizes when three 

loops are tiled, they resort to a search based algorithm. This is a classic example of sensitivity of 

the solutions to the structure of the functions used in the cost model: an extension form double 

loops to triple loops requires a different solution method. 

The optimization problem formulated by Sarkar and Meggido [116] for tiling double or triple 

loops can be reduced to an IGP. The key observation behind this reduction is the posynomial 

property of the functions used in the objective function and the constraints. First observe that 

the variables (s,-,Sfc) take only positive values, and all the parameter constants (ECS, fJc,/jp,etc.) 

are also positive. Further, both DL(x,-, j^) and DP(5;,5^) (with the continuous approximation) are 

posynomials. Using the property that posynomials are closed under addition and division by 

monomial, it is easy to verify that the objective function of Eq. (5.4) is also a posynomial. The 

constraints in Eq. (5.4) can all be easily brought to the required GP form (cf. Eq. (5.1)). The integer 

constraints on si and sk makes the GP an IGP. Hence the optimal TSS problem given by Eq. (5.4) 

is an IGP. Due to the posynomial nature of DL() and DP(), the reasoning directly applies to the 

whole class of loops considered by them. Generalization to the case when triple loops are tiled 

is straight forward based on the closure properties of posynomials and monomials. For example, 

one can directly observe that the example optimization problem for tiling 3 loops given by Sarkar 

and Meggido [116, Figure 4] can be cast as an IGP. 

5.4.2 Parallelism model 

Andonov et al. [10] use a detailed cost model, with total execution time as objective function, 

for optimal TSS of 2D parallelogram iteration spaces, often found in stencil computations. The 

detailed cost model and the general constrained optimization based approach motivates us to 
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Figure 5.2. 
A tile graph is shown resulting from a 2 x 2 tiling of the parallelogram iteration space is shown. 
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choose this model for a detailed discussion of its reduction to an IGP. We will describe their 

model and will show how their problem formulation reduces to an IGP. Further, when we extend 

the iteration space model to 3D parallelepipeds, their solution is not applicable. Whereas, the IGP 

approach directly accommodates such an extension. 

Figure 5.2 shows a tile graph—nodes are tiles and edges are dependencies between t i les-

resulting from a 2 x 2 tiling of a parallelogram shaped iteration space. Such iteration spaces result 

from a skewing transformation of loops to make rectangular tiling valid. Tile graph is a suitable 

abstraction for deriving a model of the parallel execution time. Also shown in the tile graph is the 

allocation of tiles to processors. Observe that the allocation is load balanced—all processors are 

allocated an (almost) equal number of tiles. The diagonal lines show the parallel schedule under 

which the processors execute the tiles. 

The total execution time, T, can be modeled as the sum of the latency and the computation 

time of the last processor: T = L+(TPP x TET), where, L denotes the latency of the last processor 

to start, TPP denotes the number of tiles allocated per processor, and TET is the time to execute a 

tile (sequentially) by a single processor. Here, the term T PP x TET denotes the time any processor 

takes to execute all the tiles allocated to it. Given that we have a load-balanced processor mapping, 

this term is same for all processors. In the following derivations, P is the number of physical 

processors, Ni and N: denote the size of the iteration space along i and j , respectively and st and 

5 are the tile sizes along i and / respectively. 

The time to execute a tile, TET, is the sum of the computation and communication time. The 

computation time is proportional to the area of the rectangular tile and is given by si x 5 x a. The 

constant a denotes the average time to execute one iteration. The communication time is modeled 

as an affine function of the message size. Every processor receives the left edge of the tile from its 

left neighbor and sends its right edge to the right neighbor. This results two communications with 

messages of size s , the length of the vertical edge of a tile. The cost of sending a message of size 

x is modeled by rx + {3, where r and f3 are constants that denote the transmission cost per byte 

and the start-up cost of a communication call, respectively. The cost of the two communications 

(a send and a receive) performed for each tile is (TS. + f3). The reason for accounting for the cost 

of a single call is because typically a non-blocking send call is used and its cost is hidden. The total 

time to execute a tile is now TET = s;-5-ar + (TS- +/?)• The number of tiles allocated to a processor 
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is equal to the number of columns allocated to a processor times the number of tiles per column: 

The dependencies in the tile graph induce the delay between the start of the processors. The 

slope a = —, known as the rise, plays a fundamental role in determining the latency [58, 10]. The 

last processor can start as soon as the processor before it completes the execution of its first two 

tiles. Formally, the last processor can start its first tile only after (P — 1) X (a + 1) time steps. 

Since at each time step a processor computes a tile, (P — 1) x (a + 1) x TET gives the time after 

which the last processor can start, i.e., L = (P — 1) x (a + 1 ) x TET. To ensure that there is no idle 

time between passes, we need to constrain the tile sizes such that by the time the first processor 

finishes its column of tiles, the last processor must have finished its first tile. The time the first 
N-+s-

processor takes to complete a column of tiles is equal to -^—'- x TET and the time by which the 

last processor would finish its first tile is ((/> — 1 + 1) x (a + 1)) x TET. The no idle time between 

passes constraint is ——- X TET > (P x (a + 1 ) x TET. Using the terms derived above we can now 
$i 

formulate an optimization problem to pick the optimal tile size. 

T = ( G P _ 1 ) ( a + 1 ) ) + l-Lx-L 
S;P S; 

x(aSlSj+(TS;+/3)) (5.5) 

K+sl 
subject to — >P(a + l),si,sj > l , 5 , , s e Z . 

The solution to the above optimization problem yields the optimal tile sizes, i.e., the tile sizes that 

minimize the total execution time of the parallel program, subject to the constraint that there is no 

idle time between passes. Andonov et al. [10] propose a closed form solution obtained through 

a detailed case by case analysis of the above optimization problem. This analysis exploits the 

structure of the objective function and constraints to find closed form solution. We can transform 

the optimization problem given in Eq. 5.5 to an IGP. The objective function T is directly a 

posynomial. With the approximation of TV- + si ^ TV the constraint transforms into 

P(a + l)s, 

which is the required form for a GP constraint. Adding to it the obvious constraints that tile sizes 

are integers and positive, i.e., s^S: G Z, si > 1 and s > 1, we get an IGP. 
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do il = il_lo, il_hi 
do i2 = 12_lo, i2_hi 
do i3 = i3_lo, i3_hi 
a(i2,il)=a(i2,il)+ 

b(i2,i3)*c(13,il) 
end do 

end do 
end do 

£S(S,,S2>S3) 

CP(S , ,S 2 , 5 3 ) 

T C F f ( / ( ! l . S 2 . S l ) 

FR(st,s2,sJ 

NFfPV 

NFR 

s,s,+s,s, 

3̂ 1 
S2 5 l + *253 + S 3 S 

1 

30 

load/store term 

f ( s l ' S 2 > S 3 ) LS(st,s2,si) + (5.6) 

ILP term 

[CP(svs2,Si) Tcfpu(hWi)' 

minimize F(si,s2,si) 

subject to FR(svs2,s3)<NFR 
-- (size of I-cache) 

1 2 3 — (code size for one iter.) 

(5.7) 

Figure 5.3. 
This figure is based on the example of Sarkar [115]. The example code for matrix multiply and 
some of the terms used in the problem formulation are shown in the left. The optimization 
problem for selecting the tile sizes is shown on the right. 

Stencil computations with 2D or 3D data grids, after skewing to make rectangular tiling valid, 

have 3D or 4D parallelepiped iteration spaces. Though the above cost models can be extended to 

model these higher dimensional cases, extending the solution method to find a closed form solu­

tion is not straight forward at all—and is still an open problem. On the other hand, a solution via 

IGP naturally accommodates such extensions based on the posynomial properties of the extended 

cost model. We have proposed one such extension [103] and it is discussed in detail in Chapter 6. 

have proposed one such extension for stencil computations with 3D iteration spaces and it can 

be directly cast as IGP. 

5.4.3 Register tiling model 

Loop unrolling is used to increase instruction level parallelism (ILP) and enable register promo­

tion. The unrolled iterations have multiple copies of the loop body, and expose the array ref­

erences for scalar replacement, a technique used for register promotion [25]. We can view loop 

unrolling as tiling for registers and ILP. In fact, the legality condition for unroll-and-jam and tiling 
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is the same [115]. Further, choosing the unroll factors can be viewed as selecting tile sizes—note 

that they both can take only positive values. The I-cache and register requirements can be mod­

eled as capacity constraints. Such a view leads to a more general formulation of the loop unrolling 

problem as shown by Sarkar [115]. In fact, it is the generality of formulation and the detailed cost 

model that motivates us to choose this for detailed discussion. We present this general formula­

tion of Sarkar [115], viewed as a tiling transformation. We present the complete formulation for 

an example and show how the resulting optimization problem for selecting the tile sizes (unroll 

factors) can be cast as an IGP. The reasoning about the functions used in this formulation, directly 

generalizes to the whole class of loops considered by Sarkar [115]. 

The overall approach is to find the tile sizes that minimize the average cost per iteration subject 

to the capacity constraints. Two kinds of capacity constraints are considered, viz., the register 

and I-cache. As shown in Figure 5.3 (Eq. 5.6) the objective function, F, that measures the cost per 

iteration is the sum of an ILP term and a load/store term averaged over the tile volume si x s2 x s3. 

All functions take the tile sizes, sx, s2 and s3 as arguments and estimate quantities related to the 

unrolled loop body. The load/store term, LS(), estimates the number of cycles spent on load and 

store instructions. The ILP term estimates the parallel execution time of the unrolled loop body. 

Intuitively, the parallel execution time is the maximum of the critical path length in the unrolled 

body, CPQ, and the number of cycles spent on functional units. For the example, we have only 

floating point operations and hence only floating point functional units (TCfpy(),NFpPU) and 

floating point registers (FR(),NFR) are considered. The estimated values of all the functions for 

our example are shown in Figure 5.3. The number of floating point registers required by the 

unrolled loop body, FR(), is estimated by counting the number of loop invariant references to 

array a (equal to s2s{) and the number of distinct values of arrays b and c (equal to s2s3 + sis1 ). 

The estimation is based on the Ferrante et al. [47], which is also used in the context of tiling for 

data locality presented earlier (cf. Section 5.4.1). A detailed explanation on how the functions 

are estimated is given by Sarkar [115]. The optimal tile sizes are found by an enumeration based 

search algorithm which uses the objective function F() to evaluate the merits of each tile size 

vector. The algorithm enumerates all feasible tile sizes (those that meet the capacity constraints) 

and for each one of them calculates the value of FQ, and then selects one that minimizes F(). 

The optimization problem for selecting the tile sizes given in Figure 5.3 (Eq. 5.7) can be di-
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minimize E= i,M,(H,W) + icMc(H,W) (5.10) 

subject to Bt(H,W)<0.75Ct 

BC{H,W)<0.75CC 

H,W>\andH,W eZ . 

Figure 5.4. 
A Multi-level (TLB and cache) cost model for single-level tiling from Mitchell et al. [85]. ik is 
the miss penalty for memory module k and Q, is the capacity of memory module k. Types of 
memory modules are TLB and cache and denoted by k = t and k = c. 

rectly cast as an IGP. This can be verified by observing that all the functions, parameters and 

constants used in its formulation are posynomials . This is due to the fact that these functions 

have tile sizes as variables and architectural parameters as constants, both of which are positive. 

The presence of max() in the objective function F() is not problem. It can be eliminated easily by 

introducing new variables [21,101]. 

Again, the above reasoning generalizes to the whole class of loops considered by Sarkar [115]. 

For the load store function, LS(), and the functions that model the register and I-cache require­

ments, this generalization can be easily verified with the details in Sarkar [115] and Ferrante et 

al. [47]. Sarkar [115] does not give enough details about the estimation of the functions that 

model the critical path length, CP(), and cycles spent on resource classes, TC:(), and hence, we 

do not know whether there are cases for which these functions are not posynomials. However, 

we expect these functions to be posynomials, since they use positive quantities—tile sizes and ma­

chine parameters—to model another positive quantity—the number of cycles. To summarize, we 

have shown, based on the available details, that their formulation can be cast as an IGP. 

5.4.4 Multi-level tiling model 

Mitchell et al. [85] use three examples to show the need for multi-level cost functions even when 

tiling for just one level. In this section, we present one of them, viz., a multi-level cost model that 

captures the interactions between TLB and caches. The example used is matrix multiplication 

with (k,i,j)as the outer schedule and(z',£)as the inner schedule. The ; loop is not tiled and i and 

k loops are tiled with tile sizes H and W, respectively. Square matrices of size N are considered. 

Figure 5.4 shows the multi-level cost model. For a given memory module k, the function Bk 

Bk 

Mk 

— 

= 

HW 

N>( 

(H+i) 
,H+ Wj \N + ~S~k/ ) + lk) 

(5.8) 

(5.9) 
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NB x NB= Cache tile size 
Nv x Mv= Register tile size 
CX,B{ — Cache capacity and line size 
NR= Number of registers 

Ls— Skew factor for scheduling 

+ 3 + 
'My' 

N„<-

F-, 

NB is a multiple of MJJ,Ny, and 2. 

MyNy + Nu +Mu+Ls <NK 

(5.11) 

(5.12) 

(5.13) 

Figure 5.5. 
Cost functions used by Yotov et al. [138, Figure 20] to select the cache and register tile sizes. 

(Eq. 5.8) estimates the number of blocks required to hold a H x W sub matrix, and Mk (Eq. 5.9) 

estimates the number of misses. The optimization problem (Eq. 5.10) is formulated using these 

functions and other constants, as described in the caption of Figure 5.4. Note that the objective 

function E accounts for misses at both the TLB and cache levels and the constraints on Bt and 

Bc account for both TLB and cache capacities. They have found that the Bt(H,W) < 0.75Ct 

constrains the width W more tightly and BC(H, W) < 0.75CC constraints the height H more 

tightly. They derive closed form solution for this optimization problem. 

The optimization problem (Eq. 5.10) can be directly cast an IGP, as shown in the following rea­

soning. Based on the structure of the functions Bk and Mk it is evident that they are posynomials. 

The positivity of the constant parameters, it, ic,Ct, and Cc implies that the objective function is 

a posynomial and the constraints can be put into posynomial inequalities. 

5.4.5 Auto-tuner model 

Auto-tuners such as ATLAS [126] automatically generate and tune high-performance libraries. 

Model driven empirical search is used by these auto-tuners to select parameter values. Tile sizes 

are one of the important parameters tuned in these libraries. For example, cache and register tile 

sizes are parameters tuned by ATLAS and PHiPAC. Yotov et al. [138] propose detailed models that 

can be used in auto-tuners for high performance BLAS [1]. They propose models to tune the 

matrix multiply routine, which is at the heart of level 3 BLAS. We use these models to show the 

appropriateness of posynomials in modeling cost functions used in auto-tuners. We describe the 

models they use for selecting the cache and register tile sizes and show that they are posynomials. 

They do not define an optimization problem with an objective function but rather use the cost 

functions as constraints to guide the search for the parameters. 

Figure 5.5 shows the cost functions Fx and F2, used for selecting the cache and register tile sizes, 
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respectively. Observe that the cache tile shape is restricted to squares and hence there is only one 

variable NB, however the register tile shapes are rectangles and hence we have two variables Ny 

and MJJ. They first solve for My and Ny using Eq. 5.13, and substitute the solution in F^ to make 

it a function of just NB. After this substitution Fx becomes a quadratic function which can be 

solved directly. With a continuous approximation of the ceilings in Fx, we can see that both Fx 

and F2 are posynomials. Further, the constraint that NB has to be a multiple of Ny,Mv and 2 

can be easily cast a monomial constraint. For example, the constraint that Ns is a multiple of 2 is 

equal to the following monomial constraint: 3 ^ > 0 , ^ 6 Z : A^ = 2k <==> jr — 1. In fact, with 

a suitable objective function, one can even use F1 and F2 to build a multi-level cost model, cast it 

into a GP, and solve for NB,Ny, and Mv simultaneously. 

