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ABSTRACT OF DISSERTATION

TECHNIQUES IN INTERPOLATION PROBLEMS

This dissertation studies degeneration techniques in interpolation problems, that can be phrased
as computing the dimension of the space of plane curves of degree d having general multiple points.
The general interpolation problem goes back to the origin of algebraic geometry and is still far from
being solved. We approach it using algebraic geometry techniques, by systematically exploiting
degenerations of the projective plane. Degenerating the plane into a union of planes we prove the
planar case of the interpolation problem for double points, and we present results obtained for higher
multiplicities. We will generalize this technique and using toric geometry methods, we prove the
interpolation problems for triple points. Using non-toric degenerations we prove the emptiness of
a linear system with ten multiple points for different ratios, a result that approximates from below
Nagata’s bound by rational numbers. In the introduction we also state other results obtained and

we mention different directions for further research.
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CHAPTER 1

Introduction

1. Introduction to Interpolation Problems.

We will briefly introduce the general interpolation problem, which goes back to the origin of
algebraic geometry. Given r general points P, ..., P. in the projective space of n dimensions and
d,mq, ..., m, positive integers, one could ask to find a polynomial of a degree d for which all its higher
order derivatives up to order m; at the points P; match an assigned set of values. This problem, far
from being solved, is called polynomial interpolation. To lower the difficulty of the problem, people
reduce it to asking that at each point all the polynomial derivatives up to order m; vanish. In this
form, the problem can be rephrased geometrically to describe £, 4(my, ..., m,) the linear system of
hypersurfaces in P of degree d, that pass through r points P, ..., P., with multiplicity at least m;.
A natural question would be to compute the projective dimension of the linear system L. If all the
conditions imposed are linearly independent we can easily compute it as the difference between the
dimension of the space of divisors of degree d (i.e. polynomials of degree d in n 4 1 variables) and
the number of conditions imposed by asking a polynomial f to vanish to order m; at each point,
(i.e. the number of terms in the Taylor expansion of f at each point up to order m; — 1). We will

define this difference to be the virtual dimension of £

o(Loa) = <d j; n) 3 Zzi; <mi +nn - 1) -1

and the expected dimension to be e(L) := max{v(L), —1}. A naive conjecture is dim(L) = e(L).
To restrict the generality of this problem, we will consider the homogeneous case when all
multiplicities are equal my = ... = m, = m so the linear system becomes £,, 4(m"). There are some
elementary cases for which dim(L) # e(L).
Consider n = d = 7 = m; = mg = 2, for example. One can notice that dim(Lz22)(2%) = 0
since the plane system of conics with two general double points consists of a fixed divisor: the
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unique double line through the two points, so its projective dimension is 0. This is different than the
expected dimension e(L32)(2%) = —1. A linear system for which dimL > e(L) is called a special
linear system.

The interpolation problem for double points is closely related to the defectivity of the secant
varieties. Indeed, we denote V;, 4 to be the Veronese variety in P(dtn)fl and Secy(X) to be the closure
of the union of all k + 1-secant P*’s of X. The Veronese embedding transforms hypersurfaces in P
with r double points into hyperplanes tangent to V,, 4 at r general points. Using Terracini’s lemma
we remark that the r — 1 secant variety to V;, 4, Sec,—1(Vy.q) has the expected dimension if and
only if £, 4(m") is non-special. In this case V,, 4 is said to be not r — 1-defective. Alexander and
Hirschowitz proved the double points interpolation theorem (m = 2) for any n dimensional space,
by classifying all the cases for which the secant variety Secy(V;, q) is defective and proving that it is
not k defective otherwise.

For the planar case progress has been made, however for n > 3 few things are known, so the

problem is still open.

Consider the blow—up X of the plane at the points p1,...,p,. We denote by L also the proper
transform of £ to X. Suppose £ not empty, and assume that there is a (—1)—curve C' on X such
that C'- £ < —2. This forces C' to be a multiple fixed curve in the system and it is easy to see
that £ is special in this case. We will then say that £ is (—1)-special. The Harbourne-Hirshowitz
Conjecture says that a system is special if and only if it is (—1)-special Related to this conjecture,
but weaker, is Nagata’s Conjecture: if n > 9 and d?> < nm? then L4(m") is empty.

There has been a partial progress on these conjectures; let us recall some of the results. The
Harbourne-Hirschowitz Conjecture is true for n <9, or for m; < 7 (S. Yang, 2004); Nagata proved
that his conjecture is true for n = k? points or if n < 10.

One of the main techniques used to work on polynomial interpolation problems consists of
performing a degeneration of the ambient space P*. By doing this we degenerate the bundle £ and
the points, moving them to particularly special positions and we end by a semicontinuity argument.
Finding a suitable position for this kind of argument is delicate, since it should be special enough
to be treatable and at the same time general enough that the dimension of the degenerated linear

system is still the expected one.



2. About the Degeneration Technique.

Degeneration theory has been used for solving many different problems in algebraic geometry.
Degenerations of curves are used for analyzing the moduli space of curves since one of the roles
of the moduli space is to deduce facts about certain smooth curves by studying a limit curve of
the family. They were used to give a proof to the classical Brill Noether problem, saying that a
general curve of genus g carries a g if and only if the Brill Noether number is non-negative, and
if so then it equals the dimension of the locus W7 (C) of linear series in Pic?(C). A linear series is
a pair consisting of the line bundle of degree d and its global sections, a vector space of dimension
r. Since examples for general curves of higher genus are not known, the problem has been analyzed
by studying the degenerations of line bundles and of linear systems. However, if a linear series is
replaced by a pair of rank r bundle together with its global section, then the smoothness, emptiness
or dimension of WJ(C) are open problems. Degenerations have also been used to solve the problem
of the irreducibility of the family of curves Vg 4 of a given degree and genus (fixing the genus is the
same as giving the number of nodes). Degenerations of curves parametrized by a given component
of the Severi variety, were used for analyzing the irreducibility of a family of curves, while in my
thesis I use it for analyzing different interpolation problems. Degeneration techniques were also used
to answer questions concerning the corank of a Gaussian map. For hyperplane sections of smooth
K3 surfaces of degree 2g — 2, the corank of the Gaussian map is 1 for g > 13. The proof uses was
a degeneration of the K3 surface to a configuration of planes whose hyperplane sections are graph
curves with a corank one Gaussian map (see [7]).

My research has had two directions corresponding to two methods of degeneration of the ambient
space: toric degenerations and a non-toric degenerations consisting of a successive sequence of blow

ups as in [4] and [5]. T will briefly describe the main results presented in this thesis.

3. Degenerations of the Veronese in dimension two.

Consider a trivial family of planes, X and blow up a point of the fiber over zero in the total
space of the family. We get a new family X’ having as a central fiber the union of two surfaces F
which is a plane blown up at a point and P the exceptional divisor. Denote by O(d) the line bundle
which is the pull-back to X’ of Opz(d). The bundle O(d) ® O(—F) embeds the general fiber as the
Veronese V; and the central fiber as the union of V;_; and a scroll S(d — 1,d). Similarly the scroll

S(d,d — 1) degenerates to d — 1 quadrics and a plane. Iterating this process one obtains a toric
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degeneration of the d fold Veronese to a union of d planes and d(d — 1)/2 quadrics (see also [17] and
4)).

As a consequence we obtain results regarding the interpolation problem for k2 number of points
of arbitrary multiplicity m. Our technique uses the degeneration of V; mentioned above together
with a degeneration of the bundle O(d) which we will choose to have convenient degrees on the
planes and convenient bidegrees on the quadrics. The next two results are proved in Section 2 by a

degeneration argument (see [4]).

Theorem 1.3.1. The linear systems Lkm(mkz) and Ekm+1(mk2) have the expected dimension.

One could use our approach to generalize this result for all values d using induction.

For the double points interpolation problem we will further degenerate the quadrics into a union
of two planes. We obtain a planar degeneration of V; into a union of d? planes each plane containing
exactly 3 coordinate points of the projective space, and each double curve being a line in the ambient
space. Using a semicontinuity argument we reduce the problem to the case when v(£) = 0 and we
use induction to give a new proof of the planar case of the famous Alexander-Hirschowits conjecture

(see also [4]).

Theorem 1.3.2. Ford > 5, L4(2") has the expected dimension (in particular is empty if the expected

dimension is negative).

In fact, Alexander-Hirschowitz’s Theorem for double points in dimension 3 has recently been
proved by Silvia Brannetti using a similar technique (see [3]). Moreover as part of her doctoral thesis,
Elisa Postinghel uses degenerations of P" to give a new proof of the classical Alexander-Hirschowitz’s

Theorem (see [21]).

4. Triple Points in P?.

Consider now L4(3") of plane curves having r triple points. We extend the double points
interpolation problem to the triple points problem using toric degenerations of V; to conclude that
L4(3") has the expected dimension. Indeed, curves in £4(3") correspond by the Veronese embedding
to hyperplanes meeting the Veronese variety at r points with multiplicity three. We will use toric
degenerations of V; into a disjoint union of surfaces, and place each triple point in one of the surfaces.

We choose the surfaces such that a general hyperplane’s restriction to each of them is a linear system

4



that becomes empty when imposing a triple point. We will then conclude that the hyperplane needs
to contain the surface, and therefore all of its coordinate points. If the union of these surfaces is the
whole ambient space, then such a hyperplane can not exist since it should contain all the coordinate
points of the Veronese surface Vg, and this leads to a contradiction. This proves that £4(3") is empty.
We also give a full classification of convex polytopes, for which the corresponding toric surfaces are
used in the degeneration of V;. The following theorem presented in Section 3 was obtained using

the toric degeneration described above.

Theorem 1.4.1. £4(3") has the expected dimension if d # 4.

An algebraic approach for triple points in P! x P! have been also considered by T. Lenarcik in
[16]. Later on we will focus on Nagata’s conjecture and for this we will use degenerations of P? that

are not toric.

5. Ten Points of Arbitrary Multiplicity.

The virtual dimension of a homogeneous linear system in P? of plane curves of degree d passing
through n points is e(L4(m™)) = max{—1, @ - W} Nagata conjectured that if the leading
term of the virtual dimension is negative for large values of m and d, then £ is empty and he proved
his conjecture when the number of points is a perfect square. The result is also known if n < 9, so
the case when n = 10 appears to be a boundary case for this conjecture; this problem was analyzed
by Harbourne-Roé [13] and by Dumnicki [9].

This is an old conjecture that is also connected to the symplectic packing problem in dimension
four. A symplectic packing of a 2n dimensional symplectic manifold (M, Q) is a symplectic embed-
ding by n equal balls B()\) endowed with the standard symplectic structure. (M, ) admits a full
symplectic packing if M can be symplectically packed by n equal balls. This problem is also equiv-
alent to determining how much it is possible to blow up symplectically the manifold. In particular,
Nagata’s Conjecture’s would imply that complex projective plane admits a full symplectic structure
(see [2]).

Another approach to Nagata’s conjecture involves the blow up of P? at a finite set of general
points, X. A weaker version of Segre’s conjecture states that every integral curve with negative self-
intersection on X is a (—1) curve. An equivalent statement states that the extremal rays contained

in the positive side of the Mori cone (the closure of NFE(X)) are contained in the closure of the cone
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of 1 —cycles with non-negative intersection with an ample divisor and non-negative self-intersection.
Segre’s conjecture implies Nagata’s conjecture ([19]). Therefore the positive side of the Mori cone
on the blow up of P? gives us information about a full symplectic structure of the complex projective
plane. Our approach to Nagata’s conjecture involves degeneration methods.

By constructing a degeneration of a family of planes X; to a union of nine surfaces in the central
fiber Xo, we calculate all possible limits Ly of the line bundle £4(m!?) on the central fiber of the
family X. Such a limit line bundle is a line bundle on each surface, which agree on all of the double
curves of the degeneration. If for a fixed ratio of d/m, one proves that for any limit line bundle
Ly, at least one of the restrictions of Ly to the surfaces from the central fiber is empty, then one
concludes that there cannot be a limit curve in Ly, and therefore £4(m!°) is empty.

We consider the degeneration of the plane IP? into a ruled surface isomorphic to Fy, denoted by F
and a plane P, meeting along a double curve R, and choose four general points on P and six general
points on F. Whenever a —1 curve intersects the double curve twice, we perform a 2—-throw by
blowing it up twice and contracting it the other way. We construct the degeneration by performing
a series of 2-throws (see [5] and [8])

(1) The cubic £3(2,1%) on F

(2) Six disjoint curves, two conics L2(1%,[1,0],[0,0]) and four quadrics £4(23,1,[1,1]*) on P .
where the notation [a, b] stands for infinitely near multiplicities. In Section 4, using the ‘centrally
effective’ argument described above to this degeneration we prove the best result known for 10 points

(see also [5])

Theorem 1.5.1. If% < %77 3.162162 then Lq(m'°) is empty.

Q

We note that % is a good approximation of v/10 2 3.1622... We also remark that our emptiness
result implies that the corresponding Seshadri constant for ten points in the plane is at least 117/370;
see [13].

Consider more general planar degeneration obtained by performing n—throws. They occur when
blowing up curves that intersect the union of the double curves n times. The curve needs to be
blown up n times in a row so it creates n pairs of infinitely near multiplicities, since it introduces
n exceptional surfaces. The matching conditions for the bundles on the degenerated plane are not

known for n > 2. This problem was also analyzed by Michele Nesci [20] in his doctoral thesis and

it still remains an open question.



We remark that in general, by performing degenerations we get results regarding rational ratios
of d/m, while Nagata’s conjecture involves irrational numbers when the number of base points is not
a perfect square. With every degeneration we get better irrational limits for d/m so we speculate
that the sequence of rational bounds approaches from below the irrational Nagata’s bound.

