
DISSERTATION

SCALABLE AND EFFICIENT TOOLS FOR MULTI-LEVEL TILING

Submitted by

Lakshminarayanan Renganarayana

Computer Science Department

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2008

UMI Number: 3321306

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3321306

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

February 29, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR

SUPERVISION BY LAKSHMINARAYANAN RENGANARAYANA ENTITLED SCAL­

ABLE AND EFFICIENT TOOLS FOR MULTI-LEVEL TILING BE ACCEPTED AS FUL­

FILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSO­

PHY.

Committee on Graduate Work

&x^W^

Department He;

ABSTRACT OF DISSERTATION

SCALABLE AND EFFICIENT TOOLS FOR MULTI-LEVEL TILING

In the era of many-core systems, application performance will come from parallelism and data

locality. Effective exploitation of these require explicit (re)structuring of the applications. Multi­

level (or hierarchical) tiling is one such structuring technique used in almost all high-performance

implementations. Lack of tool support has limited the use of multi-level tiling to program opti­

mization experts. We present solutions to two fundamental problems in multi-level tiling, viz.,

optimal tile size selection and parameterized tiled loop generation. Our solutions provide scalable

and efficient tools for multi-level tiling.

Parameterized tiled code refers to tiled loops where the tile sizes are not (fixed) compile-time

constants but are left as symbolic parameters. It can enable selection and adaptation of tile sizes

across a spectrum of stages through compilation to run-time. We define a parametric version of

the loop tiling transformation and present a symbolic extension of the Fourier-Motzkin elimina­

tion technique for generating parameterized tiled code. To overcome the efficiency and scalability

problems of this technique, we introduce two polyhedral sets, viz., inset and outset, and use them

to develop a variety of scalable and efficient multi-level tiled loop generation algorithms. The gen­

eration efficiency and code quality are demonstrated on a variety of benchmarks such as stencil

computations and matrix subroutines from BLAS. Our technique can generate tiled loop nests

with parameterized, fixed or mixed tile sizes, thereby providing a one-size-fits all solution ideal

for inclusion in production compilers.

Optimal tile size selection (TSS) refers to the selection of tile sizes that optimize some cost

(e.g., execution time) model. We show that these cost models share a fundamental mathematical

property, viz., positivity, that allows us to reduce optimal TSS to convex optimization problems.

ni

Almost all TSS models proposed in the literature for parallelism, caches, and registers, lend them­

selves to this reduction. We present the reduction of five different TSS models proposed in the

literature by different authors in a variety of tiling contexts. We also present three case studies

that illustrate the potential of convex optimization based TSS methods in solving a wider class of

loop optimization problems. Our convex optimization based TSS framework is the first one to

provide a solution that is both efficient and scalable to multiple levels of tiling.

Lakshminarayanan Renganarayana
Computer Science Department
Colorado State University
Fort Collins, Colorado 80523
Spring 2008

Acknowledgments

I have been very lucky to work under the supervision of Dr. Sanjay Rajopadhye. Thanks to his

courageous "Yes, I will take you as my PhD student" (when I knew nothing about polyhedra or

parallel computation). Thanks to him for teaching me polyhedra and patience; parallel computa­

tion and perseverance; matrices and mathematical rigor; paper writing and proof techniques; and

much more. Thanks Sanjay for being a constant source of inspiration to me in both research and

personal life.

It has been a wonderful experience working with Dr. Michelle Mills Strout. Thanks to her

for teaching me how to do experimental validation and how to present them. Thanks Michelle

for all the great moments and interesting discussions.

It is always a pleasure to take Dr. Wim Bohm's course—or even just to drop in his office and

talk to him. I have been very fortunate to have had the chances to do both. Thank you Dr. Bohm

for the thought provoking problems, puzzles and discussions.

Dr. Edwin Chong's course on Optimization Techniques is one of the courses I enjoyed most

at CSU. This course not only influenced a good part of my thesis, but also changed the way I

looked at problems. Thank you Dr. Chong for introducing me to the exciting world of Opti­

mization Techniques.

In addition to teaching and inspiring me, Dr. Bohm, Dr. Strout, and Dr. Chong, also agreed

to serve on my thesis committee and provided me invaluable feedback. Thank you all.

I would like to thank Dr. Ross McConnell for introducing me to the wonderful world of

Graph Algorithms.

I would like to thank Dr. Rob Schreiber and Dr. Darren Cronquist for giving me an oppor­

tunity to work on the PICO project at HP Labs.

v

I would like to thank Ramakrishna Upadrasta in whom I found a great friend. Thank you

Rama for all the wisdom and spiritual guidance.

I would like to thank Gautam Gupta, Ramakrishna Upadrasta, DaeGon Kim, Rinku Dewri,

Ashish Gupta and Manjukumar Harthikote-Matha for providing a great atmosphere for bouncing

and discussing (all kinds of) ideas. I would like to thank all the members of the MELANGE group

at CSU—all of you made my CSU life interesting and colorful.

I would like to thank Sharon Van Gorder and Caroll Calliham for helping me with all the

administrative process.

I would like to thank my parents for supporting me through all my adventures. I would like to

thank my brother Krishna Narayanan for his encouragement and faith in me. Thank you Krishna

for all your sacrifices and support—if not for them, I would not have done a PhD. I would like to

thank my sister and brother-in-law for all the happy moments and timely wisdom.

I would like to thank my wife Mythili for her love, support and understanding. This disserta­

tion would not have been possible without her. I dedicate it to her.

Contents

1 Introduction 1

1.1 Tile Size Selection 4

1.1.1 Limitations of Current Approaches 4

1.1.2 A Unified Tile Size Selection Framework 7

1.2 Parameterized Tiled Loop Generation 8

1.2.1 Limitations of current approaches 9

1.2.2 Parameterized tiled loop generation using Outset 10

1.3 Overview of the dissertation 11

1 Tiled Loop Generation 13

2 Parameterized Tiling and Symbolic Fourier-Motzkin Elimination 14

2.1 Background, program and tiling model 15

2.2 Parameterized Tiled Iteration Space 17

2.2.1 Properties of a PTIS 18

2.2.2 PTIS of the Example 18

2.2.3 The SFME Algorithm 20

2.3 Symbolic FME Algorithm 20

2.4 Complexity of the SFME Algorithm 23

2.5 Sign determination always possible 23

2.6 Loop generation from computed bounds 24

2.7 Redundancy elimination 25

vii

2.8 Related Work 27

2.9 Discussion 27

3 Parameterized Tiled Loop Generation 29

3.1 Anatomy of Tiled Loop Nests 30

3.1.1 Bounding Box Method 30

3.1.2 When Tile Sizes Are Fixed 32

3.1.3 Best Of Both 33

3.2 Generating the Tile-Loops with Outset 36

3.2.1 The Outset and its Approximation 36

3.2.2 Generating tile-loops 38

3.3 Generating the Point Loops 41

3.4 Implementation and Experimental Results 41

3.4.1 Experimental Setup 43

3.4.2 Results 43

3.5 Finding Full Tiles Using the Inset 47

3.5.1 Algorithm for Computing Inset 48

3.5.2 Code Generation Implementation 50

3.6 Related Work 51

3.7 Discussion 53

4 Multi-level Tiled Loop Generation 54

4.1 Multi-level Tiling 54

4.1.1 Multi-level tiling for fixed tile sizes 55

4.1.2 Multi-level tiling using the outset 56

4.2 Separating partial & full tiles 59

4.3 The loop generation algorithm 61

4.3.1 Complexity & scalability of the algorithm 62

4.4 Experimental Validation 64

4.4.1 Generation efficiency 65

4.4.2 Cost of parameterization 68

4.4.3 Effect of separation level 69

4.5 Related Work 71

4.6 Discussion 72

II Tile Size Selection 73

5 A Unified Framework for Optimal Tile Size Selection 74

5.1 A Fundamental Property 75

5.2 Posynomials and Geometric Programs 76

5.2.1 Posynomials 76

5.2.2 Geometric Programs 77

5.2.3 Efficient solutions via Convex Optimization 77

5.3 Posynomials and TSS models 77

5.4 Models From Literature 79

5.4.1 Cache locality model 79

5.4.2 Parallelism model 81

5.4.3 Register tiling model 85

5.4.4 Multi-level tiling model 87

5.4.5 Auto-tuner model 88

5.5 PosyOpt Framework 89

5.5.1 Running time experiments 90

5.6 Conclusions 91

6 Exploration of Parallelization Strategies for 3D Stencil Computations 92

6.1 Introduction 92

6.2 Space of Tiling and Parallelizations 95

6.2.1 Tiling and parallelization model 95

6.2.2 Need for and implications of skewing 96

6.2.3 Space of tilings and allocations for parallelization 97

6.2.4 Space of tilings for locality 99

6.2.5 Interactions between tilings 99

6.3 ID Strips 100

6.3.1 Cache tiling 102

6.4 Semi-oblique Strips 103

6.4.1 Cache tiling 104

6.5 Experimental Results 104

6.6 Related Work 107

6.7 Discussion 108

7 Combined ILP and Register Tiling 109

7.1 Introduction 110

7.2 Our approach to ILP and register tiling 112

7.3 An analytical model 114

7.3.1 Program and tiling model 114

7.3.2 Architecture and Execution model 115

7.3.3 Fundamental measures 116

7.4 Optimization problem formulation 118

7.5 Checking whether permutation can expose a parallel loop 119

7.5.1 Existence of a loop with no carried dependences 120

7.6 Space of valid skewing transformations 122

7'.7 Solving the optimal TSS problem 124

7.7.1 Optimal TSS problem is an IGP 124

7.8 Solving the combined ILP and register tiling problem 124

7.9 A complete example 125

7.10 Related work 127

7.11 Discussion and future work 128

8 A Multi-level Data Locality Tiling Model 129

8.1 Optimal multi-level tiling 130

8.2 A high level analytical cost model 131

8.2.1 Program and Tiling Model 131

8.2.2 Fundamental measures 132

8.2.3 Architectural parameters 133

8.2.4 An analytical cost model 134

8.3 Optimal TSS problem formulation 135

8.3.1 Single-level optimal TSS problem formulation 135

8.4 Multi-level optimal TSS problem formulation 135

8.4.1 Illustration: Two-level tiling of a doubly nested loop 137

8.5 Optimal TSS Problem is an IGP 138

8.6 Generality and extensions 139

8.6.1 Extensibility of the cost model 140

8.7 Experimental results 142

8.8 Related work 143

8.9 Discussion and future work 145

9 Conclusions and Future Work 146

9.1 Posynomial based modeling 147

9.2 Tile shape and size selection 147

Bibliography 149

List of Figures

1.1 Tiling at various levels of a resource hierarchy. Top layer represents registers and

functional units. Middle layer represents private or shared memories. The bottom

layer represents the network that connects multiple processors 3

2.1 A 2D loop nest with triangular iteration space 16

3.1 2D iteration space found commonly in stencil computations. The body of the

loop is represented with the macro SI for brevity. 30

3.2 A 2 x 2 rectangular tiling of the 2D stencil iteration space with N; = A^ = 6 is

shown. The bounding box of the iteration space together with full, partial, and

empty tiles and their origins are also shown 31

3.3 Tiled loops generated using the bounding box scheme 32

3.4 Tiled loops generated for fixed tile sizes using the classic scheme 33

3.5 A 2 x 2 rectangular tiling of the 2D stencil iteration space with Nt = N: = 6.

The outset and bounding box are also shown. Compare the number of empty tile

origins contained in each of them 34

3.6 Parameterized tiled loops generated using outset. The variables kTLB and iTLB

are used to shift the first iteration of the loop so that it is a tile origin, and explained

later (Section 3.2.2.2) 35

3.7 Intersection of a tile origin lattice for 2 x 3 tiles and the outset is shown. The orig­

inal iteration space is omitted for ease of illustration. Note that the first iteration

of the loops that scans the outset could be a non-tile origin. We need to shift this

iteration to the next iteration that is tile origin 39

xii

3.8 A triangular iteration space and tiles 42

3.9 Percentage loop overhead =(counter / body and counter)x 100 of the SSYRK for

matrices of size 3000 x 3000 44

3.10 Total execution time for symmetric rank k update for matrices of size 3000 x 3000. 45

3.11 Total execution time for LUD on a matrix of size 3000 x 3000 45

3.12 Total execution time for STRMM for matrices of size 3000 x 3000 46

3.13 Total execution time for 3D Stencil on a 2D data grid of size 3000 x 3000 over 3000

time steps 46

4.1 Multi-level tiling as repeatedly tiling each tile on a triangular iteration space 57

4.2 A loop nest corresponding to the multi-level tiling in Figure 4.1 57

4.3 Structure of multi-level tiled loops generated with the outset method when partial

and full tiles are not separated 58

4.4 Structure of multi-level tiled loops generated with the outset method when the

partial and full tiles are separated at some tiling level k 59

4.5 A multi-level tiled loop for the 2D Stencil. The body of the loop is by SI 63

4.6 Generation time for multi-level tiling of 2D Stencil 65

4.7 Generation time for multi-level tiling of LU decomposition 66

4.8 Generation time for multi-level tiling of symmetric rank k update (SSYRK) 66

4.9 Generation time for multi-level tiling of 3D Stencil 67

4.10 Generation time for multi-level tiling of triangular matrix multiplication

(STRMM) 67

4.11 Generation time for multi-level tiling of classic method. The x-axis of the graph is

the number of loops in the tiled loop nest. The y-axis is the code generation time

in seconds 68

4.12 Total execution time for 2D Stencil on a data array of size 65536. The x-axis shows

the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512 69

4.13 Total execution time for LU decomposition on a matrix of size 2048 x 2048. The

x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at

512 70

4.14 Total execution time for symmetric rank k update (SSYRK) for matrix of size

2048 X 2048. The x-axis shows the inner (cache) cubic tile sizes. The outer (TLB)

tile size is fixed at 512 70

4.15 Total execution time for 3D Stencil for a data array of size 2048 x 2048 over 2048

time steps. The x-axis shows the inner (cache) cubic tile sizes. The outer (TLB)

tile size is fixed at 512 71

4.16 Total execution time for triangular matrix multiplication for matrices of size

2048 x 2048. Two levels of tiling for cache and registers is used. The x-axis shows

the cubic cache-tile sizes. The graph on the left is for a register-tile size of 2 x 2 x 2

and the one on the right is for 3 x 3 x 3 72

5.1 This figure is based on the example given by Sarkar and Meggido [116]. Exam­

ple loop nest and hardware parameters are shown on the left. The optimization

problem (Eq. 5.4) for selecting the tile sizes is shown on the right 80

5.2 A tile graph is shown resulting from a 2 x 2 tiling of the parallelogram iteration

space is shown 82

5.3 This figure is based on the example of Sarkar [115]. The example code for matrix

multiply and some of the terms used in the problem formulation are shown in the

left. The optimization problem for selecting the tile sizes is shown on the right. . 85

5.4 A Multi-level (TLB and cache) cost model for single-level tiling from Mitchell et

al. [85]. ẑ is the miss penalty for memory module k and Q, is the capacity of

memory module k. Types of memory modules are TLB and cache and denoted

by k = t and k = c 87

5.5 Cost functions used by Yotov et al. [138, Figure 20] to select the cache and register

tile sizes 88

5.6 Overall structure of the PosyOpt tool 90

6.1 (Left) Gauss-Siedel style successive over-relaxation code. 9 point stencil computa­

tion. (Right) Dependences of the 9 point stencil computation 95

6.2 Space of multi-level tilings and parallelizations for the 9-pt. stencil. The choices

(path) shown in bold correspond to the two strategies explored in detail 97

6.3 (Left) Tile graph of ID strips tiling. The fastest schedule is shown in dotted

lines. (Right) Steps performed by each (non-boundary) processor in ID Strips

tiling. Lco l [] , Rcol [] , and Midd leReg ion [] corresponds to the left col­

umn, right column and middle portion of a strip. The index k and k — \ indicates,

respectively, whether they are from the same k plane or the previous plane 101

6.4 (Left) Skewed dependences that make this tiling legal. (Right) Semi-oblique strips

tiling 103

6.5 Speedups for SOS over Strip strategy without (left) and with (right) cache tiling.

Results for five different grid sizes AT- = N- = 1200,2160,3120,4080, and 5040,

each for a set of small time steps N^ = P (the number of processors), are shown. . 105

6.6 Percentage error in predicted with respected to actual for SOS (Left) and Strip

(Right) strategies without cache tiling. Results are reported for five different grid

sizes (Ni = NA each for a set of time steps Nk equal to number of processors P. . . 106

7.1 Outline of our approach to ILP and Register Tiling. Top row shows the tradi­

tional approach and bottom row shows ours. The choice of code transformation

technique influences the parameters to be determined and hence the performance

model I l l

7.2 Outline of our solution strategy. 113

7.3 Example dependence matrices 120

7.4 Original loop nest. No permutation can expose the parallelism 125

7.5 Skewed, permuted, and tiled loop nest. All the iterations of the innermost loop

(i2) can be executed in parallel 126

8.1 Program model (left): An rc-dimensional rectangular loop nest. Tiling model

(right): Rectangular tiling of the ^-dimensional loop nest 132

List of Tables

3.1 Benchmarks used for code quality evaluation 43

3.2 Tiled loop generation times (in milliseconds) of the four methods on the four

benchmarks. The four methods fixed classic, fixed decomposed, parameterized

bounding box, and parameterized outset are denoted by fClassic, fDecom, pBbox,

and pOutset respectively. 47

4.1 Benchmarks used for evaluating generation efficiency and code quality. 66

5.1 These parameters and functions are widely used in TSS models. What is the math­

ematical property common to all these? 75

5.2 Cost functions used in the literature for optimal cache locality tiling are shown,

where C is the cache size, h, w represent the height and width of the rectangular

tile, n represents the size of a 2D array and / represents the cache line size. A

simple inspection shows that they are all posynomials. This table is derived from

Hsu and Kremer [59, table 2] 79

8.1 Widely used processor features and compiler optimizations that influence mem­

ory access cost and execution time 140

8.2 Experimental Results. Mean and standard deviation of the percent error between

predicted and simulated execution times, m is the number of levels of tiling and n

is the loop nest depth 143

xvi

List of Algorithms

1 Symbolic Fourier Motzkin Elimination (SFME) algorithm. Eliminates one vari­

able from a given system of constraints 21

2 An algorithm for generating multi-level tiled loops based on outset approach 62

3 Algorithm to check whether the input loop nest has any parallel loop 122

xvn

CHAPTER 1

Introduction

"[...] a broad range of optimization techniques are, in essence, tiling. We argue that tiling

should consider storage mapping, scheduling, and communication pipelining decisions; that

it encompasses inspector/executor methods; that it can facilitate register allocation, storage

compaction, instruction cache optimization, fault tolerance, and adaptive computing on het­

erogeneous platforms; and so on. "

—Tiling, the Universal Optimization, Larry Carter [29]

T ODAY'S general purpose computers have multi-core processors. As the number of cores on

a chip doubles every year, very soon there will be a few hundred cores—called many cores—on a

single chip. This trend of many-core general purpose processors has changed the primary mode

of performance improvement—applications need to be explicitly restructured to exploit parallelism

and memory hierarchy [120]. Such restructuring could be done automatically (by compilers or

auto-tuners) or manually (by application/library developers). Program transformation tools that

1

CHAPTER 1. INTRODUCTION 2

can aid in this restructuring play a fundamental enabling role in achieving the performance po­

tential of many-core systems. The lack of such tools is evident from the widening gap between

peak performance of systems and the attained performance of real applications.

The compute and data intensive parts of several important applications are loop kernels.

High-performance implementations of these kernels directly translate to application level high-

performance. One of the important loop transformation used in high-performance implementa­

tions is tiling [62, 117, 78, 136]. Tiling matches program characteristics (locality, parallelism, etc.)

to those of the execution environment (memory hierarchy, registers, number of processors, etc.).

Often, multiple levels of tiling are used to account for the hierarchy of resources. Given a loop

nest, tiling partitions its iterations into groups called tiles. These tiles form the execution units

with improved performance. The improvement is through parallel execution and/or better data

locality.

Parallel systems include an hierarchy of resources: hundreds or thousands of processors, an

interconnection network, an hierarchy of shared and private memories, tens of floating point

registers, and pipelined superscalar functional units [30]. Figure 1.1 shows an example parallel

system with three levels of resources. The bottom level represents the parallelism induced by a set

of processors connected through an interconnection network. Here communication is expensive.

Tiling has been used to coarsen the granularity of the computation blocks so that the frequency

of communication is reduced. The middle level represents an hierarchy of private and shared

memory (or caches). Tiling has been used in this context to improve data locality. The top level

consists of registers and pipelined functional units. In this context, register tiling (also known as

loop unrolling plus scalar replacement) is used to expose instruction level parallelism (ILP) and to

promote array values to registers.

High-performance implementations of loop programs typically employ multiple levels of

tiling [30]. For example, the highly tuned matrix multiplication implementation generated by

ATLAS or PHiPAC [126, 16] uses two levels of tiling: one for caches and another for registers

and ILP. Furthermore, with the advent of multi-core processors in general purpose computers,

an additional level of tiling for parallelism has become necessary. Multi-level tiling has almost be­

come a design pattern for high performance implementations. Whenever a programmer is faced

with the problem of deriving a high-performance implementation from a sequential specification

CHAPTER 1. INTRODUCTION

Registers
andILP

Data locality
(caches]

Coarse
Grained

Parallelism

Cache Registers- Functional Units

Figure 1.1.
Tiling at various levels of a resource hierarchy. Top layer represents registers and functional units.
Middle layer represents private or shared memories. The bottom layer represents the network
that connects multiple processors.

of an algorithm, multi-level tiling guides the structuring of the implementation. Language level

abstractions such as hierarchical tiled arrays (HTA) [15] reify tiles as first class objects and directly

support the use of multi-level tiling as a design pattern.

To summarize, multi-level tiling is emerging as a standard structuring technique for high-

performance implementations. Effective use of it requires efficient and scalable tools for tiled

code generation and tile shape/size selection. Tiled code generation involves the generation of the

transformed or tiled loop nest and the loop body. The shape and size of the tiles are selected such

that the resulting execution time is minimized. In this thesis, we focus on tile size selection and

tiled loop generation.

The rest of the chapter is organized as follows. The next section introduces the tile size selec­

tion problem, describes the limitations of the current approaches and presents an outline of our

solution. Section 1.2 introduces the problem of tiled loop generation, describes the limitations

of the current approaches and presents our technique for multi-level tiled loop generation. The

chapter closes with an overview of the dissertation.

CHAPTER 1. INTRODUCTION 4

l.l\ Tile Size Selection

Tile size selection has been studied for almost two decades now. As early as 1969, McKel-

lar and Coffman [84] studied how to match the organization of matrices and their opera­

tions to paged memory systems. Early studies of such matching, in the context of program

transformation, were done by Abu-Sufah et al. [3] and Wolfe [130]. Solutions ranging from

closed form solutions [4, 20, 26, 56, 91, 98, 12, 10, 134, 137, 138, 117] to heuristic algo­

rithms [78, 60, 33, 36, 99, 48, 115, 63, 77, 116, 85] to exhaustive search [126, 16, 72] have been

proposed. Cost models that characterize the performance of a tiled loop nest in terms of tile

sizes are used for selecting the best tile sizes. These cost models are closely tied to the execution

platform (architecture, communication network, run time libraries, etc.). The two primary lim­

itations of current tile size selection methods are (i) non-extensibility to newer architectures and

program classes and (ii) non-scalability to multiple levels of tiling. Given the rapidly changing

landscape of multi-core systems, there will be considerable variation in processor architectures,

and memory hierarchies will probably be deep and user managed. In such a scenario, effective use

of tiling requires tile size selection frameworks which (i) allow extensions and adaptations of cost

models and (ii) scale to multiple levels of tiling.

1.1.1 Limitations of Current Approaches

We first describe the design process used by current methods and identify their limitations. Opti­

mal Tile Size Selection (TSS) is the problem of selecting the tile sizes that are optimal with respect

to a given cost model. For example, in the use of tiling to improve cache locality, consider the

selection of sizes x and y which form the sides of a 2D tile. A widely used cost function is the

number of cache misses. This cost function is used, together with the constraint that the data

accessed by a given tile—tile footprint—fits in the cache. The corresponding optimal TSS problem

can be stated as follows:

select x,y which minimize Misses(x,y) (1.1)

subject to FootPrint{x,y) <CacheCapacity

CHAPTER 1. INTRODUCTION 5

where, Misses(x,y) estimates the number of misses experienced with a tile of size x X y,

FootPrint(x,y) estimates the number of cache lines touched by a tile of size x X y, and

CacheCapacity is the capacity of the cache in number of lines. The cost function together

with the constraint is called the cost model. One can view the optimal TSS problem as a con­

strained optimization problem and in such a view the cost function is also referred to as the

objective function.

All TSS solutions proposed currently in the literature follow a design process that can be

summarized as follows:

1. Design a cost model. This includes the design of a cost metric (objective function) that esti­

mates a desired quantity as a function of tile sizes and constraints that qualify tile sizes as

valid or not. The cost models seek to estimate quantities that are related to the execution

characteristics and hence are inherently strongly tied to the class of programs and architec­

tural features for which they are designed.

2. Reason about the structure of the cost functions. For example, one can check whether the

objective function is linear or quadratic in terms of the tile size variables.

3. Exploit the properties of functions to derive a closed form solution or a heuristic/search algo­

rithm.

As an illustration, consider the optimal tiling problem proposed by Andonov et al. [11]. They

study the problem of tiling 2D iteration spaces with uniform dependencies for parallel SPMD

style execution on distributed memory machines. They come up with a cost model, after a de­

tailed study of the class programs they want to tile, the architectural parameters, and the execution

characteristics. The objective function T(x,y) estimates the total (parallel) execution time of the

tile program and the goal is to pick the tile sizes that minimize this metric. The objective function

and the constraints can be abstractly viewed as

A D
min. T(x,y) = \-Bxy + Cx-\ [-E

xy y

subject to x,y > 1, x,y 6 Z

where x,y are the tile size variables and A, B,C,D,E are constants. Then they use the following

CHAPTER 1. INTRODUCTION 6

reasoning to obtain a closed form solution: for xy = K,K EM., the function T(x,y) monoton-

ically decreases with x. As a result, the optimal solution is on certain boundaries of the feasible

space, and using this information, one of the variables can be eliminated, yielding a closed form

solution for x and y.

A subtle but important feature of the above process is the following: the cost model is strongly

coupled to the program class/architectural features and the solution (method) is derived by ex­

ploiting the properties of the functions used in the cost model. Any extensions of the cost model

to a different architecture, richer program class, or to multiple levels of tiling, change the structure

of the functions used in the cost model, and hence leave the solution (method) inapplicable. For

example, an extension of the Andonov et al.'s model to a richer program class, viz., 3D iteration

spaces requires the solution of a completely different problem [12],

All TSS solutions proposed in the literature are cost model specific and do not lend them­

selves to extensions. Any non-trivial extension typically requires an effort equal to or more than

the earlier one, and are often publishable results (e.g., extension from direct mapped caches to

set associative caches, from 2D to nD iteration spaces, etc.). Typically, one wants to use a TSS

solution for a program class or architecture that is slightly different than the one considered by

the author of the solution. But accounting for the differences lead to changes in the cost model,

which leaves the solution inapplicable. This is in fact an important reason for the popularity of

exhaustive search (run the program for different tile sizes and pick the best).

Given the trend towards multi-core parallel architectures high-performance implementations

use two to three levels of tiling [31,138,103]. For example, an outer level of tiling for parallelism,

another level for cache locality, and another for registers and ILP are used. Mitchell et al. [85]

have shown, in three different architectural scenarios, that the tiling parameters from different

levels interact with each other and a level-by-level independent selection of the tile sizes will lead

to sub-optimal performance. However, due to the non-scalability of the current optimal tiling

solutions, such a level-by-level approach is very common. The scalability limitation of current

approaches is once again due to their strong dependence on the properties used in the cost model.

For example, in a 2D one level tiling, the optimal tiling problem has the two tile sizes as variables

and functions used in the cost models are of degree at most two (linear, quadratic, etc.) and are

easy to reason about. However, when we move to two levels of tiling there are four variables and

CHAPTER 1. INTRODUCTION 7

functions of four variables with degree up to four are much harder to reason about.

To summarize, the cost-model specificity of the solution methods lead to their non-

extensibility and non-scalability. O u r framework overcomes these limitations by providing a

cost-model independent solution method. When using our framework one does not have to per­

form the second and third steps of the traditional optimal TSS design process described above.

Despite the aforementioned limitations, current methods are very efficient, whenever they

are applicable. For example, an optimal tiling solution which provides closed form expressions

for the optimal tile sizes is very efficient to use when compared to our approach which requires

an optimization solver. Unfortunately, reusing such optimal tiling methods require significant

extensions and adaptations.

1.1.2 A Unified Tile Size Selection Framework

O n a more fundamental note, one might speculate about the existence of a formalism that might

allow the formulation and solution of tile size selection problems independent of the specific cost

models used. To better understand this quest, consider the analogy of loop transformations. The

class of linear transformations serve as foundational formalism for expressing and reasoning about

a wide variety of loop transformations independent of what they are used for (parallelism, cache

locality, register locality, etc.). We are asking whether we can find one such formalism for tile size

selection.

In this thesis we show that there exists one such formalism and that using it for modeling

tile size selection leads to extensible models and a scalable solution method. Further, we show

how the closure properties of the formalism can be exploited to design multi-level optimal tiling

models from single-level models via composition. Even though this is the first time this formalism

is proposed as a generic tile size selection method, almost all the optimal tiling models proposed

in literature can be directly cast in this formalism and solved efficiently. In fact, many of them

were already expressed in this formalism without knowing about it, and hence did not benefit

from it earlier.

We identify a fundamental property, viz., positivity, that is shared by many mathematical

expression and terms used in a wide variety of optimal tiling models. Based on this positivity

property, we identify a class of functions called posynomials that can serve as a formalism for spec-

CHAPTER 1. INTRODUCTION 8

lfication of optimal tiling problems. By formulating a class of non-linear optimization problems

using posynomials, we propose an efficient, scalable and cost-model independent framework for

optimal tile size selection. We show that almost all the tiling models proposed in the literature can

be cast into our framework. To substantiate this claim, we describe the reduction of five different

tiling models (from a wide range of tiling contexts) to this framework. We also show how the

closure properties of posynomials can be exploited to extend single level models and/or compose

them to form multi-level tiling models. We have implemented a MATLAB based tool for using

posynomials to model and solve optimal tiling problems.

To the best of our knowledge this is the first framework that can scale to an arbitrary number

of levels of tiling and still be efficient and extensible. Further, it is insightful to find that such a

framework can be derived by exploiting a simple but fundamental property shared by all optimal

tiling models. Note that the goal of our work is not to prove tiling is useful—several authors have

shown this. Our goal is to propose a framework that not only unifies the variety of TSS models

proposed in the literature, but also lays the foundations to build more sophisticated models.

We got the insight about the positivity property only after developing posynomial based tile

size selection models in three different contexts, viz., (i) multi-level tiling for parallel execution

of 3D stencil computations [103]; (ii) tiling for registers and ILP [102]; (iii) multi-level tiling to

improve data locality of uniform dependence computations [101]. These three solutions are also

included in this thesis.

1.2] Parameterized Tiled Loop Generation

One of the important steps in application of tiling to a loop kernel is the generation of the tiled

or transformed loop nest. Tiled loop generation refers to the generation of the bounds of the

tiled loop nest. Parameterized tiled loop generation refers to the generation of tiled loop nests

in which the tile sizes are not fixed, but left as symbolic parameters, which can be fixed/tuned

at a later stage. First we motivate the need for parameterized tiled code and then present the

limitations of current approaches.

The optimal tile sizes are very sensitive to characteristics of the execution environment such

as available cache size, processor work load, network latency, etc. Traditionally loop tiling has

CHAPTER 1. INTRODUCTION 9

been viewed as a static, compile time optimization. Compilers use analytical models to select tile

sizes and generate tiled code with fixed tile sizes. Tile sizes that are selected and fixed at compile

time can be far from optimal due to changes in execution environments. Such fixed tile size codes

are rigid and cannot adapt themselves to changes in the execution environment.

The Self Adapting Numerical Software (SANS) effort [41] is a strong evidence of the need for

numerical software—primarily loop programs—to be more adaptive. An important parameter

that is adapted/tuned in SANS is the tile size [39]. Further, tile size is also an important parameter

tuned by iterative compilers [73] and the so called auto-tuners such as ATLAS [126],OSKI [124],

and PHiPAC [16]. Run-time tile size adaptation has been shown to improve performance in the

context of parallelism [83] as well as data locality in shared memory [90]. Another important

use of tile size adaptation is in the context of utility computing, where programs are expected to

be mobile—migrate and adapt to a new set of resources [46]. Such adaptations with respect to the

number of processors and memory characteristics can be directly mapped to tile size adaptations.

The above discussion shows a spectrum of stages at which tile sizes are tuned/fixed/adapted:

classic compile-time by compilers; install time by auto-tuners; load-time (beginning of the execu­

tion) in parallel programs to adapt for number of available processors; during run-time for data

locality in shared memory; and during reconfiguration time in mobile programs for adapting to a

new set of resources. As discussed in previous sections, often multiple levels of tiling are used. In

such a scenario, we need to generate a multi-level, parameterized tiled loop nest.

1.2.1 Limitations of current approaches

There is an easy solution to the parameterized tiled loop generation problem: simply produce

a parameterized tiled loop for the bounding box of the iteration space, and introduce guards to

test whether the point being executed belongs to the original iteration space. When the iteration

space is itself (hyper) rectangular, as in matrix multiplication, this method is obviously efficient.

However, many important computations, such as LU decomposition, triangular matrix product,

symmetric rank updates, do not fall within this category. Moreover, even if the original iteration

space is (hyper) rectangular, the compiler may choose to perform skewing transformations to

exploit temporal locality or parallelism (e.g. stencil computations) thus rendering it parallelepiped

shaped. Parallelepiped-shaped iteration spaces also occur when skewing is performed to make

CHAPTER 1. INTRODUCTION 10

(hyper) rectangular tiling legal. For such programs, the bounding box strategy results in poor code

quality, because a number of so called "empty tiles" are visited and tested for emptiness. Another

drawback for the bounding box strategy is that calculating the bounding box of arbitrary iteration

spaces may be time-consuming. The worst-case time complexity of computing a bounding box is

exponential [13].

The main difficulty with generating parameterized tiled loop code has been the fact that the

Fourier-Motzkin elimination technique that is used for scanning polyhedra [9] does not naturally

handle symbolic tile sizes, and leads to a nonlinear formulation. Amarasinghe proposed a sym­

bolic extension of the standard Fourier-Motzkin elimination technique [8, 7] and implemented it

in the SUIF system [127]. It is well known that Fourier-Motzkin elimination has doubly expo­

nential worst case complexity. The symbolic extension inherits this worst case complexity, adds

to the number of variables in the problem, and reduces the possibilities for redundancy elimina­

tion.

Though multi-level tiling is widely used, the multi-level tiled loop generation problem has not

been widely studied. In fact, we are aware of only one solution that can generate arbitrary levels

of multi-level tiled code for general polyhedral iteration spaces [65]. Their technique is limited to

the case when tile sizes are fixed at compile (tiled loop generation) time.

1.2.2 Parameterized tiled loop generation using Outset

We present a simple and efficient approach for generating parameterized tiled code that handles

any polyhedral iteration space and parameterized (hyper) rectangular tilings. We show that the

problem can be decomposed into two sub problems of generating: (i) loops that iterate over tile

origins and (ii) loops that iterate over the points within tiles. These sub problems can be for­

mulated as a set of linear constraints where the tile sizes are parameters, similar to problem size

parameters. This allows us to reuse existing code generators for polyhedra, such as CLooG [14],

and implement our code generator through simple pre- and post-processing of the CLooG input

and outputs. The key insight is expressing the bounds for the tile loops as a super set, called outset,

of the original iteration space and then post processing the generated loops by adding a stride and

modifying the computation of the lower bounds.

We present an algorithm that generates tiled loops from any parameterized polyhedral iter-

CHAPTER 1. INTRODUCTION 11

ation space, while keeping the tile sizes symbolic variables. The fact that our algorithm can be

directly applied to the case when the tile sizes are fixed, makes our method a one-size-fits-all solu­

tion, ideal for inclusion in production compilers. We present an empirical evaluation on bench­

marks such as LUD and triangular matrix product show that our algorithm is both efficient and

delivers good code quality. Our experiments present the first quantitative analysis of the cost of

parametrization in tiled loops generation. We also present an algorithm that separates the loops

into those that iterate over partial tiles and those that iterate over full tiles. Such a separation

has the added benefit that it enables transformations like loop unrolling or software pipelining,

(which are often applied only to rectangular loops) to be applied to the (rectangular) loops that

iterate over the full tiles. Our implementation is available as open source software [55].

The concept of outset can also be used for generating multi-level tiled loops. We propose a

technique for generating multi-level tiled loops where the tile sizes can be fixed (constants) or

symbolic parameters or mixed. Our technique provides multiple-levels of tiling at the same cost

of generating tiled loops for a single level of tiling. We propose a novel formalization of the classic

tiling transformation [62,136] to multiple levels. We propose a method for separating partial and

full tiles at any arbitrary level, without fixing the tile sizes. We have implemented all the proposed

code generation techniques and the tool is available open source [55]. We present extensive evalu­

ation of both the generation efficiency and quality of the generated code on benchmark routines

form BLAS, LUD, and stencil computations.

