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Temporal Updating Scheme for Probabilistic Neural Network With Application
to Satellite Cloud Classification—Further Results

Mahmood R. Azimi-Sadjadi, Wenfeng Gao, Thomas H. Vonder Haar, and Donald Reinke

Abstract—A novel temporal updating approach for probabilistic
neural network (PNN) classifiers was developed [1] to account for
temporal changes of spectral and temperature features of clouds
in the visible and infrared (IR) GOES 8 (Geostationary Opera-
tional Environmental Satellite) imagery data. In this brief paper,
a new method referred to as moving singular value decomposi-
tion (MSVD) is introduced to improve the classification rate of the
boundary blocks or blocks containing cloud types with nonuniform
texture. The MSVD method is then incorporated into the temporal
updating scheme and its effectiveness is demonstrated on several
sequences of GOES 8 cloud imagery data. These results indicate
that the incorporation of the new MSVD improves the overall per-
formance of the temporal updating process by almost 10%.

Index Terms—Cloud classification, maximum likelihood, prob-
abilistic neural networks (PNNs), singular value decomposition
(SVD), temporal updating.

I. INTRODUCTION

A UTOMATIC cloud classification from satellite imagery
data has been the focus of many research papers [1]–[11]

in recent years. The classifier, either a neural network or a con-
ventional statistical classification scheme, generally makes its
decision based upon the extracted spectral features from the
visible channel, temperature from the IR channel as well as
the textural features in the different cloud types. Any practical
cloud classification system for GOES must be able to success-
fully classify sequences of images generally with 20–30 min fre-
quency. However, as time elapses, certain types of clouds will
“look” different in the visible channel due to changes in the sun
angle. At the same time, the temperature of the ground and low
level clouds increases during the daytime and decreases at night
producing textural and radiative changes in the IR channel. Al-
though these variations may not be very prominent in a short
period of time, their effects can accumulate over time. Conse-
quently, a fixed classifier may not be able to deal with a sequence
of GOES images obtained at different time of the day.
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There are basically three broad categories of solutions to alle-
viate the problems caused by long-term temporal changes. The
first category of approaches attempts to find a set of features in-
sensitive to temporal changes. However, this itself is a very diffi-
cult task. The second class of solutions introduces the temporal
factor to the neural-network classifier. For example, the time at
which the image is acquired can be used as an additional input
to the classifier. One can also design a number of neural-net-
work classifiers that correspond to different times and seasons.
However, one obvious drawback of these solutions is that sub-
stantial amount of data must be included in the training data set
in order to accurately represent the trend of all possible temporal
changes. Moreover, the useful temporal context information is
neglected. The third class of solutions involves the design of
a classification system that can update itself to account for the
temporal changes. The temporal updating scheme developed in
[1] belongs to this category. Owing to the fact that cloud and
background areas are unlikely to move or change significantly
over short time intervals, there is a strong correlation between
two consecutive images. It is widely known in remote sensing
that proper utilization of this temporal contextual (short-term)
information can help to improve the classification accuracy [12].
A number of temporal contextual-based classifiers have been
proposed such as cascade classifier [13] and stochastic model
based schemes [14]. In [1], the temporal contextual informa-
tion in a sequence of satellite cloud images is utilized to de-
velop a new updating scheme for a neural-network classifier. A
probabilistic neural network (PNN) classifier is used due to its
good generalization ability and fast learning capability, which
are crucial for on-line updating [15]. The classification is per-
formed using the SVD features extracted from 88 blocks of
the visible and IR images. A Markov chain-based predictor is
also designed which uses the temporal contextual information
to provide an initial classification result. The results of the PNN,
updated to the previous frame, and the predictor results are then
compared. Depending on the match between the results of the
classifier and the predictor, either a supervised or an unsuper-
vised learning scheme is used to update the parameters of the
PNN. This method was tested on several GOES 8 images and
significant improvement in the classification performance was
reported. Nevertheless, there are a number of important issues
that were not addressed in [1]. The SVD features extracted from
the blocks of visible and IR images are sensitive to the position
of the blocks particularly in the boundary regions of different
clouds and background classes as well as in those regions with
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nonuniform texture e.g., Cumulous cloud. This sensitivity usu-
ally leads to misclassifications of these blocks. Since the mis-
classifications of the boundary blocks can degrade the perfor-
mance of the temporal updating scheme, improving the classifi-
cation rate of boundary blocks will not only improve the overall
classification rate, but also make the temporal updating process
more stable.

