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ABSTRACT OF DISSERTATION 

PERFORMANCE MODELING OF BEST MANAGEMENT PRACTICES WITH 

UNCERTAINTY ANALYSIS 

Best management practices (BMPs) contain many uncertainties that make it 

difficult to determine their performance with a model. Moreover, predicting BMP 

performance with existing methods is not easy. The major research objective of this 

dissertation is to incorporate uncertainty analysis in a BMP performance model to better 

represent its treatment performance. 

The k-C* model is used in this study to simulate BMP performance, and the study 

assumes that the influent event mean concentration (Cjn) and aerial removal constant (k) 

include uncertainty. Both Cin and k represent data and model uncertainty. To evaluate the 

model, three different uncertainty cases, uncertainty in Cjn, k, and both Cin and k, are 

applied to the total suspended solid (TSS) data of detention basins and retention ponds. 

To evaluate uncertainty values, three different uncertainty analysis methods, the derived 

distribution method (DDM), the first-order second-moment method (FOSM), and the 

latin hypercube sampling (LHS), are applied to each case. TSS, as a representative 

pollutant, and detention basins and retention ponds, as representative BMPs, are utilized 

in this study. The observed datasets are selected from the International Stormwater BMP 

database. 



By incorporating uncertainty analysis into the k-C* model, the effect of BMP 

surface area and inflow on the effluent event mean concentration (Cout) of TSS can be 

quantified for detention basins and retention ponds. These effects are not large in 

detention basins but are noticeable in retention ponds. 

In addition, the k-C* model with uncertainty analysis is applied to a hypothetical 

watershed to show how uncertainty might be used improve the probability of compliance 

with TMDLs 
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Department of Civil and Environmental Engineering 

Colorado State University 

Fort Collins, CO 80523 
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1 INTRODUCTION 

1.1 Study Motivation and Background 

Urbanization impacts the rainfall-runoff process in a variety of ways by 

modifying the natural conditions of a watershed. As a watershed becomes more 

developed, peak flows, runoff volumes, and nonpoint source pollution increase while the 

time of concentration decreases. Best Management Practices (BMPs) reduce these 

negative effects of urbanization by controlling peak flows and removing pollutants from 

the runoff. The hydrologic aspects of their operation have been extensively studied for 

several decades, resulting in the generation of design criteria manuals; however only the 

hydrologic performance into account. Pollutant removal is not considered in the design 

guidance even though the primary purpose of BMPs is pollutant removal. 

BMP design based on water quality is still controversial and existing BMP design 

methods are too inaccurate to be applied with confidence. The inaccuracy of the 

predictive models is so poor, that experts in the field (Strecker et al., 2001 and 2004) 

recommend that measured effluent data taken from International BMP Database 

(www.bmpdatabase.org) be used to estimate water quality discharge concentrations from 

BMP rather than model simulations. This is mainly due to the many uncertainties 

associated with the performance of a BMP in terms of pollutant removal and the inability 

of existing models to represent those uncertaintiesTherefore, the development of BMP 

design methodology based on BMP performance models continues to be a task that needs 

to be addressed (UDFCD, 2001). 
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This study examines the uncertainty in the main variables affecting the pollutant 

removal in extended detention and retention pond BMPs, with the intention of generating 

risk-based BMP design methodologies. In particular, this research investigates 

uncertainty in the BMP design parameters, characterizing pollutant removal by using 

risk-based probabilistic methods. The specific objectives are the following: 

(1) Incorporate uncertainty analysis to the k-C* model, a BMP performance model 

originated as a wetland model, but commonly used to model performance of other 

types of BMPs, and verify its performance with observed data. 

(2) Investigate the sensitivity of this uncertainty-based k-C* model to inflow 

discharge (Q) and the BMP surface area (ABMP), a representative physical 

parameter of BMPs. 

(3) Characterize the variability of pollutant load reduction simulated by the 

uncertainty-based k-C* model in order to evaluate the performance of BMPs in 

terms of the Total Maximum Daily Load (TMDL) goals. 

The BMP performance data sets for this study were obtained from the 

International Stormwater BMP Database (www.bmpdatabase.org), which has been 

assembled since 1996 by the American Society of Civil Engineering (ASCE) and the U.S. 

Environmental Protection Agency (US EPA). The database was established to foster a 

better understanding of factors influencing BMP performance and to promote 

improvements in BMP design, selection and implementation. This study uses the data 

from that database to examine the removal of total suspended solids (TSS) for detention 

basins and retention ponds. 
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The dissertation comprises three chapters followed by a final chapter of 

conclusions and recommendations. In Chapter 2, uncertainty is incorporated into the k-C* 

model, and used to assess the BMP performance. Uncertainty in three variables of the 

model is explored: Cin, k and both Cin and k. The methods used in the uncertainty 

analysis include the Derived distribution method (DDM), the First-Order Second-

Moment (FOSM) method, and the Latin Hypercube Sampling (LHS) method. Chapter 3 

investigates the effects of BMP surface area and inflow discharge on the BMP 

performance based on pollutant concentration removal using the BMP performance 

model developed in Chapter 2. Chapter 4 demonstrates the potential applicability of the 

k-C* model with uncertainty analysis to a hypothetical stormwater system and 

demonstrates how it might be used to reduce the uncertainty associated with designing a 

BMP to meet a specific TMDL. Finally, Chapter 5 presents the main conclusions and a 

summary of the contributions of this study followed by recommendations for future 

research. 

1.2 Reference 

Urban Drainage and Flood Control District (UDFCD). (2001). "Urban Drainage and 
Flood Control District Drainage Criteria Manual (USWDCM)." Volume 3, 
Denver, Colorado. 
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2 PERFORMANCE MODELING OF BEST 

MANAGEMENT PRACTICE WITH UNCERTAINTY 

ANALYSIS 

2.1 Introduction 

Many elements of uncertainty exist in nature, and obtaining accurate information 

about natural systems becomes a challenge. Mays and Tung (1992) defined uncertainty as 

the occurrence of events that are beyond one's control. Due to these uncertainties, it is 

difficult to design and build a model that predicts results similar to the observed ones. 

Most of the widely-used urban hydrologic models are deterministic and ignore 

uncertainty, but uncertainty analysis shows a range of results, offering the decision maker 

more information. Water quality modeling has even more uncertainties and is very 

unpredictable. This includes uncertainties in models representing pollutant removals in 

stormwater BMPs, which are widely used for the reduction of nonpoint-source pollutants. 

A lot of information on the hydrologic performance of BMPs has been published 

(Urbonas and Roesner, 1993; ASCE, 1994; Guo and Urbonas, 1996; Guo, 1999; Guo and 

Urbonas, 2002). However, BMP performance in the treatment of pollutants is still a topic 

of much research. It is extremely important to improve the current paradigm which 

assumes a BMP is a deterministic system characterized by a percent-concentration 

reduction. The objective of this chapter is to present a BMP performance model that 

incorporates uncertainty analysis in its evaluation of TSS removal in detention basins. 

This chapter describes the construction of a BMP performance model with uncertainty 
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analysis and evaluates this model's performance by comparing its results with observed 

data available from the International Stormwater BMP Database (www.bmpdatabase.org). 

2.2 Background 

2.2.1 Performance of BMP 

Many attempts have been made to evaluate BMP performance. Historically, the 

efficiencies of BMPs have been represented by the percent removal of pollutants. 

Strecker et al. (2001 and 2004) argued that using percent removal as an indicator of 

efficiency often gives inaccurate results. They suggested that the efficiency of BMPs 

might be better characterized by using the effluent EMC and that design standards should 

consider hydrologic losses that take place with some BMP types. 

Particularly, Strecker et al. (2001) and Clary et al. (2002) compared three 

estimation methods for measuring BMPs efficiency. They found that the effluent quality 

in any given class of BMPs tend to have a small range. Therefore, they suggested the 

Effluent Probability Method (EPM), a lognormal probability plot of EMC, as one of the 

best methods for estimating BMP efficiency and for characterizing the effluent quality. 

The characterization of EMC using a lognormal distribution is consistent with most 

stormwater EMC data (US EPA 1983, Driscoll 1986, Van Buren et al. 1997). Brown 

(2003) developed example EPM plots for TSS, nitrate, and total zinc removal. He 

concluded that BMP removal of TSS results in different slopes between the influent and 

effluent lognormal plots. 
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However, the EPM also has several problems, which have been clearly described 

by the California Department of Transportation (CalTrans, 2003). One of the downfalls 

of the EPM is that quantitative assumptions cannot be made without matching data points. 

Additionally, the method does not account for the hydrologic effect of storm size on 

BMP efficiency. Finally, EPM does not provide sufficient information regarding proper 

BMP selection for design. Therefore, the method may not sufficiently describe whether a 

BMP can satisfy a certain performance standard. 

Barrett (2005) compared the pollutant removal of various BMPs and developed a 

classification of the constituents and BMPs for which the influent EMC, Cin, and effluent 

EMC, Cout, were poorly correlated. This is the case for sand filters and wet basins. He 

found that pollutant-percent removal can be related to Cin when Cout values are similar to 

the background concentration for each storm event. He also evaluated the BMP 

performance in controlling different constituents with estimated pollutant-load reduction 

rates found from regression analysis. As a result, it was suggested that the percent 

removal based on concentration reflects the relationship between a BMP and influent-

water quality rather than characterizing the BMP itself. 

Many mathematical models have been developed to analyze and predict the water 

treatment of storage ponds (Roesner et al, 1974; Driscoll, 1986; Guo and Adams, 1999; 

Strecker et al., 2001; Wong et al, 2006). They attempt to represent complex treatment 

mechanisms through simple mathematical expressions. One of the most popular 

mathematical models is the k-C* model which has been widely used to describe pollutant 

removal in wetlands (Kadlec and Knight, 1996; Kadlec, 2000; Braskerud, 2002; Kadlec, 

2003; Rousseau et al, 2004; Lin et al, 2005). The International Water Association (IWA) 
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(2006) provided the design approach for wetlands using the k-C* model. It was shown 

that the model coefficient (k) representing the concentration removal rate is strongly and 

consistently related to the hydraulic loading rate (q) with a power function (Schierup et al. 

1990). 

While the k-C* model has been primarily used for modeling wetland performance, 

it has also been applied to represent BMP performance. Pack et al. (2005) used the k-C* 

model to simulate vegetated infiltration performance on highways, but Pack did not 

report the comparison of results between simulation and observed values. In addition, 

Wong et al. (2006) modeled urban stormwater treatment using the k-C* model in 

combination with a continuously-stirred tank reactor (CSTR) and tried to simulate the 

intra-event water quality during a storm. However, what Wong showed was not 

prediction results but calibration results of the k-C* model using CSTR numbers with 

observed data, which did not clearly explain the derivation of the areal removal rate 

constant, k. 

2.2.2 Uncertainty Analysis 

Uncertainty analysis is a tool commonly used in all disciplines of civil 

engineering. Various approaches have been used in uncertainty analysis including 

analytic methods, approximation methods, and different varieties of the Monte Carlo 

Simulation (MCS). One of the most well known approximation methods is the first-order 

second-moment (FOSM) method, also referred to as the first-order error method or the 

first-order variance estimation method. Since the 1970s, FOSM has been applied in 

hydrosystem engineering and environmental engineering problems including storm 
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drainage systems (Yen and Tang 1976), levee systems (Tung and Mays 1981), runoff 

modeling (Melching 1992), open channel flow (Yeh and Tung 1993), and stream water 

quality (Burges and Lettenmaier 1975). In addition, Song and Brown (1990) applied 

FOSM by including the correlated inputs using the Streeter-Phelps equation. Their study 

assumed correlation coefficients among nine model inputs and evaluated the uncertainty. 

Results showed that this method generates similar results to the ones provided when input 

data were correlated. Alternatively, Melching and Anmangandla (1992) compared the 

mean-value first-order second-moment (MFOSM) method with the advanced first-order 

second-moment (AFOSM) method using the Streeter-Phelps equation and found that the 

AFOSM method produces better results than the MFOSM method. Recently, the FOSM 

method has been applied to estimate the margin or safety (MOS) in the total daily 

maximum daily load (TMDL) (Zhang and Yu, 2004). 

The derived distribution method (DDM) is the most classical approach in 

analytical uncertainty analysis (Mays, 1996; Salas et al, 2004: Tung and Yen, 2005). 

Canter and Knox (1986) applied DDM to the Dupuit-Fochheimer theory to estimate the 

groundwater table. Kunstmann and Kastens (2006) applied DDM to represent a 

probability density function (PDF) of output in the case of one or two variables in the 

Theis equation, the Gauss equation, and the Penman-Monthith equation. They also 

mentioned that DDM has difficulties in representing the uncertainty of bivariables. 

The latin hypercube sampling (LHS) method is a modified stratified sampling of 

MCS. It can provide accurate estimates of statistical variables of model output at a much 

smaller computational load than MCS (Melching, 1995). Several studies have applied 

LHS to estimate sediment transport. Yeh and Tung (1993) compared FOSM, Harr's 
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probabilistic point estimation (PPE) method, and LHS for uncertainty analysis of erosion 

and transport and found that FOSM and LHS provide better results than Harr's PPE 

method. Salas and Shin (1999) applied MCS and LHS to four uncertainty factors—rating 

curves, incoming sediment type, reservoir efficiency, and annual streamflow—and 

evaluated the uncertainty of annual reservoir sedimentation volume and accumulated 

reservoir sedimentation volume of the Kenny Reservoir in Northern Colorado. For water 

quality, the LHS has been applied to predict streamflow and water quality parameters in 

the Soil & Water Assessment Tool 2000 (SWAT 2000) and to estimate dissolved oxygen 

(Sohrabi et al. 2003; Melching and Bauwens 2001). Also, Shirmohammadi et al. (2006) 

applied LHS with other uncertainty methods, including MCS and the generalized 

likelihood uncertainty estimation (GLUE), to estimate the uncertainty of sediment 

estimation in the SWAT model's output. Moreover, they demonstrated the uncertainty of 

the vegetative filter strip modeling design system, and from this result, suggested that the 

result represented by the PDF can assist in improving management decisions concerning 

TMDL allocation and implementation. 

