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ABSTRACT 

WINTERTIME AEROSOL IN LAS VEGAS, NEVADA 

 
Numerous studies have found adverse health effects in subjects who live next to major 

roadways due to air pollution; in particular, there can be severe impacts on lung function and 

development in children living and/or attending school next to major roadways due to their 

exposure to air pollutants, including particulate matter (PM) or aerosol.  The composition of 

aerosol at an elementary school next to a major freeway in Las Vegas, Nevada during winter 

2008 was measured using a suite of measurements.  An Aerodyne High Resolution Aerosol Mass 

Spectrometer (HR-AMS) was used to quantify the composition of non-refractory PM1 aerosol, 

including organic matter (OM); an Aethalometer was used to quantify black carbon (BC); a 

Sunset OCEC analyzer was used to measure organic and elemental carbon (OC, EC); and a 

particle-into-liquid system (PILS) coupled to two ion chromatographs (IC) was used to measure 

fine particle ions.  Hi-volume PM2.5 samplers were used to collect aerosol on quartz fiber filters 

at between 2 and 24 hour intervals during the study, a subset of which were analyzed for PAHs 

and the biomass burning tracer levoglucosan.  Data were analyzed by positive matrix 

factorization (PMF) to determine the amount of fresh, hydrocarbon-like organic aerosol (HOA), 

more oxidized OA (low-volatility and semi-volatile OA [LV-OOA, SV-OOA]) and biomass 

burning OA (BBOA).       

PM1 aerosol was predominantly carbonaceous, with OM plus BC accounting for 74% of 

the overall average 6.9 µg/m3 of PM measured.  BC had a diurnal pattern similar to traffic 

volume, while OM was higher in the evening compared to the morning.  OM was a mixture of 

fresh HOA, urban- and regional-scale OOA, and BBOA; in the evening, SV-OOA and BBOA 

peaked, while HOA concentrations were on average the same in the morning and evening, 
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similar to BC.  OM/OC ratios were low (1.52 ±0.14 on average) during the morning rush hour 

(average OM = 2.4 µg/m3) when vehicular emissions dominate this near-road measurement site, 

and even lower (1.46 ± 0.10) in the evening (average OM=6.3 µg/m3), when a combination of 

vehicular and fresh residential biomass burning emissions was typically present during a period 

characterized by strong atmospheric stability.  While nitrate and sulfate had size distributions 

typical of secondary species with a sharp peak in particle diameter between 400 nm and 500 nm, 

OM had a broader distribution between 100 nm and 400 nm diameter particles, reflecting its 

combination of fresh, smaller particles and aged, larger particles.  OM concentrations were on 

average similar between periods when the sampling site was upwind and downwind of the 

freeway, though during the morning OM concentrations were higher under downwind 

conditions, as was the fraction of HOA. 
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Executive Summary 

Background 

The composition of aerosol next to a major freeway in Las Vegas, Nevada during winter 

2008 was examined using a suite of measurements and analyses.  Prior studies have found 

adverse health effects in subjects who live next to major roadways, and in particular, have found 

severe impact on lung function and development in children living and/or attending school next 

to major roadways.  Concentrations of some pollutants such as ultrafine particles and black 

carbon (BC) can be up to three times higher next to a roadway compared to urban levels, though 

particulate matter (PM) concentrations are typically only slightly higher next to a roadway 

compared to an urban area.  However the composition of PM next to a roadway may vary from 

PM composition elsewhere in the urban area, as next to a roadway fresh vehicular emissions mix 

with urban PM.  In particular, organic aerosol (OA) is of interest as it contains known 

carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), and oxidative species that can 

adversely impact lung and cell function.  Characterization of OA is important and challenging, as 

it varies dynamically compared to other aerosol, depending on temperature, meteorology, PM 

concentrations and PM composition.  Section 1, Introduction, provides additional details of and 

discussion on prior published work on near-roadway air pollution and organic aerosol, as well as 

prior air pollution studies in Las Vegas.  

 

Measurements 

In our study, we conducted high time resolution measurements at Fyfe Elementary 

School, 18 meters from the US 95 freeway soundwall.  An Aerodyne High Resolution Aerosol 

Mass Spectrometer (HR-AMS) was used to quantify the composition of non-refractory aerosol 
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with a vacuum aerodynamic diameter (vda) of 1 µm (PM1).  These 4-minute measurements 

included ammonium, nitrate, sulfate and organic matter (OM) concentrations.  In addition, 

individual mass spectrometer fragments were quantified by mass to charge (m/z) ratio, including 

markers of primary, hydrocarbon-like and oxidized organic aerosol (HOA and OOA, 

respectively) as well as of biomass burning OA (BBOA).  Elemental ratios of the OA, e.g., H/C, 

O/C and OM/OC, and particle size distributions of ammonium, nitrate, sulfate and OM were also 

determined.   

In addition to the HR-AMS measurements, 5-minute averaged BC was measured with an 

Aethalometer.  Semi-continuous measurements of PM2.5 organic and elemental carbon (OC, EC) 

by thermal optical analysis (TOA) were completed using a Sunset OCEC instrument.  Semi-

continuous measurements of PM2.5 K
+, sulfate, nitrate, ammonium and other major ions were 

made using a particle-into-liquid system (PILS) coupled to two ion chromatographs (IC).  Hi-

volume PM2.5 samplers were used to collect aerosol on quartz fiber filters at between 2 and 24 

hour intervals during the study, a subset of which were later analyzed for PAHs and the BBOA 

tracer levoglucosan.  Wind speed and direction were measured at 2 meters above ground level 

(AGL) at Fyfe.  Section 2, Measurements, provides additional details on the measurements and 

associated data processing. 

 

Hypotheses and Results 

The overall goal of this work was to characterize aerosol in the near-road environment, 

how its composition changes with variations in meteorology and by time of day (with the 

associated changes in traffic patterns and emissions), and the sources of OA.  Specific 

hypotheses included: 
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1. Near-road aerosol is predominantly from emissions from vehicles on the freeway, and is 

carbonaceous and relatively unoxidized.   

OA plus BC accounted for 74% of the overall average 6.9 µg/m3 of PM measured.  Fresh, 

unoxidized hydrocarbon-like OA (HOA) accounted for only a quarter of the OA, indicating 

that fresh vehicular emissions may not be the dominant source of OA next to the freeway.  

Instead, the OA is a combination of HOA, regional low-volatility, heavily oxidized OA (LV-

OOA), and somewhat aged semi-volatile oxidized OA (SV-OOA), which can be from 

vehicular and other urban-scale emissions.  Surprisingly, considering the proximity to the 

freeway, biomass burning was also a contributor to OA, on average 12% of the OA, despite 

being present in the evenings only. Analysis of the aerosol composition is shown in Section 

3, Aerosol Composition and Factor Analysis. 

 

2. Near-road OA and BC patterns will follow the typical diurnal pattern of traffic, i.e., with 

peaks of similar magnitude during the morning and evening rush hours.  

Traffic patterns were typical of an urban area, with morning and evening rush hour peaks.  

BC and CO both peaked in the morning and evening, coincident with the rush hour.  OA 

concentrations peaked in the morning and evening as well; however, concentrations were 

twice as high, on average, in the evening compared to the morning.  The OM/OC ratio was 

relatively low in both morning and evening, but was lower in the evening (averages of 1.52 

and 1.46).  These results suggest that while BC and CO are predominantly influenced by 

primary vehicular emissions, OA is sensitive to a combination of emissions and atmospheric 

phenomena.  During the evening, in addition to fresh vehicle emissions, residential biomass 

burning contributes to OM; as OM increases, atmospheric stability increases, and 



  

 4 

temperature decreases in the evening, more organic compounds can partition to the aerosol 

phase, further increasing OM and decreasing the OM/OC ratio.  Thus, while traffic patterns 

may be a good predictor of BC and CO variations, OA can be sensitive to a larger 

combination of influences.  Details of diurnal patterns and changing OA composition are 

shown in Section 3 and Section 4 Elemental Analyses of Organic Aerosol. 

 

3. OA next to the freeway will be similar to vehicle exhaust, as characterized by the OM/OC 

ratio. 

The OM/OC ratio averaged 1.54, higher than fresh vehicular exhaust (typically 1.2-1.4) 

and fresh urban aerosol (1.4), but lower than observed OM/OC ratios in other areas (ranging 

between 1.5-2.2).  Day-to-day variability in the fine particle OM/OC ratio was quite large, 

between 1.44 and 1.73, while daily concentration averages of OM were between 1.1 and 6.6 

µg/m3.  OM/OC ratios were low (1.52 ±0.14, on average) during the morning rush hour 

(average OM = 2.4 µg/m3), when vehicular emissions dominate this near-road measurement 

site, and even slightly lower (1.46 ± 0.10) in the evening (average OM = 6.3 µg/m3), when a 

combination of vehicular and fresh residential biomass burning emissions was typically 

present during times with atmospheric stability.  Details of OM/OC ratios are discussed in 

Section 4, Elemental Analyses of Organic Aerosol. 