1.3 Overview of the dissertation

The dissertation is broadly separated into two independent parts: (i) tiled loop generation and (ii)

optimal tile size selection. In the first part on tiled loop generation, we first introduce the basic

concepts of inset and outset. We then present the tiled loop generation algorithms for single-level

followed by its extension to multiple-levels. Then, we present the techniques used for separating

full/partial tiles.

In the second part on optimal tile size selection, we first present a survey of the current ap­

proaches. After introducing the background on posynomials, geometric programs and convex

optimization, we present the optimal tile size selection framework. To show that appropriateness

CHAPTER 1. INTRODUCTION 12

of the framework for modeling a wide variety of TSS problems, we present the reduction of five

different TSS models proposed by a different authors in the contexts of TSS for parallelism, data

locality, and register locality and ILP. Then we present the three models: (i) multi-level tiling for

parallel execution of 3D stencil computations [103]; (ii) tiling for registers and ILP [102]; and (iii)

multi-level tiling to improve data locality of uniform dependence computations [101].

Parti

Tiled Loop Generation

13

CHAPTER 2

Parameterized Tiling and Symbolic Fourier-Motzkin

Elimination

The formulation of a problem is often more essential than its solution, which may be

merely a matter of mathematical or experimental skill.

- Albert Einstein

J L N this chapter we present an extension of the classic tiling transformation formulation [62,

135] to the case where the tile sizes are not fixed but left as parameters. We present this for­

mulation and a Symbolic Fourier-Motzkin Elimination (SFME) algorithm for generating param­

eterized tiled code. We also present proofs of the correctness of the SFME algorithm and its

applicability to the system of constraints resulting from the parameterized tiling transformation.

This extension of tiling formulation to the parametric case has theoretical significance. However,

for efficient practical code generation one should prefer the outset based methods presented in the

subsequent chapters.

The work presented in the chapter was done in collaboration with Michelle Mills Strout.

14

CHAPTER 2. PARAMETERIZED TILING AND SFME 15

2.1 Background, program and tiling model

The notat ion x indicates that x is a vector. 0 and 1 represent all-zero and all-one vectors, respec­

tively. The relational operators, < , = , > , < , and > , between two vectors are component-wise. For

a EM. we write [a\ to denote its floor and \a] its ceiling, which respectively are, the largest integer

not greater than a, and the smallest integer not smaller than a. When used in the context of vec­

tors, floor and ceiling functions are applied component-wise, for example: [x] = ([x j] , . . . , [x n]) .

We denote component-wise multiplication of two vectors x = (xl,...,xn) and y = (y\,---,yn)

whhxoy=(x1y1,...,xnyn).

The symbolic Fourier-Motzkin elimination algorithm takes advantage of the fact that the

bounds for the tiled loop are bilinear with respect to the parameterized tile sizes. If V is a vector

space over a ground fields (i.e., for this chapter the field is the set of real numbers), then a function

/ : V —» K is called a linear function if for any two vectors x and y in V and a scalar a in K the

following two properties f(x+y) = / (x) +f(y) and f(ax) = af(x) are satisfied. A function g is

called affine if it can be written of the form g(x) = f{x) + c, for some linear function / and some

constant c GK. For example, / (x 1 ; x 2) = 3xj + 4x2 + 3 is an affine function.

If Vx and V are two vector spaces over some ground field K, a function b : Vx x V —>• K

is called bilinear if for a fixed v G Vx, h{v,y) is linear for all y € V and for a fixed it 6 V ,

h(x, u) is linear for all x £ Vx. Informally, for a fixed value of x, h() is linear in y, and vice-versa.

For example, h(x1,x2,y],y2) = 2x j j j — 3 x 2 j 2
 1S a bilinear function, whereas ^ ' (^ i . ^ ' J i ' ^) =

2Xjjj — ix2y2 is not. One can also define bi-affine functions in a fashion similar to that of affine

functions.

An inequality of the form f(x) < 0, for any affine function f{x) will be loosely called as

a linear inequality, though strictly it should be called an affine inequality. In a similar vein, an

inequality of the form h{x,y) < 0, where h{x,y) is a bilinear (or biaffine) function is called a

bilinear inequality.

O u r notat ion here closely follows that of Xue's [136]. A rectangular tiling is fully charac­

terized by the tile size vector ?, where s ; is the tile size for the zth dimension of the iteration

space.

CHAPTER 2. PARAMETERIZED TILING AND SEME 16

Figure 2.1.
A 2D loop nest with triangular iteration space.

Given an iteration space

P = {i\Qi<q+Bp],

a rectangular tiling r maps iterations of the n-dimensional iteration space P into a 2ra-dimensional

iteration space. In general, T is defined as follows:

(0 =
[A (U\\

\e J V i J

where t • identifies the index of the tile that contains the point i.

The tiled iteration space, denoted by T, is the image of P by the tiling transformation T, and

can be characterized by

T = { {t,i) | Qi < q+Bp,?o t< i < To t + s- 1}, (2.1)

where the bounds represented by Qi < q+Bp make sure that all i belong to the original iteration

space P, and To t < i < To t + T — 1 defines the iterations that are contained in the tile t. In

addition to the above constraints, the program parameters p and tile size parameters T will also

have some linear constraints. For example, they must all be greater than 1. We gather all these

linear constraints into a set C. When the tile sizes are fixed, i.e., ?is a vector of given constants,

then T defines a convex polytope.

The tiled iteration space of the triangular loop nest given in Figure 2.1, for fixed tile sizes

Sj = 2 and s2 = 3, is given by

CHAPTER 2. PARAMETERIZED TILING AND SFME 17

2tx < z'j - 1 < 2tj + 2 - l,3r2 < i2 - 1 < 3t2 + 3 - lj

It is easy to note that this is a convex polyhedron of four dimensions. In addition to the above

constraints we also have the following constraints on the program parameter Nt and the tile size

parameters si and s2.

Ctri = {Nvsvs2\Nx > 1,1 <s 1 > S 2<Ar,} . (2.2)

The constraints Ctri can be viewed as the context in which the tiled iteration space Tf ri is defined.

2.2 \ Parameterized Tiled Iteration Space

When the tile sizes are not fixed, but used as symbolic parameters, the constraints that define T

in Equation (2.1) are no longer affine, but bilinear. The inequalities that define the constraints

are formed with functions that are bilinear over the index space spanned by (t,i) and the pa­

rameter space spanned by (p,s)- We will work with this parameterized tiled iteration space (PTIS),

T(t, i,s,p), in which the tile sizes are symbolic parameters (not fixed constants).

We can represent the set of bilinear inequalities that define the PTIS, T(t,i ,T,p) (c.f. Equa­

tion 2.1) in a matrix form as follows:

(2.3)

where S = diag(F) is a diagonal matrix with the tile sizes from T as its entries, and / is an identity

matrix of appropriate size. For notational convenience we denote the matrix form in Equation 2.3

by the following simpler form

Tz<y, (2.4)

where T is the matrix on the left hand side of Equation 2.3, z = (t i) , and y is the matrix

0

5

-S

Q

/
(-) V ')

< 0

l " 1 J
+

B 0

0 0

0 /

(p

{r

CHAPTER 2. PARAMETERIZED TILING AND SEME 18

expression on the right hand side of Equation 2.3. Hence a PTIS is completely characterized by

Tz <y and the set of linear constraints on the program and tile size parameters C.

2.2.1 Properties of a PTIS

Let us consider a PTIS defined by Tz < y. A closer look at the definition of PTIS in Equation 2.1,

and the expanded matrix form in Equation 2.3, reveals that the program size parameters p will

always only appear as an additive part in y, and not in the bilinear part in T. The entries of T

are either rational numbers (coming from the linear inequalities of the original iteration space,

i.e., form Q) or linear functions of tile size variables ? (coming from the last two block rows of

Equation 2.3). In fact, there is even more structure to T, which is stated in the following bilinear

set property.

Definition 2.2.1 (BLIS-PROPERTY). Let I be any column ofT. All the components of I are either

exclusively rational numbers or exclusively zeros and linear functions of a single tile size variable, s^

for some k = 1 ...n.

Note that PTIS (c.f. Equations. 2.1 and 2.3) satisfies BLIS-PROPERTY. The BLIS-PROPERTY is

a fundamental property which is also preserved after every step of the symbolic Fourier-Motzkin

elimination algorithm we propose. In a geometric sense, similar to the projections of polyhedra

onto lower dimensions, one can view PTIS as a set, and observe that the operation projection onto

lower dimensions preserves the BLIS-PROPERTY.

2.2.2 PTIS of the Example

Let us now look at the constraints that define the parameterized tiled space of the triangular loop

nest given in Figure 2.1. We have

1< j , <NV 1 <i2<h,

s\h < h — 1 < V i +*i — 1.

s2t2 < z2 — 1 — s2h + s2 ~ 1}

Ttri(t,i,s",p)

CHAPTER 2. PARAMETERIZED TILING AND SFME 19

where (t,i) — (t1,t2,ii,i2) and 7= (s^,s2), p — (N{). The constraints C on the program and

tile size parameters are given by Equation (2.2). T[ri can be represented in matrix form of Equa­

tion (2.4) as follows:
0 0 - 1 0

0 0 1 0

0 0 0 - 1

0 0 - 1 1

s, 0 - 1 0

— 5, 0 1 0

0 s2 0 - 1

0 -s2 0 1

One can observe that the bilinear set property BLIS-PROPERTY is satisfied in Ttri.

Two properties of FME that have been very useful in the context of code generation are:

Definition 2.2.2 (FME-PROPERTY 1). Given a system 5" = {z \ Tz < f } , let &" be the set of

constraints after elimination of a variable z^. For every valid value of z of zt there exists a z' £ Sf'

such that we can extend z' with z. to get a solution to the original system of constraints 5f.

Definition 2.2.3 (FME-PROPERTY 2). The FME algorithm terminates with an inconsistent set of

constraints if and only if the original set of constraints is inconsistent.

In the next section we show how an extension of this classic method can be used to generate

tiled loops with variable tile sizes.

It is well known that FME is in spirit an elimination algorithm, whose principles are applicable

to a broader class of quantifier elimination problems. Eaves and Rothblum [43, 44] studied the

transfer of the elimination principles to other problems, such as elimination of variables in a

system of linear constraints, where the coefficients of the linear constraints are not constants

but parameters. Weispfenning [125] has proposed an efficient variant of FME which can also

eliminate variables in a system of linear constraints where the coefficients in a linear constraint

are polynomials of parameters.

Such extensions of FME to parametric problems do not come for free! An important step in

the FME algorithm is distinguishing the sign of the coefficient of a variable. When the coefficients

are constants, as in the case of linear constraints, this is straight forward. However, when the co­

efficients are parameters, or polynomials of parameters, whose result could be of either sign, both

the positive and negative cases need to be considered and this results in an exponential sized tree of

(u \

\ h)

- 1

0

- 1

s i

- 1

CHAPTER 2. PARAMETERIZED TILING AND SFME 20

cases which distinguish the sign of the coefficients. This explosion of cases makes it impossible to

apply FME to any reasonable sized problem, when the sign of the coefficients are indeterminable.

A key insight that makes such parametric FME work for our problem, at no additional com­

plexity than FME for simple linear constraints, is the following. The sign of coefficients in the

bilinear constraints that define a PTIS (c.f Eq. 2.4) can always be determined. Further, this property is

preserved across elimination of variables. This is formally stated and proved in Section 2.5.

The general FME style elimination algorithms considered by Weispfenning [125] and Eaves

and Rothblum [43, 44] also enjoy the two important properties, namely FME-PROPERTY 1 and

FME-PROPERTY 2. This allows us to use the SFME algorithm to check whether the given input

set of constraints is feasible or not, and also for removing redundant constraints, as shown in

Section 2.7.

2.2.3 The SFME Algorithm

The Symbolic Fourier Motzkin Elimination (SFME) algorithm is given in Algorithm 1. It takes

two inputs: (i) an m x (n + 1) column augmented matrix T constructed from T and y related by

a system Tz < y and (z i) a set of linear constraints C on the program and tile size parameters. It

eliminates zn from the system T. It returns Ln, Un and Y' as results, which respectively are, the

lower bounds on zn, upper bounds on zn, and the set of constraints on the remaining {zx,..., zn _ j)

variables. Note that these are also in column augmented form.

2.3 [Symbolic FME Algorithm

We successively call the SFME until all variables are eliminated. Let <% be the list that collects

all the lower and upper bounds of all the eliminated variables. After the last variable, i.e., z, is

eliminated, the resulting set of constraints in r ' (returned by the last call to SFME) are constraints

involving the program and tile size parameters, i.e., p and ?. If these constraints are inconsistent,

then the original system of constraints given to SFME is inconsistent. After all the variables are

eliminated, we have their bounds in £$. We perform a global redundancy check among the bounds

in £$ as discussed in 2.7. After performing this check, we generate loops for each variable using

bounds in £$, as discussed in 2.6. A detailed description of the steps in the SFME algorithm

CHAPTER 2. PARAMETERIZED TILING AND SEME 21

Algorithm 1 Symbolic Fourier Motzkin Elimination (SFME) algorithm. Eliminates one variable
from a given system of constraints.

Input: A m x (n + 1) column augmented matrix T, related to a system Tz < y. T is the matrix Y
augmented with the column y. A set of linear constraints C on the program and size parameters.
Output: Ln,Un, and r ' . Ln and Un are matrices with the lower and upper bound rows of zn, the
eliminated variable, respectively. The new set of rows that constitute the bounds of the remaining
variables (Zj, . . . , zn _ 1) is returned in (the column augmented matrix) T'.

1. Compute lower and upper bound matrices.
Ln <— {r+ n\Yl n < 0}. (lower bound rows)
Un <— {F^ n |r(- n > 0}. (upper bound rows)
Rn *~ {Ti,n\Ti,n = °} ' (reSt °fthe r0WSJ

2. E l i m i n a t e R e d u n d a n t s (L n , C)
(eliminate redundant lower bounds ofzn)
E l i m i n a t e R e d u n d a n t s ([/ K , C)
(eliminate redundant upper bounds of zn)

3. For each pair of rows {la,uy) :laELn and Uy 6 Un do
(to compare la and Uy, scale them first and then add them)

[\K,n\ 'lila,r> is rational

(a) Pl+~\ k , „ | \Ua<n=aajlxsk,

\ for some s^.

(extract abs. value of coefficient ofla J

(\Hb,n\ if Hb,n
 lsrational

\ab,»\ 'liub,n=:ab,nXSk>

for some 5^.

(extract abs. value of coefficient of Uy J

(c) g ^ g c d ^ , / ? ,)

(scale the pair of rows and add them to get the new row in which the coefficients ofzn is
canceled out)

(e) if (no tRedundant (x ,C))
Add the new row x to T'.

(ignore x if it is a bound implied by the constraints on the parameters C)

4. Add rows R„ to V.

CHAPTER 2. PARAMETERIZED TILING AND SEME 22

follows.

In step (1), the rows from T that correspond to the lower and upper bounds of zn are calculated

and stored respectively in Ln and U„. The rows that do not contribute towards any bound for zn

are stored in Rn. Notice that in this step we should be able to determine the sign oiTl n, for all

i = 1.. . m, so that we can categorize it as a lower or upper bound. We will always be able to do

this as discussed and proved in Section 2.5.

In step (2), the redundant lower bounds are eliminated. Intuitively, if a lower bound x is

always greater than another lower bound y, for all values of z, and the parameters p and 7, then we

can eliminate x, since it will never be the binding one. Note that we are only doing a local check

for redundancy, i.e., within the lower bounds in Ln. In a similar fashion, the redundant upper

bounds in Un are also eliminated. Redundancy elimination is further discussed in Section 2.7.

In step (3), pairs of rows, {la,tty) such that la 6 Ln and uh 6 Un are considered. The first

goal is to eliminate the zn components from la and Uy. To achieve this, we seek to scale la n and

Uy n appropriately by some factor, so that when the two rows are later added the n-th component

will cancel out. Since, the coefficient of la n and uy n could be either a rational number or a

linear function, computing the appropriate scaling factor is little involved, and steps are outlined

below. However, note that there always exists a scaling factor that can be used to cancel out the

zn components in I and uy .

If zn is an index from i (an element loop index) then la n and uy n are just rational numbers,

but if zn is an index from t (an tile loop index) then I = aa x sk and uy = ay x sk are linear

functions of some tile size variable 5^. To compute the scale factors we extract the coefficients of

lan and Hyn and assign them to Pi and / ? a , respectively. /?/ is equal to \la^\ if /„ „ is a rational

number, otherwise, it is equal of \aa \, the coefficient of the linear function la n. The actual scale

factor for la and uy are respectively, — and —, where g = gcd(/3;,/3a). Steps (3.a — 3.c) compute

these scale factors. In step (3.d), the rows la and Uy are scaled and added together to obtain a new

row x, in which the zn component is guaranteed to be 0.

In step (3.e), the new row x checked for redundancy. Here we check whether the row x

corresponds to a constraint on the parameters, for example, 5, > 1. The motivation behind this

check is that often comparisons of lower and upper bounds (la and Uy) result in cancellation of all

the components leading to a a constraint on the parameters. This type of redundancy elimination

CHAPTER 2. PARAMETERIZED TILING AND SFME 23

is further discussed in Section 2.7.

In step (4), the rows, Rn, that did not contribute towards a lower or upper bound of zn, are

added to T'.

2.4\ Complexity of the SFME Algorithm

Since we can determine the signs of the coefficients (step (1)) we do not have to maintain a tree of

sign distinguishing cases. Hence, the worst case time complexity of SFME is the same as the stan­

dard FME algorithm for linear constraints, viz., doubly exponential on the number of constraints.

However, for the kind of problems encountered in loop transformations, FME has been used very

successfully by many research and production compilers. With regards to the space complex­

ity, the standard FME for linear constraints uses matrices with rational elements, but ours uses

matrices with symbolic elements. Hence, SFME would require more space.

We check for redundant constraints at every step of elimination and eliminate as many as

possible. We have observed that this interlacing of redundancy check with every elimination

step substantially improves both the running time and memory space, since less the number of

constraints, lesser the time and space required.

2.51 Sign determination always possible

Determination of the signs of the coefficients (entries of T) is required (in step (1) of SFME) to

categorize the constraints into lower and upper bounds of a given variable. We now show that we

can always determine the sign of the coefficients and hence categorize the constraints. Observe

that whenever BLIS-PROPERTY is satisfied, we can always determine the sign of the coefficients,

i.e., entries of F. In fact, we will show that BLIS-PROPERTY is an invariant that is maintained by

the SFME algorithm, whenever its input system T satisfies the property. Let us formally state and

prove the invariant.

Theorem 2.5.1. If the input matrix T has the BLIS-PROPERTY, i.e., every column of it either exclu­

sively contains rational numbers or linear functions of a single tile variable, then the output matrix

T' returned by SFME will also satisfy the same property.

CHAPTER 2. PARAMETERIZED TILING AND SFME 24

Proof. We prove by showing that the new rows (constraints) created by SFME posses the BLIS-

PROPERTY. Now, consider a row x, created by SFME on step (3.d) with

x< xla + —xuh.
g g

The operations used are multiplication by a constant — (or —) and component-wise addition of

the rows la and Uy. Both the operations will preserve the type of the components of the rows, since

both rational numbers and linear functions are closed under scalar multiplication and addition.

We also need to show that if the z-th component of la and uy were functions of a tile variable s ,

then we the z'-th component of x is also a function of the same tile variable s . This is indeed the

case, since addition of two linear functions of a single variable w, produces another expression

linear in the same variable, w. •

The first call to SFME is with the constraints that define the PTIS (ci. Eqns. 2.1, 2.3). BLIS-

PROPERTY shows that PTIS satisfies the invariant mentioned above. Successive calls to SFME are

with the outputs of previous calls to itself, which are guaranteed to have the property.

2.61 Loop generation from computed bounds

For every variable z^, V& = 1.. . 2ra, we have lower and upper bounds, L^ and Uk, computed with

the SFME algorithm. We generate loop lower bounds of a index variable zk by taking the maxima

of all its lower bounds, i.e.,

LBk=mzx(l:,l2,...,llLkl)

where/x € Lk, Vx = 1. . . \Lk \ and \Lk \ denotes the total number of lower bounds of zk. In a similar

fashion, we generate the upper bounds of an index variable zk by taking the minima of all its upper

bounds, i.e.,

UBk =min(«1 ,K2 , . . .«|j / t |)

where«x 6 U^, Vx = 1. . . | Uk \ and | U^ \ denotes the total number of upper bounds of zk. Some of

the upper (lower) bounds might contain divisions by tile sizes, for such upper (lower) bounds we

use the floor (ceiling) functions to round them to integers.

CHAPTER 2. PARAMETERIZED TILING AND SFME 25

2.7 Redundancy elimination

The criteria for redundancy is simple: A constraint X is redundant in a system of constraints K if X

is implied by A — {X}. The computationally expensive but sure way of performing this check is to

use the criteria: X is redundant in A if and only if the conjunction of the negation of X with A — {X}

is infeasible. Such a feasibility test can be done by using SFME itself - recall the FME-PROPERTY 2

from Section 2.3.

A naive way would be to first apply SFME to compute the lower and upper bounds of all the

variables, and then check for redundancy of the constraints in this set. In such a method, we carry

the redundant constraints produced in every step all the way till the end. Due to the nature of FME

method, the redundant constraints at any step gets compared with other constraints, resulting in a

larger and larger set of redundant constraints. Though this method would detect all the redundant

constraints, due to the huge number of constraints, it is very expensive both in terms of time and

memory requirements.

In SFME, to avoid this explosion of constraints, we interleave the elimination steps with local

redundancy checks (c.f. steps (2,3.e)). These local redundancy checks act as filters and do not nec­

essarily detect all redundant constraints. However, we found them to very effective in removing

almost 80% of the redundant constraints. The redundancy check performed in step (2), consid­

ers the given set of lower bounds, Ln, in the context of the constraints on program and tile size

parameters, C, to see whether some bounds are redundant. The criteria used here is: if a lower

bound x is smaller than another lower bound y,for all values of the index variables, and parameters

from C, then x is redundant, since it will never be the binding constraint. A similar criteria is used

to check redundancy of upper bounds in Un.

For example, during the elimination of i2 from the PTIS of Ttri, we get two lower bounds

for i2 : {1, s2 x t2 + 1}. By applying the criteria described above, with the knowledge that t2 > 0,

and s2 > 1 from C, we can conclude that s2 x t2 + 1 > 1, for all values of s2 and t2. Hence, we

can eliminate 1 form the lower bounds. For a more involved example, consider the following two

CHAPTER 2. PARAMETERIZED TILING AND SEME 26

upper bounds (encountered during the bounds computation of the 3D stencil example):

«, = 2s, xtl+2sl+N)+Nl-3

«2 = 2N; + 2s • + 2s; f; + 5y - 5

We want the smaller upper bound, and hence would like to check whether »j < 2̂> f° r a u values

of S;,s,,N:,N;, and £,-. Observe that «, < «7 <=> 0 < N: + s- — 2, but from the constraints of

parameters A/- and s. (given in C) we know that N:,S: > 1. With this knowledge we can easily

infer that 0 < N.•+ 5 • — 2, and hence prove that Kj < u2 for all the values of 5,, s •, A/ , A/,-, and tt. An

important feature of this kind of redundancy elimination is that the question whether an upper

bound «2 is redundant with respect to another upper bound ux is reduced to a question on the

constraints on the parameters, i.e., Â and s here. Since, the constraints on the parameters are

just linear, we can check these constraints very efficiently.

The redundancy check performed at step (3.e), considers the situation in which a new con­

straint obtained by comparing a lower and a upper bound, is redundant with respect to the con­

straints on the parameters, C. In practice, we have found this check to be very effective. For

example, consider the following pair of lower and upper bounds (encountered during the bounds

computation of the 3D stencil example discussed in):

/ = SjXtj+4-Nj-ik

u = s} x tj+Sj+2-ik.

When we compare / < u, we get 2 < N• + s.-. We first note that the constraints do not involve

any index variable and are on the parameters, A/ and s ;, only. Hence, we do not add it to the

result r ' in SFME (step (3.e)). Further, this constraint is implied by the constraints N;-,s- > 1

in C. Hence, we can throw away this constraint. Again, checking whether such a constraint on

the parameters is implied by the constraints in C can be done very efficiently since these are just

linear constraints.

We use the aforementioned local redundancy checks as filters during every elimination step.

We use the global redundancy check (discussed above - negate a constraint and check for the

CHAPTER 2. PARAMETERIZED TILING AND SFME 27

feasibility of it with the rest of the constraints) on the final set of constraints we obtain with

lower and upper bounds of all the variables.

2.8 Related Work

There has been relatively little work for the case where tile sizes are symbolic parameters, except

for the very simple case of orthogonal tiling: either rectangular loops tiled with rectangular tiles,

or loops that can be easily transformed to this. For the more general case, the standard solution,

as described in Xue's text [136] has been to simply extend the iteration space to a rectangular one

(i.e., to consider its bounding box), apply the orthogonal technique with appropriate guards to

avoid computations outside the original iteration space.

Amarasinghe and Lam [7, 8] implemented, in the SUIF tool set, a version of FME that can

deal with a limited class of symbolic coefficients (parameters and/or block sizes), but the full

details have not been made available.

GroElinger et al. [53] proposed an extension to the polyhedral model, in which they allow

arbitrary rational polynomials as coefficients in the linear constraints that define the iteration

space. Their genericity comes at the price of requiring computationally expensive machinery

like quantifier elimination in polynomials over the real algebra, to simplify constraints that arise

during loop generations. Due to this their method does not scale with the number of dimensions

and the number of non-linear parameters.

2.9 Discussion

The concepts presented in this chapter form the mathematical foundation for parameterized

tiling. The definition of parameterized tiling as a transformation, its bilinear property, and the

SFME algorithm, together provide a foundation for the extension of the loop transformations to

the case where the tile sizes are not fixed. For example, what is the result of applying a linear trans­

formation such as skewing to the PTIS? Does the resulting PTIS still have the bilinear property

which would allow the use of SFME? We conjecture that PTIS is closed under linear transforma­

tions, i.e., the result of a linear transformation of the PTIS with BLIS property is another PTIS

which also has the BLIS property.

CHAPTER 2. PARAMETERIZED TILING AND SEME 28

The SFME algorithm inherits the super-exponential complexity of the FME.. Further, it also

requires symbolic arithmetic during its elimination steps. Due to this, we believe that the outset

based methods (presented in the next two chapters) for parameterized tiled loop generation are

more efficient than SFME.

CHAPTER 3

Parameterized Tiled Loop Generation

"By no longer requiring the effect of an optimization to persist indefinitely, we can

allow executables adapt to changes in their usage and environment. [...] this view

helps us to regain the original promise of software—that it is flexible and easy to

change. "

—Overcoming the challenges to feedback-directed optimization, Michael Smith [118]

T
1 ILED loop generation involves the generation of the tiled loop bounds. In this chapter we

describe a technique for generating tiled loops which can be used for when the tile sizes are fixed,

compile time constants or not fixed but left as symbolic parameters. We first discuss the structure

of tiled loops and then present our method for tiled loop generation. The efficiency of our tech­

nique is demonstrated via experimental evaluation on kernels from linear algebra computations

from BLAS3 and stencil computations. Our technique provides parameterized tiled loops for free

in the sense that it takes a comparable amount of time to generate the loops and the quality of

the generated code is comparable, if not better. We then discuss a technique for separating par­

tial (boundary) tiles from full (interior) tiles—an enabling step for optimizations such as register

tiling. Finally, we discuss related work.

The work presented in this chapter was done in collaboration with DaeGon Kim and Michelle

29

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 30

f o r (k = 1; k <= Nk;k++)
f o r (i = k + 1; i <= k+iV,; i + +)

S I (k , i) ;

Figure 3.1.
2D iteration space found commonly in stencil computations. The body of the loop is represented
with the macro SI for brevity.

Mills Strout. It was presented in [104].

3.11 Anatomy of Tiled Loop Nests

Tiling is an iteration reordering transformation that transforms a d-depth loop nest into one of

depth up to 2d. In this section we study the structure of tiled loops and develop an intuition for

the concepts involved in generating them. In later sections, these concepts are formalized and used

in deriving a simple and efficient algorithm for the generation of tiled loops.

Consider the iteration space of a 2D parallelogram such as the one shown in Figure 3.1, which

is commonly found in stencil computations [78]. Figure 3.2 shows a geometric view of the iter­

ation space superimposed with a 2 x 2 rectangular tiling. Observe that there are three types of

tiles: full—which are completely contained in the iteration space, partial—which have a partial,

non-empty intersection with the iteration space, and empty—which do not intersect the iteration

space. The lexicographically earliest point in a tile is called its origin. The goal is to generate a set

of loops that scans (i.e., visits) each integer point in the original iteration space, based on the tiling

transformation, where the tiles are visited lexicographically, and then the points within each tile

are themselves visited lexicographically. We can view the four loops that scan the tiled iteration

space as two sets of loops each, where the first set of two loops enumerates the tile origins and

the next set of two loops visits every point within a tile. We call the loops that enumerate the tile

origins the tile-loops and those that enumerate the points within a tile the point-loops.

3.1.1 Bounding Box Method

One solution for generating the tile-loops is to have them enumerate every tile origin in the

bounding box of the iteration space and push the responsibility of checking whether a tile con-

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 31

13

12

11

1CH

9-

8-

7"

6"

5"

4-

3"

2-

Bounding Box
Original
Iteration
Space

Full Tile

9: Partial Tile

Empty Tile

1 1 1 1 1 1 r
1 2 3 4 5 6 7

"j£f Full Tile Origins <3> Partial Tile Origins

k

Figure 3.2.
A 2 x 2 rectangular tiling of the 2D stencil iteration space with Nt = A^ = 6 is shown. The
bounding box of the iteration space together with full, partial, and empty tiles and their origins
are also shown.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 32

f o r (kT = 1; kT <= Nk; kT += Sk)
f o r (iT = 2 ; iT <= Ni+Kk; iT += S i)

f o r (k= max(kT , 1) ; k<=min (k T + S k - 1 , Nk) ;k++)
f o r (i = m a x (i T , k + 1) , - i<-min (iT + S i - 1 , k+Ni) ; i + +)

SI < k , i) ;

Figure 3.3.
Tiled loops generated using the bounding box scheme.

tains any valid iteration to the point-loops. The tiled loop nest generated with this bounding box

scheme is shown in Figure 3.3. The first two loops (kT and iT) enumerate all the tile origins in

a bounding box of size N^ X (Ni + N^) and the two inner loops (k and i) scan the points within

a tile. A closer look at the point-loop bounds reveals its simple structure. One set of bounds are

from what we refer to as the tile box bounds, which restrict the loop variable to points within a

tile. The other set of bounds restricts the loop variable to points within the iteration space. Com­

bining these two sets of bounds we get the point loops that scan points within the iteration space

and tiles. Geometrically, the point loop bounds correspond to the intersection of the tile box (or

rectangle) and the iteration space, here the parallelogram in Figure 3.2.

The bounding box scheme provides a couple of important insights into the tiled loop genera­

tion problem. First, the problem can be decomposed into two independent problems: generation

of tile-loops and the generation of point-loops. Such a decomposition leads to efficient loop gen­

eration, since the time and space complexity of loop generation techniques is doubly exponential

in the number of bounds. The second insight is the scheme of combining the tile box bounds

and iteration space bounds to generate point-loops. Another important feature of the bounding

box scheme is that tile sizes need not be fixed at loop generation time, but can be left as symbolic

parameters. This feature enables generation of parameterized tiled loops, which has many applica­

tions as discussed in Chapter 1. However, the bounding box scheme can suffer from inefficiency

in the generated loops in that the tile-loops can enumerate many empty tiles.

3.1.2 When Tile Sizes Are Fixed

When the tile sizes can be fixed at the loop generation time an exact tiled-loop nest can be gener­

ated. Tile-loops that only enumerate origins of tiles that have a non-empty rational intersection

with the iteration space are exact. Ancourt and Irigoin [9] proposed the first and now classic

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 33

fo r (kT=C
f o r (i T =

f o r (k =
f o r (i

;kT< = [(Nk /2) j ; k T + +)
m a x (l , kT)
max (max (1
= m a x (2 * i T

S I (k , i)

iT< =
2*kT)
k + 1) ;

m i n ([(2*kT+Ni +
, 2 * i T - N i) ,

i< = =min (2 *
k<=

iT+]

D / 2 J , [_Nk+Ni/2j)
min (min (2*kT + l ,
, k+Ni ; i + +)

; iT++)
2 * i T) , Nk) • k + +)

Figure 3.4.
Tiled loops generated for fixed tile sizes using the classic scheme.

solution for generating the exact tiled loops when the tile sizes are fixed. In this case the tiled

iteration space can be described as a set of linear constraints and the loops that scan this set can be

generated using Fourier-Motzkin elimination [9,136]. The exact tiled loop nest for the 2D stencil

example is shown in Figure 3.4. Note that the efficiency due to the exactness of the tile-loops has

come at the cost of fixing the tile sizes at generation time. Such loops are called fixed tiled loops.

The classic scheme, in addition to requiring fixed tile sizes, also suffers from loop generation

inefficiency. It takes as input all the constraints that describe the bounds of the 2d loops of the

tiled iteration space, where d is the depth of the original loop nest. Since the method is doubly

exponential on the number of constraints, this increased number of constraints might lead to

situations where the loop generation time may become prohibitively expensive [51].

Goumas et al. [51] improve on the classic scheme by dividing the loop generation problem

into two subproblems, similar to the approach taken with bounding box, but their generated code

visits fewer empty tiles than bounding box. However, their solution is still only applicable to fixed

tile sizes.

3.1.3 Best Of Both

We propose a tiled code generation method that achieves the best of both worlds: the simple

decomposed loop structure used by the bounding box method and the Goumas et al. technique,

the code quality provided by the fixed tile size methods, and the benefits of parameterized tile

sizes provided by the bounding box method. We develop the necessary theory and use it to derive

a method which provides efficient generation of efficient parameterized tiled loops.

The key insight is the construction of a set called the outset, which contains all possible tile

origins for non-empty tiles. The outset is similar to the Tile Origin Space (TOS) constructed

by Goumas et al. [51], but there are two important differences. First, the outset we construct

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 34

ik

13-

10-

9-

8"

7'

6-

5-

4"

3"

2"

1-

& } O

Bounding box

0 o (o) o (V)

Original
teration
Space

Outset

(oj o (QJ a (oj o

i 1 1 1 1 1 1 r
0 1 2 3 4 5 6 7

Tile Origins: "$f - Full O - Partial Q - Empty

Figure 3.5.
A 2 x 2 rectangular tiling of the 2D stencil iteration space with A/,- = A/ = 6. The outset and
bounding box are also shown. Compare the number of empty tile origins contained in each of
them.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 35

kTLB = -
f o r (k T =

iTLB =
f o r (i T

f o r (k=

-Sk+2; kTLB =
= kTLB;
k T - S i + 2
= iTLB;

= max(kT
f o r (i = m a x (i T

S l (k ,

kT <^
; iTLE

iT < =
1) ;k<
k+1) ;

i) ;

[kTLB/Sk]*Sk;
Nk; kT += Sk

= [i T L B / S i] *
k T + N i + S k - 1 ;

=min(kT + S k - l ,
i < = m i n (i T + S i -

S i ;

i T

Nk)

+= S i)
; k + +)

- 1 , k + N i) ; i + +)

Figure 3.6.
Parameterized tiled loops generated using outset. The variables kTLB and iTLB are used to shift
the first iteration of the loop so that it is a tile origin, and explained later (Section 3.2.2.2).

includes the tiles sizes as parameters. Second, we feed the outset to any code generator capable of

scanning polyhedra, and then simply post-process the resulting code to add a step size and shift

the lower bounds of the tile loops. Goumas et al. generate tile loops that iterate over the image of

the TOS after applying tiling, and this is expensive.

The outset has all the benefits of a bounding box, but enumerates very few empty tiles. In

general, it is parameterized by the tile size, but for illustration purposes Figure 3.5 shows the

outset instantiated for the 2D stencil example and 2 x 2 tiles. In this example, the outset includes

only one empty tile origin at (0,0), far fewer than the number of empty tiles that the bounding

box includes.

Geometrically, the outset construction can be viewed as shifting of the hyper-planes that de­

fine the lower bounds of the loops. For our 2D example, we shift the left vertical line and the two

45 degree lines, where the left vertical line and the top 45 degree line constitute the lower bound

of k, and the bottom 45 degree line forms the lower bound for i. These lines are shifted out by a

distance that ensures that they will contain the origin of any tile which has a non-empty intersec­

tion with the iteration space, i.e., any tile that would contain a valid iteration point. Loops that

scan the outset are post-processed and then used as the tile-loops. The tiled loops generated by

scanning the outset are shown in Figure 3.6.

The outset has several important properties. It can be constructed without fixing the tile sizes,

hence can be used for generating parameterized tiled loops. Second, it can be constructed very

efficiently—in time and space linear in the number of loop bounds. In comparison, automatic

construction of the bounding box is more expensive—we are not aware of any linear time algo­

rithm that constructs a bounding box given the constraints that define an iteration space. Third,

the outset can be used to decompose tiled loop generation into separate tile-loop and point-loop

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 36

generation. Fourth, it can be used efficiently in cases when the tile sizes are fixed, parameterized

or mixed, i.e., some are fixed and some are left as parameters. These properties lead to a sin­

gle simple efficient algorithm for both parameterized as well as fixed tiled loop generation. The

following sections discusses these properties in more detail.