The results of this chapter shows that the distribution of effluent EMCs (Cout) 

represents the uncertainty of the variables: influent EMC ( Cin ), areal removal rate 

constant (k), and combined uncertainty of Cin and k. Data uncertainty, such as Cin, is 

evaluated with selected TSS data obtained from a BMP database, and model uncertainty 

is estimated from a regression relation of q and k. 
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2.3 Methods 

This study uses the prediction interval estimation method, which predicts the 

distribution of individual data or estimates an interval of a variable, to estimate the areal 

removal rate constant, and uses three other uncertainty estimation methods to create 

PDFs of effluent concentration. The DDM was chosen as the analytical method and 

FOSM was selected as the analytical approximation method. Finally, LHS is used for the 

numerical estimation method. 

2.3.1 Model of Storage BMP Performance 

The classical mathematical model for water treatment is the first-order decay 

model widely used to describe pollutant removal in treatment plants wetlands, swales, etc. ; -. 

(Carleton et al., 2001; Braskerud, 2002; Wong et al., 2006). The performance of 

volumetric BMPs for stormwater is closely related to water treatment in wetlands; it uses 

variables such as geometric storage shape, inflow and outflow rates, and influent and 

effluent concentrations. One of the models used in modeling both systems is the k-C* 

model. Many researchers have applied this model to constructed wetland performance 

and shown good reproducibility of real situations (Kadlec, 2000; Rousseau et al, 2004; 

Stone et al, 2004; Kadlec, 2003). This model incorporates "irreducible minimum 

concentration" to the first-decay equation where the observed effluent concentration 

converges to a constant value. Assumptions of the model are steady and plug flow 

conditions, valid assumptions used in representing flow hydrodynamics within wetland 

systems (Kadlec and Knight, 1996). 

The k-C* model is defined by: 
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q41 = k(C-C*) (2.1) 
ay 

Considering y, the fraction of distance from inlet to outlet, when y equals one, 

integration of equation (2.1) gives 

Cout=C*+(Cin-C*)e-k'< (2.2) 

where: 

Cout = effluent EMC (mg/L), 

Cin = influent EMC (mg/L), 

C* = background EMC or "irreducible minimum concentration" EMC (mg/L), 

k = areal removal rate constant (m/day), and 

q = hydraulic loading rate, defined as the ratio of the inflow discharge divided by 

the surface area of the system — (m/day) 

Although the model assumes steady-state flow conditions, BMP fills quickly and 

drains one a long period (24-72 hours) at an essentially constant rate. For that reason, it 

can be dealt with this assumption for BMPs. 
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2.3.2 Methods for Uncertainty Analysis 

There are two types of uncertainty in this study. One is parameter uncertainty, 

such as k in the k-C* model, and the other is data uncertainty, which is mainly 

represented in Cin and Coiit data. Prediction intervals are used for estimating the 

uncertainty of the areal-removal-rate constant in the model. DDM, FOSM and LHS are 

selected for estimating the variance of Cout. The variable X represents the independent-

random variable q in Section 2.3.2.1 and Cin in Section 2.3.2.2-2.3.2.4, while Y 

represents the dependent variable k in Section 2.3.2.1 and Cout in Section 2.3.2.2-2.3.2.4. 

2.3.2.1 Prediction Intervals in Estimating k from the Regression Line 

k is related to q with a power function in the k-C* model (Schrierup et al., 1990; 

Lin et al., 2005). However, the variance of Cout, simulated with the k-C* model changes 

dramatically depending on k. Therefore, it is necessary to apply a prediction interval in 

the k and q regression line. A prediction interval is focused on the variance of individual 

data while a confidence interval is focused on the variance of a regression line. This study 

works with the prediction interval of k because it is more importantl to know the 

performance for an individual event rather than the prediction of the average performance 

for many similar events (Barrett, 2005). The prediction interval in the regression line 

relating k and q is calculated by Equation (2.3) (Kutner et al. 2004). 
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Mean±t0025s 1 + - + } X X) (2.3) 

where 

t - the t distribution for the appropriate degree of freedom (n-2), 

n = the number of total data, 

s = standard error of the regression, 

X = average q at which the confidence interval is calculated, 

X=mean of observed q from monitoring data, and 

Xt individual observed q from monitoring data. 

2.3.2.2 Derived Distribution Method (DDM) 

In the DDM, the PDF of a variable y = g(x) can be obtained given the PDF of X, 

fx (x). The transformation from the PDF of X to that of Y entails the substitution of the 

inverse function of Y solved for X in the PDF of X. Then, the PDF of Y is (Salas, 2004): 

fxk\y)] (2.4) 

2.3.2.3 First Order Second Moment Method (FOSM) 

Approximation methods are variations of analytical methods used as 

approximation techniques. They are used when non-linearity makes DDM nonviable. 

FOSM is one of these approximation methods that uses a Taylor-series expansion of the 

performance function and estimates the mean and variance of the performance function. 

Those are: 

13 
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E(Y) = E[g(X1,-,Xn)]^g(^-,^n) (2.5) 

Var(Y) = Var[g(Xx,-,Xn)] 

" ( dp I " " 

;=1 KdXtJ ' • = 1 J = l 
[dXj 

M 

(Sg) 
[a* J C o v ^ X , . ) , (2.6) 

in which X indicates random variables and Y specifies a general function .y = g(x) . 

Assuming that the X,.'s are independent variables, Cov(Xj, Xj ) = 0 , then the 

variance of Y is (Salas, 2004): 

r *.\ 
Var(Y) = Var[g(Xl,-,Xn)]^X ^ r Var{Xt). 

j=i v ^ , y 
(2.7) 

juinx and <rlnx can be calculated from the sample mean and standard deviation of 

logtransformed X. Finally, the inverse of the cumulative distribution function (CDF) is 

calculated to quantify the percentile of the lognormal distribution using the estimated 

parameters: 

Xp =exp(// lnx+Zo- lnx), (2.8) 

where 

Z = the standard normal quantile corresponding to exceedance probability, and 

Xp = the X value ofp percentile. 

The application of FOSM to the k-C* model in uncertainty both Cin and k is 

represented in Appendix I in detail. 



2.3.2.4 Latin Hypercube Sampling (LHS) 

The LHS is a stratified sampling method to reduce variance and sampling error. 

The steps to apply the methods are (Tung and Yen, 2005): 

1. Select the number of subintervals, M, and divide the range [0, 1] into M equal 

intervals. 

2. For each subinterval, define £mas independent-uniform-random numbers from 

%m ~U(0,l/M) for m = 1,2,...,M . Then, a sequence of probability values um are 

generated as 

^ = - 7 7 - + ̂ , m = l,2,...,M 
M 

3. Computezm =Fl(um) in which F(-) is the CDF of the random variable of 

standard normal distribution. 

4. Compute mean and standard deviation from log transformed Cin or k. 

5. Compute generated Cin or k assuming lognormal distribution 

asxm =exp(//tojc+zIBo-lnje). 

6. Apply generated Cin or k to the k-C* model 
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2.4 Data Selection and Model Organization 

2.4.1 Data Selection 

BMP performance data were collected from the International Stormwater BMP 

Database (www.bmpdatabase.org) maintained by the American Society of Civil 

Engineers (ASCE) and the United States Environmental Protection Agency (US EPA). 

This data is categorized as illustrated in Figure 2.1. For different BMPs, the database 

includes geometric information, event runoff volumes, water quality data, and other 

general information. Nine types of BMPs are defined in the database: dry detention 

basins, wetlands, trenches, media filters, infiltration basins, hydrodynamic devices, 

porous pavement, grass filters, and wet retention ponds. This chapter addresses only dry 

detention basins and considers total suspended solid (TSS) as the representative BMP and 

nonpoint source pollutant. In Chapter 3, BMP geometry and stormwater runoff 

characteristics will be coupled and their effects on water quality modeled. Results will be 

compared with field data available in the BMP database. 

Test Site 
(location, mapping, testing/sponsoring agencies, test set-up) 

I I 
Test Watershed Reference Watershed(s) 

(topographic characteristics, land uses, paved/unpaved (Non-structural BMPs must have a comparable reference 
areas, soils, regional climate, settling velocities) watershed for comparison of data. Information required 

for test watersheds must also be completed for reference 
watersheds ) 

• BMP(s) -
(installation dates, design parameters, 

Bcost, maintenance, inflow/outflow points, 
a drawings) 

Monitoring Stations 
(locations relative to BMPs) 

I I i 
n Monitoring Data Instrumentation Monitoring Costs 

(types, dates, type of data collected) 

Precipitation 
(date, time, total, peak 1-hour) 

•-%i 
Storm Runoff and/or 

Baseflow 
(date, time, BMP flow 

volume & peak, bypass 
volume & peak) 

i Water Quality 
• (parameter, value, units, lab methods) 

Figure 2.1 Overview of data categories in the International Stormwater BMP Database 
(www.bmpdatabase.org) (ASCE & US EPA, (2002)) 

http://www.bmpdatabase.org
http://www.bmpdatabase.org


Pre-screening was necessary to select the BMP data to use in the model because 

some datasets do not make sense based on normal BMP performance. The final BMPs 

chosen for this study are those in which the average outflow rate is smaller than the 

average inflow rate and those in which Cout is not significantly larger than Cin for any 

event. In the case of the flow rate, the event-based-average inflow rate should be higher 

than the event-based-average outflow rate because of the performance of BMPs. 

Regarding the EMCs, it has been observed that Cout is sometimes greater thanC;„. This is 

because settled pollutants in BMPs can become re-suspended by influent flows. This 

behavior is not typical of a well designed BMP and is only acceptable when the influent 

EMC is low compared to the "irreducible minimum effluent EMC", which indicates that 

Cout values converge to a particular value above zero (Minton (2005) and Schueler 

(1996)). These criteria were considered in choosing BMPs from the database. 

Table 2.1 lists the locations, documented pollutants, and sizes of the four 

detention BMPs used in this study. All of the chosen detention basins are located in the 

state of California. 

Table 2.1 Selected Best Management Practices in this study 

BMP 
Type 

Detention 
Basin 

BMP name, 
Location 

15/78, CA 
5/605 EDB, CA 
605/91 edb, CA 
Manchester, CA 

Number of 
Datasets 

17 
2 
5 
12 

BMP 

Volume (m3) 

1122.54 
364.66 
69.57 

252.79 

size 
Surface area 

(ha) 
0.0977 
0.0598 
0.0114 
0.0304 

Length (m) 

60.96 
47.24 
22.86 
22.86 
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2.4.2 Statistical Description of Stormwater Constituents 

Based on the results obtained by the Nationwide Urban Runoff Program (NURP) 

study (US EPA 1983) and Van Buren et al. (1997), Strecker et al. (2001) remarked that 

stormwater constituents can be well represented by a lognormal distribution. The 

lognormal distribution was adjusted to Cln and Cout data to verify this statement. Figure 

2.2 shows this distribution together with the empirical histogram for sites shown in Table 

2.1. It is observed that the lognormal distribution represents the data well. Similar results 

were obtained for the other locations in this study. 

-Observed Cln 

"Lognormal Distribution Fitting 

(a) 

1 

/ 

J 

1 
Lognormal Distribution Frttlng 

-

10 20 30 50 60 70 80 90 100 

(b) 

Figure 2.2 Histogram of observed data and lognormal fitting for detention basins; 
(a)C,„and(b)C0U, 



2.4.3 Model Selection and Organization for BMP Performance 

The k-C* model presented in Section 2.3.1 was used for simulating the 

performance of a BMP. Both parameters of the model, k and C*, depend on pollutant 

characteristics such as the particle sizes and higher specific gravity and settling velocity 

(Wong et al. 2002). Treatment systems receiving large particle concentrations will have a 

high removal rate and a low C* since there is more sedimentation. Thus, there is a 

relationship between the parameter, k, and the settling velocities (or particle size) of 

suspended particles received from watersheds. Thus, parameter calibration for the k-C* 

model should be performed based on local site conditions such as particle size 

distribution. In addition, C* depends on temperature and inflow concentration (Kadlec 

and Knight 1996). Although the areal removal rate constant, k, has a theoretical link to 

settling velocity, field studies have shown that this theoretical link is not necessarily the 

case for particles finer than about 40 um (Wong et al. 2002), which consist of silt, coarse 

clays, organic fines and phytoplankton (Roesner et al., 2007).Thus, the estimation of k is 

not straightforward. Scherup et al. (1990) and Lin et al. (2005) suggested that the k-

values of the the k-C* model are strongly dependant on the hydraulic loading rate (HLR). 

They proposed the following power relationship with coefficients a and b: 

k = aqb (2.9) 

This relationship is used in this study to estimate the value of k. However, k 

values in the model are very sensitive and must be estimated with more accuracy in order 

to obtain accurate effluent EMCs. Therefore, the need of high accuracy in the model 
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results in the need for uncertainty analysis in k. A plot of k versus q based on individual 

storm events is shown in Figure 2.3 with a 95% prediction interval from Equation (2.3) 

for TSS in detention basins, k values in Figure 2.3 can be estimated by the inverse of the 

k-C* model from observed Cout and q values estimated from observed inflow and BMP 

surface area. Values of the coefficients, a and b , in Equation (2.9) are 1.4841 and 

0.9721, respectively. The distance between the median line and the lines of the prediction 

interval show the uncertainty in k. Thus, the log-transformed k is 0.4370 from Figure 2.3. 

The range of C* suggested in the literature is shown in Table 2.2. This study 

chooses one constant value, 10 mg/L, for C* based on Table 2.2 and minimum Cout in 

the dataset. Table 2.3 shows the required given information for input variables for 

uncertainty analysis of three cases: uncertainty in Cm , or k, or both. For example, to 

analyze uncertainty in Cjn , the required given information is the log-transformed standard 

deviation of Cin and the log-transformed means of Cin and k. The standard deviation of k 

can be estimated from the distance of the prediction interval between the median k and 

the 95% prediction interval of A: in Figure 2.3. 