 

4. Concentrations will be higher when the monitoring site is downwind of the freeway 

compared to when it is upwind.   

As reported in other work, BC concentrations were two to three times higher during 

downwind conditions compared to upwind conditions.  In contrast, OA concentrations were 
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not significantly different between downwind and upwind conditions.  During the January 

study, downwind conditions occurred most frequently during the midday, when 

concentrations were lowest, wind speeds were highest, and traffic low compared to rush hour 

traffic.  Upwind conditions occurred most frequently during the evening, when 

concentrations were highest, and when vehicular activity and biomass burning emissions 

peaked.  Separating the data by time of day better elucidates the difference between upwind 

and downwind conditions.  In the morning and midday, the downwind concentrations are 

slightly higher, with higher amounts of primary, less oxidized fragments like m/z 43 and 55.  

In the evening, concentrations during upwind conditions are actually higher for all fragments, 

as the upwind direction is the direction of arterial roads plus areas of residential biomass 

burning.  Further directionality analyses are shown in Sections 3 and 4. 

 

5. More OA will be contained in smaller particles during downwind conditions and during 

times of peak traffic compared to upwind conditions and midday/overnight, reflecting the 

contribution of primary, small particles.   

Fresh vehicular particulate emissions are predominantly small, e.g., a diameter of less 

than 100 nm, as shown in other studies where concentrations of ultrafine particles, those less 

than 40 nm in diameter, are much higher downwind of a freeway.  While ultrafine particles 

were not measured in this study, HR-AMS measurements can quantify particles down to 40 

nm in diameter.  There were only modest differences in OA size distribution by time of day 

or by upwind/downwind/stagnant conditions, though the larger particles (i.e., aerodynamic 

diameters greater than 200 nm) were enhanced in heavily oxidized fragments like m/z 44.  

The size distribution of OA was very broad, with most of the OA in particles of 100 – 400 
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nm diameter, and was quite different compared to the size distribution of inorganic species 

such as nitrate, which had a sharp peak in the 400 – 500 nm diameter range.  This suggests 

that while there were only modest differences in the OA size distribution between 

upwind/downwind conditions and time of day, there is a large contribution from primary and 

less oxidized particles, compared to the secondarily formed inorganic species.  Variations in 

the size distribution of OA and inorganic species are further discussed in Section 5, Particle 

Size Analyses. 

 

6. At the monitoring site next to the freeway, OA will be comprised of a combination of 

vehicular emissions, urban-scale OA and regional, oxidized OA.   

During the morning and midday, OA was a combination of local fresh HOA, somewhat 

oxidized SV-OOA, and more regional, LV-OOA.  In the evening, another source was 

evident, BBOA.  A combination of HR-AMS, levoglucosan, Aethalometer BC and PILS 

potassium ion measurements all confirmed the presence of substantial BBOA.  On average, 

12% of the OM was apportioned to biomass burning.  During the nighttime (5 pm to 5 am), 

between 25% and 33% of the OM was attributed to biomass burning, depending on the 

method and data used. The evening occurrence of BBOA and the lack of regional wildfires in 

this winter period clearly point to local residential wood combustion as the BBOA source.  

The influence of BBOA is discussed in Sections 3 through 5, and the apportionment of 

BBOA by different measurements and techniques is further explored in Section 6 

Residential Biomass Burning.  
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Conclusions 

With multiple high-time resolution measurements we have investigated the variability 

and sources of fine particles next to a major freeway during winter in Las Vegas, Nevada.  PM1 

aerosol was predominantly carbonaceous, composed of organic matter and BC.  BC had a diurnal 

pattern similar to traffic volume, while OM was higher in the evening compared to the morning.  

OM was a mixture of fresh HOA, urban- and regional-scale OOA, and BBOA; in the evening, 

SV-OOA and BBOA peaked, while HOA concentrations were on average the same in the 

morning and evening, similar to BC.  Variations in O/C, H/C and OM/OC indicated the variable 

nature of OM day-to-day and hour-to-hour.  While nitrate and sulfate had size distributions 

typical of secondary species with a sharp peak in particle diameter between 400 nm and 500 nm, 

OM had a broader distribution between 100 nm and 400 nm diameter particles, reflecting its 

combination of fresh, smaller particles and aged, larger particles.  OM concentrations were on 

average similar between upwind and downwind conditions, though during the morning OM 

concentrations were higher under downwind conditions, as was the fraction of HOA. These 

analyses demonstrate the complicated and variable nature of OM, and the influences of 

meteorology and atmospheric processes on OM that are not as important for other aerosol, such 

as BC. 
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1. Introduction 

1.1  Near-Roadway Aerosol 

A number of epidemiological studies have demonstrated severe health impacts that arise 

from exposure to particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5).  

PM2.5 is comprised of crustal material, trace metals, inorganic species such as sulfate, nitrate and 

ammonium, plus carbonaceous material.  The carbonaceous fraction is composed of black or 

elemental carbon (BC, EC), which is emitted as a primary emission from combustion and is 

rather unreactive in the atmosphere, and organic matter (OM).  Health effects include increased 

asthma rates, detrimental fetal development during pregnancy, and decreased lung capacity 

(Brunekreef et al., 1997; McDonald et al., 2004; Dockery et al., 1993; Dockery and Stone, 2007).  

Mobile sources, i.e., gasoline and diesel vehicles, are a major source of PM2.5, particularly in the 

western U.S. (Kim et al., 2003; Fine et al., 2004b), and adverse health effects have been strongly 

associated with proximity to major roadways (Edwards et al., 1994; Nitta et al., 1993; Kim et al., 

2004; Finkelstein et al., 2004; Kunzli et al., 2000; Hoek et al., 2002).  In additional studies, 

diesel particulate matter (DPM) was found to be toxic to lung tissue (Mauderly, 1994; 

Weingartner et al., 1997; Seagrave et al., 2006; Hiura et al., 2000), and both diesel and gasoline 

vehicle emissions contain polycyclic aromatic hydrocarbons (PAH), which are carcinogenic 

(Larsen and Baker, 2003; Lobscheid and McKone, 2004; Adonis et al., 2003; Flowers et al., 

2002).   

Schools heavy in minority or low-income population are disproportionately located near 

busy freeways (Wu and Batterman, 2006; Reynolds et al., 2004; Green et al., 2004; Schweitzer 

and Valenzuela, 2004), potentially resulting in higher rates of exposure to near-roadway air 
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pollution.  The causal biological mechanisms of how near-roadway pollution impacts human 

health are still being examined, but as part of the effort to understand these health effects the 

near-roadway environment needs to be characterized.  This characterization includes 

understanding the size distribution and composition of near-roadway aerosol, how pollutant 

concentrations change throughout the day, and the sources of the pollutants.   

In previous studies of near-roadway air pollution, significant differences in concentration 

and relative abundance among species within the first few hundred meters of freeways were 

observed.  In many studies a strong decrease in concentration was observed with increasing 

distance from the freeway, showing elevated concentrations in the first 50 to 100 meters of black 

carbon (BC), particle number, and concentrations of gaseous species such as CO and NOx (Zhu 

et al., 2002a; Zhu et al., 2002b).  Zhu et al. showed that ambient BC concentrations near 

Interstate 405 in Los Angeles can be approximately three times higher at 30 meters from the 

roadway compared to 300 meters downwind, where concentrations are similar to urban 

background levels.  BC, along with elemental carbon (EC), is typically used as a surrogate for 

DPM, which cannot be measured directly.  Ultrafine particles, which toxicological studies have 

associated with health effects (Li et al., 2003), also show a similar pattern to that of BC in near-

roadway environments.  The extent of elevated ultrafine and EC concentrations near the freeway 

also depends on fleet mix (Phuleria et al., 2007), where EC concentrations varied near different 

freeways, commensurate with the level of diesel traffic.  Near-roadway concentrations of BC, 

NO and PAHs generally follow typical traffic patterns, with peaks in the morning and evening 

rush hour (Fruin et al., 2008), but can vary depending on vehicle speeds, fraction of truck 

volume, and meteorology.   
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Concentrations of species also vary by meteorological condition.  In Los Angeles, BC, 

CO and particle number changed with time of day due to changes in source strength and 

meteorology (Ntziachristos et al., 2007).  There can be a large variability in ambient near-

roadway pollutant concentrations as wind speed, direction, temperature and relative humidity 

change (Sardar et al., 2004).  In Raleigh, North Carolina, the near-road environment was quite 

complex and elevated concentrations were found to occur within the first 50 meters from the 

roadway even when winds did not come directly from the roadway (Baldauf et al., 2008).  Many 

of these near-roadway studies were under persistent winds (i.e., wind speeds often greater than 2 

meters/second) or only had measurements during a few days of a week or few hours during the 

day.  We hope to build on these studies and address some of the issues raised by them by 

examining the near-roadway environment at a school approximately 20 meters from the 

roadway, throughout the diurnal cycle and under different meteorological conditions during the 

winter.   

