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ABSTRACT 

Some hydraulic properties, obtained using the Chezy resistance law, that distinguish amplifying waves from 
attenuating waves are found by a numerical integration of the governing hyperbolic, partial differential equations 
of supercritical, gradually varied waves flowing in a channel with a rectangular cross section. The supercritical , 
gradually varied flow is simulated by using various integration techniques of the specified intervals scheme of the 
method of characteristics solution to the governing system of equations. One of these integration techniques is 
used to determine attenuation and amplification characteristics of gradually varied, single peaked waves. Prior to 
this determination, criteria found by various investigators for predicting the stability of uniform flow are shown 
to be equivalent. One of the criteria, the Vedernikov number, which contains parameters dependent on the 
frictional law, channel cross-sectional shape and Froude number, is also the criterion for predicting amplification 
of gradually varied, single peaked waves. 
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Chapter 1 

INTRODUCTION 

In most natural and artificiall y constructed 
streams, once a flood wave is in.itiated it will 
attenuate as it travels along a channel. In some 
streams or along spillways, and in many storm 

culverts, however, the flow may become supercritical; 
and if the Froude number (F : V f.JiY) is above a 
.certain value, the peak depth will increase with 
distance along the channel. These increases in flow 
depth can cause excessive hydrodynamic pressures to 
come to bear against hydraulic structures, as in the 
case of a tailrace structure of a hydroelectric station 
in the USSR as related by Ghambarian (1965); or 

cause the flow to overtop the banks of channels with 
steep bed slopes, as is the case of an irrigation canal in 
Los Angleles - Brock ( 1967). A criterion or criteria 
have not, as yet, been developed to determine 
whether or not these supercritical waves will grow in 
height along a channel. 

Instability in open channel flow is defrned as 
flow conditions that result when the peak depth of 
flow or peak value o f any other parameter increases 
with distance along the channel. In steady flow, the 
water surface profiJe develops into a series of roll 
waves that increase in depth at the crest s and decrease 
in depth at the troughs as it travels down the channel. 
This is normally referred to as roll waves, and 
represents instability of steady flow . With unsteady, 
smgle peaked waves instability occurs when the peak 
depth of the wave increases with the distance along 
the channel. This instability has been often observed 
in nature in open channels (Blair, Cornish, and 
Holmes) and normally is referred to as the passage of 
gradually varied waves to slug flow. 

Unsteady flow may either be gradually varied 
or rapidly varied. The equations governing the 
gradually varied flow are one-dimensional. For this 
flow it is assumed that the vertical accelerations are 
small compared with the total accelerations. With 
rapidly varied flow the governing equations are 
two-dimensional, and the vertical accelerations along 
the channel are large when compared with the 
accelerations parallel to the channel bed. 

During the past century, numerous engineers 
and mathematicians have developed criteria for deter­
mining the stability of open channel flow for a 
uniform regime but not for unsteady flow. In general, 

these criteria give the Froude number above which 

3y 3y 
(- = 0 , - = 0 ) becomes unstable 
3x 3t 

uniform flow 

for a particular geometry of the cross-sectional area 
and the resistance law of flow. These efforts have 
been culminated with the work of Vedernikov lwasa 
Craya, Keulegan and Patterson, each develo~ing th~ 
same criterion, but by different methods. 

Until 1960 all experiments in open channel 
flow hydraulics were conducted either in the labora­
tory under controlled conditions or in the field . The 
types of flow observed were classified as steady or 
unsteady and either uniform, gradually varied, or 
rapidly varied. Mathematical equations have been 
derived to describe these various types of flow - see 
bibliography on unsteady flow by Yevjevich (1964). 
The solution of these equ,ations represents the flow 
that would occur in a physical state_ The available 
solutions of these equations, however, were limited to 
simplified conditions such as the bed slope and 
frictional resistance being equal to zero. Fortunately 
during the 1960's methods and techniques became 
available for simulating gradually varied flow by the 
mlmerical integration of the governing equations on a 
digital computer, thereby providing an alternate to 
the physical experiments. 

In both cases, physical and numerical 
experiments, there are always errors. In a physical 
experiment there are errors resulting from the speci­
fication tolerances of the boundary and the initial 
conditions and in the means of measuring the flow 
parameters. In a numerical experiment, or simulation, 
although the boundary and initial conditions can be · 
prescribed with precision, there still remains both 
truncation errors in the computations, errors in the 

written output, as well as errors resulting from the 
fmite difference approximations to the mathematical 
derivatives and in the integration of the partial 
differential equations. 

Using the work by Yevjevich and Barnes (1970) 
and Zovne (1970) on the numerical solution as a 
point of departure, it .is the o bjective of this paper to 
determine the criterion or criteria for instability of 
gradually varied , single peaked waves. These criteria 
are determined by numerical simulations, which are 



assumed to be sufficienlly accurate and far less 
expensive to arrive at than from physical 
experiments. Moreover, it is questionable whether 
measuring techniques are yet available to accurately 
determine, both spatially and temporally, the depths 
and velocities simultaneously of flows with high 
Froude numbers. To describe these stability phe­
nomena certain terms have been used in the past. ln 
the work on uniform flow regimes, the development 
of roll waves has been referred to as free surface 
instability (Koloseus and Davidson) or as instability 
(lwasa). The only analytical work so far on the same 
type of problem in supercritical, gradually varied flow 
(Zovnc) also uses the terms stability and instability. 

Both Zovne and the writers have used the numerical 
solutiorr on .the gradually varied flow equations in 
studying waves in supercriticaJ regime. The solution 
of these equations can be numerically unstable under 
certain conditions when the flow is stable. Therefore, 

2 

the writers will not use the term stability as used in 
the hydraulic sense when discussing gradually varied 
flow. Rather, when the peak depths of gradually 
varied, single peaked waves become smaller as the 
waves travel along a channel, they are said to be 
attenuating; when the peak depths become larger as 
the waves travel along a channel, they are said to be 
amplifying. When discussing other works with 
uniform flow, however, the term stability will be 
used. Therefore, what is being considered is the 
criterion or criteria for amplification of a wave 
travelling along a channel whose slope is supercritical 
with respect to the base f1ow discharge of the 
hydrograph. In other words, the amplification of a 
single peaked, supercritical wave, which is governed 
by the equations of gradually varied flow, is studied 
with respect to finding criterion or criteria for 
amplification. 



Chapter 2 

LITERATURE REVIEW 

There have been at least three occasions when 
amplifying waves have been observed in nature and 
recorded in the literature. Cornish ( 1934) was the 
fust to mention that the peak depth of supercritical 
flow in open channels could amplify . By observing 
the flow in drainage channels in the Swiss Alpes, he 
noticed that a series of roll waves formed which grew 
in height as they t ravelled along a channel. 

Two years later Holmes (1936), standing on a 
bridge over one of the flood control channels in Los 
Angeles, observed over an interval of several minutes 
that the flow depth increased from approximately 
three feet to approximately eight feet and then 
subsided to three feet. This was followed by another 
wave of larger amplitude which also subsided to the 
original flow depth. Bl~ir (1961) reported.that on the 
Nisqually River in the State of Washington in October 
1955 that two National Park Rangers observed five or 
six surges over a duration of 45 minutes which were 
15 to 20 feet higher than the water level immediately 
in front of the surges. The flrst surge washed away a 
highway bridge that had had 40 feet clearance above 
the alluvial bed. 

There has been no detailed experimental or 
theoretical work published that explains why the 
flow conditions cited above do occur in nature. 
Moreover, all analytical and experimental studies of 
amplification in the supercritical regime have been 
limited to supercritical, uniform flow with the 
exception of Zovne's work with supercritical, non­
uniform flow which will be discussed later. 

A review of some of the analytical work on 
stability criteria for uniform flow is as follows. 

Keulegan and Patterson (1940) determined a 
stability criterion mathematically from Boussinesq's 
equation for the velocity of propagation of a volume 
element of a wave and an equation relating frictional 
resistance with depth for supercritical , uniform flow. 
They determined that instability will occur when the 
gravitational force is greater than the frictional force. 
Their stability criterion is 

2 
fpV 

pgyS ---
o 8 

funs table} 
lstable J > 

< 0, (2.1) 

or in terms of slopes in dividing Equation 2.1 by pgy 

it can be expressed as 

[
unstable] > 0 so - sf stable ' < (2.2) 

In Equations 2.1 and 2.2, p is the fluid density, g is 
the acceleration due to gravity, y is the flow depth, 
S0 is the bed slope, f is the frictional factor, V is 
the flow velocity' and Sf is the frictional slope. 

Also, Vedernikov (1945) determined a stability 
criterion by using the equations of gradually varied 
flow and by considering the time growth or decay of 
energy of a small disturbance on a steady, uniform 
flow. His criterion is 

1 - b dP 
u=(--)(1-R-)F 

2 + b dA 
(2.3) 

in which u is the Vedernikov number, b is the 
exponential coefficient in the resistance law 
f= a(Re)b for a hydraulically smooth conduit , R is 
the hydraulic radius, P is the wetted perimeter, A is 
the cross-sectional area, F is the Froude number and 
a is a coefficient. When u > I the flow is unstable; 
when u=l the flow is neutrally stable; and when 
u < 1 the flow is stable. 