Table 2.2 Typical background concentration values proposed in literature 

Literatures 

Kadlec and Knight (1996) 

Barrett (2004) 
Crites et al. (2006) 

This study 

TSS (mg/L) 

Cin when 0.0 < C,„ < 290 mg/L 

5.1+0.16C,„ when 0.1 < Cin < 807 mg/L 

5-20 
6 
10 
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o 15/78, CA 
o Manchester, CA 

— Power (Median k) 

• 5/605 EDB, CA 
A 605/91 edb, CA 

Power (95% Prediction Interval) 

100 

10 

> 1 

0.1 

0.01 

!k=1.4841q09721 

I R2 = 0.8163 

\ ^ ' ^ c 

L . - ^ . " ^ . O f e / v ^ 

! j a * — « ^ 

-^ 

%o£>*^ ^ 

^ A 

0.01 0.1 1 

q (m/day) 

10 

Figure 2.3 Estimated /c vs. q using individual storm events for detention basins 

Table 2.3 Required parameters information of Cm and k for uncertainty analyses 

Input Parameters 

Statistical Properties 

Cases ot 

Analysis 

Value 

Uncertainty in Cin 

Uncertainty in k 

Uncertainty in Cin 

and k 

LogC,„ 

. „ Standard 
Mean „ . . 

Deviation 
5.038 0.6083 

* * 

* 

* * 

Log A: 

Mean 

L o g O ^ l q 0 9 7 2 ' ) 
* 

* 

* 

Standard 
Deviation 

0.4370 

* 

* 

: required information 



2.5 Results and Discussion 

The distribution of Cout for the k-C* model was estimated with two distributed 

input parameters, Cm and k, as shown in Figure 2.4. Results of uncertainty in Cin , 

uncertainty in k, and uncertainty in both Cjn and k are shown in Section 2.5.1, 2.5.2, and 

2.5.3, respectively. These results assume that geometric (A) and hydrological parameters 

(Q) don't have uncertainty. In addition, the background concentration (C*) was fixed at 

10 mg/L because the minimum value of selected observed data was close to 10 mg/L. 

Cm and k were represented as lognormal distributions because their observed distributions 

are very close to lognormal as was shown in Figure 2.2 and Figure 2.3. 
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Cout = Co+(Cin-C0)*exp(-kA/Q) 
Cout = C0+(Cin-C0)*exp(-kA/Q) 

(a) (b) 

Cout = Co+(Cin-Co)*exp(-kA/Q) 

(c) 

Figure 2.4 Schematic for generation of probabilistic Cout; 

(a) Uncertainty in Ctn; (b) Uncertainty in k; (c) uncertainty in both Cm and k 



2.5.1 Uncertainty in Cu 

A lognormal distribution fc (Cjn) for Cin is assumed with a mean value 

//inC and standard deviation CT^C from the selected TSS of detention basins in the BMP 

database as shown in Figure 2.1: 

1 
fcJCm) = 

2^Cmo"i„c,„ 
-exp 

'WCJ-M^2 

(2.10) 

According to Equation (2.4), The PDF for C0U,f(C0Ut) is given by 

fciCout) = 
dg~\Cmt) 

dC„ 
fc,\g-\Cout)] (2.11) 

where, 

g-\C0Ut) = C*+{C0Ut -C*)exp(k/q) = Cltl and 

dg~\C0Ut) 

dC„ 
= |exp(& / q)\ = exp(£ I q) 

(2.12) 

(2.13) 

Substituting Equation (2.12) and (2.13) into Equation (2.11), the resulting PDF 

for the effluent EMC, fc (Cmt) is 

f(CM)-
2?r[C0„,-C*{l-l/exp(£/<7)}kc 

-exp -0.5 
ln[C„„, -C*{\-\/&qp(k/q)}]-{pb,Cm -(k/q)) 

(2.14) 

k can be estimated usingl.4841g for detention basins from Figure 2.3. Then, 



^ > = -
^[Ccu, - C i - l / e x p ( 1 . 4 8 4 1 ? - 0 0 2 7 9 ) g f f ] 

-exrt 

InC. 

ln|~C -C* | - l / exp( I .4841 ? " 

-0.5 

00279)!l-^nC. -l-4841?-a027V 

InC. 

(2.15) 

Equation (2.15) shows that f(C0Ut) is a three-parameter lognormal distribution. 

Depending on q , the scale parameter ( 1.4841g"00279 ) and location parameter 

(C*{l-l/exp(l.4841g~00279)}) are changed. f{C0Ut) is very sensitive to the value of 

exp(1.4841<7"00279), when A: is a function of q . k becomes closer to the two-parameter-

lognormal distribution when the value of exp(1.4841g~00279) is close to 1. However, 

f(C0Ut) changes to the three-parameter-lognormal distribution for values of 

exp(l .4841g ) much greater than 1. Plots of fc (Cml) as a function of q are shown 

in Figure 2.5. Figure 2.5 (a),(b), and (c) show the PDFs of Cmt found with DDM, LHS, 

and FOSM, respectively. FOSM is applied to the two-parameter-lognormal distribution 

instead of the three-parameter-lognormal distribution because the latter distribution needs 

an extra statistical value, the skewness coefficient, to estimate parameters. Mean value of 

Cout ranges were between 30-60 mg/L for all three cases. 
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Comparisons of the PDFs for the three methods, DDM, LHS and FOSM, are 

shown in Figure 2.6. The PDF obtained using FOSM differs from the DDM and the LHS 

when q is both 0.01 and 5 m/day. This discrepancy is explained by conceptual differences 

among the three methods. No assumptions regarding the distribution of Coul are required 

by DDM and LHS methods. On the contrary, it is necessary to assume a known PDF for 

Cout when the FOSM method is used. This assumption makes the method simpler but 

introduces error. DDM is the most accurate method, but it is difficult to define the exact 

value corresponding to a specific percentile because it needs an extra computation to 

estimate percentile from PDF matched with Cout. With LHS, it is relatively easy to 

estimate the precise value of a specific percentile, but a lot of sampling is required. 

For q = 0.01 and 5 m/day, exp(1.4841g"00279) is 5.41 and 4.13, respectively, 

which are much greater than 1, and the PDF in equation (2.14) differs from the lognormal 

distribution to a large extent. This creates the differences observed between the DDM 

and LHS PDFs and the lognormal PDF obtained using FOSM. As a result, it can be 

indicated that LHS is correct representation rather than FOSM since LHS PDFs coincide 

with DDM PDFs. 

27 



0.03 

0.025 

• • • • q=0.01 m/day for DDM 
« q=0.01 m/day for LHS 

- • - q=0.01 m/day for FOSM 
- - - q=5 m/day for DDM 
H qr5 m/day for LHS 

' q=5 m/day for FOSM 

i r 

40 60 80 100 120 
Effluent EMC, Cout, (mg/L) 

160 180 200 

Figure 2.6 Comparison of f(Coul) considering uncertainty in C,.„ among DDM, LHS and 

FOSM for detention basins 

Figure 2.7 shows the PDFs of Cout which represent the observed data well. This 

figure shows the PDF computed using LHS, but similar results are obtained with the 

other PDFs shown in Figure 2.5. The 95% and 50% confidence intervals are plotted as 

well. These intervals represent the variability of the data very well, with Cout values 

being higher and more scattered for large values of q. Most of the observed data are low q 

values. As expected, about half of the observed data are placed out of the 50% confidence 

interval and two points (5% of the total data) are located outside of the 95% confidence 

interval. 
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° Observed Data 
===95% Confidence Interval 
===95% Confidence Interval 
—50% Confidence Interval 

0.005 

Hydraulic Loading Rate, q (m/day) 

Figure 2.7 Uncertainty inC/n : probability density functions of LHS including confidence 

intervals and observed data for detention basins 

Figure 2.8 compares the 50% and 95% upper and lower confidence intervals 

obtained using LHS and FOSM. With the exemption of the lower 95% confidence limits, 

the rest of the limits are very similar. It can be concluded that the distributed Cout is 

essentially identical for LHS and FOSM. 
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Figure 2.8 The comparison of confidence intervals between LHS and FOSM on considering 

uncertainties in C,„ for detention basins 

2.5.2 Uncertainty in k 

What follows is the uncertainty analysis for Cmt assuming k is lognormally 

distributed with a certain mean and standard deviation. f(C0Ut) can then be derived using 

the DDM method defined in equation (2.4) 

f(C0Ut) = -

In In 
C,„-C* 

-exp 

, r •c* 
°*k\(Cml-C* 

In gin 
'' C,„ - C * A 

r •c* 
"/"lint 

(2.16) 

In equation (2.16), the independent variables are q and Cjn . Log-transformed 

mean and standard deviation of k, which are required for estimating the uncertainty in k, 



are listed in Table 3. What follows is a sensitivity of uncertainty analysis of equation 

(2.16) to Cm (Section 2.5.2.1) and q (Section 2.5.2.2). 

2.5.2.1 Sensitivity of Uncertainty in k to Cjn 

A constant value of g=0.1m/day is assumed to determine the effect of Cm on the 

uncertainty of Cout with respect to k. Figure 2.9 shows f(Cmt) for different values ofCin. 

Figure 2.9(a) shows f{Cout) obtained using DDM and Figure 2.9(b) shows f(C0Ut) 

obtained using LHS. In both cases, the variance of Cmt decreases as Cin decreases. For 

low Cin, C* limits the variance of Cmt. 

Figure 2.10 shows both PDFs for values of Cin =100mg/L and 350mg/L. Both 

methods produce very similar distributions and represent a higher variability in Cout as 

Cjn increases. In other words, it is more difficult to predict Cout for a high Cin at a 

constant q. Figure 2.11 shows the PDFs of Cout for the observed data when q is restricted 

to O.lm/day. This figure shows the PDF computed using LHS, but almost identical results 

are obtained with the PDFs using DDM, as illustrated in Figure 2.9(a). The 95% and 50% 

confidence intervals become wider as q increases. For this analysis, only three data points 

were avoidable; two of the three points lie within the 50% confidence interval and the 

third is within the 95% confidence interval. 
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2.5.2.2 Sensitivity of Uncertainty in kto q 

A constant value of Cjn = 170 mg/L is assumed in order to determine the effect of 

q on the uncertainty of k. Figure 2.12 shows f(Cout) for different values ofC,„ using 

DDM and LHS, respectively. In both cases, the shapes of the PDFs of Coul demonstrate a 

more positive skew with decreasing q. FOSM is difficult to apply because the shape of 

the PDF is difficult to define with well-known types of distributions as shown in equation 

(2.16). Thus, it can be concluded that LHS is the better method to represent the 

uncertainty in k to Cln and q . 

Figure 2.13 shows PDFs for values of q=0.0l m/day and 5m/day. Both the DDM 

and LHS methods produce very similar distributions and represent higher variability in 

Coul as q increases. In other words, it can be represented that Cmt is higher probability to 

lower Cout with decreasing q. As a result, it is more difficult to predict Coul for high q at 

a constant C,„. 
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Figure 2.14 shows PDFs of Cout for the observed data when Cin is restricted to 

170 mg/L. This figure shows the PDF computed using LHS, but similar results are 

obtained with the PDF for DDM, as illustrated in Figure 2.13. The 95% and 50% 

confidence intervals are plotted as well. These intervals represent that Cout values are 

higher and a little more scattered for larger values of q. Two of the three observed data 

are scatter within the 50% confidence interval, and third point is located within the 95% 

confidence interval. While only having three the data using for comparison, they do 

validate that this PDF shows that the results of the k-C* model describe the behavior of 

observed data. Based on the results shown above, it is found that the shape of the PDF as 

a function of Cjn shows more change of variance than as a function of q. It can be 



concluded that C,„ is a more sensitive variable than q for the uncertainty in k when the k-

C* model is considered with TSS the pollutant in detention basins. 

0.1 1 
Hydraulic Loading Rate, q (m/day) 

Figure 2.14 Uncertainty in /(to q: probability density functions from LHS including 
confidence intervals and observed data for detention basins 

2.5.3 Uncertainty in Both Cin and k 

This chapter assumes that there is no correlation between Cjn and k in order to 

simplify calculations. Because of mathematical complexities, the DDM cannot be applied 

to derive f(Cmt) when uncertainties in both Cin and k are simultaneously applied to the 

k-C* model. The analysis in the previous chapter showed that the LHS and DDM 

methods generate very similar distributions. Thus, the LHS method is used in this 
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chapter to evaluate the FOSM method as shown in Figure 2.15(a). To apply the FOSM 

method, it is assumed that Cmt is lognormaliy distributed as shown in Figure 2.15(b). 
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Figure 2.15 f(C0UI) as a function of q on considering uncertainty in both Cin and k for 

detention basins ;(a) LHS, (b) FOSM 



Figure 2.16 shows a comparison of both PDFs for g=0.01 and q-5 m/day. Both 

distributions are relatively similar for q=5 m/day, but differences are observed in the peak 

value of the different methods for q=0.01 m/day. The distribution of Cout is skewed to the 

right (positive side) when q is both 0.01 and 5 m/day. LHS does not require identification 

of the output distribution. In other words, it can be represented by any type of distribution. 

However, FOSM assumes the distribution of output as a lognormal distribution. Thus, the 

shapes of the PDFs generated by the LHS and FOSM methods differ. 
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Figure 2.16 Comparison of f(Cmt) as a function of q on considering uncertainty in /(for 

detention basins between LHS and FOSM 



Figure 2.17 shows the PDFs obtained with LHS, their confidence intervals of 50% 

and 95%, and the observed data. About two-thirds of the total data are located within the 

50% confidence interval, and all observed data are located within the placed 95% 

confidence interval. A comparison of Figure 2.6 with Figure 2.17 shows none of the data 

fell outside the 95% confidence interval. Therefore, TSS treatment in detention basins is 

better explained by an uncertainty analysis when variability is considered in both Cin and 

k. 

o Observed Data 
= ==95% Confidence Interval 
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Figure 2.17 Uncertainty in both Cm and q: probability density functions of LHS including 

confidence intervals and observed data for detention basins 
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Figure 2.18 compares the 50% and 95% confidence intervals obtained using LHS 

and FOSM when uncertainties in Cjn and k are considered. These methods produce 

different distributions because the FOSM analysis assures a lognormal distribution for 

Com while the LHS method does not. Nevertheless, confidence intervals between LHS 

and FOSM are not different substantially different. Thus, the assumption of a lognormal 

distribution for Cout seems to be practical for estimating the variance of Cout. 
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2.6 Conclusions 

This chapter has investigated the application of several uncertainty-analysis 

methods when using the k-C* model to characterize the variability of Cout at the outlet of 

stormwater detention basins. Three methods were studied: 

« DDM, an analytic method to estimate the PDF of a dependent variable based 

on the PDF of an independent variable. It generates the most accurate PDF for 

a univariate case, but it is not as effective in obtaining results in the 

multivariable case due to the mathematical complexity of numerical solutions. 