1.2 Organic Aerosol 

Organic aerosol (OA) can often be the largest component of PM in urban areas, and is 

typically measured as organic matter (OM) or organic carbon (OC).  OM is a complicated 

mixture of thousands of different molecules, and includes not only particulate OC, but also the 

hydrogen, oxygen, nitrogen and sulfur that are a part of the thousands of molecules making up 

OM.  OM is a combination of both primary particulate emissions and secondary aerosol formed 

from gaseous precursors. Combustion is an important source of emissions of OM and its gaseous 

precursors, while there can also be significant emissions of gaseous precursors from biogenic 

sources (Kleindienst et al., 2007).  Emissions from combustion include fossil fuel combustion 

such as vehicle exhaust as well as biomass burning (BB), which includes both anthropogenic BB 
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from wood stoves and fireplaces plus emissions from wildland fires.  Combustion emissions 

include direct emissions of OM and of gaseous precursors that oxidize in the atmosphere to form 

secondary organic aerosol (Donahue et al., 2012; Kroll et al., 2011).   

Jimenez et al. provide an overview of studies throughout the world characterizing fine 

PM via Aerosol Mass Spectrometers (AMS) (Jimenez et al., 2009), while Hand et al. show 

composition for fine PM across the U.S. based on measurements from the Interagency 

Monitoring of Protected Visual Environments (IMPROVE)  network and Chemical Speciation 

Network (CSN) (Hand et al., 2011).  Both show that OA often accounts for at least half of the 

fine PM at multiple locations the western U.S., particularly in urban areas, with an increasing 

fraction of secondary organic aerosol in  rural areas compared to urban areas.  In a review of 

numerous studies, Zhang et al. summarized that in urban areas typically 40% of the OM is 

primary, while in rural and remote areas only 10%-20% is typically primary(Zhang et al., 2011).   

OM is typically high in near-road environments (Phuleria et al., 2007; Riddle et al., 2008; 

Minguillon et al., 2008; Canagaratna et al., 2010), and is a major component of vehicular exhaust 

emissions and also includes PAHs, which are carcinogenic (Larsen and Baker, 2003; Lobscheid 

and McKone, 2004; Adonis et al., 2003; Flowers et al., 2002).  As described below, studies using 

filters have generally focused on characterizing OC (the amount of carbon contained in OM), 

with typically a time resolution of 2 to 24 hours, while other studies have relied on high 

resolution aerosol mass spectrometer (HR-AMS) measurements to directly measure OM at high 

time resolution.  Both approaches offer different tradeoffs, and can be used to better understand 

the near-roadway environment.   

Robinson et al  and others provide an overview of how vehicular emissions act in the 

atmosphere (Robinson et al., 2010).  Vehicular emissions include a combination of hot gaseous 
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organic compounds plus particles, such as BC and low volatility organics, though the majority of 

the emissions are gaseous and semi-volatile (Volkamer et al., 2006; Schauer et al., 1999a; 

Gundel et al., 1999; Fraser et al., 2000).  After exiting the tailpipe into the atmosphere, the 

vapors rapidly cool and are exposed to sunlight and oxidants, meaning they can quickly oxidize 

and become less volatile.  Depending on the volatility of the resulting secondary aerosol, as well 

at ambient temperature and aerosol concentration, these secondary products can partition into the 

particulate phase.  Chamber experiments in recent years have shown that the secondary aerosol 

produced by (predominantly gas phase) combustion emissions can be similar to the amount of 

primary aerosol generated in combustion (Chirico et al., 2010; Tkacik et al., 2012; Hennigan et 

al., 2011).  This means that OM next to a roadway is an evolving parameter, dependent on not 

only emissions along the roadway but how these emissions age and interact with the atmosphere 

as well as with particles and gases from other sources in the area.  

1.2.1 Near-roadway Organic Carbon Studies 

A number of studies have characterized the composition and sources of organic aerosol, 

but few have been conducted at schools and only a handful near a roadway.  Most studies 

focusing on organic aerosol have used the chemical mass balance (CMB) receptor model 

approach to apportion sources of OC using molecular markers (Fraser et al., 2000; Schauer and 

Cass, 2000; Schauer et al., 2002a; Schauer et al., 1996; Sheesley et al., 2007; Zheng et al., 2007; 

Zheng et al., 2002).  These studies were performed in both urban and rural environments and 

have shown that mobile sources and wood burning are important sources of OC, but that 

secondary OC can also be important and is often difficult to characterize.  This approach 

typically only apportions OC, not including the H, O and N associated with the OC, which 

together make up OM. 
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In near-roadway environments, molecular marker measurements and CMB analysis have 

been used to demonstrate that while mobile sources contribute a large fraction of the OC, this 

can vary with time of day and meteorological condition.  In Los Angeles, OC concentrations did 

not correlate with traffic volume or EC concentrations (Ntziachristos et al., 2007), indicating the 

complex nature of OC near major freeways.  PAH and EC concentrations differed at locations 

near different freeways, dependent on the relative amount of diesel traffic on the nearby freeway 

(Phuleria et al., 2007).  This work was consistent with previous analyses that showed gasoline 

vehicles emit higher molecular weight PAHs and diesel vehicles emit lighter PAHs (Miguel et 

al., 1998; Zielinska et al., 2004a; Zielinska et al., 2004b); these differences in emissions are 

important both for relating exposure of PAHs to traffic on freeways as well as for conducting 

receptor modeling.  Riddle et al. calculated contributions of gasoline and diesel vehicles to 

various size fractions smaller than PM2.5, showing these sources were most important but that the 

origin of a significant amount of OC was still unknown (Riddle et al., 2008).   

Emissions from mobile sources can vary with season and meteorology, and since mobile 

sources are an important contributor to OC, these variations can complicate attribution of OC 

sources.  Fine particle EC/OC ratios fell between 0.26 and 1.0 in Pittsburgh in summer and 

winter (Grieshop et al., 2006), potentially indicating variations in emissions or atmospheric 

processing of carbonaceous aerosol.  Changes in emissions depending on fleet mix and speed 

have also been shown (Kirchstetter et al., 1999; Zielinska et al., 2004b; Abu-Allaban et al., 

2003).  Overall, OC in the near-road environment is complex, and understanding its sources 

under different atmospheric conditions and in different areas is important. 

Many of these monitoring campaigns collected and analyzed daily 24-hour samples, 

analyzed daily filters that were composited into multi-day aggregates, or had samples collected 
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under persistent winds.  Daily samples are extremely useful, since over a 24-hour period 

sufficient mass is collected to typically ensure low detection limits, and this period complements 

existing national networks and air quality standards, which are reliant on 24-hour data.  

However, concentrations of near-roadway carbonaceous aerosol can vary widely throughout the 

day, dependent on meteorology as well as source strengths (Roberts et al., 2008).  In addition, 

the traditional methods only characterize primary OC, not OM, and have difficulty in 

apportioning the amount of secondary organic aerosol (SOA) at a monitoring site.  Many more 

recent studies have demonstrated that SOA spans a range of volatility and composition (in terms 

of oxygen-to-carbon [O/C] ratio), can be quite variable, and is a large fraction of OM (Donahue 

et al., 2012; Jimenez et al., 2009; Kroll et al., 2011; Robinson et al., 2007).  Therefore, it is 

useful to characterize organic aerosol with higher time resolution than 24-hour filter samples 

allow, and to understand the nature of OM, not just OC.  Characterization of OM rather than OC 

provides greater information about the total mass contribution of organic matter in fine particles 

and mass is the most relevant health parameter, at least as assessed in current regulatory 

schemes. 