Craya (1952) considered steady flow near 
normal depth thereby eliminating the terms in the 
gradually varied flow equations that vary with time; 
thus the partial derivatives become total derivatives. 
He showed that the flow would become unstable 
when the Seddon* celerity, dQ/dA , is greater than 
the Lagrangian celerity, V + .J'iit , i.e., 

dQ/dA > V + .JiY (2.4} 

Iwasa (1954)' considered the initiation of 
continuous time growth of an infinitesimally 
disturbed wave. His criterion for flow with uniform 
velocity distribution is as follows. 

*This celerity is known in the literature under the name Seddon, or Kleitz-Seddon, though the first author 

to obtain it was Graeff (187 5) before Kleitz (1877) and Seddon ( 1900). 

3 



R 
dA 

V > dy 
- ..L-= Fs <-- - ------- -
(gA AdR 3 ~ 

j dA/dy -d-y c2 x 0.4343 c5f + o.s) 

(2.5) 

in which f is given as 

1 
f=--------

4R 
2 [C5log (T c6) ] 

k is the height of the resistance roughness, C5 and 
c6 are constants. 

Iwasa's criterion reduces to Vederni.kov's for 
compatible conditions. 

Koloseus and Davidson (1966), with uniform 
flows developed in a 3.0 foot wide and 85 foot long 
flume, obtained good correlation between th e sta­
bility criterion of Keulegan and Patterson and the 
development of roll waves. They defjned "roll waves" 
as any wave of spontaneous origin, regardless of size 
or shape, that is attributable to no cause other than 
the superiority of the gravi tational force over the 
boundary retarding force. Although the work by 
Koloseus and Davidson is interesting but limHed to 

4 

depths near normal depth, it is shown in the next 
chapter that the criteria of Vedernikov, Keulegan and 
Patterson, and Craya, although expressed in different 
terms, are equivalent. 

One investigator who did not limit his work to 
super critical, uruform flow was Zovne ( 1970). Using a 
digital computer he compared simulated, gradually 
varied flows. in the supercritical regime with two 
numerical schemes. He simulated the flows with both 
the characteristic grid scheme and specified intervals 
scheme of the method of characteristics and showed 
that each method gives almost identical results. Both 
the characteristic grid and specified interval schemes 
are ways in which the equations of gradually varied 
flow may be solved by the method of characteristics. 

He also simu.lated with the specified intervals 
scheme an experiment in a flume where the raising of 
a tailgate caused a hydraulic jump to move upstream. 
In his simulations a sequential depth relation was 
u'sed, and the wave profiles were not determined at 
the jump. The experimentally determined and 
numerically simulated positions of the physical jumps 
wer.e compared as they moved upstream. Zovne's 
work provides proof that supercritical, gradually 
varied flow can be simulated with the method of 
characteristics. Some of his results are djscussed in 
Chapter 4. 



, · 

Chapter 3 

THEORETICAL CONSIDERATIONS 

3.1 Uniform Flow 

In the previous chapter it was stated that the 
stability criteria developed by Keulegan and Patter­
son, and then by Vedernikov and later bv Crava 
are one and the same. To understand this, the work 

by Keulegan and Patterson should be considered in 
terms of gravitational and frictional slopes, i.e., 
instability will occur when S

0 
> Sf Craya states, 

moreover, that instability will occur when the Seddon 
celerity is greater than the Lagrangian celerity. The 
Seddon celerity represents the speed of travel of a 
small wave that has stabilized at an invariant form 
and is governed by channel resistance_ The Lagrangian 
celerity represents the speed of travel of a very small 
wave under the exclusive actions of inertia and 
gravity. Since the Seddon celerity is inversely related 
to the frictional slope, one may state 
that dQ/dA > V + .J"iY is equivalent 

> < 
to so < sf 

Consider again the celerity relation for 
instability dQ/dA > V + ygy , in a prismatic 
channel such that y = A/B , and A/PR = I, 

I - b 
[-] f b 

V = KR 2 + b in which K = 8g and f=a(Re). 
The Seddon celerity dQ/dA may be expressed 
as dV 

V+A ­
dA ' 

(3.1) 

and by differentiating the expression for velocity 
with respect to area 

I+ 2b 

dV =K(l-b) R 2+b dR 

dA (2 +b) dA 
(3.2) 

Now dR/dA may be expressed as 

d(A/P) I 
= -

dA P 

A dP I dP 
P2 dA = P (1 • R dA ) . (3 .3) 

Therefore 

dQ I-b A dP 
-=V+ V(- )- (1-R-) 
M ~b PR M 

(3.4) 

Equation 3.4 becomes 

5 

dQ 1 · b dP 
- =V+V(- )(l·R -) . (3.5) 
dA 2 + b dA 

The criterion for unstable conditions may be 
expressed by 

I· b dP 
V(-)(I- R -) 

2+ b dA 

or 

v 
> -----. (3.6) 

I - b dP 
(- ) (I·R - ) 
2 + b dA 

The left side of Equation 3.6 is by defmition the 
Froude number, F ; therefore, the criterion may be 
rewritten in the form 

F = (3.7) 
1 - b dP 

( - ) (l·R - ) 
2+b dA 

The Verdernikov number is defined by 
Equation 2.3, or 

1 - b dP 
v = (-)(l·R - ) F 

2 + b dA 

which is identical to Equation 3.7, thus the criteria of 
slopes - Equation 2.2, Verdernikov number -
Equation 2.3, and celerities - Equation 2.4,are one 
and the same. 

3.2 Mathematical Development of Gradually 
Varied Flow Equations 

The equations of gradually varied flow, known 
as the Barre' de Saint-Venant equations, are equa· 
tions of conservation of mass and conservation of 
linear momentum or 

dV dA dA 
A - + V - + - • q = 0 , (3.8) 

dx dx dt 

as the conservation of mass, and 



dV dV dy pVq 
a v - + ~-+ g- = g(S0 -Sf) -A"" , (3.9) 

dx dt dx 

as the conservation of linear momentum, in which 

I 
a= - - I I v3 dA 

AV3 A 
(3.10) 

and 

1 
~=-I I v2 dA 

AV2 A 
(3.1 I) 

1n the latter two equations v is the velocity at a 
point in the cross section. 

These velocity coefficients, Equations 3.10 and 
3.11, depend on the velocity distribution in a cross 
sectional area of flow. lt is assumed in this study that 
the velocity distribution is uniform; therefore, 
a=~ I . Neither the lateral inflow nor outflow 
discharge, q , are considered in this study. 

Be cause of the assumed uniform velocity 
distribution and because lateral inflow or outflow are 
not considered, the above equations simplify to 

and 

dV dA dA 
A - + V - + - == 0 (3.12) 

dx dx dt 

V dV I dV 
- -+ 
g dx g dt 

dy 
+ -= s . sf 

dx 0 (3. 13) 

In using Equations 3.12 and 3.13 to model 
physical flow, the following assumptions are made. 

(1) Vertical accelerations are negligible. 

(2) The channel bed slope is mild enough so 
that tana = sina . 

(3) The frictional slope, Sf, can be 
represented by the Darcy-Weisbach rela­
tion hf= fLV2 /2gdR in which f is the 
friction factor as a function of Reynolds 
number of the flow and it is assumed to 
be the same value for unsteady flow as 
for steady flow, and d is a shape factor. 

( 4) The pressure throughout the flow domain 
is hydrostatic. 

The third assumption is su fficiem but not 
necessary. Any mathematical relationship for fric­
tional slope or any relation that equates it to a 
constant value will suffice. Moreover, in this study 
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the Chezy resistance law is used. The following shows 
the relationship between the Chezy and Darcy­
Weisbach relations. 

The Chezy resistance Jaw relates flow velocity 
to hydraulic radius and the frictional slope. It may be 
stated as V = C vRSf in which C is the Chezy 
constant. The Darcy-Weisbach resistance states that 
Sf= f V2 /2gdR in which d is a constant that is 
dependent only on the cross-sectional shape. For 
circular sections d is equal to four, and for very wide 
rectangular cross sections d is equal to one. Other 
cross-sectional shapes have intermediate values of d . 
The frictional factor, f, is related to Reynolds 
number by f = a(Re)b in whkh Re = Vyfv , in 
which v is kinematic viscosity. Thus, the Darcy­
Weisbach relation may be written as 

a y2 + b 
sf=-----

2g dvbRl-b 
and the Ch~zy relation as 

The two relations are the same when b = 0 and 
C = J2gdv/a , which is a constant for given condi­

tions of fluid, temperature, cross-sectional shape and 
roughness. 

The equations of unsteady free-surface flow, 
Equations 3.12 and 3.13, form a system of quasi­
linear, partial hyperbolic different ial equations of the 
first order. Various possible methods for integrating 
these two partial differential equations are reviewed 
in references abstracted by Yevjev.ich (1964). One of 
these methods is the method of characteristics which 
was shown by Zovne ( 1970) to be applicable for 
supercritical flow. Jt was developed by Massau (1889) 
for integrating the two partial differential equations 
of unsteady flow in channels by a graphical 
procedure·. This method has been also widely used for 
the solution of a variety of problems in physics and 
mechanics, and its detailed description can be found 
in Courant and Freidrichs (I 948), Crandall (1956) , 
and Streeter and Wylie ( 1967). 