To improve the classification performance of the boundary
blocks and blocks containing cloud types with nonuniform tex-
ture, a new method referred to as moving SVD (MSVD) is intro-
duced in this paper. For a particular boundary block, this method
uses the classification results of several of its neighboring blocks
together with a voting mechanism to determine the optimum
label for the block. Substantial improvements are achieved by
incorporating this scheme into the temporal updating process.

The organization of this paper is as follows. A brief review of
the temporal updating scheme and its components is presented
in Section II. The MSVD method is introduced in Section III.
The experimental results of the MSVD method are given in Sec-
tion IV. Section V gives the conclusion and comments on this
work.

II. TEMPORAL UPDATING FORCLOUD CLASSIFICATION

Generally, three types of changes can be observed in a se-
quence of satellite cloud images. The first one is the spatial
movement of certain types of clouds attributed mainly to wind
drift effects. The second type of changes occurs due to class
transition, i.e., certain types of clouds may be terminated or
evolved to other classes. Although these variations commonly
occur in sequences of satellite cloud images, they will not usu-
ally affect the performance of the classifier unless a new class
is initiated. Nonetheless, if they are modeled properly, they can
even help to improve the classification accuracy. The third type
of variation is due to the temporal changes of the features. A
number of factors such as sun angle and ground heating/cooling
effects impact the features of cloud and background areas. Al-
though the temporal feature changes are not so prominent over
a short period of time, say one—half hour, their effects can ac-
cumulate and finally degrade the performance of the classifier
significantly. As described before, one solution is to frequently
update the classifier to accommodate such changes. Fig. 1 shows
the block diagram of the temporal updating scheme introduced
in [1].

We assume that the previous images up to frame n-1 are cor-
rectly classified and the parameters of the PNN are updated to
frame n-1. Now, the new frame, n, consisting of visible (ch1)
and IR (ch4) images arrives. These images are partitioned into
nonoverlapping 8 8 blocks and the SVD features of each block
are extracted [6]. These features are then applied to the PNN
classifier. If the time interval between the adjacent frames is
short enough (20–30 min for the GOES 8 satellite data), the
changes in these features will be minimal, and the old PNN
can still correctly classify most of the data. Owing to the fact
that most of the cloud and background types (land/water) do
not change abruptly, there is rich temporal class contextual in-
formation between adjacent frames. This is utilized to design a

Fig. 1. Block diagram of the temporal updating system.

predictor that extrapolates its decision and provides classifica-
tion results for the blocks of the current frame. Markov chain
method is used in [1] to model the temporal contextual infor-
mation. There are two underlying Markov chain models; one
describes the spatial movement in the image due to wind drift,
whereas the other one describes the possible class change of a
block. The class transition Markov chain is needed otherwise
the current block will always be one of the types appeared in
its spatial temporal neighborhood, which may not be the case
in real-life situations. Although accurate prediction cannot be
achieved only based on the temporal contextual information, if
the output of the PNN produces the same classification result as
the predictor, then a much higher confidence can be assured. The
initial classification result of the PNN and the output of the pre-
dictor are then compared. If the classification labels for a block
are the same for both the PNN and the predictor, then that block
is classified with a high level of confidence. All such blocks
form a subset, , which is referred to as “pseudotruth.” On
the other hand, all of the blocks for which the PNN and the pre-
dictor provide different class labels form the subset . These
subsets are used for the PNN updating even though the learning
mechanisms are different.

The updating process of the PNN is a type of on-line training
[1]. The goal of updating is to re-estimate the parameters of
the PNN so that it can more accurately represent the distribu-
tion of the temporally changed feature space. There are basi-
cally two requirements for the updating process. First, the up-
dating process must be stable, i.e., the updated PNN must main-
tain good classification ability for those previously established
categories. Second, the updating must be flexible to accommo-
date temporal changes of the data and new class generation.
Since the subset contains labeled data with relatively high
level of confidence, a supervised learning is used to fine-tune
the parameters of corresponding classes. This ensures the sta-
bility of the established classes. However, as far as the subset

is concerned, since class labels are unknown an unsuper-
vised learning is used to account for feature changes and provide
flexibility needed in these situations. In [1], Gaussian mixture
models are used to represent the distribution of different classes.