3.2\ Generating the Tile-Loops with Outset

In this section, we describe our method for generating the tile-loops. We first formally define

the set that contains all the non-empty tile origins and then motivate an approximation of this

set which can be computed efficiently. We then reduce the problem of generating tile-loops to

one of generating loops that scans the intersection of the outset polyhedron and a parameterized

lattice. We describe a single method that can be used to generate tile-loops for both fixed as well

as parameterized tile sizes.

Our input model is perfectly nested loops. Our techniques are applicable to cases where

rectangular tiling is valid or can be made valid by any loop transformation, which we assume has

been done in a preprocessing step. Many important applications contain loops of this kind.

3.2.1 The Outset and its Approximation

For correctness, tiled code should visit all the tiles that contain points in the original iteration

space. To generate the tile loops separately from the point loops, we visit all tile origins within a

polyhedron we call the outset. The outset includes all possible tile origins where the tile for that

tile origin includes at least one point from the original iteration space.

The original loop is represented as a set of inequalities

PiUr = {z\Qz>(q+Bp)},

where z is the iteration vector of size d, Q is a mxd matrix, each row of which defines a constraint

on the iteration space, ^*is a constant vector of size m, p is a vector of size n containing symbolic

parameters for the iteration space, and B is a m x n matrix. The tile sizes are represented by a

vector T, where for i = 1.. . d, si indicates the size of the tile in dimension i.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 37

The outset polyhedron is defined as the set of points in the original iteration space that, if they

were tile origins, would define a tile that includes at least one point in the original iteration space.

Formally, let tile(x) specify the set of points that belong to the tile whose origin is x,

tile(x) — {z\x<z<x+s },

~~*i - * ~ * . ~ *

where s = s — 1 with 1 being a size d vector containing all ones. The true outset is

P0Ht={x\tile(x)nPiter^HI}.

Pout as defined above is a union of all tiles whose intersection with P^[er is non-empty. Com­

puting this set explicitly is very expensive. So, we derive a reasonably tight approximation of Pout

that is a single polyhedron and can be directly computed from the constraints of Piter- We denote

this approximation by Pout. As a comparison, one could also view the bounding box as a very

loose approximation of P0Ht. Pout can be computed in time and space linear in the number of

constraints in P , f e r . Henceforth we call Pout the outset. The outset discussed in previous sections

also refers to Pout.

We compute the outset, Pout, by shifting all the lower bounds of the original iteration space

along the normal that faces out of the iteration space. The outset is defined as

P^t={x\Qx>(q+Bp)-Q+P},

where Q + is a m x d matrix defined as follows:

' ; \ o, ifQi;<o

Note that the Pout is defined using the constraint matrix, Q of the iteration space polyhedron.

We can compute Q + with a single pass over the entries of Q and hence in time linear on the

number of constraints of Piter. We now formally prove that Pout contains all the non-empty tile

origins.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 38

Theorem 3.2.1. Pout£POHt.

Proof:

If a point x i s in Pout, then there exists a point fsuch that z*is in Piter, zis in tile(x), and

z = x + i, where 0 < i < s'. Since z*is in P-lter, the following is true:

Qz>(q+Bp).

Substituting zby x + i, we derive the following:

Qx + Qi>{q+Bp), forO<f<s ' .

Since all the entries in i are non-negative and the fact that Q + > Q, it follows that Q+s > Qi,

and so the point x is also in P0Ht:

Qx + Q+P>(q+Bp).

Thus, each point that is in Pout is also in Pout. I

Notice that though the tile sizes are not fixed and are included as parameters, the outset is

still a polyhedron, albeit parameterized by the tile sizes. This key property enables us to generate

parameterized tile-loops, for now we can use all the theory and tools developed for generating

loops that scan parameterized polyhedra.

3.2.2 Generating tile-loops

The tile-loops enumerate the tile origins. Two choices are available: (i) enumerate the tile origins

as coordinates in the tile space or (ii) enumerate the tile origins in the coordinates of the original

iteration space. When the former is chosen, we need additional transformations to map the tile

origins from the tile space to tile origins in the iteration space coordinates. Our method avoids

this transformation and generates loops that directly enumerate the tile origins in the original

iteration space coordinates.

We can view the set of tile origins as the points in a lattice whose period is the tile sizes. We

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION

o o

© • © • 0 ,•-' @ • °; -, Ouisel

V d) a I o) • @<

Tile origins

* Lower bound
shifted to

next tile origin

Non tile-origin
lower bound

of Outset

© • © • " ©

i 1 1 1 r

2 3 4 5 6

Lower bound shifted lo next tile origin

Figure 3.7.
Intersection of a tile origin lattice for 2 x 3 tiles and the outset is shown. The original iteration
space is omitted for ease of illustration. Note that the first iteration of the loops that scans the
outset could be a non-tile origin. We need to shift this iteration to the next iteration that is tile
origin.

define the tile origin lattice, i£^s), as the lattice whose period is given by the symbolic tile size

vector T. Since we do not fix the tile sizes, •££(?) is actually a. parameterized tile origin lattice. We

also do not require that the tile origin lattice start at any particular coordinate.

The outset contains all the non-empty tile origins and also other points which are not tile

origins. Formally, we want to visit the points in the intersection of the outset and the tile origin

lattice, i.e., P0Ht n 5£(T). The key insight is to generate loops that scans the whole of outset and

modify them so that they skip the iterations that are not tile origins.

3.2.2.1 Striding the loops

Figure 3.7 shows an outset and a tile origin lattice for a 2 x 3 tiling. Let us call the loops that scan

all the integer points in the outset as outset-loops. For the moment assume that the first iteration

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 40

of every loop is aligned with a tile origin. Then we can skip the non-tile origins by just adding a

stride to the loop variable with the corresponding tile size parameter. Such an addition of strides is

sufficient because we are interested in the canonical tile lattice (induced by the rectangular tiling).

This simple post-processing of the loops that scans the outset gives us the loops that scans the

intersection of outset and tile origin lattice. Note that the stride can be a fixed constant or a

symbolic parameter. This allows us to use the same method for generating tile loops for both

fixed and parameterized tile sizes.

3.2.2.2 Shifting Lower Bounds

We now address the issue of aligning the first iteration of the outset-loops to a tile origin. Fig­

ure 3.7 shows two non-tile origins that correspond to first iterations of the i loop. We need to

shift the lower bound to an iteration that corresponds to the next tile origin. Let LB- be the lower

bound of a loop variable i. Note that LBt could be a function of the outer loop indices and pa­

rameters. The required shift can be thought of as the difference between the value of LBi and the

next tile origin. This shift can be computed as —'-\ xs,-. Since this shift can be generated for

fixed as well as parameterized tile sizes, we have a single method for both fixed and parameterized

tiled loop nest generation.

The code previously presented in Figure 3.6 showing the parameterized tiled loops for the

2D stencil example (Figure 3.1) was generated using the scheme described above. Note how the

skipping of the non-tile origins naturally translates into parametric strides of the loop variables.

Also note how the lower bound shifts can be expressed as loop variable initializations.

3.2.2.3 Implementation

O u r code generator takes as input the constraints that define Piter. It constructs the outset (Pout),

which is parameterized by the program and tile parameters. The outset-loops are generated using

a standard loop generator for parameterized polyhedra. Thanks to our theory, all that is required

to turn them into tile loops is a simple post-processing, actually pretty-printing, to add strides and

lower bound shifts. These tile loops are then composed with the point-loops whose generation is

described in the next section.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 41

3.3 Generating the Point Loops

The point-loops make up a loop nest that enumerates all the points within a tile. To ensure that

they scan points only in the original iteration space, their bounds are composed of tile bounds as

well as iteration space bounds. When the point-loops are generated separately, the tile origin is

not known.

Consider the triangular iteration space shown in Figure 3.8. Essentially, the intersection of

a tile (without fixing the tile origin) and the iteration space is the set of points to be scanned

by point-loops. To generate them, we can construct the intersection that is now parameterized

by both program parameters and tile origin index. This approach does, however, increase the

number of dimensions, which is a major factor at code generation time.

Since the tile bounds for rectangular tiling are simple, we can optimize the generation of

the point loops. We first construct a loop nest that scans the original iteration space. Then for

each lower bound /&,, we add the tile lower bound, tlbi to produce the point-loop lower bound

max(l b^tlbr Similarly, for each upper bound ub-, we add the tile upper bound tlbi+sl — \ {si

is the tile size of i-th dimension) to produce the point-loop upper bound min{ubi,tlbi +si — 1).

The point-loops for the example in Figure 3.8 are given below, with iT and jT representing the

tile origin indices, and S i and S j representing the sizes of the tiles along the z and j dimensions.

for i=max(1, iT) to min(N,iT+Si-1)

for j=max(l,jT) to min(i,jT+Sj-1)

body;

In addition, we can also generate simple point loops where iteration space bounds are not

included. As shown in Figure 3.8, if a tile is a full tile, i.e., a subset of the iteration space, then the

bounds for the original iteration space are not necessary. Such simple point loops are useful for

the optimization described in Section 3.5.

3.41 Implementation and Experimental Results

We implemented four different tiled loop generators: two for fixed tile sizes and two for param­

eterized tile sizes. The loop generators are available as open source software [55]. For fixed-size

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 42

j

n

1

Figure 3.8.
A triangular iteration space and tiles

tiles, we implement the classic and decomposed methods. For the classic method, the constraints

that represent the tiled iteration space are constructed from the original loop bounds and then fed

to CLOOG [14] to generate the tiled loops. For the decomposed method, we construct an outset

with fixed tile sizes and use them to generate tile-loops and generate the point loops separately as

discussed in the previous sections. For parameterized tiled code generation, we implement the pa­

rameterized decomposed method presented earlier in this chapter and the bounding box method.

For the bounding box method, we assume that the bounding box is provided as an input. The

bounding box is used in the place of outset to generate tile-loops and the parameterized point

loops are generated as in the fixed methods except the tile sizes are now symbolic parameters for

the point loops. For the parameterized decomposed method, we first generate the outset from the

input loop bounds and use it to generate the tile-loops. We then generate the parameterized point

loops and embed them in the tile-loops to get the final tiled loop nest.

The experiments compare the various loop generating techniques in terms of the quality of

the generated tile code and the efficiency of the tiled loop generation. Both of these measures

depend heavily on the underlying code generator, because the techniques presented in this chapter

enable the implementation of parameterized decomposed tiling to use any loop generator capable

of generating loops that scan a polyhedron as a black box. For generating the loops that scan a

polyhedron we use the CLOOG loop generator, which has been shown to quickly generate high

quality loops [14]. However, it is possible to replace the CLOOG generator with a different code

generator such as the Omega code generator [70].

t i l e s
(n , n)

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 43

SSYRK
LUD
STRMM
3D Stencil

Description

Symmetric Rank k Update.
LU decomposition of a matrix without pivoting.
Triangular matrix multiplication.
Gauss-Seidel Style 2D/3D stencil computation.

Loop depth/ # tiled
loops

3 / 2
3 / 2
3 / 2
3 / 3

Table 3.1
Benchmarks used for code quality evaluation.

3.4.1 Experimental Setup

To evaluate the quality of the generated code, we use linear algebra computation kernels from

BLAS3 and a stencil computation, as listed in Table 3.1. The stencil computation has a 3D itera­

tion space, and operates on two dimensions of data. It is necessary to skew the stencil computation

before applying tiling. Column 3 in Table 3.1 indicates the loop depth of the original loop, and

the number of loops that are tiled.

We ran the experiments on an Intel Core2 Duo processor running at 1.86 GHz with an L2

cache of size 2MB. The system is running SMP Linux. For compiling our tiled loop nests we used

g++ version 4.1.1. with the highest optimization level (-03). The timings use gettimeofdayO-

3.4.2 Results

For each combination of benchmark and implemented tiled code generation method, we time an

approximation of loop overhead, the total run of the tiled benchmark, and the time required to

generate the tiled code.

Figure 3.9 shows the loop overhead for SSYRK (symmetric rank k update) as a percentage of

the total loop execution time. We time the execution time of the tiled loop bounds with only a

counter as the body and divide the measured execution time by the execution time for the loop

with the full body including the loop counter. The loop overhead is only approximate, because

in the loop with the full loop body some of the loop bound instructions can be scheduled with

instructions from the body, therefore this measure is an upper bound on the loop overhead. The

approximate loop overhead on average can be as high as 40%. Figure 3.10 shows the total execution

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 44

Comparison of generated loops for SSYRK

m Param Outset
H Param Bbox
• Fixed Classic
• Fixed Decom

1
2 4 8 16 32 64 128 256 512

Square Tile Sizes

Figure 3.9.
Percentage loop overhead =(counter / body and counter)x 100 of the SSYRK for matrices of size
3000 x 3000.

time for the SSYRK as the tile sizes vary. Notice that as the tile sizes become large enough to result

in improved performance of the overall loop, the approximate percentage of time spent on loop

overhead increases.

Figures 3.10-3.13 show the total execution time for the various benchmarks as the tile size

varies. The cache effect that occurs as the tile size better uses cache can most clearly be seen for

STRMM, 3D Stencil, and SSYRK. In general, the quality of the generated tiled code is comparable.

The outliers occur at smaller tile sizes, where the parameterized tiled code generator based on

bounding box significantly increases the running time for all benchmarks. For cache tiling, the

smaller tile sizes do not experience the best performance improvement; however, smaller tile sizes

are critical for register tiling [64]. Our parameterized decomposed method performs much better

than bounding box at smaller tile sizes.

We also performed the same set of experiments on an AMD Opteron dual core processor

running at 2.4 GHz with a cache of size 1MB, and obtained similar results as presented here.

The compilation time (the average, in milliseconds over five runs for each benchmark) for the

four tiled loop generation methods, viz., fixed classic, fixed decomposed, parameterized bounding

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 45

Comparison of generated loops for SSYRK

SI Param Outset
D Param Bbox
• Fixed Classic
• Fixed Decom

Hill
8 16 32 64 128 256 512

Square Tile Sizes

Figure 3.10.
Total execution time for symmetric rank k update for matrices of size 3000 x 3000.

Comparison of generated loops for LUD

I i

•
a

•
•

Param Outset
Param Bbox
Fixed Classic
Fixed Decom

2 4 8 16 32 64 128 256 512

Square Tile Sizes

Figure 3.11.
Total execution time for LUD on a matrix of size 3000 x 3000.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 46

Comparison of generated loops for STRMM

M Param Outset
O Param Bbox
Q Fixed Classic
• Fixed Decom

1111
16 32 64 128 256 512

Square Tile Sizes

Figure 3.12.
Total execution time for STRMM for matrices of size 3000 x 3000.

Comparison of generated loops for 3D Stencil

B Param Outset
H Param Bbox
D Fixed Classic
D Fixed Decom

16 32 64 128 256 512

Cubic Tile Sizes

Figure 3.13.
Total execution time for 3D Stencil on a 2D data grid of size 3000 x 3000 over 3000 time steps.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 47

fClassic
fDecom
pBbox

pOutset

LUD

32.4
55.2
53.5
52.0

SSYRK

28.6
51.0
53.2
53.8

STRMM

29.0
50.4
51.2
52.1

3D Stencil

26.0
45.0
54.0
54.1

Table 3.2
Tiled loop generation times (in milliseconds) of the four methods on the four benchmarks. The
four methods fixed classic, fixed decomposed, parameterized bounding box, and parameterized
outset are denoted by fClassic, fDecom, pBbox, and pOutset respectively.

box, and parameterized outset are shown in Table 3.2. The timings include file IO. Further,

the timings for the parameterized bounding box method do not include the time to generate the

bounding box from the iteration space polyhedron. For the experiments it was given as user

input. In a fully automated scenario, this additional time for generating the bounding box will

add to the generation time of the bounding box method.

Overall, the cost of code generation for the three methods, viz., fixed decomposed, bounding

box, and parameterized outset, falls within the range of 45 to 55 milliseconds. Hence they have

very comparable generation efficiency (even when the time to generate the bounding box is not

included). Though the fixed classic method seems to be significantly more efficient than the fixed

decomposed method, as observed by Goumas et al. [51] and us [71], it has scaling problems as

the number of number of tiled loops increase.

In summary, the parameterized decomposed method generates code with performance com­

parable if not better than both fixed and parameterized tiled code generation methods. For pa­

rameterized tiled code generation, the parameterized decomposed method based on the outset is

clearly better than the traditional bounding box method, especially for smaller tile sizes. The code

generation time for all of the methods is comparable and quite small.

3.5] Finding Full Tiles Using the Inset

One possible reason for loop overhead is the presence, within the loop bounds for each tile, of

the bounds for the original iteration space as well as the tile so that no iterations outside of the

original iteration space are executed. Ancourt and Irigoin [9] suggest that tiled code may be

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 48

optimized by generating different code for full tiles versus partial tiles. Previous work [64] uses

index set splitting to break the iteration space into full and partial tiles so that iteration bounds can

be removed from the bounds for the full tiles. Other work [51] indicates that they differentiate

between full and partial tiles, but details are not provided. Since distinguishing between full

and partial tiles is also important for register tiling and possibly hierarchical tiling, we present

two possible approaches for doing just that. Both approaches are based on constructing the inset

polyhedron such that any tile origins within the inset polyhedron Pin are tile origins for full tiles.

As before, our challenge comes from the fact that we seek to do this for parameterized tile sizes,

and our solution again yields us a polyhedron with the tile sizes as additional parameters, thus

enabling us to build on well developed theory and tools.

Distinguishing between full and partial tiles is applicable to all of the tiled code generation

techniques discussed in Section 3.1. The inset can be computed as quickly as the outset, and it is

possible to show that points are in the calculated inset if and only if they are possible tile origins

for full tiles. Once the inset has been computed, it is possible to leverage existing code generators

to generate the tile loops that traverse the inset executing only full tiles and the outset minus the

inset executing partial tiles.

3.5.1 Algorithm for Computing Inset

As in Section 3.1, the original loop in question is represented as a set of inequalities

Piter = {z\Qz>(q+Bp)},

where z is the iteration vector of size d, Q is a m x d matrix, q is & constant vector of size m,

p is a vector of size n containing symbolic parameters for the iteration space, and B is a m x n

matrix. The vector ? specifies the (hyper) rectangle tiling, with st indicating the tile size for the

zth dimension of the iteration space.

We define the inset polyhedron Pin such that any tile origins that lie within the inset polyhe­

dron are tile origins for full tiles. All the points in a tile satisfy an inequality constraint if and only

if the extreme points for the tile satisfy the constraint. The extreme points of a (hyper) rectangle

tile can be calculated as follows. Let s' = T— 1 and let S' = dia,g(s — 1). Then S' times any binary

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 49

vector of size d is an extreme point of the tile. Formally, the inset is

Pin = {z\ Mb E {0,l}d,Q(z + S'b) > (q+Bp)},

It is possible to compute the inset directly from the definition, but that would result in m*2

constraints, with many of them being redundant. Instead, we calculate a matrix Q~ from the Q

matrix in the constraints for the original iteration space, such that

Q - = / Q ' 7 ' i f Q i ; < 0
11 | 0, i f Q , ; > o '

The algorithm for computing Q~ is 0{md) and results in m constraints for the inset,

P^n = {z\Q?<(q+Bp)-Q-(P-l)},

where 5* is the size d vector of tile sizes and 1 is a size d vector containing all ones.

Theorem 3.5.1. P^n-Pin.

Proof: The proof proceeds by construction. First, we write each bound for Ptn on a separate line.

(Qns'nb, ... qxds'idbd \

\QAK ••• Qmds'ddh)

>{q+Bp)-Qz

Note that the above inequality is true for all binary vectors b. Each row represents 2 constraints:

one for each possible value of the binary vector b. Since all of the entries in the S' matrix are

non-negative, it is possible to select a particular binary vector for each row that results in the

least possible value for each entry and therefore provides a tight bound for all the constraints

represented by that row. Specifically that binary vector has entry b- equal to one if and only if

Q; is negative. Selecting the binary vector for each row, which results in the tightest bound is

equivalent to calculating the matrix Q~.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 50

For all binary vectors b, the following is true:

/ qns'xxh, ... Qus>ddbd \

>Q~s'>(q+Bp)-Q?,

where s' = F— 1. Therefore, P-n is Pin with all redundant bounds removed. 1

3.5.2 Code Generation Implementation

One property of an inset Pin is that tile(z)f)Piter = tile(z) for all z E Pin. In other words,

constraints on the iteration space are redundant for any tile whose origin is in the inset. By

removing these unnecessary loop bounds in the point loops, we can possibly reduce the loop

overhead further. One may perform this optimization by checking whether a tile origin belongs

to the inset before executing point loops or by splitting the inset from the outset.

To use the check approach, code must be generated that determines if a particular iteration

lies within the inset. The other approach is to split the inset from the outset. Consider the fact

that Pin C Pout. We associate a statement Xx with Pin and a statement X2 with Pout and feed

both polyhedra to a code generator. Now, if a loop nest scans both Pgut and Pin without guards,

then loops that scan the inset must include both statements. Another advantage is easiness of

incorporating. Consider the containment relation of Pout and Pin. Clearly, Pin C Pout- Now,

if a loop nest scans both P0Ht and Pin without guards assuming that these are associated to two

different statements, then loops that scan the inset must have two statements. Now, we know that

iteration constraints are redundant whenever there are two statements in the loop since P- C

Pout. Therefore, we replace the loop bodies with statements X1 and X2 with the tile loops for full

tiles, and we replace the loop bodies with statement X2 only with tile loops for partial tiles.

This splitting scheme based on the union of inset and outset provides a way to enable a full

versus partial tile optimization for parameterized tile code. Also, it is easy to incorporate this

scheme using existing code generators. Note that many code generators have been designed and

developed to remove guards by splitting the iteration space into disjoint regions associated to

different sets of statements.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERA TION 51

The tradeoff between splitting and inserting a check has not been fully explored. For regis­

ter tiling, it would seem that checking each tile to determine if it is full clearly introduces too

much overhead. However, splitting can result in significant blowup in code size, which can cause

instruction cache problems. An advantage of splitting over checking is that it reduces loop over­

head without introducing additional overhead although checking is preferable in terms of code

size.

3.6 Related Work

Ancourt and Irigoin proposed a technique [9] for scanning a single polyhedron, based on Fourier-

Motzkin elimination over inequality constraints. Le Verge et al. [79, 80] proposed an algorithm

that exploits the dual representation of polyhedra with vertices and rays in addition to constraints.

The general code generation problem for affine control loops requires scanning unions of polyhe­

dra. Kelly et al. [70] solved this by extending the Ancourt-Irigoin technique, and together with

a number of sophisticated optimizations, developed the widely distributed Omega library [93].

Quillere et al. proposed a dual representation algorithm [94] for scanning the union of polyhedra,

and this algorithm is implemented in the CLooG code generator [14] and its derivative Wloog is

used in the WRaPTT project.

Techniques for generating loops that scan polyhedra can also be used to generate code for

fixed tile sizes, thanks to Irigoin and Triolet's' proof that the tiled iteration space is a polyhedron

if the tile sizes are constants [62]. Either of the above tools may be used (in fact, most of them

can generate such tiled code). However, it is well known that since the worst case complexity

of Fourier-Motzkin elimination is doubly exponential in the number of dimensions, this may

be inefficient. Methods for generating code for non-unimodular transformations use techniques

similar to ours, however they use fixed lattices and we use a parameterized lattice.

Our work is similar in scope to that of Goumas et al. [51], who decompose the generation

into two subproblems, one to scan the tile origins, and the other to scan points within a tile,

thus obtaining significant reduction of the worst case complexity. They proposed a technique

to generate code for fixed-sized, parallelogram tiles. Their technique computes an approximation

to the outset, similar to our Pout. Specifically, they compute the image of Pout by the tiling

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 52

transformation, H, and generate code to scan this image. Because of this, their code has ceiling

and floor operations, and the loop body must compute an affine function of the loop indices to

determine the tile origins. Their method can handle arbitrary parallelogram shaped tiles, and

they also use a technique similar to our inset to optimize the code. Note however, that all their

techniques are applicable only to fixed tile sizes.

In contrast, our algorithm handles parameterized tile sizes. The key insight is that we view

the outset as a polyhedron with, other than the program parameters, n additional parameters,

namely the tile sizes. This allows us to efficiently leverage most of the well developed tools, and

our technique performs as well as, if not better than, all others, at no additional cost.

There are also a number of additional differences. Our algorithm generates tile loops whose

indices always remain in the coordinate space of the original loop. This avoids floor and ceiling

functions, and enables us to generate tile loops through a very simple post-processing: adjust the

lower bounds, and introduce a stride corresponding to the tile size. Our method is restricted to

transformations that can be expressed as a composition of a unimodular transformation, followed

by a rectangular tiling (blocking).

The work by Amarasinghe and Lam [7, 8] and GrofSlinger et al. [53] are related and were

discussed in the previous chapter.

Jimenez et al. [64] develop code generation techniques for register tiling of non-rectangular

iteration spaces. They generate code that traverses the bounding box of the tile iteration space to

enable parameterized tile sizes. The focus of their paper is applying index-set splitting to tiled code

to traverse parts of the tile space that include only full tiles. Their approach involves less overhead

in the loop nest that visits the full tiles; however, they experience significant code expansion. We

suggest two possible approaches for differentiating between full and partial tiles: either generate a

check to determine if the tile being visited is a full tile, or associate two different loop bodies with

the inset and outset and let any polyhedra scanning code generator generate the appropriate code.

The trade-off between the overhead due to the check versus the cost due to code expansion that

occurs using index-set splitting or loops that scan the union of polyhedra is unclear and an area

for further study.

CHAPTER 3. PARAMETERIZED TILED LOOP GENERATION 53

3.7 \ Discussion

The two polyhedral sets, viz., outset and inset, introduced in this chapter play a fundamental role

in tiled code generation. First, as shown in this chapter, the outset is useful for efficient generation

of high quality parameterized tiled loop nests. The inset is useful in characterization of a linear

condition which are satisfied by the full tile origins. We show in the next chapter how these sets

enable efficient tiled loop generation for multi-level tiling and also separation of full and partial

tiles at any arbitrary level of tiling.

CHAPTER 4

Multi-level Tiled Loop Generation

I N this Chapter we propose a technique for generating multi-level tiled loops where the tile

sizes can be fixed (constants) or symbolic parameters or mixed. Our technique provides multiple-

levels of tiling at the same cost of generating tiled loops for a single level of tiling. We propose

a novel formalization extending the classic tiling transformation [62, 136] to multiple levels. We

propose a method for separating partial and full tiles at any arbitrary level, without fixing the tile

sizes. We have implemented all the proposed code generation techniques and the tool is available

open source [55]. Our technique provides m levels of tiling at the price of one. This claim is

justified via a theoretical complexity analysis of our technique and extensive evaluation of both

the generation efficiency and quality of the generated code on benchmark routines form BLAS,

LUD, and stencil computations.

The work presented in the chapter was done in collaboration with DaeGon Kim, Dave Ros-

tron, and Michelle Mills Strout. It was presented in [71].

4.1\ Multi-level Tiling

The input is a perfect loop nest, and it is appropriately transformed so that rectangular tiling is

valid. In this section, we describe two multi-level tiling approaches. The first one is an extension

54

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 55

of the classic tiling transformation [136] to multiple levels and is restricted to the case of where

the tile sizes are fixed. The second one is based on the concept of the outset (introduced in the

previous Chapter) and can be used when the tile sizes are symbolic parameters or fixed constants

or mixed.

Our input model is perfectly nested loops. Our techniques are applicable to cases where rect­

angular tiling is valid or can be made valid by an appropriate preprocessing transformation (e.g.,

skewing). We assume that this has already been done. The input loop of depth d is represented as

a set of m inequalities

Plter = {z\Q?>(q+Bp)},

where z is the iteration vector of size d,Q'iszmxd matrix, qis a constant vector of size m, p is

a vector of size n containing symbolic parameters for the iteration space, and B is a m x n matrix.

The tile sizes are represented by the vector ?; we use s' to denote f — 1.

4.1.1 Multi-level tiling for fixed tile sizes

We start with the classic definition of single-level rectangular tiling [136]. Given an iteration

space Plter and a vector i*of fixed tile sizes, the tiled iteration space is given by

PtUed = {(f> *) I F ° f ^ ? - ° ^ T° f + ? - *>Se Pner\

where o is an offset and the operator o denotes component wise multiplication of vectors. The

tiles are enumerated by t and the points within a tile are represented by z. The tiled iteration

space denoted by P .. , is a polyhedron (as the tile sizes are fixed). Generating the tiled loop nest

is now reduced to generating loops that scan the polyhedron P1.. ,. There are standard tools such

as OMEGA [70] and CLOOG [14] which can be used for to generate such loops. Note that Px., ,

is a polyhedron only when the tile sizes are fixed and hence the approach is not applicable when

the tile sizes are symbolic parameters.

We can extend the definition to multiple levels of tiling as follows. Given an iteration space

CHAPTER 4. MUL TI-LEVEL TILED LOOP GENERA TION 56

Plter and a list of tile size vectors s[,...,Im,a. multi-level tiling can be described in a similar way.

P?iUd = {(h,-..,Cz)\Vi = l,...,m-l: (4.1)

si ° h < t^ - o, ; , < 57 o tt+57 - 1 ,

where o,- is an offset at the appropriate level. All tile sizes are integer constants. Also, note that

actual tile sizes are a product of all inner tile sizes because tiling at level k is a tiling on the (k + 1)

tiled space, not the original iteration space. Although this formulation is a direct extension of

Xue's definition of single level tiling [136], to the best of our knowledge, this is first formalization

and presentation of it—other formulations [65] of multi-level tiling are based on the strip-mine

and interchange view of tiling. Now given the fact that this set Pm. , is a polyhedron, the scanning

loops can be easily generated by existing tools, such as OMEGA test and CLOOG. Our generator

for this method uses CLOOG.

4.1.2 Multi-level tiling using the outset

Another view of tiled loop generation is based on the outset method as described in the previous

section, where the coordinates of the tile origins are obtained by intersecting the outset Pout with

a parameterized lattice Lattice(T). This method does not require the tile sizes to be fixed. Multi­

level tiling in this method can be viewed geometrically as shown in Figure 4.1. We start with

the first level of tiling of the iteration space and the first level tiles are further tiled to achieve the

second level of tiling. In Figure 4.1, the first level of tiling uses 4 x 4 tiles and the second level uses

2 x 2 tiles. The geometric view not only aids visualization but also gives a mathematical view of

the multi-level tiling: the tile origins at a given level k of tiling can be viewed as the intersection

of the tiles at the previous (k — 1) level and the lattice parameterized by the tile sizes of level k.

To exploit the geometric view for tiled loop generation we need to handle one important issue.

Consider the outer level of tiling shown in Figure 4.1. There are three partial outer-tiles and one

full outer-tile. When we apply another inner-level of tiling the outer-tiles become the iteration

space for them, and we need to able to handle the different shapes of the partial outer-tiles. We

handle this by (over) approximating the partial outer-tiles by full tiles. Such an approximation

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 57

, H ; ' ,H , , B / O,' '.O O,

"',,'' *''b o"', ,'b o"'

v« ; '>H/ oj {• 0} \© oj

f X° °]
, H / O , ' ' © 0,

O 6"', .'O b"

v« 0 ; ' , ® oy

'b o"-, ,'0 b̂

. © O/ ^S O,

'b oN* ,'b b"

^» 0 ; ' , © 0)

•
0
©

D

•
•
•
©
E3

I t e r a t i o n p o i n t s

N o n - i t e r a t i o n pc

T i l e

T i l e

o r i g i n s

o r i g i n s

a t

a t

i n t s

l e v e l

l e v e l

land 2

2

d e r a t i o n sr;6c

Figure 4.1.
Multi-level tiling as repeatedly tiling each tile on a triangular iteration space

/ / Outermost tile loops that
f o r (£.' = 1; tl <= 8 ; tx += 4)

f o r U ' = l ; t1 <= min([. ' + 4 , 8)

/ / T i l e loops that scans
f o r (£?=£.'; t2 <= r.1 + 3 ;

f o r U 2 = t ' ; t2 <= t1 + 3
I I I 1

s c a n t h e outset

; t' += 4)

4 x 4 tiles by 2 x 2 t i l e s
t2 += 2)

; t2 += 2)

// Point loops that scans the intersection of
// a 2 x 2 tile and iteration space
f o r (i=max (1 , t2) ; i <=

f o r (j=max (1 , f2) ; j

S (i , j) ;

min U2 + l , 8) ; i + +)

<= m i n U 2 + l , i + 1 , 8) ; j + +)

Figure 4.2.
A loop nest corresponding to the multi-level tiling in Figure 4.1

allows a uniform treatment of the further levels of tiling. The 2-level tiled loop nest generated

using this method for the example is shown in Figure 4.2. Note that the tile-loops at the second

level treat partial tiles as full tiles. The general structure of the multi-level tiled loops generated

using this method is shown in Figure 4.3. The outermost tile-loops are generated using the outset

and all inner-level tile-loops are generated using the bounds of a full-tile, referred to as Box-tile-

loops. The innermost loop nest consists of the point-loops which have the both the tile bounds

and the iteration space bounds. We expect the execution time overhead due to the approximation

of inner-level partial tiles by full tiles to be insignificant. Our expectation is confirmed by our

experimental results as discussed in Section 4.4.2.

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 58

tile-loops scanning outset
Box-tile loops

Box-tile loops

Point-loops

Figure 4.3.
Structure of multi-level tiled loops generated with the outset method when partial and full tiles
are not separated.

Multi-level tiling based on outset can be formalized as follows. Given an iteration space Ptter

and a list of tile size vectors s^,..., s^, the tiled iteration space can be expressed as follows:

Kled = {{il,...Xm,?)\Vi=2,...,m:

zePiterntile(i[,s-'i)n~-r\tile(£,sl),

£*€ tile(il,s'l)r\---r\tile(ti~li,sil1) n

Lattice^,t^_x)} (4.2)

where Lattice^, t^) is the set of points generated by $7 ° * + ^ - i for any integer vector x,

and s* can be a vector of either symbolic tile size parameters, constants, or a mixture of both.

Note that the offset of the lattice depends on the origin of each tile at the previous level. Given

a tile, fz/e(r!,5(), the first tile at level (z + 1) that is contained in ti/e(r j ,5 i) must be £z7e(^-,sl+1)

because ti is still the lexicographical minimum of (£,•,$,-)• Otherwise, some points in the iteration

space will not be scanned. Correctness of this formulation follows directly from the fact that

Pout contains origins of the tiles whose union is a super-set oi Piter. Further, by including in the

formulation, the constraints that define Plter we guarantee that only valid iteration points in the

tiles are enumerated. Also note that the formulation does not impose the restriction that outer

tile sizes are multiples of inner tile sizes.

In most practical cases, tile sizes s[are component-wise multiples of s-^j for all i = 1,... m — 1.

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 59

tile-loops scanning outset

Box tile-loops-Ll

Box tile-loops-Lk
if (FULL(Lk-tile)) {

Box-tile loops-Lm
point-loops with tile bounds

} else { // partial-tile-Lk.
Point-loops

}

only

Figure 4.4.
Structure of multi-level tiled loops generated with the outset method when the partial and ful
tiles are separated at some tiling level k.

The constraints of the tiled iteration space in (4.2) for this case can be simplified to:

Kled = {ti,"..C*)|Vi=2,...,m:

i[6 tile(^Ij,5^,)nLattice(s[,t[ix)} (4.3)

Note that the constraints from all the previous level tilings become redundant with this assump­

tion on tile sizes. From now on for ease of description, we assume that the tile sizes at an outer

level are component-wise multiples of all the inner level tile sizes. However, our method does not

impose this restriction.

4.21 Separating partial & full tiles

As discussed earlier, separation of partial and full tiles has several applications. In this section,

we discuss how the inset (introduced in Chapter 3.5) is used for separation. Separation at any

level k implies that the further tilings (for levels k + 1. . . m) are performed only on full tiles of

level k. The partial tiles of level k are not further tiled. Consider the number of full and partial

outer-tiles in Figure 4.1. There is one full outer-tile and three partial outer-tiles. If we separate

full tiles from partial tiles at the outer level of tiling, then there are only four full inner-tiles, since

only the full outer-tiles are tiled further. However, we can see that there are 10 full inner-level

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 60

tiles in the iteration space. By separating the partial and full tiles at the inner-level (and not at the

outer-level) we can actually recognize all the 10 inner-level tiles as full. However, separation at

the inner-level leads to more inner-level full tiles but also results in enumeration of more empty

inner-tiles. Hence, there is a trade-off between more inner-level tiles versus enumeration of empty

tile origins. Further, we can also apply splitting multiple times if needed.

The general structure of such a multi-level tiled loop nest with separation of partial and full

tiles at an arbitrary level k is shown on Figure 4.4. Note that the partial tiles at level k are not

further tiled and they execute the standard point-loops. On the other hand, the full tiles of level k

are further tiled and their body contain a special form of point-loops called box-point-loops. These

box-point-loops are the loops in which the iteration space bounds are omitted.

To recall, the inset Pin represents the set which contains all the full-tile origins. Let us denote

by Pln(Jk)tne i n s e t computed using the tile sizes of level k and the iteration space Piter. Now we

can check at any level I whether a tile origin represents a full tile or not by checking whether it

belongs to Pin(T[) or not. This is the key idea underlying our separation algorithm. For any user

specified level k of separation we generate the outset P,-„(4) a n d use it to test whether a tile is full

or partial. This test corresponds to the FULL (L k - t i l e) test in Figure 4.4.