To prove Nagata’s conjecture for a general number of points using the degeneration method
described above, we speculate that we will need to use an inductive argument and to consider a
sequence of successive n-throws to obtain a degeneration of P? into a union of different surfaces. All
surfaces must agree on the double curves and we speculate that we must systematically vary the
number of multiple points on each surface and to use matching conditions and induction in order to

prove the emptiness of corresponding the linear system (a method introduced in [4]).

6. Other Results.

We only mention here other results obtained without giving the details. In dimension three,
few things are known except Alexander-Hirschowitz’s theorem for double points. Using the theory
developed in Section 2 and Section 3 we can give a description of the convex polytopes for which
the corresponding linear system becomes empty when imposing a triple point in P3. Using toric
degenerations of P! x P! x P! into a union of disjoint toric subvarieties corresponding to three

dimensional polytopes enclosing 10 points and we also proved by induction the following result:

Theorem 1.6.1. Linear systems in P! x P* x P! with an arbitrary number of triple points and

arbitrary tridegree (a,b,c) have the expected dimension if a,b,c > 2, a #5, and b # 5.

Using a similar technique, we have also proved the analogue of Theorem 2.1.3 for K3 surfaces.
Moreover, we were able to generalize the results of the lemma 3.4.2 for any multiplicity m in the
projective plane. We were able to find general polytopes for which the associated linear system
with an general m multiple point becomes empty, so using this and following the arguments used in
Sections 2 and 3 one can reduce the interpolation problem to a combinatorial result.

Furthermore, since we easily generalized our triple point analysis from the projective plane to the
projective space, one could study the generalization of the m multiplicity point from the projective
plane to higher dimensional spaces. This is a challenging problem since ,as we mentioned before, for

higher dimensional spaces very little is known.



Remark 1.6.2. Everywhere in the thesis we call a Cremona transformation the birational trans-
formation on the projective plane obtained by blowing up three points and blowing down the three
(—1) curves connecting the three points. For the projective plane we have that every birational
transformation is a composition of Cremona transformations specifying the points that are being
blown up and the order of such composition. For example, if we fix six points P, ..., Ps in the plane,
a Cremona transformation 123 — 456 will represent the plane obtained by performing two Cremona
transformations: to the first three points and then to the last three points. We notice that this
changes the geometry of the plane by affecting the curves passing through the points and therefore

it changes the linear systems with these base points.



CHAPTER 2

Degenerations of the Veronese

We denote by S(a,b) and call it a rational normal scroll , with 0 < a < b, to be a smooth
scroll surface of degree d = a + b in P4+, which is described by the lines joining corresponding
points of two rational normal curves of degrees a and b lying in two linearly independent subspaces
of dimensions a and b respectively. As an abstract surface, S(a,b) is isomorphic to the Hirzebruch
surface Fy_g.

First of all, the Veronese V; degenerates to the union of V;_; and a scroll S(d — 1,d):

L N

FIGURE 2.1.

In a trivial family X of P?’s parametrized by a disk A, blow up the central fibre along a line R,
and get a new family X’. The general fibre of X’ is still a plane, while the central fibre consists of
the union of two surfaces: the old plane P and the exceptional divisor F, which is a F;, meeting P
along the line R. We note that R is also the (—1)—curve on F, meeting the ruling F' in one point.

We consider the line bundle which is the pull-back to X’ of Op2(d). We call O(d) the pull-back
of this line bundle to X’ and we twist it by —F, L = O(d) ® O(=F). Since F is a surface disjoint
from any other plane of the family, the restriction of L to the general fibre is still Opz(d), whereas
its restriction to P is Op2(d —1) and to F is Op(dF + R). dF + R is a very ample divisor and embeds
F as a scroll of degree 2d — 1 in P4+ S(d — 1, d).

This construction can be iterated, and we thus see that V; degenerates to a union of a plane V3

and a sequence of scrolls S(1,2),5(2,3),...,5(d —1,d) (see Figure 4.2).



FIGURE 2.2.

Similarly, S(d — 1, d) degenerates to a quadric and a scroll S(d — 2,d — 1):

FIGURE 2.3.

In the central fibre of a trivial family of F;’s one has to blow up a ruling, thus creating an
exceptional divisor, G which is a Fy. We twist by —G, i.e. we consider the bundle O(R+dF)@0O(—G)
that embeds the general fiber Fy as a scroll S(d—1,d) and the fiber over zero as a union of a quadric
S(1,1) and a scroll S(d—2,d —1). When d = 1 the bundle O(R+ F') contracts the negative section
so it embeds [y as a plane. Iterating this construction we have that S(a — 1, a) degenerates to a — 1

quadrics and a plane (see Figure 2.4).

FIGURE 2.4.

We notice that these degenerations can be combined in order to give rise to a degeneration of

V4 to a union of d planes and (;l) quadrics, which we illustrate below for d = 6:

AN

AN

FIGURE 2.5.

Summing up, the wvertices of the last configuration of planes and quadrics are independent
and therefore can be taken as the coordinate points of the ambient PH@+3)/2 We will call this
degeneration the quadrics degeneration of the Veronese.

Moreover, each quadric can independently degenerate in its own space P2, to a union of two planes
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and it can be performed by moving the quadric in a pencil in its embedding P? and leaving the

corresponding quadrilateral of double lines fixed.

or for each quadric.

FIGURE 2.6.

If we degenerate each quadric to two planes, we obtain degenerations of V to d? planes; we will
refer to these as to planar degenerations of the Veronese. Again, each double curve is a line in the
ambient projective space, and the union of the planes spans this space, each plane contains exactly
three of the coordinate points of the projective space. Since the vertices of these configurations
are independent in the ambient projective space, any subset of n of the planes which are pairwise
disjoint will span a maximal dimensional space, of dimension 3n — 1. Any such subset of a given

planar degeneration D of V; will be called a skew n-set of planes of D.

1. Double point interpolation problems.

We consider L£4(2™), i.e. the linear system of plane curves of degree d with n general double

points. We recall the Veronese embedding
vg: P2 — pd(d+3)/2

with image Vg, the Veronese surface of degree d?. A plane curve of degree d corresponds via vg
to a hyperplane section of Vy; and such a plane curve has a double point at p if and only if the
corresponding hyperplane is tangent to Vg at vg(p). Therefore the linear system £4(2™) corresponds
to the linear system H of hyperplanes in PH+3)/2 which are tangent to Vy at n fixed (but general)
points. The Terracini’s Lemma relates this linear system to the tangent space to the a secant variety
of Vy: the base locus of H is the general tangent space to Sec,,—1(Vy), the (n — 1)-secant variety to
V4, i.e. the variety described by all linear spaces of dimension n — 1 which are n—secant to V4. One
thus concludes that £4(2") is special if and only if Sec,,—1 (V) has smaller dimension than expected,
namely Vy is (n — 1)-defective. Employing a planar degeneration of the Veronese, we are able to

reduce this result to a purely combinatorial property of the resulting configuration of planes.
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Lemma 2.1.1. Suppose that there exists a planar degeneration D of Vg, and a skew n—set of planes
of D. Then the linear system L4(2"™) has the expected dimension d(d + 3)/2 — 3n. In particular, if
there is skew n—set of planes of D whose planes contain all of the (d+ 1)(d+ 2)/2 coordinate points

of the configuration, then 3n = (d + 1)(d + 2)/2 and the linear system Lq(2") is empty.

ProOF. We consider the degeneration D, and we let the general points p1, ..., p, on V; degen-
erate in such a way that each point goes to a general point of the planes in the subset S. The limit
of the system of hyperplanes tangent to Vy at the points pi,...,p, is the system of hyperplanes
tangent to the configuration D at each limit point; but a hyperplane which is tangent to a plane at
a point must contain that plane. We conclude the limiting system of hyperplanes is the system that
contains the subset S of n planes in the configuration, which is the system of hyperplanes containing
the span of S. Since S consists of pairwise disjoint planes, it has maximal dimensional span, of
dimension 3n — 1; and therefore this limiting system of hyperplanes has codimension equal to 3n.

By semicontinuity, we conclude that the system £;(2™) has codimension at least 3n in Lg4; but
this is also the maximum possible codimension, since we are imposing 3n linear conditions on the
plane curves.

In particular, if one can find a skew n—set S of planes in D that contain all of the coordinate
points of the configuration, then S will span the ambient space. Hence there can be no hyperplane
that contains all of the planes of S, and we conclude, using the same argument as above, that the

corresponding linear system must be empty. 0

Lemma 2.1.2. £5(27) is empty, and dim(Ls(2°)) = 0, i.e. these systems have the expected dimen-

S10NS.

PROOF. We illustrate below a skew 7-subset (respectively 9-subset) for a planar degeneration

D5 of V5 (respectively Dg of Vg):

X
X
X

X Dg: X

Ds: X X
X
X
X]
X X X X X] X

FIGURE 2.7.
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Note that in the d = 5 case, the planes indicated by an ’x’ form both a spanning skew 7-subset of
the indicated total planar degeneration so the 7-subset of planes spans a P?°. In the d = 6 example,
the only vertex not covered by the 9-subset is the one at the upper left; the 9-subset spanning a

P26 O

As announced, the lemmas above enable us to reduce the problem of determining the dimension

of £4(2"™) to a combinatorial one.
Theorem 2.1.3. The linear system L4(2") has the expected dimension whenever d > 5.

PRrROOF. The proof will be by induction on the degree d. Fix ng = |(d + 1)(d + 2)/6]; with this
number of points, we see that the virtual dimension of £4(2™°) is

-1 ifd=1,2 mod3
v=d(d+3)/2—3ng =

0 ifd=0 mod 3.
Suppose that the theorem is true for this n = ng. Since the virtual dimension of £4(2m°) is at least
—1, we conclude that the 3ny conditions imposed by the ngy double points are independent. Hence
any fewer number of points will also impose independent conditions, and so £4(2¥) will have the
expected dimension for any k < nyg.

We will show is that there is a skew ng—subset S of planes for a certain planar degeneration D
of Vg, if there is one for V;_g. To start the induction, we must illustrate such degenerations and
subsets for 5 < d < 10; like in Lemma (2.1.2); this is not difficult and we leave it to the reader. By
induction, we assume that a total planar degeneration Dy_g and a maximal skew subset S’ of it are

available. To be specific, we have two configurations (depending on the parity of d) which show that

Dd76 Dd*G
X, X, X, X, X, X,
X] X] X] X] X] X]
X B3 b3 D5 b3 X X Dﬁ
X] X] X] X] X] X]
d odd d even
FicUure 2.8.
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if we have a solution for degree d — 6, then we can construct one for d; this finishes the proof. [

Remark 2.1.4. When d = 2 or 4 it is easy to see that we can’t find a 2 or 5 skew set of planes;
however this does not prove the non-emptiness of the linear system. The argument here is the

speciality of the systems. However for d = 3 there exists a 3-skew set, therefore the theorem also

holds for d =3

FIiGURE 2.9.

2. Points of higher multiplicity.

In this section we go back to interpolation and we want to use the planar degenerations of the

Veronese surfaces in order to study multiple points interpolation problems. We recall a basic fact.

Lemma 2.2.1. Let X be a variety, M a line bundle on X, and D an effective Cartier divisor on
X. Set M(D) = M @ Ox (D). Suppose that H*(X, M) = H*(X, M) = 0. Then the restriction map
from H°(X, M(D)) to H(X, M (D)|p) is an isomorphism.

Lemma 2.2.2.

(a) Let X be the blow up of P? at a point, with exceptional divisor E and line class H. Let
M = Ox((m —1)H —mE). Then H*(M) = H'(M) = 0.

(b) Let X be the blow up of P* x P! at two general points, with exceptional divisors E; and
FEs>, and denote by V the vertical fiber class and by H the horizontal fiber class. Let
M =0Ox((m—1)H+mV —mE; —mEs) (or, symmetrically, M = Ox(mH + (m —1)V —
mE; —mEy) ). Then H'(M) = H'(M) = 0.

PROOF. In both cases, we have that H® = 0 since the systems are empty.
Indeed, for (a) there are no curves of degree m — 1 with one m-multiple point.
We apply Riemann-Roch for D = (m — 1)H — mFE

D(D — Kx)

X(Ox(D)) = ==

+x(0x).

By Serre Duality we get H*(Ox ((m — 1)H — mFE)) = 0; and since
H(Ox((m —1)H —mE)) =0 and x(Ox) = 1 we obtain

D(D — Kx)

Y (Ox((m —1)H —mE) =1 — 5

14



(N — [

P2 X
FiGURE 2.10.

We have Kx = Kp2 + F and Kp2 = —3H, so
D—-Kx=(m+2)H— (m+1)E where 2 = —1 and H? = 1

R (Ox((m—1)H —mE))=1—[(m — 1)H — mE|][(m + 2)H — (m + 1)E]/2
=1-[(m—-1)(m+2)+m(m+1)]/2=0
For part (b) D =mH + (m — 1)V —mFE; — mFE> and we get that

H°(Ox(mH + (m — 1)V — mE; — mE5)) = 0 since applying a Cremona transformation we have

Lm—1.m(m?) = L,,_1(m) = @ In general, Kpiyc = —2s + (29(C) — 2)F so for C = P! we obtain

- N
} X

2

Pl x p!

FIGURE 2.11.

Kpiypr = —2B — 2F. Using Kx = Kpiyp1 + (F1 + E3) we obtain D — Kx = (m+ 1)B + (m +
2)F — (m + 1)(E1 + E2) where E? = E2 = —1 and F? = B2 = 0. By Riemann-Roch
X =D(D - Kx)/2+1=0 it implies that k' (Ox (mH + (m — 1)V — mE; — mE,)) = 0. O

We can apply the previous Lemmas to different divisors D. It is useful for our applications,
given the degeneration constructions we have introduced, that the divisors D be subdivisors of the
double curves of the planes or quadrics in the degeneration.