An unknown distribution of the independent variable makes the applicability 

of this method difficult. 

• FOSM, a simple analytic method for uncertainty analysis. However, this 

method requires the distribution of the results to be a known continuous 

distribution. Thus, the applicability of this method is reduced in the case 

where the output distribution is not known. 

• LHS, a special case of the stratified sampling method on MCS. It generates 

results through an appropriate sampling of the input variables and provides 

very accurate results, even when the distribution of the input variables is 

unknown and not unique. 

It is concluded that LHS is the most efficient method to characterize the 

uncertainty of Cout when there is variability in more than one parameter of independent 

variables in the Jc-C* model. 
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With respect to the k-C* model and its performance under uncertainty in input 

variables, the following is concluded: 

• The observed variance of Cin is very large. This variance significantly affects 

the computation of effluent EMC when using the model. For small values of q, 

the peak-probability density of Cout for the DDM and LHS methods are 

greater than the peak-probability density of Cout for FOSM because the PDF 

for DDM and LHS are lognormal 3-parameter distributions and the PDF for 

FOSM applies to the lognormal 2-parameter distribution. 

• Two input variables are defined when the uncertainty in k is incorporated in 

the analysis. Therefore, one of the variables has to be fixed in order to 

determine the PDF of Cout. This study shows significant differences in the 

PDF of Cout when each of & and Cin variables is fixed independently. 

• If C;n is known, the uncertainty of Cmt is explained entirely by the 

uncertainty in the parameter k. In this case, uncertainty conditions are 

obtained by an independent analysis of the functions relating the uncertainty 

in Cin to Cout and the uncertainty in q to Cout. 

• The uncertainty in k as a function of Cjn generates greater variance of Cout for 

larger Cin. As Cin decreases, Cout decreases and converges to C*. 

• The uncertainty in k as a function of q generates increasing variance in Cout as 

q increases. However, sensitivity of the variance to a change in q is not 

sensitive to a change in Cin. 
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• The incorporation of uncertainty in both Cin and k generates a variance in Cout 

slightly larger than that obtained if only uncertainty in Cjn is considered. Thus, 

it is concluded that the effect of uncertainty in Cjn is much more significant 

than that of uncertainty in k, However, 95% of the observed Cout data is 

contained in the 95% confidence interval when only the variability of Cin is 

considered. On the other hand, 100% of the observed Cout is contained in that 

confidence interval when uncertainty in k is also incorporated in the analysis. 

To summarize, the LHS is the most efficient method among all of the three 

methods tested to characterize the uncertainty of in both univariate or and bivariate 

cases in the k-C* model. With respect to the k-C* model itself, the computed value of 

Cout is much more sensitive to CV than to k.\ thus, for practical purposes, uncertainty in 

Cout can be adequately estimated using only the uncertainty associated with Cjn. 
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2.8 Appendix I. FOSM Application 

The effluent pollutant concentration in the BMP is calculated as the estimated 

pollutant concentration using the k-C* model through Equations (2.2). 

Unout = HC0Ut,median) = ln{C * +(Cinmedian - C * ) • e x p ( - k m e d i a n Iq)} (2.17) 

I f Cout median
 ls log-transformed, it is the mean of log transformed values and 

marked jninoilt. Standard deviation of k can be calculated as log transformed mean and 

standard deviation from Equation (2.18a) as shown in Equation (2.18b). 

a2
x = {exp(0-l}-exp{2/y ]n ;c +<r£x} 

ak = ^j{exp(alk)- lj- exp{2/^ + cr£k} 

(2.18a) 

(2.18b) 

It is assumed that Cin and k are independent. Therefore, the standard deviation of 

theCou/ can be evaluated using Equation (2.7) in Chapter 2 from Equation (2.18b) as 

shown in Equation (2.19): 

eM-kmed,aJq) ac,„ + 
\ in,median / 

zM-kmediaJq)\ -erl (2.19) 

Using Equation (2.19), the mean value of Cout (/JC ) can be estimated as shown 

in Equation (2.20c): 

/" in , -In i "x 

1 + v2 (2.20a) 



Ml lnC„, I„ 
1 + 

Mc 
r "-old (2.20b) 

\V-Co*) j 

//c„„ = 

exp(2//lnCoj4) + A/(exp(4AnCoia) + 4<r^ exp(2AnC^ ) 
(2.20c) 

The log-transformed standard deviation of Cou( can be determined using Equation 

(2.21a) from Equations (2.19) and (2.20c) as shown in Equation (2.21b). 

' h i In 1 + '*y 
\t*j 

1/2 

(2.21a) 

lnC„, In 1 + 
f - \ 

\^cM j 

1/2 

(2.21b) 

The confidence intervals of Cout can be estimated using Equation (2.17) and 

(2.21b) through Equations (2.22) and (2.23). 

Cout,95%UCL = e X P t " l n C ^ + 1 -96(TlnC0 J 

Cout,95%LCL = e X Pl" lnC„„ , ^ - 9 6 ( J m c J 

(2.22) 

(2.23) 
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3 EFFECT OF BMP SIZE AND RUNOFF ON THE 

PERFORMANCE OF BEST MANAGEMENT 

PRACTICES WITH UNCERTAINTY ANALYSIS 

3.1 Introduction 

Best Management Practices (BMPs) are widely used to control stormwater runoff 

and nonpoint source pollutants. Although hydrologic performance of BMPs and their 

design methodology are well developed, the level of pollutant removal and treatment 

performance is difficult to assess. The main reason for this difficulty is there are 

significant uncertainties in the variables believed to affect pollutant removal in BMPs. In 

addition, the influent concentration to the BMP differs depending on rainfall 

characteristics, land use, seasons, and other conditions, which makes it difficult to 

evaluate pollutant concentrations in the runoff. Therefore, it is necessary to consider 

uncertainty in assessing the effectiveness of functions related to BMP performance. 

Particularly, more detailed study is necessary on the effects of BMP geometry and inflow 

since these are the most significant factors of BMP design (Urbonas, 1995). 

The object of this study is to examine the effect of BMP size and BMP inflow on 

BMP performance. The BMPs chosen for this study were detention basins and retention 

ponds. Total suspended solids (TSS) is the pollutant of interest because it is the most used 

water quality parameter in stormwater BMPs. This study applied the k-C* model as the 

BMP performance model Uncertainty was included in the model parameters k, q, and C,„ 

as discussed in Chapter II to produce a probalistic outflow concentration from the BMP 
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performance model. Observed data of BMP geometry, hydrologic information, and 

pollutant concentration obtained from the International Stormwater BMP Database 

(www.bmpdatabase.org) were used to build the model. 

3.2 Background 

3.2.1 Performance Effects of BMP Geometry and Inflow 

Carleton et al. (2001) investigated the relationship between percent pollutant 

removal and factors affecting performance in wetlands. They applied volume and areal 

based 1st order models and found that the volume-based 1st order model is more 

appropriate for TP removal in wetlands. Shammaa et al. (2002) investigated factors 

affecting TSS removal in stormwater detentions basins. They showed that detention time 

and detention volume are the major factors effecting TSS removal. Also, geometric 

considerations, such as detention basin length to width ratio, pond depth, bottom grading, 

and side slope, are also related to TSS removal. Finally, they concluded that the most 

important factor affecting TSS removal is detention time. 

Barrett (2004) investigated the factors affecting the pollutant-removal 

performance of retention ponds. He investigated the correlation of retention pond 

performance, represented as percent removal or effluent EMC, with permanent pool 

volume size, pond surface area, and climate variation. He concluded that the effluent 

concentration of TSS is independent of permanent-pool volume and that the percent 

removal of TSS is not correlated with pond surface area. Starzec et al. (2005) collected 

metal contents in sediment data from Swedish wet detention basins to determine the 
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relationship between BMP geometric functions and pollutant removal efficiency. They 

found that metal removal efficiency is stable over 250m2/ha (surface area relative to its 

catchment area), which implies that only a smaller surface area than 250m2/ha has an 

effect on the removal efficiency of metals. Barrett (2008) represents several BMP 

performances using the linear regression method of influent and effluent EMCs for data 

from the International Stormwater BMP Database. He suggested that plotting the influent 

and effluent EMCs is a good approach to represent BMP performance because influent 

EMC is one of the dominant variables in BMP performance. 

Kadlec (2000) and Lin et al. (2005) suggested that there is a strong relationship 

between k and q in the k-C* model. Moreover, Lin et al. (2005) found that k is related to 

q with a power function and that q is related to BMP surface area in TSS and total 

ammonium nitrogen (TAN) removal in the free-surface wetland. They suggest that 

wetland surface area would tend to be overestimated because low values of q would tend 

to underestimate the areal removal rate constant. 

3.2.2 Latin Hypercube Sampling 

Influent and effluent EMCs as well as the rate k all contain uncertainty. To 

evaluate the sensitivity of theses uncertainties, it is necessary to apply various uncertainty 

analysis methods. This study applies the latin hypercube sampling (LHS) method for the 

uncertainty of influent EMC and k. 

LHS is a special method of stratified sampling. It is a strategy of efficient 

sampling that can reduce the variance of results to a meaningful uncertainty assessment. 
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This method also provides an efficient and practical sampling methodology in the case of 

large Monte Carlo simulations (MCS) (Murphy et al. 2006). 

LHS can provide accurate estimates of statistical variables of model output with 

much smaller computational work than MCS (Melching, 1995). Several studies have 

applied LHS to estimate sediment transport. Yeh and Tung (1993) compared the first-

order second-moment (FOSM) method, Hair's probabilistic point estimation (PPE) 

method, and LHS for the uncertainty analysis of erosion and transport. It was found that 

FOSM and LHS provide better results than Harr's PPE method. Salas and Shin (1999) 

applied MCS and LHS to evaluate uncertainties of annual and accumulated reservoir 

sedimentation volumes of the Kenny Reservoir in Northern Colorado. They found that 

annual-stream flow and annual-suspended-sediment load are the most sensitive factors in 

the evaluation of uncertainty in annual-reservoir-sedimentation volume and that the 

annual-sediment load and the annual streamflow are the most significant parameters in 

the evaluation of uncertainty in accumulated-reservoir-sedimentation volume in the case 

considered. For water quality, the LHS method has been applied to predict streamflow 

and water quality parameters in order to evaluate the uncertainty of dissolved oxygen 

concentration in the Soil & Water Assessment Tool 2000 (SWAT 2000) (Sohrabi et al., 

2003), in SALMON-Q, in KOSIM models (Melching and Bauwens, 2001), and in the 

DUFLOW model (Manache and Melching, 2004). Also, Shirmohammadi et al. (2006) 

applied LHS with other uncertainty methods, including MCS and generalized likelihood 

uncertainty estimation (GLUE), to estimate uncertainty of sediment estimation in the 

SWAT model's output. LHS was applied to estimate the parameters of the distributed 

hydro logic runoff models such as the Hydrological Simulation Model (HYSIM) (Murphy 
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et al. 2006), SWAT (Muleta and Nicklow, 2005) and MIKE SHE (Christiaens and Jeyen, 

2002). The most significant feature of these hydrologic and environmental models is that 

they have many input parameters which make it difficult to evaluate the uncertainties of 

the model outputs with general MCS. LHS resolves this problem with fewer sampling 

numbers and shows more accurate uncertainty output values as a result in models. 

3.3 Method 

3.3.1 Data Selection 

There are many factors that affect BMP effluent concentration such as influent 

concentration, the size of the permanent pool, pond geometry, temperature, area of the 

pond, and the inflow rate for a storm event. However, it is very difficult to consider all 

factors simultaneously in a BMP performance model (Barrett, 2008). This study uses 

data for each of these factors from the International Stormwater BMP Database 

(www.bmpdatabase.org). The dataset applied to this study includes stormwater inflow 

and outflow data, BMP geometry data, and water quality data categories assembled 

together as shown in Figure 3.1. This study uses TSS as the pollutant because only the 

TSS dataset in detention basins and retention ponds had a large enough number of data to 

analyze their performance; other pollutants in detention basins and retention ponds and 

TSS data in other BMPs were too few in number to be used. Data assembled from the 

BMP database were pre-screened for application in the BMP performance model. This 

pre-screening had two conditions: 1) the average-event inflow rate (Qin) had to be equal 
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or greater than the outflow rate (Qout) and 2) the influent EMC (C,„) had to be greater 

than the effluent EMC (Cout). 

Test Watershed 
(topographic characteristics, land uses, paved/unpaved 

areas, soils, regional climate, settling velocities) 

Test Site 
(location, mapping, testing/sponsoring agencies, test set-up) 

I 
Reference Watershed(s) 

(Non-structural BMPs must have a comparable reference 
watershed for comparison of data. Information required 

for test watersheds must also be completed for reference 
watersheds ) 

. . . . . . . . . . . . . . . 
i BMP(s) 
• (installation dates, design parameters, 

cost, maintenance, inflow/outflow points, 
• drawings) Monitoring Data 

Precipitation 
(date, time, total, peak 1-hour) 

Storm Runoff and/or 
Baseflow 

(date, time, BMP flow 
volume & peak, bypass 

volume & peak) 

I 
Monitoring Stations 

(locations relative to BMPs) 

Instrumentation 
(types, dates, type of data collected) 

I 
Monitoring Costs 

• Water Quality 
(parameter, value, units, lab methods) 

Figure 3.1 Outline of the international stormwater BMP database and data collection of this 
study (www.bmpdatabase.org) 

Table 3.1 lists the geometric information and location of detention basins and 

retention ponds and the number of data sets assembled for each BMP in this study. All of 

the chosen detention basins are located in the state of California, but the locations of the 

retention basins are located in both California and Colorado. 