The solution of a specific problem by the 
method of characteristics using hand calculation, or 
graphical means, or desk calculators is extremely 
laborious and time consuming. As a result in the 
interval between 1889 and the advent of electronic 
computers, a variety of schemes for solving open 
chann el flow problems by this method was 



proposed. The details of these various schemes can be 
found in references abstracted by Yevjevich (1964). 
In general, solutions by the method of characteristics 
may be performed in two ways: · by the graphical 
method and by the use of digital computers. Of the 
two, digital computer provides several advantages. A 
digital computer can not only do the tedious com­
putations that are required for the graphical method, 

but it can also give the solution for the complete 
system of equations to a better degree of accuracy 
and precision. 

In both procedures the method of characteris­
tics uses the equations of continuity and momentum 
of unsteady t1ow, (3.12) and (3.13), along with the 
total differentials of the dependent variables, velocity 
and depth, which constitute four characteristic 
equations. By considering only prismatic channels -

those of unvarying cross-sectional areas and constant 
bed slopes - then the cross-sectional area may be 
described by A = By where y is the hydraulic 
depth. Thus, the characteristic equations are 

and 

A av ay 1 ay 
--+ - + --= 
VB ax ax V at 

v av 
-- + 
g ax 

av 
-+ 

g at 

av 
dV=rx 

ay 
dx+ dt dt, 

ay ay 
dy = - · dx + - dt 

ax at 

0 (3.14) , 

(3.16) 

(3.17) 

The partial derivatives of y and V with 
respect to x and t are unknown, therefore, there 
are four equations and four unknowns. A method is 
now described that shows how the four equations are 
solved simultaneously for V and y at any x and 
t . The four equations can be expressed in the matrix 

equation: 

A 1 av 
VJJ 0 v Ox 0 

v I av 
0 Ot = So-sf 

g g 
ay 

(3.18) 

dx dt 0 0 Ox dV 

0 0 
ay 

dx d t Ot dy 
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This equation may be expressed in the format 
of matrix algebra as: [M] x [Z] = [N) , in which 
[M] is the coefficient matrix, and [Z] and [N] 

are vectors representing the unknown partial 
derivatives and the right side of the equation, 
respectively. 

To obtain a solution of V and y at any x 
and t from this equation, let t.M be the 
determinant of a matrix [M) and 
let AK.i represent a matrix formed by replacing a 
column (i) in [M) by [N) . From matrix algebra it 
may be proved that Zi = .6K/ t.M . The rows 
of [M] are linearly dependent, i.e., there is an 
interdependency between the values of y and the 
values of V at any x and t.To satisfy this 
interdependency the determinant of the coefficient 
rna trix t.M must be equal to zero. Here the 
equation [M] [Z] = [N] becomes indeterminate 

av av ay ay 
and the values of - - -and - are 

ax 'at . ax at 

not uniquely determined, i.e., zi = AK/t.M = 0/0. 
Therefore, since the derivative must be finite in the 
flow phenomenon considered , t.Ki must equal zero 
whenever .6M equals zero. 

By expanding the determinant of [M) and 
equating it to zero, a quadratic equation in dt/dx is 
obtained. Solving for both positive and negative 
values of dt/dx the following is obtained 

dt <crx} = -----
v+VAiJB 

(3.19) 

and 

dt 
(QX") - , = 

V- JAg/B 
e_ • (3.20) 

The curves in the distance-time plane on which 
.6M = 0 are called the characteristics curves. On each, 
the value of dt/dx is a constant. 

By expanding the determinant of any of the 
four t.Ki in Equation 3.18 and setting it equal to 
zero, four different but equivalent partial differential 
equations are obtained of the type shown in the 
following equation. 



{ 
A V d t I } dy A dV 

[-- - ] - +- - +-- + 
VB g dx g dx VBg dx 

A dt 
W (So· Sf)- co. 

dx 
(3.21) 

SubstJtuting the values of e±from Equation 3.19 
and 3.20 to · Equation 3.21 the following ordinary 
differential equations in V and y are obtained: 

{
A V 1J dy A dV 
[-- - ]e.+ --+--+ 
VB g g dx V Bg dx 

(3.22) 

8 

[[~-~]e.~} dy +~ dV + 
~ VB g g dx VBg dx 

A 
"VB (S0 . Sf) e_ = o, (3.23) 

along the positive and negative characteristics, 
respectively. 

To numerically integrate the above equations in 
order to determine the depth, y , and velocity, V , 
at any distance, x , and time, t , in a channel there 
are many schemes. Two of them are described in the 
next chapter. To reiterate both are schemes of a class 
of solution known as the method of characteristics. 
One is called the characteristic grid scheme; the other 
is called the specified intervals scheme. 
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Chapter 4 

NUMERICAL SOLUTIONS OF GRADUALLY VARIED FLOW EQUATIONS 

4.1 Introduction 

In part 3~2 o f Chapter 3, in which the 
mathematical equations of gradually varied flow were 
discussed in terms of the characteristic equations, 
both the characteristic grid and the specified intervals 
schemes of integrating the equations were mentioned. 
There are many other methods available by which 
these equations can be integrated, such as the 
Lax-Wendoff and the diffusing schemes. A survey of 
the available methods with a discussion of their 
advantages and limitations for the numerical integra· 
tions of the gradually varied flow equations may be 
found in a recent publication by Yevjevich and 
Barnes ( 1970). These investigators recommended the 
use of the method of characteristic over any other 
method. The two schemes of the method of 
characteristics are described in the following para­
graphs. 

4.2 Characterisitic Grid Scheme 

The pair of first-order equations that represent 
the flow, Equations 3.22 and 3.23, of the previous 

chapter, have two real roots, dt and (OX).= E+ 

dt <ax) _= e_. A curve that at each o f its points has 
dt 

the slope <ax)+ is called a positive characteristic. 

A curve that at each of its points it.tS the slope 
dt 

(CIX)_ is : ailed a negative characteristic. There 

are, therefore, two families of intersecting curves that 
fill out the domain of the independent variables x 
and t . Typical patterns of intersecting characteris· 
tics for subcritical and supercritical flows are shown 
in Figure 4. 1. 

By a simultaneous solution of Equations 3. 19 , 
3.20, 3.22, and 3.23, the depths and velocities of the 
flow may be determined at the points where the 
positive and negative characteristics intersect. They 
are found by integrating from two grid points where 
y and V are known, points R and S , to the third 
point, P which is the intersection of the characteris­
tics that pass through points R and S shown 
schematically in Figure 4.2. To obtain y and V at 

point P after knowing their values at points R and 
S the equations resulting from the simultaneous 
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solutions of Equations 3.19, 3.20, 3.22 and 3.23 are 
solved in a sequential order. These equations are: 

xs- xR + tR(VR+ v'iY'R). ts(V s. -hYs> 
tp= (4.1) 

(4.2) 

(4.3) 

By means of the above equations y and V 
can be determined at any point on the (x,t)-plane by 
changing the grid size or shape by varying .:lt and 
.:lx. 

4.3 Specified Intervals Scheme 

One way to describe the specified intervals 
scheme for integrating the equations of gradually 
varied flow is to consider the (x , t)- plane subdivided 
into grids of equal sized rectangles, each .:lx long 
and .:lt high. The initial conditions V and y arc 
known along the lower boundary corresponding to 
t = 0 and the upstream conditions are known along 

the left boundary of Figure 4 .3 . 

Assuming that y and V are known at every 
grid point along the line t = 11 • tlt as shown in 
Figure 4.3, then y and V can be determined at the 
grid po ints along t = t 1 in the following manner. 
Consider that y and V are to be determined at 
point P . By determining the slopes of the charac­
teristics that pass through point P , the positions 
where the characteristics cross the line t 1 - .:lt (points 
R and S) can be found. The values of depths and 

velocit ies at these points can then be calculated by 
interpolation equations using the grid points in the 
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neighbourhood of points R and S . From these 
values the frictional slopes and the coefficients in 
Equations 3.22 and 3.23 can be evaluated , and the 
equations can be integrated along the characteristics 
to determine y and V at point P . 