When the separation happens at level k, the set of points in the full tiles at level k can be

described as follows:

{{h,...,Cl,tn+x)\Vi=2,...,m + \ :

h^PoutnLattlce(s1>o), h € PL>

ti S tile(ti_1,siZ\)(^Lattice(s"l,ti_-l)}

where 5OT̂ j is 1. The set of points in the partial tiles can be described as follows:

{(t~[,...,tl,z)\Vi=2,...,k:

t~[£P0UtnLattice(s-;,d~),tltPl,

zePiterntile(t"k,s1),

tt e tile(ti_^,siZ\)r\Lattice(s"l,tlZi)}-

& full

par tial

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 61

Different levels of separation may be preferred, based on the context in which separation is

used. For example, for a 2-level tiling in the context of caches and registers an inner-level of tiling

might be preferred. An example of this is shown in our experiments on cache and register tiling.

4.3 I The loop generation algorithm

Now we present our algorithm for generating multi-level tiled loop nests with parameterized,

fixed, or mixed tile sizes. It is given in Algorithm 2 and its input is the original iteration space,

number of levels of tiling, whether the loops are to be split for partial vs. full tile separation, and

if so, what is the level at which this split needs to be performed. The output of the algorithm is

the multi-level tiled loop nest.

We illustrate the steps of the algorithm on the 2D Stencil example. We seek to generate a 2-

level tiled loop nest where full and partial tiles are split at the first level. We first compute an outset

of the iteration space with the outer-tile sizes. Then, we generate the point loops whose bounds

consists of iteration space bounds and the surrounding tile bounds. The split level determines the

tile bounds used in the point-loops generation as shown in lines 2-5 of the algorithm. These loops

are generated by a call to CLOOG. Next, we compute the inset of iteration space with respect to

the split level (here, first) tile sizes and indices as shown in lines 6-7. The bounds of the inset are

shown below.

Pin = {{h^i)\\<hMk + sk-\<Nk; (4.4)

where sk and si are symbolic tile size parameters along k and i dimensions, respectively. The guard

for splitting partial and full tiles is obtained directly from the inset. The complete multi-level tiled

loop nest for the 2D Stencil example with separation at the first level is shown in Figure 4.5. At

line 9 we see that the guard is a direct translation from the inset in (4.4).

Once the point-loops and inset based on a split level are generated we can generate all the

loops. The construction of the inner-level tile-loops, the guards and the box-tile-loops can be

done through a simple pretty printing using the appropriate bounds. Combing these with the

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 62

Algorithm 2 An algorithm for generating multi-level tiled loops based on outset approach

INPUT : Plter : Iteration space matrix,
tileSizes[l...m] : tile size (integer or symbolic parameter) vector,
tilelndexes[l...m] : tile index name vector,
split : a boolean value whether full and partial tiles are split
splitLevel: level at which full and partial tiles are split

BEGIN
Matrix outset, inset;
VectorOfString pLoops, comLoops;

/ / Compute Pout

1: outset = computeOutset(PJter, tileSizes[l],tileIndexes[l]);

/ / Scan Plter, add tile bounds with appropriate level
2: If (split = = true)
3: pLoops = generatePointLoops(Pj£er, tileSizes[m],tileIndexes[m]);
4: else
5: pLoops = generatePointLoops(P;ter,tileSizes[splitLevel], tilelndexes[splitLevel]);

/ / Compute Pin when split is greater than 0
6: If (split = = true)
7: inset = computeInset(P;((,r, tileSizes[splitLevel],tileIndexes[splitLevel]);

/ / Combine point-loop, box-loop and guard for split
8: comLoops = combine(pLoops, tileSizes[l...m],tileIndexes[l...m], splitLevel, inset);

/ / Generate loops that scans outset while printing
/ / comLoops instead of point-loop

9: printScanningLoops(outset, comLoops);
END

previously generated point-loops (as shown in line 8) we get all the loops except the outer-most

tile-loops. This is generated by a call to CLOOG to generate loops that scan the outset and post­

processing it to add lower bound shifts and strides. The resulting tile-loops are shown in lines 2-5

of Figure 4.5. Finally we compose these outermost tile-loops to obtain the complete tiled loop

nest with separation of partial and full tiles.

4.3.1 Complexity & scalability of the algorithm

Let us first consider the case where no full vs. partial tile separation is performed. Intuitively,

the key steps are computing the outset to generate the outermost tile-loops and constructing all

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 63

// Outermost tile loops that scan the outset
TlkLB = -Slk+2; TlkLB = LB_SHIFT(TlkLB,Slk);
for (Tlk = TlkLB; Tlk <= Nk; Tlk += Slk) {

TliLB = Tlk-Sli+2; TliLB = LB_SHIFT(TliLB,SIi);
for (Tli = TliLB; Tli <= Tlk+Ni+Slk-1; Tli += Sli) {

// Is (Tlk, Tli) a full tile at level 1?
if (Tlk-1 >= 0 \s\s -Tlk+Nk-Slk+1 >= 0 U\s

-Tlk+Tli-Slk >= 0 \s\s Tlk-Tli+Ni-Sli+1 >= 0) f
// Box-loops scanning origins of level 2 tiles.
for (T2k = Tlk ; T2k<=Tlk+Slk-l ; T2k += S2k)
for (T2i = Tli ; T2i<=Tii + Sli-l ; T2i += S2i)
// Box-loops scanning points in level 2 tiles.
for (k = T2k ; k<=T2k+S2k-l ; k++)
for (i = T2i ; i<=T2i+S2i-l ; i++)

SI ;
) else (// (Tlk, Tli) is a partial tile at level 1
// Point loops scanning partial tiles at 1st level.
for (k= max(Tlk, 1) ;k<=min (Tlk + Slk-l,Nk) ;k + +)
for (i= max(Tli, k + 1) ; i<=min (Tli + Sli-1, k+Ni) ; i + +)

SI ;
}

) }

Figure 4.5.
A multi-level tiled loop for the 2D Stencil. The body of the loop is by SI.

the box-tile-loops and constructing the point-loops. The construction of the outset can be done

in time linear on the number of bounds on the original loop nest. Further, the construction of

the box-tile loops is a simple pretty-printing using the tile indices and sizes. The construction

of the point-loops and the tile-loops using the outset are done via CLOOG. The complexity of

each of these calls to CLOOG is exponential in the number of bounds of the original loop nest,

not the number of bounds in the tiled loop nest. Hence, the entire multi-level tiled loop nest

construction involves two calls to an exponential function and a couple of functions that are

linear on the number of bounds on the original loop nest and the number levels of tiling. The

key point to note is that the number of calls to the exponential function do not depend on the

number of levels. In fact, for any arbitrary number of levels of tiling, exactly two calls are made to

the exponential-time function. Now, if we consider separation of partial and full tiles, all that is

required is the computation of the inset (which can be done in linear time) and the pretty printing

of it as a guard. On the whole, the time complexity of our algorithm is determined by the time

taken by the two calls to CLOOG, and is constant with respect to the number of levels of tiling.

The experimental results in Section 4.4.1 confirm this, and also further validate our claim that we

can generate multi-level tiled loops at the cost of a single-level tiled loops.

In contrast the time for the classic method depends on the number m of multi-level tiling.

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 64

For an original loop nest of depth d, the number of dimensions and constraints increase by md

and 2md, respectively, as the level of tiling increase to m (assuming all the dimensions are tiled).

This results in an exponential space/time complexity which grows with the number of levels of

tiling. The experimental results in Section 4.4.1 show how this exponential growth with respect

to number of levels renders the technique inapplicable beyond two levels of tiling. The multi-level

tiled loop generation method proposed by Jiminez et al. [65] has an exponential time complexity

at each level of tiling, and this grows linearly with the number of levels of tiling.

4.41 Experimental Validation

We implement three different multi-level tiled loop generators. The first generator is for the case

when the tile sizes are fixed, and uses the classic tiling method discussed in Section 4.1.1. The sec­

ond generator is capable of generating tiled code with the tile sizes that are fixed or parameterized

or mixed and is based on the method discussed in Section 4.1.2. The third generator implements

the additional feature of splitting (or separating) partial and full tiles at some user specified level.

The generators are implemented in C+-1-. The CLOOG [14] loop generator is used internally

to generate the point-loops and the loops that scan the outset. Our technique is independent of

the internal code generator and for example, we could use OMEGA [70] instead of CLOOG. We

chose CLOOG for its robustness across several benchmarks and its code generation speed (up to

4xfaster than OMEGA [14]).

To evaluate the generation efficiency and the quality of the generated code we conduct three

sets of experiments. The benchmarks used for the experiments are given in Table 4.1. The bench­

marks 2D Stencil and 3D Stencil correspond to a Gauss-Siedel style stencil where a ID array (or

2D array resp.) is updated over a time step loop. For these two benchmarks, we first applied

skewing to make rectangular tiling valid and then used the skewed iteration space as input to our

generator. The skewing makes the iteration space non-rectangular. The benchmark LUD is LU

decomposition computation without pivoting. The benchmarks SSYRK and STRMM are rou­

tines from BLAS3 and correspond to symmetric rank k update and the triangular matrix product

computations, respectively. The loop nest depth of the benchmarks is shown in the third column

of Table 4.1 and for the experiments, all the loops are tiled at all the levels for all the benchmarks.

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION

10

Figure 4.6.
Generation time for multi-level tiling of 2D Stencil.

The three sets of experiments we conduct are aimed at evaluating the (i) the generation efficiency

of loop generators, (ii) the cost of parameterization, i.e., what is the execution time cost for not

fixing the tile sizes and leaving them as parameters, and (in) the effect of the level at which partial

and full tiles are separated. The following sections discuss each of these experiments.

4.4.1 Generation efficiency

We evaluate two aspects of the generation efficiency. First, we evaluate how our method scales

with respect to the number of levels of tiling. Second, we compare the generation times for the

parameterized and the fixed method. The second comparison also evaluates the overhead due

to the over-approximation of the inner-level partial tiles by full tiles (cf. Section 4.1.2). All the

generation efficiency experiments were run on an Intel Core2 Duo processor running at 1.86 GHz

with an L2 cache of size 2MB. We used g++ 4.1.1. with - 0 3 optimization level to compile our

loop generators. The timings use g e t t i m e o f day () . Our code generator supports arbitrary

(hyper-)rectangular tiles. For ease of experimentation we have used square tile sizes.

The generation times for the five benchmarks, 2D Stencil, LUD, SSYRK, 3D Stencil, and

STRMM are shown in Figures 4.6,4.7, 4.8,4.9, and 4.10. The %-axis represents the number of

levels of tiling and the y-axis represents the generation time (including file IO) in milliseconds.

The generation time labeled No Split refers to the case where there is no-splitting of partial and

full tiles and the other two - SplitLevel=l and SplitLevel=Innermost - represent the generation

2D Stencil - Tiled loop generation time

^ ^ ^ -

~ e - No Split
: SplJtLevel=1

-¥r- Splitl_evel=lnnerm

Number of levels of liling

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 66

2D Stencil
LUD
SSYRK
STRMM
3D Stencil

Description

Gauss-Siedel Style 2D stencil computation
LU decomposition of a matrix without pivoting
Triangular matrix multiplication
Symmetric Rank k Update
Gauss-Siedel Style 3D stencil computation

Loop
depth

2
3
3
3
3

Table 4.1.
Benchmarks used for evaluating generation efficiency and code quality.

LUD - Tiled loop generation time

o

-p^lzil^"

- e ~ No Split
-—• SplJtLeve!=1
- * * - SplitLevel= Innermost

1 1

Number of levels of tiling

Figure 4.7.
Generation time for multi-level tiling of LU decomposition.

SSYRK - Tiled loop generation time

/ > >

- * - No Split
-"••• Spl i tLeveNl
- * — SpIitLevel=Innermost

Number of levels of tiling

Figure 4.8.
Generation time for multi-level tiling of symmetric rank k update (SSYRK).

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION

X

10

Figure 4.9.
Generation time for multi-level tiling of 3D Stencil.

S T R M M - T i l e d l o o p g e n e r a t i o n t i m e

0 2 4 6 8

Number of levels of liiing

Figure 4.10.
Generation time for multi-level tiling of triangular matrix multiplication (STRMM).

where the splitting is done at level 1 (outermost) and at the innermost level, respectively. Note

that the case of a single level of tiling with no splitting corresponds to the experiments from

the previous Chapter on parameterized single level tiled loop generation. The main observation

from the graphs is that the generation time is fairly flat as the number of tiling levels increase.

Almost all the generation times are within the range of 40 to 60 milliseconds. This experimentally

confirms our claim that our technique provides a method that can generate multi-level tiled loops

at the price of a single-level tiled loop nest. Further, the graphs also show that splitting does not

introduce any additional generation cost.

The generation times for the classic method for fixed tile sizes is shown in Figure 4.11 (the

3D Stencil - Tiled loop generation time

5 ~ ^ x > r - x = * ^

- e ~ - No Split
SplitLevel=1

—X— SplitLevel-lnnerm

Number of levels of tiling

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 68

Tiled loop generation time using Classic method

- * - 2D Stencil
----- LUD

o - - K - SSYRK
M STRMM

• • • ™ - 3D Stencil

3 4 5 6 7 9 9 10

Depth of loop nesls in tiled code

Figure 4.11.
Generation time for multi-level tiling of classic method. The x-axis of the graph is the number of
loops in the tiled loop nest. The j-axis is the code generation time in seconds.

scale of x-axis is now in seconds). Note that the x-axis shows the number of loops in the tiled

loop nest and not the number of levels tiled. For example, when a 3D loop nest is tiled two

levels we will have 9 loops on the tiled loop nest. We show the number of loops in the tiled loop

nest, because it is a finer granularity than the number of levels of tiling and shows clearly the

exponential (w.r.t. the number of loops) nature of the method. The graph clearly shows that the

generation time grows exponentially when the number of loops is 9 or higher. Hence, we could

not obtain the generation times beyond two levels of tiling for this method. Although, it is not

clear in the graph, the generation time grows exponentially even with smaller number of loops,

but the difference of generation time among them is negligible.

4.4.2 Cost of parameterization

We evaluate the cost of parameterization by comparing the execution time of tiled code with fixed

tile sizes and parameterized tile sizes. We use two levels of tiling one for the TLB and another for

cache. This choice is motivated by our goal to compare two-level fixed and parameterized tiled

codes where the differences due to the loop bounds computation can be easily quantified. O the r

choices for two level tiling such as tiling for parallelism and caches or tiling for caches and registers

introduce many factors that influence the execution time and hence measuring the execution time

difference due to the loop bounds computation becomes hard. The experiments are done on an

Intel Pentium 4 at 3.2 GHz a 512 K L2 Cache and a TLB with 64 entries and pages of size 4K. We

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 69

2D Stencil - Exe. Times of 2 Level Tiled Code

B Fixed
• Parameterized

2 4 8 16 32 64 128 256 512

Inner Level Square Cache Tile Sizes

Figure 4.12.
Total execution time for 2D Stencil on a data array of size 65536. The x-axis shows the inner
(cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512.

used g++ 4.1.1. compiler with - 0 3 optimization.

Figures 4.12, 4.13, 4.14 and 4.15 show the execution times of the two-level tiled loops for the

2D Stencil, LU decomposition, SSYRK and 3D Stencil benchmarks, respectively. For the results

the shown in the graphs the inner (cache) tile sizes were varied from 2 to 512 and the outer (TLB)

tile size is fixed at 512. We also experimented with other outer (TLB) tile sizes and the results

are similar to the ones presented here. We can observe that for small tile sizes the parameterized

tiled loops are better and the for larger tile sizes they are comparable to the fixed tiled loops. At

smaller tile sizes the ceilO and floorO functions used in the classic method induce higher overhead

and hence result in slower execution time. Overall, the cost of parameterization seems to be

negligible and hence we conclude that parameterized tiled codes should be the preferred choice.

4.4.3 Effect of separation level

We evaluate the effect of separating partial and full tiles at different levels tiling. We use the

STRMM benchmark, and we tiled it two levels: one for cache and another for registers. The

register tiles were (manually) fully unrolled and the array references were replaced by scalars to

facilitate register promotion. The running times for two different cubic register tile sizes (2 x 2 x 2

and 3 x 3 x 3) are shown in Figure 4.16. Also shown is the running time for one level of tiling

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION

LUD - Exe. Times of 2 Level Tiled Code

m Fixed
• Parameterized

2 4 6 16 32 64 128 256 512

inner Level Cubic Cache Tile Sizes

Figure 4.13.
Total execution time for LU decomposition on a matrix of size 2048 x 2048. The x-axis shows the
inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512.

SSYRK - Exe. Times of 2 Level Tiled Code

B Fixed
D Parameterized

2 4 8 16 32 64 128 256 512

Inner Level Cubic Cache Tile Sizes.

Figure 4.14.
Total execution time for symmetric rank k update (SSYRK) for matrix of size 2048 x 2048. The
x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512.

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION

3D Stencil - Exe. Times of 2 Level Tiled Code

B Fixed
• Parameterized

h 111111
4 8 16 32 64 128 256 512

Inner Level Cubic Cache Tile Sizes.

Figure 4.15.
Total execution time for 3D Stencil for a data array of size 2048 x 2048 over 2048 time steps. The
x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512.

for caches. First, the results clearly show (although this is orthogonal to our study) that tiling for

both cache and registers gives better performance. Second, they also show how splitting at the

second level achieves the best performance (around 13 seconds) when compared to others.

4.5 \ Related Work

Techniques related to parameterized tiled loop generation, particularly for a single level of tiling,

were discussed in the previous chapter. Here we discuss the ones related to multi-level tiling.

Rivera and Tseng [108] studied the effect of multiple levels of tiling for improving locality on

multi-level caches. Multi-level tiled loop generation was not their focus. For simple rectangular

iteration spaces, multi-level tiled loop generation is straightforward and has been used by several

tools. However, for arbitrary polyhedral iteration spaces, there has not been much work. Jiminez

et al. [65] propose a technique for arbitrary polyhedral iteration spaces but for the fixed tile sizes

case. Their technique is based on the strip-mine and interchange view of tiling. Their technique

has a exponential complexity that grows with the number of levels of tiling. First, our technique

can handle both fixed as well as parameterized tile sizes. Second, the exponential time complexity

of our algorithm is fixed and does not grow with the number of levels. Third, we also propose a

CHAPTER 4. MULTI-LEVEL TILED LOOP GENERATION 72

STRMM - Compar ison of Different Levels of Tiling STRMM - Compar ison of Different Levels of Tiling

& Cache Only
E3 Cache+Registers SplFtLevel=1
• Cache+Registers Splitl_evel=2

UJIUHJlLIKJlUKJllJilUIiJIi l
6 12 18 24 48 96 180 270 360 432 512

Cubic Cache-Tile Sizes

® Cache Only
n Cache+Registers SplitLevel=1
• Cache+Regislers Splitl_evel=2

6 12 18 24 48 96 180 270 360 432 512

Cubic Cache-Tile Sizes

Figure 4.16.
Total execution time for triangular matrix multiplication for matrices of size 2048 x 2048. Two
levels of tiling for cache and registers is used. The x-axis shows the cubic cache-tile sizes. The
graph on the left is for a register-tile size of 2 x 2 x 2 and the one on the right is for 3 x 3 x 3.

method to separate full and partial tiles at any arbitrary level.

4.6 Discussion

Multi-level tiling is an important technique for mapping iterative computations to computer ar­

chitectures with many levels of parallelism and memory hierarchy. We have described a method

for automatically generating multilevel tiled code for any polyhedral iteration space where the

tile sizes can be fixed or parameterized at each level. We have shown that parameterized multi­

level tiled code can be generated at the same cost as a single-level tiled code. The code generation

scheme can be easily incorporated into existing general compilers and domain-specific code gener­

ators. To the best of our knowledge, ours is the first technique proposed for multi-level tiled loop

generation with parameterized tile sizes and also the first method to separate partial and full tiles

when the tiles sizes are not fixed.

Two important extensions are possible. First, our techniques can be extended to case of imper­

fect loop nests—possibly, first for a single level and then to multiple levels. Second, the techniques

can be extended to the generation of complete multi-level tiled code with both the tiled loops and

the appropriate transformed loop body.

Part II

Tile Size Selection

73

CHAPTER 5

A Unified Framework for Optimal Tile Size Selection

A moment's insight is sometimes worth a life's experience.

— Oliver Wendell Holmes

A
JL \ . S discussed in Chapter 1, the cost-model specificity of the tile size selection (TSS) solu­

tion methods lead to their non-extensibility and non-scalability. In this chapter we present a

TSS framework that overcomes these limitations by providing a cost-model independent solution

method. Our framework relieves the user from the tedious process of reasoning about the func­

tions used in the cost model and exploiting their properties to derive a closed form or heuristic

search algorithm for finding the best tile sizes.

First we describe the positivity property shared by the terms widely used optimal TSS models.

We then introduce the class of functions called posynomials and the related class of optimization

problems called Geometric Programs. To demonstrate the suitability of posynomials for optimal

TSS, we present the reduction, to our framework, of five optimal TSS models proposed in the

literature by a different authors in the context of using tiling for register reuse to cache locality to

coarse-grained parallelism.

74

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 75

Machine and system
parameters used in models

Cache/TLB miss penalty
Cache/TLB sizes
Number of registers
Number of functional units
Latency of functional units
Network latency
Network bandwidth
MPI Call start-up cost

Functions modeling
quantities of interest

Tile volume
Number of tiles
Number of cache misses
Cache/register foot print
Idle time in parallel execution
Communication volume
Loop overhead
Temporary storage size
Array pad size

Table 5.1
These parameters and functions are widely used in TSS models. What is the mathematical prop­
erty common to all these?

5.1 J A Fundamental Property

Several authors have exploited particular properties such as linear, quadratic, hyperbolic, etc., of

cost functions to derive optimal TSS solutions. Instead of exploiting the specific properties of a

cost model to derive a solution, we ask a fundamentally different question. Is there a mathematical

property that is inherent to the TSS models? Surprisingly yes! There is a simple property that is

shared by almost all the TSS models proposed in the literature. Table 5.1 lists several functions and

parameters that are used in TSS models. There is a fundamental mathematical property shared

by all them. The property is positivity. All the machine and system parameters are positive

quantities and the functions model positive quantities. The tile sizes which appear as variables in

these functions are also positive. Essentially, the functions used in TSS models estimate positive

quantities using positive parameters and positive variables. This positivity property might seem to

be a simple one, but it has deep implications. This property distinguishes the class of optimization

problems that are solvable in polynomial time and those that are not1 [22]. As we show in

the coming sections we can use this property as a basis to identify a class of polynomials called

posynomials which can be used to formulate optimal TSS problems that can be solved efficiently.

'Use of polynomial functions with this property leads to convex optimization problems which can be solved for
real solutions in polynomial time. On the other hand, optimization problems formulated with arbirtrary polynomials
are not solvable in polynomial time.

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAI TILE SIZE SEIECTION 76

5.2 Posynomials and Geometric Programs

We first introduce the basic building blocks of our formalism—monomials and posynomials—and

present their closure properties. After that we introduce a particular class of convex optimiza­

tion problems called Geometric Programs [42]. Monomials and posynomials are used in building

the cost models and geometric programs are used in formulating the optimal TSS problem as a

constrained optimization problem.

5.2.1 Posynomials

Let x denote the vector {xx, x2,..., xn) of n real, positive variables. A function / is called a posyn-

omial function of x if it has the form

f(x1,X2,...,Xn) = Y]ckX"'kx22k---Xn"k

k=l

where c > 0 and or, G R. Note that the coefficients ck must be non negative, but the exponents

orj can be any real numbers, including negative or fractional. When there is exactly one nonzero

term in the sum, i.e., t = 1 and c, > 0, we call / a monomial function.2 For example, 0.7 4-

2xj/x2 + x°'3 is a posynomial (but not a monomial); 2.3(x1/x2)15 is a monomial (and, hence a

posynomial); while 2xj /x 2 — x° 3 is neither.

Monomials and posynomials enjoy a rich set of closure properties, which are very useful in

composition of smaller (say single level) optimal TSS models to build larger (multi-level) ones.

Monomials are closed under product, division, non-negative scaling, power and inverse. Posyn­

omials are closed under sum, product, non-negative scaling, division by monomials, and positive

integer powers.

2Note that this definition of monomial is different from the standard one used in algebra.

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 77

5.2.2 Geometric Programs

A geometric program (GP) is an optimization problem of the form

mimimize fo(x)

subject to fi(x)<\, i = 1, ...,m

gi(x) = l, i = l,..., p (5.1)

xl > 0, i = 1, . . . , n

where f0,...,fmnre posynomial functions and g\,---,gp are monomial functions. If Vz = 1. . . n :

xi € Z, we call the GP an Integer Geometric Program (IGP). As presented by Boyd et al. [21]

several extensions (e.g., max()of posynomials) of GPs can be easily handled.

5.2.3 Efficient solutions via Convex Optimization

Recent advances [22] in convex optimization provide efficient polynomial time solution methods.

GPs can be transformed into convex optimization problems using a variable substitution and

solved efficiently using polynomial time interior point methods [74, 22]. The positivity property

of the posynomials is extensively exploited in this transformation of GPs to convex optimization

problems. The computational complexity of solving GPs are similar to that of solving linear

programs [74]. Continuous real solutions can be found in polynomial time. Integer solutions

need a branch and bound style algorithm, which in the worst-cast can take exponential time.

However, we have found (cf. Sec 5.5) that for optimal TSS problems the IGPs are very small (few

tile size variables and constraints) and solutions can be found quickly. Further, in the context

of optimal TSS, it is very common to solve for real solutions and round them to obtain integer

solutions. In such an approach we can obtain the solution in polynomial time irrespective of the

complexity of the model.

53 I Posynomials and TSS models

Posynomials are well suited for describing TSS models. The suitability is evident from the fact

that almost all optimal TSS cost functions considered in the literature turn out to be posynomials.

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 78

A few of them are discussed in this section.

• Models for data locality: In general, as observed by Hsu and Kremer [59], the objective

functions used in the context of tile size selection are all functions of the tile variables,

cache capacity and cache line size. Due to the positivity of both the tile size variables and

the cache parameters, these functions turn out to be posynomials. For example, as shown

in Table 5.2 the cost functions used in several widely used optimal TSS models [77, 36, 45,

87, 33, 128, 107, 85] turn out to be posynomials. In addition to this, the TSS models used

in the IBM XL compiler as described in [114] and the multi-level data locality tiling model

proposed in [101] use posynomials and can be reduced to an IGP.

• Models for parallelism. Similar to data locality models, several important and popular

models used in TSS for parallelism can be reduced to IGPs. Here, the TSS models are for­

mulated with quantities such as tile volume, number of tiles, idle time in parallel execution,

etc. and parameters such as network bandwidth/latency, MPI communication call cost, etc.

Due to the positivity of the parameters and quantities they use and the tile size variables,

these functions turn out to be posynomials. In particular, the commonly used commu­

nication minimal tiling for rectangular tiles [98, 20, 134] can be directly cast as an IGP.

Other models that can also be reduced to IGPs include optimal orthogonal tiling [11], 2D

semi-oblique tiling [10] and the Multi-level tiling model for 3D stencil computations [103].

• Register tiling, auto-tuners, and Multi-level cost models. The register tiling models

proposed in [115] and [102] can be reduced to IGPs. The cost model used for generating

high performance BLAS as described in [138] and the multi-level cost model [85] used for

quantifying the multi-level interactions of tiling, can also be directly reduced to IGPs.

The fact that such a large number of TSS models—proposed across two decades by a several differ­

ent authors—can all be reduced to single framework shows the generality and wide applicability

of the GP framework. The fact that the functions used (without the knowledge of posynomi­

als) in these models turn out to be posynomials indicates their suitability for TSS and makes one

wonder whether they could be the language of optimal tiling!

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 79

Cost Model Reference
ESS [45]

LRW [77]
TSS [36]

EUC [107]
MOON [87]

TLI [33]
WMC [128]
MHCF [85]

Cost function used for selecting the optimal tile size
C/(h * w)

l/h + \/w + (2h + w)/C
(2h + w)/h * w

l/h + \/w
l/h + \/w + (h + w)/C

\/h + \jw + (h + w)/C + h* w/C2

C jh*w
(l/h + l/w)(\/n + l/l) + 2/(h * w)

Table 5.2
Cost functions used in the literature for optimal cache locality tiling are shown, where C is the
cache size, h, w represent the height and width of the rectangular tile, n represents the size of a 2D
array and / represents the cache line size. A simple inspection shows that they are all posynomials.
This table is derived from Hsu and Kremer [59, table 2].

5.4 Models From Literature

In the following sections we discuss in detail five models from a variety of tiling contexts. The

goal is to provide an intuition for why all these models use posynomials and how the optimal

TSS problems can be cast as an GR Our discussion and reasoning about the posynomial nature of

the functions used in these models are limited by the amount of details publicly available about

them. The following models were chosen for detailed discussion because of their generality, use

in production compiler, or uniqueness.

5.4.1 Cache locality model

In this section we show how the cost model proposed by Sarkar and Meggido [116], also used in

the IBM XL FORTRAN compiler [114], can be reduced to an IGP. This cost model is applicable

to a general class of loops and to tiling of double or triple loops. We chose this cost model for

detailed discussion because of its applicability to a general class of loops and its use in a production

compiler. Our description is aimed at illustrating how their formulation directly maps to an IGP.

Further, we also illustrate how a change in the number of loops tiled affects the structure of

their cost model and necessitates a new solution method. Whereas such changes can be easily

accommodated in our GP based framework.

The overall strategy of Sarkar and Meggido [116] is to estimate the average memory cost per

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 80

parameter (n=400)

real*4 b(n,n), c(n,n)

real*8 a(n,n)

do i = 1,n
do k = 1,n
a(j,i)=a(j,i)+b(i,k)*c(k,j)

end do
end do

Effective Cache Size (ECS) = 512 lines.
Cache line size (L) = 128 bytes.
TLB page size = 4096 bytes.
Effective TLB size = 128 entries.
Cache miss penalty {JJC) — 15 cycles.
TLB miss penalty (fJp) = 50 cycles.

Figure 5.1.
This figure is based on the example given by Sarkar and Meggido [116]. Example loop nest and
hardware parameters are shown on the left. The optimization problem (Eq. 5.4) for selecting the
tile sizes is shown on the right.

iteration and select the tile sizes that minimize it. The memory cost of a tile (s) is calculated as

ftc x DL(s) + jjpX DP(F), where DL(F) and DP(T) are the number of distinct cache lines and pages

touched by a tile, respectively, and JJC and fjtp are the cache and TLB miss penalties, respectively.

The average memory cost per iteration is calculated by dividing the memory cost of tile by the

tile volume.

Consider tiling the two (i and k) loops (cf. Figure 5.1) with a tile of size st x sk. A row of a

is computed using a column of c and s- rows with sk columns of b . The arrays are laid out in

column major order and observe that the line size (128 bytes) is much smaller than column size

(n). Since every access to a will come from a distinct line, there will be si lines touched to access

a row of si elements. On the other hand, since we access a column of c , it will touch consecutive

memory locations and hence will hit -^| lines, where 4 denotes the bytes per array element and

128, the cache line size. A similar analysis will show that accesses to b will hit T ^ S^ lines. The

sum of these three quantities is DL(5,-,5^), (cf. Eq. 5.2). A similar reasoning with the TLB page

size yields DP(st,sk). Further details can be found in the original papers [116, 114]. To the make

the functions DL() and DP() tractable the authors use the following continuous approximation:

DL(s„5t = S: +
' 4 s , •

128 ** + 128

(s, + 3 %
S: + h •

32 32

(5.2)

DP(5i,it)
3200s,

4096

4s, +16005^

4096

" 4h
4096

(5.3)

100s +28 s + 400s. 4-623 s, 4-1023
. + J * + .*

128 1024 1024

minimize

subject to

,"c*DL(s,,<t)+^xPP(',-* t)

D L ($, . , J J < E C S

l <s ; , s 4 <400

s,,s,eZ

(5.4)

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 81

I f 1 * a + / - 1 , w h e n b > 0. These approximations are also shown in Eqns. (5.2) and (5.3). The

resulting optimization problem for picking the tile sizes is shown in Eq. (5.4).

A closed form solution for tiling double loops is derived by exploiting the following obser­

vation: the objective function of the optimization problem has the structure —| 1 \- D,

where A,B, C, and D are constants and sx and s2 are tile sizes. One can observe this structure in

Eq. (5.4). However, when tiling three loops this structure of the objective function is lost—the

tile volume îS253 appears in the denominator of a term (cf. Sarkar and Meggido [116]). Due to

this, a closed form solution is no longer available. Hence, for finding optimal tile sizes when three

loops are tiled, they resort to a search based algorithm. This is a classic example of sensitivity of

the solutions to the structure of the functions used in the cost model: an extension form double

loops to triple loops requires a different solution method.

The optimization problem formulated by Sarkar and Meggido [116] for tiling double or triple

loops can be reduced to an IGP. The key observation behind this reduction is the posynomial

property of the functions used in the objective function and the constraints. First observe that

the variables (s,-,Sfc) take only positive values, and all the parameter constants (ECS, fJc,/jp,etc.)

are also positive. Further, both DL(x,-, j^) and DP(5;,5^) (with the continuous approximation) are

posynomials. Using the property that posynomials are closed under addition and division by

monomial, it is easy to verify that the objective function of Eq. (5.4) is also a posynomial. The

constraints in Eq. (5.4) can all be easily brought to the required GP form (cf. Eq. (5.1)). The integer

constraints on si and sk makes the GP an IGP. Hence the optimal TSS problem given by Eq. (5.4)

is an IGP. Due to the posynomial nature of DL() and DP(), the reasoning directly applies to the

whole class of loops considered by them. Generalization to the case when triple loops are tiled

is straight forward based on the closure properties of posynomials and monomials. For example,

one can directly observe that the example optimization problem for tiling 3 loops given by Sarkar

and Meggido [116, Figure 4] can be cast as an IGP.

5.4.2 Parallelism model

Andonov et al. [10] use a detailed cost model, with total execution time as objective function,

for optimal TSS of 2D parallelogram iteration spaces, often found in stencil computations. The

detailed cost model and the general constrained optimization based approach motivates us to

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 82

Pass boundary

*9
-A 1 <l—i

A / *

O D D D D O
P] P2 p0 p,

Physical processors

P0 P l P2 P0 P l P2

Figure 5.2.
A tile graph is shown resulting from a 2 x 2 tiling of the parallelogram iteration space is shown.

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 83

choose this model for a detailed discussion of its reduction to an IGP. We will describe their

model and will show how their problem formulation reduces to an IGP. Further, when we extend

the iteration space model to 3D parallelepipeds, their solution is not applicable. Whereas, the IGP

approach directly accommodates such an extension.

Figure 5.2 shows a tile graph—nodes are tiles and edges are dependencies between t i les-

resulting from a 2 x 2 tiling of a parallelogram shaped iteration space. Such iteration spaces result

from a skewing transformation of loops to make rectangular tiling valid. Tile graph is a suitable

abstraction for deriving a model of the parallel execution time. Also shown in the tile graph is the

allocation of tiles to processors. Observe that the allocation is load balanced—all processors are

allocated an (almost) equal number of tiles. The diagonal lines show the parallel schedule under

which the processors execute the tiles.

The total execution time, T, can be modeled as the sum of the latency and the computation

time of the last processor: T = L+(TPP x TET), where, L denotes the latency of the last processor

to start, TPP denotes the number of tiles allocated per processor, and TET is the time to execute a

tile (sequentially) by a single processor. Here, the term T PP x TET denotes the time any processor

takes to execute all the tiles allocated to it. Given that we have a load-balanced processor mapping,

this term is same for all processors. In the following derivations, P is the number of physical

processors, Ni and N: denote the size of the iteration space along i and j , respectively and st and

5 are the tile sizes along i and / respectively.

The time to execute a tile, TET, is the sum of the computation and communication time. The

computation time is proportional to the area of the rectangular tile and is given by si x 5 x a. The

constant a denotes the average time to execute one iteration. The communication time is modeled

as an affine function of the message size. Every processor receives the left edge of the tile from its

left neighbor and sends its right edge to the right neighbor. This results two communications with

messages of size s , the length of the vertical edge of a tile. The cost of sending a message of size

x is modeled by rx + {3, where r and f3 are constants that denote the transmission cost per byte

and the start-up cost of a communication call, respectively. The cost of the two communications

(a send and a receive) performed for each tile is (TS. + f3). The reason for accounting for the cost

of a single call is because typically a non-blocking send call is used and its cost is hidden. The total

time to execute a tile is now TET = s;-5-ar + (TS- +/?)• The number of tiles allocated to a processor

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 84

is equal to the number of columns allocated to a processor times the number of tiles per column:

The dependencies in the tile graph induce the delay between the start of the processors. The

slope a = —, known as the rise, plays a fundamental role in determining the latency [58, 10]. The

last processor can start as soon as the processor before it completes the execution of its first two

tiles. Formally, the last processor can start its first tile only after (P — 1) X (a + 1) time steps.