Table 3.1 Geometric information of BMPs and assembled number of dataset in this study 
Number BMP size 

K I V I K iMamA o n n 

BMP Type 
BMP Name and 

Location 

Retention 
Ponds 

of 
Dataset 

Volume Surface 
(m3) Area (m ) 

Length 
(m) 

La Costa WB, CA 
Lakewood RP 

(96), CO 
Lakewood RP 

(97-98), CO 

6 

5 

16 

259.10 

19.82 

18.96 

1,115 

16 

85 

60.96 

8.84 

16.97 

Width 
(m) 

18.29 

1.77 

5.01 

Depth 
(m) 

15/78, CA 17 1122.54 977 60.96 16.02 1.15 
Detention 5/605 EDB, CA 2 364.66 598 47.24 12.66 0.61 

Basins 605/91 edb, CA 5 69.57 114 22.86 13.29 0.83 
Manchester, CA 12 252.79 304 22.86 4.99 0.61 

0.93 

1.90 

0.42 
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Figure 3.2 and Table 3.2 show lognormal (base e) probability plots and the log-

transformed statistical variables of observed EMCs of TSS in detention basins and 

retention ponds for the sites listed in Table 3.1. Figure 3.2(a) shows how both influent 

and effluent TSS in detention basins are closely represented by lognormal probability 

plots. However, effluent TSS in retention ponds is quite scattered, as seen in Figure 

3.2(b). Moreover, the slopes of the probability plots between the influent EMCs and 

effluent EMCs in Figure 3.2(a) are very similar, but the slopes in Figure 3.2(b) are quite 

different, which indicates that influent and effluent EMCs in detention basins represent 

relatively similar standard deviations while influent and effluent EMCs in retention ponds 

represent different standard deviations (GeoSyntec et al, 2000). 

Table 3.2 Statistical variables of influent and effluent EMCs in detention basins and 
retention ponds 

TSS 

Detention Basins 
Retention Ponds 

Log transformed Influent EMC 

Mean 

5.0380 
5.5292 

Standard 
Deviation 

0.6083 
0.6660 

Log transformed Effluent EMC 

Mean 

3.6903 
3.8990 

Standard 
Deviation 

0.5147 
1.4435 
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3.3.2 Model of Storage BMP Performance 

The k-C* model combined with uncertainty analyses was selected to represent the 

BMP performance in this study as described by Chapter 2.3.1. 

3.3.3 Relating Hydraulic Loading Rate and Areal Removal Rate Constant 

The areal removal rate constant, k, is related to the hydraulic loading rate, q, 

through a power function as shown in Figure 3.3. However, the variance of effluent EMC 

in the k-C* model is very sensitive to k Therefore, it is necessary to apply a prediction 

interval in the k and q regression line, k values in Figure 3 are estimated from the 

observed data with the k-C* model. A prediction interval is focused on the variance of 

individual data while a confidence interval is focused on the variance of a regression line 

(Kutner et al. 2004). This study chose the prediction interval of A: because it is essential to 

know the performance for an individual event rather than the prediction of the average 

performance for many similar events (Barrett, 2005). The prediction interval in the 

regression line relating k and q is calculated as (Kutner et al. 2004) 

I 1 (X — X)2 

Mean±t002Ss 1 + — + — — (3.1) 

| n ±(xt-x)2 

where 

t0025 = 95% t statistics value for the appropriate degree of freedom (n-2), 

n = the number of total data, 

s = standard error of the regression, 

X = average q at which the confidence interval calculated, 
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X =mean of observed q from monitoring data, and 

Xi individual observed q from monitoring data. 

This study applies TSS data sets from detention basins and retention ponds to 

compare the characteristics of BMP performance. The k-C* model is used for simulating 

the performance of the BMP. Both parameters of the model, k and C*, depend on 

pollutant characteristics such as the particle size and settling velocity (Wong et al. 2002). 

Treatment systems receiving large particle concentrations will have a high decay rate, k, 

and low C* since there is more sedimentation. Thus, there is a relationship between the 

parameter k and the settling velocities (or particle size) of suspended particles in the 

watershed. Parameter k calibration for the k-C* model can be performed based on local 

conditions such as settling velocity (Kadlec and Knight 1996). Although the areal 

removal rate constant, k, has a theoretical link to settling velocity, field studies have 

shown that this theoretical link is not necessarily the case for particles finer than about 40 

um (Wong et al. 2002). Thus, the estimation of k is not straightforward. Previous research 

found that the ^-values of the k-C* model are strongly dependant on the HLR (q) 

(Scherup et al. (1990); Kadlec (2000); Lin et al. (2005)). The following power 

relationship was proposed with coefficients a and b 

k = aqb (3.2) 

This relationship can be used to estimate the value of k in order to build the k-C* 

model for prediction (Lin et al. 2005). This study also applies Equation (3.2) to the model. 
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However, ^-values in the model are very sensitive to effluent EMC and must be estimated 

with more accuracy in order to obtain accurate effluent EMCs. Therefore, the need of 

high accuracy in the model results in the need for an uncertainty analysis of k. A plot of k 

versus q based on storm event is shown in Figure 3.3 with a 95% prediction interval from 

Equation (3.1) for TSS in detention basins, k values in Figure 3.3 can be estimated by an 

inverse of the k-C* model using observed Cout and q values estimated from observed 

inflow and BMP surface area. Data are categorized by BMP and location. Values of the 

coefficients a and b in Equation (3.2) are 1.4841 and 0.9721 for detention basins and 

0.8379 and 0.7429 for retention ponds. From Figure 3.3, k values depending q in 

retention pond represents smaller than k in detention basins. Size of retention ponds is 

greater than that of detention basins and it also has a permanent pool. These factors make 

that retention ponds are easily mixed with multiple events unlikely detention basins and 

these mixing of multiple events in retention ponds may cause low k values. 

If parameter b in Equation (3.2) is close to 1, the power term of q in the equation 

finally goes to 0. This means that the HLR does not have a large effect on the effluent 

EMC calculation. Therefore, the BMP surface area and inflow, which is obtained with the 

HLR, cannot produce a large change in effluent EMC. On the other hand, if parameter b 

is less than 1, then the power term of HLR is greater than 0. Thus, the effluent EMC will 

be affected by changes in BMP surface area and inflow. 
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The distance between the median line and the prediction interval lines shows the 

uncertainty in k. Thus, the standard deviation of log-transformed k is 0.4370 for detention 

basins and 1.0624 for retention ponds from Figure 3.3. The standard deviations of the 

log-transformed k are slightly different for each point, but this difference is very small. 

Thus, this study uses the average value for the standard deviation ofk. 

Table 3.3 shows the required input variables for uncertainty analysis 

incorporating uncertainty in bothC(n and k. The standard deviation of k can be estimated 

from the distance of the prediction interval between the median k and the 95% prediction 

interval of k from Equation (3.1). The standard deviation of the log-transformed k for 

retention ponds is more than twice the value for detention ponds because k values 

depending on q in retention ponds are scattered wider than in detention basins as shown 

in Figure 3.3. This means that the variance of Cout for retention ponds would be 

significantly greater than for detention basins. The range of C* is suggested in the 

literature as shown in Table 3.4. This study chose one constant value, lOmg/L, for C* in 

both detention basins and retention ponds because most observed data in detention basins 

and retention ponds have 10 mg/L as the minimum Cout. 

Table 3.3 Required parameters information of k for detention basins and retention ponds 
Input Parameters 
Log-transformed 

Statistical Properties 

cm 
K 

Detention Basins 

mean 

5.038 

Log(1.4841quy™) 

standard 
deviation 

0.6083 

0.4370 

Retention Ponds 

mean 

5.5292 

Log(0.8379qU742y) 

standard 
deviation 

0.6660 

1.0624 
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Table 3.4 Typical background concentration values proposed in literatures 

Literatures 

Kadlec and Knight 
(1996) 

Barrett (2004) 
Crites et al. (2006) 

This Study 

TSS (mg/L) 

Cm when 0.0 < Cin < 290 mg/L 

5.1+0.16C,„ when 0.1 < C,„ < 807 mg/L 

5-20 
6 
10 

3.3.4 Uncertainty Analysis and LHS 

The LHS method was selected for estimating the variance of k and Caut . The 

LHS method is described as Section 2.3.2.4. 

3.4 Results 

This chapter estimated the distribution of Coul using the k-C* model with two 

distributed input parameters, Cjn and k, as shown in Figure 4. This model assumed that 

geometric (A) and hydro logical parameters (Q) did not have uncertainty. Moreover, the 

background concentration (C*) was fixed at 10 mg/L because the minimum value of 

selected observed data was close to 10 mg/L. Also, this study assumed that Cin and k 

were represented as lognormal distributions because the distributions of their observed 

data are very close to lognormal distribution as shown in Figure 3.2 and Figure 3.3. 
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Co+(Cin-Co)*exp(-kA/Q)=C0ut 

Figure 3.4 Schematic for generation of probabilistic Cout 

3.4.1 Effect of BMP Surface Area 

Figure 3.5 shows the distribution of TSS effluent EMC and the Probability 

Density Function (PDF) of TSS depending as a function of the surface area of a detention 

basin with constant inflow. The figure shows 50% and 95% confidence intervals for 

effluent EMC. The observed data selected from the BMP database fell between 25-65 

mg/L and 13-160 mg/L, respectively; all the observed data are located within the 95% 

confidence interval. 

From Figure 3.5, it is observed that the confidence intervals of effluent EMC do 

not change much as the BMP surface area changes. Figure 3.6 also shows the distribution 

of TSS effluent EMC depending on the surface area of a retention pond with constant 

inflow runoff. Confidence intervals of effluent EMC decrease as surface area increases. 

This implies that the surface area of a retention pond does have an effect on TSS removal. 

Therefore, it can be concluded that BMP surface area affects retention pond efficiency 
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but has little effect on detention basin efficiency. Nevertheless, the confidence intervals 

of effluent EMC in Figure 3.5 and Figure 3.6 decreases as the BMP surface area 

increases. This indicates that TSS effluent concentration decreases as the BMP surface 

area increases in both detention basins and retention ponds. 

On the other hand, the 50% confidence intervals of effluent EMC in retention 

ponds shown Figure 3.6 range from 10-50 mg/L to 100-200 mg/L, depending on average 

flow, and the 95% confidence interval of effluent EMC range between 10 mg/L to 350-

650 mg/L, depending on average flow. Particularly, the 95% upper confidence interval 

decreases as the BMP surface area increases. This implies that the surface area has an 

effect on retention pond performance. Finally, it is concluded that the confidence 

intervals of retention ponds are wider and more variable than the confidence intervals of 

detention basins because the variation of input variables, such as Cin and k, in retention 

ponds are greater than the variation of input variables in detention basins. 
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3.4.2 Effect of Inflow 

Figure 3.7 shows the distribution of TSS effluent EMC depending on the average 

inflow of detention basins with a constant BMP surface area. Widths of 50 % and 95% 

confidence intervals are very similar (Figure 4), ranging between 25-60 mg/L and 15-160 

mg/L. Observed data was used to verify results. All observed data are located within the 

95% confidence interval. 

Figure 3.8 represents the distribution of TSS effluent EMC depending on the 

average inflow of retention ponds with a constant BMP surface area. Confidence 

intervals of TSS effluent EMC in Figure 3.7 and Figure 3.8 increase as the average 

inflow increases. This indicates that TSS effluent concentration decreases as the average 

inflow increases in both detention basins and retention ponds. 
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The confidence intervals of effluent EMC in Figure 3.8 increase greatly as the 

average inflow increases. This indicates that the average inflow in a retention pond has an 

effect on TSS removal. Therefore, it can be concluded that the average inflow affects 

TSS removal in retention ponds but has less effect in detention basins. In addition, the 

confidence intervals become wider as the average inflow increases as shown in Figure 3.7 

and Figure 3.8. The change in the confidence intervals is small depending on the inflow 

discharge in Figure 3.7 (a),(b),(c) and (d), but the confidence intervals in Figure 3.8(a),(b) 

and (c) become much wider as the inflow-flow rate increases. According to the k-C* 

model, it is shown that the modeled detention basin effluent EMCs have fairly consistent 

variances when changes in average inflow and surface area are made in the model, but 

that the effluent EMCs in retention ponds sensitive to average inflow and surface area. 

This occurs because of parameter b in the regression relationship of q to k shown in 

Figure 3.3. 
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3.4.3 Analysis of BMP Performance between Detention Basins and Retention 

Ponds 

3.4.3.1 Correlation of Concentration, BMP Geometry and Inflow 

Figure 3.9(a) shows the correlation coefficients between Cjn and Cout of TSS in 

detention basins and retention ponds. Log-transformed Cjn and Cout represent a greater 

correlation coefficient than the original data set. The correlation coefficients of the 

original Cm and Cout and log-transformed Cin and Cout in detention basins are greater 

than correlations in retention ponds. 

Figure 3.9(b) shows the correlation coefficients based on observed data of 

log 
C -C* 

for BMP geometric functions and inflow in both detention basins and 

retention ponds. Concentration efficiency has a low correlation with BMP geometry in 

detention basins and a high correlation with BMP geometry in retention ponds. This 

indicates that the concentration efficiencies determined from Equation (2.2) show the 

distinctive magnitudes of correlation coefficients between detention basins and retention 

ponds. On the other hand, correlation coefficients of inflow with concentration 

efficiencies are very low, as seen in Figure 3.9(b). The correlation coefficients of 

retention ponds are higher than those of detention basins for all geometric properties 

except depth. This indicates that surface area is the most significant variable among BMP 

geometric functions with concentration efficiency based on the k-C* model in retention 

ponds. On the contrary, the correlation coefficient of depth for detention basins in Figure 
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3.9(b) is higher than other BMP geometric functions. This implies that depth is the most 

significant parameter among BMP geometric parameters in detention basins. 
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3.4.3.2 Analysis from the k-C * Model 

The k-C* model is finally represented as the following 

Cout = C * +(Cte - C*)exp(-V- 1) (3.3) 

The parameter a indicates the removal efficiency of BMPs. If a is large, Cout 

increases, but if a is small, Cout decreases. Parameter b represents the importance of q 

on the estimation of Cout. According to the correlation analysis of this BMP data set, C,„ 

is the most sensitive parameter to Cout in comparison to other variables like BMP 

geometry and inflow in detention basins. In other words, the effect of BMP geometry and 

inflow on Cout in detention basins is small. Therefore, BMP surface area and inflow have 

little effect on the estimation of Cout. In retention ponds, however, the BMP surface area, 

more than Cin , inflow, and the geometric variables studied, is the most important 

parameter in the estimation of Cout . 