Equations 3.22 and 3.23 may be expressed in 
the following algebraic form proceeding from points 
R and S on the t 1 - At )jne to the point P on the 
t 1 line, as 

(FJR(Yp·YR) + (GJR(VP-VR) + (SJR (xp-xR) = 0 , 

(4.5) 
along the positive characteristic, and as 

(FJs(Yp·Ys ) + (GJs(Vp-V s) + (SJs(Xp·xs) = 0, 

(4.6) 
along the negative characteristic. In these equations 
the coefficients have 

{,A V I } 
(FJs = l [vs . g-1 e_ +g- s , 

A 
(GJR = (VBg )R ' 

A 
(GJs = Cvsg )s , 

and 

Using the values of V and y at points R and 
S , Equations 4.5 and 4.6 are solved simultaneously 

to determine the depth and velocity at the point 
P, i. e. , 

[(T.)R (G.)R] 
(TJ s (G)s 

(4.7) 
Dp = [ (F j R (G.)R] 

(FJs (G_)s 

and 
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[
(F.)R (T.)Rl 
( F Js CTJs 

v ---------------
p -[(F.)R (G.)R] 

(F Js (GJs 

(4.8) 

in which 

(TJ R = (F.)R · YR + (G.)R VR · (S.)R (xp-xR) , 

and (T Js = (F Js Ys + (GJs V S. (SJs(Xp·Xs) . 

The solution is continued in the x direction 
ftrst and then continued for successive values of t , at 
At intervals apart, until the flow in the channel is 

simulated for a specified duration. 

4.4 Comparisons of Solutions Obtained 
by the Characteristic Grid and 
Specified Intervals Schemes 

Some of the disadvantages in using the 
cha.racteristjc grid scheme are as follows. 

1. The depths and velocities are obtained on 
the (x,t)-pJane in an uneven distribution of grid 
points. To ob tain results in an orderly distribution, 
interpolations for calculated depths and velocities 
must be carried out in the x and t directions. Any 
o rder of interpolation possesses certain numerical 
errors that undermine some of the precision of the 
characterisitc grid scheme. 

2. It is difficult to space the characteristics of 
the same sign a suitab le distance apart along the x 
and t axes. For example, the flow regimes in regions 
I and 3 in F igure 4.1 are independent o f each other, 
and the flows in region 2 are dependent on conditions 
in region 1 and 3; therefore, it is impossible t o know 
the spatial in tervals of the characteristics in region 2 
beforehand. 

3. Members of the same family of characteris­
tics in the supercritical reg.ime may converge with 
flows of high Froude number. When this occurs, the 
depth and velocity at the grid point are no longer 
single-valued , and the method breaks down. 



In contrast to the problem associated with the 
characteristic grid scheme, the specified intervals 
scheme has certain advantages. One of them is that 
the grid spacing is known beforehand. The numerical 
solution is also more systematic, and the depths and 
velocities can be obtained at grid points where 
adjacent characteristics converge, which is precluded 
in the characteristic grid scheme. 

Some of the work by Zovne can be used to 
infer other advantages in using the specified intervals 
scheme. He considered hypotheticaJ, supercritical 
flow in which a linearly decreasing hydrograph was 
simulated by both the characteristic grid and the 
specified intervals schemes. His results are shown in 
Figure 4.4. It can be seen that the solutions from the 
two schemes are almost identical which, in view of 
the difficulties of the characteristic grid scheme 
described above, lends support to the use of specified 
intervals scheme for simulating supercritical flows in 
this and similar studies. 

Some of the assumptions necessary for using 
the specified intervals scheme are as follows. 

I. Interpolation must be used to determine the 
depths and velocities at the points where the charac· 
teristics that pass through point P cross the line 
t J · bot, (points R and S). 

2. It is assumed that the slopes of the charac· 
teristics at point P are the same as at point C . In 
other words, it is assumed the change in slopes of the 
characteristics over a bot time interval is small ; if this 
assumption can not be madeJan iterative scheme must 
be used to re-evaluate the slopes of the characterlstic 
equations and in turn the values of the coefficients in 
Equations 4.5 and 4.6. 

3. It is assumed that the curvature of the 
characteristics over bot interval is negligible. AI· 
though the errors associated with the assumptions in 

[1) and [2) can be reduced by the refinement of the 
algorithm, there is no way, as yet, to reduce this error 
as an operating program. 

4. The grid size of the specified intervals 
scheme must be smaller than with the characteristic 
grid scheme for the same degree of accuracy, since 
both the positive and negative characteristics that 
pass through point P must cross within a grid 
spacing in order fur the interpolation equations to be 
valid. This condition of both positive and negative 
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characteristics passing through a single grid spacing is 
sometimes referred to as the Courant condition for 
numerical stability, which states that bot= box/01 + 
vgy). Although this numerical stability criterion 
was first used by Massau with his work on the 
graphicaJ solution of the differential equations of 
unsteady flow, it has been referred to as the Courant 
stability criterion by recent researchers such as 
Liggett and Woolhiser (1967), Streeter and Wylie 
(1967), and Zovne (1970). To avoid confusion in the 

literature, the writers will also refer to this stability 
criterion as the Courant condition. 

The specified intervals scheme is used to 
determine the criterion for amplification in this 
study. Some of the limitations with regard to 
accuracy of the scheme as described in the four 
assumptions discussed above will be discussed in more 
detail in the next section. 

4 .5 Accuracy of Specified Intervals 
Scheme in Simulating Supercritical Flows 

4.5 .I Introduction. It has been demonstrated by 
Pinkayan and Barnes (1967) that the smaller the Ax 

size in the specified intervals scheme, and thus the 
smaJ!er the bot used in order to satisfy the Courant 
condition, the more accurately the scheme will 
compare with observed flows in the subcritical 
regime. In the supercriticaJ regime, however, there arc 
few observed flows with which comparisons can be 
made. 

Zovne, in his comparisons of characteristics 
grid and specified intervals schemes, assumed that the 
slopes of the characteristics changed a negligible 
amount over the At interval at any grid point along 
the channel. He used two point interpolations to 
determine the positions (points R and S) in Figure 
4.3 where the characteristics cross the line t 1· bot 
from the values of the dependent variables at the grid 
points and he evaluated the values of the coefficients 
of Equations 4.5 and 4.6 at points R and S, 
respectively. The comparison of results obtained from 
the specified intervals scheme with the results 
obtained from the characteristic grid scheme shows 
good correlation as shown in Figure 4.4. Zovne also 
stated that the use of a second order interpolation 
equations and the averages of the values of frictiona l 
slopes between points P and R and between 
points P and S improved the accuracy of the 
scheme, although their usc was not warranted in his 
study. 
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A term-integration technique - that has not 
appeared as yet in the literature pertaining to the 
specified intervals scheme - will be used throughout 
the remainder of the text. This technique is as follows. 
Interpolation equations of various order are used to 
determine values of the dependent variables at points 
R and S after the positions on the t 1 - tt.t line of 
the latter are found from the slopes of the 
characteristics. Then the coefficients of Equations 4.5 
and 4.6 are evaluated at either point C or at points 
R and S. Once the equations have been integrated, 
the slopes of characteristics of point P may or may 

not be redetermined and the above procedure is 
repeated until two successive values of characteristic 
slopes are within a specified tolerance. The technique 
from determining where the characteristics cross the 
t ]-tt.t line to finding the values of the dependent 

variable, with or without iterations, at point P will 
be called an integration technique. Moreover, an 
integration technique that includes a particular order 
of interpolation equations to determine the values of 
the dependent variables at points R and S is 
prefixed with the order of the interpolations. 

Therefore, a technique that uses third order 
interpolation equations is called a third order 
integration technique. 

In this study, where the flow conditions at 
which a wave neither amplifies nor attenuates are to 
be determined, the most accurate technique possible 
must be used. The tests conducted to determine the 
refinements to the basic first order integration 
technique to obtain the most accurate algorithm were 
simulated in a rectangular shaped channel, the sides 
of which are hydraulically smooth. A constant base 
flow governed by the Chezy resistance relation is 
introduced into this channel. The inlet conditions are 
sinusoidal hydrographs superimposed on the base 
flow. The depth-discharge relation at the inlet (rating 
curve) is the normal depth relation. 

The refinements that are made to the specified 
intervals scheme to improve its accuracy arc: (a) 
decreasing the grid size; (b) increasing the order of 
the interpolation equations used to determine the 
values of the dependent variables at points R and 
S ; (c) evaluating the coefficients of Equations 4 .5 

and 4.6 at points R and S instead of at point C , 

where most of the current investigators have evalu­
ated them - Henderson (1966), Streeter and Wylie 
(1967), and Yevjevich and Barnes (1970); (d) once 
the depth and velocity have been calculated at point 
P using the characteristic slopes at point C ; then 
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the characteristic slopes are re-evaluated at point P , 
and new depth and velocity determined at point P . 
This is continued by using an iterative procedure until 
successive values of calculated characteristic slopes 
are within a particular tolerance. The tolerance used 
for this study was 0.00001 feet. 

The last refinements, (b), (c), and (d) are 
discussed under the subject of integration techniques. 
The effects of the first refinement is as follows. 

4.5.2 Grid size. Once the tt.x size has been chosen 
then the At size is specified by the Courant stability 
condition. Therefore, by varying the Ax the size of 
the grid mesh is also varied. Considering a wave 
flowing on a base flow of high Froude number such 
that the wave should amplify throughout the length 
of the channel, then the grid size should be small 
enough so that the simulated wave does amplify 
throughout the length of the challliel. 