Since at each time step a processor computes a tile, (P — 1) x (a + 1) x TET gives the time after

which the last processor can start, i.e., L = (P — 1) x (a + 1) x TET. To ensure that there is no idle

time between passes, we need to constrain the tile sizes such that by the time the first processor

finishes its column of tiles, the last processor must have finished its first tile. The time the first
N-+s-

processor takes to complete a column of tiles is equal to -^—'- x TET and the time by which the

last processor would finish its first tile is ((/> — 1 + 1) x (a + 1)) x TET. The no idle time between

passes constraint is ——- X TET > (P x (a + 1) x TET. Using the terms derived above we can now
$i

formulate an optimization problem to pick the optimal tile size.

T = (G P _ 1) (a + 1)) + l-Lx-L
S;P S;

x(aSlSj+(TS;+/3)) (5.5)

K+sl
subject to — >P(a + l),si,sj > l , 5 , , s e Z .

The solution to the above optimization problem yields the optimal tile sizes, i.e., the tile sizes that

minimize the total execution time of the parallel program, subject to the constraint that there is no

idle time between passes. Andonov et al. [10] propose a closed form solution obtained through

a detailed case by case analysis of the above optimization problem. This analysis exploits the

structure of the objective function and constraints to find closed form solution. We can transform

the optimization problem given in Eq. 5.5 to an IGP. The objective function T is directly a

posynomial. With the approximation of TV- + si ^ TV the constraint transforms into

P(a + l)s,

which is the required form for a GP constraint. Adding to it the obvious constraints that tile sizes

are integers and positive, i.e., s^S: G Z, si > 1 and s > 1, we get an IGP.

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 85

do il = il_lo, il_hi
do i2 = 12_lo, i2_hi
do i3 = i3_lo, i3_hi
a(i2,il)=a(i2,il)+

b(i2,i3)*c(13,il)
end do

end do
end do

£S(S,,S2>S3)

CP(S , ,S 2 , 5 3)

T C F f (/ (! l . S 2 . S l)

FR(st,s2,sJ

NFfPV

NFR

s,s,+s,s,

3̂ 1
S2 5 l + *253 + S 3 S

1

30

load/store term

f (s l ' S 2 > S 3) LS(st,s2,si) + (5.6)

ILP term

[CP(svs2,Si) Tcfpu(hWi)'

minimize F(si,s2,si)

subject to FR(svs2,s3)<NFR
-- (size of I-cache)

1 2 3 — (code size for one iter.)

(5.7)

Figure 5.3.
This figure is based on the example of Sarkar [115]. The example code for matrix multiply and
some of the terms used in the problem formulation are shown in the left. The optimization
problem for selecting the tile sizes is shown on the right.

Stencil computations with 2D or 3D data grids, after skewing to make rectangular tiling valid,

have 3D or 4D parallelepiped iteration spaces. Though the above cost models can be extended to

model these higher dimensional cases, extending the solution method to find a closed form solu­

tion is not straight forward at all—and is still an open problem. On the other hand, a solution via

IGP naturally accommodates such extensions based on the posynomial properties of the extended

cost model. We have proposed one such extension [103] and it is discussed in detail in Chapter 6.

have proposed one such extension for stencil computations with 3D iteration spaces and it can

be directly cast as IGP.

5.4.3 Register tiling model

Loop unrolling is used to increase instruction level parallelism (ILP) and enable register promo­

tion. The unrolled iterations have multiple copies of the loop body, and expose the array ref­

erences for scalar replacement, a technique used for register promotion [25]. We can view loop

unrolling as tiling for registers and ILP. In fact, the legality condition for unroll-and-jam and tiling

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 86

is the same [115]. Further, choosing the unroll factors can be viewed as selecting tile sizes—note

that they both can take only positive values. The I-cache and register requirements can be mod­

eled as capacity constraints. Such a view leads to a more general formulation of the loop unrolling

problem as shown by Sarkar [115]. In fact, it is the generality of formulation and the detailed cost

model that motivates us to choose this for detailed discussion. We present this general formula­

tion of Sarkar [115], viewed as a tiling transformation. We present the complete formulation for

an example and show how the resulting optimization problem for selecting the tile sizes (unroll

factors) can be cast as an IGP. The reasoning about the functions used in this formulation, directly

generalizes to the whole class of loops considered by Sarkar [115].

The overall approach is to find the tile sizes that minimize the average cost per iteration subject

to the capacity constraints. Two kinds of capacity constraints are considered, viz., the register

and I-cache. As shown in Figure 5.3 (Eq. 5.6) the objective function, F, that measures the cost per

iteration is the sum of an ILP term and a load/store term averaged over the tile volume si x s2 x s3.

All functions take the tile sizes, sx, s2 and s3 as arguments and estimate quantities related to the

unrolled loop body. The load/store term, LS(), estimates the number of cycles spent on load and

store instructions. The ILP term estimates the parallel execution time of the unrolled loop body.

Intuitively, the parallel execution time is the maximum of the critical path length in the unrolled

body, CPQ, and the number of cycles spent on functional units. For the example, we have only

floating point operations and hence only floating point functional units (TCfpy(),NFpPU) and

floating point registers (FR(),NFR) are considered. The estimated values of all the functions for

our example are shown in Figure 5.3. The number of floating point registers required by the

unrolled loop body, FR(), is estimated by counting the number of loop invariant references to

array a (equal to s2s{) and the number of distinct values of arrays b and c (equal to s2s3 + sis1).

The estimation is based on the Ferrante et al. [47], which is also used in the context of tiling for

data locality presented earlier (cf. Section 5.4.1). A detailed explanation on how the functions

are estimated is given by Sarkar [115]. The optimal tile sizes are found by an enumeration based

search algorithm which uses the objective function F() to evaluate the merits of each tile size

vector. The algorithm enumerates all feasible tile sizes (those that meet the capacity constraints)

and for each one of them calculates the value of FQ, and then selects one that minimizes F().

The optimization problem for selecting the tile sizes given in Figure 5.3 (Eq. 5.7) can be di-

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 87

minimize E= i,M,(H,W) + icMc(H,W) (5.10)

subject to Bt(H,W)<0.75Ct

BC{H,W)<0.75CC

H,W>\andH,W eZ .

Figure 5.4.
A Multi-level (TLB and cache) cost model for single-level tiling from Mitchell et al. [85]. ik is
the miss penalty for memory module k and Q, is the capacity of memory module k. Types of
memory modules are TLB and cache and denoted by k = t and k = c.

rectly cast as an IGP. This can be verified by observing that all the functions, parameters and

constants used in its formulation are posynomials . This is due to the fact that these functions

have tile sizes as variables and architectural parameters as constants, both of which are positive.

The presence of max() in the objective function F() is not problem. It can be eliminated easily by

introducing new variables [21,101].

Again, the above reasoning generalizes to the whole class of loops considered by Sarkar [115].

For the load store function, LS(), and the functions that model the register and I-cache require­

ments, this generalization can be easily verified with the details in Sarkar [115] and Ferrante et

al. [47]. Sarkar [115] does not give enough details about the estimation of the functions that

model the critical path length, CP(), and cycles spent on resource classes, TC:(), and hence, we

do not know whether there are cases for which these functions are not posynomials. However,

we expect these functions to be posynomials, since they use positive quantities—tile sizes and ma­

chine parameters—to model another positive quantity—the number of cycles. To summarize, we

have shown, based on the available details, that their formulation can be cast as an IGP.

5.4.4 Multi-level tiling model

Mitchell et al. [85] use three examples to show the need for multi-level cost functions even when

tiling for just one level. In this section, we present one of them, viz., a multi-level cost model that

captures the interactions between TLB and caches. The example used is matrix multiplication

with (k,i,j)as the outer schedule and(z',£)as the inner schedule. The ; loop is not tiled and i and

k loops are tiled with tile sizes H and W, respectively. Square matrices of size N are considered.

Figure 5.4 shows the multi-level cost model. For a given memory module k, the function Bk

Bk

Mk

—

=

HW

N>(

(H+i)
,H+ Wj \N + ~S~k/) + lk)

(5.8)

(5.9)

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 88

NB x NB= Cache tile size
Nv x Mv= Register tile size
CX,B{ — Cache capacity and line size
NR= Number of registers

Ls— Skew factor for scheduling

+ 3 +
'My'

N„<-

F-,

NB is a multiple of MJJ,Ny, and 2.

MyNy + Nu +Mu+Ls <NK

(5.11)

(5.12)

(5.13)

Figure 5.5.
Cost functions used by Yotov et al. [138, Figure 20] to select the cache and register tile sizes.

(Eq. 5.8) estimates the number of blocks required to hold a H x W sub matrix, and Mk (Eq. 5.9)

estimates the number of misses. The optimization problem (Eq. 5.10) is formulated using these

functions and other constants, as described in the caption of Figure 5.4. Note that the objective

function E accounts for misses at both the TLB and cache levels and the constraints on Bt and

Bc account for both TLB and cache capacities. They have found that the Bt(H,W) < 0.75Ct

constrains the width W more tightly and BC(H, W) < 0.75CC constraints the height H more

tightly. They derive closed form solution for this optimization problem.

The optimization problem (Eq. 5.10) can be directly cast an IGP, as shown in the following rea­

soning. Based on the structure of the functions Bk and Mk it is evident that they are posynomials.

The positivity of the constant parameters, it, ic,Ct, and Cc implies that the objective function is

a posynomial and the constraints can be put into posynomial inequalities.

5.4.5 Auto-tuner model

Auto-tuners such as ATLAS [126] automatically generate and tune high-performance libraries.

Model driven empirical search is used by these auto-tuners to select parameter values. Tile sizes

are one of the important parameters tuned in these libraries. For example, cache and register tile

sizes are parameters tuned by ATLAS and PHiPAC. Yotov et al. [138] propose detailed models that

can be used in auto-tuners for high performance BLAS [1]. They propose models to tune the

matrix multiply routine, which is at the heart of level 3 BLAS. We use these models to show the

appropriateness of posynomials in modeling cost functions used in auto-tuners. We describe the

models they use for selecting the cache and register tile sizes and show that they are posynomials.

They do not define an optimization problem with an objective function but rather use the cost

functions as constraints to guide the search for the parameters.

Figure 5.5 shows the cost functions Fx and F2, used for selecting the cache and register tile sizes,

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 89

respectively. Observe that the cache tile shape is restricted to squares and hence there is only one

variable NB, however the register tile shapes are rectangles and hence we have two variables Ny

and MJJ. They first solve for My and Ny using Eq. 5.13, and substitute the solution in F^ to make

it a function of just NB. After this substitution Fx becomes a quadratic function which can be

solved directly. With a continuous approximation of the ceilings in Fx, we can see that both Fx

and F2 are posynomials. Further, the constraint that NB has to be a multiple of Ny,Mv and 2

can be easily cast a monomial constraint. For example, the constraint that Ns is a multiple of 2 is

equal to the following monomial constraint: 3 ^ > 0 , ^ 6 Z : A^ = 2k <==> jr — 1. In fact, with

a suitable objective function, one can even use F1 and F2 to build a multi-level cost model, cast it

into a GP, and solve for NB,Ny, and Mv simultaneously.

5.51 PosyOpt Framework

We have implemented the optimal TSS framework as a tool called PosyOpt. The implementation

uses MATLAB and YALMIP [82] a tool which provides a symbolic interface to several optimiza­

tion tools on top of MATLAB. The symbolic interface allows a high level specification of the

optimal TSS problems. The overall structure of our tool PosyOpt is shown in Figure 5.6. The

optimal TSS problems are specified at a high level using posynomials as a IGP. These problems

are then automatically transformed to a convex optimization problem. The transformed problem

is then fed to the convex optimization solver of MATLAB and solved for real solutions. Integer

solutions are found via a branch-bound algorithm which internally uses the MATLAB solver for

solving continuous relaxations. The output of our tool is the set of optimal tile sizes.

Note that the specification and subsequent refinement and extensions are performed at the

posynomial level {cf. top box in Figure 5.6). These steps are done without any concern about the

solution method. The only concern is that the specifications and extensions use posynomials and

formulate GPs. Further, as shown in the Figure 5.6 (top box) different models can be combined

or composed together to form multi-level tiling models. We have found the closure properties of

monomials and posynomials to be very useful during the extensions and compositions.

We envision three different users for our tool: (i) modelers would use it for designing cost

models for TSS, (ii) Auto-tuners (such as ATLAS [126]) and model-driven empirical search meth-

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 90

Figure 5.6.

Optimal tiling models specified in posynomials

Parallelism
Model

Cache
Model

ILP & Registers j
Model I

Compose Models
(Parallelism, Cache, ILP & Registers)

J L Composition, extension & adaptation of models

Automatic
transformation

to convex
optimization

problem

N / Convex \
K> (Optimization)

V \ Solver •-v
Globally
Optimal

Tile Sizes

J

Overall structure of the PosyOpt tool.

ods [138] would use it to pick a good initial solution and then explore the neighborhood to refine

the solution, and (iii) compilers would use it for statically selecting a good tile size. The current

choice of MATLAB for implementation suits very well for uses in modeling and auto-tuners. The

modular structure of our tool allows the replacement of MATLAB based symbolic interface by

any other tool. When our tool is used in the context of a production compiler, there will not be

any need for a symbolic interface, the compiler would be using a particular chosen model and for

this given model, as explained in Sec. 5.5.1, we can directly solve for the optimal solutions.

5.5.1 Running time experiments

Using our tool, we formulated and solved a variety of single level and two level TSS problems.

The number of variables in any optimization problem is determined by the loop nest depth and

the number of levels of tiling. For example, a 2D loop nest tiled twice, would have 4 variables

in the TSS problem. The problems we experimented had 2 to 9 tile size variables and up to

twenty constraints. The time our tool takes to find the integer solutions range from 10 to 50

microseconds. Note that our tool uses a symbolic interface and the reported timings include the

overhead of symbolic preprocessing, transformation to convex optimization problem format and

CHAPTER 5. A UNIFIED FRAMEWORK FOR OPTIMAL TILE SIZE SELECTION 91

calls to the solver. Also note that if we choose to find just real solutions (and later round them) the

solving times are much faster. Since the feasible space for all GPs are convex regions, we found in

almost all the cases, the integer solution can be obtained via a rounding of the real solution. For

the uses in the context of a auto-tuner or designing a model, the current speed of our tool seems

very reasonable, particularly given the ease with which the problem can stated and solved.

In our experience with using our tool (and MATLAB), we found many additional optimiza­

tions are possible. In the context of a production compiler, a particular TSS model is used. Given

this, there is no necessity to actually go through a symbolic interface, and we can directly generate

the convex optimization problem in the required (matrices and vectors) format. Second, we can

directly use the C language function call interface to call the solver. Third, for any given model,

we can study the region of the feasible space where the optimal solution lies and choose to just

solve for real solutions and round them to obtain integer solutions.

5.6 Conclusions

We have proposed a framework based on a simple yet fundamental property of functions used

in optimal TSS models. Our framework not only generalizes the TSS models proposed in the

literature, but also provides the foundation for developing more sophisticated and particularly

multi-level tiling models. The ability to compose well understood single level models to form

multi-level models allows reuse of the knowledge developed by several researchers across two

decades. Our tool, PosyOpt is well suited for building auto-tuners and model-driven/iterative op­

timizers. A simplified version is ideal for inclusion in compilers. We are currently benchmarking

the GP solvers with respect to the models collected in our repository and studying whether real

solutions are sufficient.

CHAPTER 6

Exploration of Parallelization Strategies for 3D Stencil

Computations

T, HIS chapter presents an use of posynomials and GPs for finding optimal tiling and paral­

lelization strategies for stencil computations. The key idea is to characterize the space of legal

tilings and useful parallelizations, and explore this space by exploiting the fast solution methods

available for solving GPs. This exploration, of not just the tile sizes but tiling and parallelization

strategies plus the tile sizes, is an example of the wider class of optimizations that are enabled by

the use of efficient solution methods provided by the PosyOpt framework. Such explorations

have the potential for discovering new parallelization strategies. We show that even a partial ex­

ploration of the space of parallelization strategies lead to strategy which is up to a factor of two

faster than the standard implementation.

The work presented in this chapter was done in collaboration with Manjukumar Harthikote-

Matha and Rinku Dewri. It was presented in [103].

6.1 Introduction

Stencil computations form the basis for a wide range of scientific applications from simple Ja-

cobi to complex multigrid solvers. Their inclusion in major benchmarks like SPEC [119], HPF-

92

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 93

BENCH [61], PARKBENCH [92], and NAS Parallel Benchmarks [88], clearly show their impor­

tance. The development of special purpose stencil compilers [23] and implementation of pattern

matchers in general compilers [113] to identify stencil computations, highlight the potential for

performance improvements from loop transformations and optimizations.

Tiling [62, 135, 136] is a loop transformation that can be used for (i) partitioning data and

computations among parallel processors and (ii) reordering computations within a single proces­

sor to improve data locality. For stencil computations a variety of multi-level tiling schemes are

possible. For example, consider just two levels of tiling: an outer level for parallelism and an inner

level for data locality. For every outer level tiling strategy, many parallelizations are possible, and

for each such parallelization, several inner level (for locality) tiling strategies are possible. The

best schemes are those with lowest execution times, which depend on optimal choices of tiling

and parallelization strategies and parameters. Not only are there many such schemes, for each of

them the space of the tile sizes is also huge. The global question is which combination of tiling and

parallelization strategy with which parameters produces the minimum running time for a given set

of program size parameters and a given parallel machine? It is time consuming and error prone to

develop parallel implementations for each combination of tiling and parallelization scheme and

experiment with them to find a good one, or to even eliminate the obviously poor ones.

There have been extensive studies [78, 109, 81, 133, 49, 68, 67] on tiling stencil computa­

tions for locality. Schemes for tiling stencil computations for parallelism can be classified based

on whether or not they tile the outermost time loop. The commonly used data partitioning

scheme [52] does not tile the time loop and uses the "owner-computes" rule to determine the

computation distribution. Early work by Wolfe [131] shows that skewing can be used to enable

tiling of the time loops. Recently, Wonnacott [132] shows that time skewing can be used to tile

for parallelism as well as locality. Several important issues are not addressed by these authors. For

a given stencil computation,

• what is the space of legal tiling and parallelization schemes?

• what are the trade-offs between these schemes?

• how do the tiling choices at the parallelization level affect the choices at locality1?

'Mitchell et al. [85] point out that ignoring such tiling interactions will lead to suboptimal solutions.

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 94

• what are the globally optimal tile sizes?

A study of these issues will enable us to develop high performance, multi-version, platform spe­

cific implementations of stencil computations. As an analogy, consider the matrix multiplication

code generated by ATLAS [126]. The generated final code has different versions for different

shapes of matrices, and makes several platform specific choices for optimizations. Our experi­

ments show that stencil computations are similar, i.e., the optimal strategy depends on the shape

of the domain (size of the grid and the number of time steps). We envision a tool that explores

the space of legal tiling and parallelization schemes, selects optimal parameters and generates a

multi-version high performance implementation of a given stencil computation. As a first step

towards such a tool, the work presented in this chapter makes the following contributions.

• We characterize the space of possible legal tilings and load balanced parallelizations for

2D/3D Gauss-Siedel 9-point stencil. We focus on two candidates from this space to illustrate

the need to explore this space. Even this partial exploration led us to derive a new strategy

which is up to a factor of two faster than the standard implementation.

• We develop analytical models for the parallel execution times of the two strategies. We

formulate a constrained optimization problem for the optimal tile sizes and transform it to

a convex optimization problem, which can be solved efficiently.

• For both the strategies, we study an additional level of tiling for locality and analyze the

interactions between the choices at different levels.

• We experimentally validate our analytical models. We discuss the performance improve­

ments and trade-offs obtained with various strategies. We show how the best strategy de­

pends on the shape of the stencil iteration space. This leads to a division of the input space

into regions where different strategies perform better.

In the next section we characterize the space of legal tilings and parallelizations. In Sections 6.3

and 6.4 we discuss in detail the tilings and parallelizations for the two strategies and derive analyti­

cal models for their execution times. We present experimental validation and discuss performance

improvements and trade-offs in Section 6.5. We discuss related work in Section 6.6 and present

our conclusions and future work in Section 6.7.

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 95

for
f

k = \..
jr i = 1

for ;
/l[i

...Nt

= 1 ..JV ;

. ;] = CO

A[i
A[i
A[i

>.(A[i-l,)]+A[i-\,j-
,j-l]+A[i-l,j + l]+
+ l,j]+A[i+l,j + l] +
,j]+A[i,j + l]+A[i + l

1]+

i- i])

Figure 6.1.
(Left) Gauss-Siedel style successive over-relaxation code. 9 point stencil computation. (Right)
Dependences of the 9 point stencil computation.

6.2 J Space of Tiling and Parallelizations

We consider 2D/3D stencil computations in which a two dimensional data grid of size Nt x TV

is updated iteratively over Nk time steps. We call N^N:, and N^ as the loop size parameters

and let N = (N^NjyN^). As a representative of this class (3D stencils) we consider the Gauss-

Siedel 9 point stencil computation given in Figure 6.1 (left). The computation domain is a 3D

cuboid of size Ni x TV x W j . A graphical view of the nine dependences are shown in Figure 6.1

(right). Gauss-Siedel (in place updates) stencils are expected to have faster convergence than the

Jacobi stencils, which use all the 9 values from previous time steps. On the other hand, the

dependences of the Jacobi stencil are easier to tile and/ or parallelize. We consider the difficult (to

tile and parallelize) but faster converging Gauss-Siedel stencils. Our characterization and models

are directly adaptable and applicable to other types of 2D/3D stencils.

6.2.1 Tiling and parallelization model

Tiling [62,135] partitions the iteration space into groups which are executed in an atomic fashion

- all iterations in a given tile are executed by a processor before any iteration of its next tile. Note

that this notion of atomicity still permits any legal (re)ordering of the computation and commu­

nication steps within a tile. A rectangular tiling is one where rectangles are used for partitioning.

We consider rectangular tiling possibly preceded by a skewing transformation to make it legal.

We denote the tile sizes along the dimensions i,j, and k of the 3D iteration space by si, s., and s^,

CHAPTER 6. EXPLORATIONOFPARALLELIZATIONSTRATEGIES... 96

respectively. The tile graph consists of nodes representing tiles and edges between them represent­

ing the dependences between tiles. It is well known that [10, 136] if the s/s are large as compared

to the elements of the dependence vectors of the original loop, then the dependencies between the

tiles are unit vectors (or binary combinations thereof, which can be neglected for analysis purposes

without loss of generality). An important property is that the tile graph with such unit depen­

dence vectors can be viewed as an ^-dimensional system of uniform recurrence equations [69].

Such a view allows us to use the powerful systolic array synthesis methods [95, 96] to formally

reason about optimal parallelizations of the tile graph. In the context of exploring the space of

possible tiling and parallelizations, such a formal reasoning helps in constraining the search space

to a few valid and good candidates.

In any parallelization, the dependences in the tile graph induce some delay before which all

the processors can start executing. We call this initial delay the latency of a parallelization strategy.

Once all the processors begin to execute, any idle time incurred by a processor is a consequence

of the chosen parallelization. We restrict ourselves to parallelizations that are free of such idle

times. We call such parallelizations idle-free. We also restrict ourselves to allocations that are

load-balanced, i.e., to ones that allocate an equal amount (except at boundaries) of computation to

every processor. For the stencil computations this can always be achieved. Practical experience as

well as our analytical models predict that optimal performance can only be achieved under such

idle free load balanced parallelizations. Further, for allocation functions we restrict to orthogonal

projections—ones that are parallel to some canonical axes.

To summarize, we consider rectangular tiling and idle-free load balanced parallelizations only.

As shown in the later sections, the set of choices to be considered after these restrictions is still

rich.

6.2.2 Need for and implications of skewing

Skewing is a loop transformation that changes the dependence distances in the stencil code. In

the context of stencil computations, skewing is often used to transform the dependence distances

into non-negative ones, thus making tiling legal. Given the dependences of the 9-pt stencil (c.f.

Figure 6.1), tiling certain dimensions require certain skewing transformations to make it legal.

However, as a side effect, skewing also changes the shape of the iteration space. For instance,

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 97

Figure 6.2.
Space of multi-level tilings and parallelizations for the 9-pt. stencil. The choices (path) shown in
bold correspond to the two strategies explored in detail.

skewing a rectangular iteration space will make it a parallelogram. As a consequence, a rectangular

tiling of the parallelogram iteration space will result in both full (rectangular) and partial (non-

rectangular) tiles. Partial tiles increase the tiling overhead and also makes analytical modeling

difficult. Hence, there is a trade-off: extra tiling overhead introduced by skewing versus ability to

tile additional dimensions.

6.2.3 Space of tilings and allocations for parallelization

The space of possible rectangular tilings for the 9-pt stencil (c.f. Figure 6.1) corresponds to the

choice of which and how many dimensions do we choose to tile. Note that we are not charac­

terizing the space of tile sizes, which we will do later for each possible tiling. Tiling different

dimensions requires a different set of skews of the iteration space. The choices and the corre­

sponding skews are discussed below and a graphical view of them is shown in Figure 6.2 (top

box).

1. Tile the program with no skewing. The program dependences limit such tilings. For

example, in order to tile either the i or the j loops, ŝ has to be 1. Furthermore, in order to

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 98

tile the j loop, sl must also be 1. Thus the possible tilings are: (i) the trivial 1 X 1 x 1, N^ x

Nt xN: and 1 xNi xTV tiles which we discarded for obvious reasons; (ii) 1 x s -t xTV tiles; and

(iii) 1x1X5 tiles, which we discard because the computation-to-communication balance of

the tiles is too low2. We pursue the 1 x s • x A/.- tiling. For this tiling strategy, a parallelization

on an ID processor array is the only choice, where the processors are aligned along the z

axis (c.f. Figure 6.3 (left)). The choices are shown in the left-most branch of Figure 6.2.

2. Tiling both z and / dimensions. We need to skew i with respect to / to make tiling along

j legal. This case also covers the case of tiling just along / when the tile size along z is 1.

For this tiling, we can parallelize the tile graph on an 2D or ID processor array. For an ID

processor array we align it along the z axis. For the 2D processor array, we can either align

the processors along the z^-plane or the i/-plane. For the z/-plane alignment the processors

are arranged in a parallelogram shaped grid and for the z'^-plane alignment they are arranged

in a rectangular grid. The choices are shown in the second branch (from left) in Figure 6.2.

3. Tiling both z and k dimensions. We need to skew i with respect to k to make tiling along

k valid. Based on a similar reasoning as above, this choice also covers the tiling just along k.

For this tiling, a parallelization on an ID processor array is the only choice. The processors

are aligned along the k axis as shown in Figure 6.4 (right). The choices for this strategy are

shown in the third branch (from left) in Figure 6.2.

4. Tiling all the three (i,j and k) dimensions. We need to first skew i with respect to k and

then skew / with respect to i. This choice also covers the case of tiling just / and k. For

this tiling, with orthogonal processor allocations, only an 2D processor array is possible.

The 2D processor array is aligned along the i^-plane. However, if we expand our space and

consider non-orthogonal processor allocations, there are two linear array parallelizations

possible3. We do not discuss these choices further. The choices related to the 2D processor

array is shown in the right most branch in Figure 6.2.

It would be easy to use the ideas in this chapter to confirm analytically and experimentally that this is indeed the
case.

3These non-orthogonal projections make every communication non-local, which would result in higher commu­
nication costs. Based on this intuition we have restricted ourselves to orthogonal projections. It is not clear whether
this is always globally optimal but it definitely makes the space more tractable.

CHAPTER 6. EXPLORATIONOFPARALLELIZATIONSTRATEGIES... 99

One might wonder why the last choice above does not cover all the other cases by appropriately

letting the corresponding dimensions (i,j, and/or k) equal to 1? The answer is, skewing creates

partial tiles and leads to a different cost function for the total computation time. The overhead

of partial tiles should be avoided whenever possible, so that we can derive simpler parallel imple­

mentations and more precise execution time models.

6.2.4 Space of tilings for locality

After an outer level of tiling for parallelism we can tile another level for locality. We call a tile

from the outer level of tiling (for parallelism) as a parallel-tile and a tile from the inner level of

tiling (for locality) a cache-tile. Correspondingly we also refer to their sizes AS parallel-tile sizes and

cache-tile sizes.

We have two choices for cache tiling: tile i and / dimensions only or tile i, / and k dimensions.

Both may require additional skewing transformations to make them legal. This additional skew­

ing is not required if it has already been done for the outer (parallelism) level tiling. Given that

the data of the stencil is 2D, tiling just the i and ;' dimensions will allow us to exploit the limited

amount of spatial locality. To exploit temporal locality we need to tile the (time) k dimension.

The choices are shown in Figure 6.2 (lower box).

6.2.5 Interactions between tilings

Two types of interactions ensue, viz., (i) skewing transformations at parallelism level can enable or

disable tiling along certain dimensions for locality, and (ii) the parallel tile sizes restrict the lower

and upper bounds of the cache tile sizes. These interactions stem from the fact that a parallel-tile

becomes the iteration space for the cache tiling. We describe below two instances where a decision

made at the parallelism level affects the choices in the inner level.

Consider the case in which we do not tile the k loop at the parallelism level. This choice leads

to parallel-tiles which are slices of the j/-plane and disables cache level tiling of the k loop. These

slices become the iteration space for the cache-level tiling. So, we can see that the cache-tiles are

forced to be 2 dimensional and hence can only exploit spatial locality. (Recall that we need to also

tile the k dimension to exploit temporal locality.) The first two branches (from left) in Figure 6.2

shows this consequence — observe the leaves showing the possibility of only 2D cache tiles.

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 100

When tiling j loop is made legal by skewing transformations at the outer level, there is no

additional skewing required at the inner cache-level to get 2D cache-tiles. This case is shown in

the second and fourth branches (from left) in Figure 6.2. On the other hand, notice that for the

strategies shown in the first and third branches (from left) in Figure 6.2, we need to skew i loop

with respect to j to make tiling j loop legal and hence get 2D cache-tiles.

6.3 \ ID Strips

In this section we consider the first strategy (left most branch in Figure 6.2) and develop an ana­

lytical model for the parallel execution time. In the modeling, we use three parameters, viz., a,j3

and T, to model the quantities that are dependent on the loop program and parallel architecture

on which it is to be executed, a represents the time to execute an iteration of the given loop pro­

gram. /3 and T represent respectively the start up cost of a MPI communication call and the time

to communicate a d o u b l e precision data value.

In this tiling strategy, each tile is a 1 x si x N: rectangular parallelepiped, i.e., only the i loop

is effectively tiled. The ; loop has a single "tile" of size N-, and the k loop "tiles" have unit size.

Because there is only one tile in the ; dimension, the resulting tile graph can be viewed as a 2D

grid in the (i,k) plane as shown in Figure 6.3 (left). The dependences between tiles are [0,1] to the

north, with a data "volume" of N:Sit and [1,0] (east) and [—1,1] (north-west), both with volume

Nr

To explore different parallelizations, we first derive the optimal wavefront schedule for the

tile graph, which is t(i,k) = i +2k. This schedule is shown as dotted lines across the tile graph in

Figure 6.3 (left). It is optimal in the sense that the total execution time for this schedule (assuming

unbounded processors) is — +2N/e — 1, which equals the length of the longest path in the graph.

Next, we choose an appropriate allocation of tiles to (virtual) processors. For our rectangular

tile graph, only two allocations lead to a load balanced parallelization, namely by columns, or by

rows. Allocation by rows, where each processor sequentially executes all the tiles in a row of the

tile graph, leads to a parallelization that allows multiple passes. We developed an analytical model

for it and determined the optimal tile size. However, this parallelization is almost always outper­

formed by the column wise allocation, and is not described further in the interests of brevity.

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 101

for k = \...Nk

for each strip S
receive Rcol[&] of p-_^
compute Lcol[&] of S
send Lcol[&] of S to pi_l

compute MiddleRegion[k] of S
receive Lcol[& — 1] of £i+[

compute Rcol[&] of 5
send Rcol[&] of S to pi+i

Figure 6.3.
(Left) Tile graph of ID strips tiling. The fastest schedule is shown in dotted lines. (Right)
Steps performed by each (non-boundary) processor in ID Strips tiling. Lco l [] , Rcol [] , and
Midd leReg ion [] corresponds to the left column, right column and middle portion of a strip.
The index k and k — 1 indicates, respectively, whether they are from the same k plane or the
previous plane.

Allocation by columns, where tile (i,k) is performed by virtual processor i, yields a paral-

lelization (i.e., a "macro systolic array") that has bidirectional communication: processor z sends

to z' + l for the [1,0] dependence, and to i — \ for the [—1,1] dependence. This has two important

consequences.

• Every processor is active only on alternate time steps. This problem can easily be corrected

by a well known systolic technique called clustering or serialization. We allocate two adja­

cent virtual processors to a single physical processor which alternates between the two tiles

and is thus always busy. This combined two-tile unit is called a "macro tile" or a Strip.

• It precludes adaptation to run on fewer processors in multiple passes, using another com­

mon systolic technique called LPGS (for Locally Parallel Globally Sequential) partition­

ing [86]. This means that s;; = JT, i.e., each macro tile is a — x N: strip.

A processor performs the following steps: receive data required to execute the strip, execute the

strip and send computed data to neighbors. As a latency hiding optimization, we can relax the

strict order between the receive-compute-send steps, and interleave them. In the execution of a

strip, if we allow the processors to move the sends as early as possible and the receives as late

as possible, we get the optimized code shown in Figure 6.3 (right). In this version, a processor

receives the data to compute its left-most column, computes it and sends the new values immedi-

1-
3 -

2 -

•-

0 •

- i-EL;

- !%,_

-TB,.

—1

""&;.

""«-.•,

' "Q-; .

\-^-

' " & • -

" * - -

_;'*•--..

— i —

""-a.

""Q-

.' '*-!

h-r»

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 102

ately. Then it computes the middle region of the strip, receives the data to compute the right-most

column, computes it, and sends the new values.

There are no tiling parameters to choose optimally, and the analytical model developed below

predicts the running time for this parallelization. The single pass execution implies that the tile

size 5- along i has to be -£. Let pi denote the i processor, and p' — pp_x the last processor.

The total execution time of this tiling and parallelization can be modeled as Tst • = Latency(^/) +

TPP(/>) x TET(Sj). Where, P is the number of processors, sl = -± is the tile size, Latency^') is

strip

p is the til

the latency for last processor to start, TPP(p) is the number of tiles allocated to any processor p,

and TET(ij) is the time to compute a tile. To compute the time to execute a tile, we observe that

during the computation of a tile a processor performs N:St computations and communicates its

left and right columns, of size N:,to the previous and next processors. Hence, we have TET(s,-) =

a xN: x si + 4(TN: + /?), where, a, r, and f3 are as discussed earlier. Every processor is allocated

Nfc macro tiles (or strips), hence TPP(p) — Nk.

The last processor can only start after it receives the right most column of its left neighbor,

i.e., p' can start after the first P — 1 processors execute their tiles. Hence, Latency(/>') = (P — 1) x

TET(Sj). By plugging in these functions we get

6.3.1 Cache tiling

Each processor executes a set of parallel-tiles, each of size -y x N.•. This strip can be further tiled

to exploit some limited amount of spatial locality. However, to make the tiling of the strip legal,

we need to skew the ; loop with respect to the i loop. We perform this transformation and then

tile both the i and the ; loop to obtain 2D cache-tiles. Note that the decision of not tiling the k

loop at the outer level results in a situation where we cannot tile the k loop at the inner (cache)

level, to exploit temporal locality. We select the best cache-tile sizes empirically, i.e., by running

the cache-tiled coded for several tile sizes and selecting the best.

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES. 103

P2O A

pi 0 / :

p.O /

" 2 0 • /
P> O ; / L

p„oktZ>: k
. / • • " ' ' ! : ^ - " - ^

l^dl. : . . r l ^
si sk

• - " ^ ^

I 1

Figure 6.4.
(Left) Skewed dependences that make this tiling legal. (Right) Semi-oblique strips tiling.

6.4 \ Semi-oblique Strips

In this tiling strategy, we seek to tile the k and z dimensions. To make this tiling legal we first

skew the i loop with respect to the k loop with the transformation (k,i,j)<-* (k,i +k,j). The

transformed dependences are shown in Figure 6.4 (left). We then tile the k and z loops with tile

sizes $£ and si, respectively. We do not tile the j loop and allow s • = JV . The skewed iteration

space together with the tiling is shown in Figure 6.4 (right).

We parallelize this tiled iteration space on a linear array of P processors aligned along the k

axis as shown in Figure 6.4 (left). Note that depending on whether — > P or not, there might

be more than one pass. Every processor executes one or more rows (along i) of —'- tiles of size

sk X s, x Nj. Such an allocation is load balanced—all the processors execute the same amount of

computation (assuming P divides — evenly). During the execution of a tile, a processor receives

the bottom (z /) face of the tile from the processor below it, computes the tile, and sends the top

(z j) face to the processor above it. These faces communicated between processors are of size s^N:.

The execution time of the tiled parallelized loop program is given by 7"sos = Latency(^p_j) +

TPP(^) x TET(5,,5^), where we have TETfo,**) = (as^Nj +2{rNjsl +/?)) . The number of tiles

allocated to a processor is TPP(/?) = JJ x ' 5k. This follows from the fact that JJ gives the

number of passes executed by a processor and ' $k is the number of tiles executed by a processor

in one pass.

The slope j - (also known as the rise [57]) plays a fundamental role in determining the latency.