1.2.2 Aerosol Mass Spectrometer Measurements of Organic Matter 

In the past decade, the Aerosol Mass Spectrometer (AMS), and more recently the high 

resolution AMS (HR-AMS), have been deployed in numerous studies to characterize OM and 

other particulate species at high time resolution, e.g., at 2-minute resolution (Jimenez et al., 

2009; Drewnick et al., 2005; Lanz et al., 2010; Ng et al., 2010; Docherty et al., 2008; DeCarlo et 

al., 2006; Allan et al., 2003b; Allan et al., 2003a; Sun et al., 2009; Canagaratna et al., 2007; 

Jimenez et al., 2003; Jayne et al., 2000).  The HR-AMS provides measurements of OM, sulfate, 

nitrate and ammonium, as well as particle size measurements of these species.  In contrast to 
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filter samples analyzed for molecular markers by GC-MS or other approaches, with the HR-

AMS, individual molecular marker compounds such as levoglucosan or hopanes are not 

quantified, but with this loss of molecular specificity we gain high time resolution and a more 

complete representation of the full organic aerosol fraction.  GC/MS, by contrast, typically 

speciates less than 20% of ambient OC (Williams et al., 2010; Schauer et al., 2002b; Hays et al., 

2004).  Rather than individual molecules, specific groups of mass-to-charge ratio fragments (m/z) 

can be measured to characterize fine particle OM.  Beyond the unit mass resolution (UMR) data 

where each m/z is quantified, individual fragments that comprise each UMR m/z can be 

determined.  For example, m/z 43 is predominantly composed of the ion C3H7
+, but also has 

some contribution from C2H3O
+ and other minor ions.  Where a single ion typically makes up a 

large fraction of a UMR m/z, both the m/z and the ion will be referenced, e.g., m/z 43 (C3H7
+), 

m/z 44 (COO+), m/z 57 (C4H9
+).  In addition to identifying individual ions in each m/z, the 

elemental composition of the OM can be determined, allowing for direct measure of H/C, O/C 

and OM/OC ratios.   

Jimenez et al, Zhang et al, and Ng et al, among others, provide summaries of ambient 

studies using AMS data and how OA evolves in the atmosphere (Jimenez et al., 2009; Zhang et 

al., 2011; Ng et al., 2010).  AMS data are often evaluated with positive matrix factorization 

(PMF) or other mathematical methods (Zhang et al., 2004a; Zhang et al., 2005a; Zhang et al., 

2005b) to decompose the mass spectra and identify differences between fresh, hydrocarbon-like 

organic aerosol (HOA), and more aged, oxygenated organic aerosol (OOA), as well as biomass 

burning OA (BBOA).  A pattern of saturated hydrocarbon fragments such as m/z 43 (C3H7
+) and 

m/z 57 (i.e., C4H9
+) were found to be typical of HOA.  Two types of OOA spectra are often 

observed (Docherty et al., 2008; Huffman et al., 2009; Jimenez et al., 2009), one typical of low 
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volatility OOA comprised of m/z 44 (i.e., CO2
+), LV-OOA, and one that represents less 

processed and less oxidized OOA.  This spectrum has also been observed in chamber 

experiments with diesel exhaust and termed semi-volatile OOA (SV-OOA).  Figure 1-1 shows 

example HOA, LV-OOA and SV-OOA spectra, compiled over multiple studies as reported in Ng 

et al, 2011.  The HOA spectra is typical of long-chain hydrocarbons, such as those emitted in 

vehicle exhaust or in lubricating oils, and is similar throughout many ambient studies.  The LV-

OOA spectra has a high fraction of the total signal from m/z 44, while SV-OOA is less aged and 

is somewhere between LV-OOA and HOA spectra, with a modest fraction of its spectra from 

both m/z 44 and m/z 43. 
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a)  

b)  

c)  
Figure 1-1.  Example spectra compiled over multiple studies by Ng et al., (Ng et al., 2011), for a) HOA; b) 
SV-OOA; c) LV-OOA.  Grey error bars represent the standard deviation across the data sets used. 

   

Ambient studies across the world have found that urban sites have higher amounts of 

HOA(characterized by hyrdrocarbon fragments) relative to downwind, rural and remote sites, 

consistent with the conceptual model of fresh HOA and associated gaseous emissions in urban 

areas aging to OOA at sites further away from emission sources (de Gouw et al., 2005; de Gouw 

et al., 2008; Jimenez et al., 2009).  On average for urban sites reported in Zhang et al, 45% of the 
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AMS PM1 was OM, of which 42% was determined to be of primary origin, i.e., HOA, BBOA 

and/or cooking OA(Zhang et al., 2011).  In contrast, downwind and rural sites had on average 

82%-90% of the OM as OOA, even though the fraction of PM1 that was OM was similar to 

urban sites (43%-52%).   

Next to a roadway, Canagaratna et al  used an AMS aboard a mobile laboratory for a 

short period of time (less than an hour) at locations next to a roadway in Somerville, MA 

(Canagaratna et al., 2010).  They found that HOA was highest next to the roadway and decreased 

by a factor of four 300 meters downwind, similar to CO2, while OOA concentrations were 

comparable next to the freeway and 300 m downwind, suggesting rapid dilution or reaction of 

HOA next to the roadway, while OOA is likely more urban-scale.  Vehicle chase experiments 

have also been done with the AMS and other instrumentation  in New York (Canagaratna et al., 

2004).  Measuring individual plumes from trucks and buses, they found a bimodal size 

distribution of OM, with maxima at 80-110 nm aerodynamic diameter dva and in the 500 nm dva 

range, consistent with other studies showing a wealth of smaller particles in fresh vehicular 

emissions (Kittelson et al., 2004); the presence of an OM peak in this smaller size range was also 

observed to vary with traffic activity near the sampling site (Drewnick et al., 2004a).  The 

chemical composition of the average diesel exhaust plumes sampled in Canagaratna et al. was 

more similar to lubricating oil than with pure diesel fuel.  

1.2.3 Elemental Analysis and OM/OC Ratio Measurements 

A significant advantage of the HR-AMS is that it can directly determine (with some 

assumptions) OM and H/C, O/C and OM/OC ratios, instead of simply OC.  National-scale, 

routine PM2.5 networks such as the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) and CSN programs typically measure OC, but not OM.  OM must be inferred from 
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these OC measurements using an assumed OM/OC ratio.  However, the OM/OC ratio can vary 

widely depending on source influences, monitoring location, season, and meteorology (Turpin 

and Lim, 2001; Bae et al., 2004a; Aiken et al., 2008; Chan et al., 2010; Simon et al., 2011).  

Aerosol containing more aliphatic hydrocarbons tends to have a lower OM/OC ratio (Russell, 

2003; Turpin and Lim, 2001; Maria et al., 2003), while aerosol dominated by secondary 

formation is typically more oxygenated and thus has a higher OM/OC ratio (Aiken et al., 2008).  

Even with high-resolution molecular speciation, typically only 10% of the OM can be quantified 

(Rogge et al., 1993; Volkamer et al., 2006).  An accurate OM/OC ratio is necessary to achieve 

mass closure between gravimetric PM measurements and collocated measurements of PM 

constituents; to properly reflect the role of OM in regional and local air quality management 

plans; and to improve model predictions of OM (Polidori et al., 2004; 2008).  The OM/OC ratio 

has also been used to characterize the relative level of oxidation of the organic material in the 

atmospheric aerosol as an estimate of the degree of chemical processing in the atmosphere (de 

Gouw et al., 2005; 2008; Aiken et al., 2009). 

The OM/OC ratio in ambient air has been measured directly using high-resolution aerosol 

mass spectrometer (HR-AMS) measurements, as well as inferred via calculations using OC and 

other data.  Chan et al. (2010) provided a review of key studies of OM/OC.  For southern 

California, White and Roberts (1977) estimated an OM/OC ratio of 1.4, based on calculations of 

missing particulate mass that could not be explained by other measurements.  This ratio of 1.4 

has historically been used as a default OM/OC value—for example, in the IMPROVE program 

(Malm et al., 1994).  Turpin and Lim (2001) estimated OM/OC to be between 1.6 for urban 

aerosol and 2.1 for rural/aged aerosol, based on a survey of published speciated organic 

molecular marker data from multiple sites in the U.S.  Russell (2003) used Fourier Transform 
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Infrared (FTIR) spectroscopy analysis of particulates on quartz fiber filters (QFF) and 

determined OM/OC to be on average 1.4, with a range of 1.2 to 1.6.  Using 3 years of QFF 

analysis of organic molecular markers at an urban and rural site in the Midwest, Bae et al. (2006) 

estimated that OM/OC was between 1.5 and 1.9 at the rural site and between 1.3 and 1.6 at the 

urban site.  Recently, Simon et al. (2011) developed a calculation of OM/OC by applying multi-

linear regression techniques and using many years of filter data collected from over 100 sites in 

the U.S., predominantly in rural areas, as part of the IMPROVE program.  They estimated 

OM/OC ratios to be on average between 1.37 and 1.94, with lower ratios in the western U.S. and 

during winter.  Together, these studies provide a consistent range of estimates for OM/OC, 

though they are based on indirect measurements of OM and typically use 24-hour averaged 

samples.  