Figure 4.5 shows the results of a wave resulting 
from a sinusojdaJ inflow hydrograph of 20 seconds 
duration with a discharge ratio, Qp/Qb == 1.05 
flowing in a rectangular channel 1.2 feet wide on a 
base flow with a depth of 0.25 feet and a Froude 
number of 3.0. This figure shows the dimensionless 
peak wave depth at 40 feet from the inlet versus the 
tt.x used in the integration. 

The specifications of the integration technique 
are such that t he slopes of the characteristics at point 
P are the same as at point C ; first order interpola­

tions are used to determine the values of dependent 
variables at points R and S, and the coefficients of 

Equations 4.5 and 4.6 were evaluated at points C . 

It may be seen that when Ax is larger than 
two, the wave peak depth at 40 feet from the inlet is 

less than the peak depth at the inlet. When the Ax is 
less than two feet, the peak wave depth at 40 feet are 
larger than at the inlet. Since the discharge ratio is 
smal l and the base flow width-depth ratio is 
large, B/Y b == 4.8 , then by the theory of small 
disturbance on uniform flow, the peak depth should 
increase as the wave travels along the channel 
(Koloseus and Davidian). Therefore, for the inflow 
conditions tested a tt.x smaller than two feet should 
be used. It may be seen also from Figure 4.5 that 
when tt.x is decreased from two feet to one foot, 
there is a very small increase in wave depth at 40 feet. 
This may be better seen in Figure 4.6 where the peak 
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wave depth is plotted against distance along the 
channel. It is concluded that the smaller the ax size 
used in the simulations, the better the accuracy of the 
simulation, although there is a t.x size below which 
very little improvement in accuracy is obtained. It 
would be aJso noted that improved accuracy must be 
weighed against increased computer time and the 
computer memory storage required to obtaill it. 

4.5 .3. Integration techniques. To find the depths 
and velocities of points R and S from the known 
values of depths and velocities at the grid points in 
the neighborhood of points R and S intepolation 
equations must be used. Two types of interpolation 
equations were used and compared in this study to 
determine the better one to use in the integrations. 
The first interpolation equation, generally known as 
the Gregory-Newton equation, makes use of various 
order of finite difference approximations to 
derivatives. The second type, the Lagrangian 
interpolation equation , makes use of functional 
vaJues at the grid points together with corresponding 
values of the independent variable. The second order 
equation for both types for yR are given below. 

The Gregory-Newton interpolation equation for 
the depth at point R is 

(4.9) 

in which CR = xR · x8 • The Lagrangian interpola­
tion equation for the depth at point R is 

(4.10) 

The effects of the two interpolation equations 
may be seen in Figure 4.7 where the results of an 
attenuating wave produced by a sinusoidal inflow 
hydrograph of 20 seconds duration are shown. This 
figure shows the dimensionJess peak wave depth 
graphs for the second order integration techniques 
described above. The coefficients of the ordinary 
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differential equations, 4.5 and 4.6, are evaluated at 
points R and S , and no iterative procedure is used 
to refine the slopes of the characteristics which are 
evaluated at point C . The t.x size used in this 
simulation, as well as all subsequent simulations in 
the study , is five feet. The Vederni.kov number of the 
flow is less than one everywhere on the wave profile. 
The dimensionless peak wave depth is also plotted in 
Figure 4.7 for a first order integration technique, 
which has the same equation for both the Gregory · 
Newton and Lagrangian interpolation equations. It 
may be seen that the second order technique gives 
higher peak depths than the first order technique. 
AJso it may be noticed by comparing the results of 
the second order technique that the Lagrangian 
interpolation equation gives somewhat higher peak 
wave depths and a smoother curve than the Gregory· 
Newton equation gives. 

The dimensionless peak wave depth is plotted 
in Figure 4.8 for the same conditions as in the Figure 
4.7, except that the Froude number of the base flow 
has been doubled so that the Vednerikov number of 
the flow over the wave profile is now greater than 
one. It is clearly seen that the first order integration 
technique does not simulate an amplifying wave with 
the grid size used (t.x = 5 ft). The second order 
techniques produce wave amplification with the 
Lagrangian interpolation equation giving somewhat 
ltigher peak depths. 

Of greater consequence is that the Gregory­
Newton equation initially produces a dip in the 
maximum wave peak. This dip represents a condition 
where the pea!k depths decrease initially as the wave 
travels along the channel before the peak depths start 
to increase. Htis condition is due to the fo!Jowing 
reasons. At the first grid point from the inlet where 
the depths and velocities are to be determined, points 
B , C and D must be used in the interpolating 

equations as shown in Figure 4.3. At the other grid 
points along the line t 1 - ~t , point A is closer to 
points R and S than point D , so that it would be 
logical to use point A . Therefore, with the second 
order integration techniques, points B , C and D 
are used at the first grid point in from the upstream 
boundary, and points A , B , and C for the rest of 
the grid points along the line q -at . From Figure 
4.8 it may be learned that the shifting of the 
interpolating mesh has an adverse effect on the results 
produced by the integration technique that uses the 
Gregory-Newton equation. 
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Figures 4.9 through 4 .14 show the effects of 
the third order Lagrangian integration techniques 
with different positions at which the coefficients of 
the difference equations (Equations 4.5 and 4.6) are 

e\laluated and the iterative procedures of calculating 
the slopes of the characteristics for both amplifying 

a nd attenuating waves. The top portion of Figure 4.9 
. shows the plot of dimensionless peak wave depths 

against distance for an attenuating wave (Fb = 1.5) 
obtained by the third order Lagrangian integration 
technique with the coefficients evaluated at points 
R and S and the slopes of the characteristics 

recalculated by an iterative procedure until the two 
successive iterations show the same values of slopes to 
the t olerance of 0.00001 foot. The bottom portion of 
t he graph shows the relative error of the peak depths 
for various integration techniques compared to the 
peak depths produced by the technique described 
above, which is labelled LS , i.e., for the first order 
integration technique (yu · YLs )IYLS is plotted 
against distance along the channel, where L1 
designates the first order integration technique with 
the coefficients evaluated at point C . The other 
integratio n techniques are designated as follows: L2 
the second order integration t echnique with the 
coefficients evaluated at point C ; L3 the third order 
integration technique with the coefficients evaluated 
at point C , and L4 the third order integration 
t echnique with the coefficients evaluated at points 
R and S . 

With the flow conditions shown in Figure 4.9 
the relative error for the first order integration 
technique compared with the third order technique is 
so large that the curve does no t plot on the graph. 
The third order integration technique, L3 , produces 
smaller errors than the second order; the third order 
technique with the coefficients evaluated at points R 

and S , L4 , produces a relatively much smaller 
errors. There is a larger difference between L4 and 
L3 integration techniques than between L2 and 
L3 techniques. There is a difference also between 
L4 and LS ; however, this difference is much 

smaller than between the other techniques. 

Figure 4 . 10 shows the results of different 
integration techniques fo r the same conditions as in 
Figure 4.9 except the discharge ratio o f the inflow 
hydrograph is 1.30, or six times the wave peak 
discharge than in the previous case. The results are 
relatively the same, i.e., the L4 technique is closer to 
the LS technique than the L3 technique is; 
however, the relative errors are larger by at least an 
order of magnitude. 
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Figures 4 .. 11 and 4.12 show the relative errors 
of the different integration techniques for an amplify. 

ing wave with the Vedernikov number greater than 
one over the wave profile. In the upper part of Figure 
4 .11, the dimensionless wave peak depths are plotted 
against distance along the channel with the peak 
depth increasing with distance using the LS 
technique. In t he bottom portion of the plot the 
relative errors of L1 and L2 , i.e., first and second 
order integration techniques, are shown. Figure 4 .12 
gives the latter plot but it is enlarged to show the 
relative error for the L2 , L3 , L4 , and LS 
techniques. Again L3 technique produced a smaller 
relative error t han L2 technique, and L4 technique 
in turn produced a smaller relative error than L3 

technique. This sequence of relative errors is the same 
as was found for an attenuating wave. The relative 
errors are an order of magnitude smaller than for the 
attenuating wave with the same discharge ratio, i.e. , 

Qp/Qb = 1.05 . 

Figures 4.13 and 4 .14 also show the relative 
errors of maximum peak depths resulting from th e 
different integration techniques. Here the discharge 
ratio is the same as in Figure 4.1 0; however, the 
Froude number of the base flow is now 3 .0. This base 
flow Froude number combined with the discharge 
ratio of 1.3 produces an attenuating wave depicted in 
the upper portion of Figure 4.13 and determined by 
the LS technique. The relative errors have the same 
order as before; however, the errors are an order of 
magnitude smaller than with the smaller Froude 
number of the same discharge ratio. 

It may be concluded that the third order 
Lagrangian integra tion technique with the coeffi. 

dents evaluated at points R and S, L4, gives an 
accurate algorithm. The third order Lagrangian in· 
terpolation equation for YR (referring to Fig. 4 .3 
for the grid points) is 

(UR- I )( UR·1)(U~ UR(UR·2)(UR·3) 
yR= - 6 Y A+ 1 YB 

UR(UR·I)(UR·3) 

2 

UR(U R· l )(UR·2) 
Yc + 6 Yo , 

(4. 1 I) 

The increase in 

accuracy obtained by recalculating the characteristic 
slopes in rhe integration technique, LS , is small 
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compared to the U technique, and the use of this 
technique is not warranted in view of the increased 
computer time required. It may be also concluded 
that the relative errors increase with discharge ratio 
and distance along the channel; however, they de­
crease with higher base flow Froude number. These 
properties are considered in the design of experiments 
that are used to study the criterion of wave amplifica­
tion. 