5.51 PosyOpt Framework 

We have implemented the optimal TSS framework as a tool called PosyOpt. The implementation 

uses MATLAB and YALMIP [82] a tool which provides a symbolic interface to several optimiza­

tion tools on top of MATLAB. The symbolic interface allows a high level specification of the 

optimal TSS problems. The overall structure of our tool PosyOpt is shown in Figure 5.6. The 

optimal TSS problems are specified at a high level using posynomials as a IGP. These problems 

are then automatically transformed to a convex optimization problem. The transformed problem 

is then fed to the convex optimization solver of MATLAB and solved for real solutions. Integer 

solutions are found via a branch-bound algorithm which internally uses the MATLAB solver for 

solving continuous relaxations. The output of our tool is the set of optimal tile sizes. 

Note that the specification and subsequent refinement and extensions are performed at the 

posynomial level {cf. top box in Figure 5.6). These steps are done without any concern about the 

solution method. The only concern is that the specifications and extensions use posynomials and 

formulate GPs. Further, as shown in the Figure 5.6 (top box) different models can be combined 

or composed together to form multi-level tiling models. We have found the closure properties of 

monomials and posynomials to be very useful during the extensions and compositions. 

We envision three different users for our tool: (i) modelers would use it for designing cost 

models for TSS, (ii) Auto-tuners (such as ATLAS [126]) and model-driven empirical search meth-
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Figure 5.6. 

Optimal tiling models specified in posynomials 
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Overall structure of the PosyOpt tool. 

ods [138] would use it to pick a good initial solution and then explore the neighborhood to refine 

the solution, and (iii) compilers would use it for statically selecting a good tile size. The current 

choice of MATLAB for implementation suits very well for uses in modeling and auto-tuners. The 

modular structure of our tool allows the replacement of MATLAB based symbolic interface by 

any other tool. When our tool is used in the context of a production compiler, there will not be 

any need for a symbolic interface, the compiler would be using a particular chosen model and for 

this given model, as explained in Sec. 5.5.1, we can directly solve for the optimal solutions. 

5.5.1 Running time experiments 

Using our tool, we formulated and solved a variety of single level and two level TSS problems. 

The number of variables in any optimization problem is determined by the loop nest depth and 

the number of levels of tiling. For example, a 2D loop nest tiled twice, would have 4 variables 

in the TSS problem. The problems we experimented had 2 to 9 tile size variables and up to 

twenty constraints. The time our tool takes to find the integer solutions range from 10 to 50 

microseconds. Note that our tool uses a symbolic interface and the reported timings include the 

overhead of symbolic preprocessing, transformation to convex optimization problem format and 
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calls to the solver. Also note that if we choose to find just real solutions (and later round them) the 

solving times are much faster. Since the feasible space for all GPs are convex regions, we found in 

almost all the cases, the integer solution can be obtained via a rounding of the real solution. For 

the uses in the context of a auto-tuner or designing a model, the current speed of our tool seems 

very reasonable, particularly given the ease with which the problem can stated and solved. 

In our experience with using our tool (and MATLAB), we found many additional optimiza­

tions are possible. In the context of a production compiler, a particular TSS model is used. Given 

this, there is no necessity to actually go through a symbolic interface, and we can directly generate 

the convex optimization problem in the required (matrices and vectors) format. Second, we can 

directly use the C language function call interface to call the solver. Third, for any given model, 

we can study the region of the feasible space where the optimal solution lies and choose to just 

solve for real solutions and round them to obtain integer solutions. 

5.6 Conclusions 

We have proposed a framework based on a simple yet fundamental property of functions used 

in optimal TSS models. Our framework not only generalizes the TSS models proposed in the 

literature, but also provides the foundation for developing more sophisticated and particularly 

multi-level tiling models. The ability to compose well understood single level models to form 

multi-level models allows reuse of the knowledge developed by several researchers across two 

decades. Our tool, PosyOpt is well suited for building auto-tuners and model-driven/iterative op­

timizers. A simplified version is ideal for inclusion in compilers. We are currently benchmarking 

the GP solvers with respect to the models collected in our repository and studying whether real 

solutions are sufficient. 



CHAPTER 6 

Exploration of Parallelization Strategies for 3D Stencil 

Computations 

T, HIS chapter presents an use of posynomials and GPs for finding optimal tiling and paral­

lelization strategies for stencil computations. The key idea is to characterize the space of legal 

tilings and useful parallelizations, and explore this space by exploiting the fast solution methods 

available for solving GPs. This exploration, of not just the tile sizes but tiling and parallelization 

strategies plus the tile sizes, is an example of the wider class of optimizations that are enabled by 

the use of efficient solution methods provided by the PosyOpt framework. Such explorations 

have the potential for discovering new parallelization strategies. We show that even a partial ex­

ploration of the space of parallelization strategies lead to strategy which is up to a factor of two 

faster than the standard implementation. 

The work presented in this chapter was done in collaboration with Manjukumar Harthikote-

Matha and Rinku Dewri. It was presented in [103]. 

6.1 Introduction 

Stencil computations form the basis for a wide range of scientific applications from simple Ja-

cobi to complex multigrid solvers. Their inclusion in major benchmarks like SPEC [119], HPF-

92 
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BENCH [61], PARKBENCH [92], and NAS Parallel Benchmarks [88], clearly show their impor­

tance. The development of special purpose stencil compilers [23] and implementation of pattern 

matchers in general compilers [113] to identify stencil computations, highlight the potential for 

performance improvements from loop transformations and optimizations. 

Tiling [62, 135, 136] is a loop transformation that can be used for (i) partitioning data and 

computations among parallel processors and (ii) reordering computations within a single proces­

sor to improve data locality. For stencil computations a variety of multi-level tiling schemes are 

possible. For example, consider just two levels of tiling: an outer level for parallelism and an inner 

level for data locality. For every outer level tiling strategy, many parallelizations are possible, and 

for each such parallelization, several inner level (for locality) tiling strategies are possible. The 

best schemes are those with lowest execution times, which depend on optimal choices of tiling 

and parallelization strategies and parameters. Not only are there many such schemes, for each of 

them the space of the tile sizes is also huge. The global question is which combination of tiling and 

parallelization strategy with which parameters produces the minimum running time for a given set 

of program size parameters and a given parallel machine? It is time consuming and error prone to 

develop parallel implementations for each combination of tiling and parallelization scheme and 

experiment with them to find a good one, or to even eliminate the obviously poor ones. 

There have been extensive studies [78, 109, 81, 133, 49, 68, 67] on tiling stencil computa­

tions for locality. Schemes for tiling stencil computations for parallelism can be classified based 

on whether or not they tile the outermost time loop. The commonly used data partitioning 

scheme [52] does not tile the time loop and uses the "owner-computes" rule to determine the 

computation distribution. Early work by Wolfe [131] shows that skewing can be used to enable 

tiling of the time loops. Recently, Wonnacott [132] shows that time skewing can be used to tile 

for parallelism as well as locality. Several important issues are not addressed by these authors. For 

a given stencil computation, 

• what is the space of legal tiling and parallelization schemes? 

• what are the trade-offs between these schemes? 

• how do the tiling choices at the parallelization level affect the choices at locality1? 

'Mitchell et al. [85] point out that ignoring such tiling interactions will lead to suboptimal solutions. 
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• what are the globally optimal tile sizes? 

A study of these issues will enable us to develop high performance, multi-version, platform spe­

cific implementations of stencil computations. As an analogy, consider the matrix multiplication 

code generated by ATLAS [126]. The generated final code has different versions for different 

shapes of matrices, and makes several platform specific choices for optimizations. Our experi­

ments show that stencil computations are similar, i.e., the optimal strategy depends on the shape 

of the domain (size of the grid and the number of time steps). We envision a tool that explores 

the space of legal tiling and parallelization schemes, selects optimal parameters and generates a 

multi-version high performance implementation of a given stencil computation. As a first step 

towards such a tool, the work presented in this chapter makes the following contributions. 

• We characterize the space of possible legal tilings and load balanced parallelizations for 

2D/3D Gauss-Siedel 9-point stencil. We focus on two candidates from this space to illustrate 

the need to explore this space. Even this partial exploration led us to derive a new strategy 

which is up to a factor of two faster than the standard implementation. 

• We develop analytical models for the parallel execution times of the two strategies. We 

formulate a constrained optimization problem for the optimal tile sizes and transform it to 

a convex optimization problem, which can be solved efficiently. 

• For both the strategies, we study an additional level of tiling for locality and analyze the 

interactions between the choices at different levels. 

• We experimentally validate our analytical models. We discuss the performance improve­

ments and trade-offs obtained with various strategies. We show how the best strategy de­

pends on the shape of the stencil iteration space. This leads to a division of the input space 

into regions where different strategies perform better. 

In the next section we characterize the space of legal tilings and parallelizations. In Sections 6.3 

and 6.4 we discuss in detail the tilings and parallelizations for the two strategies and derive analyti­

cal models for their execution times. We present experimental validation and discuss performance 

improvements and trade-offs in Section 6.5. We discuss related work in Section 6.6 and present 

our conclusions and future work in Section 6.7. 
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Figure 6.1. 
(Left) Gauss-Siedel style successive over-relaxation code. 9 point stencil computation. (Right) 
Dependences of the 9 point stencil computation. 

6.2 J Space of Tiling and Parallelizations 

We consider 2D/3D stencil computations in which a two dimensional data grid of size Nt x TV 

is updated iteratively over Nk time steps. We call N^N:, and N^ as the loop size parameters 

and let N = (N^NjyN^). As a representative of this class (3D stencils) we consider the Gauss-

Siedel 9 point stencil computation given in Figure 6.1 (left). The computation domain is a 3D 

cuboid of size Ni x TV x W j . A graphical view of the nine dependences are shown in Figure 6.1 

(right). Gauss-Siedel (in place updates) stencils are expected to have faster convergence than the 

Jacobi stencils, which use all the 9 values from previous time steps. On the other hand, the 

dependences of the Jacobi stencil are easier to tile and/ or parallelize. We consider the difficult (to 

tile and parallelize) but faster converging Gauss-Siedel stencils. Our characterization and models 

are directly adaptable and applicable to other types of 2D/3D stencils. 

6.2.1 Tiling and parallelization model 

Tiling [62,135] partitions the iteration space into groups which are executed in an atomic fashion 

- all iterations in a given tile are executed by a processor before any iteration of its next tile. Note 

that this notion of atomicity still permits any legal (re)ordering of the computation and commu­

nication steps within a tile. A rectangular tiling is one where rectangles are used for partitioning. 

We consider rectangular tiling possibly preceded by a skewing transformation to make it legal. 

We denote the tile sizes along the dimensions i,j, and k of the 3D iteration space by si, s., and s^, 
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respectively. The tile graph consists of nodes representing tiles and edges between them represent­

ing the dependences between tiles. It is well known that [10, 136] if the s/s are large as compared 

to the elements of the dependence vectors of the original loop, then the dependencies between the 

tiles are unit vectors (or binary combinations thereof, which can be neglected for analysis purposes 

without loss of generality). An important property is that the tile graph with such unit depen­

dence vectors can be viewed as an ^-dimensional system of uniform recurrence equations [69]. 

Such a view allows us to use the powerful systolic array synthesis methods [95, 96] to formally 

reason about optimal parallelizations of the tile graph. In the context of exploring the space of 

possible tiling and parallelizations, such a formal reasoning helps in constraining the search space 

to a few valid and good candidates. 

In any parallelization, the dependences in the tile graph induce some delay before which all 

the processors can start executing. We call this initial delay the latency of a parallelization strategy. 

Once all the processors begin to execute, any idle time incurred by a processor is a consequence 

of the chosen parallelization. We restrict ourselves to parallelizations that are free of such idle 

times. We call such parallelizations idle-free. We also restrict ourselves to allocations that are 

load-balanced, i.e., to ones that allocate an equal amount (except at boundaries) of computation to 

every processor. For the stencil computations this can always be achieved. Practical experience as 

well as our analytical models predict that optimal performance can only be achieved under such 

idle free load balanced parallelizations. Further, for allocation functions we restrict to orthogonal 

projections—ones that are parallel to some canonical axes. 

To summarize, we consider rectangular tiling and idle-free load balanced parallelizations only. 

As shown in the later sections, the set of choices to be considered after these restrictions is still 

rich. 

6.2.2 Need for and implications of skewing 

Skewing is a loop transformation that changes the dependence distances in the stencil code. In 

the context of stencil computations, skewing is often used to transform the dependence distances 

into non-negative ones, thus making tiling legal. Given the dependences of the 9-pt stencil (c.f. 

Figure 6.1), tiling certain dimensions require certain skewing transformations to make it legal. 

However, as a side effect, skewing also changes the shape of the iteration space. For instance, 
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Figure 6.2. 
Space of multi-level tilings and parallelizations for the 9-pt. stencil. The choices (path) shown in 
bold correspond to the two strategies explored in detail. 

skewing a rectangular iteration space will make it a parallelogram. As a consequence, a rectangular 

tiling of the parallelogram iteration space will result in both full (rectangular) and partial (non-

rectangular) tiles. Partial tiles increase the tiling overhead and also makes analytical modeling 

difficult. Hence, there is a trade-off: extra tiling overhead introduced by skewing versus ability to 

tile additional dimensions. 

6.2.3 Space of tilings and allocations for parallelization 

The space of possible rectangular tilings for the 9-pt stencil (c.f. Figure 6.1) corresponds to the 

choice of which and how many dimensions do we choose to tile. Note that we are not charac­

terizing the space of tile sizes, which we will do later for each possible tiling. Tiling different 

dimensions requires a different set of skews of the iteration space. The choices and the corre­

sponding skews are discussed below and a graphical view of them is shown in Figure 6.2 (top 

box). 

1. Tile the program with no skewing. The program dependences limit such tilings. For 

example, in order to tile either the i or the j loops, ŝ  has to be 1. Furthermore, in order to 
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tile the j loop, sl must also be 1. Thus the possible tilings are: (i) the trivial 1 X 1 x 1, N^ x 

Nt xN: and 1 xNi xTV tiles which we discarded for obvious reasons; (ii) 1 x s -t xTV tiles; and 

(iii) 1x1X5 tiles, which we discard because the computation-to-communication balance of 

the tiles is too low2. We pursue the 1 x s • x A/.- tiling. For this tiling strategy, a parallelization 

on an ID processor array is the only choice, where the processors are aligned along the z 

axis (c.f. Figure 6.3 (left)). The choices are shown in the left-most branch of Figure 6.2. 

2. Tiling both z and / dimensions. We need to skew i with respect to / to make tiling along 

j legal. This case also covers the case of tiling just along / when the tile size along z is 1. 

For this tiling, we can parallelize the tile graph on an 2D or ID processor array. For an ID 

processor array we align it along the z axis. For the 2D processor array, we can either align 

the processors along the z^-plane or the i/-plane. For the z/-plane alignment the processors 

are arranged in a parallelogram shaped grid and for the z'^-plane alignment they are arranged 

in a rectangular grid. The choices are shown in the second branch (from left) in Figure 6.2. 

3. Tiling both z and k dimensions. We need to skew i with respect to k to make tiling along 

k valid. Based on a similar reasoning as above, this choice also covers the tiling just along k. 

For this tiling, a parallelization on an ID processor array is the only choice. The processors 

are aligned along the k axis as shown in Figure 6.4 (right). The choices for this strategy are 

shown in the third branch (from left) in Figure 6.2. 