With the development of the high-resolution AMS (HR-AMS) instrument (DeCarlo et al., 

2006; Jayne et al., 2000; Jimenez et al., 2003) and associated data analysis techniques (Aiken et 

al., 2007), direct, high-time-resolution measurements of the elemental composition of non-

refractory aerosol are possible.  This means that the H/C, O/C, and N/C ratios of OM can be 

directly quantified, so a total OM concentration and an OM/OC ratio is obtained at high time 

resolution, e.g., at 2-minute intervals.  The OM/OC ratio is calculated from AMS data 
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� .  The OM/OC ratio is largely driven by the extent of 

oxygenation in the organic aerosol, i.e., the more oxygens associated with carbon in the aerosol 

the higher the OM/OC ratio.  For example, a PAH like pyrene (C16H10) has a very low OM/OC 

of 1.05, and a long chain alkane such as triacontane (C30H62) has an OM/OC ratio of 1.17.  More 

oxidized species have higher OM/OC ratios.  A carboxylic acid like azealic acid 

((CH2)7(CO2H)2) has a ratio of 1.75, and a compound with multiple hydroxyl groups such as 



  

 21 

levoglucosan (C6H10O5) has an OM/OC of 2.25.  Contributions from other elements occasionally 

included in organic molecules, such as sulfur, are not included.  Based on OM/OC and OM 

values, AMS-inferred OC concentrations can also be determined.  Gilardoni et al. (2009) and 

Aiken et al. (2009) found that OM/OC ratios in the Mexico City area were between 1.6 and 1.8 

in the urban area and between 1.8 and 2.1 aloft.  In Riverside (eastern Los Angeles area) during 

the winter, Williams et al. (2010) determined OM/OC to be on average 1.8.  At a remote site in 

British Columbia, Sun et al. (2009) determined OM/OC to be 2.28 (+/- 0.23).  Chan et al. (2010) 

determined that OM/OC ratio values at a rural site in Ontario, Canada, were between 1.9 and 2.5.   

OM/OC ratios have also been determined for a number of specific sources, and in 

particular for vehicular emissions.  Using an HR-AMS, Chirico et al. (2010) found that the 

OM/OC ratio from vehicular emissions can vary between 1.26 at warm idle and 1.40 at cold idle, 

with other variations depending on the type of engine and operating condition.  After 5 hours of 

photochemical aging in a chamber, warm-idle and cold-idle OM/OC ratios increased to 1.45 and 

1.63, respectively.  Using a bottom-up approach in the development of a national-scale emission 

inventory, Reff et al. (2009) estimated OM/OC ratios to be about 1.25 for vehicle exhaust.  The 

OM/OC ratio of general laboratory-generated secondary organic aerosol (SOA) ranges from 1.4 

to 2.7 (e.g., Kleindienst et al., 2007). 

OM/OC is directly related to the hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) 

ratios of organic aerosol; higher O/C translates to higher OM/OC (Aiken et al., 2008).  The 

ambient OM/OC depends not only on the emission ratio of OM sources and subsequent aging, 

but also on the volatility of the OM and how it partitions between the gas and particle phases 

(Kroll et al., 2011; Donahue et al., 2012).  Higher OM concentrations lead to increased SOA 

yields from gaseous precursors (Donahue et al., 2012).  Sage et al. (2008) noted that under high 
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OM conditions, semi-volatile and relatively unoxidized species can quickly contribute to OM 

concentrations via partitioning from the gas phase.  The semi-volatile material can also move 

into the particle phase via oxidation, leading to lower vapor pressures and subsequent 

partitioning; decreases in temperature and higher OM concentrations can also lead to increased 

gas-to-particle conversion of less oxidized species (Cappa and Jimenez, 2010). 

Many of the ambient experiments described in the literature occurred at locations where a 

significant portion of the organic aerosol is transported some distance from emission sources to 

the monitoring location, resulting in more aged, more oxidized organic aerosol and a higher 

observed OM/OC.  Extensive work has also been done in chemical aging chambers to 

understand the initial OM/OC ratio of vehicular and other emissions and the process by which 

they may change over time in a controlled environment, but little work has been done to 

characterize the OM/OC ratio of vehicular emissions in the ambient near-roadway environment.  

In the short time from the emission of organic aerosol and semi-volatile vapors from the tailpipe 

to their impact at a nearby receptor, nucleation, dilution, condensation, evaporation, and 

oxidation can all affect the gas/aerosol organic mixture and its phase partitioning.   

1.2.4 Residential Biomass Burning: A Source of Wintertime OM 

Though the focus of this work was on characterizing the near-roadway environment, 

biomass burning can be a significant source of OM as well.  Biomass burning can include both 

residential, home heating biomass burning during the wintertime, as well as transport from 

wildfires or prescribed burns.  In the winter, wildfire and prescribed burns in the Las Vegas area 

are minimal, so the main biomass burning influence is from residential burning.  Understanding 

the impact of residential biomass burning on PM2.5 concentrations in urban areas is of particular 

interest, since emissions are potentially controllable through burn-prevention or fireplace 
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change-out programs (Bergauff et al., 2009; Ward and Noonan, 2008), and because of specific 

health effects associated with inhalation of biomass burning PM (Freeman et al., 1992; Seagrave 

et al., 2006; Travis et al., 1985; Naeher et al., 2007).  Residential biomass burning can lead to 

high concentrations during the evening and overnight, when emissions are trapped in a shallow 

boundary layer (Allen et al., 2011; Wang et al., 2011), and these short, high concentration events 

can have acute health impacts (Lighty et al., 2000; Barregard et al., 2007).  Biomass burning 

emissions include not just BC and OM, but also carcinogens including benzene and polycyclic 

aromatic hydrocarbons (PAHs).  

Levoglucosan and potassium are commonly used tracers for apportioning biomass 

burning.  Levoglucosan is an anhydrous sugar produced in the combustion of cellulose (Simoneit 

et al., 1999; Simoneit, 2002; Engling et al., 2006; Schauer et al., 2001; Sullivan et al., 2008).  It 

is typically quantified from extractions of aerosol collected on quartz fiber filters and subsequent 

chemical analysis by GC-MS or other analytical techniques.  While levoglucosan is a good tracer 

for biomass burning, Sullivan et al  and others have found that the relationship of levoglucosan 

with organic aerosol in biomass burning emissions can vary widely by fuel type and burning 

conditions(Sullivan et al., 2008).  Levoglucosan can also be quantified on a semi-continuous 

basis using the HR-AMS, where the ion C2H4O2
+ at m/z 60 is a commonly used indicator for 

biomass burning and is proportional to the amount of levoglucosan in the sampled aerosol 

(Alfarra et al., 2007; Weimer et al., 2008; Schneider et al., 2006; Lee et al., 2010), though 

levoglucosan is not the only source of this ion, as other organic species, such as other 

anhydrosugars and organic acids, also contribute to its mass.   

While levoglucosan is unique to biomass burning, making it a good tracer, its 

atmospheric lifetime can vary from ~ 1 to 10 days (Cubison et al., 2011), meaning that it may not 



  

 24 

be fully conserved between source and receptor.  In addition, as emissions age, gas/particle 

partitioning of semivolatile material may mean that the relationship of levoglucosan to OM 

emitted changes over time, as organic material is either condensed into the particle phase or 

partitioned in the vapor phase (Hennigan et al., 2011; Cubison et al., 2011; Oja and Suuberg, 

1999).  In laboratory experiments, Heringa et al found OM from woodstoves could increase by a 

factor of 3 to 4 due to SOA formation, and dependent on the type of burning apparatus and 

flaming/smoldering conditions(Heringa et al., 2011).  They also found that the C2H4O2
+ fragment 

at m/z 60 increased in concentration due to SOA contributions and possibly increased gas-to-

particle partitioning, which can overcompensate for the degradation of primary levoglucosan, 

thus potentially leading to an overestimation of biomass burning based on source emissions 

measurements of the C2H4O2
+ fragment.  In Spain, Minguillon et al found that filter 

levoglucosan-apportioned biomass burning was less than from AMS-based apportionment, 

possibly due to the contribution of SOA captured by the AMS measurements (Minguillon et al., 

2011).  Based on data from seven field studies, the SOA formation averages 25% of the primary 

OA (Cubison et al., 2011), so based on emissions source profiles alone, OA from biomass 

burning could be underestimated. Mohr et al., Takegawa et al. and others have found that the 

additional signal at m/z 60 is likely from long chain alkanoic acids or other acid 

compounds(Mohr et al., 2009; Takegawa et al., 2007).  Cubison et al 2011 further demonstrated 

that without biomass burning influence, in ambient aerosol there is a background level of m/z 60 

of ~ 0.3% of OM, likely due to acids and other compounds (Cubison et al., 2011).  Lee et al 2010  

suggest that increases/decreases in levoglucosan yield in biomass burning smoke may be offset 

to some extent by corresponding decreases/increases in other molecules that also yield C2H4O2
+  

ions, resulting in a fairly stable OA/C2H4O2
+ ratio across fuel and burn types (Lee et al., 2010).  
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Thus, a combination of filter-based levoglucosan plus higher time resolution AMS C2H4O2
+  

measurements should effectively bound the contribution of biomass burning to OA. 