4.5 .4 Flow acceleration considerations. Both Chow 
(1959) and Henderson (1966) state that waves are 
graduaJJy varied when the vertical accelerations are 
small compared to the horizontal accelerations. 
Rapidly varied flow occurs when this is not true. 
Because of this it was considered necessary to ensure 
that the vertical accelerations would be small for the 
flow conditions simulated so that the equations 
would represent the physical flow correctly. An 
extensive review of the literature, however, reveals 
that no author has defined what magnitude "small" is 
in this context, except by stating that with a smaJJ 
acceleration ratio the pressure distribution of the 
flow would be hydrostatic. To ensure that the waves 
studied can be adequately described by the equations 
of gradually varied flow, an algorithm using fmite 
difference approximations to derivatives is used to 

determine the accelerations in the normal and parallel 
directions to the channel bed of the wave surface at a 

given distance along the channel from the inlet. Since 
in this study a= (3 = 1 , the flow is assumed to have a 
uniform velocity distribution; therefore, the relative 
movements of the wave surface represents the 
movements of water particles in the wave. 

Figures 4.1 5 and 4.16 represent the cases of 
attenuating waves. It may be seen from Figure 4.15 
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,· 

that the accelerations paraJJel to the bed are much 
larger than the accelerations normal to the bed over 
the wave crest except at the peale The accelerations 
ratios are shown at the top of Figure 4.16 and they 
are always smaJJer in magnitude than 0.25 except at 
the peak where there is a large ratio. Referring to 
Figure 4.15 it may be seen that this large ratio occurs 
only when the accelerations parallel to the bed are 
very small, not when the normal accelerations are 
large. The amplifiying wave conditions are shown in 
Figure 4.17 and 4.18. In these figures it may be seen 
that again the normal accelerations are small when 
compared with accelerations parallel to the bed. The 
magnitudes of the normal accelerations for an ampli­
fying wave are much smaller than in the at tenuating 
wave, by an o rder of magnitude. The normal accelera­
tions are smaller than 0.002 ft/sec2 which is 
extremely small compared to the acceleration due to 
gravity. 

The acceleration ratios may reach values that are 
greater than one in both attenuating and amplifyiing 
waves, which by itself may preclude the use of the 
partial differential equations of gradually varied, free 
surface flow to correctly simulate the flow condi­
tions. In these cases of amplifying and attenuating 
waves, the maximum values of the acceleration ratio 
occur when the accelerations parallel to the bed have 
the smallest values on the wave profile, i.e., where the 
flow velocities are at a maximum and not at the 
points where the normal accelerations are at a 
maximum. In view of the magnitude of these accel­
erations, and their relatively constant value over a 
wave crest region, it may be assumed that the 
differential equations of gradually varied flow are 
valid for the range of conditions being studied. 
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Chapter 5 

AMPLIFICATION CRITERION 

5 .1 Introduction 

The objective of the study is stated in Chapter 
1. Some of the previous work on uniform flow and 
examples of the problems in the physical domain are 
covered in Chapter 2 . The methods of mathematical 
integration of the equations of gradually varied flow 
are discussed in Chapter 3. The two numerical 
schemes of the method of characteristics are treated 
in Chapter 4, and the superiority of the specified 
intervals scheme over the characteristic grid scheme 
is shown. The specified intervals scheme is then used 
to simulate flows in a channel with supercritical 
slopes to determine the amplification criterion of 
gradually varied, single peaked waves. Before discuss· 
ing the simulations and results, however, the specifi· 
cations of the channel and flow regime are described. 

5.2 BoWldary Conditions 

5.2.1 Initial conditions. AU numerical experiments 
are conducted with velocities in the supercritical 
regime. The base flow depth was specified before· 
hand, and it depends upon the width-depth ratio 
required. The slope of the channel was determined to 
give a particular Froude number for the base flow. 
Therefore, the initial conditions are that the depth 
and velocity are constant along the channel with a 
particular Froude number at the grid points, spaced 
five feet apart, along the x axis of the (x · t)·plane. 

5.2.2 Inlet conditions. On the above base flow both 
sinusoidal and asymmetric inflow discharge 
hydrographs are introduced. The three inflow 
hydrographs shapes used are shown in Figure 5.1. The 
equation of the inflow discharge function is: 

(5.1) 
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the maximum value of e8 t sin t term, and the use of 
which ensures that the maximum values of Q(t) is 

Qp. 

When 8 = 0, the hydrograph is symmetrical 
and is sinusoidal. When 8 < 0 , the hydrograph is 
asymmetric with an advanced peak; and when 8 > 0 , 
the hydrograph is asymmetric with a retarded peak. 
The depth at a given time, t , is determined by the 
normal depth relation for a particular discharge. The 
velocity is then determined by using the continuity 
equation. 

There may be some question whether the 
normal depth relation correctly simulates the flow 
conditions at the inlet. It could be envisaged that 
with some inlet conditions the flow would enter the 
channel with both vertical and horizontal compo· 
nents of acceleration, which the normal depth 
relation does not represent. Also, there may be many 
relations between depth and velocity at the inlet for 
steady flow. One extreme would be to consider a 
head gate in which the inlet depth remained constant 
and the velocity varied with the head on the gate. The 
other extreme would be when the velocity remained 
relatively constant and the depth changed. For this 
study it is assumed that a normal depth relation is 
applicable in order to determine the amplification 
criterion. This investigation shows that the results 
found for this relation are adaptable for other steady 
state relations and for the unsteady conditions at the 
inlet provided the relation between depth and 
velocity is known. 

Figure 5.2 shows a dimensionless peak wave 
depth against distance plot for a sinusoidal inflow 
hydrograph. This figure shows the conditions where 
the maximum depth decreases initially on entering 
the channel, then after a particular distance along the 
channel, the peak depths begins to increase. At I 00 
feet from the inlet the peak depth is still increasing. 
By taking the depth and velocity hydrographs at this 
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distance (the depth-discharge relation is now looped) 
and using them with an iterative approach as the inlet 
conditions for another channel of the same dimen­
sions and base flow discharge, another dimensionless 
peak wave depth plot is obtained. This is shown in 
Figure 5.3. The procedure is then repeated for 
another 100 feet of channel, and still yet another 
dimensionless peak wave depth plot is obtained. The 
results of this procedure are also shown in Figure 5.3. 
Although a dip in peak wave depth plot occurs 
because of the normal depth relation at the inlet, the 
two maximum peak depth plots resulting from the 
looped inlet conditions for the two subsequent 
channel lengths do not have dips: the peak depths 
increase along the whole lengths of the channels. If 
one imagines a channel 300 feet long consisting of 
three equal lengths, the inlet conditions of the first 
governed by the normal depth relation, and the 
beginnings of the other lengths governed by the 
looped depth-discharge relations, then the maximum 
peak depth plot for 300 feet can be drawn. The 
resulting curve as shown in Figure 5.3 is smooth. The 
peak depths at the upstream end of the 100 to 200 
foot length and the 200 to 300 foot lengths - at the 
100 and 200 foot stations, respectively - have the 
same values of depths and velocities as at the 
downstream end of the length of channel imme­
diately upstream, i.e. , the 0 to 100 foot and 100 to 
200 foot lengths. 

It may be concluded, therefore, that the 
normal depth inlet relations do not correctly simulate 
the gradually varied flow. This is to be expected since 
the inlet conditions are time varied and the wave 
possesses accelerations at the inlet that are not taken 
into account. Thjs limitation of the inlet condit ions 
will affect the amount of amplification or attenuation 
of a wave; however, it dot;\S not influence the flow 
conditions that govern whether a given wave will 
amplify or attenuate. 

5.3 Flow Simulations 

5.3.1 Choice of width-depth ratio. Figure 5.4 relates 
the discharge ratio at which the Vedernikov number, 
up, of the peak is equal to one against the 

width-depth ratio, B/Yb , for a flow depth of 0.25 ft. 
I t is shown later that this number is the criterion for 
amplification. With the small width-depth ratios the 
discharge ratio for up = I is also very small, i.e., 
about 1 .0, thereby making it difficult to determine 
whether a wave is attenuating or amplifying in view 
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of the preciSion of the numerical algorithm. With 
large width-depth ratios, the discharge ratio at which 
up = 1 is very large. !he slopes of the characteiistics 
for the flow on the wave crest under these conditions 
are mild which results in small time intervals in the 
grid mesh of tihe specified intervals scheme and long 
durations of computer time required for the 
integrations. 

The previous chapter has shown that the larger 
the discharge ratio the less accurate is the integration 
techruque. Therefore, an intermediate width-depth 

ratio was used in order to satisfy these limitations. A 
base flow width-depth ratio of 4 .8 is chosen, which is 
obtained with a channel width of 1.2 feet and a depth 
of 0 .25 foot. 