In the planar case, this means that we will be applying the lemmas for a divisor D consisting of

a subdivisor of a triangle of lines Ly + Lo + L3. We have the following list of M (D)’s in this case.

Lemma 2.2.3. Let X be the blow up of P2 at a point, with exceptional divisor E and line class H. Let
Ly, Ly, and L3 be a triangle T of lines not passing through the point. Let M = Ox((m—1)H—mE).

15



Then the restriction maps

(1): HY(X,0x(mH —mE)) — H°(L;,Ox(mH)|L,)

(2): H(X,0x((m+1)H —mE)) = H*(L; + L;, Ox((m + 1)H — mE)

Li"rLj)

(3): H%X,0x((m+2)H —mE)) — HY(T,Ox((m +2)H — mE)|r)
are tsomorphisms.

PROOF. We note that these three spaces have dimensions m+1, 2m+3, and 3m+6, respectively.

(1) This result also follows from Lemmas 2.2.1 and 2.2.2 but we will give a different proof.

Indeed, we notice that the linear system L,,(m) is determined by fixing a divisor of degree

SN

m

m on a line.

FIGURE 2.12.

First, assuming that the fixed point P is [0,0,1] and then identifying L,,(m) =
K[X,Y],, one can easily see that dim L,,(m) = v(L;,(m)) = m. We note that each
point on the line and P determine a unique line in the plane, so the corresponding curve is

the product of the m lines. Therefore this curve has degree m and an m multiple point at P.

(2) We claim that the linear system L,,4+1(m) is determined by the restriction of a divisor of

" %

m+1

degree m + 1 on two lines.

FIGURE 2.13.

Again we compute the dimension dim L,,+1(m) = v(Ly11(m)) = 2m + 2 since if
P =0,0,1], then the linear system is just ZK[X,Y ] + K[X,Y]m41.
Let C' = L; + L; be the divisor of the two lines, C' = 2H, one gets an exact sequence

by taking the restriction map of each curve to the conic C

0—= O((m—-1)H—-mE) = O((m+1)H —mE) = Oc(m+1) = 0.

16



By Lemma 1, h°(O((m — 1)H — mE)) = h*(O((m — 1)H — mE)) = 0 so we obtain

HY(O((m + 1)H —mE)) = H°(Oc(m + 1))

(3) We claim that the linear system L,,12(m) is determined by the restriction of a divisor of

degree m + 2 on a triagle of lines.

m+2

FIGURE 2.14.

The linear system is again Z2K[X, Y]+ ZK[X,Y]mi1+K[X,Y]mi2 sodim £, 12(m) =
V(Lm42(m)) = 3m—+5. If T is the divisor of the three lines, then T' 22 3H, so the restriction

to this cubic gives us the following short sequence:
0—O((m—-1)H—-mE) - O((m+2)H —mFE) - Op(m+2) — 0.
By a similar argument one gets an isomorphism on the level of sections:

H°(O((m +2)H — mE)) = H°(Or(m + 2)).

In the quadric case, we present the information in a table. Let X be the blow up of P! x P! at

two general points, with exceptional divisors Fy and Es, and denote by V the vertical fiber class and

by H the horizontal fiber class. We fix two vertical fibers V7 and V5, and two horizontal fibers Hy

and Hs, not passing through the two points; our divisor D will be a subdivisor of H; + Ho 4+ V7 + V5.

By Lemma 2.2.2, there are two possibilities for the line bundle M for each divisor D; these are

presented in the last two columns of the table.

Lemma 2.2.4. Using the above notation, the restriction map from H°(X, M (D)) to H*(D, M (D)|p)

is an isomorphism, for all D and M (D) in the following table:
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Divisor D M(D)-a M(D)-b

1. 0 mV + (m—1)H (m—-1)V+mH

2. ViorVy (m+1)V+(m—-1)H mV+mH

3. Hj or Hy mV +mH (m—-1)V+(m+1)H
4. Vi+ H; (m+1)V+mH mV + (m+1)H

5. Vi+Vs (m+2)V+m—-1)H (m+1)V+mH

6. Hy+ Ho mV + (m+1)H (m—-1)V+(m+2)H
7. Hi+Hy+V; (m+1)V+(m+1)H mV+(m+2)H

8. Vi+Veo+ H; (m+2)V +mH (m+ 1)V +(m+1)H

9. i+ Va+Hi+Hy (m+2)V+(m+1)H (m+1)V+(m+2)H
(We abused notation and denoted the M (D)’s using the divisor classes only.)

m-1| ,° m-1] . * m|,* m|,*
m m+1 m m+1
la, 1b 2a, 3b 2b, 3a 4a,4b
m-1] . * m+1| ,°* m+1| ,°* m|,* m+2],°
m+2 m m+1 m+2 m+1
5a, 6b 5b, 6a Ta,8b 7b, 8a 9a, 9b
FIGURE 2.15.

We will also need the following useful observation

Lemma 2.2.5. Consider n surfaces with an interior vertex v, Xi, ..., X, such that X; and X;41
intersect along the line L;. Consider M; to be complete linear systems on each surface X; determined

by the restriction to each line gives isomorphism

M; = M; |,

M; = M,

Lit1 -
Then there is a single divisor in the fiber product of elements of M; that agree on each L;. Moreover,

it is of the form dP; for some point P; on each L;.

PROOF. The composition of the isomorphisms ¢; : M;

L.y, gives an automorphism
¢: My |p,— My |p, which must be determined by an automorphism of a line ¢ : L1 — Lj, that

fixes the vertex v. There is a one to one correspondence between the sets {fiber product of elements
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of M; that agree on each L; } < {divisors on M; |r, invariant under ¢ }. So after a change of
coordinates o becomes an automorphism of P! that fixes the origin and the point of infinity, so is
just multiplication by a constant «. So in the affine patch, (in some coordinate system) one has
o(s) = as. So, switching to projective coordinates o[z, w| = [az, w]. Consider polynomials of degree

d that are invariant under the morphism o. We ask that

fzw) _ flofz,w])
zd 24

This condition forces f to be a monomial of degree d, of the form
2"wdT, for 0 < r < d.
Notice that if 7 > 0, then the divisor associated to the polynomial z"w? " has 0 in it’s support.
Because 0 is the interior vertex the polynomials on each surface X; not only they will vanish at
0, but also from the compatibility conditions on each line L;, they will have the tangent direction
determined. Since the interior vertex can not be in the support of the divisors, one gets only one
dimensional space of polynomials of degree d invariant under o, generated by w?. (So, one gets an
invariant polynomial of degree d on each line L;, and they lift to an unique element of the linear

system of the total space). O

Remark 2.2.6. Lemma 2.2.5 is useful when there are cyclical configurations of surfaces that overlap.
In this case, in each of the cycles of surfaces, there is a unique section up to scalar satisfying the
matching conditions. However these two sections will not agree on the overlap. Hence we conclude

that any section satisfying the matching conditions must be zero.

Next, we will apply these lemmas by constructing a degeneration of the d-fold Veronese Vj; to a
union of planes and quadrics as described above. We will degenerate the bundle O(d) to a bundle
on the degenerate configuration which will have certain degrees on the planes and bidegrees on the
quadrics. The general multiple points will degenerate either to one point on a plane or to two
general points on a quadric. For higher multiplicities, it is necessary to relate the linear systems on
the surfaces and on the double curves. An example will illustrate the argument.

The next theorem is the more general statement, which is slightly better than Nagata’s conjec-

ture in this case, but it is weaker than Harbourne-Hirschowitz.

Theorem 2.2.7. The system Ekm(mk2) has the expected dimension, in particular it is empty for
k>4.
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PROOF. As above, we consider the system associated to the line bundle O(m) on the k-fold
Veronese V;,. Degenerating, we form a total planar degeneration to k2 planes, and on each plane we
have the linear system of curves of degree m. We degenerate the k? points by putting one in general

position on each plane of the degeneration; for example, a k = 5 example is illustrated below.

X
X degree m on each plane
X X
X X k2 multiplicity m points,
X X X
< < < one in each plane
X X X X
X X X X
x X X X X

FIGURE 2.16.

The cases k = 1,2 and 3 can be analyzed separately. For k& > 4, the system is expected to be

empty. For k = 4 the linear system is empty.

FIGURE 2.17.

Indeed, there is a unique divisor satisfying the matching conditions on the six planes adjacent to
each of the three interior vertices. However for any two of these interior vertices, there are adjacent
planes in common (by lemma 2.2.6). The divisors will not agree on these common adjacent planes.
Hence the system is empty as expected.

Finally for k > 4, if we form the same type of configuration, by induction, the top (k — 1)?

planes already cannot support a divisor. The system will thus be empty. O

3. Line bundles on quadrics degenerations of the Veronese.

More flexibility can be acquired in the limiting line bundle on the configuration by using the

quadrics degeneration of the Veronese that we presented in §2. We recall that this is the triangular
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configuration of (g) quadrics, meeting along lines, with d planes on the ’hypotenuse’ of the config-
uration. We will coordinatize the configuration, and index the surfaces in the configuration as 73,
with ¢ > 1, 5 > 1, and ¢ + 7 < d + 1; the quadrics are the surfaces with ¢ + j < d, and the planes
are the surfaces T g11—;. We have that T;; meets Ty, along a line if and only if either ¢ = k£ and
l7—¢ =1lorj=~¢and |i—k|=1.

We can form a line bundle on this partial quadrics degeneration by putting a line bundle on each
surface such that on each double curve the restriction of the two bundles agree. This can be done
by choosing d integers r1,r9, ..., 74, and for ¢ + j < d putting the bundle of bidegree (r;,7¢4+1—;) on
the quadric T3;; on the plane T; 441—; one puts the bundle of degree r;. This can be conveniently
with the following picture referring to the case d = 5: This line bundle is the limit of the line bundle

n I\

T2

T3

T4

s N

Ty T2 '3 T4 Ts

FIGURE 2.18.

Op2(r), with r = 71 + 19 + ... + rq. We will use Lemmas 2.2.3 2.2.4 and 2.2.5, for proving the

following theorem:

Theorem 2.3.1. The system Ekm+1(mk2) has the expected dimension. In particular, it is empty

for k> 6.

PRrROOF. First note that the expected dimension is v = mk(5—k)/242. We will degenerate V}, to
a union of k planes and (g) quadrics placing one point on each plane and two points on each quadric
and the bundle degeneration is as indicated above: we will see for each value of k which values of
r1,...,Tk is convenient to take. In particular, for k < 4 we will take ;1 =m+1,r0o =... =1 = m.

As before, cases k = 1,...,5 can be analyzed separately (see [4] ).

Case k = 6. This is the first case where we must show that the system is empty. Here we
consider the following degeneration of the plane into six surfaces, three re-embedded quadrics and

three Veronese surfaces, with degrees indicated, that sum to 6m + 1:

The number of points on each quadric is 8, while the number on each Veronese is 4; note that

the total number is 36 as required.
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2m 4

2m+1, 8

2m 8 8 4

2m 2m—+1  2m
k=6

FIGURE 2.19.

We focus on the lower left quadric T 1, where we have the linear system of curves of bidegree
(2m, 2m) on a quadric, with 8 points of multiplicity m. This has a space of sections of dimension
one, namely a unique divisor, the m-fold curve in the linear system of bidegree (2,2) through the 8
points. The restriction of this space of sections to both the right double curve and the top double
curve has dimension one.

Now consider the quadric 75 ; just to the right of this, and consider the restriction to the double
curve on the left with T ;. This restriction of sections is onto (the sheaf is the sheaf of degree 2m on
that vertical curve), and the kernel has dimension one (as a vector space), with the similar analysis
as above. Therefore the space of sections here that could agree with an element of the dimension
one space of sections coming from 77 ; has dimension two, one coming from the restriction and one
coming from the kernel.

This same analysis holds for the quadric 77 »: there is a dimension two space of sections there
that restrict to some element of the dimension one space of sections of the double curve where this
quadric meets the lower left quadric.

The space of sections now on these three quadrics has dimension three: 2 each on the two
quadrics, but there is a condition that the sections agree at the point of intersection, which is the
interior point of the configuration.

Now look at one of the corner planes, e.g., T 3. The system there is of degree 2m, with four
m-fold points. We know that this is the linear system composed with the pencil of conics through
the four points. Therefore the restriction of this system to the double line is the system (of vector
space dimension m + 1) of the intersections with the pencil of conics. If m > 2, no element of the
2-dimensional space of sections on the adjoining quadric will match with any such element on the

double line. (The ambient space has vector space dimension 2m + 1, and we have the restriction of
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a 2-dimensional space from the quadric and the (m + 1)-dimensional space from the plane, which
will not intersect away from 0 if m > 2.)
We conclude that the section must be zero on that corner plane, also by symmetry on the other
corner plane; then it must be zero as well on the quadrics, and finally on the center plane T5 .
Case k > 7. The virtual dimension is v < 0 and we must show the system is empty. We use a

degeneration with r; =ro =r3=m, ry, =m+ 1, and r; = m for ¢ > 5:

3

AN

3

3

m+1

s

3

N

mm mm+1l.. m m m

3

k>7

FIGURE 2.20.

The sections on the 3k — 12 lower left quadrics must be zero, using the Remark 2.2.6. Then on
the eight surfaces just above these, we must also have zero sections; this applies as well all of the
surfaces to the right of these, except the final corner plane. This leaves only the two corner planes

T and Ty 1, and the final plane T4 j—3; sections on these are now seen to be zero as well. ]

23



CHAPTER 3
Triple points in P?