4. Tiling all the three (i,j and k) dimensions. We need to first skew i with respect to k and 

then skew / with respect to i. This choice also covers the case of tiling just / and k. For 

this tiling, with orthogonal processor allocations, only an 2D processor array is possible. 

The 2D processor array is aligned along the i^-plane. However, if we expand our space and 

consider non-orthogonal processor allocations, there are two linear array parallelizations 

possible3. We do not discuss these choices further. The choices related to the 2D processor 

array is shown in the right most branch in Figure 6.2. 

It would be easy to use the ideas in this chapter to confirm analytically and experimentally that this is indeed the 
case. 

3These non-orthogonal projections make every communication non-local, which would result in higher commu­
nication costs. Based on this intuition we have restricted ourselves to orthogonal projections. It is not clear whether 
this is always globally optimal but it definitely makes the space more tractable. 
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One might wonder why the last choice above does not cover all the other cases by appropriately 

letting the corresponding dimensions (i,j, and/or k) equal to 1? The answer is, skewing creates 

partial tiles and leads to a different cost function for the total computation time. The overhead 

of partial tiles should be avoided whenever possible, so that we can derive simpler parallel imple­

mentations and more precise execution time models. 

6.2.4 Space of tilings for locality 

After an outer level of tiling for parallelism we can tile another level for locality. We call a tile 

from the outer level of tiling (for parallelism) as a parallel-tile and a tile from the inner level of 

tiling (for locality) a cache-tile. Correspondingly we also refer to their sizes AS parallel-tile sizes and 

cache-tile sizes. 

We have two choices for cache tiling: tile i and / dimensions only or tile i, / and k dimensions. 

Both may require additional skewing transformations to make them legal. This additional skew­

ing is not required if it has already been done for the outer (parallelism) level tiling. Given that 

the data of the stencil is 2D, tiling just the i and ;' dimensions will allow us to exploit the limited 

amount of spatial locality. To exploit temporal locality we need to tile the (time) k dimension. 

The choices are shown in Figure 6.2 (lower box). 

6.2.5 Interactions between tilings 

Two types of interactions ensue, viz., (i) skewing transformations at parallelism level can enable or 

disable tiling along certain dimensions for locality, and (ii) the parallel tile sizes restrict the lower 

and upper bounds of the cache tile sizes. These interactions stem from the fact that a parallel-tile 

becomes the iteration space for the cache tiling. We describe below two instances where a decision 

made at the parallelism level affects the choices in the inner level. 

Consider the case in which we do not tile the k loop at the parallelism level. This choice leads 

to parallel-tiles which are slices of the j/-plane and disables cache level tiling of the k loop. These 

slices become the iteration space for the cache-level tiling. So, we can see that the cache-tiles are 

forced to be 2 dimensional and hence can only exploit spatial locality. (Recall that we need to also 

tile the k dimension to exploit temporal locality.) The first two branches (from left) in Figure 6.2 

shows this consequence — observe the leaves showing the possibility of only 2D cache tiles. 
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When tiling j loop is made legal by skewing transformations at the outer level, there is no 

additional skewing required at the inner cache-level to get 2D cache-tiles. This case is shown in 

the second and fourth branches (from left) in Figure 6.2. On the other hand, notice that for the 

strategies shown in the first and third branches (from left) in Figure 6.2, we need to skew i loop 

with respect to j to make tiling j loop legal and hence get 2D cache-tiles. 

6.3 \ ID Strips 

In this section we consider the first strategy (left most branch in Figure 6.2) and develop an ana­

lytical model for the parallel execution time. In the modeling, we use three parameters, viz., a,j3 

and T, to model the quantities that are dependent on the loop program and parallel architecture 

on which it is to be executed, a represents the time to execute an iteration of the given loop pro­

gram. /3 and T represent respectively the start up cost of a MPI communication call and the time 

to communicate a d o u b l e precision data value. 

In this tiling strategy, each tile is a 1 x si x N: rectangular parallelepiped, i.e., only the i loop 

is effectively tiled. The ; loop has a single "tile" of size N-, and the k loop "tiles" have unit size. 

Because there is only one tile in the ; dimension, the resulting tile graph can be viewed as a 2D 

grid in the (i,k) plane as shown in Figure 6.3 (left). The dependences between tiles are [0,1] to the 

north, with a data "volume" of N:Sit and [1,0] (east) and [—1,1] (north-west), both with volume 

Nr 

To explore different parallelizations, we first derive the optimal wavefront schedule for the 

tile graph, which is t(i,k) = i +2k. This schedule is shown as dotted lines across the tile graph in 

Figure 6.3 (left). It is optimal in the sense that the total execution time for this schedule (assuming 

unbounded processors) is — +2N/e — 1, which equals the length of the longest path in the graph. 

Next, we choose an appropriate allocation of tiles to (virtual) processors. For our rectangular 

tile graph, only two allocations lead to a load balanced parallelization, namely by columns, or by 

rows. Allocation by rows, where each processor sequentially executes all the tiles in a row of the 

tile graph, leads to a parallelization that allows multiple passes. We developed an analytical model 

for it and determined the optimal tile size. However, this parallelization is almost always outper­

formed by the column wise allocation, and is not described further in the interests of brevity. 
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for k = \...Nk 

for each strip S 
receive Rcol[&] of p-_^ 
compute Lcol[&] of S 
send Lcol[&] of S to pi_l 

compute MiddleRegion[k] of S 
receive Lcol[& — 1] of £i+[ 

compute Rcol[&] of 5 
send Rcol[&] of S to pi+i 

Figure 6.3. 
(Left) Tile graph of ID strips tiling. The fastest schedule is shown in dotted lines. (Right) 
Steps performed by each (non-boundary) processor in ID Strips tiling. Lco l [ ] , Rcol [ ] , and 
Midd leReg ion [ ] corresponds to the left column, right column and middle portion of a strip. 
The index k and k — 1 indicates, respectively, whether they are from the same k plane or the 
previous plane. 

Allocation by columns, where tile (i,k) is performed by virtual processor i, yields a paral-

lelization (i.e., a "macro systolic array") that has bidirectional communication: processor z sends 

to z' + l for the [1,0] dependence, and to i — \ for the [—1,1] dependence. This has two important 

consequences. 

• Every processor is active only on alternate time steps. This problem can easily be corrected 

by a well known systolic technique called clustering or serialization. We allocate two adja­

cent virtual processors to a single physical processor which alternates between the two tiles 

and is thus always busy. This combined two-tile unit is called a "macro tile" or a Strip. 

• It precludes adaptation to run on fewer processors in multiple passes, using another com­

mon systolic technique called LPGS (for Locally Parallel Globally Sequential) partition­

ing [86]. This means that s;; = JT, i.e., each macro tile is a — x N: strip. 

A processor performs the following steps: receive data required to execute the strip, execute the 

strip and send computed data to neighbors. As a latency hiding optimization, we can relax the 

strict order between the receive-compute-send steps, and interleave them. In the execution of a 

strip, if we allow the processors to move the sends as early as possible and the receives as late 

as possible, we get the optimized code shown in Figure 6.3 (right). In this version, a processor 

receives the data to compute its left-most column, computes it and sends the new values immedi-
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ately. Then it computes the middle region of the strip, receives the data to compute the right-most 

column, computes it, and sends the new values. 

There are no tiling parameters to choose optimally, and the analytical model developed below 

predicts the running time for this parallelization. The single pass execution implies that the tile 

size 5- along i has to be -£. Let pi denote the i processor, and p' — pp_x the last processor. 

The total execution time of this tiling and parallelization can be modeled as Tst • = Latency(^/) + 

TPP(/>) x TET(Sj). Where, P is the number of processors, sl = -± is the tile size, Latency^') is 

strip 

p is the til 

the latency for last processor to start, TPP(p) is the number of tiles allocated to any processor p, 

and TET(ij) is the time to compute a tile. To compute the time to execute a tile, we observe that 

during the computation of a tile a processor performs N:St computations and communicates its 

left and right columns, of size N:,to the previous and next processors. Hence, we have TET(s,-) = 

a xN: x si + 4(TN: + /?), where, a, r, and f3 are as discussed earlier. Every processor is allocated 

Nfc macro tiles (or strips), hence TPP(p) — Nk. 

The last processor can only start after it receives the right most column of its left neighbor, 

i.e., p' can start after the first P — 1 processors execute their tiles. Hence, Latency(/>') = (P — 1) x 

TET(Sj). By plugging in these functions we get 

6.3.1 Cache tiling 

Each processor executes a set of parallel-tiles, each of size -y x N.•. This strip can be further tiled 

to exploit some limited amount of spatial locality. However, to make the tiling of the strip legal, 

we need to skew the ; loop with respect to the i loop. We perform this transformation and then 

tile both the i and the ; loop to obtain 2D cache-tiles. Note that the decision of not tiling the k 

loop at the outer level results in a situation where we cannot tile the k loop at the inner (cache) 

level, to exploit temporal locality. We select the best cache-tile sizes empirically, i.e., by running 

the cache-tiled coded for several tile sizes and selecting the best. 
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Figure 6.4. 
(Left) Skewed dependences that make this tiling legal. (Right) Semi-oblique strips tiling. 

6.4 \ Semi-oblique Strips 

In this tiling strategy, we seek to tile the k and z dimensions. To make this tiling legal we first 

skew the i loop with respect to the k loop with the transformation (k,i,j)<-* (k,i +k,j). The 

transformed dependences are shown in Figure 6.4 (left). We then tile the k and z loops with tile 

sizes $£ and si, respectively. We do not tile the j loop and allow s • = JV . The skewed iteration 

space together with the tiling is shown in Figure 6.4 (right). 

We parallelize this tiled iteration space on a linear array of P processors aligned along the k 

axis as shown in Figure 6.4 (left). Note that depending on whether — > P or not, there might 

be more than one pass. Every processor executes one or more rows (along i) of —'- tiles of size 

sk X s, x Nj. Such an allocation is load balanced—all the processors execute the same amount of 

computation (assuming P divides — evenly). During the execution of a tile, a processor receives 

the bottom (z / ) face of the tile from the processor below it, computes the tile, and sends the top 

(z j) face to the processor above it. These faces communicated between processors are of size s^N:. 

The execution time of the tiled parallelized loop program is given by 7"sos = Latency(^p_j) + 

TPP(^) x TET(5,,5^), where we have TETfo,**) = (as^Nj +2{rNjsl +/?)) . The number of tiles 

allocated to a processor is TPP(/?) = JJ x ' 5k. This follows from the fact that JJ gives the 

number of passes executed by a processor and ' $k is the number of tiles executed by a processor 

in one pass. 

The slope j - (also known as the rise [57]) plays a fundamental role in determining the latency. 

Processor pP_^ can start its first tile only after (P — 1) X ( —+ l j tiles are executed. Hence, 

we have Latency(pP_1) = (P — 1) X (^- + 1) x TET(s(-,j^). To ensure that there is no idle time 
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between the passes, we need to make sure that by the time the first processor finishes all the tiles 

from its first pass, the last processor should have finished at least one tile. This constraint is given 

by P (— + 1J < ' Sk. Putting them all together we get the following constrained optimization 

problem 

minimize 
Nk N,+sk\ sk 

— x + ( P - l ) x - + 1 
.\skp h I \s> 

subject to P h 1 I < 

x{asiskNj+2^5^/3)) (6.2) 

We can transform this optimization problem (Eqn. 6.2) into a Geometric Program (GP), and 

can be solved efficiently using the tools discussed in Chapter 5.2.3. 

6.4.1 Cache tiling 

Each parallel-tile is a semi-oblique block of size sk x s( x Nf. Each block can be further tiled for 

locality. Since we have tiled the k loop at the outer level we can have both 2D as well as 3D tiles 

at the inner (cache) level. To make tiling the / loop legal, we have to skew it with respect to the z 

loop. After this transformation, we can either choose to tile only the i and ; loop to obtain 2D 

cache-tiles, which can exploit spatial locality, or tile all the three loops to obtain 3D cache-tiles 

and exploit both spatial and temporal locality. We explore only the choice of 2D cache-tiles and 

leave 3D cache-tiles as future work. Note that the optimal parallel-tile size s, from the outer level 

affects the iteration space sizes for the 2D cache-tiling, viz., s- x N-. We select the best cache-tile 

sizes empirically, i.e., by running the cache-tiled coded for several tile sizes, which are within the 

bounds of s, and N-, and selecting the best. 

6.51 Experimental Results 

We have implemented two versions, one with cache tiling and one without, for both the ID Strips 

and Semi Oblique Strip (SOS) strategies. The implementation of the ID Strips is the optimized 

latency hiding version. For both the strategies, we selected the best cache-tile sizes by running 

the cache-tiled code (on a single processor) for a range of tile sizes (within the bounds imposed 

by parallel-tile sizes). For the ID Strips, we observed that for the small tile sizes range, there is a 

steep decrease in the running time as we increase the tile sizes. This trend stops and the running 
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Figure 6.5. 
Speedups for SOS over Strip strategy without (left) and with (right) cache tiling. Results for five 
different grid sizes Nt = N- = 1200,2160,3120,4080, and 5040, each for a set of small time steps 
Nf!=P (the number of processors), are shown. 

time becomes relatively constant for larger tile sizes. After experimenting with several strip sizes, 

we found the cache-tile of size 60 x 140 to be the best and used it for our experiments. For 

the SOS strategy, the running time had a similar behavior with respect to cache-tile sizes. After 

experimenting with several grid sizes, we found that the optimal parallel-tile size si is always very 

small, and hence we let the cache-tile size along the i dimension to be the same as 5-. This results 

in no cache-tiling along z. For the cache-tile size along j we selected a value of 50 which belongs 

to the flat execution time region. 

We used a IBM Cluster 1600 running AIX, at the National Center for Atmospheric Research, 

Colorado, for our experiments. The IBM Cluster is a Symmetric Multiprocessing (SMP) sys­

tem. The nodes are made of 1.3-GHz POWER4 processors. The processors in a single node can 

communicate via shared memory, and the nodes themselves communicate via an SP Switch2 inter­

connect. We used the IBM mpcc compiler for our experiments with standard - 0 3 optimization 

levels. Our parallel implementations are written using the MPI message passing library. 

We obtained values of a = 5.5 x 10~8,/? = 4.1 x 10"6 and r = 5.3 x 10 - 9 as follows. We ran 

the loop body of the stencil computation for 1000 iterations and took the average execution time 
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Figure 6.6. 
Percentage error in predicted with respected to actual for SOS (Left) and Strip (Right) strategies 
without cache tiling. Results are reported for five different grid sizes (TV, = NA each for a set of 
time steps N^ equal to number of processors P. 

as a - the time to compute one iteration. We estimated the cost of communicating one double 

value (T), and the MP I communication call start up cost (/?), with a ping-pong style MPI program 

that mimics the communication pattern of our tiled programs. 

Stencil computations used in PDE solvers have fast convergence and the number of time steps 

are usually small, such as 8,16, or 24. The type of stencil computations used in simulations, such 

as water models, have large number of time steps. For our experiments we considered these two 

type of stencils over square grids, i.e., Nt = JV-. We found that for small time step stencils the SOS 

strategy performs better than Strips, and as the number of time steps increases, its performance 

becomes comparable to that of Strips. This divides the input space into two regions where one of 

the strategy is clearly preferable over the other. 

We present experimental validation and performance improvements for the small number of 

time steps case. Five different square (Ni = NA grid sizes viz., 1200,2160,3120,4080, and 5040, 

with small time steps Nk were used for experiments. For such small time steps in the SOS strategy, 

the number of processors is set to N^, since the processors are aligned along the k dimension. 