Potassium is also produced from the combustion of wood lignin.  Elemental potassium 

(K) and soluble potassium (K+) are commonly used as tracers when using data from XRF and IC 

analysis of Teflon and nylon filters, respectively (Kim et al., 2003; Poirot, 1998; Liu et al., 2005; 

Brown et al., 2007).  There are other prevalent sources of potassium, such as dust, sea salt or 

cooking aerosol, which can confound use of this tracer (Aiken et al., 2010; Zhang et al., 2010; 

Schauer et al., 1999b).  In experiments of different biomass fuels Sullivan et al found poor 

correlation between K+ and levoglucosan among the fuel types, while Lee et al. showed that 

emissions of K+ were higher under flaming conditions compared to smoldering conditions; AMS 

C2H4O2
+
 emissions were comparable between conditions (both K+ and AMS C2H4O2

+
 were 

reported in terms of ratio to total PM) (Lee et al., 2010; Sullivan et al., 2008).   These results are 

consistent with other studies suggesting that K+ may have only a modest correlation at best with 

organic tracers of biomass burning.  during   Zhang et al 2010  found an r2=0.59 using 24-hour 

filter data during wintertime in the Southeastern U.S., but a much lower correlation in summer, 

and that K had a lower spatial variability compared to levoglucosan(Zhang et al., 2010).  In 

Mexico City, Aiken et al. found levoglucosan had a modest correlation with PM2.5 K (r2=0.67), 

and that non-biomass burning sources accounted for typically two-thirds of K 

concentrations(Aiken et al., 2010).  In source profiles, the ratio between K and levoglucosan can 

be quite variable, ranging between 0.03-0.16 (Fine et al., 2004a, 2002b, 2002a; Fine et al., 2001; 

Lee et al., 2010).  In part because of this variability and confounding alternative potassium 

sources, Minguillon et al   suggested that, based on K from 24-hr filter measurements compared 
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to AMS, levoglucosan, and other measurements, K was an unreliable tracer for their sites in 

Barcelona and rural Spain due to the influence of other sources (Minguillon et al., 2011). 

1.3 Study Area: Las Vegas  

1.3.1 Prior Studies 

Las Vegas is the focus of our study, and in a shallow bowl area, with mountains to the 

west and north, and is a relatively isolated, large urban area with a 2010 population of over 1.9 

million in the greater metropolitan area of Clark County 

(http://quickfacts.census.gov/qfd/states/32/32003.html).  For a city of its large size, there have 

been relatively few detailed studies to assess sources of PM in the area.  A key study, Green et al 

(Green et al., 2002), focused on about 50 24-hour filter samples collected in 2000-2001.  The 

major components of PM2.5 were BC, OM and crustal elements, with carbonaceous material 

contributing over 50% of the total mass at an urban site (East Charleston).  Ammonium sulfate 

and nitrate concentrations were generally quite low, about 12% of the total PM2.5 mass.  Though 

no formal apportionment was done, based on extensive data analysis they surmised that gasoline 

and diesel vehicle emissions are likely an important source, but that other sources such as 

residential biomass burning may also be a significant contributor.  Another study, the Southern 

Nevada Air Quality Study (SNAQS) (Watson et al., 2007), used 10-12 filter samples at 4 sites 

from January 2003 to apportion PM2.5.  80% of the mass was from carbonaceous aerosol, and 

38%-49% of the PM2.5 was attributed to mobile sources.  Biomass burning contributed 11%-21% 

of the mass.  Dust, ammonium sulfate and ammonium nitrate comprised the remainder of the 

mass.  These apportionments were based on a standard suite of filter analyses, and included OC 

and EC by thermal optical reflectance (TOR), sulfate and nitrate by IC, and metals by XRF.  No 

continuous data were used, nor were specific tracers for biomass burning available, other than K, 
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which has additional, significant non-BB sources.  Without more specific tracers or higher time 

resolution data, the apportionment of OC has a high uncertainty.  In addition, the temporal 

pattern of OC could not be examined, since only 24-hour filters on a handful of days were 

collected. 

1.3.2 Study area specifics 

Measurements were made next to a classroom and playground in Las Vegas, Nevada, 

during January 2008 at Fyfe Elementary School, directly adjacent to and 18 meters from the US 

95 highway soundwall (Figure 1-2 and 1-3); it is 60 m from the middle of the first set of lanes, 

and 90 m to the middle of the farthest set of lanes.  The US 95 freeway has six lanes in each 

direction, with an annual average daily traffic (AADT) volume of 203,000 vehicles a day 

(http://www.nevadadot.com/reports_pubs/traffic_report).  Though US 95 is a north/south 

freeway, it is oriented east/west next to Fyfe.  Assuming half the medium size vehicles (21-40 

feet in length) and all the large (greater than 40 feet in length) are diesel trucks, diesel truck 

traffic is 6% of the traffic on average (Brown et al., 2012).  The monitoring site is on the north 

side of the freeway, so the site is directly downwind of the freeway when winds blow from the 

south.  North of the site is a residential area; the homes in the immediate neighborhood were 

built starting in the 1960s, and many have wood-burning fireplaces.  There is little heavy 

industry in Las Vegas, with most PM2.5 emissions coming from dust, miscellaneous sources, and 

off-road vehicle emissions (e.g., http://www.epa.gov/air/emissions/pm.htm#pmloc); mobile 

sources comprise 9% of the emissions, but they account for 36% of the emissions if dust is 

excluded.  A major electricity generation source listed in the most recent (2005) national 

emission inventory (NEI) has since closed.  In the wintertime, nighttime low temperatures are 

usually between 0 – 5 degrees C, with shallow inversion layers occurring in the evenings. 
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Figure 1-2.   Map of Las Vegas area, with monitoring location at Fyfe Elementary School.  
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Figure 1-3.  Close-up view of Fyfe Elementary, outlined in orange.  The monitoring site, indicated by the 
red circle, is 18 m from the soundwall, 60 m from the middle of the first set of lanes, and 90 m to the 
middle of the farthest set of lanes. 

1.4 Document Overview and Study Objectives 

This document presents analyses focused on aerosol measurements taken at the Fyfe 

Elementary School in January 2008.  Objectives for this study were: 

a) Complete high quality measurements of aerosol, and in particular, of organic aerosol, 

during a month-long intensive measurement campaign; 

b) Characterize aerosol concentrations and composition next to a roadway, and how 

concentration levels and composition vary with changes in meteorology and traffic 

patterns; 
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c) Assess sources of organic aerosol, and how these vary with time of day and meteorology; 

d) Utilize HR-AMS measurements to describe the OM/OC and elemental ratios of organic 

aerosol and to characterize the size distribution of non-refractory aerosol next to a 

roadway. 

 

Specific hypotheses tested include: 

1. Near-road aerosol is predominantly from emissions from vehicles on the freeway, and is 

carbonaceous and relatively unoxidized.   

2. Near-road OA and BC patterns will follow the typical diurnal pattern of traffic, i.e., with 

peaks of similar magnitude during the morning and evening rush hours.  

3. OA next to the freeway will be similar to vehicle exhaust, as characterized by the 

OM/OC ratio. 

4. Concentrations will be higher when the monitoring site is downwind of the freeway 

compared to when it is upwind.   

5. More OA will be contained in smaller particles during downwind conditions and during 

times of peak traffic compared to upwind conditions and midday/overnight, reflecting the 

contribution of primary, small particles.   

6. At the monitoring site next to the freeway, OA will be comprised of a combination of 

vehicular emissions, urban-scale OA and regional, oxidized OA.   