1198 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

For both supervised and unsupervised learning paradigms max-
imum likelihood (ML) estimation is adopted to estimate the pa-
rameters of the Gaussian components. The expectation maxi-
mization (EM) method is then used to implement the ML es-
timation more efficiently. After the temporal updating, the up-
dated PNN is used to reclassify the data again and generate the
final result for frame . This process is repeated whenever a
new frame arrives. For the details discussions on these learning
mechanisms the reader is referred to [1].

III. M OVING SVD SCHEME

In this section, the MSVD is introduced to resolve the ambi-
guity in classifying the boundary blocks and improve the clas-
sification performance of cloud classes with nonhomogeneous
texture, e.g., Cumulus. This method is then incorporated into the
temporal updating system and the results are provided in Sec-
tion IV.

Boundary blocks are those blocks located in the neighboring
regions of two (or more) different classes. For these blocks, the
classification results of the neural network classifier based upon
the extracted SVD features typically correspond to neither class.
The number of boundary blocks and blocks with nonuniform
texture in a satellite image is typically around 20% of the total
number of blocks. Consequently, the misclassification of these
blocks not only degrades the overall performance of the system
but also can have a negative impact on the stability of the tem-
poral updating scheme. More specifically, the problems that can
be caused by the boundary blocks in the original temporal up-
dating scheme [1] are the following.

1) These blocks can sometimes be put into subset for
supervised training. Inclusion of such blocks, which are
often misclassified, can have a negative impact on the
performance of the updated PNN.

2) Most boundary blocks will be included into subset
for unsupervised training. The inclusion of these blocks
in this subset can also have a detrimental effect on the
performance of the updated PNN, since the SVD features
of such blocks are some type of a mixture of those of the
constituent classes.

3) The results of some boundary blocks could still be wrong
even after updating the parameters of the PNN (See the
examples below).

Generally, boundary blocks can be divided into three types de-
pending on the orientation of the boundary edge, i.e., horizontal
edge, vertical edge, and diagonal edge. Fig. 2(a) and (b) show
the visible and IR image pairs for a boundary block containing
diagonal edge where the upper part represents Cumulus and the
lower part is Cirrostratus clouds. The classification result for
this block based upon the extracted SVD features [2] is Cirrus,
which is obviously incorrect.

Fig. 3(a) and (b) show the visible and IR pair of a typical
block with nonuniform texture (e.g., Cumulus), respectively. In
this case, since textural information varies substantially within
a block, the SVD features become very sensitive to the block
location.

Let us denote the boundary block by . The principle
idea behind MSVD method is that to determine the optimum

(a) (b)

Fig. 2. An example of a boundary block with diagonal edge. (a) Visible. (b)
IR.

(a) (b)

Fig. 3. An example of nonuniform texture class. (a) Visible. (b) IR.

classification decision for this boundary block, we compute
the SVD features not only in block itself but also in 12
other blocks in its support region. As shown in Fig. 4, the
support region of block includes eight neighboring blocks

and four newly generated blocks by shifting 4
pixels along left , right , top and down
directions. The classification labels for these 13 blocks are
determined based upon their SVD features. A matrix,, is
then formed in which the th row represents the classification
result of the th block in this set. This row is a vector
with a unity element at a position corresponding to the class
label for the block while all the other elements are
zero. For example, if the vector on the fourth row of this matrix
is , this indicates block

is classified as class 3 among ten possible classes. Note
that in this paper the number of different classes is .
Now, to decide the optimum label for block we devise a
voting mechanism using

(1)

where is the element of vector with the largest value,
index represents the specified class label for block ,
and is a 1 13 weight vector composed of the 13 different
weights associated with blocks , , , ,

, , , , , ,
respectively. The weights in can be determined empirically
based on the analysis of different possible edge scenarios in a
boundary block. In order to simplify the process of identifying
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Fig. 4. The neighboring blocks in the support region ofA and Some typical
edge scenarios.

the weights for each block in the support region, we have made
the following assumptions.