Figure 6.5 shows the speedup achieved by the SOS over the Strip strategy (without and with tiling 
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for locality) for the five different grid sizes with number of processors P = N^. Without cache 

tiling we obtained speedups of up to 60% (with an average of 40%). Also, we observed higher 

speedups for larger grids. We observed in single processor experiments that cache tiling helps SOS 

(30%) more than Strips (5%). These improvements are reflected in their parallel implementations 

(Figure 6.5(right)). Speedups up to a factor of 2.1 are seen with cache tiling (see P — 24 in Fig­

ure 6.5(right)). Here, we see a similar trend of higher speedups for larger grid sizes. Clearly, for 

stencils with small time steps, the new SOS strategy performs much better than the standard Strips 

strategy. A two fold decrease in running time is significant for such applications. 

We validated our analytical models for the two strategies, using more than 100 different com­

binations of stencil grid sizes and number of processors, and have found them to be reasonably 

accurate. We present here a subset of them. The percentage error in predicted with respect to 

the actual for SOS is shown in Figure 6.6(left) and for Strips in Figure 6.6 (right). Our models 

consistently under predict the execution time. Overall, the predictions are within 20% of the 

actual execution time, which is good for tiling and design space exploration. Further, for SOS, we 

conducted experiments to see how close is the predicted to the actual at the optimal tile sizes (si 

and 5^), obtained by solving the constrained optimization problem (c.f. Eqn. 6.2). We found that 

near the optimal running time the predictions are fairly close (within 20%) and at points far from 

optimum the difference is higher. This is the behavior we desire from such analytical models. 

6.6 Related Work 

There have been extensive studies [78, 109, 81, 133, 49, 68, 67] on tiling stencil computations 

for locality. In the space of multi-level tilings that we characterize, these locality improving tech­

niques can be leveraged to improve the implementations at the leaf (uni-processor) level. Data 

or domain decomposition [52] is a standard scheme used in tiling stencil computations for par­

allelism. Early work by Wolfe [131] shows that skewing and tiling transformations can be com­

bined to tile for both parallelism and locality. Recently, Wonnacott [132] shows that time skewing 

can be used to tile for parallelism as well as locality. As discussed in Section 6.1, these authors pro­

pose transformations that can enable and make tiling beneficial for parallelism and locality. We 

characterize the space of possible multi-level tilings and parallelizations with the goal of system-
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atically deriving the best implementation for a given stencil. 

Andonov et al. [10] consider 2D (ID data and 2D iteration space) computations and pro­

pose an analytical model similar to ours for estimating the execution time of a tiled program and 

present analytical closed form solutions for the optimal tile sizes and the number of processors. 

We consider an 3D iteration space and characterize the possible multi-level tilings and paralleliza-

tions. Our analytical BSP style cost models are inspired by theirs. Bordawekar et al. [19] present a 

technique for optimizing communication for out-of-core distributed stencil computations. They 

show how a compiler can choose the tiling parameters based on the stencil computation and pro­

cessor information. Their goal is to minimize the communication, whereas our goal is to find the 

tiling strategy and tile sizes that minimize the total execution time. 

6.7 Discussion 

We have characterized the space of legal multi-level tilings and parallelizations for the 2D/3D 9-

pt Gauss-Siedel stencil computations. We have shown that a systematic exploration of a part (2 

strategies) of this space leads to a new strategy which achieves up to a factor of two improvement 

over the standard implementation. A two fold decrease in running time is significant for such 

applications. This illustrates the importance of exploring this space. Further, the exploration 

helped us to divide the input space into regions in which different designs are better. This shows 

us the need for runtime data dependent choice of the best implementation. We consider our 

results as a first step towards a complete exploration of this space. 

As a future work, we envision to build a framework that will take a stencil computation as 

input and will automatically determine the required skewing transformation, and generate analyt­

ical models for different tiling and parallelization strategies, and select the best strategy. Majority 

of the required theory for this is known, and we believe that our GP framework is general enough 

to integrate all these techniques into a single tool. As an immediate future work, we would like to 

implement and explore other tiling strategies. 



CHAPTER 7 

Combined ILP and Register Tiling 

, l EFFICIENT use of multiple pipelined functional units and registers are very important for 

achieving high performance on modern processors. Instruction Level Parallelism (ILP) and reg­

ister reuse (through register tiling) are two mechanisms for efficient use of pipelined functional 

units and registers respectively. Program transformations that expose and exploit ILP and register 

reuse interact with each other in subtle ways. In this chapter we study the combined problem of 

optimal ILP and register reuse. We consider the class of uniform dependence, fully permutable, 

rectangular loop nests. We develop an analytical model of the combined problem and formulate a 

mathematical optimization problem that chooses the parameters of the ILP-exposing transforma­

tion and register tiling so as to minimize the total execution time. We distinguish two cases: when 

loop permutation can and cannot expose a parallel loop. We show that the combined problem can 

be reduced to a single IGP for the former case, and to a small set of IGPs for the latter case, both 

of which can be solved to global optimality. This combined exploration of ILP and register tiling 

is another example of the broader class of optimizations made possible by the efficient solution 

methods provided by the GP based approach. 

The work presented in this chapter was done in collaboration with Ramakrishna Upadrasta. 

It was presented in [102]. 

109 
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7.1 Introduction 

Efficient use of the multiple pipelined functional units and registers are important to achieve high 

performance. Instruction level parallelism (ILP) allows a sequence of instructions derived from 

a sequential program to be parallelized for execution on multiple pipelined functional units in 

modern processors. Exploiting ILP and register reuse is critical for efficient use of execution re­

sources. Irrespective of whether the target architecture can extract/exploit ILP (like superscalar 

processors) or not (VLIW processors), compilers can transform the program to enhance and ex­

pose the parallelism, and schedule the program to exploit the parallelism. No matter what the 

architecture is, performance is greatly influenced by the quality of the compiler generated code. 

State-of-the-art compilers perform a variety of program optimizations to expose, enhance and 

exploit ILP and register reuse. 

Loop nests are often the main sources for ILP and register reuse. The traditional approach, 

shown on the top row of Figure 7.1, uses unroll and jam [6] to expose ILP and scalar replacement 

to expose register reuse. However, this approach has the disadvantage of increased code size and 

register pressure. Further, it is hard to quantify the interactions [28] between unroll and jam, 

scalar replacement and software pipelining, the widely used loop scheduling technique [76, 100, 

5]-

Loop parallelizing techniques offer many transformations that can expose parallelism. Ex­

amples include, loop permutation, loop skewing [6], multi-dimensional scheduling [38], etc. In 

addition, loop tiling [136] can be used enable register reuse. We propose to use loop permutation 

and skewing to expose ILP, followed by tiling to enable register reuse. Our approach, shown in 

the bottom row of Figure 7.1, does not suffer from increased code size. However, enabling register 

reuse with tiling requires a register allocator for array variables as compared to the use of scalar 

register allocator in the scalar replacement approach. 

Program transformations that expose ILP and those that enable register reuse interact with 

each other in subtle ways. For example, loop unrolling and loop skewing will expose ILP but 

might also increase the number of live values and hence the register pressure. On the other hand, 

register tiling will enable register reuse but might also limit the amount of ILP with the new 

order of execution of the tiled program. Quantifying and modeling these interactions between 
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Figure 7.1. 
Outline of our approach to ILP and Register Tiling. Top row shows the traditional approach and 
bottom row shows ours. The choice of code transformation technique influences the parameters 
to be determined and hence the performance model. 

various program transformations is crucial for finding optimal (w.r.t. total program execution 

time) transformations. In this chapter we present a solution to the combined problem of choosing 

the optimal parameters for the ILP exposing (loop skewing) transformation and register tiling. 

The key aspects of our solution are outlined below. 

• We give an analytical model that quantifies the interaction between the ILP exposing trans­

formation (loop skewing) and register tiling. 

• We formulate the optimal ILP and register tiling problem as a mathematical optimization 

problem. We present a globally optimal solution to this problem by reducing it to a convex 

optimization problem. 

• We distinguish two cases: when loop permutation can and cannot expose a parallel loop. In 

the former case, we reduce the combined optimization problem to a single integer convex 

optimization problem. In the later case, when skewing is required to expose ILP, we show 

that the combined problem can be reduced to a set of integer convex optimization problems. 

The solution to our combined problem will produce a loop nest in which the ILP and register 

reuse are exposed. The scheduling and register allocation phase (cf. Figure 7.1) is an important step 
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in achieving good performance. This phase is not discussed in this chapter. It can be constructed 

by adapting well studied techniques like modulo scheduling [100] and register allocation for array 

variables. 

In the next section we present the outline of our solution to the ILP and register tiling prob­

lem. In section 7.3, we present the program, tiling, and execution models and describe the basic 

building blocks of our analytical model. In section 7.4, we formulate the mathematical optimiza­

tion problem that chooses the optimal skew and tile parameters. In section 7.5, we characterize 

the condition under which a permutation can expose a parallel loop and present an efficient al­

gorithm to check this condition. In section 7.6, we characterize the space of valid skewing trans­

formations. In section 7.7, we show how the optimal TSS problem can be reduced to a convex 

program and solved efficiently and in section 7.8, we present the strategy for finding the globally 

optimal solution to the combined ILP and register tiling problem. In section 7.9, we present a 

complete example that illustrates our solution method. In section 7.10, we present the related 

work and in section 7.11, we present a discussion and future work. 

7.21 Our approach to ILP and register tiling 

Our approach is to use loop skewing as the ILP exposing transformation, and register tiling as the 

register reuse enabling transformation and software pipelining as the ILP exploiting mechanism. 

Since we are using register tiling together with loop skewing, we require that after skewing the 

resulting loop nest admit rectangular tiling. 

Software pipeliners look at the innermost loop1 to find ILP among operations from different 

iterations of the loop. Hence, if we could transform the loop nest into one in which the inner 

most loop does not carry any dependences, i.e., all of its iterations can be executed in parallel, then 

the software pipeliner can find a schedule in which the performance is constrained only by the 

execution resources as opposed to dependencies. When sufficient ILP exists and can be exploited, the 

performance is limited only by the available execution resources - or the execution bandwidth of the 

machine. Such a schedule will exploit the maximum possible ILP and have maximum utilization 

of functional units. 

'The two exceptions are the works of Rong et al. [110] and Ramanujam [97]. See the related work section for 
details. 
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Solution Strategy 

The optimal ILP and Register Tiling optimisation problem is 
Formulated with tile sizes antl skew matrix as variables and uses the 
following: 

1. Loop bounds and dependence information from program. 

2. Number and type of functional units and registers from the target 
architecture. 

3. An execution time model -- a function that measures the overall 
execution lime of the transformed loop nest in terms of the tile sizes 
and skew matrix. 

The strategy is to first check whether any permutation of the given 
loop nest can expose a parallel loop If so. we permute the loop and 
then tile it. If not, we first skew the loop nest to expose a parallel 
loop and then permute it to the inner most position and then rile it. 

In the case of skewing, we iteralively solve a set of convex 
optimization problems to determine the optimal skew and tile sizes. 

The optimal skew factor and the tile sizes are then used to transform 
tile loop nest. 

Outline of our solution strategy. 

Motivated by the above discussion, we seek a transformation that would transform the given 

fully permutable loop nest into one 

• (CI): for which rectangular tiling is valid for any given tile sizes t = (t1,...,tn). This 

validity condition reduces to non-negativity of all the components of all the dependences, under 

the reasonable assumption of the tile size being larger than the dependence lengths and the 

iteration space size being larger than the tile size [135]. 

• (C2): in which there is at least one loop which does not carry any dependences (i.e., whose 

iterations are all parallel). We can always permute this loop to the inner most position, as 

full permutability (of the transformed loop nest) is required by the previous condition (CI). 

There are many classes of transformations that can produce a loop nest that would satisfy the 

above two conditions. Loop skewing is one such class and we have chosen it for following rea­

sons: For uniform dependence loops, we can always find a skewing transformation that will pro­

duce a loop that satisfies (CI) and (C2). Second, loop skewing is conceptually simpler and easy 

to construct, and this allows us to develop an efficient algorithm for finding the optimal skew 

transformation parameters. 

Figure 7.2 shows the outline of the steps involved in our solution methodology. Using the 

performance model, we formulate an optimization problem whose solution would yield the skew 
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factor and tile sizes that are optimal with the overall execution time. We check whether permu­

tation can expose any parallel loop. If so, we permute, expose the parallelism, and then tile for 

registers. In this case, the combined problem reduces to the problem of finding the optimal tile 

sizes, which can be reduced to a single integer convex optimization problem. When loop permu­

tation cannot expose a parallel loop, loop skewing is required to expose the ILP. In this case, we 

need to find the optimal skewing and tile sizes. We find these by solving a set of integer convex 

optimization problems. 

7.3 I An analytical model 

In this section we develop an analytical model that quantifies the interaction between loop skew­

ing and register tiling transformations. A model, similar in spirit, is used in the context of tiling 

for memory hierarchy [101] and described in Chapter 8. 

7.3.1 Program and tiling model 

The program class we consider is the class of fully permutable rectangular loop nests with uniform 

dependence bodies. Note that this class of programs admit rectangular tiling and are also the 

class for which software pipelining is often applied. We consider an w-dimensional loop nest with 

constant upper and lower bounds. The loop body contains statements with uniform dependences. 

Let Jz? = [Z.j,...,L„] be the given ^-dimensional loop nest, where each Z,( denotes a loop at 

depth i. Any «-D vector formed by the loop counters of i£ is called an iteration vector. Let 

D = [dl,. ..,dm] be a matrix whose columns are the («-D) dependence vectors. 

To expose ILP we use skewing and permutation. A skewing (transformation) matrix has the 

form of an upper triangular matrix with all the diagonal entries equal to 1. The non-diagonal 

entries are determined by the skewing factors. We denote the skewing matrix that we seek by S. 

Skewing a loop Li with respect to a loop L-, by an appropriate factor / , makes the loop Li carry 

all the dependences that were originally carried by loop Z. . A permutation transformation that 

permutes the i' loop with the ; loop can be represented by an identity matrix (of appropriate 

size) in which the z and j t h rows are interchanged. 

We consider rectangular (or orthogonal) loop tiling: tiling the loop nest with hyper-rectangles 
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whose boundaries are orthogonal to the canonic axes. We assume that rectangular loop tiling is valid 

for the given loop nest [136]. Note that the tiled loops are fully permutable. The tile graph is 

the graph where each node represents a tile and each arc represents a dependency between tiles. 

In our case, each node of the tile graph is a hyper-rectangle of size ( , x t 2 X ' " X t r Note that 

though our iteration space is rectangular, after skewing, we will have hyper-parallelepiped shaped 

iteration space, and when we tile this with rectangular tiles, we will have some full rectangular 

tiles and some partial non-rectangular tiles. 

It is well known that [10] if the t^'s are large as compared to the elements of the dependency 

vectors, then the dependencies between the tiles are unit vectors (or binary combinations thereof, 

which can be neglected for analysis purposes without loss of generality). In general, the feasible 

value of each ti is bounded from below by some constant. For the sake of notational simplicity, 

in this chapter we assume that this is 1. 

7.3.2 Architecture and Execution model 

We use an atomic tile execution model: tiles are executed sequentially one after the other. How­

ever, the parallelism available inside the tile is exploited with software pipelining. We first present 

the architectural parameters used in the execution model and then introduce the functions that 

model various aspects of the execution time of the transformed loop nest. 

Although we do not provide experimental validation of our execution time model, similar 

models of execution time have been used by Sarkar [115] (in the IBM XL Fortran compiler) and 

also by Wolf et al. [129], and they have been thoroughly validated. 