5.3.2 Amplification criterion. Figure 5.5 shows 
the peak wave depth, in dimensionless form, plotted 
against distance for various discharge ratios, Op/Qb 
which result f:rom a sinusoidal inflow hydrograph of 
20 seconds duration superposed on the base flow. 

The Chezy resistance law was used throughout this 
study, i.e., b = 0 in f = a(Re)b . The base flow 
Froude number is 3 .0 with a width-depth ratio of 4.8. 
The curves in Figure 5.5 represent different discharge 
ratios. The Vcdernikov number of wave peak, up , at 
the inlet is labelled alongside each curve. It may be 
seen that when up is greater than one, the wave 
amplifies along the channel. When the up is less than 
one, the wave attenuates along the channel except for 

the wave whose up is equal to 0.994 (Qp/Qb = 1 .2). 

This wave initially attenuates and then starts to 
amplify. Jt may be also asked whether the wave with 

Op/Qb = 1.3 would not start to amplify in a longer 
channel. The peak wave plot for Op/Qb equal to 1.2 
and 1.3 for a channel 500 feet long is shown in Figure 

5 .6. For the wave with the discharge ratio 
Op/Qb = 1.3 , although the peak depth does 

become larger over a certain length of channel, it 
attenuates along the remaining length of channel. 
While this wave amplifies it does not, however, ever 
reach the magnitude of its peak depth at the inlet; 
therefore, it may be classified as an attenuating wave. 

Figure 5 .7 shows the peak wave depth plot, in a 
dimensionless form, for the same discharge ratios as 
in Figure 5.5 except that the time base of the 
sinusoidal inflow hydrograph has been doubled to 40 
seconds. Here again it may be learned that when 
up > 1 a wave amplifies and when up < I a wave 
attenuates. 



II 

... 
:> 

@) 
.0 

0 2 

' c.. 
0 

8 12 
B I yb 

figure 5.4 Discharge Ratio at which Vedernikov 
Number is One versus Width-Depth 
Ratio 

.0 ,.. 
' ,.. ... 

' ~ . 
~ 

1.02 

1.01 

1.00 

0.99 

Fb = 3.0, Yb = 0.25 , b = 0.0, f = 0.01 

Op/Qb ~ 
<D 1.01 1.055 
® 1.02 1.052 
<3) 1.05 
@ 1.10 
~ 1.20 
® 1.:30 
(!) 1.50 
® 1.70 

OistQnce, ft. 

Figure 5.5 Dimensionless Peak Wave Depth ver­
sus Distance for 20-Second Duration 
Sinusoidal Inflow Hydrographs of 
Various Discharge Ratios 
Fb = 3.0, vb = 1.06 

.0 
>. 

,..c.. 

1.010 

-.0 1.008 ,.. 
' ... 
'"" 
' 1.006 

.0 ... 
...... 
,..e 1.004 

1.002 

0.998 

0.996 

0, 

Distance, fl 

• 0.994 / 

Op/Ob•l.30 
l.\1 •0965 

OL-----1~0-0-----2~00 ______ 30~0-----4~0~0--~5~00 

Figure 5.6 

1.01 

Dimensionless Peak Wave Depth ver­
sus Distance for 20-Second Duration 
Sinusoidal Inflow Hydrographs of 
Various Discharge Ratios 
Fb = 3.0, vb = 1.06 

~ 1.00 
........ 

c.. 
>. 

• 
,..E 

0.99 

0 

Op/08 .2_ 
CD I.OT 1.055 

® 1.05 1.052 
@ 1.10 1.026 
@ 1.20 0.994 

~ 
1.30 0.965 
1.50 0.912 
I. 70 0.865 Distance, ft 

20 40 60 80 100 

Figure 5.7 Dimensionless Peak Wave Depth ver­
sus Distance for a 40-Second Duration 
Sinusoidal Inflow Hydrograph of Vari­
ous Discharge Ratios 
Fb = 3.0, vb = 1.06 

27 



By comparing the two graphs it may be seen 
that the rate of amplification or attenuation varies 
inversely with the time base of the hydrograph. Also 
the farther away up is from a value of one, the more 
amplification or attenuation that takes place. 

Figures 5 .8 and 5.9 show the dimensionless 
peak wave depth plot for the waves resulting from 
asymmetric inflow hydrographs shown in Figure 5.1. 
The results of the advanced peak wave (0 = - 1.0) are 
shown in Figure 5.8, and those of the retarded peak 

(0 = 0.5) are shown in Figure 5.9. From both 
figures it can be seen that the waves amplify when 
vp > I and attenuate when up< 0.96. Considering 
the accuracy of numerical simulations, one may say 
that the waves are neither amplifying nor attenuating 

when up is between 0.97 and 1.00. One may also 
say that the rate of amplification or attenuation 
varies with the discharge ratio and the shape of the 
wave. The above is stated in relative terms, since the 
plots for physical waves would differ from the above 
because of the inlet conditions, as explained earlier 
and shown in Figures 5.2 and 5.3. 

The previous plots of dimensionless peak wave 
depth versus distance had the peak depth Vedernikov 
number, up ,at the inlet as a parameter of each curve. 
It would be informative to learn whether the peak 
wave depth Vedernikov number at any distance along 
the channel remained Jess than one for an attenuating 
wave, and greater than one for an amplifying wave. 
This information is available as may be seen in 
Figures 5.10, 5.11, and 5.12. Figure 5.10 gives the 
dimensionless peak wave depth plotted against dis­
tance for an attenuating wave in the top portion of 
the graph. The Vedernikov number is plotted against 
distance in the bottom position of Figure 5.1 0. The 
Vedernikov number remains less than one along the 
length of the channel; however, it increases in value 
along the channel length as the peak depth decreases, 
Figure 5.11, where the Vedernikov number is plotted 
against distance to 500 feet from the inlet for the 
same conditions as Figure 5 .I 0. It may be seen that 
the Vedernikov number of the peak, up , never 
increases to one. Figure 5.12 shows the results for an 
amplifying wave. The Vedernikov number is always 
greater than one; and it may decrease in magnitude as 
the peak depth increases; however, it never attains a 
value of one. 

The results of the findings as discussed above 
may be summarized in a plot of discharge ratio versus 
Froude number of base flow as shown in Figure 5.13 
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for the base flow depth and Chezy resistance Jaw 
given. The diagonal line divides the graph into two 
regions. The left one is the attenuation zone, the right 
zone is the amplification zone. If the flow conditions 
at the channel inlet are in the left zone, the up is less 
than one, and the wave will attenuate a10ng the 
channel. If, however, the flow conditions falls in the 
right zone, the up is greater than one, and the wave 
will amplify along the channel. Along the diagonal 
line the up is equal to one, thereby dividing the plot 
into amplifying and attenuating regions. For other 
base flow depths, resistance Jaws and channel cross 
sectional shapes, similar graphs can be drawn using 
the Vedernikov number relation of Chapter 3. This 
relation also can be used by itself to determine 
whether a supercritical gradually varied wave resulting 
from an inflow hydrograph will amplify or attenuate 
as it travels along a particular channel. 

The above shows that the Vedernikov number 
can be used to determine whether or not a gradually 
varied, single peaked wave will amplify in a 
rectangular shaped channel of a particular cross 
section. 

5.4 Some Characteristics of Supercritical 

Gradually Varied, Single Peaked Waves 

The results discussed in this chapter and shown 
in Figure 5.13 are those of a particular channel size. 
When the Froude number of the base flow is less than 
2.82, the wave will attenuate. When the flow condi­
tions fall in the zone to the right of the diagonal line 
of Figure 5 .13, the wave will amplify. In the former 
case both the base and peak flow Vedernikov 
numbers are less than one; in the latter, both the base 
and peak flow Vedernikov number are greater than 
one. Although this finding is useful in itself, there are 
conditions where the base flow Vedernikov number is 
greater than one, and the peak flow Vedernikov 
number is less than one. In other words, the bottom 
portion of the wave is in the right zone, and the top 
portion of the wave is in the left zone of Figure 5 .13. 
A base flow Froude of 3.0 and a discharge ratio, 
Qp/Qb = 1.3, would produce this condition. 

Figure 5.14 shows the dimensionless peak wave 
depth plot for 940 foot long channel with the 
characteristics described in Section 5 .3. The discharge 
ratio is equal to 1.3 in all three cases. The upper curve 
where Fb is equal to 4.5 represents an amplifying 
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wave. The middle curve of Fb equal to 3.0 is mildly 
attenuating, its peak falls in the attenuating zone, and 
its base falls in the amplifying zone of Figure 5.13. 
The lower curve represents an attenuating wave where 
Fb = 1.5 . 