Processor pP_^ can start its first tile only after (P — 1) X (—+ l j tiles are executed. Hence,

we have Latency(pP_1) = (P — 1) X (^- + 1) x TET(s(-,j^). To ensure that there is no idle time

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 104

between the passes, we need to make sure that by the time the first processor finishes all the tiles

from its first pass, the last processor should have finished at least one tile. This constraint is given

by P (— + 1J < ' Sk. Putting them all together we get the following constrained optimization

problem

minimize
Nk N,+sk\ sk

— x + (P - l) x - + 1
.\skp h I \s>

subject to P h 1 I <

x{asiskNj+2^5^/3)) (6.2)

We can transform this optimization problem (Eqn. 6.2) into a Geometric Program (GP), and

can be solved efficiently using the tools discussed in Chapter 5.2.3.

6.4.1 Cache tiling

Each parallel-tile is a semi-oblique block of size sk x s(x Nf. Each block can be further tiled for

locality. Since we have tiled the k loop at the outer level we can have both 2D as well as 3D tiles

at the inner (cache) level. To make tiling the / loop legal, we have to skew it with respect to the z

loop. After this transformation, we can either choose to tile only the i and ; loop to obtain 2D

cache-tiles, which can exploit spatial locality, or tile all the three loops to obtain 3D cache-tiles

and exploit both spatial and temporal locality. We explore only the choice of 2D cache-tiles and

leave 3D cache-tiles as future work. Note that the optimal parallel-tile size s, from the outer level

affects the iteration space sizes for the 2D cache-tiling, viz., s- x N-. We select the best cache-tile

sizes empirically, i.e., by running the cache-tiled coded for several tile sizes, which are within the

bounds of s, and N-, and selecting the best.

6.51 Experimental Results

We have implemented two versions, one with cache tiling and one without, for both the ID Strips

and Semi Oblique Strip (SOS) strategies. The implementation of the ID Strips is the optimized

latency hiding version. For both the strategies, we selected the best cache-tile sizes by running

the cache-tiled code (on a single processor) for a range of tile sizes (within the bounds imposed

by parallel-tile sizes). For the ID Strips, we observed that for the small tile sizes range, there is a

steep decrease in the running time as we increase the tile sizes. This trend stops and the running

CHAPTER 6. EXPLORATION OFPARALLELIZATIONSTRATEGIES... 105

Speedup of SOS over Strip
without tiling for locality

1200 Q 2160 D 3120 • 4080 D 5040

n m

2 4 8 12 16 20 24

Number of Processors

Speedup of SOS over Strip
with tiling for locality

1200 B 2160 0 3120 D 4080 • 5040

m

4 8 12 16 20 24

Number of Processors

Figure 6.5.
Speedups for SOS over Strip strategy without (left) and with (right) cache tiling. Results for five
different grid sizes Nt = N- = 1200,2160,3120,4080, and 5040, each for a set of small time steps
Nf!=P (the number of processors), are shown.

time becomes relatively constant for larger tile sizes. After experimenting with several strip sizes,

we found the cache-tile of size 60 x 140 to be the best and used it for our experiments. For

the SOS strategy, the running time had a similar behavior with respect to cache-tile sizes. After

experimenting with several grid sizes, we found that the optimal parallel-tile size si is always very

small, and hence we let the cache-tile size along the i dimension to be the same as 5-. This results

in no cache-tiling along z. For the cache-tile size along j we selected a value of 50 which belongs

to the flat execution time region.

We used a IBM Cluster 1600 running AIX, at the National Center for Atmospheric Research,

Colorado, for our experiments. The IBM Cluster is a Symmetric Multiprocessing (SMP) sys­

tem. The nodes are made of 1.3-GHz POWER4 processors. The processors in a single node can

communicate via shared memory, and the nodes themselves communicate via an SP Switch2 inter­

connect. We used the IBM mpcc compiler for our experiments with standard - 0 3 optimization

levels. Our parallel implementations are written using the MPI message passing library.

We obtained values of a = 5.5 x 10~8,/? = 4.1 x 10"6 and r = 5.3 x 10 - 9 as follows. We ran

the loop body of the stencil computation for 1000 iterations and took the average execution time

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 106

Percentage Error in Predicted w.r.t. Actual
for SOS

1200 B 2160 0 3120 a 4080 D 5040

™ o c *-
CD I

4 8 12 16 20 24

Number of Processors

I

Percentage Error of Predicted w.r.t. Actual
for Strip

1200 B 2160 D 3120 • 4080 • 5040

Jti

4 8 12 16 20 24

Number of Processors

Figure 6.6.
Percentage error in predicted with respected to actual for SOS (Left) and Strip (Right) strategies
without cache tiling. Results are reported for five different grid sizes (TV, = NA each for a set of
time steps N^ equal to number of processors P.

as a - the time to compute one iteration. We estimated the cost of communicating one double

value (T), and the MP I communication call start up cost (/?), with a ping-pong style MPI program

that mimics the communication pattern of our tiled programs.

Stencil computations used in PDE solvers have fast convergence and the number of time steps

are usually small, such as 8,16, or 24. The type of stencil computations used in simulations, such

as water models, have large number of time steps. For our experiments we considered these two

type of stencils over square grids, i.e., Nt = JV-. We found that for small time step stencils the SOS

strategy performs better than Strips, and as the number of time steps increases, its performance

becomes comparable to that of Strips. This divides the input space into two regions where one of

the strategy is clearly preferable over the other.

We present experimental validation and performance improvements for the small number of

time steps case. Five different square (Ni = NA grid sizes viz., 1200,2160,3120,4080, and 5040,

with small time steps Nk were used for experiments. For such small time steps in the SOS strategy,

the number of processors is set to N^, since the processors are aligned along the k dimension.

Figure 6.5 shows the speedup achieved by the SOS over the Strip strategy (without and with tiling

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 107

for locality) for the five different grid sizes with number of processors P = N^. Without cache

tiling we obtained speedups of up to 60% (with an average of 40%). Also, we observed higher

speedups for larger grids. We observed in single processor experiments that cache tiling helps SOS

(30%) more than Strips (5%). These improvements are reflected in their parallel implementations

(Figure 6.5(right)). Speedups up to a factor of 2.1 are seen with cache tiling (see P — 24 in Fig­

ure 6.5(right)). Here, we see a similar trend of higher speedups for larger grid sizes. Clearly, for

stencils with small time steps, the new SOS strategy performs much better than the standard Strips

strategy. A two fold decrease in running time is significant for such applications.

We validated our analytical models for the two strategies, using more than 100 different com­

binations of stencil grid sizes and number of processors, and have found them to be reasonably

accurate. We present here a subset of them. The percentage error in predicted with respect to

the actual for SOS is shown in Figure 6.6(left) and for Strips in Figure 6.6 (right). Our models

consistently under predict the execution time. Overall, the predictions are within 20% of the

actual execution time, which is good for tiling and design space exploration. Further, for SOS, we

conducted experiments to see how close is the predicted to the actual at the optimal tile sizes (si

and 5^), obtained by solving the constrained optimization problem (c.f. Eqn. 6.2). We found that

near the optimal running time the predictions are fairly close (within 20%) and at points far from

optimum the difference is higher. This is the behavior we desire from such analytical models.

6.6 Related Work

There have been extensive studies [78, 109, 81, 133, 49, 68, 67] on tiling stencil computations

for locality. In the space of multi-level tilings that we characterize, these locality improving tech­

niques can be leveraged to improve the implementations at the leaf (uni-processor) level. Data

or domain decomposition [52] is a standard scheme used in tiling stencil computations for par­

allelism. Early work by Wolfe [131] shows that skewing and tiling transformations can be com­

bined to tile for both parallelism and locality. Recently, Wonnacott [132] shows that time skewing

can be used to tile for parallelism as well as locality. As discussed in Section 6.1, these authors pro­

pose transformations that can enable and make tiling beneficial for parallelism and locality. We

characterize the space of possible multi-level tilings and parallelizations with the goal of system-

CHAPTER 6. EXPLORATION OF PARALLELIZATION STRATEGIES... 108

atically deriving the best implementation for a given stencil.

Andonov et al. [10] consider 2D (ID data and 2D iteration space) computations and pro­

pose an analytical model similar to ours for estimating the execution time of a tiled program and

present analytical closed form solutions for the optimal tile sizes and the number of processors.

We consider an 3D iteration space and characterize the possible multi-level tilings and paralleliza-

tions. Our analytical BSP style cost models are inspired by theirs. Bordawekar et al. [19] present a

technique for optimizing communication for out-of-core distributed stencil computations. They

show how a compiler can choose the tiling parameters based on the stencil computation and pro­

cessor information. Their goal is to minimize the communication, whereas our goal is to find the

tiling strategy and tile sizes that minimize the total execution time.

6.7 Discussion

We have characterized the space of legal multi-level tilings and parallelizations for the 2D/3D 9-

pt Gauss-Siedel stencil computations. We have shown that a systematic exploration of a part (2

strategies) of this space leads to a new strategy which achieves up to a factor of two improvement

over the standard implementation. A two fold decrease in running time is significant for such

applications. This illustrates the importance of exploring this space. Further, the exploration

helped us to divide the input space into regions in which different designs are better. This shows

us the need for runtime data dependent choice of the best implementation. We consider our

results as a first step towards a complete exploration of this space.

As a future work, we envision to build a framework that will take a stencil computation as

input and will automatically determine the required skewing transformation, and generate analyt­

ical models for different tiling and parallelization strategies, and select the best strategy. Majority

of the required theory for this is known, and we believe that our GP framework is general enough

to integrate all these techniques into a single tool. As an immediate future work, we would like to

implement and explore other tiling strategies.

CHAPTER 7

Combined ILP and Register Tiling

, l EFFICIENT use of multiple pipelined functional units and registers are very important for

achieving high performance on modern processors. Instruction Level Parallelism (ILP) and reg­

ister reuse (through register tiling) are two mechanisms for efficient use of pipelined functional

units and registers respectively. Program transformations that expose and exploit ILP and register

reuse interact with each other in subtle ways. In this chapter we study the combined problem of

optimal ILP and register reuse. We consider the class of uniform dependence, fully permutable,

rectangular loop nests. We develop an analytical model of the combined problem and formulate a

mathematical optimization problem that chooses the parameters of the ILP-exposing transforma­

tion and register tiling so as to minimize the total execution time. We distinguish two cases: when

loop permutation can and cannot expose a parallel loop. We show that the combined problem can

be reduced to a single IGP for the former case, and to a small set of IGPs for the latter case, both

of which can be solved to global optimality. This combined exploration of ILP and register tiling

is another example of the broader class of optimizations made possible by the efficient solution

methods provided by the GP based approach.

The work presented in this chapter was done in collaboration with Ramakrishna Upadrasta.

It was presented in [102].

109

CHAPTER 7. COMBINED ILP AND REGISTER TILING 110

7.1 Introduction

Efficient use of the multiple pipelined functional units and registers are important to achieve high

performance. Instruction level parallelism (ILP) allows a sequence of instructions derived from

a sequential program to be parallelized for execution on multiple pipelined functional units in

modern processors. Exploiting ILP and register reuse is critical for efficient use of execution re­

sources. Irrespective of whether the target architecture can extract/exploit ILP (like superscalar

processors) or not (VLIW processors), compilers can transform the program to enhance and ex­

pose the parallelism, and schedule the program to exploit the parallelism. No matter what the

architecture is, performance is greatly influenced by the quality of the compiler generated code.

State-of-the-art compilers perform a variety of program optimizations to expose, enhance and

exploit ILP and register reuse.

Loop nests are often the main sources for ILP and register reuse. The traditional approach,

shown on the top row of Figure 7.1, uses unroll and jam [6] to expose ILP and scalar replacement

to expose register reuse. However, this approach has the disadvantage of increased code size and

register pressure. Further, it is hard to quantify the interactions [28] between unroll and jam,

scalar replacement and software pipelining, the widely used loop scheduling technique [76, 100,

5]-

Loop parallelizing techniques offer many transformations that can expose parallelism. Ex­

amples include, loop permutation, loop skewing [6], multi-dimensional scheduling [38], etc. In

addition, loop tiling [136] can be used enable register reuse. We propose to use loop permutation

and skewing to expose ILP, followed by tiling to enable register reuse. Our approach, shown in

the bottom row of Figure 7.1, does not suffer from increased code size. However, enabling register

reuse with tiling requires a register allocator for array variables as compared to the use of scalar

register allocator in the scalar replacement approach.

Program transformations that expose ILP and those that enable register reuse interact with

each other in subtle ways. For example, loop unrolling and loop skewing will expose ILP but

might also increase the number of live values and hence the register pressure. On the other hand,

register tiling will enable register reuse but might also limit the amount of ILP with the new

order of execution of the tiled program. Quantifying and modeling these interactions between

CHAPTER 7. COMBINED ILP AND REGISTER TILING 111

Code
Transformation

Scheduling &
Register Allocation

Choosing the optimal
unroll factors based on
o performance model

Unroll and Jam

Scalar
Promotion

DAG scheduling or
Software Pipelining

Scalar Register
Allocation

Traditional approach

Choosing the optimal
skew and tile

parameters based on a
performance model

Skew, Permute
and Tile

Software Pipelining
+

Scalar / Array Register
Allocation

I Our approach

Figure 7.1.
Outline of our approach to ILP and Register Tiling. Top row shows the traditional approach and
bottom row shows ours. The choice of code transformation technique influences the parameters
to be determined and hence the performance model.

various program transformations is crucial for finding optimal (w.r.t. total program execution

time) transformations. In this chapter we present a solution to the combined problem of choosing

the optimal parameters for the ILP exposing (loop skewing) transformation and register tiling.

The key aspects of our solution are outlined below.

• We give an analytical model that quantifies the interaction between the ILP exposing trans­

formation (loop skewing) and register tiling.

• We formulate the optimal ILP and register tiling problem as a mathematical optimization

problem. We present a globally optimal solution to this problem by reducing it to a convex

optimization problem.

• We distinguish two cases: when loop permutation can and cannot expose a parallel loop. In

the former case, we reduce the combined optimization problem to a single integer convex

optimization problem. In the later case, when skewing is required to expose ILP, we show

that the combined problem can be reduced to a set of integer convex optimization problems.

The solution to our combined problem will produce a loop nest in which the ILP and register

reuse are exposed. The scheduling and register allocation phase (cf. Figure 7.1) is an important step

CHAPTER 7. COMBINED ILP AND REGISTER TILING 112

in achieving good performance. This phase is not discussed in this chapter. It can be constructed

by adapting well studied techniques like modulo scheduling [100] and register allocation for array

variables.

In the next section we present the outline of our solution to the ILP and register tiling prob­

lem. In section 7.3, we present the program, tiling, and execution models and describe the basic

building blocks of our analytical model. In section 7.4, we formulate the mathematical optimiza­

tion problem that chooses the optimal skew and tile parameters. In section 7.5, we characterize

the condition under which a permutation can expose a parallel loop and present an efficient al­

gorithm to check this condition. In section 7.6, we characterize the space of valid skewing trans­

formations. In section 7.7, we show how the optimal TSS problem can be reduced to a convex

program and solved efficiently and in section 7.8, we present the strategy for finding the globally

optimal solution to the combined ILP and register tiling problem. In section 7.9, we present a

complete example that illustrates our solution method. In section 7.10, we present the related

work and in section 7.11, we present a discussion and future work.

7.21 Our approach to ILP and register tiling

Our approach is to use loop skewing as the ILP exposing transformation, and register tiling as the

register reuse enabling transformation and software pipelining as the ILP exploiting mechanism.

Since we are using register tiling together with loop skewing, we require that after skewing the

resulting loop nest admit rectangular tiling.

Software pipeliners look at the innermost loop1 to find ILP among operations from different

iterations of the loop. Hence, if we could transform the loop nest into one in which the inner

most loop does not carry any dependences, i.e., all of its iterations can be executed in parallel, then

the software pipeliner can find a schedule in which the performance is constrained only by the

execution resources as opposed to dependencies. When sufficient ILP exists and can be exploited, the

performance is limited only by the available execution resources - or the execution bandwidth of the

machine. Such a schedule will exploit the maximum possible ILP and have maximum utilization

of functional units.

'The two exceptions are the works of Rong et al. [110] and Ramanujam [97]. See the related work section for
details.

CHAPTER 7. COMBINED ILP AND REGISTER TILING 113

Loop bounds &
Dependence into

Number/type of
functional units &

Number of registers Execution time nraUel

Oplimai IIP and Register Tiling
Optimization Problem

No ^ ^

Skew + ^
Permute
and Tile

iterated Convex Optimization
to determine optimal skew

and tile sizes

Optimal skew
and tile sizes '

Loop transform

Can ^ v
permutation expose

a parallel loop l^n*

^ Yes

Permute
and Tile

Convex Optimi28tion
to determine optimal

tile sizes

Optimal tile
sizes

itions: Skew +• Permute and Tile

Figure 7.2.

Solution Strategy

The optimal ILP and Register Tiling optimisation problem is
Formulated with tile sizes antl skew matrix as variables and uses the
following:

1. Loop bounds and dependence information from program.

2. Number and type of functional units and registers from the target
architecture.

3. An execution time model -- a function that measures the overall
execution lime of the transformed loop nest in terms of the tile sizes
and skew matrix.

The strategy is to first check whether any permutation of the given
loop nest can expose a parallel loop If so. we permute the loop and
then tile it. If not, we first skew the loop nest to expose a parallel
loop and then permute it to the inner most position and then rile it.

In the case of skewing, we iteralively solve a set of convex
optimization problems to determine the optimal skew and tile sizes.

The optimal skew factor and the tile sizes are then used to transform
tile loop nest.

Outline of our solution strategy.

Motivated by the above discussion, we seek a transformation that would transform the given

fully permutable loop nest into one

• (CI): for which rectangular tiling is valid for any given tile sizes t = (t1,...,tn). This

validity condition reduces to non-negativity of all the components of all the dependences, under

the reasonable assumption of the tile size being larger than the dependence lengths and the

iteration space size being larger than the tile size [135].

• (C2): in which there is at least one loop which does not carry any dependences (i.e., whose

iterations are all parallel). We can always permute this loop to the inner most position, as

full permutability (of the transformed loop nest) is required by the previous condition (CI).

There are many classes of transformations that can produce a loop nest that would satisfy the

above two conditions. Loop skewing is one such class and we have chosen it for following rea­

sons: For uniform dependence loops, we can always find a skewing transformation that will pro­

duce a loop that satisfies (CI) and (C2). Second, loop skewing is conceptually simpler and easy

to construct, and this allows us to develop an efficient algorithm for finding the optimal skew

transformation parameters.

Figure 7.2 shows the outline of the steps involved in our solution methodology. Using the

performance model, we formulate an optimization problem whose solution would yield the skew

CHAPTER 7. COMBINED ILP AND REGISTER TILING 114

factor and tile sizes that are optimal with the overall execution time. We check whether permu­

tation can expose any parallel loop. If so, we permute, expose the parallelism, and then tile for

registers. In this case, the combined problem reduces to the problem of finding the optimal tile

sizes, which can be reduced to a single integer convex optimization problem. When loop permu­

tation cannot expose a parallel loop, loop skewing is required to expose the ILP. In this case, we

need to find the optimal skewing and tile sizes. We find these by solving a set of integer convex

optimization problems.

7.3 I An analytical model

In this section we develop an analytical model that quantifies the interaction between loop skew­

ing and register tiling transformations. A model, similar in spirit, is used in the context of tiling

for memory hierarchy [101] and described in Chapter 8.

7.3.1 Program and tiling model

The program class we consider is the class of fully permutable rectangular loop nests with uniform

dependence bodies. Note that this class of programs admit rectangular tiling and are also the

class for which software pipelining is often applied. We consider an w-dimensional loop nest with

constant upper and lower bounds. The loop body contains statements with uniform dependences.

Let Jz? = [Z.j,...,L„] be the given ^-dimensional loop nest, where each Z,(denotes a loop at

depth i. Any «-D vector formed by the loop counters of i£ is called an iteration vector. Let

D = [dl,. ..,dm] be a matrix whose columns are the («-D) dependence vectors.

To expose ILP we use skewing and permutation. A skewing (transformation) matrix has the

form of an upper triangular matrix with all the diagonal entries equal to 1. The non-diagonal

entries are determined by the skewing factors. We denote the skewing matrix that we seek by S.

Skewing a loop Li with respect to a loop L-, by an appropriate factor / , makes the loop Li carry

all the dependences that were originally carried by loop Z. . A permutation transformation that

permutes the i' loop with the ; loop can be represented by an identity matrix (of appropriate

size) in which the z and j t h rows are interchanged.

We consider rectangular (or orthogonal) loop tiling: tiling the loop nest with hyper-rectangles

CHAPTER 7. COMBINED ILP AND REGISTER THING 115

whose boundaries are orthogonal to the canonic axes. We assume that rectangular loop tiling is valid

for the given loop nest [136]. Note that the tiled loops are fully permutable. The tile graph is

the graph where each node represents a tile and each arc represents a dependency between tiles.

In our case, each node of the tile graph is a hyper-rectangle of size (, x t 2 X ' " X t r Note that

though our iteration space is rectangular, after skewing, we will have hyper-parallelepiped shaped

iteration space, and when we tile this with rectangular tiles, we will have some full rectangular

tiles and some partial non-rectangular tiles.

It is well known that [10] if the t^'s are large as compared to the elements of the dependency

vectors, then the dependencies between the tiles are unit vectors (or binary combinations thereof,

which can be neglected for analysis purposes without loss of generality). In general, the feasible

value of each ti is bounded from below by some constant. For the sake of notational simplicity,

in this chapter we assume that this is 1.

7.3.2 Architecture and Execution model

We use an atomic tile execution model: tiles are executed sequentially one after the other. How­

ever, the parallelism available inside the tile is exploited with software pipelining. We first present

the architectural parameters used in the execution model and then introduce the functions that

model various aspects of the execution time of the transformed loop nest.

Although we do not provide experimental validation of our execution time model, similar

models of execution time have been used by Sarkar [115] (in the IBM XL Fortran compiler) and

also by Wolf et al. [129], and they have been thoroughly validated.

Architectural parameters

We seek an abstraction of the architecture (processor and memory features) that is suitable for use

in a cost model for tiling loop programs of our program model. Our model uses the following

parameters:

• a - cost of an iteration: this is the cost of executing an instance of the loop body (in cycles per

iteration). In our case, since the innermost loop is completely parallel, a modulo scheduler

can always achieve the resource minimum initiation interval (ResMII) [100], and hence a is

CHAPTER 7. COMBINED ILP AND REGISTER TILING 116

equal to ResMII.

• /3 - the cost (in cycles) for transferring a word from lowest level cache to the registers.

• r] - loop increment and test cost: this is the cost for incrementing a loop variable and checking

its bounds.

• NR - number of registers available: depending on the loop body, NR could be either the

number of integer or floating point registers.

7.3.3 Fundamental measures

Computation volume. The computation volume, TV(t), of a tile is the amount of computation

done in a tile. The computation volume of a tile t — (t{,..., tn), is the number of integer points

in the rc-dimensional hyper-rectangle: TV(i) = I T - i ti- The tile volume, T\/(t), represents the

volume of full tiles. We approximate the volume of partial tiles with that of the full tiles, and

hence use TV(F) as the volume for all the tiles.

Load store volume. The load store volume, LS(t,D), of a tile is the total amount of data that

is loaded and stored when the tile is executed. This quantity is also known as the tile foot-print.

The dependences and data reuse patterns determine the load store volume. Our program model

restricts dependences to be uniform (constant distance). A tile is compute bound if the amount of

data accessed (input/output) during the computation of the tile is at least one dimension less than

the computation; otherwise the tile is I/O-bound. It is easy to see that with uniform dependences,

the load store volume of I/O-bound tiles is proportional to the tile volume T\/(i). The interesting

case, where tiling is really useful, is when the tile is compute bound.

For an w-dimensional compute bound tile, the input and output are 0 (x " - 1) , where, x =

max"=] tt, where tl is the tile size along dimension i. We consider the case in which the input

and output are of 0 (x" _ 1) , other cases when the input or output is smaller than 0(x" _ 1) can

be handled in a similar way using lower dimensional facets. Since our tile graph has dependence

vectors that correspond to unit vectors, the 0 (x" _ 1) input/output of a tile directly corresponds to

the (n — 1) dimensional facets of the tile, and a constant multiple of every facet contributes to the

load store volume of a tile. The constant is determined by the dependence distances. There are n

pairs of facets, and in rectangular tiling, each of these is potentially involved in a communication.

CHAPTER 7. COMBINED ILP AND REGISTER TILING 117

The volume of the ith facet, A,-, is given by YV=\ ^, tj- Now, the load store volume is LS(t,D) =

XI"-1 ai^-i, where ai is a constant that denotes distance along the i facet that is involved in the

communication and is determined by the longest z dimension component of any dependence

vector in the dependence matrix D. Based on the schedule, some facets need not be stored and

loaded again. There is at most one such facet, s ay / , and sharing of/ can be captured by excluding

it from the load store, i.e., LS(t,D) = 2 " - i +fai^i • We c a n t a ^ e c a r e °^ multiple dependences to

the same variable by considering the bounding box of the dependences to each variable and using

the diagonal of this bounding box as the columns of D.

Number of tiles. The number of tiles, HT(t,N) = -j -2-, counts the total number of

tiles after a rectangular tiling with tiles of sizes t — (tl,...,tn), of the rectangular iteration

space of size N = (Ni,...,Nn). After skewing, the iteration space may no longer be rectan­

gular and counting the number of tiles in this case is complicated. We use the quantity

(iteration space volume)/(tile volume), which is a lower bound on the actual number of tiles, as

an approximation. Since we start with a rectangular iteration space and since skewing is a volume

preserving unimodular transformation, the quantity (iteration space volume)/(tile volume) is the

same as2 NT(F,7V).

Loop overhead. The loop overhead of a loop is used to account for the cost of loop termination test and

loop variable increment. It is proportional to the number of times the loop body is executed. An

n-dimensional rectangular loop nest after one level of tiling will have In loops. We call the outer

n loops inter-tile loops and the inner n loops intra-tile loops. The i inter-tile loop is executed

precisely -j- times for each instance of the surrounding loop indices. The total overhead of the
i

n inter-tile loops , LolnterTile(f,N), is Xi"-i xi> where xi = ' '" ' . The i intra-tile loop is

executed t-v times. The overhead of the set of n intra-tile loops, LolntraTile(f,N), is ~^n_ +1J,>

where yl: = (^ x ... x tt) x Ul(t,N), where UJ(t,N) is the total number of tiles and also equal

to the number of times the n inter-tile loops surrounding the intra-tile loops will be executed.

The total (intra plus inter tile) loop overhead, LO(T,iV) = LolntraTile(r,7\T) + LolnterTile(r,iV).

Since after skewing the iteration space may not be rectangular, the rectangular tiling might leave

some partial and full tiles. Treating partial tiles as full tiles and using the approximation for
2Given that we are tiling for registers, the tile sizes are going to be very small and with small tile sizes, this approxi­

mation is better.

CHAPTER 7. COMBINED ILP AND REGISTER TILING 118

number tiles, developed above, we can approximate by L0(j,7V), the loop overhead of a skewed

rectangular loop nest tiled with rectangular tiles.

Given that the (intra and inter-tile) loops are fully permutable and the fact that a loop with

larger trip count induces lesser overhead at an outer position, one can choose a permutation that

would have the minimum loop overhead. However, a chosen ordering should leave a parallel loop

in the inner most position. In this chapter, we do not exploit this flexibility.

When we use skewing to expose ILP, the shape of the iteration space, as well as the depen­

dences change. The iteration space becomes a parallelepiped and the transformed dependences are

given by SD, where S and D are the skewing and dependence matrices, respectively.

7.41 Optimization problem formulation

We now formulate an optimization problem (7.1) that clearly captures and quantifies the interac­

tion between the skewing and the register tiling transformations. The objective function is the

sum of two terms, the loop overhead and number of tiles times the execution time for a tile, which

itself is the maximum of the tile execution time and load store time. The unknowns are the tile

sizes (i) and the skewing matrix (5).

minimize r)LO(t,N)+ NT(f,N) x max (a x TV{t), /3 x LS(f,bbox(SD)))

s.t. LS(f,bbox(SD))<NR (7.1)

N>t>\

SD>0

tezn,seznxn

where, t and S are the variables representing tile sizes and skew matrix, respectively, NT(f, N) is

the number of tiles, TV(i) is the tile volume, D is the dependence matrix, LS(t, bbox(SD)) is the

load store volume, LO(t,N) is the loop overhead, NR is the number of registers available, a,(5

and rj are respectively the cost of an iteration, load store cost, and loop bounds check cost. All

vector inequalities in the constraints are component-wise. The first constraint makes sure that the

CHAPTER 7. COMBINED IIP AND REGISTER TILING 119

register foot print LS(t , bbox(SD)) fits in the number of available registers, NR, and the second

constraint t > 1 makes sure that the tile sizes are positive and the third constraint SD > 0 ensures

that the skewed loop nest is fully permutable and hence admits a rectangular tiling.

Once we choose a skew transformation S, substituting it in the combined problem gives an

optimization problem with t as the only variable. Let D = bbox(SD). Then the resulting opti­

mization problem is shown below (7.2). We call (7.2) the optimal TSS problem (for a fixed skew).

minimize rj LO(F,N)+ NT^iV) x max (aTV(F), /? LS(F, D))

s.t. LS(f, D) < NR (7.2)

N > t> 1

feZ"

Note that, though D is shown as a parameter to the LS(t,D) function, it is here a given constant

vector, and not a variable of the optimization problem.

7.5 J Checking whether permutation can expose a parallel loop

We will first introduce some notations (used only in this section) which will make the exposition

clear and concise. For any vector x, x{j) represents its /-th component. The level of a vector

level(x) is / if Vz' < / : x(i) = 0 and x(j) ^ 0, i.e., x(j) is the first non-zero component of x.

A zero-lead column is a column vector of the form (0,0,.. . ,0, c)T for some c ^ 0. The /-th unit

vector e- is a vector with e ,(/) = 1 ande (z') = 0,Vz' ^ ; . A scaled unit vector, suv(c,/)isa vector x

of the form Vz ' ^ ; : x(z') = 0 and x(;') = c for some non-zero constant c. In other words, scv(c,/)

is an unit vector along ;' scaled by a non-zero factor c. The dimension of a scaled unit vector is

often obvious from the context. An example (of dimension 4) is suv(2,3) = (0,0,2,0). Note that

level(suv(c,;)) = ; . diag(c,,c2,...,c„) constructs a diagonal matrix with c,,...,c„ as the diagonal

entries. A loop is called parallel if it does not carry any dependences.

CHAPTER 7. COMBINED ILP AND REGISTER TILING

d^ d2 "3 «j d2 ^3 "4

D - (l ° ° \ D- f1 ° ° 3 \
^ 1 _ 1 0 2 ^ 2 _ 1 0 2 0

\ 1 1 0 / \ 1 1 0 0 /

Figure 7.3.
Example dependence matrices.

7.5.1 Existence of a loop with no carried dependences

We seek to characterize a condition under which there exists no permutation of ££ with at least

one parallel loop. In other words, in every permutation of iff, all the loops carry dependences.

We seek a characterization based on the dependences. Let us form a dependence (distance vector)

matrix D = \dx d2 ... dm] whose columns are the m dependences, d-[,d2,...,dm present in i£'s

body. The effect of loop permutation on the dependences is completely captured by permuting

the rows of D. In any permutation of if, if there is a dependence d with level(d) = / then loop

/., of the permuted loop nest, carries d.

Consider the two dependence matrices Dl and D2 given in Figure 7.3. In the matrix D] ; the

dependence vectors d2 and d3 are scaled unit vectors: d2 = suv(l,3) and d^ = suv(2,2). Now, in

this permutation, the dependences dv d2 and c?3 have levels 1,3 and 2 respectively and are carried

by the loops Li,Li and L2 respectively. However, we can see that by exchanging rows 1 and 3

of Dj we can get an innermost loop (row 3 of permuted Z)j) with no carried dependences. Now

consider matrix D2 : there exists no permutation of rows of D2 which can create a parallel loop.

What is the structure of the matrix D2 that induces this property? We seek to characterize this

structure in the following discussion leading to Theorem 1.

In any given permutation of the loops, all the n loops will carry dependences if and only if

there are (at least) n dependence vectors with levels 1,2,..., n. If we have dependence vectors of

all levels (1,2,.. . ,«) in every permutation of the loops in i£', then we can say that there is no

permutation that 'will expose a parallel loop.

Theorem 1: Every permutation of the rows of D will contain n columns with levels 1,2,...,n

if and only if D contains a n x n sub matrix whose columns can be permuted to form a diagonal

matrix, say diag(cj,c2,. ..,c„), where cx,...,cn are the scale factors of the n scaled unit vectors.

Proof: (==>) Assume that every permutation of the rows of D will contain n columns with

CHAPTER 7. COMBINED ILP AND REGISTER TILING 121

levels 1,2,...,«. Let x1,...,xn be these n columns with levels \,2,...,n respectively. Given that

we have exactly n vectors each having a different level, they all have to be linearly independent. If

we show that these n columns are scaled unit vectors, then we can always permute these columns

to form a n x n diagonal sub matrix of D. To show that xx,...xn are scaled unit vectors we will

use proof by contradiction. Let us assume that they are (all) not scaled unit vectors. Note that the

vector xn with level n has to be a scaled unit vector. Let the n — \ columns each have one more

non-zero entry below their first non-zero entry. Without loss of generality we can assume that

this entry is the next immediate entry. Then the matrix looks the matrix M given below.

/

M-.

\

v2,2

V

/

M' =

*•«,«—1 Xn,n J

\

^n,n-\ *-n,n

\ - l n , n - l J
Now we can interchange the last two rows of M to get M' in which there is no dependence of level

n and hence loop /„ does not carry any dependence. But this is a contradiction to our assumption

that every permutation of the rows of D contains n columns with all the levels. Hence the proof.

m

Proof: (<=) Now we assume that D contains anxn sub matrix whose columns can be permuted

to form a diagonal matrix say diag(c1,c2,...,cn). Let C be this n x n sub matrix of D whose

columns can be permuted to form diag(cj,..., cn). We need to show that every permutation of D

will contain n column with levels 1,2,...,«. It is obvious that after any set of row permutations

of a diagonal matrix there exists a set of column permutations that will bring it back to diagonal

matrix form. Hence, after any set of permutations of C we can column permute C to make it

a diagonal matrix. This diagonal matrix form makes it obvious that the n columns have levels

1,. . . , n respectively. Hence the proof. [5]

Let us look at the two dependence matrices Dx and D2 (c.f. Figure 7.3), again, but in the light

of Theorem 1. We can see that by exchanging rows 1 and 3 of D^ we can get an inner most loop

(row 3 of permuted D J with no carried dependences. There exists no permutations of rows of D2

CHAPTER 7. COMBINED ILP AND REGISTER THING 122

Algorithm 3 Algorithm to check whether the input loop nest has any parallel loop.

1. Input: Dependence matrix D. Output: boolean value indicating whether the input loop
nest has any parallel loop or not.

2. Pick all the columns of D which are scaled unit vectors. This can be done in 0(nm), where,
n is the number of rows of D and m, the number of columns. There can be at most m such
columns.

3. As we pick the columns in the previous step we can note their levels. Check whether
there are n columns each of which is a scaled unit vector for a distinct / , i.e., suv(c,/') for
/ = 1.. . n. This can also be done in time 0(n m). If there are such n columns return a true;
return a false otherwise.

which can create a loop with no carried dependences. One can observe that the columns d4,d3,

and d2 are scaled unit vectors: suv(3,1), suv(2,2) and suv(l,3) respectively. Further, note that the

3 x 3 sub matrix formed by the columns d4, d^, and dx is a diagonal matrix: diag(3,2,1). One can

verify Theorem 1 on these examples.

Theorem 1 gives us an efficient way to check whether there exists at least one loop no carried

dependences - we only need to check whether the dependence matrix D contains n x n sub

matrix whose columns can be permuted to form a diagonal matrix diag(cj,...,c„). This can be

done in time linear in the size of the dependence matrix D. The outline of the algorithm is given

in Algorithm 3.

7.6 \ Space of valid skewing transformations

When loop permutations alone cannot expose a parallel loop, we need to skew the loop nest. We

make two observations regarding the skew matrix S that we seek in the combined optimization

problem (7.1). These observations narrow down the search space of S.

• Only positive skews produce loops that admit rectangular tiling. We have two con­

straints: D > 0 (since our input loop nest admits rectangular tiling) and SD > 0 (since

we require the skewed loop nest to admit rectangular tiling). From Theorem 1, we know

that, if the input loop nest does not have any parallel loop, then the dependence matrix D

has znxn sub matrix whose columns are scaled unit vectors and which can be permuted

to form a diagonal matrix, say M = diag(c1,-- ,cn). Without loss of generality we can as-

CHAPTER 7. COMBINED ILP AND REGISTER TILING 123

sume that that these n columns c-l,c2,..-,cn have levels 1,2,...,n respectively. At least two

of these columns should be made to have the same levels, only then we will have a loop

with no carried dependences. Let us view the matrix D as a partitioned as [M N], where

M = diag(cj,..., cn) is the n x n diagonal sub matrix and 7V is the sub matrix that contains

rest of the columns of D. We claim that negative skew factors will lead to an invalid trans­

formation by creating negative entries in the sub-matrix M. To see why, let us see what

happens when we skew loop L^ with respect to a loop Z. • with a negative skew factor —/

(cf. Section 7.3.1 for notation). Such a skew would add to the z'-th row of M, the ;-th row

multiplied by (—/)• The new z-th row would have —/ x c • in its ;-th entry. This negative

entry is not permitted since we require that all the entries of the transformed matrix (SD)

be non-negative. Hence, only positive skew factors are valid, since a zero skew factor is just

an identity transformation.