Architectural parameters 

We seek an abstraction of the architecture (processor and memory features) that is suitable for use 

in a cost model for tiling loop programs of our program model. Our model uses the following 

parameters: 

• a - cost of an iteration: this is the cost of executing an instance of the loop body (in cycles per 

iteration). In our case, since the innermost loop is completely parallel, a modulo scheduler 

can always achieve the resource minimum initiation interval (ResMII) [100], and hence a is 
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equal to ResMII. 

• /3 - the cost (in cycles) for transferring a word from lowest level cache to the registers. 

• r] - loop increment and test cost: this is the cost for incrementing a loop variable and checking 

its bounds. 

• NR - number of registers available: depending on the loop body, NR could be either the 

number of integer or floating point registers. 

7.3.3 Fundamental measures 

Computation volume. The computation volume, TV(t), of a tile is the amount of computation 

done in a tile. The computation volume of a tile t — (t{,..., tn), is the number of integer points 

in the rc-dimensional hyper-rectangle: TV(i) = I T - i ti- The tile volume, T\/(t), represents the 

volume of full tiles. We approximate the volume of partial tiles with that of the full tiles, and 

hence use TV(F) as the volume for all the tiles. 

Load store volume. The load store volume, LS(t,D), of a tile is the total amount of data that 

is loaded and stored when the tile is executed. This quantity is also known as the tile foot-print. 

The dependences and data reuse patterns determine the load store volume. Our program model 

restricts dependences to be uniform (constant distance). A tile is compute bound if the amount of 

data accessed (input/output) during the computation of the tile is at least one dimension less than 

the computation; otherwise the tile is I/O-bound. It is easy to see that with uniform dependences, 

the load store volume of I/O-bound tiles is proportional to the tile volume T\/(i). The interesting 

case, where tiling is really useful, is when the tile is compute bound. 

For an w-dimensional compute bound tile, the input and output are 0 ( x " - 1 ) , where, x = 

max"=] tt, where tl is the tile size along dimension i. We consider the case in which the input 

and output are of 0 (x" _ 1 ) , other cases when the input or output is smaller than 0(x" _ 1 ) can 

be handled in a similar way using lower dimensional facets. Since our tile graph has dependence 

vectors that correspond to unit vectors, the 0 (x" _ 1 ) input/output of a tile directly corresponds to 

the (n — 1) dimensional facets of the tile, and a constant multiple of every facet contributes to the 

load store volume of a tile. The constant is determined by the dependence distances. There are n 

pairs of facets, and in rectangular tiling, each of these is potentially involved in a communication. 



CHAPTER 7. COMBINED ILP AND REGISTER TILING 117 

The volume of the ith facet, A,-, is given by YV=\ ^, tj- Now, the load store volume is LS(t,D) = 

XI"-1 ai^-i, where ai is a constant that denotes distance along the i facet that is involved in the 

communication and is determined by the longest z dimension component of any dependence 

vector in the dependence matrix D. Based on the schedule, some facets need not be stored and 

loaded again. There is at most one such facet, s ay / , and sharing of/ can be captured by excluding 

it from the load store, i.e., LS(t,D) = 2 " - i +fai^i • We c a n t a ^ e c a r e °^ multiple dependences to 

the same variable by considering the bounding box of the dependences to each variable and using 

the diagonal of this bounding box as the columns of D. 

Number of tiles. The number of tiles, HT(t,N) = -j -2-, counts the total number of 

tiles after a rectangular tiling with tiles of sizes t — (tl,...,tn), of the rectangular iteration 

space of size N = (Ni,...,Nn). After skewing, the iteration space may no longer be rectan­

gular and counting the number of tiles in this case is complicated. We use the quantity 

(iteration space volume)/(tile volume), which is a lower bound on the actual number of tiles, as 

an approximation. Since we start with a rectangular iteration space and since skewing is a volume 

preserving unimodular transformation, the quantity (iteration space volume)/(tile volume) is the 

same as2 NT(F,7V). 

Loop overhead. The loop overhead of a loop is used to account for the cost of loop termination test and 

loop variable increment. It is proportional to the number of times the loop body is executed. An 

n-dimensional rectangular loop nest after one level of tiling will have In loops. We call the outer 

n loops inter-tile loops and the inner n loops intra-tile loops. The i inter-tile loop is executed 

precisely -j- times for each instance of the surrounding loop indices. The total overhead of the 
i 

n inter-tile loops , LolnterTile(f,N), is Xi"-i xi> where xi = ' '" ' . The i intra-tile loop is 

executed t-v times. The overhead of the set of n intra-tile loops, LolntraTile(f,N), is ~^n_ +1J,> 

where yl: = (^ x ... x tt) x Ul(t,N), where UJ(t,N) is the total number of tiles and also equal 

to the number of times the n inter-tile loops surrounding the intra-tile loops will be executed. 

The total (intra plus inter tile) loop overhead, LO(T,iV) = LolntraTile(r,7\T) + LolnterTile(r,iV). 

Since after skewing the iteration space may not be rectangular, the rectangular tiling might leave 

some partial and full tiles. Treating partial tiles as full tiles and using the approximation for 
2Given that we are tiling for registers, the tile sizes are going to be very small and with small tile sizes, this approxi­

mation is better. 
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number tiles, developed above, we can approximate by L0(j,7V), the loop overhead of a skewed 

rectangular loop nest tiled with rectangular tiles. 

Given that the (intra and inter-tile) loops are fully permutable and the fact that a loop with 

larger trip count induces lesser overhead at an outer position, one can choose a permutation that 

would have the minimum loop overhead. However, a chosen ordering should leave a parallel loop 

in the inner most position. In this chapter, we do not exploit this flexibility. 

When we use skewing to expose ILP, the shape of the iteration space, as well as the depen­

dences change. The iteration space becomes a parallelepiped and the transformed dependences are 

given by SD, where S and D are the skewing and dependence matrices, respectively. 

7.41 Optimization problem formulation 

We now formulate an optimization problem (7.1) that clearly captures and quantifies the interac­

tion between the skewing and the register tiling transformations. The objective function is the 

sum of two terms, the loop overhead and number of tiles times the execution time for a tile, which 

itself is the maximum of the tile execution time and load store time. The unknowns are the tile 

sizes (i) and the skewing matrix (5). 

minimize r)LO(t,N)+ NT(f,N) x max (a x TV{t), /3 x LS(f,bbox(SD))) 

s.t. LS(f,bbox(SD))<NR (7.1) 

N>t>\ 

SD>0 

tezn,seznxn 

where, t and S are the variables representing tile sizes and skew matrix, respectively, NT(f, N) is 

the number of tiles, TV(i) is the tile volume, D is the dependence matrix, LS(t, bbox(SD)) is the 

load store volume, LO(t,N) is the loop overhead, NR is the number of registers available, a,(5 

and rj are respectively the cost of an iteration, load store cost, and loop bounds check cost. All 

vector inequalities in the constraints are component-wise. The first constraint makes sure that the 
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register foot print LS(t , bbox(SD)) fits in the number of available registers, NR, and the second 

constraint t > 1 makes sure that the tile sizes are positive and the third constraint SD > 0 ensures 

that the skewed loop nest is fully permutable and hence admits a rectangular tiling. 

Once we choose a skew transformation S, substituting it in the combined problem gives an 

optimization problem with t as the only variable. Let D = bbox(SD). Then the resulting opti­

mization problem is shown below (7.2). We call (7.2) the optimal TSS problem (for a fixed skew). 

minimize rj LO(F,N)+ NT^iV) x max (aTV(F), /? LS(F, D)) 

s.t. LS(f, D) < NR (7.2) 

N > t> 1 

feZ" 

Note that, though D is shown as a parameter to the LS(t,D) function, it is here a given constant 

vector, and not a variable of the optimization problem. 

7.5 J Checking whether permutation can expose a parallel loop 

We will first introduce some notations (used only in this section) which will make the exposition 

clear and concise. For any vector x, x{j) represents its /-th component. The level of a vector 

level(x) is / if Vz' < / : x(i) = 0 and x(j) ^ 0, i.e., x(j) is the first non-zero component of x. 

A zero-lead column is a column vector of the form (0,0,.. . ,0, c)T for some c ^ 0. The /-th unit 

vector e- is a vector with e ,(/) = 1 ande (z') = 0,Vz' ^ ; . A scaled unit vector, suv(c,/)isa vector x 

of the form Vz ' ^ ; : x(z') = 0 and x(;') = c for some non-zero constant c. In other words, scv(c,/) 

is an unit vector along ;' scaled by a non-zero factor c. The dimension of a scaled unit vector is 

often obvious from the context. An example (of dimension 4) is suv(2,3) = (0,0,2,0). Note that 

level( suv(c,;) ) = ; . diag(c,,c2,...,c„) constructs a diagonal matrix with c,,...,c„ as the diagonal 

entries. A loop is called parallel if it does not carry any dependences. 
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Figure 7.3. 
Example dependence matrices. 

7.5.1 Existence of a loop with no carried dependences 

We seek to characterize a condition under which there exists no permutation of ££ with at least 

one parallel loop. In other words, in every permutation of iff, all the loops carry dependences. 

We seek a characterization based on the dependences. Let us form a dependence (distance vector) 

matrix D = \dx d2 ... dm] whose columns are the m dependences, d-[,d2,...,dm present in i£'s 

body. The effect of loop permutation on the dependences is completely captured by permuting 

the rows of D. In any permutation of if, if there is a dependence d with level(d) = / then loop 

/., of the permuted loop nest, carries d. 

Consider the two dependence matrices Dl and D2 given in Figure 7.3. In the matrix D ] ; the 

dependence vectors d2 and d3 are scaled unit vectors: d2 = suv(l,3) and d^ = suv(2,2). Now, in 

this permutation, the dependences dv d2 and c?3 have levels 1,3 and 2 respectively and are carried 

by the loops Li,Li and L2 respectively. However, we can see that by exchanging rows 1 and 3 

of Dj we can get an innermost loop (row 3 of permuted Z)j) with no carried dependences. Now 

consider matrix D2 : there exists no permutation of rows of D2 which can create a parallel loop. 

What is the structure of the matrix D2 that induces this property? We seek to characterize this 

structure in the following discussion leading to Theorem 1. 

In any given permutation of the loops, all the n loops will carry dependences if and only if 

there are (at least) n dependence vectors with levels 1,2,..., n. If we have dependence vectors of 

all levels (1,2,.. . ,«) in every permutation of the loops in i£', then we can say that there is no 

permutation that 'will expose a parallel loop. 

Theorem 1: Every permutation of the rows of D will contain n columns with levels 1,2,...,n 

if and only if D contains a n x n sub matrix whose columns can be permuted to form a diagonal 

matrix, say diag(cj,c2,. ..,c„), where cx,...,cn are the scale factors of the n scaled unit vectors. 

Proof: (==>) Assume that every permutation of the rows of D will contain n columns with 
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levels 1,2,...,«. Let x1,...,xn be these n columns with levels \,2,...,n respectively. Given that 

we have exactly n vectors each having a different level, they all have to be linearly independent. If 

we show that these n columns are scaled unit vectors, then we can always permute these columns 

to form a n x n diagonal sub matrix of D. To show that xx,...xn are scaled unit vectors we will 

use proof by contradiction. Let us assume that they are (all) not scaled unit vectors. Note that the 

vector xn with level n has to be a scaled unit vector. Let the n — \ columns each have one more 

non-zero entry below their first non-zero entry. Without loss of generality we can assume that 

this entry is the next immediate entry. Then the matrix looks the matrix M given below. 

/ 

M-. 

\ 

v2,2 

V 

/ 

M' = 

*•«,«—1 Xn,n J 

\ 

^n,n-\ *-n,n 

\ - l n , n - l J 
Now we can interchange the last two rows of M to get M' in which there is no dependence of level 

n and hence loop /„ does not carry any dependence. But this is a contradiction to our assumption 

that every permutation of the rows of D contains n columns with all the levels. Hence the proof. 

m 

Proof: (<=) Now we assume that D contains anxn sub matrix whose columns can be permuted 

to form a diagonal matrix say diag(c1,c2,...,cn). Let C be this n x n sub matrix of D whose 

columns can be permuted to form diag(cj,..., cn). We need to show that every permutation of D 

will contain n column with levels 1,2,...,«. It is obvious that after any set of row permutations 

of a diagonal matrix there exists a set of column permutations that will bring it back to diagonal 

matrix form. Hence, after any set of permutations of C we can column permute C to make it 

a diagonal matrix. This diagonal matrix form makes it obvious that the n columns have levels 

1,. . . , n respectively. Hence the proof. [5] 

Let us look at the two dependence matrices Dx and D2 (c.f. Figure 7.3), again, but in the light 

of Theorem 1. We can see that by exchanging rows 1 and 3 of D^ we can get an inner most loop 

(row 3 of permuted D J with no carried dependences. There exists no permutations of rows of D2 
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Algorithm 3 Algorithm to check whether the input loop nest has any parallel loop. 

1. Input: Dependence matrix D. Output: boolean value indicating whether the input loop 
nest has any parallel loop or not. 

2. Pick all the columns of D which are scaled unit vectors. This can be done in 0(nm), where, 
n is the number of rows of D and m, the number of columns. There can be at most m such 
columns. 

3. As we pick the columns in the previous step we can note their levels. Check whether 
there are n columns each of which is a scaled unit vector for a distinct / , i.e., suv(c,/') for 
/ = 1.. . n. This can also be done in time 0(n m). If there are such n columns return a true; 
return a false otherwise. 

which can create a loop with no carried dependences. One can observe that the columns d4,d3, 

and d2 are scaled unit vectors: suv(3,1), suv(2,2) and suv(l,3) respectively. Further, note that the 

3 x 3 sub matrix formed by the columns d4, d^, and dx is a diagonal matrix: diag(3,2,1). One can 

verify Theorem 1 on these examples. 

Theorem 1 gives us an efficient way to check whether there exists at least one loop no carried 

dependences - we only need to check whether the dependence matrix D contains n x n sub 

matrix whose columns can be permuted to form a diagonal matrix diag(cj,...,c„). This can be 

done in time linear in the size of the dependence matrix D. The outline of the algorithm is given 

in Algorithm 3. 

7.6 \ Space of valid skewing transformations 

When loop permutations alone cannot expose a parallel loop, we need to skew the loop nest. We 

make two observations regarding the skew matrix S that we seek in the combined optimization 

problem (7.1). These observations narrow down the search space of S. 

• Only positive skews produce loops that admit rectangular tiling. We have two con­

straints: D > 0 (since our input loop nest admits rectangular tiling) and SD > 0 (since 

we require the skewed loop nest to admit rectangular tiling). From Theorem 1, we know 

that, if the input loop nest does not have any parallel loop, then the dependence matrix D 

has znxn sub matrix whose columns are scaled unit vectors and which can be permuted 

to form a diagonal matrix, say M = diag(c1,-- ,cn). Without loss of generality we can as-
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sume that that these n columns c-l,c2,..-,cn have levels 1,2,...,n respectively. At least two 

of these columns should be made to have the same levels, only then we will have a loop 

with no carried dependences. Let us view the matrix D as a partitioned as [M N], where 

M = diag(cj,..., cn) is the n x n diagonal sub matrix and 7V is the sub matrix that contains 

rest of the columns of D. We claim that negative skew factors will lead to an invalid trans­

formation by creating negative entries in the sub-matrix M. To see why, let us see what 

happens when we skew loop L^ with respect to a loop Z. • with a negative skew factor —/ 

(cf. Section 7.3.1 for notation). Such a skew would add to the z'-th row of M, the ;-th row 

multiplied by (—/)• The new z-th row would have —/ x c • in its ;-th entry. This negative 

entry is not permitted since we require that all the entries of the transformed matrix (SD) 

be non-negative. Hence, only positive skew factors are valid, since a zero skew factor is just 

an identity transformation. 