Section 1, this section, provides introductory material on near-road air pollution, organic 

aerosol and its sources, and the Las Vegas area.  Section 2 describes the instruments and 

methodologies used.  Section 3 presents an overview of the measured aerosol composition, a 
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comparison between collocated aerosol measurements, and an in-depth view of the organic 

aerosol measurements using the receptor model positive matrix factorization.  Section 4 

discusses elemental analyses of the organic aerosol, focusing on how the OM/OC varies by time 

of day and meteorology.  Section 5 presents size distribution analyses, to better understand how 

the aerosol size distribution varies diurnally and with changes in meteorology.  Section 6 covers 

additional apportionment of the fraction of organic aerosol from residential biomass burning, 

using multiple techniques. 
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2. Methods and Data 

2.1 Summary of Measurements 

The focus of this work is on measurements taken at Fyfe Elementary School in Las 

Vegas, Nevada during January 2008.  A summary of measurements used in these analyses is 

shown in Table 2-1.  An Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS) was 

used to quantify PM1 aerosol at 2 minute averages: OM, sulfate, nitrate and ammonium 

concentrations and particle size distribution, as well as elemental ratios (OM/OC, H/C, O/C) of 

the OM and OM composition by m/z.  Total particulate black carbon (BC) was determined with 

5-minute averages using a Magee Scientific Aethalometer.  A Sunset Labs OCEC instrument 

provided hourly measurements of PM2.5 OC and EC.  20-minute averaged PM2.5 ion 

concentrations (sulfate, nitrate, potassium, plus other ions) were found using a particle-into-

liquid sampler (PILS).  Gaseous measurements of CO, NOx, NO and NO2 were also made, at 5-

minute resolution.  Hi-volume PM2.5 samplers were used to collect PM on 8 x 10 inch quartz 

fiber filters at varying intervals (24-hours, morning rush hour, late morning, midday/afternoon, 

and overnight). Wind speed and direction data were taken at 1-minute resolution, and vector-

averaged to 2-minute, 5-minute and hourly averages.  Temperature was measured at 2 m and 10 

m.  
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Table 2-1.  Summary of Measurements at Fyfe Elementary. 

Instrument Frequency Details 

HR-AMS 2-minute 
OM, SO4, NO3, NH4; OM composition by m/z; elemental 
ratios (O/C, H/C, OM/OC); particle size distribution of 
OM, SO4, NO3, NH4 and individual m/z 

Magee Scientific 
Aethalometer 5-minute 

Black carbon at 880 nm and 370 nm (termed “BC” and 
“UV” respectively) 

Thermo Scientific 
48i 

5-minute CO 

Thermo Scientific 
42i 

5-minute NO, NO2, NOx 

Sunset OCEC 1-hour OC, EC; detection limit ~ 0.3 µg/m3 

Hi-volume PM2.5 
sampler 

Multiple intervals: 
0500-0900; 0900-
1100; 1100-1700 
1700-0500 LST 

Quartz fiber filters extracted for levoglucosan 
quantification via GC-MS; 17 selected filters analyzed, 
12 during 1700-0500 LST 

PILS 
20-minute, 
averaged to 1-hour 

SO4
2-, NO3

-, NH4
+, K+, Cl-, Ca2+, Na+ ions 

Wavetronix 1-hour 

Traffic speed, volume by three vehicle sizes: small (less 
than 21 feet in length), medium (21-40 feet) and large 
(greater than 40 feet); located 0.5 km west of Fyfe 
Elementary on US 95 

RM Young AQ 
5305-L 

1-minute Wind speed, direction 

Campbell 
Scientific 
41382VC 

1-minute Temperature at 2 m and 10 m 

2.2 High Resolution Aerosol Mass Spectrometer Description and Operation 

The Aerodyne HR-AMS was operated in the CSU mobile laboratory at Fyfe Elementary 

during January 5 – 28, 2008.  Details can be found in the very thorough introduction of the 

instrument of DeCarlo et al., 2006. Earlier versions of the instrument had a quadrupole mass 

spectrometer (Q-AMS), instead of a time-of-flight mass spectrometer (ToF MS), and are 

described in earlier manuscripts (Jayne et al., 2000; Jimenez et al., 2003), and a review of the 

instruments can be found in Canagaratna et al . There are three main sections in the HR-AMS 

(Figure 2-1): aerosol inlet and aerodynamic lens; particle flight and sizing region; and the time-

of-flight mass spectrometer (ToF MS).  In the first part, ambient air is drawn through a URG 
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cyclone (D50 = 2.5 µm, 3 lpm) followed by a critical orifice (approximately 0.1 lpm flow) and a 

series of apertures and vacuum chambers, focusing the aerosol into a narrow beam under high 

vacuum (approximately 10-5 Pa).  Canagaratna et al, Sun et al. and Takegawa et al. report that 

there is 100% transmission of particles with aerodynamic diameter (dva) of 70-500 nm, with 

approximately 50% transmission at 1 µm dva, implying that the AMS measures PM1(Canagaratna 

et al., 2007; Sun et al., 2009; Takegawa et al., 2009).  Since the particles are under vacuum, the 

term dva is used.  Larger particles may have too much inertia to be consistently focused in the 

beam (Zhang et al., 2004b), so the transmission begins to decline with 500 nm dva particles, 

reaching 50% at 1 µm dva.  

 
Figure 2-1.  Schematic of the HR-AMS, from http://cires.colorado.edu/jimenez-
group/wiki/index.php/File:WToF.jpg.   

Next particles enter the particle time of flight (PToF) region. Here a mechanical chopper 

regulates the aerosol introduced into the PToF region, operating at ~ 100 Hz.  The chopper 

operates among three positions: “closed”, when the beam is blocked; “open” with full 

transmission of the beam; and “chop”, where the aerosol beam is modulated with a 1% duty 
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cycle via a slit in the chopper.  The open mode allows for mass spectra of the aerosol in the beam 

to be found.  The closed mode is used to track baseline concentrations of residual gases, such as 

oxygen and nitrogen, when no aerosol are present; thus the difference in the mass spectra 

between the open and closed mode yields the mass spectra of the aerosol in the beam.  During 

chop mode, the aerosol beam is chopped, so that only packets of individual particles are 

transmitted through the PToF region.  The time it takes to travel through the PToF region is 

dependent on the dva of a given particle; larger particles take longer than smaller particles.  A 

mass spectra is then found for the continuum of particle sizes that travel through the PToF 

region, enabling for quantification of individual m/z by dva range. 

Once particles are transmitted through the PToF region, they are vaporized and ionized 

for analysis by mass spectrometry.  The AMS is designed so that under a range of aerosol 

compositions concentrations of specific components like organic matter and sulfate can be 

quantified.  Thus a vaporization/ionization scheme is needed that introduces the aerosol in the 

MS region in a characteristic pattern.  Canagaratna et al., DeCarlo et al. and others have 

reviewed the numerous schemes available (Canagaratna et al., 2007; DeCarlo et al., 2006).  Here, 

particles are flash vaporized on a resistively heated tungsten surface at 600 degrees C coupled 

with a 70 eV electron impaction (EI) ionizer.  While this setup means that molecules are ionized 

in a reproducible and characteristic manner, it means that only non-refractory species such as 

sulfate, nitrate and OM are quantified.  Crustal species, metals, sea salt and elemental carbon 

cannot be quantified, since they do not evaporate fast enough at this temperature under high 

vacuum conditions.  Using this standard ionization technique means that spectra are generally 

comparable to standards developed by National Institute of Standards and Technology (NIST) 

(Canagaratna et al., 2007; Dzepina et al., 2007), which may use other mass spectrometry 
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techniques such as GC-MS.  Differences between NIST spectra and AMS spectra may arise 

since species are vaporized at a high temperature in the AMS before ionization, resulting in more 

fragmentation compared to NIST spectra (Alfarra et al., 2006).  Dzepina et al., report that this is 

particularly true for species with strong structures, such as PAHs (Dzepina et al., 2007).   

Particles may bounce, meaning that the collection efficiency (CE) of particles is not 

necessarily 100%.  Prior studies have used a CE of between 0.5 and 1 (Drewnick et al., 2004b; 

Drewnick et al., 2005; Takegawa et al., 2005; Zhang et al., 2005b; Drewnick et al., 2004a).  

Matthew et al. and Middlebrook et al. report that the CE approaches 1 for aerosol with low 

sulfate content and with higher nitrate content, i.e., nitrate higher than sulfate (Matthew et al., 

2008; Middlebrook et al., 2012).  Matthew et al. report that with higher organic content CE 

approaches 1, though in areas dominated by secondary organic aerosol, where LV-OOA is the 

majority of the OA, the CE is lower than 1, as found in Middlebrook et al. when they reviewed 3 

field campaigns (Middlebrook et al., 2012).  CE is still an area of ongoing research, and the 

validity of this assumed CE can be assessed by comparing the AMS measurements to collocated 

PILS measurements for sulfate, nitrate and ammonium, and collocated Sunset OC measurements 

for OM.  The correlations between these collocated measurements are very high, and are detailed 

in Section 3. 