1. Toric varieties and toric degenerations.

In this section we recall a few basic facts about toric degenerations of projective toric varieties we
referred to [15], for more information on the subject and to [12] for relations with tropical geometry.
The datum of a pair (X, £), where X is a projective, n—dimensional toric variety and £ is a base
point free, ample line bundle on X, is equivalent to the datum of an n dimensional convex polytope
P in R™, determined up to translation. Thus we will assume all points of P have non—negative
coordinates (see [11], page 72). If m; = (my1, ..., M), 0 < i < r, are the r + 1 integral points of

P, we consider the map

ppix e (C)" = [z™ .. :a™] eP”

where z = (z1,...,x,) and

xmi = :L.'inil - :L.Zlin'

The closure of the image of ¢p is the image Xp of X via the morphism ¢, determined by the
line bundle L. For example, if P is the triangle Ay := {(z,y) : x > 0,y > 0,2+ y < d} then Xa, is
the Veronese surface V.

If P is the rectangle Rqp := {(z,9) : 0 < z < a,0 < y < b} with a,b positive integers, then
Xg,, is Fg = P! x P! embedded in P****? via the linear system L, of curves of bidegree (a, b).

If P is the trapezoid T, := {(z,y) : ¢ > 0,0 <y < b,z +y < a} with a > b positive integers,
then X7, , is 1, i.e. the plane blown up at a point p, embedded in P", » = ab+ a — b(b+ 1)/2, via
the proper transform of the linear system of curves of degree a with a point of multiplicity a — b at
.

We consider a subdivision D of P into convex subpolytopes; i.e. a finite family of n dimensional
convex polytopes whose union is P and such that any two of them intersect only along a face (which
may be empty). Such a subdivision is called regular if there is a piecewise linear, positive function

F defined on P such that:
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(i) the polytopes of P are the orthogonal projections on the hyperplane z = 0 of R*™! of the

n—dimensional faces of the graph polytope

GF) :={(z,z2) e PxR:0< 2z < F(z)}

which are neither vertical, nor equal to P;
(ii) the function F' is strictly convez, i.e., the hyperplanes determined by each of the faces of

G(F) intersect G(F) only along that face.

If there is a regular subdivision D as above, one can construct a projective degeneration of Xp
(parametrized by the affine line C), to a reducible variety Xy which is the union of the toric varieties
Xg, with @ in D. The intersection of the components Xg of X is dictated by the incidence relations
of the corresponding polytopes: if @ and Q' have a common face R, then X intersects X/ along
the toric subvariety of both determined by the face R.

The degeneration can be described as follows. Consider the morphism

6 (2,) € (C*)" x C* — [tFmo)gmo ., ¢F(mr)gme] ¢ pr

The closure of the image of (C*)™ x {t}, t # 0, is a variety X; which is projectively Xp. The
limit of X; when ¢ tends to 0 is the variety Xo. Xy is the union of the varieties Xg, with @ € D.
Indeed, suppose that F'|g is the linear function aixz1 + ... + anz, + b. First we act with the torus

in the following way:

(1,0 oy T, t) € (C)" X C* = (7 M2y, ...,t7 "2y, t) € (C*)" x C*.

Then we compose with ¢p, and we get

(@1, Znyt) € ()" x CF — [... s tFmadgmama——anmugms ] ¢ pr.

We note that the point in P” equals

[..c tFmidgmaima = —anmin gmi ) y=b L pFOma)gmaamia = —anmin g

i.e. the point

[...: tF(mi)=Flo(mi) gmi J-

Then by by letting ¢ — 0 in the above expression, we see that X sits in the flat limit X, of X;.
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We will now prove the existence of a lifting function by iterating an obvious lemma. Let X be
a toric surface and P be its associated polytope. Consider P, and Pe to be two disjoint polytopes
in P and X; and X, their corresponding toric varieties. We let L be a line separating P, and Pc

and not containing any integer point.

Lemma 3.1.1. The toric variety X degenerates into a union of toric varieties two of which are

skew.

PROOF. We consider the convex piecewise linear function given by

flz,y,2z) = max{z, L+ 2z}

Consider the image of the points on the boundary of the polytopes X; and Xs through f. Take
now the convex function corresponding to the convex hull of the boundary points separated by L.
The function will still be convex and piecewise linear, therefore we get a regular degeneration. We
consider now the toric varieties associated to each polytope, and since Po, and P are disjoint, we
obtain that two of the toric varieties, namely X; and X5 are skew.

For example, in the picture below we have four polytopes, two of which are disjoint. The

corresponding degeneration will contain four toric varieties, two of them X; and Xs, being skew.

FiGURE 3.1.

O

It is easy to see how we iterate this process. We regard X5 as a surface independent of X,
and we let M be a line cutting the polytope associated to X2 and not containing any of its interior
points. Then X5 degenerates into a union of toric surfaces, two of which are skew, Y5 and Y3.

We conclude that X degenerates into nine toric surfaces three of which X3, Y5 and Y3 being

skew, as the picture indicates.
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FIGURE 3.2.

Later on, we will ignore the varieties lying in between the disjoint ones; they are only important

for the degeneration and not for the analysis itself.

2. Notation and Terminology.

The group SL?(Z) acts on the column vectors of R? by left multiplication. This induces an

action of S L;t(Z) on the set of convex polytopes P by acting on its enclosed points. We will denote
1 -1

P’ to be the image of P. For example, the matrix acts on the polytope P by sending
0 1

x x—y
every point enclosed by P to . Note that the points on the base level

x
are fixed by this action while the points on the first level will be shifted by 1, the points on
1

the second level will be shifted by 2 etc. Denoting by P’ the resulting polytope, we have that P and

P’ are congruent. We will say we shift a polytope by n when we repeat this operation n times, i.e.

1 —n
when we act by the matrix . Shifting left or right depends on the sign of n. In a similar
0 1
-1
way rotation by an angle of 7 corresponds to the action of ; reflection to the action
0o -1
-1 0
of and translation corresponds to the the action of Z? etc. Orientation preserving
0 1

lattice equivalences form a group, the semidirect product SLy(Z) and Z?. SL; (Z) corresponding to
orientation reversing lattice equivalences.
Let #(P) denote the number of integer points enclosed by the polytope. We recall a useful

formula that is similar to Riemann-Roch for toric surfaces ([11], page 113):
Remark 3.2.1. Pick’s Formula.

#(P) = Aria(P) + Perimeter((P))/2+ 1
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Next, we will classify all convex polytopes enclosing six lattice integer points modulo the actions
described above. For more connections with toric geometry the interested reader can consult [14],

[22] or [23]. We first start with a definition.

Definition 3.2.2. We say the polytope P is in standard position if

(1) It contains O = (0,0) as a vertex
(2) OS is a vertex where S = (0,m) and m is the largest edge length
(3) OP is an edge where P = (p,q) and 0 <p < q

Remark 3.2.3. Every polytope has a standard position.

Indeed, we first choose the longest edge and then we translate one of its vertices to the origin.
We will now rotate the polytope to put the longest edge on the positive side of the x axis and then
we shift it such that the adjacent edge lies in the upper half of the first quadrant. Indeed, if OP is
an edge with P = (s,q) and s > ¢; then s = mg+p for 0 < p < ¢ so we shift left by m. We will call

this procedure normalization.

It is easy to see that the standard position of the polytope may not be unique, it depends on
the choice of the longest edge, and of the choice of the special vertex that becomes the origin.

We can now begin the classification of the polytopes in standard position according to m (the
maximum number of integral points lying on the edges of the polytope), and also according to their
number of edges, n. Obviously, the polytopes P will have at most six edges, and at most five points
on an edge, so we get the inequalities n < 6 and m < 5. We will denote by R the point (0, 1).
Obviously, R € P

3. The Classification of Polytopes.

Remark 3.3.1. If m # 5, then M = (1,1) € P

(1) Indeed, knowing that p < q and first assuming p # 0, then M = (1, 1) is inside the region

enclosed by the lines PO and PR.
(2) If p = 0 and q is at least 2 then m > 2 and by convexity P contains the point (1,1). If

p =0 and q = 1 then PR contains at most 4 points (since m < 4) so P has at least one
more vertex, Q = (s,t). If s <t apply the previous analysis for QOR; if s >t apply it for
QPO while if s =t, then (1,1) € OS C P.

28



We will therefore start the classification of all the convex polytopes P, that contain the points

O, R and M and the next vertex is the point P = (p,q) where p < ¢ and p,q > 0.

(1) m = 5 so no interior points. There is only one other vertex P that after shifting can be

assumed to be on the y axis. We conclude the only possibility is

P=(0,1)

FIGURE 3.3.

(2) m =4 so the longest edge has 4 vertices.

P=(p,q)

FIGURE 3.4.

We claim that P = (p,q) = (0,1). Indeed, assume p # 0. Since the point M = (1,1)
is in the interior, we conclude that g < 2 otherwise the polytope contains (2,1). Therefore
g =1and (1,1) is a vertex, so shifting by one allows us to assume that P is (0, 1). Remark

3.3.1 case (2) gives us that P needs to contain the point (1,1).

P. M (1,1)

o) 4AR

FIGURE 3.5.

(3) m = 3. As before we have that P contains O, R, M, N = (0,2) and P = (p,q).

(a) p=0

(i) (2,0) is in the polytope so P corresponds to the projective space P2

P 2 M=(1,1)
o)

FIGURE 3.6.

(ii) (0,1) is the next vertex. We distinguish two subcases:
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(A) (1,1) is on the next edge so the polytope P corresponds to the ruled surface

P! x P!
P M

ol 1

FiGURE 3.7.

(B) Next edge is at a higher angle, and since (2,1) ¢ P we get p < 2. Sop=1

S\

FIGURE 3.8.

and g =2

(b) p=1so0¢g<3.
(i) ¢ = 2 then (1,2) is the last vertex. Remark 3.3.1 case (2) with the origin

translated at the point (0,1) gives (2,1) is in P also.
P=(1,2)
o/ 2
FIGURE 3.9.

Note that this is a reflection of the polytope from Case 3a)iiB, so the two

polytopes are equivalent and are both in standard position.

P=(1,3)
L

FiGure 3.10.

(i) ¢ =3

(¢) p>2. We have ¢ > 2 and by convexity, (2,1),(2,2) € P and these are all six points.

After shifting we obtain P = (0,2) that contradicts the hypothesis p > 2

(4) m = 2. The classification of the polytopes will now depend on the number their edges, n.
(a) n = 3. For this we use Pick’s formula (see [11] page 113) to get 6 =1 + @ +area =
1+ % + area, we get that area = 4 = %, so g = 7. We have to classify all polytopes
P, with the vertex at P = (p,7) and p < 7. Note that the assumption m = 2 imposes
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p#0,1

By shifting and reflecting we find that Pg and Py are congruent, and similarly, Ps and

-2 1
P3. We also have that P4, = Ps. Indeed, since the matrix takes the set
-7 3
P=(-1,7) P=(27) P=(27) P=37)
\N/ \/\/
Ficure 3.11.
0 1 2 -1 3
of points , , , , to the set
1 3 5 0 7
1 1 1 2 1
3 2 1 7 0

so they differ by an element of SLs(Z).

B P@7) PED P(47) PEY)
|

i
I

/

7

/
1
T (i

FIGURE 3.12.

The distinct polytopes that we obtain in this case are Po and Ps

FIGURE 3.13.

(b) n =4 so 2 interior points.
(i) The first chart is smooth so P is (0,1). We denote by Q@ = (s,t) the last
vertex of the polytope that also encloses the point (1,1). 6 =1+ % + area, so

area = STH = 3. Since s +t = 6 we have two possibilities
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Q(st)

p
o R
FIGURE 3.14.
Q(2,4)
0 R
FIGURE 3.15.
(A) Q@ =(2,4)
(B) Q@ =(3,3)
Q(B3)
P = b =
0 R
FIGURE 3.16.

(c) n=4
(i) The triangle OPR has no points in interior and 4 points on the boundary. We
get
4 = l—l—%—l—areaéarea:qzz p # 0,2 since m = 2, so P = (1,2) is the
next vertex of the polytope and (1,1) is an interior point. Let @ = (s,t) be the
last vertex. 6:1+%+areaé3:area:1+@ =s=3and t <6 If
t = even then the edge OR contains one more integral point (2, %52 + 2) that

contradicts the assumption m = 2. We distinguish two cases for t: {3,5}. For

Q@5)

P(1,2) =Q(3’3) P(1,2) _ - ~R
v D Q31
o R o] R o] P

FIGURE 3.17.

t = 4 we obtain the polytope from Case 4bi A
(ii) The triangle OPR has one interior point and 3 points on the boundary. We get

4:1+%+area:>area:%:%and since p # 0,1,3 we get P = (2,3). Then
6=1+2+(2+A)then A=2
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If Q@ = (s,t),s > 2 is the next vertex then PQ has the equation

r = 2+ (y — 3)3=2. It intersects the line x = 1 at the point (1,3 + 3=%).

t=3 2—s
A=3+ zjé)s_é_l = % Then s = 2 + % and by convexity we have % < % SO
S P=(23)
" Q
R p1
FiGure 3.18.

s < 4 and therefore @ = (3,3). If s < 3 then s = 2 and RP contains then 3

P=(2,3) =(3,3)
0 R
FIGURE 3.19.

points that contradicts our assumption.

(iii) The triangle OPR has 5 points on the boundary and no interior point. We get
5=142+area = area = 1 = 2 and since p = 1 we get P = (1,3). Let
Q = (s,t) the last vertex with 0 < ¢ < 6.