• Skewing any one loop with respect to just one other loop is sufficient and optimal. 

We seek to transform the loop nest so that in the transformed loop nest there is one loop 

that carries no dependences, i.e., parallel. Given that the input loop nest is fully permutable, 

after skewing, we can permute this parallel loop to the inner most position to get our desired 

loop nest. To make any one loop, say Z,;, parallel, it is sufficient to skew some other loop, 

say L:, with respect to Lv. Also, given that (positive) skewing increases the length of the 

(positive) dependences, skewing with respect to more than one loop will always produce 

longer (when compared to skewing w.r.t. to just one loop) dependences. And, the longer 

the dependences, the larger the bounding box and hence, the greater the load store volume, 

LS(f, bbox(SD)). So, skewing with respect to just one other loop is also optimal. By a similar 

argument, skewing by a factor larger than 1 to parallelize the loop only increases the load 

store cost and is sub-optimal. 

Based on the two observations made above, we seek to find positive skews of one loop 'with respect 

to just one other loop. The number of choices for such skews is d x (d — 1) where, d is the depth 

of the loop nest we consider. This gives a list of d(d — 1) potentially optimal skews. For example, 

for a loop nest with depth 2 or 3 we will have 2 or 6 choices of skews, respectively. 
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7.7 Solving the optimal TSS problem 

The optimal TSS problem can be cast as a Geometric Program (GP) [42]. The concepts of GPs and 

IGPs introduced in Chapter 5.2 are used here. We show how the problem (7.2) of finding optimal 

tile sizes can be cast as an Integer Geometric Program(lGP). 

7.7.1 Optimal TSS problem is an IGP 

The optimal TSS problem (7.2) seeks to choose tile sizes that minimize some criteria and satisfy 

some constraints. The key insight is that the variables of this optimization problem, tile sizes, are 

always positive. So, polynomial kind of functions of tile sizes naturally become posynomials, 

when the coefficients are non-negative. 

Theorem 3 . The optimal TSS problem (7.2) (for finding the optimal tile sizes given the optimal 

skewing matrix) is an IGP. 

Proof. From the definition of the fundamental measures 

NT(F,A0,LO(f,7V),TV(f), andLS(r ,bbox(5D)) (c.f. Section 8.2.2) one can directly observe 

that they are all posynomials, since all the coefficients are non-negative, the variables (tile sizes) 

are always positive, and posynomials are closed under addition. The objective function itself is a 

sum of posynomials except for the max() function. However, by introducing additional variables 

the max() function can be completely eliminated. A proof of this can be found in [101]. N o w 

coming to the constraints, LS(r ,D) < NR can be transformed into a constraint of the required 

form by dividing the LHS by NR and expressing the resulting inequality as LS(t,D)/NR < 1. The 

rest of the constraints are already in the required form. Hence, the optimal TSS problem (7.2) 

can be cast as an IGP. Is) 

7.81 Solving the combined ILP and register tiling problem 

Recall that, according to our strategy (c.f. Figure 7.2), we need skewing only when the input 

loop nest does not contain any parallel loop that can be exposed by permutation. Hence, first we 

check (using Algorithm 3 discussed in Section 7.5) whether the input loop nest has any parallel 

loop that can be exposed by permutation. If it does, then just permuting the loop to the inner 
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1 
2 
3 

for ( il = 1; 
for ( i2 

A[i2] 

il < Nl ; il++) 
= 1; i2 < N2; i2++) 

= A[i2-1] + A[i2]; 

Figure 7.4. 
Original loop nest. No permutation can expose the parallelism. 

most position will achieve our goal. This permutation is always valid, since our input loop nest is 

fully permutable (since rectangular tiling is valid for it). In this case, we just permute the loop and 

do not skew (i.e., the skew matrix S becomes the identity matrix). Then the combined problem 

(7.1) reduces to the optimization problem for finding the optimal tile sizes (for the permuted loop 

nest), i.e., the optimal TSS problem (c.f. problem (7.2)) with S = /(the identity matrix) and hence 

D = bbox(D). This problem can now be directly solved as shown in Section 7.7. Note that when 

a permutation alone is sufficient, it is globally optimal too, because skewing will always only 

increase the load store cost and hence the execution time. 

When permutation cannot expose a parallel loop, we need skewing to expose ILP. In this case, 

as shown in Section 7.6, we have did — 1) choices for the skewing matrix (where d is the depth of 

the loop nest). We construct d(d — 1) optimal TSS problems (with fixed skewing matrices), one 

for each choice of the skewing matrix. The optimal skew and tile sizes are obtained by solving 

these d(d — 1) optimal TSS problems (7.2) and picking the one that has the smallest objective 

function value (i.e., the minimum execution time). 

7.91 A complete example 

Consider the loop nest shown in Figure 7.4. There exists no permutation of the loops that can 

expose the parallelism to a software pipeliner and one can verify Theorem 1 on the dependence 

matrix D = of this loop nest. However, the loop has lots of parallelism that can be 

v ° v . 
exposed to a software pipeliner by skewing. We have d(d — 1) = 2 choices for skewing the loops, 

viz., skewing i l w.r.t to i 2 or vice-versa. But, due the symmetric nature of the dependences 

in D, both the skewing will have the same effect on the bounding box. Let us consider the 

case, when we skew loop i 2 with respect to the other i 1 and then permute them to make the 

i l loop the inner most. Now all the dependences are carried by the outer loop (i2) and the 
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1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 
14 
15 
16 

f o r ( x l 
f o r ( 

} 

) 
) 

= 0; x l < (N2+N1-1) / T l ; x l++) ( 
x2 = m a x ( ( - N 2 + T l * x l ) / T 2 , 0) ; x2 < m i n ( ( T l * x l + T 2 ) / T 2 , ( N l - 1 ) / T 2 ) ; x2 + +) { 
f o r ( i l = m a x ( T l * x l + l , T 2 * x 2 + 2) ; i l < m i n < T 2 * x 2 + N 2 + T 2 , T l * x l + T l , N 1 + N 2 ) ; i l + + ) ( 

/ / On the tile boundary use the saved value 
12 = m a x ( T 2 * x 2 + l , i l - N 2 ) ; 
A [ i 2 ] = B [ i l ] + A [ i 2 ] ; 
f o r ( i 2 = max(T2*x2 + l , i l - N 2 ) + 1 ; i 2 < m i n ( T 2 * x 2 + T 2 , N l , i l - 1 ) - 1; i 2 + +) { 

A [ i 2 ] = A [ i 2 - 1 ] + A [ i 2 ] ; 

/ / On the tile boundary save the value in B 
i 2 = m i n 3 ( T 2 * x 2 + T 2 , N l , i l - 1 ) ; 
B [ i l ] - A [ i 2 - 1 ] + A [ i 2 ] ; 
A [ i l ] = B [ i l ] ; 

Figure 7.5. 
Skewed, permuted, and tiled loop nest. All the iterations of the innermost loop (i2) can be 
executed in parallel. 

inner loop ( i l ) is completely parallel. A software pipeliner can exploit all this parallelism to 

construct a schedule which is constrained only the available execution resources (and not by the 

dependence constraints). We can further tile this skewed-permuted loop nest to enable register 

reuse. Figure 7.5 shows the skewed, permuted and tiled loop nest, with tiles sizes Tl and T2 . 

To determine the optimal tile sizes, we instantiate the combined optimization problem (7.1) 

with the optimal skew (and permute) matrix S = 
0 1 

, resulting in an optimal TSS prob-

\ 
lem, which can solved as discussed in Section 7.7. Now, D = bbox(SD) = 

the optimal TSS problem we get the following problem (7.3): 

. Instantiating 

/ 

minimize -j-^ x max (or x r, x t2, /? x (tx +12)) +rj (NlxN2 + - ^ + - ^ _ * + -^J 

s.t. t, + J 2<NR (7.3) 

t>\ 

fez 

Where, a is the cost per iteration and is equal to the / / (initiation interval), J3 is the cost of moving 

a data item from the lowest level cache to the register and rj is the cost of a loop bound check. NR 

is the number of (floating point) registers in the architecture. 
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7.10\ Related work 

Unroll and jam approach. Sarkar [115] addresses the same problem as ours and uses unroll and 

jam followed by scalar replacement [25] for exposing ILP and register reuse. He formulates the 

problem as a discrete optimization problem with unroll factors as the variables and proposes an 

exhaustive search with heuristics to solve it. Our formulation seeks both skew matrix and tile sizes 

and is solved to global optimality via convex programming. The class of programs considered by 

Sarkar, loops with affine dependences, is larger than what is considered by ours, loop nests with 

uniform dependences. However for uniform dependence loop nests, by setting the skew matrix 

to identity, viewing the tile sizes as unroll factors, and adding the code size constraint, our method 

can be directly used to solve the problem addressed by Sarkar. In this sense, for this class of loop 

nests, the problem of solving for optimal unroll factors is a special case of our problem. 

Carr and Kennedy [27] proposes an algorithm to determine the unroll factors that balance 

the floating-point and memory access operations. This objective function is different from ours, 

as well as Sarkar's, viz., minimizing the execution time. 

Hierarchical tiling. The work of Carter et al. [31], and followed up by Mitchell et al. [85], 

uses tiling to expose the register reuse as well as ILP. They propose hierarchical tiling as a hand 

tuning technique to better exploit pipelined functional units and registers. Our work is similar 

to Carter et al.'s work in spirit, however, we have proposed a completely automatic method to 

determine the tile sizes and skew factors. 

Code generation for register tiling. Jiminez et al. [64] propose a code generation strategy 

for non-rectangular loop nests tiled for registers. Their strategy uses index set splitting to strip 

off the partial boundary tiles and the full tiles are completely unrolled. Hence, they assume 

that unroll and jam followed by scalar promotion is used for exposing ILP and register reuse. 

Sarkar [115] also proposes a code generation algorithm which takes the unroll factors as input 

and produces an unrolled loop nest. 

Software pipelining of loop nests. Traditionally software pipeliners have only looked at in­

ner most loop nests. Ramanujam [97] proposed a technique where an integer linear programming 

formulation is used to find a (software) pipelined schedule that exploits the parallelism available in 

the whole loop nests. However, he did not consider resource constraints. Rong et al. [112] have 
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recently proposed a technique called single dimension software pipelining for multi-dimensional 

loops. Their technique computes the initiation interval and (cache) locality of every loop in the 

given loop nest and picks the best. They do not consider any ILP exposing transformations, like 

permutation or skewing, and hence, are limited in how ILP can be exploited. Whereas our ap­

proach, by the virtue of looking at skewing and permutation, will always be able to expose the 

available ILP. Rong et al. also propose a method for code generation [111] and recently have ad­

dressed the register allocation issue [110]. A similar problem in the context of ILP and caches has 

been addressed by Wolf et al. [128]. 

7.1l\ Discussion and future work 

We have formulated the combined problem of choosing an ILP-exposing (skewing) transforma­

tion and register tiling. We have proposed an efficient way to check whether permutation can 

expose any parallel loops. We have distinguished two cases: when loop permutation can expose 

a parallel loop and when it cannot. For the former case, we have reduced the combined problem 

to an IGP and for the latter case we have reduced to the combined problem to a small set of IGPs. 

All these can be solved efficiently using the methods / tools discussed in 5.2.3. 

The formulation of the combined problem exposes the fact that the skewing transformation 

affects the dependences and which in turn affects the overall execution time of transformed loop 

nest. We see this formulation, and analysis of it, as a first step in understanding the structure of 

this important complex problem. To the best of our knowledge, this is the first formulation and 

globally optimal solution of this combined problem. 

Two immediate steps are (i) adapting modulo scheduling techniques [100, 5] to schedule the 

transformed loop nest and (ii) developing array register allocation techniques to map all the array 

value4s access in a tile to registers. Note that, the modulo scheduler is guaranteed to find the 

inner most loop nest parallel. Hence, we do not need any dependence analysis to determine the 

achievable initiation interval and it is constrained only the available resources. Also, from the 

constraints of the optimal TSS problem, we are guaranteed to have enough registers. Future work 

would involve extending the input program class to include iteration spaces with parallelepiped 

shapes. Another direction is to permit non-uniform, say affine, dependences in the loop body. 



CHAPTER 8 

A Multi-level Data Locality Tiling Model 

a PTIMAL tile size selection is a classic problem in compilation of loop kernels. Design­

ing a model of the overall execution time of a tiled loop nest is an important sub problem. On 

comparison to single-level of tiling, both the problems become harder when tiling is applied at 

multiple-levels. Due to the complexity of modern architectures and the variations in code gener­

ation / optimizations performed by different compilers, modeling the overall execution time of 

a tiled loop nest is difficult. In this chapter we explore the possibility of deriving an approximate 

high level execution time model of the tiled loop nest. Our hypothesis is that for the purpose of 

selecting tile sizes, an high level model is sufficient. This hypothesis has been shown to be true 

in the context of TSS for parallelism [11, 12, 10, 103]. We seek to explore it in the context of 

tiling for memory hierarchies. We propose one such high-level model for determining the opti­

mal tile sizes for a fully permutable, perfectly nested, rectangular loop with uniform dependences. 

We show that the optimal TSS problem, formulated using our model, can be cast as an IGP and 

solved efficiently. We provide preliminary validation of the model on a small set of loop kernels 

executed on a simulator. This work was presented in [101]. 

129 
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8.1 Optimal multi-level tiling 

Achieving high performance on modern processors requires efficient utilization of the memory 

hierarchy. Program transformations like tiling [135, 136] try to match the characteristics of a 

memory hierarchy to the size and order of the data accesses. Multiple levels of tiling [30, 85] 

are required to match the multiple levels of memory. Determining the optimal size of the tile 

— one that minimizes the execution time subject to memory characteristics — is a fundamental 

problem. A model of the overall execution time of a tiled loop nest is an important sub problem. 

The non-linearity of the functions that describe fundamental properties of a tile, like computa­

tion/communication volume, memory footprint, access characteristics, etc., make the problem 

very hard. 

Given a loop nest, the multi-level tiling problem involves the determination of the optimal tile 

sizes at each level. Usually the optimality is defined based on some cost function which models 

some aspect of the program execution, for example, number of cache misses, total CPU idle time, 

etc. Applying tiling at multiple levels with an independent goal or cost function at each level may 

lead to globally sub-optimal performance [85], since tiling choices from different levels interact 

with each other. A global metric, like overall execution time, that accounts for interactions from 

different levels should be used. To use such a global metric, we need a high level analytical model 

of the overall execution time of the tiled loop nest. Using such an high level model the optimal 

TSS problem can be formulated as a numerical optimization problem. 

We present A high level analytical cost model, similar in spirit to Valiant's BSP model [123] 

(for parallel programs), for estimating the overall execution time of multi-tiled perfectly nested 

rectangular loops with uniform dependences. We also discuss how our cost model can be ex­

tended to include different processor/memory features and compiler optimizations. We present 

experimental results that validate our model. We present a formulation of the multi-level optimal 

TSS problem as an IGP. Our formulation permits an arbitrary number of loops to be tiled and 

also arbitrary levels of tiling: m-levels of tiling of an n-depth loop. 

In the next section we present our high level analytical cost model. In Section 3, we formulate 

the single-level optimal TSS problem and in Section 4 we extend it to multiple levels of tiling. In 

Section 5, we describe the Geometric Programming framework and show how the optimal multi-
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level tiling problem can be cast as a geometric program. In Section 6, we show the generality of 

our framework and the extensibility of our cost model. In Section 7, we describe the experimental 

setup used for the validation of our cost model and then present the results. We describe related 

work in Section 8 and then conclude in Section 9 with some pointers to future work. 