• Skewing any one loop with respect to just one other loop is sufficient and optimal.

We seek to transform the loop nest so that in the transformed loop nest there is one loop

that carries no dependences, i.e., parallel. Given that the input loop nest is fully permutable,

after skewing, we can permute this parallel loop to the inner most position to get our desired

loop nest. To make any one loop, say Z,;, parallel, it is sufficient to skew some other loop,

say L:, with respect to Lv. Also, given that (positive) skewing increases the length of the

(positive) dependences, skewing with respect to more than one loop will always produce

longer (when compared to skewing w.r.t. to just one loop) dependences. And, the longer

the dependences, the larger the bounding box and hence, the greater the load store volume,

LS(f, bbox(SD)). So, skewing with respect to just one other loop is also optimal. By a similar

argument, skewing by a factor larger than 1 to parallelize the loop only increases the load

store cost and is sub-optimal.

Based on the two observations made above, we seek to find positive skews of one loop 'with respect

to just one other loop. The number of choices for such skews is d x (d — 1) where, d is the depth

of the loop nest we consider. This gives a list of d(d — 1) potentially optimal skews. For example,

for a loop nest with depth 2 or 3 we will have 2 or 6 choices of skews, respectively.

CHAPTER 7. COMBINED ILP AND REGISTER TILING 124

7.7 Solving the optimal TSS problem

The optimal TSS problem can be cast as a Geometric Program (GP) [42]. The concepts of GPs and

IGPs introduced in Chapter 5.2 are used here. We show how the problem (7.2) of finding optimal

tile sizes can be cast as an Integer Geometric Program(lGP).

7.7.1 Optimal TSS problem is an IGP

The optimal TSS problem (7.2) seeks to choose tile sizes that minimize some criteria and satisfy

some constraints. The key insight is that the variables of this optimization problem, tile sizes, are

always positive. So, polynomial kind of functions of tile sizes naturally become posynomials,

when the coefficients are non-negative.

Theorem 3 . The optimal TSS problem (7.2) (for finding the optimal tile sizes given the optimal

skewing matrix) is an IGP.

Proof. From the definition of the fundamental measures

NT(F,A0,LO(f,7V),TV(f), andLS(r ,bbox(5D)) (c.f. Section 8.2.2) one can directly observe

that they are all posynomials, since all the coefficients are non-negative, the variables (tile sizes)

are always positive, and posynomials are closed under addition. The objective function itself is a

sum of posynomials except for the max() function. However, by introducing additional variables

the max() function can be completely eliminated. A proof of this can be found in [101]. N o w

coming to the constraints, LS(r ,D) < NR can be transformed into a constraint of the required

form by dividing the LHS by NR and expressing the resulting inequality as LS(t,D)/NR < 1. The

rest of the constraints are already in the required form. Hence, the optimal TSS problem (7.2)

can be cast as an IGP. Is)

7.81 Solving the combined ILP and register tiling problem

Recall that, according to our strategy (c.f. Figure 7.2), we need skewing only when the input

loop nest does not contain any parallel loop that can be exposed by permutation. Hence, first we

check (using Algorithm 3 discussed in Section 7.5) whether the input loop nest has any parallel

loop that can be exposed by permutation. If it does, then just permuting the loop to the inner

CHAPTER 7. COMBINED ILP AND REGISTER TILING 125

1
2
3

for (il = 1;
for (i2

A[i2]

il < Nl ; il++)
= 1; i2 < N2; i2++)

= A[i2-1] + A[i2];

Figure 7.4.
Original loop nest. No permutation can expose the parallelism.

most position will achieve our goal. This permutation is always valid, since our input loop nest is

fully permutable (since rectangular tiling is valid for it). In this case, we just permute the loop and

do not skew (i.e., the skew matrix S becomes the identity matrix). Then the combined problem

(7.1) reduces to the optimization problem for finding the optimal tile sizes (for the permuted loop

nest), i.e., the optimal TSS problem (c.f. problem (7.2)) with S = /(the identity matrix) and hence

D = bbox(D). This problem can now be directly solved as shown in Section 7.7. Note that when

a permutation alone is sufficient, it is globally optimal too, because skewing will always only

increase the load store cost and hence the execution time.

When permutation cannot expose a parallel loop, we need skewing to expose ILP. In this case,

as shown in Section 7.6, we have did — 1) choices for the skewing matrix (where d is the depth of

the loop nest). We construct d(d — 1) optimal TSS problems (with fixed skewing matrices), one

for each choice of the skewing matrix. The optimal skew and tile sizes are obtained by solving

these d(d — 1) optimal TSS problems (7.2) and picking the one that has the smallest objective

function value (i.e., the minimum execution time).

7.91 A complete example

Consider the loop nest shown in Figure 7.4. There exists no permutation of the loops that can

expose the parallelism to a software pipeliner and one can verify Theorem 1 on the dependence

matrix D = of this loop nest. However, the loop has lots of parallelism that can be

v ° v .
exposed to a software pipeliner by skewing. We have d(d — 1) = 2 choices for skewing the loops,

viz., skewing i l w.r.t to i 2 or vice-versa. But, due the symmetric nature of the dependences

in D, both the skewing will have the same effect on the bounding box. Let us consider the

case, when we skew loop i 2 with respect to the other i 1 and then permute them to make the

i l loop the inner most. Now all the dependences are carried by the outer loop (i2) and the

CHAPTER 7. COMBINED ILP AND REGISTER TILING 126

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

f o r (x l
f o r (

}

)
)

= 0; x l < (N2+N1-1) / T l ; x l++) (
x2 = m a x ((- N 2 + T l * x l) / T 2 , 0) ; x2 < m i n ((T l * x l + T 2) / T 2 , (N l - 1) / T 2) ; x2 + +) {
f o r (i l = m a x (T l * x l + l , T 2 * x 2 + 2) ; i l < m i n < T 2 * x 2 + N 2 + T 2 , T l * x l + T l , N 1 + N 2) ; i l + +) (

/ / On the tile boundary use the saved value
12 = m a x (T 2 * x 2 + l , i l - N 2) ;
A [i 2] = B [i l] + A [i 2] ;
f o r (i 2 = max(T2*x2 + l , i l - N 2) + 1 ; i 2 < m i n (T 2 * x 2 + T 2 , N l , i l - 1) - 1; i 2 + +) {

A [i 2] = A [i 2 - 1] + A [i 2] ;

/ / On the tile boundary save the value in B
i 2 = m i n 3 (T 2 * x 2 + T 2 , N l , i l - 1) ;
B [i l] - A [i 2 - 1] + A [i 2] ;
A [i l] = B [i l] ;

Figure 7.5.
Skewed, permuted, and tiled loop nest. All the iterations of the innermost loop (i2) can be
executed in parallel.

inner loop (i l) is completely parallel. A software pipeliner can exploit all this parallelism to

construct a schedule which is constrained only the available execution resources (and not by the

dependence constraints). We can further tile this skewed-permuted loop nest to enable register

reuse. Figure 7.5 shows the skewed, permuted and tiled loop nest, with tiles sizes Tl and T2 .

To determine the optimal tile sizes, we instantiate the combined optimization problem (7.1)

with the optimal skew (and permute) matrix S =
0 1

, resulting in an optimal TSS prob-

\
lem, which can solved as discussed in Section 7.7. Now, D = bbox(SD) =

the optimal TSS problem we get the following problem (7.3):

. Instantiating

/

minimize -j-^ x max (or x r, x t2, /? x (tx +12)) +rj (NlxN2 + - ^ + - ^ _ * + -^J

s.t. t, + J 2<NR (7.3)

t>\

fez

Where, a is the cost per iteration and is equal to the / / (initiation interval), J3 is the cost of moving

a data item from the lowest level cache to the register and rj is the cost of a loop bound check. NR

is the number of (floating point) registers in the architecture.

CHAPTER 7. COMBINED ILP AND REGISTER TILING 127

7.10\ Related work

Unroll and jam approach. Sarkar [115] addresses the same problem as ours and uses unroll and

jam followed by scalar replacement [25] for exposing ILP and register reuse. He formulates the

problem as a discrete optimization problem with unroll factors as the variables and proposes an

exhaustive search with heuristics to solve it. Our formulation seeks both skew matrix and tile sizes

and is solved to global optimality via convex programming. The class of programs considered by

Sarkar, loops with affine dependences, is larger than what is considered by ours, loop nests with

uniform dependences. However for uniform dependence loop nests, by setting the skew matrix

to identity, viewing the tile sizes as unroll factors, and adding the code size constraint, our method

can be directly used to solve the problem addressed by Sarkar. In this sense, for this class of loop

nests, the problem of solving for optimal unroll factors is a special case of our problem.

Carr and Kennedy [27] proposes an algorithm to determine the unroll factors that balance

the floating-point and memory access operations. This objective function is different from ours,

as well as Sarkar's, viz., minimizing the execution time.

Hierarchical tiling. The work of Carter et al. [31], and followed up by Mitchell et al. [85],

uses tiling to expose the register reuse as well as ILP. They propose hierarchical tiling as a hand

tuning technique to better exploit pipelined functional units and registers. Our work is similar

to Carter et al.'s work in spirit, however, we have proposed a completely automatic method to

determine the tile sizes and skew factors.

Code generation for register tiling. Jiminez et al. [64] propose a code generation strategy

for non-rectangular loop nests tiled for registers. Their strategy uses index set splitting to strip

off the partial boundary tiles and the full tiles are completely unrolled. Hence, they assume

that unroll and jam followed by scalar promotion is used for exposing ILP and register reuse.

Sarkar [115] also proposes a code generation algorithm which takes the unroll factors as input

and produces an unrolled loop nest.

Software pipelining of loop nests. Traditionally software pipeliners have only looked at in­

ner most loop nests. Ramanujam [97] proposed a technique where an integer linear programming

formulation is used to find a (software) pipelined schedule that exploits the parallelism available in

the whole loop nests. However, he did not consider resource constraints. Rong et al. [112] have

CHAPTER 7. COMBINED ILP AND REGISTER TILING 128

recently proposed a technique called single dimension software pipelining for multi-dimensional

loops. Their technique computes the initiation interval and (cache) locality of every loop in the

given loop nest and picks the best. They do not consider any ILP exposing transformations, like

permutation or skewing, and hence, are limited in how ILP can be exploited. Whereas our ap­

proach, by the virtue of looking at skewing and permutation, will always be able to expose the

available ILP. Rong et al. also propose a method for code generation [111] and recently have ad­

dressed the register allocation issue [110]. A similar problem in the context of ILP and caches has

been addressed by Wolf et al. [128].

7.1l\ Discussion and future work

We have formulated the combined problem of choosing an ILP-exposing (skewing) transforma­

tion and register tiling. We have proposed an efficient way to check whether permutation can

expose any parallel loops. We have distinguished two cases: when loop permutation can expose

a parallel loop and when it cannot. For the former case, we have reduced the combined problem

to an IGP and for the latter case we have reduced to the combined problem to a small set of IGPs.

All these can be solved efficiently using the methods / tools discussed in 5.2.3.

The formulation of the combined problem exposes the fact that the skewing transformation

affects the dependences and which in turn affects the overall execution time of transformed loop

nest. We see this formulation, and analysis of it, as a first step in understanding the structure of

this important complex problem. To the best of our knowledge, this is the first formulation and

globally optimal solution of this combined problem.

Two immediate steps are (i) adapting modulo scheduling techniques [100, 5] to schedule the

transformed loop nest and (ii) developing array register allocation techniques to map all the array

value4s access in a tile to registers. Note that, the modulo scheduler is guaranteed to find the

inner most loop nest parallel. Hence, we do not need any dependence analysis to determine the

achievable initiation interval and it is constrained only the available resources. Also, from the

constraints of the optimal TSS problem, we are guaranteed to have enough registers. Future work

would involve extending the input program class to include iteration spaces with parallelepiped

shapes. Another direction is to permit non-uniform, say affine, dependences in the loop body.

CHAPTER 8

A Multi-level Data Locality Tiling Model

a PTIMAL tile size selection is a classic problem in compilation of loop kernels. Design­

ing a model of the overall execution time of a tiled loop nest is an important sub problem. On

comparison to single-level of tiling, both the problems become harder when tiling is applied at

multiple-levels. Due to the complexity of modern architectures and the variations in code gener­

ation / optimizations performed by different compilers, modeling the overall execution time of

a tiled loop nest is difficult. In this chapter we explore the possibility of deriving an approximate

high level execution time model of the tiled loop nest. Our hypothesis is that for the purpose of

selecting tile sizes, an high level model is sufficient. This hypothesis has been shown to be true

in the context of TSS for parallelism [11, 12, 10, 103]. We seek to explore it in the context of

tiling for memory hierarchies. We propose one such high-level model for determining the opti­

mal tile sizes for a fully permutable, perfectly nested, rectangular loop with uniform dependences.

We show that the optimal TSS problem, formulated using our model, can be cast as an IGP and

solved efficiently. We provide preliminary validation of the model on a small set of loop kernels

executed on a simulator. This work was presented in [101].

129

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 130

8.1 Optimal multi-level tiling

Achieving high performance on modern processors requires efficient utilization of the memory

hierarchy. Program transformations like tiling [135, 136] try to match the characteristics of a

memory hierarchy to the size and order of the data accesses. Multiple levels of tiling [30, 85]

are required to match the multiple levels of memory. Determining the optimal size of the tile

— one that minimizes the execution time subject to memory characteristics — is a fundamental

problem. A model of the overall execution time of a tiled loop nest is an important sub problem.

The non-linearity of the functions that describe fundamental properties of a tile, like computa­

tion/communication volume, memory footprint, access characteristics, etc., make the problem

very hard.

Given a loop nest, the multi-level tiling problem involves the determination of the optimal tile

sizes at each level. Usually the optimality is defined based on some cost function which models

some aspect of the program execution, for example, number of cache misses, total CPU idle time,

etc. Applying tiling at multiple levels with an independent goal or cost function at each level may

lead to globally sub-optimal performance [85], since tiling choices from different levels interact

with each other. A global metric, like overall execution time, that accounts for interactions from

different levels should be used. To use such a global metric, we need a high level analytical model

of the overall execution time of the tiled loop nest. Using such an high level model the optimal

TSS problem can be formulated as a numerical optimization problem.

We present A high level analytical cost model, similar in spirit to Valiant's BSP model [123]

(for parallel programs), for estimating the overall execution time of multi-tiled perfectly nested

rectangular loops with uniform dependences. We also discuss how our cost model can be ex­

tended to include different processor/memory features and compiler optimizations. We present

experimental results that validate our model. We present a formulation of the multi-level optimal

TSS problem as an IGP. Our formulation permits an arbitrary number of loops to be tiled and

also arbitrary levels of tiling: m-levels of tiling of an n-depth loop.

In the next section we present our high level analytical cost model. In Section 3, we formulate

the single-level optimal TSS problem and in Section 4 we extend it to multiple levels of tiling. In

Section 5, we describe the Geometric Programming framework and show how the optimal multi-

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 131

level tiling problem can be cast as a geometric program. In Section 6, we show the generality of

our framework and the extensibility of our cost model. In Section 7, we describe the experimental

setup used for the validation of our cost model and then present the results. We describe related

work in Section 8 and then conclude in Section 9 with some pointers to future work.

8.21 A high level analytical cost model

In this section we develop a cost model for the total execution time of a tiled loop nest. First we

discuss some fundamental measures that can be directly derived from the program. These are the

computation and communication volume of a given tile and the loop overhead of a tiled program.

The processor architecture dependent parameters, which we call architectural parameters, are de­

scribed next. Then we show how the total execution time can be calculated using the fundamental

measures and the architectural parameters. The concepts discussed in this section and the next are

in the context of single-level tiling. Extensions of these concepts to multi-level tiling are discussed

in Section 8.4.

8.2.1 Program and Tiling Model

We consider an w-dimensional loop nest with constant upper and lower bounds. The loop body

contains statements with uniform dependences. Figure (8.1, left) shows our program model. Fur­

ther, we consider a compute bound loop nest - loop nests in which the amount of computation

done is at least an order greater than the amount of memory operations. We consider (rectangular

or) orthogonal loop tiling: tiling the loop nest with hyper-rectangles whose boundaries are orthog­

onal to the canonic axes — as are the iteration space boundaries. We assume that orthogonal loop

tiling is valid for the given loop nest [136]. Figure (8.1, right) shows the 2rc-dimensional tiled

loop nest. Note that the tiled loops are fully permutable. For example, we can permute the 2n

loops such that the n and the (n + \)5t loops together correspond to a single loop in the original

program. In such a case, we fuse them together.

Let us consider the rectangular iteration space given in Figure (8.1, left) and a tiling of this

with rectangular tiles as shown in Figure (8.1, right). The tile graph is the graph where each node

represents a tile and each arc represents a dependency between tiles. In our case each node of the

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 132

for i'i, = 0 to -!• — 1
1 ' i

for ii-, = 0 to — — 1

for n„ = 0 to — — 1

for j , = (u'(x £[)+ 1 to (/'/, + 1) x t,

for i2 — (ii2 x t2) + 1 to (zi2 + 1) x £2

for in = (un x t j + l to (iin + 1) x £n

^,[i"]=/(^[»:*+f1]."-A[»:*+<k])
Figure S.1. ~
Program model (left): An w-dimensional rectangular loop nest. Tiling model (right): Rectangular
tiling of the n -dimensional loop nest

tile graph is an hyper-rectangle of size tx x t2 x • • • x tn and the tile graph itself is an hyper-rectangle

of size nx x n2 x .. . x nn, where «• = -*-. It is well known that [10, 136] if the t-'s are large as

compared to the elements of the dependency vectors, then the dependencies between the tiles

are unit vectors (or binary combinations thereof, which can be neglected for analysis purposes

without loss of generality). In general, this implies that the feasible value of each tt is bounded

from below by some constant. For the sake of notational simplicity, in this work we assume that

this is 1.

8.2.2 Fundamental measures

The computation volume, Q(t), of a tile is the amount of computation done in a given tile. The

computation volume of a tile t of size tx x t2 x • • • x tn , is the volume of the n-dimensional

hyper-rectangle. Q(t) — 0 " = i
 li where ti is the tile size along the z'-th dimension.

The communication volume of a tile, denoted by A(t), is the total amount of data that is input

to and output from the tile. For an w-dimensional compute bound tile, the input and output

are 0 (r " - 1) , where, t — max"=] tr We consider the case in which the input and output are of

0(t"~}), other cases when the input or output is smaller than 0(tn~x) can be handled in a similar

way. Since our tile graph has dependence vectors that correspond to unit vectors, the 0{t"~x)

input/output of a tile directly correspond to the (n — 1) dimensional facets of the tile, and a

constant multiple of every facet contributes to the communication volume of a tile. The constant

for t, = 1 to TV,

for i2 = 1 to N2

for in — 1 to Nn

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 133

is determined by the dependence distances. There are n pairs of facets, and in the rectangular

tiling, each of these n facets is involved in a communication. If Aj denotes the volume of the

il facet, then we have A(t) = ^" a^A;, where A; = Yi"-\ •+• tj' an<^ ai ls a constant that

denotes distance along the i facet that is involved in the communication and is determined by

the longest i dimension component of any dependence vector. Let 3?{t) denote the memory

foot-print of a tile. In our model we have &{t) — A(t).

The values produced on the iterations at the tile boundaries need to be saved and later used

when the corresponding neighboring tile is executed. The storage required for this save and later

use can be (and in our model is) accounted in A(t) since it is of the same order. However, the

address computation cost related to access of these values stored in array variables could be of the

order of any face of the tile, and hence can be expressed as a weighted combination of the faces

of a tile. These faces can be of any dimension from n — 1 to 1. Let this weighted combination of

faces be denoted by <p(t), and we have <fi(t) =]£]•—i Pi^i' where F is total number of faces of all

dimensions n — 1 to 1, and pt is a non-negative scalar and <f>^ is a face. Note that p-% can be directly

determined from the statements of the tiled loop nest that load-and-store the boundary values.

The Loop overhead of a loop is used to account for the cost of loop termination test and loop

variable increment. It is of the order of the number of times the loop body is executed. An

ra-dimensional loop nest after one level of tiling will have In loops. For ease of notation, we

consider the first 1,. . . , n loops (which we call the inter-tile loops) and the n + 1, . . . , In (intra-tile)

loops separately. The z inter-tile loop, z — 1... w, is executed precisely —*• times for each instance
i

of the surrounding loop indices. The total overhead of the set of n inter-tile loops, denoted by

A, is A = Xi"=1
 xn where xl = t '*"'* f ' • The ith intra-tile loop, i = n + 1.. .In, is executed ti

times. The overhead of the set of n intra-tile loops, denoted by A(t), is A(t) = ^ 2 " y-t, where

y, = h x . . . x t , .

8.2.3 Architectural parameters

We seek an abstraction of the architecture (processor and memory features) that is suitable for use

in a cost model for tiling loop programs of our program model (Figure 8.1). We have identified

the following parameters:

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 134

• a - cost of an iteration: this is the cost (in cycles) of executing an instance of the loop body.

• j3 - bulk transfer rate: this is the cost (in cycles) for transferring a word of data between

memory subsystems. We may have a family of j3's one for each level of the memory hier­

archy.

• rj- loop increment and test cost: this is the cost for incrementing a loop variable and checking

its bounds.

• p = (pl,...,pF) - boundary values load-store cost: the saving and loading of values at the

tile boundaries involves access to array variables that hold these values. Each such access

involves address computation and p represents the /-dimensional vector of this address

computation costs, where F is the total number of faces of a tile of dimension n — 1 to 1.

The number of such accesses can be represented by the faces of the tile (see (p(t)'m Section

8.2.2).

• Sf (*)- size (capacity) of cache at level k: The capacity (in bytes) of the cache at the level k.

8.2.4 An analytical cost model

During the actual execution of a tiled loop nest many factors like ILP, reuse, cache hits/misses, etc.

affect the running time. However, our model abstracts away from all these low level details and

takes an high level view of the execution. In our model, the execution time of a tile is calculated

as the sum of the time spent in computation, time spent in communication (data transfer) and the

load-store cost of the intermediate values. The execution time of a tiled loop nest is the sum of

the execution time for each tile times number of tiles and the loop overhead. Let S^yase{t) be the

total execution time of the tiled loop nest, then we have

?haJt) = ,¥(ae(t) + {3A(t) + c{,(t) + r,A(t))+rlA(t) (8.1)

where, jY is the total number of tiles, a is the cost of executing an iteration, j3 is the bulk transfer

rate, <p{t), the cost of saving and using boundary iterations, is computed using p, and r) is the cost

of one loop increment and loop termination test. The model for execution time requires that the

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 135

total amount of data accessed by a tile should fit into the cache. This can be stated as &(t) < ^,

where 3>(t) is the memory footprint (c.f., Section 8.2.2) of a tile and *€ is the cache capacity.

8.3 I Optimal TSS problem formulation

Using the fundamental measures, architectural parameters and cost model discussed in the previ­

ous sections, we formulate the single level tiling problem.

8.3.1 Single-level optimal TSS problem formulation

For a single level of tiling, the problem of choosing the tile sizes t-0 i = 1,... n can be formulated

as an optimization problem as follows. The objective function fP'(t), is the total execution time

and we want to minimize it subject to the following constraints: the memory footprint of the tile,

J^(t), fits in the cache and the tile sizes (f,-'s) are positive. The generic problem is

minimize 3~{t) (8.2)

subject to &{t)<l£

ti > 0 Vz = 1. . . n

tt£Z Vz' = l . . . «

where, ^€ is the cache capacity.1 The choice of the exact function that describes 3~{t) de­

pends on the combination of processor features and compiler optimizations we want to model.

For instance, one can choose ^yase{t) (Eqn. 8.1) or any of the extended cost functions

^oi_nbXl\ ^hw prefetch^ o r ^hi_oPM (discussed in Section 8.6.1) and use in the place of 2T{t)

in (8.2) to obtain a concrete problem.

8.4 J Multi-level optimal TSS problem formulation

Let us consider m levels of tiling of an ^-dimensional loop nest. In the tiled program there are

(m + 1) x n loops. Let ?fv' denote the execution time of the ^-dimensional loop nest tiled j

' We can easily include a constraint like tt > dt where d% is the maximum of the projections of the dependence
vectors along the i'h dimension. However for sake of notational simplicity we stick to ti > 1.

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 136

levels, i.e., the execution time of the innermost (/ +l)x n loops. We can define 3?"' recursively

as follows:

iorj=2,...m: 3TU) = ^) (^ " 1) + /? (/)A(rW)) + ^)

5"(1) = Iyr (1)(^0(f (1)) + /? (1) A(r«)+^(J (1)) + ^^(t(1))) + 7?A(1)

where,

• for; = l , . . . , m : ^ 0) =
t ' *""xt- , with t{m+X) =Nh for i = l , . . . , » .

tj" x - x r ' ' '

. for ; = 1,...,™ : A(tO")) = ^ ^ A , ^)) , with A , (^) = UU^f, for i =

\,...,n.

. for; = l , . . . , m : A O) = ^ = i n U f V ' w i t h f ! m + 1) = ^ ' f o r / = 1 '---'"-

• for / = 1,.. . , m : j3^' is the bulk transfer rate for moving a byte of data from a memory at

level; + 1 into a memory at level ; .

• for j = 1,.. . , m : rft) = rj, since the loop variable increment and termination check cost is

the same for every loop at every level.

• The quantities related to the cost of execution of actual statements are relevant only at the

inner most level of tiling and hence contribute to the execution time of the inner most

level ET^'. These quantities are: aQ(t^) - the computation cost at level 1 and <p(t^>)

- the load-store cost at level 1. Also note that the (inner-most) intra-tile loop overhead

/l(f) contributes only to the execution time of the inner-most level. Hence, the quan­

tities a,Q(t(>), (jj{v '), and A(t">) are confined to the inner most level and are defined as in

the single level tiling case (c.f. Section 8.2.2).

We formulate the multi-level tiling problem using a generic 3F(t(m>), which is a function of all

the fundamental measures and architectural parameters at the level m. Based on the combination

of processor features and compiler optimizations chosen, we can substitute the corresponding

5?(t(m') to get a concrete optimization problem. Let us consider m levels of tiling of an rc-depth

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 137

loop nest, we have the following optimization problem mrnxn variables:

min. ^ (£ (m)) (8.3)

subject to &(t(i')) < 'tfW for; =\...m

0 < t('] < t{,+l) fori = l...n,j = l...m
i — i '

t^ e Z for i = 1... n, j — 1.. . m

Consider the problem of tiling for m > 1, levels of tiling. The optimization problem is not

separable, i.e., it cannot be solved one level at a time, since the tile variables t at a level (j + 1)

influences J/~^\A^', and upper bounds of t. . Further, ^~x> becomes the computation time

of a tile at the next level. Hence, a globally optimal solution would require solving the whole

optimization problem.

8.4.1 Illustration: Two-level tiling of a doubly nested loop

To illustrate the multi-level tiling formulation, we present the concrete optimization problem for

the base cost model &base(t)) used for a loop nest of depth two (n — 2) tiled twice (m = 2). We

start from the inner most level of tiling (/ = 1) and move to the outer level (/ = 2). For the inner

most level we have

?W = ̂ \Q(t^)aW + A(t^)j3^ + <P(t^) + rjA(t^)) + A%

where, Q(tW) = rj'> x £>, A(tW) = a^t^+a^t^, \W = V t t . <K*{1)) = 'W + tiW

X{t^) — £(1) + £(1) x r(2), jY^ — ' * * ftW is the bulk transfer rate between memory levels 1
tj 'xv2'

and 2, and px, p2 are the cost of the load-store statements executed ij and tl times respectively.

The memory footprint at this level is ^(t^) = A (t ^) . For the next, outer level, ;' = 2, we have,

where, A(t^) = afh^+afh®, A « = ^ + ^ % , jW = - $ % and /3<2> is the bulk transfer
ti ti xt2 tt xt2

rate between memory levels 2 and 3. Note that, fj = Nl and t^ =N2 since we are tiling a doubly

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 138

nested loop of size A^ xiV2. The memory footprint at this level is

Now, the optimization problem that selects the optimal tile sizes tj , t^ , tj , and £2 is

mm.

subject to &(tW) < <g®

0 < tf] < Nx

0 < tf) < 7V2

0 < *<»> <tf

0<^<rf

8.5 \ Optimal TSS Problem is an IGP

The optimal TSS problem can be cast as a Geometric Program (GP) [42]. The concepts of GPs and

IGPs introduced in Chapter 5.2 are used here. We show how the problem of finding optimal tile

sizes can be cast as an Integer Geometric Program(lGP).

The optimal TSS problem seeks to choose tile sizes that minimize some criteria and satisfy-

some constraints. The key insight is that the variables of this optimization problem, tile sizes, are

always positive. So, polynomial kind of functions of tile sizes naturally become posynomials,

when the coefficients are non-negative. We first show that the smgle-level optimal TSS problem is

an IGP, and use the properties of posynomials and GPs to show that the multi-level tiling problem

is also an IGP.

Lemma 8.5.1. The fundamental measures Q(t), A(t), A'(t) and A(t) are posynomials

Proof. From the definition of these measures (c.f. Section 8.2.2) one can directly observe that they

are all posynomials, since all the coefficients are non-negative, the variables (tile sizes) are always

positive, and posynomials are closed under addition. D

Theorem 8.5.2. The single level tiling problem (8.2) is an IGP for all posynomial objective functions.

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 139

Proof. We need to show that all the constraints in (8.2) can be cast as posynomial inequality

constraints or monomial equality constraints as in (5.1). The positivity and integrality constraints

on tl naturally maps into the constraints of GP. The capacity constraint, 3F{t) < *€ can also

be easily cast as a posynomial inequality constraint by the following rewrite &(t) < *& <=>•

^ _ 1 (A (t)) < 1, which is a posynomial, since A(j) is a posynomial (from Lemma 8.5.1) and ^ is

a constant. Hence, whenever the objective function is (also) a posynomial, the whole problem is

an IGP. •

From Lemma 8.5.1 and Theorem 8.5.2, we can observe the cost function 3~yase(t) introduced

in Section 8.2.4 (Eqn. (8.1)), is a posynomial and using it as SF{t) in the single-level optimal TSS

formulation (c.f. Eqn. (8.2)) will yield an IGP.

Theorem 8.5.3. The multi-level optimal TSS problem (8.3) is an IGP for all posynomial objective

functions.

Proof. The proof follows directly from the proof for the single-level case (Theorem 8.5.2) since,

we have just added some more constraints that are all similar in form to the ones in (8.2). Hence,

whenever the objective function is a posynomial we have an IGP, and we can solve for the tile

sizes directly. •

From Lemma 8.5.1, we can observe that ^yase{t) (c.f. Section 8.2.4, Equation (8.1)) is a posyn­

omial. Repeated composition of ^yase(t) with other posynomials through addition at multiple

levels would yield a posynomial since posynomials are closed under addition. Hence, from Theo­

rem 8.5.3, we can observe that using 3"yase{t) repeatedly at m levels to construct a cf^ will yield

a posynomial $'('"') which can be used in the multi-level optimal TSS formulation (c.f. Eqn. (8.3))

to get an IGP.

8.61 Generality and extensions

At a first look our model might seem simple, however it is general and can be easily extended.

In this section, first we show how our analytical cost model can be extended to include various

architectural features and compiler optimizations. Then we show the generality of the GP based

framework in accommodating other cost models and functions.

CHAPTER 8. A MULTI-LEVEL DA TA LOCALITY TILING MODEL 140

P R O C E S S O R F E A T U R E

Non-blocking cache and out-of-order issue

Critical word first

Priority to read misses and merging wnte-buffers

Hardware prefetching

Larger cache size or line size

Higher associativity

Victim caches

C O M P I L E R O P T I M I Z A T I O N

Padding for alignment

Compiler controlled prefetching

Projective memory allocation

Data remapping

I M P A C T O N MISS R A T E / MISS P E N A L T Y

Hides LI miss latency and reduces LI miss rate

Reduces miss penalty

Reduces miss penalty

Reduces miss rate or miss penalty

Reduces capacity misses

Reduces conflict / replacement misses

Reduces conflict misses

Reduces conflict misses

Reduces (or removes) miss penalty

Reduces memory requirement and (thereby the) number of misses

Improves locality and reduces number of misses

Table 8.1
Widely used processor features and compiler optimizations that influence memory access cost
and execution time

8.6.1 Extensibility of the cost model

The cost model can be easily refined to include more details about processor features and compiler

optimizations. See Table 8.1 for a list of processor features and compiler optimization influence

memory access cost and execution times. Such refinements would either affect the miss rate or

miss penalty and can be accommodated by appropriately scaling the bulk transfer rate f3 or by

changing the number of misses A(j). For example, consider the following three scenarios:

• Out-of-order issue and non-blocking cache: Consider an out-of-order issue processor with a

non-blocking cache. The out-of-order issue together with a non-blocking cache can hide the

miss penalty for accesses that are a miss at LI but a hit at L2, given sufficient ILP in the code.

This effect can be modeled by reducing the miss penalty for such misses. We can capture

this by determining the the number of Ll misses for which the miss penalty is reduced and

then scaling down j3 by an appropriate factor, say fmr.

9-0l_nhc{t) = aQ{t) + {fmrP)^(t) + m + riKt) + ^{t)- (8-4)

To account for set-associativity of the cache, we may have to scale down the cache capacity

to an effective cache capacity, as discussed later in this section.

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 141

• Hardware prefetching: Hardware prefetching can decrease the miss penalty substantially

(and not completely remove, since the hit time to a prefetch stream buffer is slightly higher

than the cache hit time) for accesses that have spatial locality, by prefetching subsequent

blocks and storing them in the stream buffer. This effect can be modeled by scaling down

/3byafac to r / m ? .

Vhv,j,refetcb(*) = "©(0 + {fmpPW)+ W) + ^ (0 + ?A(t) (8-5)

• Highly optimized execution: Consider now an advanced processor with all the features listed

in Table 8.1 together with a compiler that can perform all the optimizations listed in Ta­

ble 8.1. The net effect of would be an almost complete overlap of computation and the

data movement. In such a case the execution time is the maximum of the time taken for

computation and the memory access time.

Phigh_opt(t) = max(are(r) + </,(t) + rjA(t) + ^A(r), {3A(t)+ ^(t) + 7)A(t) + rjA(t)) (8.6)

Such a scenario is very common with respect to the hardware features. However, some com­

piler optimizations like memory reduction, padding and data remapping are not available

in all compilers, though the techniques are well understood in the research community.

Other combinations of processor features and compiler optimizations can also be easily included.

For example, low-associativity of caches and the use of padding and data remapping [121, 105,

122] can be included by appropriately scaling down the cache capacity <# to an effective cache size.

This is a well studied [105, 121, 122, 114] and widely used technique. An algorithm of how to

compute the effective cache size can be found in [114]. Such a technique is also used by other

researchers in the similar context of single-level and multi-level tiling [77, 128, 30, 85].

Observe that the cost functions Sfoi nyc{t) and 3"},w prefetch^1) a r e both posynomials by con­

struction. The function 3?/,; opt(t) is directly not a posynomial. However, it can be transformed

into a posynomial qualified with posynomial inequality constraints using the max elimination

technique shown in [21]. In a multi-level tiling, if ZThl opt(t) is used repeatedly at each levels,

then we will have an function with nested maxQ's. For this case, we can start from the inner

CHAPTER 8. A MULTI-LEVEL DA TA LOCALITY TILING MODEL 142

most maxQ and repeatedly apply the max elimination technique to obtain a single IGP. Hence,

all the three functions can be used in the context of single or multi-level tiling to obtain an IGP

and hence can be solved efficiently. This shows how one can combine the extensibility of our cost

model with the generality of the GP based framework to include advanced processor features and

compiler optimizations.

8.7 \ Experimental results

For our experiments we used the s i m - o u t o r d e r simulator from SimpleScalar tool set [24]. It

is a cycle accurate processor simulator with two levels of cache and a TLB. We configured it for an

in-order issue processor and we set the caches to be fully associative with sizes 4k(Ll) and 64k(L2).

As stated in Section 8.6.1, it is well known that the results obtained for fully associative caches

can be adapted to set-associative caches by using standard techniques like padding and using an

effective cache size, for example see [106, 105, 77, 47, 114]. We experimented with single and

multiple levels of tiling of doubly and triply nested loops. We considered five different programs

(depl, depl-LF, dep2, stat2, and var2) and four different tiling scenarios: one-level tiled doubly

nested loop (m — \,n = 2), two-level tiled doubly nested loop (m — 2,n — 2), one-level tiled

triply nested loop (m = 1, n = 3), and two-level tiled triply nested loop (m = 2, n = 3). The five

programs2 had the following features:

• depl: contains a loop body with floating point addition and a dependence of depth one.

• depl-LF: this is program depl with the tile-loop and inter-tile loop of the inner most time

dimension fused.

• dep2: contains a loop body with floating point addition and a dependence of depth two.

Note that a dependence of depth two requires saving and loading two facets of intermediate

values along the dependence direction.

• stat2: contains a loop body with two independent statements that do floating point addi­

tions. This loop body has instruction level parallelism and also would have exploited the

pipelined floating point addition unit.