3.4.3.3 Analysis of Probability Plots 

The slopes in Figure 3.2 represent the standard deviations of the C,„and Cout 

datasets in detention basins and retention ponds. These slopes are almost parallel in 

detention basins (Figure 3.2(a)). This means that the standard deviation of C,„and Cout is 

very similar, even though the mean of the two datasets are different. This indicates that 

the Cin data can be converted to Cout by multiplying by a certain constant value and, 

therefore, the power term qh in the k-C* model should be a constant. 
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However, the slopes of C,nand Cout in retention ponds (Figure 3.2(b)) are not 

parallel. This indicates that the standard deviation of Cin and Cout is different and that 

Cout cannot evaluated simply by multiplying a certain constant value to Cin. 
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3.5 Conclusions 

This study investigated the effect of BMP surface area and inflow on TSS 

removal in detention basins and retention ponds using the k-C* model incorporating 

uncertainty analysis. According to the results in Section 3.4.1 and 3.4.2, effluent EMC 

increases with the increase of the inflow in both detention basins and retention ponds. 

Also, effluent EMC decreases with the increase of BMP surface area in both BMP types. 

These conditions rationally coincide with natural BMP behaviors. 

Confidence intervals of Cout for detention basins and retention ponds are very 

different due to statistical characteristics of the dataset and parameter b in Equation (3.2). 

In addition, the results of detention ponds suggest that surface area and inflow do not 

have a noticeable effect on Cout. It is believed that Cin is more significantly associated 

than BMP surface area and inflow for the performance of the k-C* model of detention 

basins. The results for the retention ponds, however, suggest that surface area and inflow 

influence the change of effluent EMC. According to the results, it can be concluded that 

the sensitive factors for the performance of the k-C* model are Cin for detention basins 

and BMP surface area, inflow, and Cin for retention ponds. As described above, it is 

necessary to get more data to verify the performance of detention basins and retention 

ponds and to investigate regional effects such as elevation, weather, geomorphology, etc 

to BMP performance. 
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4 PROBALISTIC ESTIMATION OF POLLUTANT LOAD 

TO RECEIVING WATER FROM BMPS USING 

UNCERTAINTY ANALYSIS 

4.1 Introduction 

Stormwater runoff contains significant concentrations of a number of pollutantslt 

is one of the main sources of water quality deterioration for receiving waters in urban 

areas. Therefore, the control of nonpoint pollution should be considered to the same 

extent as the control of stormwater flooding in stormwater management. In order to 

reduce nonpoint pollutions, structural best management practices (BMPs) are widely 

applied. However, models for BMP performance are not reliable in their simulation of 

nonpoint-pollution removal because of the many uncertainties associated with nonpoint 

source pollutant removal in the BMPs. Thus incorporation of uncertainty in estimation of 

pollutant loading would assist stormwater managers in determining the degree of 

compliance with the Total Maximum Daily Load (TMDL) requirements that could be 

expected from a given BMP placed in a watershed. The objective of this study is to 

estimate the pollutant loading released to receiving water by BMPs using a BMP 

performance model that includes uncertainty. This BMP performance model will relate 

the BMP surface area and the imperviousness of the study watershed to the effectiveness 

of two BMPs (extended detention and retention ponds) in removing stormwater 

pollutants. Total suspended solids (TSS) is chosen as the representative stormwater 

pollutant. An additional objective of this study is to illustrate an evaluation method to 
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determine the effectiveness of BMPs in meeting a TMDL using Load Frequency Curves 

(LFCs). 

4.2 Background 

4.2.1 Stormwater Storage-Release Systems 

Many researchers have studied storage-release stormwater management systems 

to control stormwater runoff and nonpoint source pollutants. Storage-release models for 

pollutant removal used in much of the literature are a first-order loading model, which 

directly computes pollutant loading but not concentration (Roesner 1982; Nix and 

Heaney, 1988; Patry and Kennedy, 1989; Segarra-Garcia and Loganathan, 1992; 

Segarra-Garcia and Basha-Rivera, 1996). Lee et al. (2005) modified the continuous 

rainfall-runoff model Storage, Treatment, Overflow, Runoff Model (STORM; 

Hydro logic Engineering Center 1977) to compute the removal of pollutants using a first-

order plug flow concentration model driven by the flow results of the modified STORM. 

Results from these studies have been expressed as plots of the percentage of 

pollutant removed as a function of BMP storage depth in watershed area (acre-

inches/acre, or ha-mm/ha) and release rate. However, these results did not use inflow to 

the BMP as an input parameter. When the first order kinetic model is applied, the drain 

time is the most important input variable and the drain time is dependent on basin volume. 

However, hydraulic loading rate (HLR) is strongly correlated with pollutant removal and 

is a function of inflow rate and surface area in wetland (Kadlec, 2000). In addition, the 

ratio of BMP surface area to watershed area is as important in determining pollutant load 
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removal as is BMP volume (Driscoll, 1983). Background concentration (C*) of outflow 

from the BMP can be held constant as verified by many researchers (Schueler, 1996; 

Wong and Geiger, 1997; Minton, 2005). This chapter uses these important parameters 

such as inflow rate, BMP surface area to watershed area ratio, and BMP volume to 

estimate pollutant load removal; C* is held constant. But the largest variation in the 

modeling done here is that uncertainty is applied to the inflow concentration (Cin) and 

the areal removal rate constant (k) to the BMP. 

4.2.2 The Storage-Treatment-Overflow-Runoff Model 

In the 1970s, the US Army Corps of Engineers developed a model capable of 

computing stormwater runoff to a storage-treatment control structure. This model is the 

Storage-Treatment-Overflow-Runoff Model (STORM). STORM is practical and easily 

understood and has been used to estimate the quantity and quality of watershed runoff 

based on watershed land use. STORM and its underlying algorithm have been applied to 

the estimation of runoff quantity and quality, and the model depends on different land use 

in the watershed (Roesner et al., 1974). STORM, or at least its methodology, is still used 

to estimate the quantity and quality of runoff because it is simple to run and capable of 

long-term continuous simulation while many other models are only capable of single 

event simulation and are very complicate. Its algorithm has been applied to both explicit 

processes using spreadsheets (Lee et al., 2005) and to analytical methods (Adams and 

Papa, 2000). Additionally, STORM can be used to design BMP volume. For instance, 

the California Stormwater Best Management Practice Handbook (California Stormwater 
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Quality Association, 2003) uses the STORM for sizing stormwater detention basins. But 

the known volume is dependent on the drawdown rate. 

The algorithm of STORM is based on the rational method and is easy to 

incorporate with other models such as NetSTORM. NetSTORM combines several 

computational methods related to rainfall analysis such as the rainfall disaggregation 

method, the Intensity-Duration-Frequency (IDF) analysis method, and the STORM 

(Heineman, 2004). This study uses QuickSTORM in Rainmaster, the DOS version of 

NetSTORM. QuickSTORM contains the same algorithm as STORM in NetSTORM. 

4.2.3 BMP Performance Model 

Many approaches have been suggested to evaluate BMP performance. The most 

traditional of these approaches is the percent removal of pollutants. Strecker et al. (2001) 

compared three pollutant removal estimation techniques; statistical concentration, loading 

removals and percent removal by event based TSS and found that percent removal was 

not a suitable method to represent the performance of general BMPs. He suggested that 

effluent quality may be a better representative of BMP performance. A few years later, 

Barrett (2005) also represented BMP performance using observed BMP performance data. 

He reached a similar conclusion as Strecker et al. (2001), that percent removal is not 

appropriate to describe BMP performance. Additionally, he found BMP types and 

influent event mean concentration (EMC) have a strong correlation to BMP performance. 

The U.S. Environmental Protection Agency (US EPA) (2002) recommends the 

effluent probability method (EPM) as the most useful method for quantifying BMP 

efficiency. The EPM shows normal probability plots of log transformed influent and 
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effluent EMC data in one figure. As a result, it provides a direct comparison of influent 

and effluent EMCs and BMP effectiveness (US EPA, 2002). However, the EPM is 

limited in applicability because it cannot represent BMP performance associated with 

each storm event, and it cannot provide a particular value for characterizing BMP 

performance (Caltrans 2003). 

Due to the limitations of the recommended EPM, this study will use the k-C* 

model to characterize BMP performance. The k-C* model has already been applied in the 

modeling of wetland performance, and many references have verified that this model 

characterizes the removal of wetland pollutants very well (Kadlec and Knight, 1996; 

Kadlec, 2000; Braskerud, 2002; Kadlec, 2003; Rousseau et al, 2004; Lin et al., 2005). 

Recently, the k-C* model has been applied to the simulation of stormwater BMPs by 

Wong et al. (2002) and Huber (2006) because wetland characteristics are similar to the 

characteristics of detention basins and retention ponds. However, the k-C* model is 

difficult to obtain a reliable prediction of pollutant removal because the determination of 

its parameter values is not straightforward (Wong et al. 2006). Hence, it is necessary to 

develop a more sophisticated model to predict pollutant removal. 

4.2.4 Uncertainty Analysis 

Uncertainty analysis has been applied to various problems in the engineering field 

to quantify the reliability or probabilistic risk of systems. One of the most general and 

simple uncertainty analysis is the first order second moment (FOSM). It is also known as 

the first order error (FOE) method or the first order variance estimation (FOVE) method. 
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This method is the first order approximation method because it only considers the first 

order of the Taylor series. FOSM has been applied to various hydrosystem problems such 

as storm drainage (Yen and Tang 1976) and levee systems (Tung and Mays 1981). In 

environmental engineering, several researches have applied FOSM to the Streeper-Phelps 

equation used to estimate dissolved oxygen in streamflow (Burges and Lettenmaier 1975; 

Tung and Hathhorn, 1988; Song and Brown, 1990; Melching and Anmangandla 1992). 

The FOSM is used to estimate the margin of safety (MOS) with respect to the 

TMDL (Zhang and Yu, 2004; Franceschini and Tsai, 2008). Shirmohammadi et al. 

(2006) applied several uncertainty analysis methods such as the Monte Carlo simulation 

(MCS), the first order error (FOE) analysis, the latin hypercube sampling (LHS), and the 

generalized likelihood uncertainty estimation (GLUE) to the soil and water assessment 

tool (SWAT) in order to represent the cumulative density function (CDF) of monthly 

sediment reduction as a measure of BMP effectiveness. They suggested uncertainty 

analysis be used to improve the estimation of Margin of Safety (MOS) and TMDL. Arabi 

et al. (2006) characterized the effectiveness of BMPs in terms of estimated monthly 

reductions in sediment, total phosphorus (TP), and total nitrogen (TN) with two types of 

uncertainty analysis methods: the One-factor-At-a-Time (OAT) sensitivity analysis and 

GLUE using SWAT. In addition, they suggested the probabilistic estimation of the MOS 

for TMDL development. 

4.2.5 Load Duration Curve 

Load duration curves (LDC) have been developed to quantify total daily 

maximum load (TMDL). The use of LDC in quantifying TMDL is known as the "Kansas 
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approach" because Stiles (2001) applied this approach to bacteria TMDLs in the state of 

Kansas. This method has been well documented in the literature and has been modified 

for use in EPA Region IV. Using flow duration curves (FDCs), the Kansas approach 

relates the pollutant concentration to streamflow to establish the existing loading of the 

pollutant and the allowable pollutant load (TMDL). Four steps are taken in this method to 

determine TMDL and establish the required load reduction (O'Donnell et al. (2005)). 

Several researchers (Stiles (2001), Cleland (2002 and 2003), Bonta and Cleland 

(2003) and O'Donnell et al. (2005)) utilized the LDC for TMDL estimation because it 

provides a technical approach for identifying "daily loads" in TMDL development, which 

accounts for the variable nature of water quality through time. In this method, a 

maximum concentration standard can be used with a hydrologic flow duration curve 

(FDC) to identify a TMDL that contains the full range of stream flow conditions. Using 

the LDC for TMDL approach, the maximum daily load can be verified for any given day 

(EPA, (2007)). While load duration curves have become more widely used and 

persuasive in TMDL estimation, they have not been expanded satisfactorily to BMP 

applications for TMDL. Zhang and Yu (2004) and Franceschini and Tsai (2008) 

estimated MOS with uncertainty and reliability methods based on statistical methods. 

4.3 Methods 

4.3.1 Outline of Urban Stormwater System 

This study assumes urban runoff is routed through a BMP or a bypass overflow, if 

required, as shown in Figure 4.1. Additionally, EMC data are assumed to have a log-

normal distribution based on empirical observation, and it is also assumed the runoff 

88 



volumes considered in the model (Vm, V0, Voul, and VT0T) are not uncertain. Vin is runoff 

volume from the study watershed, VB is the overflow volume through the bypass overflow, 

Vmt is the outflow volume from the BMP and Vror is the total flow volume which 

combines overflow and outflow volume from the BMP. The influent and effluent 

concentrations of the BMP are also assumed to have a lognormal distribution. 

Vpi^'in^in 

BMP yTOTiCTOT^ETOT 
• 

\i r xr \ (the k-C* model) L, r ,e 
Vjn,Uin±£jn \^ 'J Vout.^ouFt-out 

Figure 4.1 Schematic process of urban runoff though the BMP 

4.3.2 Precipitation Data 

Sixty years of continuous hourly precipitation data are used to simulate Vin, V0, 

and Voul'm Figure 4.1 with STORM. Continuous precipitation data for Fort Collins are 

obtained from the National Climate Data Center (NCDC, 2008). This rain gauge NCDC 

COOP ID number is 090451 and record ranges are from January 1, 1948 to December 31, 

2007. According to Roher (2004), there is an error in the dataset on September 20, 1980. 

A value of 6.5 inches (165mm) is recorded in hour 2400. This value changed to 0.65 

inches (16.5 mm) to be consistent with work conducted with Fort Collins precipitation 

data in a previous study (Nehrke and Roesner, 2004; Roher, 2004). 



4.3.3 BMP Performance Data 

BMP performance data were assembled from the International BMP database 

(ASCE & US EPA, (2002)) managed by the American Society of Civil Engineers 

(ASCE) and the United States Environmental Protection Agency (US EPA) as described 

in Section 3.3.1. 