Then6=1+%+areathenar€a=%—i—@@s:z

=(52
=(4.2) Q=(5.2)
P=(1,3) P=(13) P=(13

p
Q = _< ‘ /
o) 0 o) o) o)
FIGURE 3.20.

All these polytopes were studied before. Indeed, we notice that the polytopes
with the vertices at @ = (2,1) and @ = (5,2) are equivalent to the one form
Case 4biB and same for Q = (2,2) and @ = (4,2) that is the equivalent with

Case 4ci, while if @ is (2,3) we obtain the polytope from Case 4cii.
(iv) The triangle OPR encloses two interior points. Then 5 = 1+ 3 +-area = area =

E=2sop=>5and 1 <p<qsowe get three cases for P: (2,5),(3,5), (4,5)
Shifting by 1 and then reflecting we get that Py = P15 = P25 Let

Q@ = (s,t) be the last vertex
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P=(2,5) P=(3,5) P=(4,5)

O R (0] R (0] R

FIGURE 3.21.

(A) If P(2,5) then 6 =14+ 2+ (3 +A)so A=1

If s > 2 then the line PQ with equation z = 2+ (y — 5) j:g intersects the
line z =1 at the point (1,5 + 2=L) so A = (5 + 2=b)s=0=1 = Ss=f=5 — 1

Weget5s—t:6and§<%s0t<6ands<2.5
Therefore s = 2 and by convexity Q = (2,4).

P=(2,5)
Q=(2.4)

FIGURE 3.22.

This polytope is no new; it was obtained before in Case 4biA.

If s > 3 and P = (3,5) then the line PQ with equation y = 5+ (z — 3)=3

intersects the line z = 1 at the point (1,5+2=%) so A = (5+23=%)s=1=2 =

5572’5*5zé.Weget5s—t=6and%<%sot<6ands<3.5

If s = 3 then the triangle PQR encloses 1 point so s = 2 and @ is (2,2).
We notice that this is the same with the previous one.

P=(3,5)

Q=(2,2)
o) R b

FIGURE 3.23.

(v) n=2>5 and 1 interior point.

(A)

The triangle formed by the three points (0,0), (1,0), (p, ¢) contains 3 ver-

tices and 1 interior point. Then 4 = 1 + % + area so area = 4 =

o

SO
q = 3. Since p < q, p # 0,1,q then P = (2,3) is the only possible case.
Let @ = (s,t) be any of the two remaining vertices. 5 = 1 + % + area so
areazAl—i—Ag:%—i—Ag:QandAg: %

The same analysis as in 4B27 shows that w = % so 3s—t =4. By
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P=(2,3)
Aol Q=(st)

FIGURE 3.24.

convexity % < % ie. t <4 and s < 2 we conclude that @ = (2,3) is the

only possibility for the two remaining vertices which is a contradiction.
(B) The triangle (0,0), (1,0), (p,q) contains one more vertex on the edge, so

4 =1+ %+ area we conclude that area = £ =1 =g =250 P = (1,2).
Let Q = (s,t) be any one of the two other vertices.

Applying Pick’s formula for the polytope ORPQ we get
5:1+%+areasoarea=A1+A2:1+A2=2andA2=@. We
get s = 2, and since % < 2 we have t < 4.

We find 3 possibilities for the last two vertices Q and L, {(2,3),(2,2), (2,1)}
and two set of pairs {(2,3),(2,2)}, {2,2),(2,1)} give two distinct ones that

are equivalent.

(2.3)
k(% - = P=(12) 22
N oL
o) R o] R
FIGURE 3.25.

(C) The triangle O, P, R contains no other integral point. 4 = 1+ % + area =
area = & = 1.
After shifting we reduce to the case when P = (0, 1).
By convexity the polytope contains the point (1,1). Let @ = (s,t) be any
other vertex. If s and ¢t are > 1 then 5 =1+ % + area so 1+ % =2
and therefore p + ¢ = 4 so in this case we get the point @ = (2,2). If one
coordinates is 1 then P(Q encloses three points so 5 = 1 + % + area. We
s=1 _ 3

21 = 5 and we obtain two other possibilities for Q

conclude area = 1 +

(2,1), (1,2). We obtain the same polytopes as in the previous case.
(vi) n = 6. Consider the triangle OPR s0 3 = 14 2 4 area and P = (0,1). If

Q = (s,t) is any other vertex than OPQR has no interior point, therefore
4=1+%+area so area = % = st =1 therefore Q = (1,1). We get the same
value for three remaining vertices which is a contradiction.
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We've just proved the following result

Proposition 3.3.2. Any polytope enclosing six lattice points is equivalent to exactly one from the

following list

— e N oA A

Case 1l Case 3.ai Case3aii,A Case3aii.B Case 3.biiii

j/%blm%>

Casedaii  Case 4biA Case 4biB Case 4ci Case4cii  Case5Bi

FIGURE 3.26.

We now recall that any rational convex polytope P in R™ enclosing a fixed number of integer
lattice points defines an n dimensional projective toric variety Xp endowed with an ample line

bundle on Xp which has the integer points of the polytope as sections. We get the following result

Corollary 3.3.3. Any toric surface endowed with an ample line bundle with siz sections is completely

described by exactly one of the polytopes from the above list.

4. Triple Point Analysis.

We first observe that six, the number of integer points enclosed by the polytope, represents
exactly the number of conditions imposed by the a triple point. We will now classify all polytopes
from Proposition 3.3.2 for which their corresponding linear system becomes empty when imposing a
triple point. There are two methods for testing the emptiness of these linear systems: an algebraic
method and a geometric method. In our case, in order to be efficient and at the same time geometric
we will use both of them, so we will briefly describe them below. For the algebraic approach,
checking that a linear system is non-empty when imposing a triple point reduces to showing that
the conditions imposed by a triple point in P? are dependent. For this, one needs to look at the
rank of a six by six matrix where the first column represents the sections of the line bundle and the
other five columns represent all first and second derivatives in  and y. We conclude that the six

conditions are dependent if and only if the matrix doesn’t have maximum rank. In order to give a
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complete classification, we will use a quick algebraic remark to eliminate the non useful polytopes,
and a geometric argument to illustrate the emptiness. The geometric method for testing when a
planar linear system is empty is to explicitly find it and show that it contains no curve, using P?
as a minimal model for the surface X and writing its resolution of singularities. More explicitly we
consider the projective toric variety X to be the blow up of P2. We give geometric conditions for its
emptiness illustrating our computations by one example, and we obtain five surfaces that pass the

emptiness test.

Remark 3.4.1. The corresponding linear systems of the following polytopes are mon-empty when

imposing a base point with multiplicity three.

S

Case 3.aii.A Case 3.hiiii

oo

Case 4ai Case 4biB Case 4ci Case 4cii

FIGURE 3.27.

PROOF. It is easy to check that the algebraic conditions imposed by at least four sections on
a line are always dependent. Indeed, we have two possible cases, if the line of sections is an edge,
or if is enclosed by the polytope. For the first case, we can only have sections on two levels so the
vanishing of the second derivative in y gives a dependent condition (The same argument applies
for Case 3.a.ii.A representing the embedding of P* x P!). For the second case we notice that the
vanishing of the first derivative in y and the second derivative in x and y give two linearly dependent

conditions. O

We will use the Remark 3.4.1 to eliminate the polytopes that don’t have the desired property
and we now obtain five polytopes for which we will study the corresponding algebraic surfaces and
linear systems using toric geometry methods.

We will illustrate these methods by considering the toric surface described by the polytope from

Case 4aii (see [11] Chapter 2). It’s fan obtained by dualizing the polytope’s angles, consists of three
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cones generated by rays B, F and J. In this case, each cone represents a singular open subset,
so we conclude that the corresponding toric variety obtained by gluing them together is singular.
We will consider it’s resolution of singularity, by blowing up the singular points. In toric geometry,
desingularizing varieties corresponds to a subdivision of the fan such that each cone is a nonsingular
open subset. In our example, we subdivide the fan by introducing nine vectors; we will denote all

generating vectors with letters from A, .., L (see the picture below).

3 3

J 2 J 2
. F || sH |G |F

K

3 2 —1-1 1 2 3 -3 -2L -1-1 l]:.) 2 3
-2 \ Az \\C
-3 B -3 B

Pl oyt ope Fan Desi ngul ari zed fan

Ficure 3.28.

Any two adjoint cones represent affine planes that are glued together and the rays become
curves that meet in a cycle in the toric variety. In the picture, we illustrate the geometry of the

toric variety by specifying the cycle of curves as well as their selfintersection. We will describe the

FIGURE 3.29.

toric surface S by considering P? as the minimal model, after contracting the set of curves {F, J, B},
{C,K,G}, {H,L} and D. Denoting by 7 the compositions of all blow downs we get that the line
class on S'is £L = n7}(I) = 7~ }(E) = 7 1(A) so we get the that following divisors are congruent
3J+2K+L+H+G+F, E+F+H+2G+2F+D+C+B,A+B+M+L+J+D+2C+2B.
Furthermore, the divisor that describes the embedding is C'+ 2D + 3F + 7F + 5G + 3H + I that
corresponds to 4L — (3B + 2C + D) — (3F + 2G + H) — (3J + 2K + L) that represents quartics
with three base points that are flex to the line joining any two L£4([1,1,1]®). In general, we will use

the notation L£4([1,1]), L4([2,1]), La([1, 1,1]) for linear systems of degree d that pass through a base
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point with a defined tangent, a double point with a defined tangent or having a flex direction. Since
the base points are special, we will analyze the linear system separately. We will blow up at one of
the base points and use an elementary transformation at a different base point to get to Pt x P!,
By blowing up the two base points we will get a linear system with two tangent condition while by
contracting the line joining them will transform the flex condition to the contracted line into a cusp

as the picture indicates. The linear system on P! x P! has now bidegree (3,3). We will now impose

FIiGure 3.30.

a triple point at a general point of Fy, and using a set of transformation similar to the one described

above but applied to a different set of base points we return to P2.

Furthermore there is a correspondence between linear systems on the two surfaces (see [4])
Lap(m) = Lopp—m(a—m,b—m)

We apply this for a = b = m = 3 and we get a linear system on the projective plane given by cubics
Ls([2,1,1],[1,1],[1,1,1]). Finally we can consider that the tangency condition of the double point

and of the flex point are general and it will facilitate the analysis

FIGURE 3.31.

The linear system has now degree three and after performing a Cremona transformation we
reduce it to L£2([1,1]%) that is empty since there are no conics passing through three points with

three given tangents.

FIGURE 3.32.

39



We just proved that £4(3,[1,1,1]3) is empty. In the same way we analyze the other four linear
systems described by the four remaining polytopes and we conclude the emptiness applying birational

transformations and splitting off —1 curves and we obtain the following result:

Lemma 3.4.2. The linear systems corresponding to the following polytopes become empty after

imposing a triple point.

polytope linear system

S
53(3, [1, 1, 1]7 1)

24 £4(3,[1,1,1],[1,1],[2,1))

‘CS(B? 1a 1]5 [15 1])

EL L)

5.
L4(3,[1,1,1)3).

Note: I

R g be

1%

1%

1%

FIGURE 3.33.

One can obtain more polytopes with an empty linear system by rotating or by shifting the main

ones by any integer numbers since this won’t change the linear system or the surface.
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Even though all the linear systems were found from the resolution of singularities of the associ-
ated surface we may observe connections with the toric geometry. We predict that the linear system
could be detected from the shape of the polygon. Because these surfaces are all toric the plane P? is
blown up at at most three general points. For example, the first polygon below represents a blown
up P? embedded by a linear system of degree 3. The removed parts of the embedded plane represent
the conditions imposed by the base points of the linear system. In the first picture, we have two
general base points, and removing the three sections on a line represents a flex condition imposed by
one the points; we can see that it matches the system from the table above. We also remark that the
linear system that gives the embedding may not be unique; indeed, we may have different polygons
associated to the same surface. For instance, in the example below the second picture represents a
P? embedded by a linear system of cubics, with two base points and two tangent conditions. We
believe that the two linear systems (in this case of the same degree) are equivalent, being connected

by a birational transformations of the plane.

/N ™\
FIGURE 3.34.

For the second case, the first polygon represents a blown up P? embedded by quartics with three
base points; we can see a double point with a fixed tangent, a tangent and a flex point; while the

second one can be easily identified with a plane embedded by £4(2, [1], [1,1],[1,1,1])

. e

FIGURE 3.35.

In the first picture below one can observe a P? embedded by cubics with two general tangent
base points while the second one should represent an equivalent linear system. We remark that the

degree or the number of base points of the systems might not be the same.

oL @
FIGURE 3.36.
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We also note that the polygon might not necessarily be in standard position.

FIGURE 3.37.

From these observations, we predict that Case 1. is a degeneration of Case 3. (since the two
tangent base points are in special position) and Case 2. is a degeneration of Case 5; so the three
non-degenerated cases correspond to the projective plane embedded by conics, cubics or quadrics
with corresponding base points.

Linear systems with six sections and a triple point that become nonempty since curves split out.
The base points are not in general position so the linear system consists only of a fixed part. It would
be interesting to explain why dependent conditions on the sections level correspond to the splitting

of fixed curves. Below we give one example. The linear system that describes the embedding of the

Pl oyt ope F
Cycl e of curves

Desi ngul ari zed fan

FIGURE 3.38.

plane is 4L — (2B+6C +3D) — (3H + 21 + J) — F that represents quartics with a cusp, a flex point
and a simple point, in some special position. It is easy to see that £4(3,[2,1,1],[1,1,1],1) is special,

consisting of B, G and 2L. We can also read the linear system from the shape of the polytope.