8.21 A high level analytical cost model 

In this section we develop a cost model for the total execution time of a tiled loop nest. First we 

discuss some fundamental measures that can be directly derived from the program. These are the 

computation and communication volume of a given tile and the loop overhead of a tiled program. 

The processor architecture dependent parameters, which we call architectural parameters, are de­

scribed next. Then we show how the total execution time can be calculated using the fundamental 

measures and the architectural parameters. The concepts discussed in this section and the next are 

in the context of single-level tiling. Extensions of these concepts to multi-level tiling are discussed 

in Section 8.4. 

8.2.1 Program and Tiling Model 

We consider an w-dimensional loop nest with constant upper and lower bounds. The loop body 

contains statements with uniform dependences. Figure (8.1, left) shows our program model. Fur­

ther, we consider a compute bound loop nest - loop nests in which the amount of computation 

done is at least an order greater than the amount of memory operations. We consider (rectangular 

or) orthogonal loop tiling: tiling the loop nest with hyper-rectangles whose boundaries are orthog­

onal to the canonic axes — as are the iteration space boundaries. We assume that orthogonal loop 

tiling is valid for the given loop nest [136]. Figure (8.1, right) shows the 2rc-dimensional tiled 

loop nest. Note that the tiled loops are fully permutable. For example, we can permute the 2n 

loops such that the n and the (n + \)5t loops together correspond to a single loop in the original 

program. In such a case, we fuse them together. 

Let us consider the rectangular iteration space given in Figure (8.1, left) and a tiling of this 

with rectangular tiles as shown in Figure (8.1, right). The tile graph is the graph where each node 

represents a tile and each arc represents a dependency between tiles. In our case each node of the 
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for i'i, = 0 to -!• — 1 
1 ' i 

for ii-, = 0 to — — 1 

for n„ = 0 to — — 1 

for j , = (u'( x £[)+ 1 to (/'/, + 1) x t, 

for i2 — (ii2 x t2) + 1 to (zi2 + 1) x £2 

for in = (un x t j + l to (iin + 1) x £n 

^,[i"]=/(^[»:*+f1]."-A[»:*+<k]) 
Figure S.1. ~ 
Program model (left): An w-dimensional rectangular loop nest. Tiling model (right): Rectangular 
tiling of the n -dimensional loop nest 

tile graph is an hyper-rectangle of size tx x t2 x • • • x tn and the tile graph itself is an hyper-rectangle 

of size nx x n2 x .. . x nn, where «• = -*-. It is well known that [10, 136] if the t-'s are large as 

compared to the elements of the dependency vectors, then the dependencies between the tiles 

are unit vectors (or binary combinations thereof, which can be neglected for analysis purposes 

without loss of generality). In general, this implies that the feasible value of each tt is bounded 

from below by some constant. For the sake of notational simplicity, in this work we assume that 

this is 1. 

8.2.2 Fundamental measures 

The computation volume, Q(t), of a tile is the amount of computation done in a given tile. The 

computation volume of a tile t of size tx x t2 x • • • x tn , is the volume of the n-dimensional 

hyper-rectangle. Q(t) — 0 " = i
 li where ti is the tile size along the z'-th dimension. 

The communication volume of a tile, denoted by A(t), is the total amount of data that is input 

to and output from the tile. For an w-dimensional compute bound tile, the input and output 

are 0 ( r " - 1 ) , where, t — max"=] tr We consider the case in which the input and output are of 

0(t"~}), other cases when the input or output is smaller than 0(tn~x) can be handled in a similar 

way. Since our tile graph has dependence vectors that correspond to unit vectors, the 0{t"~x) 

input/output of a tile directly correspond to the (n — 1) dimensional facets of the tile, and a 

constant multiple of every facet contributes to the communication volume of a tile. The constant 

for t, = 1 to TV, 

for i2 = 1 to N2 

for in — 1 to Nn 
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is determined by the dependence distances. There are n pairs of facets, and in the rectangular 

tiling, each of these n facets is involved in a communication. If Aj denotes the volume of the 

il facet, then we have A(t) = ^" a^A;, where A; = Yi"-\ •+• tj' an<^ ai ls a constant that 

denotes distance along the i facet that is involved in the communication and is determined by 

the longest i dimension component of any dependence vector. Let 3?{t) denote the memory 

foot-print of a tile. In our model we have &{t) — A(t). 

The values produced on the iterations at the tile boundaries need to be saved and later used 

when the corresponding neighboring tile is executed. The storage required for this save and later 

use can be (and in our model is) accounted in A(t) since it is of the same order. However, the 

address computation cost related to access of these values stored in array variables could be of the 

order of any face of the tile, and hence can be expressed as a weighted combination of the faces 

of a tile. These faces can be of any dimension from n — 1 to 1. Let this weighted combination of 

faces be denoted by <p(t), and we have <fi(t) = ]£]•—i Pi^i' where F is total number of faces of all 

dimensions n — 1 to 1, and pt is a non-negative scalar and <f>^ is a face. Note that p-% can be directly 

determined from the statements of the tiled loop nest that load-and-store the boundary values. 

The Loop overhead of a loop is used to account for the cost of loop termination test and loop 

variable increment. It is of the order of the number of times the loop body is executed. An 

ra-dimensional loop nest after one level of tiling will have In loops. For ease of notation, we 

consider the first 1,. . . , n loops (which we call the inter-tile loops) and the n + 1, . . . , In (intra-tile) 

loops separately. The z inter-tile loop, z — 1... w, is executed precisely —*• times for each instance 
i 

of the surrounding loop indices. The total overhead of the set of n inter-tile loops, denoted by 

A, is A = Xi"=1
 xn where xl = t '*"'* f ' • The ith intra-tile loop, i = n + 1.. .In, is executed ti 

times. The overhead of the set of n intra-tile loops, denoted by A(t), is A(t) = ^ 2 " y-t, where 

y, = h x . . . x t , . 

8.2.3 Architectural parameters 

We seek an abstraction of the architecture (processor and memory features) that is suitable for use 

in a cost model for tiling loop programs of our program model (Figure 8.1). We have identified 

the following parameters: 
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• a - cost of an iteration: this is the cost (in cycles) of executing an instance of the loop body. 

• j3 - bulk transfer rate: this is the cost (in cycles) for transferring a word of data between 

memory subsystems. We may have a family of j3's one for each level of the memory hier­

archy. 

• rj- loop increment and test cost: this is the cost for incrementing a loop variable and checking 

its bounds. 

• p = (pl,...,pF) - boundary values load-store cost: the saving and loading of values at the 

tile boundaries involves access to array variables that hold these values. Each such access 

involves address computation and p represents the /-dimensional vector of this address 

computation costs, where F is the total number of faces of a tile of dimension n — 1 to 1. 

The number of such accesses can be represented by the faces of the tile (see (p(t)'m Section 

8.2.2). 

• Sf (*)- size (capacity) of cache at level k: The capacity (in bytes) of the cache at the level k. 

8.2.4 An analytical cost model 

During the actual execution of a tiled loop nest many factors like ILP, reuse, cache hits/misses, etc. 

affect the running time. However, our model abstracts away from all these low level details and 

takes an high level view of the execution. In our model, the execution time of a tile is calculated 

as the sum of the time spent in computation, time spent in communication (data transfer) and the 

load-store cost of the intermediate values. The execution time of a tiled loop nest is the sum of 

the execution time for each tile times number of tiles and the loop overhead. Let S^yase{t) be the 

total execution time of the tiled loop nest, then we have 

?haJt) = ,¥(ae(t) + {3A(t) + c{,(t) + r,A(t))+rlA(t) (8.1) 

where, jY is the total number of tiles, a is the cost of executing an iteration, j3 is the bulk transfer 

rate, <p{t), the cost of saving and using boundary iterations, is computed using p, and r) is the cost 

of one loop increment and loop termination test. The model for execution time requires that the 
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total amount of data accessed by a tile should fit into the cache. This can be stated as &(t) < ^, 

where 3>(t) is the memory footprint (c.f., Section 8.2.2) of a tile and *€ is the cache capacity. 

8.3 I Optimal TSS problem formulation 

Using the fundamental measures, architectural parameters and cost model discussed in the previ­

ous sections, we formulate the single level tiling problem. 

8.3.1 Single-level optimal TSS problem formulation 

For a single level of tiling, the problem of choosing the tile sizes t-0 i = 1,... n can be formulated 

as an optimization problem as follows. The objective function fP'(t), is the total execution time 

and we want to minimize it subject to the following constraints: the memory footprint of the tile, 

J^(t), fits in the cache and the tile sizes (f,-'s) are positive. The generic problem is 

minimize 3~{t) (8.2) 

subject to &{t)<l£ 

ti > 0 Vz = 1. . . n 

tt£Z Vz' = l . . . « 

where, ^€ is the cache capacity.1 The choice of the exact function that describes 3~{t) de­

pends on the combination of processor features and compiler optimizations we want to model. 

For instance, one can choose ^yase{t) (Eqn. 8.1) or any of the extended cost functions 

^oi_nbXl\ ^hw prefetch^ o r ^hi_oPM (discussed in Section 8.6.1) and use in the place of 2T{t) 

in (8.2) to obtain a concrete problem. 

8.4 J Multi-level optimal TSS problem formulation 

Let us consider m levels of tiling of an ^-dimensional loop nest. In the tiled program there are 

(m + 1) x n loops. Let ?fv' denote the execution time of the ^-dimensional loop nest tiled j 

' We can easily include a constraint like tt > dt where d% is the maximum of the projections of the dependence 
vectors along the i'h dimension. However for sake of notational simplicity we stick to ti > 1. 
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levels, i.e., the execution time of the innermost (/ +l)x n loops. We can define 3?"' recursively 

as follows: 

iorj=2,...m: 3TU) = ^ ) ( ^ " 1 ) + /? ( / )A(rW)) + ^ ) 

5"(1) = Iyr (1)(^0(f (1)) + /? ( 1 ) A(r«)+^(J ( 1 ) ) + ^^(t(1))) + 7?A(1) 

where, 

• for; = l , . . . , m : ^ 0 ) =
t ' *""xt- , with t{m+X) =Nh for i = l , . . . , » . 

tj" x - x r ' ' ' 

. for ; = 1,...,™ : A(tO")) = ^ ^ A , ^ ) ) , with A , ( ^ ) = UU^f, for i = 

\,...,n. 

. for; = l , . . . , m : A O ) = ^ = i n U f V ' w i t h f ! m + 1 ) = ^ ' f o r / = 1 '---'"-

• for / = 1,.. . , m : j3^' is the bulk transfer rate for moving a byte of data from a memory at 

level; + 1 into a memory at level ; . 

• for j = 1,.. . , m : rft) = rj, since the loop variable increment and termination check cost is 

the same for every loop at every level. 

• The quantities related to the cost of execution of actual statements are relevant only at the 

inner most level of tiling and hence contribute to the execution time of the inner most 

level ET^'. These quantities are: aQ(t^) - the computation cost at level 1 and <p(t^>) 

- the load-store cost at level 1. Also note that the (inner-most) intra-tile loop overhead 

/l(f ) contributes only to the execution time of the inner-most level. Hence, the quan­

tities a,Q(t( >), (jj{v '), and A(t">) are confined to the inner most level and are defined as in 

the single level tiling case (c.f. Section 8.2.2). 

We formulate the multi-level tiling problem using a generic 3F(t(m>), which is a function of all 

the fundamental measures and architectural parameters at the level m. Based on the combination 

of processor features and compiler optimizations chosen, we can substitute the corresponding 

5?(t(m') to get a concrete optimization problem. Let us consider m levels of tiling of an rc-depth 
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loop nest, we have the following optimization problem mrnxn variables: 

min. ^ (£ ( m ) ) (8.3) 

subject to &(t(i')) < 'tfW for; =\...m 

0 < t('] < t{,+l) fori = l...n,j = l...m 
i — i ' 

t^ e Z for i = 1... n, j — 1.. . m 

Consider the problem of tiling for m > 1, levels of tiling. The optimization problem is not 

separable, i.e., it cannot be solved one level at a time, since the tile variables t at a level (j + 1) 

influences J/~^\A^', and upper bounds of t. . Further, ^~x> becomes the computation time 

of a tile at the next level. Hence, a globally optimal solution would require solving the whole 

optimization problem. 

8.4.1 Illustration: Two-level tiling of a doubly nested loop 

To illustrate the multi-level tiling formulation, we present the concrete optimization problem for 

the base cost model &base(t)) used for a loop nest of depth two (n — 2) tiled twice (m = 2). We 

start from the inner most level of tiling (/ = 1) and move to the outer level (/ = 2). For the inner 

most level we have 

?W = ̂ \Q(t^)aW + A(t^)j3^ + <P(t^) + rjA(t^)) + A% 

where, Q(tW) = rj'> x £>, A(tW) = a^t^+a^t^, \W = V t t . <K*{1)) = 'W + tiW 

X{t^) — £(1) + £(1) x r(2), jY^ — ' * * ftW is the bulk transfer rate between memory levels 1 
tj 'xv2' 

and 2, and px, p2 are the cost of the load-store statements executed ij and tl times respectively. 

The memory footprint at this level is ^(t^) = A ( t ^ ) . For the next, outer level, ;' = 2, we have, 

where, A(t^) = afh^+afh®, A « = ^ + ^ % , jW = - $ % and /3<2> is the bulk transfer 
ti ti xt2 tt xt2 

rate between memory levels 2 and 3. Note that, fj = Nl and t^ =N2 since we are tiling a doubly 
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nested loop of size A^ xiV2. The memory footprint at this level is 

Now, the optimization problem that selects the optimal tile sizes tj , t^ , tj , and £2 is 

mm. 

subject to &(tW) < <g® 

0 < tf] < Nx 

0 < tf) < 7V2 

0 < *<»> <tf 

0<^<rf 

8.5 \ Optimal TSS Problem is an IGP 

The optimal TSS problem can be cast as a Geometric Program (GP) [42]. The concepts of GPs and 

IGPs introduced in Chapter 5.2 are used here. We show how the problem of finding optimal tile 

sizes can be cast as an Integer Geometric Program(lGP). 

The optimal TSS problem seeks to choose tile sizes that minimize some criteria and satisfy-

some constraints. The key insight is that the variables of this optimization problem, tile sizes, are 

always positive. So, polynomial kind of functions of tile sizes naturally become posynomials, 

when the coefficients are non-negative. We first show that the smgle-level optimal TSS problem is 

an IGP, and use the properties of posynomials and GPs to show that the multi-level tiling problem 

is also an IGP. 

Lemma 8.5.1. The fundamental measures Q(t), A(t), A'(t) and A(t) are posynomials 

Proof. From the definition of these measures (c.f. Section 8.2.2) one can directly observe that they 

are all posynomials, since all the coefficients are non-negative, the variables (tile sizes) are always 

positive, and posynomials are closed under addition. D 

Theorem 8.5.2. The single level tiling problem (8.2) is an IGP for all posynomial objective functions. 
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Proof. We need to show that all the constraints in (8.2) can be cast as posynomial inequality 

constraints or monomial equality constraints as in (5.1). The positivity and integrality constraints 

on tl naturally maps into the constraints of GP. The capacity constraint, 3F{t) < *€ can also 

be easily cast as a posynomial inequality constraint by the following rewrite &(t) < *& <=>• 

^ _ 1 ( A ( t ) ) < 1, which is a posynomial, since A(j) is a posynomial (from Lemma 8.5.1) and ^ is 

a constant. Hence, whenever the objective function is (also) a posynomial, the whole problem is 

an IGP. • 

From Lemma 8.5.1 and Theorem 8.5.2, we can observe the cost function 3~yase(t) introduced 

in Section 8.2.4 (Eqn. (8.1)), is a posynomial and using it as SF{t) in the single-level optimal TSS 

formulation (c.f. Eqn. (8.2)) will yield an IGP. 