2 the tiled codes are available at: h t t p : //www . c s . c o l o s t a t e . edu/~ In / t i l e d - l o o p s /

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 143

Program

depl
depl-LF

dep2
stat2
var2

m = l,

H
-1.71
-1.76
-0.36
5.37
17.99

» = 2

a
3.35
3.33
3.96
4.14
2.36

m = 2

H
15.79
15.78
21.72
25.78
22.48

,n=2

a
8.71
8.43
11.58
8.64
4.09

m = 1

H
-11.12
-11.14
-11.20
-6.11
8.95

n = 3

a
13.60
13.62
15.07
11.58
10.09

m = 2,

^
11.09
11.04
16.63
8.88
10.74

» = 3

a
7.02
6.96
9.53
6.13
4.83

Table 8.2
Experimental Results. Mean and standard deviation of the percent error between predicted and
simulated execution times, m is the number of levels of tiling and n is the loop nest depth.

• var2: contains a loop body with two dependent statements (the result of the first used as an

operand in the second) that do floating point operations. This loop body does not have ILP

but may exploit the pipelined floating point unit.

Each of the above five programs together with the four tiling scenarios resulted in twenty different

programs. We ran each of these programs on more than ten different tile and program parameter

combinations, resulting in more than two hundred different runs.

We measured the percent error in prediction of the execution time by our model, i.e., the

percent error between the simulated execution time and the estimated execution time. The mean

and standard deviation of the percent error results are presented in Table 8.2. A negative mean

indicates an underestimation and a positive one an overestimation of the execution time by the

model. One can note from the results that our model predicts the execution time with an error

(approximately) between 5 to 30 percent. For the purposes of tiling, a high level model with such

an error range seems reasonable.

8.8 Related work

Tiling for memory hierarchy is a well studied problem and so is the problem of modeling the

cache behavior of a loop nest. We classify the related work into three categories: models of cache

behavior of loop nests, single-level optimal TSS and multi-level optimal TSS.

Models of cache behavior of loop nests. There are several analytical models that measure the

number of cache misses for a given class of loop nests. These models can be classified into precise

models that use sophisticated (computationally costly) methods and approximate models that

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 144

provide a closed form with simple analysis. In the precise category, we have the Cache Miss

Equations [50], and the refinement by Chatterjee et al. [34], that use Ehrhart Polynomials [35]

and Presburger formulae to describe the number of cache misses. Harper et al. [54] propose

an analytical model of set-associative caches and Cascaval and Padua [32] give a compile t ime

technique to estimate cache misses using stack distances. In the approximate category, Ferrante et

al. [47] present techniques to estimate the number of distinct cache lines touched by a given loop

nest. Sarkar [114] presents an refinement of this model. Although the precise models can be used

for selecting the optimal tile sizes, only Abella et al. [2] has proposed a near optimal loop tiling

using Cache Miss Equations and genetic algorithms. Sarkar and Megiddo [116] have proposed

an algorithm that uses an approximate model [47] and finds the optimal tile sizes for loops of

depth up to three. N o previous work has used any of these models to find optimal tile sizes in

the context of multi-level tiling of loop-nests of arbitrary depth. O u r execution model, though an

approximate one, can be used for multiple-levels of tiling as shown in this chapter.

Single-level optimal TSS. Several algorithms [77, 36 ,33, 60] have been proposed for single-level

tile size selection (see Hsu and Kremer [60] for good a comparison). The majority of them use a

local cost function such as the number of capacity misses or conflict misses, not a global metric

like ours, viz., overall execution time. Mitchell et al. [85] illustrate how such local cost functions

may not lead to globally optimal performance.

Multi-level optimal TSS. Mitchell et al. [85] was the first one to quantify the multi-level interac­

tions of tiling. They clearly point out the importance of using a global metric like execution t ime

rather than local metrics like number of misses, etc. Further, they also show through examples,

the interactions between different levels of tiling and hence the need for a framework in which the

tile sizes at all the levels are chosen simultaneously with respect to a global cost function. In this

chapter we have proposed one such framework for a restricted class of programs. Other results

that show the application and importance of multi-level tiling include [30, 89, 65]. Empirical

tools like P H i P H A C [16] and ATLAS [126] use a profile-driven approach to choose the optimal

tile sizes. These tools are limited to the set of programs for which they are designed and are t ime

consuming.

CHAPTER 8. A MULTI-LEVEL DATA LOCALITY TILING MODEL 145

8.91 Discussion and future work

We have proposed an high-level TSS model with three properties: (i) a global metric such as

execution time; (ii) extensible to arbitrary levels of tiling; (iii) can be used for efficient solution of

optimal tile sizes via IGPs. As part of our ongoing work, we plan to validate our cost model with

more programs and different cache and processor configurations. As a next step, we will consider

two multi-level tiling scenarios: (a) an outer level of tiling for parallelism and inner level of tilings

for memory hierarchy; (b) outer levels of tilings for memory hierarchy and inner level of tiling

for instruction level parallelism (IIP). Extending the program model to include non-rectangular

loop nests and non-uniform (say, affine) dependences would be the next major step.

CHAPTER 9

Conclusions and Future Work

M ULTI-LEVEL tiling is a widely used loop transformation. Lack of tool support has limited

its use to optimization experts. The tile size selection framework and tiled loop generation meth­

ods proposed in this thesis provide scalable and efficient tools for multi-level tiling. We believe

that our tools will enable a wide spread use of multi-level tiling. The scalability and efficiency of

our tools make them suitable for inclusion in production compilers, iterative optimizers and auto-

tuners. Further, our multi-level tiling tools are a necessity to realize the performance potential

offered by systems such as CELL BE [66] and nVidia's CUDA enabled GPUs [37].

Our TSS framework derives its scalability and efficiency properties from the underlying con­

vex optimization methods. By doing so, it brings powerful numerical optimization techniques to

the world of compiler optimizations. For example, in numerical optimization, sensitivity analysis

is a widely used technique for understanding the sensitivity of the optimal solution with respect

to parameters of the optimization problem [21]. Such a technique can be directly applied to op­

timal TSS problems to study the sensitivity of tile sizes to the parameters (such as cache sizes,

network latency, etc.) involved in TSS optimization problem [40, 75]. Questions such as "how

much performance can be gained by increasing the cache size? " can be answered with a sensitivity

analysis.

Our tiled loop generation algorithms are based on the concepts of two polyhedral sets, viz.,

146

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 147

inset and outset. We have shown that by appropriate use of these two sets we can derive a vari­

ety of parameterized, fixed, or mixed tiled loop generation algorithms. By providing an efficient

method for computing these sets, we have provided a unified basis for the design and implementa­

tion of tiled loop generation algorithms. This efficiency also led to the development of a scalable

method which can provide m levels of tiling at the price of just one level.

Specific directions of future work were outlined earlier at the end of each chapters. A few

general directions are outlined below.

9.11 Posynomial based modeling

We believe that the use of posynomials for performance modeling is applicable to more than just

tile size selection. This belief is based on the fact that almost all the parameters selected or tuned

by compilers are positive. The following are other scenarios where we think posynomial based

performance modeling will be useful.

• Prefetching: Models to estimate the optimal prefetching distance given the overheads and

performance benefits.

• Transactions: Models to estimate the optimal length of transactions for a given cost of

conflict detection and roll back.

Another promising approach is the use of posynomials to learn performance models that can be

used for TSS. The promise of this approach is based on the observation that posynomials are

widely used in designing TSS models. The idea is to use posynomials as basis functions and fit

a posynomial model to the execution time data of a tiled loop nest. Our parameterized tiled

loop generation methods can be exploited here to generate parameterized tiled codes that can be

executed for a set of tile sizes to collect the execution time data.

9.21 Tile shape and size selection

Recent work by Bondhugula et al. [17, 18] has provided a linear programming based formulation

for tile shape selection. They do not address the issue of tile size selection. Our posynomial based

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 148

tile size selection framework complements Bondhugula et al.'s work. It would be interesting to

combine both the works to formulate an optimization problem that selects both tile shape and

sizes. An observation that would be helpful in this combination is that both linear programs and

geometric programs are subsets of the broader class of convex programs.

Bibliography

[1] An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28, 2
(2002), 135-151.

[2] ABELLA, J., GONZALEZ, A., LLOSA, J., AND VERA, X. Near-optimal loop tiling by mean
of cache miss equations and genetic algorithms. In Proceedings of International Conference
on Parallel Processing Workshops (2002).

[3] ABU-SUFAH, W., KUCK, D., AND LAWRIE., D. On the performance enhancememt of
paging systems through program analysis and transformations. IEEE Transactions on Com­
puters 30, 5 (May 1981), 341-356.

[4] AGARWAL, A., KRANZ, D. A., AND NATARAJAN, V. Automatic partitioning of parallel
loops and data arrays for distributed shared-memory multiprocessors. IEEE Trans. Parallel
Distrib. Syst. 6, 9 (1995), 943-962.

[5] ALLAN, V. H., JONES, R. B., LEE, R. M., AND ALLAN, S. J. Software pipelining. ACM
Comput. Surv. 27, 3 (1995), 367-432.

[6] ALLEN, R., AND KENNEDY, K. Optimizing Compilers for Modern Architectures: A Depen­
dence Based Approach. Morgan Kaufman, San Francisco, 2002.

[7] AMARASINGHE, S. Parallelizing Compiler Techniques Based on Linear Inequalities. PhD
thesis, Stanford University, 1997.

[8] AMARASINGHE, S. P., AND LAM, M. S. Communication optimization and code genera­
tion for distributed memory machines. In PLDI '93: Proceedings ofthe ACMSIGPLAN1993
conference on Programming language design and implementation (New York, NY, USA,
1993), ACM Press, pp. 126-138.

[9] ANCOURT, C , AND IRIGOIN, F. Scanning polyhedra with D O loops. In Proceedings
of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(April 1991), pp. 39-50.

[10] ANDONOV, R., BALEV, S., RAJOPADHYE, S. V., AND YANEV, N. Optimal semi-oblique
tiling. IEEE Trans. Parallel Distrib. Syst. 14, 9 (2003), 944-960.

[11] ANDONOV, R., AND RAJOPADHYE, S. Optimal orthogonal tiling of 2-D iterations. Jour­
nal of Parallel and Distributed Computing 45, 2 (September 1997), 159-165.

149

BIBLIOGRAPHY 150

[12] ANDONOV, R., RAJOPADHYE, S. V., AND YANEV, N. Optimal orthogonal tiling. In
Euro-Par '98: Proceedings of the 4th International EuroPar Conference on Parallel Processing
(1998), Springer-Verlag, pp. 480-490.

[13] BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. The Parma Polyhedra Library: To­
ward a complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Quaderno 457, Dipartimento di Matematica, Universita di Parma,
Italy, 2006.

[14] BASTOUL, C. Code generation in the polyhedral model is easier than you think. In
PACT'13 IEEE International Conference on Parallel A rchitecture and Compilation Techniques
(Juan-les-Pins, September 2004), pp. 7-16.

[15] BlKSHANDI, G., GUO, J., HOEFLINGER, D., ALMASI, G., FRAGUELA, B. B.,
GARZARAN, M. J., PADUA, D., AND VON PRAUN, C. Programming for parallelism
and locality with hierarchically tiled arrays. In PPoPP '06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming (2006), pp. 48-57.

[16] BlLMES, J., ASANOVIC, K., CHIN, C.-W., AND DEMMEL, J. Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings
of the 11th international conference on Supercomputing (1997), ACM Press, pp. 340-347.

[17] BONDHUGULA, U., BASKARAN, M., KRISHNAMOORTHY, S., RAMANUJAM, J., ROUN-
TEV, A., AND SADAYAPPAN, P. Automatic transformations for communication-
minimized parallelization and locality optimization in the polyhedral model. In Inter­
national Conference on Compiler Construction (ETAPS CC) (Apr. 2008).

[18] BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. A practi­
cal and fully automatic polyhedral program optimization system. In ACM SIGPLAN PLDI
(June 2008).

[19] BORDAWEKAR, R., CHOUDHARY, A., AND RAMANUJAM, J. Automatic optimization
of communication in compiling out-of-core stencil codes. In ICS '96: Proceedings of the
10th international conference on Supercomputing (1996), ACM Press, pp. 366-373.

[20] BOULET, P., DARTE, A., RlSSET, T , AND ROBERT, Y. (pen)-ultimate tiling? Integr. VLSI
J. 17, 1 (1994), 33-51.

[21] BOYD, S., KlM, S. J., VANDENBERGHE, L., AND HASSIBI, A. A tutorial on Geometric
Programming. To appear in Optimization and Engineering (2006).

[22] BOYD, S., AND VANDENBERGHE, L. Convex Optimiza­
tion. Cambridge University Press. (Online version available at:
http : //www. Stanford, edu/ "boyd/cvxbook .html), 2004.

[23] BROMLEY, M., HELLER, S., MCNERNEY, T., AND GUY L. STEELE, J. Fortran at ten
Gigaflops: the connection machine convolution compiler. In PLDI '91: Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and implementation
(1991), ACM Press, pp. 145-156.

[24] BURGER, D., AND AUSTIN, T. M. The SimpleScalar tool set, version 2.0. SIGARCH
Comput. Archit. News 25, 3 (1997), 13-25.

BIBLIOGRAPHY 151

[25] CALLAHAN, D., CARR, S., AND KENNEDY, K. Improving register allocation for sub­
scripted variables. In PLDI '90: Proceedings of the ACM SIGPLAN1990 conference on Pro­
gramming language design and implementation (New York, NY, USA, 1990), ACM Press,
pp. 53-65.

[26] CALLAND, P.-Y., AND RlSSET, T. Precise tiling for uniform loop nests. In ASAP '95:
Proceedings of the IEEE International Conference on Application Specific Array Processors
(Washington, DC, USA, 1995), IEEE Computer Society, p. 330.

[27] CARR, S., AND KENNEDY, K. Improving the ratio of memory operations to floating-point
operations in loops. ACM Trans. Program. Lang. Syst. 16, 6 (1994), 1768-1810.

[28] CARR, S., AND SWEAN Y, P. An experimental evaluation of scalar replacement on scientific
benchmarks. Software Practice and Experience 33, 15 (2003), 1419-1445.

[29] CARTER, L. Tiling, the universal optimization. Dagstuhl Seminar on Tiling for Optimal
Resource Utilization, August 24-28 1998.

[30] CARTER, L., FERRANTE, J., HUMMEL, F., ALPERN, B., AND GATLIN, K. Hierarchical
tiling: A methodology for high performance. Tech. Rep. CS96-508, UCSD, Nov. 1996.

[31] CARTER, L., FERRANTE, J., AND HUMMEL, S. F. Hierarchical tiling for improved super­
scalar performance. In IPPS '95: Proceedings of the 9th International Symposium on Parallel
Processing (Washington, DC, USA, 1995), IEEE Computer Society, pp. 239-245.

[32] CASCAVAL, C , AND PADUA, D. A. Estimating cache misses and locality using stack
distances. In Proceedings of the 17th annual international conference on Supercomputing
(2003), ACM Press, pp. 150-159.

[33] CHAME, J., AND MOON, S. A tile selection algorithm for data locality and cache inter­
ference. In Proceedings of the 13th international conference on Supercomputing (1999), ACM
Press, pp. 492-499.

[34] CHATTERJEE, S., PARKER, E., HANLON, P. J., AND LEBECK, A. R. Exact analysis of
the cache behavior of nested loops. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation (2001), ACM Press, pp. 286-297.

[35] CLAUSS, P. Counting solutions to linear and nonlinear constraints through ehrhart poly­
nomials: applications to analyze and transform scientific programs. In Proceedings of the
10th international conference on Supercomputing (1996), ACM Press, pp. 278-285.

[36] COLEMAN, S., AND MCKINLEY, K. S. Tile size selection using cache organization and
data layout. In Proceedings of the ACM SIGPLAN 1995 conference on Programming language
design and implementation (1995), ACM Press, pp. 279-290.

[37] Nvidia CUDA toolkit for GPUs. Available at:
http://www.nvidia.com/object/cuda_home.html.

[38] DARTE, A., ROBERT, Y, AND VIVIEN, F. Scheduling and Automatic Parallelization.
Birkhauser Boston, 2000.

[39] DEMMEL, J., DONGARRA, J., ElJKHOUT, V., FUENTES, E., PETITET, A., VUDUC, R.,
WHALEY, R., AND YELICK, K. Self-Adapting Linear Algebra Algorithms and Software.
Proceedings of the IEEE 93, 2 (2005), 293.

http://www.nvidia.com/object/cuda_home.html

BIBLIOGRAPHY 152

[40] DlNKEL, J. J., KOCHENBERGER, M. S., AND WONG, S. N. Sensitivity analysis procedures
for geometric programs: Computational aspects. ACM Trans. Math. Softw. 4,1 (1978), 1-14.

[41] DONGARRA, J., BOSILCA, G., CHEN, Z., ElJKHOUT, V., FAGG, G., FUENTES, E., LAN-
GOU, J., LUSZCZEK, P., PjESIVAC-GRBOVIC, J., SEYMOUR, K., ET AL. Self-adapting nu­
merical software (SANS) effort. IBM Journal of Research and Development 50, 2/3 (2006),
223.

[42] DUFFIN, R., PETERSON, E., AND ZENER, C. Geometric Programming - Theory and
Applications. John Wiley, 1967.

[43] EAVES, B. C., AND ROTHBLUM, U. G. A theory on extending algorithms for parametric
problems. Math. Oper. Res. 14, 3 (1989), 502-533.

[44] EAVES, B. C., AND ROTHBLUM, U. G. Dines-Fourier-Motzkin quantifier elimination
and an application of corresponding transfer principles over ordered fields. Mathematical
Programming 53,1-3 (1992), 307-321.

[45] ESSEGHIR, K. Improving data locality for caches. Master's thesis, Rice University, Septem­
ber 1993.

[46] FERNANDES, R., PlNGALI, K., AND STODGHILL, P. Mobile MPI programs in compu­
tational grids. In PPoPP '06: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming (New York, NY, USA, 2006), ACM Press,
pp. 22-31.

[47] FERRANTE, J., SARKAR, V., AND THRASH, W. On estimating and enhancing cache
effectiveness. In Fourth International Workshop on Languages and Compilers for Parallel
Computing (August 1991), U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds.,
Lecture Notes on Computer Science 589, Springer Verlag, pp. 328-343.

[48] FRAGUELA, B. B., CARMUEJA, M. G., AND ANDRADE, D. Optimal tile size selection
guided by analytical models. In PARCO (2005), pp. 565-572.

[49] FRUMKIN, M. A., AND DER WlJNGAART, R. F. V. Tight bounds on cache use for stencil
operations on rectangular grids. /. ACM 49, 3 (2002), 434-453.

[50] GHOSH, S., MARTONOSI, M., AND MALIK, S. Cache miss equations: a compiler frame­
work for analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst. 21, 4
(1999), 703-746.

[51] GOUMAS, G., ATHANASAKI, M., AND KOZIRIS, N. An efficient code generation tech­
nique for tiled iteration spaces. IEEE Transactions on Parallel and Distributed Systems 14, 10
(October 2003).

[52] GROPP, W. D. Solving PDEs on loosely-coupled parallel processors. Parallel Computing 5,
1-2 (1987), 165-173.

[53] GROSSLINGER, A., GRIEBL, M., AND LENGAUER, C. Introducing non-linear parameters
to the polyhedron model. In Proc. 11th Workshop on Compilers for Parallel Computers (CPC
2004) (July 2004), M. Gerndt and E. Kereku, Eds., Research Report Series, LRR-TUM,
Technische Universitat Munchen, pp. 1-12.

BIBLIOGRAPHY 153

[54] HARPER, J. S., KERBYSON, D. J., AND NUDD, G. R. Analytical modeling of set-
associative cache behavior. IEEE Trans. Comput. 48, 10 (1999), 1009-1024.

[55] HiTLoG: Hierarchical Tiled Loop Generator. Available at:
http://www.cs.colostate.edu/MMAlpha/HiTLoG/.

[56] HODZIC, E., AND SHANG, W. On supernode transformation with minimized total run­
ning time. IEEE Trans. Parallel Distrib. Syst. 9, 5 (1998), 417-428.

[57] HOGSTEDT, K., CARTER, L., AND FERRANTE, J. Determining the idle time of a tiling.
In POPL (1997), pp. 160-173.

[58] HOGSTEDT, K., CARTER, L., AND FERRANTE, J. On the parallel execution time of tiled
loops. IEEE Trans. Parallel Distrib. Syst. 14, 3 (2003), 307-321.

[59] HSING HSU, C , AND K.REMER, U. A quantitative analysis of tile size selection algorithms.
/. Supercomput. 27, 3 (2004), 279-294.

[60] HSU, C , AND KREMER, U. Tile selection algorithms and their performance models. Tech.
Rep. DCS-TR-401, CS Dept., Rutgers University, Oct. 1999.

[61] H u , Y. C , JlN, G., JOHNSSON, S. L., KEHAGIAS, D., AND SHALABY, N. HPFBench: a
high performance fortran benchmark suite. ACM Trans. Math. Softw. 26, 1 (2000), 99-149.

[62] IRIGOIN, F., AND TRIOLET, R. Supernode partitioning. In 15th ACM Symposium on
Principles of Programming Languages (Jan 1988), ACM, pp. 319-328.

[63] JIMENEZ, M., LLABERIA, J. M., AND FERNANDEZ, A. Register tiling in nonrectangular
iteration spaces. ACM Trans. Program. Lang. Syst. 24, 4 (2002), 409-453.

[64] JIMENEZ, M., LLABERIA, J. M., AND FERNANDEZ, A. Register tiling in nonrectangular
iteration spaces. ACM Trans. Program. Lang. Syst. 24, 4 (2002), 409-453.

[65] JIMENEZ, M., LLABERIA, J. M., AND FERNANDEZ, A. A cost-effective implementation
of multilevel tiling. IEEE Trans. Parallel Distrib. Syst. 14,10 (2003), 1006-1020.

[66] K A H L E , J. A., DAY, M. N., H O F S T E E , H. R, J O H N S , C. R., M A E U R E R , T. R., A N D

SHIPPY, D. Introduction to the cell multiprocessor. IBM J. Res. Dev. 49, 4/5 (2005), 589-
604.

[67] KAMIL, S., DATTA, K., WILLIAMS, S., OLIKER, L., SHALF, J., A N D YELICK, K. Im­

plicit and explicit optimizations for stencil computations. In MSPC '06: Proceedings of the
2006 workshop on Memory system performance and correctness (New York, NY, USA, 2006),
ACM, pp. 51-60.

[68] KAMIL, S., HUSBANDS, P., OLIKER, L., SHALF, J., AND YELICK, K. Impact of modem
memory subsystems on cache optimizations for stencil computations. In MSP '05: Proceed­
ings of the 2005 workshop on Memory system performance (2005), ACM Press, pp. 36-43.

[69] KARP, R. M., MILLER, R. E., AND WlNOGRAD, S. The organization of computations for
uniform recurrence equations. / . ACM 14, 3 (1967), 563-590.

http://www.cs.colostate.edu/MMAlpha/HiTLoG/

BIBLIOGRAPHY 154

[70] KELLY, W., PUGH, W., AND ROSSER, E. Code generation for multiple mappings. In Fron­
tiers '95: The 5th Symposium on the Frontiers of Massively Parallel Computation (McLean,
VA, 1995).

[71] KIM, D., RENGANARAYANA, L., R O S T R O N , D., R A J O P A D H Y E , S., A N D STROUT,

M. M. Multi-level tiling: m for the price of one. In Proceedings of the International Confer­
ence for High Performance Computing, Networking, Storage, and Analysis (SC) (November
2007).

[72] KlSUKI, T., KNIJNENBURG, P. M. W., AND O'BOYLE, M. F. P. Combined selection of
tile sizes and unroll factors using iterative compilation. In PACT '00: Proceedings of the 2000
International Conference on Parallel Architectures and Compilation Techniques (Washington,
DC, USA, 2000), IEEE Computer Society, p. 237.

[73] KNIJNENBURG, P. M. W., KlSUKI, T., AND O'BOYLE, M. F. P. Iterative compilation.
In Embedded processor design challenges: systems, architectures, modeling, and simulation-
SAMOS. Springer-Verlag New York, Inc., New York, NY, USA, 2002, pp. 171-187.

[74] KORTANEK, K. O., Xu, X., AND Y E , Y An infeasible interior-point algorithm for solving
primal and dual geometric programs. Math. Program. 76, 1 (1997), 155-181.

[75] KYPARISIS, J. Sensitivity analysis in geometric programming: theory and computations.
Ann. Oper. Res. 27, 1-4 (1990), 39-64.

[76] LAM, M. Software pipelining: an effective scheduling technique for VLIW machines. In
PLDI '88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language
design and Implementation (New York, NY, USA, 1988), ACM Press, pp. 318-328.

[77] LAM, M. D., ROTHBERG, E. E., AND WOLF, M. E. The cache performance and opti­
mizations of blocked algorithms. In Proceedings of the fourth international conference on
Architectural support for programming languages and operating systems (1991), ACM Press,
pp. 63-74.

[78] LAM, M. S., AND WOLF, M. E. A data locality optimizing algorithm (with retrospective).
In Best of PLDI (1991), pp. 442-459.

[79] LE VERGE, H., VAN DONGEN, V, AND WILDE, D. La synthase de nids de boucles avec
la bibliotheque polyedrique. In RenPar'6 (Lyon, France, Juin 1994). English version "Loop
Nest Synthesis Using the Polyhedral Library"in ERISA TR 830, May 1994.

[80] LE VERGE, H., VAN DONGEN, V, AND WlLDE, D. Loop nest synthesis using the poly­
hedral library. Tech. Rep. PI 830, IRISA, Rennes, France, May 1994. Also published as
INRIA Research Report 2288.

[81] Li, Z., AND SONG, Y Automatic tiling of iterative stencil loops. ACM Trans. Program.
Lang. Syst. 26, 6 (2004), 975-1028.

[82] LOFBERG, J. YALMIP : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference (Taipei, Taiwan, 2004). Available from
http://control.ee.ethz.ch/"joloef/yalmip.php.

[83] LOWENTHAL, D. K. Accurately selecting block size at runtime in pipelined parallel pro­
grams. Int. J. Parallel Program. 28, 3 (2000), 245-274.

http://control.ee.ethz.ch/

BIBLIOGRAPHY 155

McKELLAR, A. C , AND E. G. COFFMAN, J. Organizing matrices and matrix operations
for paged memory systems. Commun. ACM 12, 3 (1969), 153-165.

MITCHELL, N., HOGSTEDT, N., CARTER, L., AND FERRANTE, J. Quantifying the
multi-level nature of tiling interactions. International Journal of Parallel Programming 26,
6 (1998), 641-670.

MOLDOVAN, D. I., AND FORTES, J. A. B. Partitioning and mapping algorithms into fixed
size systolic arrays. IEEE Trans. Comput. 35, 1 (1986), 1-12.

MOON, S., AND SAAVEDRA, R. Hyperblocking: A data reorganization method to elim­
inate cache conflicts in tiled loop nests. Tech. Rep. TR-98-671, University of Southern
California, February 1998.

NAS Parallel Benchmarks. Available from h t t p : //www. n e t l i b . o r g / p a r k b e n c h / .

NAVARRO, J. J., JUAN, T., AND LANG, T. MOB forms: a class of multilevel block algo­
rithms for dense linear algebra operations. In Proceedings of the 8th international conference
on Supercomputing (1994), ACM Press, pp. 354-363.

NlKOLOPOULOS, D. S. Dynamic tiling for effective use of shared caches on multithreaded
processors. International Journal of High Performance Computing and Networking (2004),
22 - 35.

OHTA, H., SAITO, Y., KAINAGA, M., AND ONO, H. Optimal tile size adjustment in
compiling general DOACROSS loop nests. In ICS '95: Proceedings of the 9th international
conference on Supercomputing (New York, NY, USA, 1995), ACM Press, pp. 270-279.

PARKBENCH: PARallel Kernels and BENCHmarks. Available from
h t t p : / / w w w . n e t l i b . o r g / p a r k b e n c h / .

PUGH, W. Omega test: A practical algorithm for exact array dependency analysis. Comm.
of the ACM 35, 8 (1992), 102.

QUILLERE;, F., RAJOPADHYE, S., AND WlLDE, D. Generation of efficient nested loops
from polyhedra. International Journal Parallel Programming 28, 5 (2000), 469-498.

QUINTON, P., AND VAN DONGEN, V. The mapping of linear recurrence equations on
regular arrays. Journal of VLSI Signal Processing 1, 2 (1989), 95-113.

RAJOPADHYE, S. V., AND FujIMOTO, R. M. Synthesizing systolic arrays from recurrence
equations. Parallel Computing 14 (June 1990), 163-189.

RAMANUJAM, J. Optimal software pipelining of nested loops. In IPPS (1994), pp. 335-
342.

RAMANUJAM, J., AND SADAYAPPAN, P. Tiling multidimensional itertion spaces for mul-
ticomputers. /. Parallel Distrib. Comput. 16, 2 (1992), 108-120.

RASTELLO, F., AND ROBERT, Y. Automatic partitioning of parallel loops with
parallelepiped-shaped tiles. IEEE Trans. Parallel Distrib. Syst. 13, 5 (2002), 460-470.

http://netlib.org/parkbench/
http://www.netlib.org/parkbench/

BIBLIOGRAPHY 156

[100] RAU, B. R. Iterative modulo scheduling: an algorithm for software pipelining loops. In
MICRO 27: Proceedings of the 27th annual international symposium on Microarchitecture
(New York, NY, USA, 1994), ACM Press, pp. 63-74.

[101] RENGANARAYANA, L., AND RAJOPADHYE, S. A geometric programming framework
for optimal multi-level tiling. In SC '04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing (Washington, DC, USA, 2004), IEEE Computer Society, p. 18.

[102] RENGANARAYANA, L., UPADRASTA, R., AND RAJOPADHYE, S. Optimal ILP and reg­
ister tiling: Analytical model and optimization framework. In LCPC 2005: 12th Interna­
tional Workshop on Languages and Compilers for Parallel Computing (2005), Springer Verlag.

[103] RENGANARAYANAN, L., HARTHI-KOTE, M., DEWRI, R., AND RAJOPADHYE, S. To­
wards optimal multi-level tiling for stencil computations. In 21st IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (to appear) (2007).

[104] RENGANARAYANAN, L., KlM, D., RAJOPADHYE, S., AND STROUT, M. M. Parameter­
ized tiled loops for free. In PLDI '07: ACMSIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2007), ACM Press, pp. 405-414.

[105] RIVERA, G., AND TSENG, C.-W. Data transformations for eliminating conflict misses.
In Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and
implementation (1998), ACM Press, pp. 38-49.

[106] RIVERA, G., AND TSENG, C.-W. Eliminating conflict misses for high performance archi­
tectures. In Proceedings of the 12th international conference on Supercomputing (1998), ACM
Press, pp. 353-360.

[107] RIVERA, G., AND TSENG, C.-W. A comparison of compiler tiling algorithms. In CC '99:
Proceedings of the 8th International Conference on Compiler Construction (1999), Springer-
Verlag, pp. 168-182.

[108] RIVERA, G., AND TSENG, C.-W. Locality optimizations for multi-level caches. In Super-
computing '99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM)
(New York, NY, USA, 1999), ACM Press, p. 2.

[109] RIVERA, G., AND TSENG, C.-W. Tiling optimizations for 3D scientific computations.
In Supercomputing '00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM) (2000), IEEE Computer Society, p. 32.

[110] RONG, H., DOUILLET, A., AND GAO, G. R. Register allocation for software pipelined
multi-dimensional loops. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation (New York, NY, USA, 2005), ACM
Press, pp. 154-167.

[I l l] RONG, H., DOUILLET, A., GOVINDARAJAN, R., AND GAO, G. R. Code generation for
single-dimension software pipelining of multi-dimensional loops. In CGO '04: Proceed­
ings of the international symposium on Code generation and optimization (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 175-?

[112] RONG, H., TANG, 2., GOVINDARAJAN, R., DOUILLET, A., AND GAO, G. R. Single-
dimension software pipelining for multi-dimensional loops. In CGO '04: Proceedings of

BIBLIOGRAPHY 157

the international symposium on Code generation and optimization (Washington, DC, USA,
2004), IEEE Computer Society, p. 163.

113] R O T H , G., MELLOR-CRUMMEY, J., K E N N E D Y , K., A N D BRICKNER, R. G. Compil­
ing stencils in high performance fortran. In Supercomputing '97; Proceedings of the 1997
ACM/IEEE conference on Supercomputing (CDROM) (1997), ACM Press, pp. 1-20.

114] SARKAR, V. Automatic selection of high-order transformations in the IBM XL FOR­
TRAN compilers. IBM J. Res. Dev. 41, 3 (1997), 233-264.

115] SARKAR, V. Optimized unrolling of nested loops. International Journal of Parallel Pro­
gramming 29, 5 (2001), 545-581.

116] SARKAR, V., AND MEGIDDO, N. An analytical model for loop tiling and its solution. In
Proceedings oflSPASS (2000).

117] SCHREIBER, R., AND DONGARRA, J. Automatic blocking of nested loops. Tech. Rep.
90.38, RIACS, NASA Ames Research Center, Aug 1990.

118] SMITH, M. D. Overcoming the challenges to feedback-directed optimization. In DYNAMO
'00: Proceedings of the ACM SIGPLAN workshop on Dynamic and adaptive compilation and
optimization (New York, NY, USA, 2000), ACM Press, pp. 1-11. Keynote talk.

119] SPEC CPU2000 benchmark. Available from h t t p : //www. s p e c . o rg .

120] SUTTER, H. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb's Journal 30(3) (March 2005).

121] TEMAM, O., FRICKER, C , ANDjALBY,W. Cache interference phenomena. In Proceedings
of the 1994 A CM SIGMETRICS conference on Measurement and modeling of computer systems
(1994), ACM Press, pp. 261-271.

122] TEMAM, O., GRANSTON, E. D., AND JALBY, W. To copy or not to copy: a compile-
time technique for assessing when data copying should be used to eliminate cache conflicts.
In Proceedings of the 1993 ACM/IEEE conference on Supercomputing (1993), ACM Press,
pp. 410-419.

123] VALIANT, L. G. A bridging model for parallel computation. Commun. ACM33, 8 (1990),
103-111.

124] VUDUC, R., DEMMEL, J. W., AND YELICK, K. A. OSKI: A library of automatically tuned
sparse matrix kernels. In Proceedings ofSciDAC2005 (San Francisco, CA, USA, June 2005),
Journal of Physics: Conference Series, Institute of Physics Publishing.

125] WEISPFENNING, V. Parametric linear and quadratic optimization by elimination. Tech.
Rep. MIP-9404, Fakultat fur Mathematik und Informatik, Universitat Passau, 1994.

126] WHALEY, R. C , AND DONGARRA, J. J. Automatically tuned linear algebra software. In
Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM) (1998), IEEE
Computer Society, pp. 1-27.

BIBLIOGRAPHY 158

[127] W I L S O N , R. P., F R E N C H , R. S., W I L S O N , C. S., AMARASINGHE, S. P., A N D E R S O N ,

J. M., T J I A N G , S. W. K., L IAO, S.-W., T S E N G , C.-W., H A L L , M. W., LAM, M. S., A N D

HENNESSY, J. L. SUIF: An infrastructure for research on parallelizing and optimizing
compilers. SIGPLANNotices 29,12 (1994), 31-37.

[128] WOLF, M., MAYDAN, D., AND CHEN, D. Combining loop transformations considering
caches and scheduling. In 29th International Symposium on Microarchitecture (December
1996).

[129] WOLF, M. E., MAYDAN, D. E., AND CHEN, D.-K. Combining loop transformations
considering caches and scheduling. In Proceedings of the 29th Annual International Sym­
posium on Microarchitecture (Paris, 2-4, 1996), IEEE Computer Society TC-MICRO and
ACM SIGMICRO, pp. 274-286.

[130] WOLFE, M. Iteration space tiling for memory hierarchies. In Proceedings of the Third
SIAM Conference on Parallel Processing for Scientific Computing (Philadelphia, PA, USA,
1989), Society for Industrial and Applied Mathematics, pp. 357-361.

[131] WOLFE, M. More iteration space tiling. In Supercomputing '89: Proceedings of the 1989
ACM/IEEE conference on Supercomputing (1989), ACM Press, pp. 655-664.

[132] WONNACOTT, D. Using time skewing to eliminate idle time due to memory bandwidth
and network limitations. In IPDPS '00: Proceedings of the 14th International Symposium on
Parallel and Distributed Processing (2000), IEEE Computer Society, p. 171.

[133] WONNACOTT, D. Achieving scalable locality with time skewing. Int. J. Parallel Program.
30, 3(2002), 181-221.

[134] XUE, J. Communication-minimal tiling of uniform dependence loops. /. Parallel Distrib.
Comput. 42, 1 (1997), 42-59.

[135] XUE, J. On tiling as a loop transformation. Parallel Processing Letters 7, 4 (1997), 409-424.

[136] XUE,J. Loop Tiling For Parallelism. Kluwer Academic Publishers, 2000.

[137] XUE, J., AND CAI, W. Time-minimal tiling when rise is larger than zero. Parallel Comput.
28,6(2002), 915-939.

[138] YOTOV, K., Li, X., R E N , G., G A R Z A R A N , M. J. S., PADUA, D., P INGALI , K., A N D

STODGHILL, P. Is search really necessary to generate high-performance BLAS? Proceedings
of the IEEE 93 (2005), 358-386.