1) Without loss of generality, we assume that each horizontal
block, i.e., , , has the same weight,
and similarly each vertical block, i.e.,

, has the same weight, .
2) Because of symmetry, it is reasonable to assume that

.
3) Each diagonal block, i.e.,

, has the same weight, .
4) The original block has a weight, .

Now, consider the following hypothetical scenarios in order to
arrive at some reasonable choices for these weights.

Case 1: Vertical Edge:For a boundary block with a vertical
edge as shown in Fig. 4, the total weight associated with those
blocks that include the vertical edge is , while the total
weight corresponding to either side of the edge is .
For correct classification we require

(2)

Case 2: Diagonal Edge:For a boundary block with a di-
agonal edge as shown in Fig. 4, the total weight associated
with those blocks that include the diagonal edge is ,
whereas the total weight corresponding to either side of the edge
is . Again, we require

(3)

Owing to symmetry property, for horizontal boundary lines, we
can get the same inequality as in (2). Since cases 1 and 2 are
among the worst case scenarios, in terms of edge position, we
can show that if , , and satisfy both (2) and (3), then
most of the boundary blocks will be classified optimally. Using
(2) and (3) and by selecting , we obtain and

. Thus, the weight vector is given by

(a) (b)

Fig. 5. An example of diagonal boundary blocks. (a) Visible. (b) IR.

Fig. 6. Block labels results in the support region ofA .

for all the 13 blocks in the support region of block. Note
that this weight assignment scheme not only determines the op-
timum label for the boundary block but also avoids the pre-
determination of the edge orientation within the region of sup-
port.

To show how this algorithm works, consider the visible and
IR image pair in Fig. 5 that cover portions (24 24 pixels)
of GOES 8 images with a diagonal edge. The upper-left part
corresponds to Class 1 (Warm Land) and the lower-right part
is Class 3 (Warm Water). The block , in the middle of this
image, is a mixture of Classes 1 and 3. The actual result of this
block obtained by the PNN classifier was Class 6 (Cumulus),
which is obviously incorrect. Fig. 6 shows all the 13 blocks and
their corresponding classification labels in the support region of

. Based upon these labels, matrixis

Since the largest element i.e., 10.42 is the third element of,
the optimal class label for block is the third that is Warm
Water. The value can be used as a measure of con-
fidence for this classification result.

IV. TEMPORAL UPDATING WITH MOVING SVD METHOD AND

RESULTS

The MSVD method was then incorporated into the temporal
updating scheme [1]. The predictor is still the same as before.
Before including a block into the subset , we need to de-
termine whether this block is a boundary block or a block con-
taining nonhomogeneous texture. This process can be simpli-
fied by using the results of its eight neighboring blocks: ,
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(a) (b)

Fig. 7. GOES 8 satellite images obtained on May 5th, 1995 at time 15:45 UTC. (a) Visible channel. (b) IR channel.

(a) (b)

Fig. 8. GOES 8 satellite images obtained on May 5th, 1995 at time 20:45 UTC. (a) Visible channel. (b) IR channel.

, , , .
If the majority of these blocks have a label different than that
of the block , we consider as either a boundary block
or a block with nonhomogenous texture which will be put into
subset . The confidence measures of these blocks are com-
puted using the method described in Section III. If the confi-
dence measure is very high for a block, which implies that most
of the blocks in its support region have the same label but dif-
ferent than the original label of , we update the SVD fea-
tures of to a new set of features. Updating features solves
the problems 2 and 3 pointed out in Section III. The new fea-
tures are obtained by averaging the features of those blocks in
the support region that have the same label.

In order to test the temporal updating scheme in conjunction
with the new MSVD for cloud classification application, two
image series acquired on May 1st and 5th, 1995 from GOES 8
satellite were used. GOES 8 satellite carries five channel sen-
sors. However, only two channels, namely visible (channel 1)
and IR (channel 4), were used since most of the other meteo-
rological satellites only carry these two channels. Figs. 7 and 8
show two pairs of visible and IR images acquired at 15:45 and
20:45 UTC (universal time code), on May 5th, 1995. These im-
ages of size 512 512 pixels (spatial resolution of 4 km /pixel)