Theorem 8.5.3. The multi-level optimal TSS problem (8.3) is an IGP for all posynomial objective 

functions. 

Proof. The proof follows directly from the proof for the single-level case (Theorem 8.5.2) since, 

we have just added some more constraints that are all similar in form to the ones in (8.2). Hence, 

whenever the objective function is a posynomial we have an IGP, and we can solve for the tile 

sizes directly. • 

From Lemma 8.5.1, we can observe that ^yase{t) (c.f. Section 8.2.4, Equation (8.1)) is a posyn­

omial. Repeated composition of ^yase(t) with other posynomials through addition at multiple 

levels would yield a posynomial since posynomials are closed under addition. Hence, from Theo­

rem 8.5.3, we can observe that using 3"yase{t) repeatedly at m levels to construct a cf^ will yield 

a posynomial $'('"') which can be used in the multi-level optimal TSS formulation (c.f. Eqn. (8.3)) 

to get an IGP. 

8.61 Generality and extensions 

At a first look our model might seem simple, however it is general and can be easily extended. 

In this section, first we show how our analytical cost model can be extended to include various 

architectural features and compiler optimizations. Then we show the generality of the GP based 

framework in accommodating other cost models and functions. 
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P R O C E S S O R F E A T U R E 

Non-blocking cache and out-of-order issue 

Critical word first 

Priority to read misses and merging wnte-buffers 

Hardware prefetching 

Larger cache size or line size 

Higher associativity 

Victim caches 

C O M P I L E R O P T I M I Z A T I O N 

Padding for alignment 

Compiler controlled prefetching 

Projective memory allocation 

Data remapping 

I M P A C T O N MISS R A T E / MISS P E N A L T Y 

Hides LI miss latency and reduces LI miss rate 

Reduces miss penalty 

Reduces miss penalty 

Reduces miss rate or miss penalty 

Reduces capacity misses 

Reduces conflict / replacement misses 

Reduces conflict misses 

Reduces conflict misses 

Reduces (or removes) miss penalty 

Reduces memory requirement and (thereby the) number of misses 

Improves locality and reduces number of misses 

Table 8.1 
Widely used processor features and compiler optimizations that influence memory access cost 
and execution time 

8.6.1 Extensibility of the cost model 

The cost model can be easily refined to include more details about processor features and compiler 

optimizations. See Table 8.1 for a list of processor features and compiler optimization influence 

memory access cost and execution times. Such refinements would either affect the miss rate or 

miss penalty and can be accommodated by appropriately scaling the bulk transfer rate f3 or by 

changing the number of misses A(j). For example, consider the following three scenarios: 

• Out-of-order issue and non-blocking cache: Consider an out-of-order issue processor with a 

non-blocking cache. The out-of-order issue together with a non-blocking cache can hide the 

miss penalty for accesses that are a miss at LI but a hit at L2, given sufficient ILP in the code. 

This effect can be modeled by reducing the miss penalty for such misses. We can capture 

this by determining the the number of Ll misses for which the miss penalty is reduced and 

then scaling down j3 by an appropriate factor, say fmr. 

9-0l_nhc{t) = aQ{t) + {fmrP)^(t) + m + riKt) + ^{t)- (8-4) 

To account for set-associativity of the cache, we may have to scale down the cache capacity 

to an effective cache capacity, as discussed later in this section. 
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• Hardware prefetching: Hardware prefetching can decrease the miss penalty substantially 

(and not completely remove, since the hit time to a prefetch stream buffer is slightly higher 

than the cache hit time) for accesses that have spatial locality, by prefetching subsequent 

blocks and storing them in the stream buffer. This effect can be modeled by scaling down 

/3byafac to r / m ? . 

Vhv,j,refetcb(*) = "©(0 + {fmpPW)+ W) + ^ ( 0 + ?A(t) (8-5) 

• Highly optimized execution: Consider now an advanced processor with all the features listed 

in Table 8.1 together with a compiler that can perform all the optimizations listed in Ta­

ble 8.1. The net effect of would be an almost complete overlap of computation and the 

data movement. In such a case the execution time is the maximum of the time taken for 

computation and the memory access time. 

Phigh_opt(t) = max(are(r) + </,(t) + rjA(t) + ^A(r), {3A(t)+ ^( t ) + 7)A(t) + rjA(t)) (8.6) 

Such a scenario is very common with respect to the hardware features. However, some com­

piler optimizations like memory reduction, padding and data remapping are not available 

in all compilers, though the techniques are well understood in the research community. 

Other combinations of processor features and compiler optimizations can also be easily included. 

For example, low-associativity of caches and the use of padding and data remapping [121, 105, 

122] can be included by appropriately scaling down the cache capacity <# to an effective cache size. 

This is a well studied [105, 121, 122, 114] and widely used technique. An algorithm of how to 

compute the effective cache size can be found in [114]. Such a technique is also used by other 

researchers in the similar context of single-level and multi-level tiling [77, 128, 30, 85]. 

Observe that the cost functions Sfoi nyc{t) and 3"},w prefetch^1) a r e both posynomials by con­

struction. The function 3?/,; opt(t) is directly not a posynomial. However, it can be transformed 

into a posynomial qualified with posynomial inequality constraints using the max elimination 

technique shown in [21]. In a multi-level tiling, if ZThl opt(t) is used repeatedly at each levels, 

then we will have an function with nested maxQ's. For this case, we can start from the inner 
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most maxQ and repeatedly apply the max elimination technique to obtain a single IGP. Hence, 

all the three functions can be used in the context of single or multi-level tiling to obtain an IGP 

and hence can be solved efficiently. This shows how one can combine the extensibility of our cost 

model with the generality of the GP based framework to include advanced processor features and 

compiler optimizations. 

8.7 \ Experimental results 

For our experiments we used the s i m - o u t o r d e r simulator from SimpleScalar tool set [24]. It 

is a cycle accurate processor simulator with two levels of cache and a TLB. We configured it for an 

in-order issue processor and we set the caches to be fully associative with sizes 4k(Ll) and 64k(L2). 

As stated in Section 8.6.1, it is well known that the results obtained for fully associative caches 

can be adapted to set-associative caches by using standard techniques like padding and using an 

effective cache size, for example see [106, 105, 77, 47, 114]. We experimented with single and 

multiple levels of tiling of doubly and triply nested loops. We considered five different programs 

(depl, depl-LF, dep2, stat2, and var2) and four different tiling scenarios: one-level tiled doubly 

nested loop (m — \,n = 2), two-level tiled doubly nested loop (m — 2,n — 2), one-level tiled 

triply nested loop (m = 1, n = 3), and two-level tiled triply nested loop (m = 2, n = 3). The five 

programs2 had the following features: 

• depl: contains a loop body with floating point addition and a dependence of depth one. 

• depl-LF: this is program depl with the tile-loop and inter-tile loop of the inner most time 

dimension fused. 

• dep2: contains a loop body with floating point addition and a dependence of depth two. 

Note that a dependence of depth two requires saving and loading two facets of intermediate 

values along the dependence direction. 

• stat2: contains a loop body with two independent statements that do floating point addi­

tions. This loop body has instruction level parallelism and also would have exploited the 

pipelined floating point addition unit. 

2 the tiled codes are available at: h t t p : //www . c s . c o l o s t a t e . edu/~ In / t i l e d - l o o p s / 
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Program 

depl 
depl-LF 

dep2 
stat2 
var2 

m = l, 

H 
-1.71 
-1.76 
-0.36 
5.37 
17.99 

» = 2 

a 
3.35 
3.33 
3.96 
4.14 
2.36 

m = 2 

H 
15.79 
15.78 
21.72 
25.78 
22.48 

,n=2 

a 
8.71 
8.43 
11.58 
8.64 
4.09 

m = 1 

H 
-11.12 
-11.14 
-11.20 
-6.11 
8.95 

n = 3 

a 
13.60 
13.62 
15.07 
11.58 
10.09 

m = 2, 

^ 
11.09 
11.04 
16.63 
8.88 
10.74 

» = 3 

a 
7.02 
6.96 
9.53 
6.13 
4.83 

Table 8.2 
Experimental Results. Mean and standard deviation of the percent error between predicted and 
simulated execution times, m is the number of levels of tiling and n is the loop nest depth. 

• var2: contains a loop body with two dependent statements (the result of the first used as an 

operand in the second) that do floating point operations. This loop body does not have ILP 

but may exploit the pipelined floating point unit. 

Each of the above five programs together with the four tiling scenarios resulted in twenty different 

programs. We ran each of these programs on more than ten different tile and program parameter 

combinations, resulting in more than two hundred different runs. 

We measured the percent error in prediction of the execution time by our model, i.e., the 

percent error between the simulated execution time and the estimated execution time. The mean 

and standard deviation of the percent error results are presented in Table 8.2. A negative mean 

indicates an underestimation and a positive one an overestimation of the execution time by the 

model. One can note from the results that our model predicts the execution time with an error 

(approximately) between 5 to 30 percent. For the purposes of tiling, a high level model with such 

an error range seems reasonable. 

8.8 Related work 

Tiling for memory hierarchy is a well studied problem and so is the problem of modeling the 

cache behavior of a loop nest. We classify the related work into three categories: models of cache 

behavior of loop nests, single-level optimal TSS and multi-level optimal TSS. 

Models of cache behavior of loop nests. There are several analytical models that measure the 

number of cache misses for a given class of loop nests. These models can be classified into precise 

models that use sophisticated (computationally costly) methods and approximate models that 
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provide a closed form with simple analysis. In the precise category, we have the Cache Miss 

Equations [50], and the refinement by Chatterjee et al. [34], that use Ehrhart Polynomials [35] 

and Presburger formulae to describe the number of cache misses. Harper et al. [54] propose 

an analytical model of set-associative caches and Cascaval and Padua [32] give a compile t ime 

technique to estimate cache misses using stack distances. In the approximate category, Ferrante et 

al. [47] present techniques to estimate the number of distinct cache lines touched by a given loop 

nest. Sarkar [114] presents an refinement of this model. Although the precise models can be used 

for selecting the optimal tile sizes, only Abella et al. [2] has proposed a near optimal loop tiling 

using Cache Miss Equations and genetic algorithms. Sarkar and Megiddo [116] have proposed 

an algorithm that uses an approximate model [47] and finds the optimal tile sizes for loops of 

depth up to three. N o previous work has used any of these models to find optimal tile sizes in 

the context of multi-level tiling of loop-nests of arbitrary depth. O u r execution model, though an 

approximate one, can be used for multiple-levels of tiling as shown in this chapter. 

Single-level optimal TSS. Several algorithms [77, 36 ,33, 60] have been proposed for single-level 

tile size selection (see Hsu and Kremer [60] for good a comparison). The majority of them use a 

local cost function such as the number of capacity misses or conflict misses, not a global metric 

like ours, viz., overall execution time. Mitchell et al. [85] illustrate how such local cost functions 

may not lead to globally optimal performance. 

Multi-level optimal TSS. Mitchell et al. [85] was the first one to quantify the multi-level interac­

tions of tiling. They clearly point out the importance of using a global metric like execution t ime 

rather than local metrics like number of misses, etc. Further, they also show through examples, 

the interactions between different levels of tiling and hence the need for a framework in which the 

tile sizes at all the levels are chosen simultaneously with respect to a global cost function. In this 

chapter we have proposed one such framework for a restricted class of programs. Other results 

that show the application and importance of multi-level tiling include [30, 89, 65]. Empirical 

tools like P H i P H A C [16] and ATLAS [126] use a profile-driven approach to choose the optimal 

tile sizes. These tools are limited to the set of programs for which they are designed and are t ime 

consuming. 
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8.91 Discussion and future work 

We have proposed an high-level TSS model with three properties: (i) a global metric such as 

execution time; (ii) extensible to arbitrary levels of tiling; (iii) can be used for efficient solution of 

optimal tile sizes via IGPs. As part of our ongoing work, we plan to validate our cost model with 

more programs and different cache and processor configurations. As a next step, we will consider 

two multi-level tiling scenarios: (a) an outer level of tiling for parallelism and inner level of tilings 

for memory hierarchy; (b) outer levels of tilings for memory hierarchy and inner level of tiling 

for instruction level parallelism (IIP). Extending the program model to include non-rectangular 

loop nests and non-uniform (say, affine) dependences would be the next major step. 



CHAPTER 9 

Conclusions and Future Work 

M ULTI-LEVEL tiling is a widely used loop transformation. Lack of tool support has limited 

its use to optimization experts. The tile size selection framework and tiled loop generation meth­

ods proposed in this thesis provide scalable and efficient tools for multi-level tiling. We believe 

that our tools will enable a wide spread use of multi-level tiling. The scalability and efficiency of 

our tools make them suitable for inclusion in production compilers, iterative optimizers and auto-

tuners. Further, our multi-level tiling tools are a necessity to realize the performance potential 

offered by systems such as CELL BE [66] and nVidia's CUDA enabled GPUs [37]. 

Our TSS framework derives its scalability and efficiency properties from the underlying con­

vex optimization methods. By doing so, it brings powerful numerical optimization techniques to 

the world of compiler optimizations. For example, in numerical optimization, sensitivity analysis 

is a widely used technique for understanding the sensitivity of the optimal solution with respect 

to parameters of the optimization problem [21]. Such a technique can be directly applied to op­

timal TSS problems to study the sensitivity of tile sizes to the parameters (such as cache sizes, 

network latency, etc.) involved in TSS optimization problem [40, 75]. Questions such as "how 

much performance can be gained by increasing the cache size? " can be answered with a sensitivity 

analysis. 

Our tiled loop generation algorithms are based on the concepts of two polyhedral sets, viz., 

146 
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inset and outset. We have shown that by appropriate use of these two sets we can derive a vari­

ety of parameterized, fixed, or mixed tiled loop generation algorithms. By providing an efficient 

method for computing these sets, we have provided a unified basis for the design and implementa­

tion of tiled loop generation algorithms. This efficiency also led to the development of a scalable 

method which can provide m levels of tiling at the price of just one level. 

Specific directions of future work were outlined earlier at the end of each chapters. A few 

general directions are outlined below. 

9.11 Posynomial based modeling 

We believe that the use of posynomials for performance modeling is applicable to more than just 

tile size selection. This belief is based on the fact that almost all the parameters selected or tuned 

by compilers are positive. The following are other scenarios where we think posynomial based 

performance modeling will be useful. 

• Prefetching: Models to estimate the optimal prefetching distance given the overheads and 

performance benefits. 

• Transactions: Models to estimate the optimal length of transactions for a given cost of 

conflict detection and roll back. 

Another promising approach is the use of posynomials to learn performance models that can be 

used for TSS. The promise of this approach is based on the observation that posynomials are 

widely used in designing TSS models. The idea is to use posynomials as basis functions and fit 

a posynomial model to the execution time data of a tiled loop nest. Our parameterized tiled 

loop generation methods can be exploited here to generate parameterized tiled codes that can be 

executed for a set of tile sizes to collect the execution time data. 

9.21 Tile shape and size selection 

Recent work by Bondhugula et al. [17, 18] has provided a linear programming based formulation 

for tile shape selection. They do not address the issue of tile size selection. Our posynomial based 
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tile size selection framework complements Bondhugula et al.'s work. It would be interesting to 

combine both the works to formulate an optimization problem that selects both tile shape and 

sizes. An observation that would be helpful in this combination is that both linear programs and 

geometric programs are subsets of the broader class of convex programs. 
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