5. Triple Points in P! x P!.

In this section we will present how we can use the results from section [?] to the triple point
interpolation problem in P! x P!. We will only prove the most difficult case when the linear systems
in P! x P! with virtual dimension —1 are empty, the general case will follow by induction, but it was

already proved in a similar way using algebraic methods by T. Lenarcik in [16]. We will use some of
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FIGURE 3.39.

this results for the induction argument in the P? case. Using semicontinuity arguments it is enough
to prove the results for linear systems with virtual dimension —1 and we conclude the emptiness

since the union of all the surfaces span a maximal dimensional space (see [4]).

Lemma 3.5.1. Linear systems of bidegree (5,n),(11,n),(2,4n + 3),(8,2n + 1) and an arbitrary

number of triple points have the expected dimension, for n > 2.

PROOF. e For any linear systems of bidegree (5, n) we find a skew n+1 set of surfaces and
we place each of the n+1 triple points in one of the surfaces. We denote the degenerations

presented below as C2, C¢, C8 and C3

& 1
» 2
.' » N
3K 3 QK\\\\\\‘Z &&

NRAWANADZS

Na\\p7z ol
NNA AN

A\NASZAN

FIGURE 3.40.

is an integer, k. For any arbitrary n we consider the degeneration C% = C¢ + kC3.
e For linear systems of bidegree (11,n) and n triple points we find a skew 2n + 2. We

denote the degenerations presented below by C%, C3,, and C},. For every n > 2 take

i € {2,3,4} such that 2

Cy = Ciy + kCHy.
e For curves of bidegree (2,4n + 3) we consider the degeneration C3"™ given by (n + 1)C3
(in particular, C3' = 3C3) and for C3"*! we use combinations of C§ and CJ

O
Corollary 3.5.2. Linear systems in P! x P! with triple points of virtual dimension —1 are empty.

PROOF. We have to prove the statement for linear systems of bidegree (6k — 1,n) and (3k —

1,2n — 1). We distinguish two cases if k is even k = 2k’ we use the degeneration CJy,, | = K'C}y;
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FIGURE 3.41.

while if £ is odd of the form 2%’ + 1 we use Cly,, 5 = CF + K'CPy, for n # 4. For n = 4 we

use the following degeneration for C7; and we generalize this case by adding C}; blocks For the

1 2345672891

O

11 12 13 14 15 16 17
@R AN
AN\ BN
WA AN
@) s\

NN N NN
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"///
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/
;
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FIGURE 3.42.

bidegree (3k — 1,2n — 1) we reduce to the case when k is odd of the form 2k’ + 1 and depending
on the parity of &/, if 6k = 6 4+ 12r we use the degeneration 082"_1 + rC?~1 while 6k' = 12r we
use C2" 1+ C3" 1 + (r — 1)C7 ! and we put 2n points in the first block and 3n and 2(r — 1)2n

respectively. 0

Remark 3.5.3. The theorem doesn’t hold for L5 4)(3°) and for Liax1,2)(3*F1) that are nonempty
although they have virtual —1. Indeed, the first one is cremona equivalent to the planar linear system
L3(1,2,3%) that is nonempty consisting of a degenerated conic and a line; while the second one has

as a fived divisor 2k lines and a curve equivalent to the double line Lo(—1,0,22).
6. Triple points in P?.

We denote by V; the image of the Veronese embedding vy : P? — P44+3)/2 that transforms the
plane curves of degree d to hyperplane sections of the Veronese variety V;. We degenerate V; into
a union of disjoint special surfaces and ordinary planes and we place one point on each one of the
disjoint surfaces. The surfaces are chosen such that the restriction of a hyperplane section to each
one of them to be linear system that becomes empty when we impose a triple point. We conclude
that any hyperplane section to V; needs to contain all disjoint surfaces, and in particular all of the
coordinate points of the ambient projective space covered in this way. Therefore if V; degenerates
exactly into a union of disjoint special surfaces and planes (or quadrics) with no points left over we

conclude that the desired linear system is empty.
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Theorem 3.6.1. L£4(3") has the expected dimension whenever d > 5.

PRrROOF. Enough to prove the theorem for the number of triple points for which the virtual is
—1 so in that case we claim that the linear system is empty. An easy computation shows that
(“3%) =0 mod 6 if d = {2,7,10,11} mod 6; (*}?) =1 mod 6 if d = {0,9} mod 6; (*}?) = 3 mod 6
if d = {1,4,5,8} mod 6 and (“}?) =4 mod 6 if d = {3,6} mod 6

We will use the induction step Vigpi1)4; = Vizk+j +kCH C'JJrl +Vipwithj=1,...,12, k > 0,

(i,7) # (1,4) and to finish the proof we present the degenerations of V; if j < 12.

Vioky;
11
Cloktjt1 Vio
FIGURE 3.43.

k=0
Vi J Va j=2 Vs =3 s
3 e e—=4 .
=6 j=7 . .
ot v, €=0 e=3 o1
N\
j=4
j =10 - j-
e e=1
SRR 7
SR\ SR\ >
> $\\
CA m
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FIGURE 3.44.
O

Remark 3.6.2. Notice that £4(32) consists of quartics with two triple points and the expected

dimension is 2. This linear system has a fixed part, the double line through the two points and a
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movable part £2(12) i.e. conics through two points, that has dimension 3. A simple argument shows
that if d = 4, the linear system L is —1-special (we have a —1—curve, line connecting the 2 points,
splitting off twice) and therefore special.

One could mention that case d = 4 is also a special case for the double points interpolation
problem. Is not hard to see that even if £4(2°) has a negative virtual dimension, it is a —1-special
system and therefore nonempty. Indeed, £4(2°) consists of the double conic determined by the 5

general points, so for d = 4, m = 2 Theorem 1.3.2 doesn’t hold.
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CHAPTER 4

The Emptiness of the Linear System: L;(m!'")

1. Nagata’s Conjecture and General Results.

Fix general points in the projective plane and multiplicities mq,...,m,. We will denote by
Lg(mi', ...,m3m) to be the linear system of plane curves of degree d having multiplicities at least m;
at s; of the general points. For the homogeneous case, the linear system L£;(m™) has the expected
dimension

d(d+3) mnm(m+1)

e(Lg(m™)) = max{-1, 5 - ) 1.

Nagata’s conjecture for 10 points states that if % < /10 =~ 3.1622 then Lg(m'°) is empty.

In 2004 Harbourne and Roé [13] proved that if £ < 177/56 =~ 3.071 then Lq(m'°) is empty.

Subsequently, in 2008 Dumnicki [9] (see also [1]) found a better limit 313/99 ~ 3.161616 combining

algebraic arguments with methods developed by Ciliberto-Miranda [6] and Harbourne-Roé. The

aim of this paper is to present and develop a method for analyzing the emptiness of L£4(m!%). We
117

prove that L£4(m'°) is empty if % < %= =~ 3.162162 by using a degeneration of the plane into a

union of nine surfaces. Using the same degeneration of the plane Ciliberto and Miranda proved the
non-speciality of £4(m!?) for % > % and, as remarked in that article, one obtains as a consequence
the emptiness of £4(m!?) for £ < 330 ~ 3.1609 (see [8]).

We remark that our emptiness result implies that the corresponding Seshadri constant for ten
points in the plane is at least 117/370; see [13].

We will construct a family of planes X; degenerating to a union of nine surfaces in the central
fiber Xy, and Proposition 4.4.1 will give us all possible limits Lg of the line bundle L£4(m'°) on the
central fiber of the family X. Such a limit line bundle is a line bundle on each surface, which agree
on all of the double curves of the degeneration. We will say that a line bundle on Xy is centrally
effective if each individual surface line bundle is effective.

If £ = L4(m°) is nonempty, then there is a curve in the restriction of £ to the general fiber X,
so there is a limit curve in the central fiber Xy as well, and therefore there is a limit line bundle L

associated to that limit curve. Since Xy is the union of surfaces, if L4(m!%) # @ we then conclude

that this limit line bundle must be centrally effective.
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Conversely, suppose that, for a fixed ratio of d/m, one can prove that for any limit line bundle
Ly, at least one of the restrictions of Ly to the surfaces from the central fiber is empty. In other
words, suppose that for this fixed ratio, there is no centrally effective limit line bundle on Xy. We
conclude that there cannot be a limit curve in Ly, so there is no curve in the restriction to the
general fibre X; as well. Therefore L£4(m!?) is empty. In this article we will exploit this centrally
effective argument, by constructing the desired degeneration of the plane, and then considering all
the possible degenerations Ly of the bundle £4(m!?).

Everywhere in this article we make the assumption that % < /10 since we are analyzing the
emptiness of L4(m'?). We will briefly introduce the degeneration of the plane into a union of nine
surfaces, the geometry of each surface and the notations that we use; for more details the interested
reader is encouraged to consult [8].

In [5] we present the same result, obtained by a shorter observation and using previous results
obtained in [8]. There we argue that for the emptiness purpose is enough to follow the bundles
from the first degeneration. Indeed, we use Remark 4.5.2 to restrict to the case when we have the
sharpest bound for emptiness. For every twist, we will only analyze the corresponding ones and we
call them extremal bundles.

Moreover, every time we make a 2 throw we introduce two infinitely points [a1, b1], [a2,ba]. The
identification of the two curves gives us that by = by = b and the sharpest conditions on the plane
(usually denoted by T) gives that a; = as = a, so with every 2 throw we introduce only two
parameters [a, b]. We conclude we have the matching conditions from the previous degeneration and
two more:

1.) the linear system doesn’t intersect the curve we throw

2.) the extremal bundle condition gives that a = b.

The second one is obviously independent, while the first one is independent since the curve splits
out initially. So with every throw we introduce two parameters and two independent conditions and
therefore we conclude the bundle should depend on the same number of parameters as the previous
one. By induction we find that in fact the bundle depends on only one parameter, and we claim
that this is the one obtained from the first degeneration. Indeed, since it is obvious that this is one
of the limit bundles, and furthermore, we have a one dimensional family of line bundles, so for some
appropriate value of the parameter we get our favorite one.

This work is more complex, it does not use other results and it gives a complete analysis of the
degenerations of the plane; degenerations of the linear systems and a general emptiness analysis of

non-homogeneous linear systems with various number of points in special position. We don’t regard

48



this analysis as a consequence of [8] but rather as a continuation.
Moreover this method can be applied to the analysis of the emptiness of any linear system, however
the only difficulty that one runs into is finding the matching conditions of an n throw; this problem

was analyzed by Michele Nesci in his thesis (see [20]).

2. The First Degeneration.

Consider X — A the family obtained by taking the trivial family over a disc A x P? — A and
blowing up a point in the central fiber. The general fibre X; for t # 0 is a P2, and the central fibre
X is the union of two surfaces V U Z, where V = P? is a projective plane, Z = I is a plane blown
up at a point, and V and Z meet along a rational curve E which is the negative section on Z and a

line on V' (see Figure 4.2).

-1 E
+1

PA__/

FIGURE 4.1. the degeneration of the plane

We now choose four general points on V' and six general points on P. We consider these ten
points as limits of ten general points in the general fibre X; and we blow these points up in the
family X. This creates ten surfaces R;, whose intersection with each fiber X; is a (—1)-curve, the
exceptional curve for the blow—up of that point in the family. We notice that the general fibre X}
of the new family is a plane blown up at ten general points. The central fibre X is the union of V,

a plane blown up at four general points, and Z, a plane blown up at seven general points.

Z 11T

-1 E
+1

FIGURE 4.2. the degeneration of the blown—up plane
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The general fibre X; for ¢ # 0 is a plane blown up at ten general points. The central fibre Xj,

is the union V U Z where:

e 1/ is a plane blown up at four general points;
e / is a plane blown up at seven general points;
e V and Z meet transversally along a smooth rational curve E which is a (—1)-curve on Z,

whereas E? =1 on V (it is a line).

Consider the line bundle £y = 7*(Op2(d)) @ Lx(— >, mR;), where m : X — P? is the natural
map. This restricts to £4(m!°) on the general fibre, whereas on the central fibre it is Lo(m*)on V
and L£4(0,m%) on Z. (the first base point of the linear system Lg(a, m%) denotes the multiplicity of
the negative section of F1, while the other six represent the six blown up points of the ruled surface
Fy.)

We will consider all the possible twistings of £y by a multiple of Z. Namely, we choose a

parameter a, and define

L:=Ly ®Ox(aZ).

We will denote by Ly and Lz the restrictions of £ to V and Z; these bundles have the form
Ly = Lo(m*), Lz = Ly(a,m").

3. The second degeneration.

We will consider the case when the (—1)-curve, in our case the cubic C' € £3(2,1°), meets the
double curve E in two points p; and ps. We assume that C lies on the component V' and that the
restricted system Ly has the property that Ly - C = —k < 0. Blow up C, obtaining the ruled
surface T', which is isomorphic to F1; T" meets V' along C, and this is also the negative section of T
The blow—up will create on the surface Z two exceptional divisors G; and G3. These G; are also
fibers of the ruling of T.

Now blow up C' again, creating the ruled surface S. This time S = P! x P!; S meets V along
C, and it meets T along the negative section. The blow—up effects the blow—up surface Z, creating
two more exceptional divisors F; and Fy which are (—1) curves on Z. By abusing notation we
denote by G, G2 their proper transforms that are now (—2)—curves. The surface S now occurs with
multiplicity two in the central fiber of the degeneration, since it was obtained by blowing up a double
curve.

We may now blow S down the other way. This contracts C' on the surface V, and contracts the

negative section of T, so that T' becomes a P? (by abusing notation, we still denote by T its image
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after the contraction of S). The image of the surface Z has the two curves F; and F» identified. We

FIGURE 4.3.

introduced two pairs of infinitely near points and we denote assigning multiplicities to each pair by
[a, b], indicating a multiple point @ and an infinitely near multiple point b, namely —a(F; +G;) — bF;.
Also note that F; + G; is also a curve with self-intersection —1.