cover the mid-west and most of the eastern part of the U.S., ex-
tending from the Rocky Mountains to the Atlantic coast. The
images cover mountains, plains, lakes and coastal areas where
clouds have some specific features that are tied to topography.
Lake Michigan is in the upper right corner and Florida is lo-
cated in the lower right, with the Gulf of Mexico in the lower
center part of the image. These sequences are of particular in-
terest because of the presence of a variety of cloud types. Since
ground truth maps are not available and/or reliable, two mete-
orologists were asked to identify all the possible cloud types
as well as the background areas based on the visual inspection
and other related information. Ten different background/cloud
classes were identified. These are: Warm Land (WLnd), Cold
Land (Clnd), Warm Water (WWtr), Cold Water (CWtr), Stratus
(St), Cumulus (Cu), Altostratus (As), Cirrus, and CirroStratus
(Cs), Stratocumulus (Sc). Note that only those areas within each
image for which the meteorologists’ labeling agreed were se-
lected for training and validation purposes.

It must be pointed out that our procedure does not utilize a
solar zenith angle correction for the visible data since we pur-
posely avoided the time of day where the solar zenith angle has
the greatest impact on the scene that is being analyzed. The nor-
malization would have, in effect, converted the visible counts to
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(a) (b)

(c) (d)

Fig. 9. Classification results of different methods—20:45 UTC, May 5th, 1995. (a) Expert labeled image. (b) Nonupdated PNN result. (c) Updated PNN result.
(d) Updated PNN with MSVD result.

“albedo.” Additionally, a relatively small geographic area was
considered in this study. If this analysis had been applied to a
global data set and visible data were used where the solar zenith
angle was less than 73(a subjective threshold used for most
global applications), the solar zenith angle would have elimi-
nated some of the error caused by the darkening of the image
close to the terminator (the delineation between daytime and
nighttime on the earth’s surface). In the case of the images pro-
cessed in this study, the solar zenith angle was much less than
the normal threshold. If the temporal updating is to be applied
to 24-hour data, the solar zenith correction should certainly be
account for.

The visible and IR images were first partitioned into blocks
of size 8 8 corresponding to an area of sizekm km.
A set of 16 SVD features, eight from each channel, was then
extracted from each block. To remove the redundancy among
these features, a sequential forward feature selection process
was employed [2]. After the feature selection process, only six
features with good discriminatory ability were chosen for the
subsequent classification process. These features correspond to
the first, third, and fifth singular values in the visible channel
and the first, third, and sixth in the IR channel. The initial PNN

was trained on six image pairs obtained from 15:45 UTC to
17:45 UTC on both May 1st and May 5th, 1995. Half of the
labeled blocks in these images made up the training set while
the rest formed the testing set. The detailed information on the
training of the original PNN including the number of training
samples for each class and the performance evaluation is de-
scribed in [2]. This trained PNN was then used alone and as
part of the temporal updating scheme to classify the images on
May 5th, 1995. Although, the fixed (nonupdated) PNN can pro-
vide reasonably good results on the images at 15:45 UTC to
17:45 UTC, the results on the image pair at 20:45 UTC were
very poor. Fig. 9(b) shows the color-coded classification result
of this fixed PNN at 20:45 UTC. Fig. 9(a) is the corresponding
expert labeled image where only those areas for which the me-
teorologists labeling agreed were color-coded according to the
color chart. Comparison of these two images clearly reveals
the poor performance of the fixed PNN. Now, if the initially
trained PNN is updated temporally every one-hour during 15:45
to 20:45 UTC, substantial improvements can be gained as shown
in Fig. 9(c). Comparing to the result of the nonupdated PNN in
Fig. 9(b), improvements are noticeable especially for the Cold
Water and Stratocumulus classes in the upper right regions of the



1202 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

TABLE I
COMPARISON OFCLASSIFICATION ACCURACY

image. Furthermore, improvements are also observable for Cu-
mulus clouds particularly in the center, right side regions. On the
other hand, for those regions that were not changed, the updated
PNN made the same decisions as the nonupdated one, hence
demonstrating the stability of the updating process. However,
the color-coded image in Fig. 9(c), exhibits some isolated blocks
and rather rough boundary regions between different classes.
Since clouds tend to be continuous, most of these isolated blocks
represent misclassifications. As described in Section III, iso-
lated blocks are usually caused by misclassification of boundary
blocks or nonhomogenous texture blocks. These misclassifica-
tions not only reduce the overall classification rate, but also have
negative effects on the performance of the updating scheme.
The MSVD method was then incorporated into the temporal up-
dating scheme. The result is shown in Fig. 9(d). Clearly, using
the MSVD, most of the misclassifications corresponding to the
boundary regions and/or nonhomogenous texture classes are
corrected for.