Figures 5.15, 5.16, and 5.17 show the 
dimensionless wave depth plotted against time for the 
three base flow conditions discussed in the previous 
paragraph at 5, I 00 and 200 feet, respectively, along 
the channel from the inlet. Figure 5 .15 shows the 
attenuating case (Fb = 1.5). The peak depth is 
decreasing and the rear of the wave is flattening with 
distance. The front of the wave, however, remains 
relatively constant in shape. Figure 5.16 shows the 
case for which the base flow Froude number is 3.0 
which produces a mildly attenuating condition 

up = 0.96. The peak depth decreases as the wave 
travels along the channel; however, there is little 
change in the wave shape, but it may be seen that a 
small negative wave starts to form to the rear of the 
positive wave. Figure 5.17 shows the case of an 
amplifying wave (Fb = 4.5), where the peak depth 
becomes larger with distance. A larger negative wave 
forms on the base flow behind this wave; this negative 
wave becomes larger with distance travelled along the 
channel. The rear of the positive wave flattens; 
however, the degree of flattening is smaller than the 
wave with the Froude number of the base tlow, 
Fb = 1.5. 

The different characteristics of attenuating and 
amplifying waves may also be shown by means of 
dimensionless depth-discharge relations. Figure 5.18 
shows the relations at 45,495 and 975 feet from the 
inlet for Fb = 1.5 . 

From Figure 5.18 it may be seen that the 
relation is looped except at the inlet where the 
normal depth relation is assumed to govern the tlow. 
The rising limb of the wave is to the right of the 
falling limb, and since V = f(D.Q/ tl.A) the velocity of 
the wave at any given depth is greater on the front 
than on the rear. This causes the wave to attenuate, 
since the wave becomes longer and the peak decreases 
in order to conserve the mass. In Chapter 3 the 
Seddon celerity is defined by 3Q/3A , and the 
Lagrangian celerity is defined by V + ..Jgy . For an 
attenuating wave the Lagrangian celerity of the front 
is greater than that of the same depth on the rear. 
Since the Seddon celerity remains relatively constant 
on both limbs at the same depth, except in the crest 
region, the rear of the wave undergoes more dis-
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tortion than the front for an attenuating wave. The 
difference in the velocities, and in turn the difference 
in the celerities, at any relative wave depth increases 
as the wave travels along the channel. This can be 
seen in the Figure 5.18 where the loop opens up 
relative to the height of the loop with the distance 
travelled. Also time travels around the loop in the 
counterclockwise direction. 

Figure 5.19 shows similar results for the 
condition where the Froude number of the base flow 
is 4.5. The depth-discharge relation is again looped; 
however, the rising and falling depths, as compared to 
the previous case of Figure 5 .18, are on the opposite 
limbs of the curve. The left side represents the rising 
limb, the right side the falling limb. These hydraulic 
conditions produce an amplifying wave, as may be 
seen in Figures 5.13 and 5 .14. At any given wave 
depth, the velocity on the rear of the wave is greater 
than on the front. This causes the wave to become 
shorter and the peak depth increases. In this case, the 

wave gains mass from the base flow, since a small 
negative wave forms immediately behind the positive 

wave as may be seen in Figure 5 .1 7. 

The third condition described earlier, 
i.e., Fb = 3.0, produces an attenuating wave. Figure 
5.20 shows the depth-discharge relation for this case. 
Here it may be seen that there is a looped relation for 
the lower portions of the wave; however, it is difficult 
to determine from the plot if this is also true for the 
top portion of the wave. The depth-discharge plot for 
the peak region of the wave is shown in Figure 5.21. 
Here it may be seen that the relation is looped, and 
the larger velocities are on the front. On the bottom 
portion of the wave the opposite is true: the larger 
velocities are on the rear. Therefore if the depth· 
.discharge relation was plotted on a very large plot, a 
curve in the form of a figure eight would be seen. 
Time would pass around the lower portion in a 
clockwise direction, similar to an amplifying wave; it 
would pass around the top portion in a counter­
clockwise direction, similar to an attenuating wave. 
The relative depth where the two loops meet is 0.57 
which represents approximately the discharge ratio 
Q/Qp'• at which a Fb of 3.0 will neither attenuate 
r.or amplify as shown in Figure 5.13. 

Figure 5.22 shows the ratio of velocity on the 
rear, V r, to the velocity on the front, V f, hereafter 
called the velocity ratio, of a wave at any given depth 
plotted against wave depth for the case where 
Fb = 3.0. As explained earlier, the top portion of an 
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attenuating wave will have the velocity ratios less 
than one, and an amplifying wave will have the ratios 
greater than one. From this graph it may be seen that 
when the Vedernikov number of the inlet peak, up is 
greater than one then the velocity ratios are greater 
than one over the wave depth. When up is Jess than 
one, the V r/V f. are greater than one for the lower 
portion of the wave, but less than one for the top 
portion. The wave depth at which the velocity ratio 
equal to one corresponds to the point where the two 
loops meet in the corresponding depth-discharge plot. 
TJ:le wave depth for V rfV f = 1 decreases as up 
decreases, as can be seen from the position where the 
curves cross the vertical line representing a velocity 
ratio of one. The. same property can be observed in 
Figure 5.23 where Qp/Ob , and indirectly up , is 
plotted against the dimensionless wave depth. When 

Qp/Ob::::: 1.20 then Vr/V f = I for y == Yp. It may 
be seen that as Op/Ob increases the Vedernikov 
number at the peak, up thereby decreases, and the 
position where Vr/Vf= J, moves down the wave 
proflle. At a higher base Oow Froude number, i.e., 
Fb ::::: 4.5 , the velocity ratio is greater than one over 
th e whole wave proftle and the time travels aro und 

th e depth-discharge loop clockwise. 

Some properties of a wave crest whose 
hydraulic conditions are near the diagonal line in 
F igure 5.13 can be seen in Figure 5.24, where 

(Q-Qb)/(Qp-Qb) is plott e d against 
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(y-yb)/(yp-Yb) in which Op and Yp are the 
peak discharge and depth , respectively, at the inlet. 
The base Oow F roude number is equal to 3.0 which is 
the intermediate value of those discussed earlier. 
Therefore, when (y-yb)/(y -yb) is greater than one , 
the wave is amplifying; wheK fi-yb)/(y -yb) is equal 
to one, the wave is neither arKpiifying nor 
attenuating; and when (y-yb)/(y p"Yb) is less than 
o ne, the wave is attenuating. From the plot it may be 
seen that when u = 1.01 the wave is amplifying, 

and the velocities pon the rear of the crest are larger 
than on the front. When u = 0.98 the wave is 
attenuating, and the velocitfes on the front of the 
crest are greater than on the rear. The middle curve ~n 
the plot is for the resulting wave from an inflow 
hydrograph for which u = 0.994. The lower 
portion of the loop would iKdicate that the velocity 
at a given depth on the rear of the crest is greater 
than at the same depth on the front of the crest, as 
can be seen in Figure 5 .22. At the peak, however, 
there is very little difference between the velocites at 
any given depth as may be seen in Figure 5 .24. 

The above results, where Op/Ob is varied 
while keeping the base now Froude number constant, 
confirms the results of the influences of velocities on 
the front and rear of the wave; it also confirms the 
shapes of the depth-discharge relation for both 
attenuating and amplifying waves, which were deter­

mined earlier by holding Op/Ob constant and 
varying the base flow Froude number. 



Chapter 6 

CONCLUSIONS 

Gradually varied, single peaked waves flowing 
with supercritical velocities in a rectangular channel 
were simulated by applying the specified intervals 
scheme of the method of characteristics solution to 
the governing equations. Thus, numerical analysis 
replaced physical experimentation which would be 
expensive to conduct and from which accurate 
results would be difficult to obtain without signifi­
cant effort. From the analysis of the accelerations 
on the wave crests, it is found, in general, that the 
waves studied were gradually varied in that the 
vertical accelerations were negligible . 

From this study it was found that the 
Vedernikov number can not only be used to deter­
mine whether or not roll waves will form on uniform 
:flow, but also whether gradually varied , single peaked 
waves will amplify or not. When the Vedernikov 
number of a wave peak is less than one, the wave will 
attenuate; when the Vedernikov number of a wave 
peak is greater than one, the wave will amplify. If the 
Vedernikov number of a wave peak is greater than 
one, and if the channel is long enough, the front of a 
wave will continue to steepen and eventually become 
a bore. 

Some hydraulic properties of gradually varied, 
single peaked waves found are as follows. 

(I) The velocities at a given depth either 
on the top portion or over the total wave profile are 
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greater on the front than on the rear of an 
attenuating wave. 

(2) The velocities at a given depth are 
greater on the rear than on the front of an amplifying 
wave. 

(3) With an attenuating wave time t ravels 
around the looped depth-discharge relation in a 
counterclockwise direction. 

(4) With an amplifying wave, time travels 
around the looped depth-discharge relation in a 
clockwise direction. 

In the supercritical regime, gradually varied 
waves may be classified into three types that are 
dependent on the Vedernikov number of the flow: 

(a) when the Vedernikov number is Jess than 
one over the wave profile, the wave is 
attenuating; 

(b) when the Vedernikov number is less than 
one on the top portion of the wave 
profile and greater than one on the 
bottom portion,the wave is attenuating, 
and 

(c) when the Vedernikov number is greater 
than one over the wave proflie, the wave 
is amplifying. 
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~ 
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