The bundle on Z can be interpreted in the geometry of Z where two new compound multiple
points have been created, two pairs of infinitely near points that we will denote by [m1, ms], indicating
a multiple point m; and an infinitely near multiple point ms.

We refer to this operation as a 2-throw (of C on V).

Note that in a 2-throw, if the two points p; and ps lie on the same component of the double
curve F, then the curve E becomes a nodal curve, and the construction results in a non—normal
component of the degeneration, because of the identification of F} and F,. However this presents
no real problems in the analysis; the central fiber, all linear system computations on components
are done on their normalizations.

In our case we will blow up the cubic £3(2, 1°) twice, analyze the four bundles and then contract S.
Consider all the possible bundles on the four surfaces V, T, S, and Z, such that the limit bundle is
L4(m!%). The bundle on V is at the form Ls(m?, [a,b], [a,b]) where J, a,b are parameters.

We will write down directly the matching conditions for the bundles on the three surfaces V, Z

and T (with the cubic contracted to a point) and we will use them for the matching conditions for

the third one.

From the beginning we will consider three surfaces T', V, Z where T is just a plane, V is a

plane blown up 8 times, twice infinitely near, and Z is a plane blown up six times, and three general
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bundles on them. We get that the surface V' has the four multiplicities equal to m. Because we
started with three surfaces we expect to find two free parameters-so choose a;, b; and ¢;, considering

again d and m arbitrary but fixed. We have the general form of the three bundles

[ ] EV = £degv(m47 [a17 b1]7 [a27 b2])
o Lz = Laegz(q1, -5 G6)

hd ‘CT = ‘Cdch
We have four matching conditions:

(1) VO T. Consider the intersection of S and Z that is a fiber on S and the cubic on Z. We
start with a bundle on Z that does not meet the cubic, and since Lz and Ls agree on the
double curve we get that Ls is a horizontal bundle. On the other hand, the intersection
of S with V forces Ls to have bidegree (b,0) (since is also horizontal). L£7 meets a fiber
a — b times (since it has to agree with V') and meets the negative section B 0 times (since

the bundle on S is horizontal). LvG; = LpL1. We get

degT:bl—al :bg—ag.

(2) Since the two curves Fy and Fy are identified we obtain by = by = b and from (1) a; =

ag = Q.
(3) Multiplicity on the surface Z. We notice that the multiplicity on the linear system before

contracting the cubic becomes a line in the new one (Cremona 167 — 123 — 145)

0{0 0OOO O 0 -1
111 0 0 0 01 O
111 0 0 0 01 O
111 0 0 0 01 O
TABLE 1.
We get that ¢ = g2 = ... = ¢ since

m—(a+b)=LzL(1) =deg Z — ¢;.

(4) ZN V. V still intersects Z along E = £1([1,1]?). On Z though, we need to find the image

of B after we contract the cubic. (Cremona 167 — 123 — 145)
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0(-1 0 00O 0O

110 1.1 .0 0 0 O

211 1 1 1 1 00

312 1 1 1 111
TABLE 2.

The condition is £7L£3(1%) = Ly £1([1,1]?) so we obtain

3deg Z — 6q = degV — 2(a + b).

(5) Degree. It is easy to see that by pulling back a line we get a line on V, a fiber on Z, a
line on T and two fibers on S. After contracting the cubic the fiber on Z is mapped to a
general line. Indeed, before we had a fiber on Z, of the form £;(1,0°) that has the same
form after we contract the cubic, and since the first multiplicity represents a contracted

cubic we are left with a general line £;.
d=degV +degZ+a+b
Solving these equations with parameters a and b we obtain the following result

Proposition 4.3.1. If we fir d and m, then all limits of the bundle L4(m*°) are of the following
form for some a and b

[ ] LV = E%i3m+a7+b(m4; [CL, b]a [CL, b])

o Lz = £3m7%73<a2+b) ((2m — % - aTer)ﬁ)

L4 ET = ﬁafb

4. The third degeneration.

For the third degeneration we will perform a sequence of 2-throws:
(1) Six disjoint curves, two conics £o(1%,[1,0],[0,0]) and four quadrics £4(23,1,[1,1]?) on V .
By executing the six 2-throws we introduce six planes that we will denote by U, Us; and
Y1,..., Yy respectively. We now explain how the geometry of all the surfaces changes after these
throws. By blowing up twice the four quartics (); and contracting, V' becomes more complicated
with 16 additional blow ups, eight of them infinitely near. Overall we have nine surfaces and the gen-
eral form of the line bundles on them is: On the surface V' we denote by @Q; the four disjoint quartics
£4(23,1,[1,1]?) and by C; and Cy the two disjoint conics £o(14,[1,0], [0,0]) and £o(14,[0,0], [1,0]).
We notice that each Q; and C; are disjoint and they are six (—1)—curves that can be 2—thrown.

Indeed, each quartic (); intersects F; and F> once while a conic C; intersects the double curves G;
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and E once. Throwing the four quartics and the two conics Q;, C; we will introduce six other new

surfaces i.e. planes that we will denote by Y; and Uj.

Furthermore, imposing that the nine line bundles on the degenerating plane form a limit of the
bundle L4(m!?) on P2, and also imposing matching conditions that all the line bundles agree on
the intersection curves, we obtain a general form for the linear systems on each of the nine surfaces
depending on eight parameters.

Also, in our computation, we will use the Cremona transformations 123 — 458 — 467 — 123
‘62(147 [17 O]) < ‘CO([Ov _1])

£2(1%,[0,1]) ¢ Lo([-1,0])

L4(2*,[1,1]) ¢ Lo([~1,-1])

L£4(1,2%,[1,1]?) <> Lo(—1)
Lo(4%,[2,2]) & L1

Again, the conic C; is a base point for the linear system on V. Also, C; meets E once, and G; once

since

CiE = Lo(1*[L,0D L1 ([1,1])) =2 -1=1

CiGy = Lo(1M[1,0) Lo([-1,1]) =1—-0=1
So, by blowing up both of the conics C; twice contracting them both, and normalizing, both Z and
T will inherit four more blow ups, two of them infinitely near. By blowing up twice and contracting

the four quartics , V becomes more complicated with additional 16 blow ups, eight of them infinitely

near.

Ly = Lde!]V (nfa [aia bi]za [Zi’ ti]?:l,..él)

Lz = Liegz(q1, -, g6, [c1,d1], [c2, d2])

L7 = Laegr([c1,d1], [c2,d2])
o EUZ — Eci—d-

i
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[ ] ,Cy.

7

=Lz,

FIGURE 4.4.

In these notations n; = ne = ng = ng = 0 since they represint the contracted quartics while
b1 = by = 0 since they represent the contracted conics. We introduced them in this linear system
only for keeping track of the curves transformed after the Cremona transformation.

Mathcing conditions after contracting the quartics and the conics

¢ L.VNOT.
LyLo([=1,1]) = LoLa([1,1])

We note that the curves G = Ly([—1, 1]) are invariant under the Cremona transformations
S0

a; —bi = degT— (Ci +d1)

Since b; = 0 we obtain a; = deg(T') — (¢; + d;). To see that ¢; + d; is constant, we first
argue that a; are constant. Indeed, the fact that F} and F5 are identified will give after the
Cremonas that the two conics L2(1%,[1,0]) are identified and therefore their intersection
with Ly is the same, i.e.

2deg(V) — (n1 + ... + ng) —ay = 2deg(V) — (n1 + ... + n4) — a2 50 a1 = as.

This proves that ¢; +d; = co +ds = e.

e 2. Multiplicity on Z

From the second degeneration, the condition for the multiplicity on Z was

m=degZ —q+ (a+b).
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Here deg Z — g represents the intersection of £z with the line £1(1) that also passes through
the contracted cubic (that is not a base point of £z) while a + b represents the intersection
of Ly with Lo([-1,-1]) =2F + G

The four quartics intersect both curves F; at one point each, and the conics intersect
only one curve G at a point. After blowing the conics and quartics up, each F; will get
blown up four times infinitely near (multiplicities are denoted by z; 4 ¢;; we count them
double for 2F") and each G; once (multiplicity is denoted by ¢1 + di = co + do = €). After
a Cremona transformation, F' becomes the conic £2(1%,[1,0]) and G preserves its form, we

conclude that Lo([—1,—1]) becomes £4(2%,[1,1])

(deg Z — q;) + (4degV — 2 Z n;—a; —by)+ (c1 +dy)+2 (zi +t;))=m
i=1,2 i=1,...,4
These are six equalities and if we subtract any two we obtain ¢; = ... = g = ¢

3. VNZ.

The cubic on Z is now blown up twice
LzL3(1%,[1,1]%) = Lv L1([1,1]%)

(3degZ—6q)—(c1—|—d1—|—02+d2) :degV—(al—l-ag—l—bl—l—bg)

4. Multiplicity on V'
Consider the four quartics and two conics that we want to throw for the third degeneration
L£4(23,1,[1,1]%) and L2(1%,[1,0])

We note that through each multiple point there are three quartics that are doubled
at it and one that simply passes through the point; and the two conics passing through
the point. We conclude that after we blow all the quartics up, each —1 curve with the
old multiplicity m, gets blown up seven times infinitely near (7 = 1 + 2 + 2 + 2, the new
multiplicities introduced are (z; +¢;) and 23, ,,(2; + ;) ); and from the conics, it gets
blown up twice more, infinitely near (the new multiplicities introduced are >, ,(¢; +d;))

Now performing the Cremona transformation, £o(—1) becomes L£4(1,23,[1,1]%). We

get the following
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(4degV —ny —2(na+ns+na) =2 > (ai+b))+ > (ci+di)+ (z+t:) +2> (z+t) =m
i=1,2 i=1,2 i#j

Note that we have four conditions and subtracting any two of them we get that the sum

zi + t; needs to be constant for all i. Denote by e = ¢; + dy and f = z; + ¢;.

e 5. Degree

The condition for the degree used to be

d=degV +degZ+a+b=degV +degZ + 2b+ degT since the pull back of a line
used to be a line on V, a line on Z, a line on T and two fibers: 2F = 2L4([0, —1]) The third
degeneration doesn’t affect the general class of a line in Z or 7', so the intersection will still
be deg(V') and deg(T). It will affect class line of the surface V', and also the curves F;.

A general line on V intersects each at the quartic four times and each of the conic
twice, so it will intersect the four quartics 16 = 4 * 4 times and the two conics 4 = 2 x 2
times. After blowing all the curves up the pull back of a line on V will be a line on V'
plus 16 = 4 x 4 other curves of type Lo([—1,—1])) (the ones that intersect surfaces Y;) and
4 = 2 % 2 others of type Lo([—1,—1])) (intersecting the surfaces U;). We now perform a
Cremona so the line on V becomes Lo(4*%,[2,2]?) and F changes into the conic £5(1%,[1,0])
We also agreed that F' will get blown up 4 times infinitely near (by point 3) and furthermore
F changes into the conic £2(1%,[1,0]); so 2F will get blown up 8 times and it changes into
L£4(2%,[2,0]) + 2 x4 % Lo([—1, —1]). Gathering together all these observations we obtain

(9degV —16n —4(a+b)) +deg Z + degT +2(2degV —4n —a) + 16f +4e+8f =d
By plugging in ¢; + d; = e, ay = as = a, ¢; = q and z; +t; = f we get

o l.a—b=degT —e
e 2. 3degZ —6qg —2e =degV —2(a+1b)
e 3. (degZ —q)+ (4degV —8n—a—b)+e+8f =m
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e 4. 4degV —Tn—2(a+b)+2e+7f=m

e 5 (9degV —16n —4(a+b)) +degZ + degT + 2(2degV — 4n —a) + 16f +4e +8f =d
Substituding b = n = 0 we get

e 1.a=degT —e¢

e 2. 3deg Z — 6g —2e =degV — 2a

e 3. (degZ —q) + (4degV —a) +e+8f=m

o 4. 4degV —2a+2e+T7f=m

e 5 (9degV —4a)+degZ + degT +2(2degV —a) +16f +4e+8f =d

Solving this linear system for degT', degV', deg Z, a and f we obtain the following proposition

Proposition 4.4.1. If we fix d and m, then all limits of the linear system Lq4(m!°) are of the

following form for some integer values of the parameters z;,q,x,y and e:

° EZ - £3q—3m+d(q67 [.’II, € — .’II], [yu € — y])

Ly =L_q—s1mt134([—2q — 16m + 5d + ¢,0]?, [2;, —6d + 19m — Zi]%i:l,..A)

L1 =L _9g—16m+sd+2e([T,e — 2], [y,e —y])

L4 EUl = £2LE—6

L4 £U2 = £2y—e

i LYi = £22i719m+6d-

5. The Emptiness of the nine linear systems on the central fiber.

We notice that the systems on Z and V' are very complex so it’s difficult to make a detalied
analysis of the emptiness without additional constraints on the parameters. Therefore we will assume

that all the eight linear systems L1, Ly,, Ly, and Ly are nonempty, and with these constraints we
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will obtain sufficient conditions that make £z empty. The most complicated linear systems £z and
Ly will be studied separately.
First we notice that there are obvious necessary and sufficient conditions for the linear systems

on T, U; and Y; to be nonempty:

Lemma 4.5.1. The linear systems Lp, Ly,, Ly, are nonempty if and only if (1), (2), and (3) hold

(1) Lr 0 e deglyr > e< —2g—16m+5d+2e > e < e > 2g+ 16m — 5d
(2) Lu, 0 < degly, >0 2> 5,y >

19m
(3) Ly, # @ & degly, > 04 z > 191 —3d

PROOF. Indeed, 2 and 3 are obvious since the surfaces U; and Y; are just planes. To prove
1 we notice that T is a plane blown up four times and there with two tangent lines of the form
£4([1,1],]0,0]) and £4([0,0],[1, 1]) meeting at a point. Both of them are (—1)—curves so their sum
is a fiber of the ruling therefore it moves. We get a contradiction since both curves are fixed part of

the linear system. We conclude that £ # @ if and only if the two lines don’t split off. O

Remark 4.5.2. One can easily observe that for the study of Lz and Ly it suffices to consider only
the boundary cases. Indeed, we first notice that the parameters e, x,y and z; describe the multiplicity
of some points that are infinitely near. An easy computation shows that an [m + k,m — k] point
imposes the same conditions as an [m,m] — kG point. We conclude that we get the sharpest bound
of the degree by imposing the mildest conditions on the parameters i.e. when the parameters e, x,y

and z; reach the lower bound. This enables us to assume

e ¢e=2q+ 16m — 5d

Applying this remark in Proposition 4.4.1 we get the linear systems

1)

o Lz = ‘C3Q*3m+d(q65 [%7 %]a [%7

o

I m 8
o Ly =L g simprsa([FF2 —3d, 152 —3d]")
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o Lp=Le([5,5]:[5 5]

o Ly, = Lo

o Ly, = L.