The classification accuracy rates for the fixed PNN, updated
PNN, and updated PNN with MSVD are given in Table I for
each frame of the two image sequences on May 1st and May
5th. These rates are computed for the testing data set and only
in the areas labeled by meteorologists. The results in this table
point to some interesting observations. First, all the updating
results, with the MSVD method, are much better than those
of the nonupdating results. The improvements range approxi-
mately from 2% to 16%. Second, all the updating results with
the MSVD are also better than those of the original updating
without the MSVD. The improvement ranges approximately
from 2% to 10%.

The confusion matrices for these three classifiers are pre-
sented in Tables II–IV, respectively. Comparing the confusion
matrices in Tables II and III, the original updating scheme
provided significant improvements for the Cold Land (CLnd),
Cold Water (CWtr), Cumulus (Cu), Altostratus (As), and Stra-
tocumulus (sc), while the accuracy was not changed very much
for the Stratus (St) and Cirrostratus (Cs) classes. Warm Land
(WLnd), Warm Warm Water (WWtr) and Cirrus (Ci) are the
three types for which the accuracy degraded after the updating.
For the WLnd and WWtr, since there are very few blocks in
these frames, one misclassified block can lead to substantial
degradation in the classification rate. The degradation in the
classification accuracy for the Cirrus (Ci) class, on the other
hand, is primarily due to the fact that the result of the nonup-
dated PNN for this class is seriously biased because a large
number of Cirrus samples were used for the initial training

TABLE II
CONFUSIONMATRIX OF THE NONUPDATED PNN CLASSIFIER—20:45 UTC,

MAY 5TH, 1995. OVERALL CLASSIFICATION RATE IS 66.38%

TABLE III
CONFUSIONMATRIX OF THE UPDATED PNN CLASSIFIER—20:45 UTC,

MAY 5TH, 1995. OVERALL CLASSIFICATION RATE IS 73.72%

TABLE IV
CONFUSIONMATRIX OF THE UPDATED PNN CLASSIFIER WITH MSVD—
20:45 UTC, MAY 5TH, 1995. OVERALL CLASSIFICATION RATE IS 82.67%

of the fixed PNN. In contrast, the accuracy improvements for
some of the classes are significant. For example, for the Cold
Land (CLnd), Cold Water (CWtr), and Stratocumulus (Sc),
the accuracy rates after the updating went up by 37%, 59%,
and 67%, respectively. These results clearly demonstrate the
effectiveness of the temporal updating scheme. Comparing the
results in Table IV with those of either Table II or Table III
clearly show that the incorporation of the MSVD improves the
accuracy rate for each class over that of the original updating
scheme. The classification rates for all the classes, except for
the Cirrus (Ci), are much better than those of the fixed PNN. All
these results verify the fact that the MSVD not only improves
the overall classification performance of each frame, but also
makes the updating scheme more reliable and stable. The
price paid for this improvement is the increased computational
efforts for extracting the SVD features of the neighboring
blocks in the support region for some of the blocks. However,
extracting the SVD features is a simple and fast process with
very small (typically seconds) computational overhead that can
be ignored in comparison with the computational cost of the
updating process itself.
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V. CONCLUSION

The temporal updating scheme developed in [1] is further
studied in this paper. A new method referred to as moving
SVD was introduced to improve the classification results of
the boundary blocks and blocks containing cloud types with
nonhomogenous texture. This method uses the classification
results of some of the neighboring blocks together with a voting
mechanism to arrive at an appropriate label for a particular
boundary block or a nonhomogenous texture block. This
method is then incorporated into the temporal updating process.
The results indicated that in all the cases the MSVD provided
better results than those of the original temporal updating
method without the MSVD. In addition, the incorporation
of the MSVD improves the global stability of the temporal
adaptation process.
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