4.3.4 BMP Performance Model 

The k-C* model combined with uncertainty analyses was selected to represent the 

BMP performance in this study as described by Section 2.3.1. 

4.3.5 Relationship between Hydraulic Loading Rate and Areal Removal 

Coefficient 

A prediction interval is used to TSS data in detention basins and in retention 

ponds as described by Section 3.3.3. 

4.3.6 Generation of Probabilistic Outcomes 

This study estimated the distribution of Cout using the k-C* model with two 

distributed input parameters Cin and k as shown in Figure 4.2. It assumes that the 

geometric (A) and hydrological parameters (Q) of the BMP have no uncertainty. 

Moreover, the background concentration (C*) was fixed to 10 mg/L because the 

minimum value of selected observed data was close to 10 mg/L. In addition, this study 

90 



assumed that Cin and k were lognormally distributed because their distributions are very 

close to lognormal as shown in Section 3.3.3. 

Cout = Co+(Cin-Co)*exp(-kA/Q) 

Figure 4.2 Schematic for generation of probabilistic C 

4.3.7 First Order Second Moment (FOSM) Method 

Theory of FOSM is described as Section 2.3.2.3. 

4.3.8 Steps for Pollutant Load Estimation with Uncertainty 

The following four steps demonstrate how to estimate pollutant mass balance with 

uncertainty. Ninety-five percent confidence intervals are used and the k-C* model was 
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employed to model BMP performance. Chapter 2 incorporates the k-C* model with 

uncertainty analysis to determine TSS removal in stormwater BMPs. The basic steps in 

the procedure are: 1) log transformation of the original EMC data, 2) estimation of the 

mean and standard deviation of the log-transformed EMC data, and 3) computation of 

pollutant load. 

4.3.8.1 Log Transformation of Original EMC Data 

In the following steps, x is the original EMC data and y is the log transformed 

EMC data. The log transformed data, y, is assumed to be normally distributed. Equation 

(4.1) log transforms the original EMC data 

y=log(x) (4.1) 

4.3.8.2 Estimation of Mean and Standard Deviation of Log Transformed EMC data 

The mean (//x)and standard deviation (ax) of the lognormal EMC distribution 

are estimated using Equations (4.2) through (4.4) using the method of moments. 

f - 2 A 

i ~ 2 

v1 + ^ y 

(4.2) 

<rJ=ln(l + # ) (4-3) 
Ac,**,*™ = exp(Aj (4.4) 

where, 

/)xis the mean of EMC data. 

K«edum i s t h e median of EMC data. {=CinC0Ut andCTOT) 



fjx is the coefficient of variation for EMC data 
f <0 

/uy is the mean of log transformed EMC data, and 

a is the standard deviation of log transformed EMC. 

4.3.8.3 Computation of Pollutant Load 

The inflow pollutant mass and its uncertainty are computed as the product of total 

runoff and EMC as shown in Equations (4.5) through (4.7). 

Min,median =MR= Cinmedian • VR (4.5) 

Min,95%UCL = ^ in,95%UCL ' 'R (4.0J 

™in,95%LCL ~ ^ - in,95%LCL ' 'R V*-') 

The bypass pollutant mass and its uncertainty can be determined through similar 

equations (Equations (4.8) through (4.10)). 

M O,median ~~ ̂  in, median ''O V*-°) 

M0,95%UCL ~ ^in,95%UCL ''O V -̂V 

M0,95%LCL = ^ m,95%iCL ' * O ( 4 . I U ) 

Only the bypass-overflow volume is needed because the pollutant concentration is 

assumed to be the same as Cin. The effluent pollutant concentration in the BMP is 

calculated as the estimated pollutant concentration using the k-C* model through 

Equations (4.11). 

/ W = HCcut,median ) = M C ^ +(Cin,median ~ C *)" 6Xp(- kmedjan I q)} (4.11) 



If Comedian ls log-transformed, it is the mean of log transformed values and 

marked jUlnout. Standard deviation of k can be calculated as log transformed mean and 

standard deviation from Equation (2.18b) in Appendix I as shown in Equation (4.12). 

ak = V{exp(o£t) - 1 | exp(2iw]nk + a £ t ) (4.12) 

It is assumed that Cin and k are independent. Therefore, the standard deviation of 

theC0Uf can be evaluated using Equation (2.7) in Chapter 2 from Equation (4.12) as 

shown in Equation (4.13): 

a = exp(-^median Iqf • crl + \ m-med'm eM-kmedia„ Iq)\ -a- (4.13) 

Using Equation (4.13), the mean value of Cout (juc ) can be estimated as shown 

in Equation (4.14): 

Vcm 

exp(2//toCo- ) + >/(exp(4//lnCo-) + 4 a ^ exp(2//lnCo- ) 
(4.14) 

The log-transformed standard deviation of Cout can be determined using Equation 

(4.3) from Equations (4.13) and (4.14) as shown in Equation (4.15). 

Inc., 
In 1 + 

r - \ 
\^cM J 

-ll/2 

(4.15) 

The confidence intervals of Cout can be estimated using Equation (4.11) and 

(4.15) through Equations (4.16) and (4.17). 

Cout,95%ucL =exp(/ulnCo- +1.96a]nC ) 

Co»t,9S%LCL = e*vWcM - L 9 6 C T l n C 0 J 

(4.16) 

(4.17) 



The pollutant loading, MBMP, and its confidence intervals are determined through 

Equations (4.18) and (4.20). 

out,median out,median out \ ) 

M out,95%UCL ~~ ^out,95%VCL '"out V*-*"/ 

^out,95%LCL =^out,95%LCL ''out (4.Z(J) 

Finally, the pollutant mass and its uncertainty at the receiving water can be 

estimated as the summation of outflow mass in the BMP and the bypass flow. MTOT 

combines MQ and Mout as shown in Figure 4.1. To estimate the median and 95% 

confidence intervals for MTOT , the calculated M0 and Mout from one thousand 

generated samples for each Cin and k by Monte Carlo Simulation (MCS) combines and • 

calculates the median and 95% confidence intervals for MTOT from one thousand results 

depending on each storm event. 

4.3.9 Computation of the Event-Based Pollutant Load Frequency Curve 

The following steps demonstrate how to compute a pollutant-load frequency 

curve on an event basis. The general steps are: 1) separation of flows into the BMP and 

the overflow bypass, 2) development of the load-frequency curve, and 3) calculation of 

the probable removal rate. 



4.3.9.1 Separation of Flows into BMP and Overflow Bypass 

QuickSTORM in Rainmaster was used to separate inflows between the BMP and 

the overflow bypass. The input values for the QuickSTORM model are shown in Table 

4.1. The drawdown time in a BMP is assumed as 24 hrs in this study. 

Table 4.1 QuickSTORM Input Parameters 
Area (acres) 1 

Depression Storage (in) 0.1 
Evaporation Rate (in/day) 0.18 
Interevent Time (hours) 6 

Runoff Coefficient 0.28 
(40% imperviousness) 

0 Treatment rate where bypass 
activate (mgd) 

First flush depth (in) 0 
Time of concentration 0.15 

4.3.9.2 Development of Load Frequency Curve (LFC) 

The LFC is developed using an approach similar to that used to develop the flow 

frequency curve. The main difference between the curves is flow frequencies are in terms 

of flows while load frequencies are in terms of loads. This study used 60-years of 

individual events to examine the frequency of pollutant loading. 

Pollutant load frequency exceedance curves were developed by multiplying flow 

rates generated by STORM by estimated pollutant concentration found using the k-C* 

model. This approach used the descending order of average pollutant loading per 

individual event. A 24-hour inter-event time and minimum threshold of 0.01 inch runoff 

depth were specified to separate the flow data into individual events. The frequency and 

event pollutant loading can be estimated by the Cunnane (1978) formula (Equation 

(4.25)). 



T =
N + l~2A (4.25) 

M - A 

where, 

T=return interval (years), 

N=number of years of record, 

M=rank of the event (in descending order of magnitude), 

A=plotting position parameters (0.4). 

E=exceedances per year 

Exceedances per year can be converted from return interval using Equation (4.26) 

(Rohrer, 2004). 

E = j (4.26) 

Figure 4.3 shows the schematic of LFC with 95% confidence intervals. Scatted 

dots indicate event pollutant loads. 



• Load in (kg/mA2) Median (MR) (g/mA2) — — 95%LCL (g/mA2) 
— 95%UCL(g/mA2) • Load out (kg/mA2) = Median (MOUT) (g/mA2) 
— 95%LCL (g/mA2) — 95%UCL (g/mA2) 

0.001 -I ! •• ! 1 

0 . 1 1 1 0 100 

exceedance per year 

Figure 4.3 Schematic of Load Frequency Curve and 95% Confidence Intervals 



4.4 Results 

4.4.1 Load Frequency Curves (LFCs) 

Figure 4.4 shows detention basin results in terms of LFCs comparing conditions 

without and with treatment in detention basin BMPs of different surface area ratios with 

different smoothing techniques applied. Figure 4.4(a) compares the pollutant load 

expected with no BMP treatment and the load expected when a BMP with a surface-area 

ratio of 0.1% is applied. Figure 4.4(b) compares the pollutant load expected with no BMP 

treatment and the load expected when a BMP with a surface-area ratio of 6% is applied. 

Figure 4.4(c) compares the two BMP treatments with surface-area ratios of 0.1 and 6% 

shown in Figure 4.4 (a) and (b). 

Figure 4.4 (a) and (b) illustrate the confidence interval of LFCs for detention 

basins are very similar in their confidence intervals to those of the LFCs of detention 

basins without treatment. Figure 4.4(c) shows the surface-area ratios of BMP detention 

basins have little effect on their treatment of pollutant loads. This indicates the BMP 

surface-area ratio of detention basins has negligible affect on detention basin 

performance. Therefore, it can be concluded that: 1) pollutant loads (illustrated through 

LFCs) in stormwater storage systems have similar variances to pollutant loadings without 

detention basin BMP treatment and 2) the surface-area ratios of detention basins have 

little effect on pollutant removal. 
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Figure 4.5 shows retention pond results in terms of LFCs comparing conditions 

without and with treatment in retention pond BMPs of different surface area ratios. 

Figure 4.5(a) compares the pollutant load expected with no BMP treatment and the load 

expected when a BMP with a surface-area ratio of 0.1% is applied. Figure 4.5(b) 

compares the pollutant load expected with no BMP treatment and the load expected when 

a BMP with a surface-area ratio of 6% is applied. Figure 4.5(c) compares the two BMP 

treatments with surface-area ratios of 0.1 and 6% shown in Figure 4.5 (a) and (b). 

Figure 4.5 (a) and (b) illustrate the confidence interval of LFCs for retention 

ponds are greater than when no BMP treatment is applied. Figure 4.5(c) shows the 

surface-area ratios of BMP detention basins do effect their treatment of pollutant loads. 

This indicates the BMP surface-area ratio of retention ponds do affect treatment 

performance. Therefore, it can be concluded that: 1) pollutant loads (illustrated through 

LFCs) in stormwater storage systems have higher standard deviations when treatment is 

done with retentions ponds opposed to no BMP treatment and 2) the surface-area ratios of 

retention ponds do effect pollutant removal. 
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4.4.2 Generic Procedure for BMP Design 

This chapter is for the BMP design approach using previous results from Chapters 

2 to 4. The objective of the following example is to show how a BMP can be sized to 

various target conditions; an example is given and a BMP design procedure focused on 

water quality performance is suggested. Table 4.2 shows STORM input parameters for 

the postdevelopment and postdevelopment plus BMP scenarios. 

Table 4.2 STORM parameters depending on conditions for no target pollutant values 
Parameters 
Area (acre) 

Depression storage (in) 
Evaporation (in/day) 

Interevent time (hours) 
Runoff coefficient 

Treatment rate (mgd) 
Treatment rate where bypass 

activates (mgd) 
Storage (mg) 

First flush depth (in) 
Time of concentration (hours) 

Postdevelopment 
1 

0.1 
0.18 

6 
0.279 (40% imp.) 

0 

0 

0 
0 

0.1 

Postdev.+BMP 
1 

0.1 
0.18 

6 
0.279 (40% imp.) 

0.011 (0.4 in) 

0 

0.011 (0.4 in) 
0 

0.1 

This example is considered when there are target load values for the stormwater 

discharge expressed as an allowable load exceedance frequency. It is assumed here that 

target TSS load is 0.7 g/m and storm exceedance is 4 exceedances per year. This 

criterium or target is shown in Figure 4.6. Figure 4.6 shows LFCs for postdevelopment 

without runoff controls and postdevelopment plus BMP including 95% confidence 

intervals. To evaluate the performance of the BMP with respect to this criterium, loads 

based on storm event are computed for both postdevelopment and postdevelopment plus 

BMP conditions. If a "target area" is defined at the quadrant below and to the right of the 

target load-frequency, the LFC for postdevelopment shows that about 49.0% of total 
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storm events are located in this target performance area and LFC for postdevelopment 

plus BMP shows that about 57.0% of total storm events are located in this target 

performance area. For this approach, BMP size can be adjusted depending on target 

pollutant load amount and regulated storm exceedance. 

10' 

10 

.10 

<0 

o 10" 

10" 

10" 

Load in Postdevelopment 
•Median in Postdevelopment 
"95%CI in Postdevelopment 
-95%CI in Postdevelopment 
Load in Postdev.+BMP 

-Median in Postdev.+BMP 
-95%CI in Postdev.+BMP 
•95%CI in Postdev.+BMP 

-Target; 

Performance 
Area 

10 10" 10u 

Exceedance per Year 
10 10' 

Figure 4.6 Load frequency curves including confidence intervals for requirements of load 
and exceedance 

Note that the BMP has been designed so that the target is met with 95% 

confidence; not just met on the average. If uncertainty were not used in sizing the BMP, 

the "average" load as predicted by a BMP performance model would have been used to 

meet the target, but we can see that the uncertainty in that prediction at the 95% 

confidence level would have been three times of the target value. However by sizing the 

BMP so that the upper 95% confidence interval meets the target, we can be fairly certain 

that the load-frequency target value for watershed pollutant load will be met. Recall that 



includes not only the load discharged from the BMP, but also the runoff load that 

bypasses the BMP when it is full. 