We will first analyze the system on V', Ly. The Picard group for V will have rank 19, so the
analysis of the emptiness of the linear system on V' is expected to be difficult. Nevertheless eight
pairs of points will be in special position and this will facilitate the analysis. Indeed, we notice
that after all blow ups the F; become (—10)—curves and furthermore contracting the six curves on
V will ultimately transform them into conics of the form L£3([1,0],[1,1]*). We conclude that Ly is
a homogeneous linear system of the form Ly ([n,n]®) passing through 16 points in special position
where not only each of the eight points comes with a tangent condition but also four distinct pairs
[n, 7] lie on two conics, C7 and Cy each one of the form £5([1, 0], [1, 1]*) meeting in four points. One
can notice that next lemma is also true in the case when all the eight pairs [n, n] are general i.e. the
proof doesn’t depend on the existence of the curves C; and C5 so even though we abused notation

(in denoting Ly as L([n,n]®)) the result also holds for general pairs [n,n).
Lemma 4.5.3. The linear system Ly([n,n]®) # 0 & £ >4

PROOF. We know that for general points L4,(n'®) is nonempty therefore for £ > 4 £, ([n, n]®)
becomes nonempty.

It suffices now to show the emptiness when k < 4n. Indeed,
Ly,([n,n]*)L2([1,0],[1,1]%) = 2k — 8n <0
C1 and C5 split off x > 1 times
Resy = Li([n,n]®) — 2[Cy + Co) = Li_40([~2,0]%, [n — 2, n — 2]®)
Now F3y and F5 will split off  times each in Res; so
ResRes; = Li_4.([n — 2,n — 2]%)

This process continues and after [ = [£]+1 steps ResRes; = Li—a12([n—lz, n—l2]® becomes empty

since it exhausts the degree. 0
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Corollary 4.5.4. A necessary and sufficient condition for the nonemptiness of
Ly = £7q741m+13d([—3d + me, —3d + lng]S) is ¢ < 25d — 79m.
PROOF. Indeed, applying the Lemma 4.5.3 to k = —¢ — 41m + 13d and n = —3d + 122 we get

the desired result. O

Later on we will assume that the conditions from Corollary 4.5.4 are also satisfied, i.e. the
conditions for the nonemptiness of the linear systems Ly, Lr, Ly,, Ly,. Assuming them we want
conditions that make £z empty.

One of the key ingredient in analyzing linear systems with points in special position is the
following lemma that reduces the study of the emptiness of our linear system to the emptiness of
the same system with general points, assuming only —1 curves split out. A similar argument can be
used for any negative curves splitting out- Lemma 4.5.3 providing just a trivial example why a linear
system becomes empty if a corresponding series of negative curves X732,z is divergent. In general

this won’t be the case, since the dimension of linear systems with points in general position will go

up.

Lemma 4.5.5. Consider the linear system L = L,(q",[s, s]) for fived i > 0, let C be the —1 curve

Lo (qé, [s0, 50 — 1]) for some ro,q0 and so and G be the —2 curve Lo([—1,1]) and assume that
L.(q",[5,8])Lro (g6, [50,50 —1]) = =k < 0

Then the curve C' splits off 2k times and the curve G splits off k times. Furthermore we get the

same residual system as if the points were general.

PrOOF. We denote by Resg the residual system after splitting off C' k times

L=kCH+ Lr_tro((qg —kqo)*,[s — kso,s — kso + k])

Now G splits off and we will remove G once from Resy denoting the residual Res;

Resy = Reso— G = Ly—jro (¢ — kqo)*, [s — kso + 1,8 — kso + k — 1])

We denote by ResRes; to be the new residual after we remove C' form Res;

ResRes; = Resy — C = Ly (1), ((@ — (K 4+ 1)qo)", [s — (K +1)so + 1,5 — (k + 1)so + k])
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G starts splitting off again, and we repeat these steps p times and we get
ResResy = Ly (k1p)ro (¢ = (k +)q0)", [s = (k + p)so +p,s — (k +p)so + k])

Since GResRes, = k — p this process will stop when p = k and then

ResResy, = Lr—okr ((¢ — 2kqo)", [s — 2kso + k, s — 2kso + k])

and we conclude that £ = 2kC + kG + ResResy,
We end the proof by remarking that if the points are general both —1 curves £,,((g0)?, so— 1, s0)

and L,,((q0)?, s0, 50 — 1) split off k& times and the residual Res has the same form as ResResy,

Er(qi, 82) = kﬁgm((2qo)i, 250 — 1,280 — 1) + L2 ((q — quo)i, (s — 2ksp + k)2)

O
Remark 4.5.6. Assuming that Lr and Ly are nonempty and that % < % then it suffices to
analyze Lz when %q <e.
Indeed, % < 1?%77 then 25d — 79m < 3277” - %1. The nonemptiness of Ly implies g < 3277” - %i i.€e.
% < 2q+ 16m — 5d and finally, the assumption on Lt gives us % <e.

For our problem we will only need cases 1 and 2 of the lemma 4.5.7. Moreover, in the following
statements we will assume that d and m are big enough, so the ratio d/m becomes an integer
number. If we claim that for all smaller values, L£4(m*) = @ do and mg with do/mo < d/m, then
La,(mk) = @. Indeed, we observe that if L4,(mk) is nonempty then a multiple of this is still

nonempty, i.e. L.q,(rmo¥) # @, and hence Lq(rmo*) # @ for any d > rdy

Lemma 4.5.7. Denote by L = L,(¢%, (5, %]2), where r,q, £ are positive integers.

£
2

(1) Ife>12q then £,(¢%, [5. 5] ) =0 e r<e

(2) If 84 < e < 12q then £,(¢% (5,4} =0 & r < 122 4 12

(3) If 34 < e < 19 then £,(45,[5,

2\ 48q 36
o Se< 5 Pl=oer<g+5f

[\Slle

(4) If B < e < 5 then £,(¢%,[§,§])) =0 & r < T+ Z¢

Proor. We will shortly present the boundary case when we have equality.
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(1)

Assume that e > 12¢.

If » < e we conclude that £ is empty since the two tangent lines split out and
El([lu 1]7 [07 O])El([ou 0]7 [17 1]) =1

For the case where r = e we need to prove that £ is nonempty. There are six conics of the

form L5(1,[1,1],[1,1]) that split out g times each.

e—12q e—12q

(55 = 0L (1% 16.67) + Loovng((=5— =5 1)

Ee(q 7[57 5

Since e > 12q, we get that the residual linear system has a positive dimension # SO

e—12q
2

by Lemma 4.5.1 case 3 we obtain Res = Le_124([ , e_—212q]2) # @ since it consists of a

pencil of conics.

We will prove that Li2q , 12 (¢°, [§, §]?) is a zero dimensional linear system.
13 13
We notice that 2 (—1) curves of the form L£4(15,[3,2],3,3]) split off ?—g — 55 times each

and by lemma 4.5.5 we get

6 1€ €18 ey (12 _ e 6
Lz (¢°[5:5) (55D = (537 = 13)£12(2%,[6,5], [6,5)+

50 €\ p o172 2¢ _1lgy6 (g 2¢  1q) o 2¢ 11y

Now we notice that if 2e — 11g > 0 then the linear system Ly is zero dimensional therefore
if we lower the degree it will be empty.
However if 2e — 11q < 0 the linear system Lz is already empty because the degree of the

residual is negative (the six conics £2(1,[1,1],[1, 1]) split off too much).

3. We start with the bounds for e, % <e< % and again we want to prove that

Laisq 56 (¢, [%, §]%) has dimension zero.
41 41

We notice that six (—1) curves of the form L16(4,3%,[7,7],[7,7]) split off % — 2¢ times

each

e e. .e e 11q

LIS D = (i — 30 L0s((19)°, [42,42], 142, 42)) + Res

19¢  84q .4 19¢  84q 19¢  84q. .,
Res = Loy sta)( (8_2_5) o[ (8_2_8_2)’ (8_2_5)] -
_ ,19e  84q 6 9
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We notice that L£24(4%,[11,11]2) is the linear system form case 2 with e = 22, ¢ = 4 and

11

% =5 andr = 1%4 + 121*322 = 24. From the previous remark we have that the two curves
L6(19,[3,3],[3,2]) split off 124 — 22 — 26 — 9
L24(4%,[11,11]) = 2£15(2%,[6,5]?) + Lo([—1,1]%)
We get
38 168¢ 6 9 19e  84q 9
Res = (— — ——)L12(2",[6,5 — — —)Lo([-1,1

Now we notice that if e > % then the linear system Lz is zero dimensional therefore if

we lower the degree it will be empty.

However if e < % the linear system Lz is already empty because the degree of the residual

is negative (the sextics Lg(1%,[3,2],[3, 3]) split off too much).

(4) 4. We consider 22¢ < e < 24 and we claim that L 35 (¢% [£, §]?) is a linear system of
29 29

dimension

% and if we decrease the degree it becomes empty. First consider the case

36q | 25 :
degl < 53 4+ % so L is at the form

Li(q% (£, €], %, £]) with k < 23 + 2%¢_ Then L is empty since there exist two —1 curves

that split off and meet. Indeed,

€ € € e

Li(q®, [5, 5], [5, 2])529(66, [12,12],[13,13]) = 29k — 36¢ — 25e < 0

Lo9(6°,[12,12],[13,13]) L29(6°, [13,13], [12,12]) = 1.

: . _ 36 25
The only statement left to prove is that if degl = 5g + S then £ becomes

nonempty. First we notice that six (—1) curves of the form £16(4,3%,[7,7],[7,7]) split off

Ge _ 25q 4
26 oo times each

6 (€ €, € € 6e  25¢q

_ (2 299 6
E%-f%(q ) [57 5]7 [55 5]) - (29 29 )‘696((19) ) [42742]7 [42742]) + Res
B 114 84 ., AT5 84q 475 84q )
fres = by —ol55 (75 ) g (g ~ 9 55 (g
1141° 4751 4751,
= Lolgg o [5g 5g 1)
where | = % — e > 0. Now consider the following Cremona transformations 8,9,10 —

127 — 347 — 567 — 8,9,10 — 123 — 456 — 123
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197 | 143 a3 oarst o oarsi3
29 29 58 58
7790 | 11413 11413 4751 15205
58 29 29 58 58
3231 | 7613 7613 191 15213
58 29 29 58 58
00 | 7613 7613 19 1913
58 29 29 58 58
1520 | 3813 zer3 19 1913
58 29 29 58 58
761 | 3813 19 193
58 29 58 8
381 _ _ 1o 193
58 58
TABLE 3.
84q

Therefore we’ve just proved that if % <e< then £3§—9q+% (¢5, [

[\Slle
[\Slle
[\Slle
[\Slle
~—

19

is a non-empty and nonspecial linear system of dimension %.

Remark 4.5.8. Lemma 4.5.5 will enable us to conclude that the statements of Propositions 4.5.1,

4.5.4 and 4.5.7 hold for general points as well.

Proposition 4.5.9. If % < % and all the linear systems Ly, L1, Ly, and Ly, are nonempty then

Lz is empty.

PRrROOF. We assume that % < % and that both linear systems L1 and Ly are nonempty. By

Remark 4.5.6 we have that e > % so we distinguish two cases

o If % < e < 12q then we claim that the assumptions in the hypothesis make Lz is empty

Indeed, % < % implies 25d — 79m < @ — %d and by the non-empyness of Ly we
obtain g < @ - %d ie.

27¢  39m  13d
E—T+§<2q+16m—5d

Now we use the hypothesis on L1 to obtain

27¢  39m  13d

T 12 12~
i.e.
12q 12e
_ d< 22 4 22~
3¢g—3m+d< 3 + 3

By Lemma 4.5.7 we conclude that Lz, and therefore L£4(m!?), is empty as desired.
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e If ¢ > 12¢ and L7 is nonempty then Lz is empty.

Indeed, if e = 2¢ 4+ 16m — 5d > 12q i.e. ¢ < w we claim that e > 3¢ —3m + d

ie. ¢ < 19m — 6d. The last statement is obvious since the following inequality 16"{5 5d

19m — 6d holds & £ < 124,

We conclude that we get the best results by assuming e < 12q.

Corollary 4.5.10. If % < %77 then the linear system Lq(m*°) is empty.
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