A generic BMP design procedure based on probability was developed from the 

case study described in the previous section. This procedure is outlined in Figure 4.7. For 

this BMP design procedure, a long term record of hourly precipitation plus descriptive 

watershed data shown in Table 4.2 are required; and it is necessary to specify a target 

load-frequency value for pollutant load discharges from the watershed. This study used 

the STORM modelas the watershed model because it is a simple model with which to do 

continuous simulation. BMP performance was modeled using the k-C* model with 

uncertainty analysis incorporated. If effluent load or concentration values from the 

stormwater system can satisfy a target safety probability of pollutant load or 

concentration, then BMP size including volume or surface area can be decided. When a 

BMP does not meet the estimated safety probability, an informed design modification can 

be made to satisfy the target probability. 
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Set Target Pollutant 
Load or Concentration 

Set Target Performance 
Criteria 

Rainfall and 
Watershed Data 

Estimation of BMP 
Volume or BMP Surface 

Area 

Setup STORM 
(RAINMASTER) 

Application of the k-C* 
Model 

Estimated Value 
> Target Value 

NO 

Decision of BMP Volume or 
BMP Surface Area 

Figure 4.7 Flowchart of generic BMP design for a given target and safety 
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4.5 Discussion 

The stormwater storage-release system is a classical system researchers have used 

to illustrate and explain the treatment and storage of stormwater runoff in BMPs before 

its release to receiving waters. Past literature has focused on BMP release rates to 

quantify their treatment performance. Much of this past literature has focused on the 

application of the first-order decay model, which employs the rate of release and a first 

order decay coefficient, to describe BMP treatment. 

However, the rate of release varies in actual BMPs depending on the inflow rate 

of runoff, the BMP volume, and other BMP characteristics. Moreover, the first-order 

model cannot consider the irreducible minimum concentration or background 

concentration, C*, for effluent EMC. Therefore, it is necessary that the geometric 

characteristics of the BMP, particularly BMP surface area, and C*, the background 

concentration, be investigated further to better characterize BMP performance. For these 

reasons, this study applied the k-C* model in the modeling of BMP performance.. The k-

C* model is a popular model and has been applied by many researchers in the modeling 

of wastewater wetland performance since its introduction by Kadlec and Knight (1996). 

This study applied the k-C* model and uncertainty analysis to better characterize BMP 

treatment efficiency in detention basins and retention ponds. 

The STORM model was employed for hydrologic simulation of the stormwater 

storage-release system for a hypothetical watershed. The STORM model was selected 

because its underlying algorithm is straightforward, it can perform continuous simulation, 

and it can model divided bypass flow on a storm-event basis. The output from STORM 

was used to drive the k-C* model, computing the volume and frequent of discharge loads 
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from the BMP and the volume and frequency for runoff discharges that bypass the BMP. 

Uncertainty analyses was applied to the runoff concentration values, and the k coefficient 

in the k -C* model to produce a probabilistic estimate of the pollutant loads released from 

the BMP and of loads bypassing the BMPThe LFC method was used here for the 

assessment of watershed performance with respect to meeting a TMDL which is 

expressed as an allowable exceedance frequency of the watershed pollutant load, 

frequency. Confidence intervals in the LFC can be suggested as one of the Margin of 

Safety (MOS) estimation methods in TMDL. In this study, LFCs incorporated 

uncertainty analysis in the estimation of safety probabilities for systems with and without 

BMPs. BMP performance was modeled through multi-year simulation and the difference 

between LFCs for the system with the BMP and without the BMP was quantified using 

probabilistic methods. 

Based on LFCs results from Section 4.5 and Figures 4.6, this study suggests a 

methodology for pollutant load reduction to meet TMDLs expressed as load exceedance 

frequency targets.. Depending on the target water quality standard (concentration or load), 

the BMP size can be designed. This methodology showed that BMP performance can be 

quantified and suggests a strategy for environmentally sustainable development. 
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4.6 Conclusions 

Conclusions from this study are: 

• The volume of detention basins should be considered when quantifying the 

pollutant load removal rates, but surface area of detention basins is not 

significant and does not need to be considered. However, volume and surface 

area of retention ponds should be considered when quantifying pollutant 

removal rates because both characteristics are significant to pollutant removal 

due to the presence of the permanent pool. These results should be reflected 

when BMPs are designed. 

• LFCs can be used to represent changes in pollutant loading as well as BMP 

performance for sustainable water quality in a specific watershed by 

quantifying the difference between a watershed with BMPs and a watershed 

without BMPs. Also, confidence intervals in LFCs can be used to MOS 

estimation in TMDL. 

• Finally, a methodology for sizing BMPs to reduce watershed runoff pollutants 

to specific loads was suggested and outlined as a case study depending on 

target pollutant load and exceedance per year. 
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5 CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS 

5.1 Conclusions 

BMPs have been widely used to control stormwater runoff and nonpoint source 

pollution in watersheds. However, the performance of BMP with respect to reduction of 

stormwater pollutant loads is not easily estimated. Thus, much research has tried to 

clearly explain BMP performance. This study proposed the k-C* model as the BMP 

performance model and applied this model to hydrologic factors, BMP geometry, and 

pollutant concentration. Uncertainty analysis was applied to the model to account for the 

many uncertainties associated with these variables. 

The proposed methodology in this study suggests predicting output based on a 

storm event and overcomes the limitations and drawbacks of the current k-C* model. The 

proposed model was applied to TSS measurements from detention basins and retention 

ponds taken from the International BMP database to evaluate performance. For this 

model, the effect of BMP surface area and inflow on effluent EMC was investigated. 

Finally, BMP performance of pollutant loading removal in the stormwater system was 

also evaluated. 

Specific conclusions were drawn from the research: 

(1) The k-C* model is essentially a model for wetland performance. This study 

incorporates this model with uncertainty analysis to represent BMP performance 

of TSS removal in detention basins and retention ponds. This approach, which 
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includes uncertainty analysis, shows confidence intervals and PDFs of effluent 

EMC. Decision makers can obtain more information from the output of the model 

on the reliability of estimated BMPs effluent discharge. 

(2) The effects of BMP surface area and inflow based on the k-C* model are that 

effluent EMC decreases with increasing BMP surface area and increases with 

decreasing inflow. However, the magnitudes of these changes are different for 

detention basins and retention ponds. Effects of BMP surface area and inflow on 

the effluent EMC is not large in detention basins, but retention ponds show 

noticeable effects of BMP surface area and inflow on effluent EMC. 

(3) Stormwater system performance can be evaluated using LFCs with confidence 

intervals when the k-C* model with uncertainty analysis is used. TSS load 

removal strategies can be suggested for a case study. 

(4) The TSS removal in detention basins is more strongly correlated with BMP 

volume rather than BMP surface area. However, the TSS removal in retention 

ponds is dependant on both BMP volume and BMP surface area. Moreover, 

results in detention basins show better efficiency than in retention ponds even 

though retention ponds usually show better performance than detention basins in 

other studies (Barrett, 2005; Winer, 2000). This is due to the small number of 

datasets and these dataset are regionally biased. For example, all detention basins 

dataset are chosen in California and 78% of retention ponds dataset are selected in 

Colorado. It makes possibility that BMP performances are affected by regional 

factors such as elevation, weather, geomorphology, soil characteristics, etc. 
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Therefore, it is necessary to apply a larger number of datasets which is selected in 

entire nations to validate the performance of detention basins and retention ponds. 

5.2 Summary of Contribution 

This study suggested BMP performance, which contains many uncertain variables, 

could be evaluated using the k-C* model with uncertainty analysis. The effects of BMP 

size and inflow to BMP performance are investigated with the modified model. In 

addition, the loading removal efficiency of BMPs for stormwater systems based on an 

event was investigated. The contributions of this study include: 

(1) The model proposed in this study can predict stormwater BMP performance 

by event with the use of confidence intervals. This is an improvement over the 

current BMP performance models. The current BMP performance models 

make predicting simulations difficult. Particularly, the prediction of 

stormwater events is more difficult because these models usually consider 

annual average values as input variables. 

(2) The effects of BMP geometry and inflow on BMP performance are very 

important because these factors are related to BMP design. However, there are 

few attempts to quantify their effects so far. This study shows that the effect 

of BMP surface area and inflow can be evaluated based on TSS removal BMP 

performance using the k-C* model. 

(3) This study quantifies BMP performance based TSS loading removal of 

detention basins and retention ponds using the k-C* model while 
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incorporating uncertainty analysis in representative stormwater systems of a 

watershed. 

5.3 Recommendation 

Three recommendations are suggested for further study: 

(1) It is necessary to apply other pollutants, such as total phosphorus and total 

nitrogen, to the k-C* model while incorporating uncertainty analysis to 

enhance the evaluation of the suggested model for predicting BMP 

performance. 

(2) It is necessary to apply the k-C* model while incorporating uncertainty 

analysis on an intra-storm event base to predict more detail. If it is possible, 

the BMP design method based on a storm event can be suggested. 

(3) Most of all, it is necessary to collect many more datasets to assure the results 

of the model because a larger number of data can create more typical results. 
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Appendix II. Collected Data for Detention Basins 

Sites 

15/78, CA 

5/605 EDB, CA 

Manchester, CA 

605/91 edb, CA 

Cin 
(mg/L) 

500 
370 
340 
270 
250 
240 
200 
200 
160 
130 
120 
120 
120 
100 
100 
98 
48 
110 
91 
400 
330 
300 
280 
270 
190 
190 
170 
170 
170 
94 
92 
110 
85 
80 
61 
41 

Cout 
(mg/L) 

62 
70 
76 
38 
32 
66 
38 
26 
38 
32 
28 
36 
30 
46 
22 
32 
14 
32 
50 
33 
76 
84 
100 
58 
59 
94 
28 
48 
62 
38 
18 
19 
59 
49 
24 
14 

Qin 
(m3/s) 

0.00602 

0.00369 

0.00356 

0.01912 

0.00077 

0.00096 

0.00569 

0.00608 

0.00386 

0.01341 

0.00070 

0.00502 

0.00100 

0.00382 
0.00370 

0.00215 

0.00281 

0.00685 
0.00030 

0.01507 

0.00377 

0.01310 
0.00203 

0.00067 
0.00145 

0.00189 

0.00266 

0.00544 

0.00039 

0.00342 

0.00201 

0.00136 

0.00462 
0.00096 

0.00339 

0.00346 

Qout 
(m3/s) 

0.00252 

0.00213 

0.00295 

0.00491 

0.00012 

0.00062 

0.00308 

0.00401 

0.00279 

0.00267 

0.00040 
0.00379 

0.00084 
0.00249 

0.00191 

0.00145 

0.00242 

0.00667 
0.00016 

0.00091 

0.00254 

0.00148 
0.00096 

0.00015 

0.00010 

0.00039 

0.00050 

0.00031 

0.00026 

0.00170 

0.00043 

0.00018 

0.00071 

0.00021 

0.00060 

0.00038 

q 

1.1864 

0.3272 

0.0622 

1.6914 

0.2485 

0.0884 

0.4437 

0.1900 

0.3414 
0.3376 

0.5328 

0.3153 

0.6055 

0.0850 

0.5374 

0.3265 
0.5028 

0.5451 

1.8925 

1.0649 

0.1121 

0.3866 

0.6701 

0.2740 

0.5713 
0.9631 

1.3134 
0.9831 

0.4430 

0.5192 
0.9739 

1.0966 

1.5359 

0.5067 

4.1137 

1.4281 

Calibrated 
k 

2.6612 

0.5863 

0.1001 

3.7691 

0.5938 

0.1248 

0.8495 

0.4703 

0.5731 

0.5727 
0.9645 

0.4548 

1.0322 
0.0779 

1.0828 

0.4527 

1.1320 

0.8254 
1.3353 

3.0144 
0.1770 

0.5280 

0.7362 
0.4629 

0.7434 

0.7340 

2.8694 
1.4133 

0.4979 

0.5704 
2.2666 

2.6406 
0.6538 

0.2964 

5.3180 

2.9243 
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Appendix III. Collected Data for Retention Ponds 

Sites 

La Costa WB, CA 

Lakewood RP(96), CO 

Lakewood RP(97-98), 
CO 

Cin 
(mg/L) 

240 
190 
60 
240 
170 
270 

618.75 

577.25 

343.25 

247 
180.25 

96 
580 
316 
356 
107 
272 
522 
223 
135 
199 
404 
342 
1030 

432 
143 
302 

Cout 
(mg/L) 

28 
12 
12 
12 
28 
18 
338 

104.25 

168 
136 
44 
66 
24 
70 
229 
100 
69 
108 
173 
123 
119 
227 
102 
88 
103 
139 
70 

Qin 
(m3/s) 

0.00038 

0.00058 

0.00170 

0.00176 

0.00186 

0.00273 
0.00008 

0.00017 
0.00018 

0.00009 

0.00314 
0.00012 

0.00014 

0.00016 

0.00021 
0.00034 

0.00044 

0.00079 
0.00085 

0.00086 

0.00092 

0.00152 
0.00233 

0.00276 

0.00312 
0.00406 

0.00591 

Qout 
(m3/s) 

0.00028 

0.00034 

0.00116 

0.00086 

0.00087 

0.00054 
0.00008 

0.00017 
0.00018 

0.00009 

0.00314 

0.00012 

0.00014 
0.00016 

0.00021 
0.00034 

0.00044 

0.00079 
0.00085 

0.00086 

0.00092 

0.00152 
0.00233 

0.00276 

0.00312 
0.00406 

0.00591 

q 

0.0295 

0.0450 

0.1315 

0.1361 

0.1445 

0.2116 

0.4639 

0.9161 

0.9768 

0.5049 
17.3616 

0.1195 

0.1386 

0.1584 

0.2166 
0.3425 

0.4445 

0.8038 

0.8667 
0.8731 

0.9357 

1.5412 
2.3698 

2.8020 

3.1718 
4.1243 

6.0045 

Calibrated 
k 

0.0753 

0.2024 

0.4234 

0.6458 

0.3156 

0.7367 

0.2869 

1.6443 

0.7290 

0.3190 

27.9679 
0.05?1;3 

0.5138 

0.2580 

0.0991 

0.0257 
0.6626 

1.3290 
0.2319 

0.0881 

0.5150 

0.9192 

3.0413 

7.2036 

4.7971 
0.1259 

9.5015 