After vaporization and ionization, ions enter into a ToF MS.  In a ToF MS, ions are 

accelerated by a pulse extractor from the source region into a field free drift region where ions 

are separated by time of flight.  After ionization, all ions ideally have the same nominal kinetic 

energy, so ions of different m/z will obtain different velocities before reaching a detector.  Low 

m/z ions achieve higher velocities and therefore reach the detector first, while larger m/z ions 

achieve lower velocities and impact the detector later.  The time it takes for a given ion to reach 
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the detector is proportional to m/z and the tube length, and inversely proportional to the applied 

acceleration voltage from the pulse extractor.  Since there is no scanning involved, an entire 

mass spectrum can be obtained very quickly.  The ToF MS is operated in two modes, “V” and 

“W”. These modes refer to the geometry of the ion flight paths (see Fig. 2-1) V mode, with its 

shorter flight path, is best used for quantification, and enables quantification of ions with a 

resolution better than than 0.01 m/z.  W mode has a longer path length than V mode, thus 

increasing the resolution but decreasing the sensitivity for quantification due to ion loss.  V mode 

is used in this work to quantify the concentration of each individual m/z and therefore the total 

sulfate, nitrate, ammonium and OM, while W mode is used to determine elemental ratios of the 

OM.  V and W mode were set to alternate every 2 minutes, resulting in a V mode spectra and 

corresponding W mode spectra every 4 minutes.  

Jimenez et al., Alfarra et al., Canagaratna et al., DeCarlo et al., and others have laid out 

the details behind converting ion signals from the ToF MS into mass concentrations (Jimenez et 

al., 2003; Canagaratna et al., 2007; Alfarra et al., 2004; DeCarlo et al., 2006).  For a given m/z, 

the concentration can be found as detailed in equation 1 from Jimenez et al, assuming a CE of 1 

(Jimenez et al., 2003): 
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where IE is the ionization efficiency, 1012 is used to convert units to µg m-3, Q is the 

volumetric flow rate (cm3 s-1), MW is the molecular weight for the fragment of the given m/z, NA 

is Avogadro’s number, and I is the detected ion rate (counts per second).  IE is a dimensionless 

quantity that represents the number of ions detected per parent molecule, and is dependent on the 

efficiency of the vaporization and ionization of the parent molecule, as well as the detection 
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efficiency of the daughter ions in the MS.  Laboratory studies have shown that IE is different for 

organic and inorganic species (Jimenez et al., 2003; Alfarra et al., 2004), but for inorganic or 

organic species IE varies linearly with MW.  Since nitrate particles are used to calibrate the HR-

AMS, as described later, the mass generated from equation 1 is in nitrate-equivalent 

concentration.  To convert this to actual concentration, the species-specific relative IE (RIE) is 

used, as documented in Jimenez et al, where RIEs are 1.4 for OM and 1.15 for sulfate.  This then 

modifies equation 1 to the following for a given species s, relative to nitrate: 
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To calculate total mass concentrations of “bulk” species such as sulfate, nitrate, 

ammonium and OM, the concentrations over all m/z originating from the parent molecules is 

summed.  Equation 2 may be further modified if the collection efficiency (CE) differs from 1.  

Often a CE of 0.5 is used, in sulfate-rich or sulfate–dominated environments.  CE may be less 

than 1 because of inefficient focusing in the aerosol beam if sampled aerosol particles are not 

very close to spherical, particle bounce off of the vaporizer, or transmission losses through the 

inlet.  In addition, Allan et al  showed that there can be some temperature dependence of the CE 

when the inlet temperature is close to the ambient dewpoint (Allan et al., 2004).  CE can be 

assessed by comparing HR-AMS measurements to PILS (or other independent) measurements of 

nitrate.  As shown in Section 3, the agreement between the instruments was extremely high 

(r2=0.95, PILS/AMS ratio =1.3) with only a small bias, some of which may be due to the 

different size ranges effectively measured by the two instruments (PM2.5 for PILS, PM1 for the 

AMS) so a CE of 1 was used. 
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2.2.1 HR-AMS calibration 

Nitrate particles are used for AMS calibration since they are vaporized in the AMS with 

nearly 100% efficiency, are commonly found in the atmosphere, and are relatively 

straightforward to generate.  Ammonium nitrate particles were generated by a particle generator 

and size-selected via a differential mobility analyzer (DMA) for 350 nm aerodynamic diameter 

particles, for three different mass concentration levels: approximately 2 µg/m3, 8 µg/m3, and 15 

µg/m3.  Particles are also fed to a condensation particle counter (CPC), so that calculated mass 

between the HR-AMS and CPC can be compared.  As shown in Figure 2-2, the HR-AMS and 

CPC measurements agreed quite well for the calibrations during the field study. 

 

 
Figure 2-2.  Comparison of HR-AMS and CPC nitrate mass measurements as part of calibration during 
Las Vegas field operations set up.  The “a” value is the intercept of the red linear regression line, and the 
“b” value indicates the slope of the line.  For a good comparison, a should be close to zero and b close to 
1.  

 

2.2.2 Particle Size Calibrations 

For calibration of the particle size measurements, polystyrene spheres (PSLs) were used 

and four different dva were fed to the HR-AMS via a size selecting DMA: 100 nm, 200 nm, 350 
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nm and 500 nm.  In addition, ammonium nitrate particles were generated as described above and 

fed to the HR-AMS via the DMA for the following dva: 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 

100 nm, 150 nm, 250 nm, 350 nm, 500 nm and 600 nm.  The particle velocity for each of these 

calibration dva is then found and the relationship between velocity and dva determined via the 

equation: 

Velocity = Vgaslens + [Vgasexit – Vgaslens] / [1 + (Daero/D*)b]   (3) 

where Vgaslens is the velocity of the gas in the lens, Vgasexit is the gas velocity at the lens 

exit, D* is an effective scaling diameter and b is the power dependence. The Vgas terms provide 

limits to the particle velocity for small and large size particles. A small particle cannot travel 

faster than the expanding gas (Vgasexit) and a very large particle cannot go slower than the 

velocity of the gas in the lens (Vgaslens).  Figure 2-3 summarizes the calibration with the 

combined PSL and ammonium nitrate datasets. 

 

Figure 2-3.    Relationship of particle velocity (y axis, m/s) with vacuum aerodynamic diameter (nm, x-
axis) using PSL and ammonium nitrate particles.  PSL (red dots) and ammonium nitrate (blue dots) 
particles of known dva were sampled by the AMS, and the velocity of each particle type was measured by 
the AMS; the line is the non-linear least squares fit to determine the relationship between the velocity 
measured by the AMS and dva.  Vgaslens is the velocity of gases (e.g., N2)  in the lens, Vgasexit is the gas 
velocity at the lens exit, D* is an effective scaling diameter and b is the power dependence.    
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  DeCarlo et al, Jimenez et al, and others have shown that a particle’s dva can be different 

than its volume equivalent diameter dve, which is the particle diameter if it was “melted” into a 

sphere, or mobility diameter dm, which is the diameter determined by instruments such as the 

DMA (Jimenez et al., 2003; DeCarlo et al., 2004).  As described in DeCarlo et al 2004 , the 

relationship between dva and dve is dependent on a particle’s density as well as shape (i.e., the 

degree of deviation from a sphere): 

)*+ � ,-
,.

/01
20

      (4) 

Where 34 is the particle density, 36 is standard density (1 g/cm3), and Xv is the shape 

factor, or the ratio of the drag experienced by a non-spherical particle compared to a spherical 

particle. 

2.2.3 Summary of HR-AMS Field Operations 

Diagnostics during set up are described above.  During field operations, diagnostic 

parameters were continuously logged.  This includes checking for consistent flowrate, ionization 

efficiency, voltages for the heater, duty cycle and m/z calibration peak position.  Figure 2-4 

summarizes these diagnostics during the study.  Diagnostics were within acceptable ranges.  The 

three instances of sudden changes of flowrate were excluded from analysis (i.e., these samples 

were “blacklisted” within Squirrel); these occurred during set up of calibrations.  The airbeam 

signal intensity and IE may change if the ionization and transmission efficiency changes during 

the field study; a slow decrease over weeks can be typical, and large, sudden aberrations can 

indicate an issue with the instrument (Takegawa et al., 2005).  Both of these, as well as the heater 

bias, were relatively constant throughout the campaign.  Other diagnostics were also relatively 

constant throughout the field study. 



  

 42 

Operations began at 2300 LST on January 5, after set up calibrations described earlier.  

Additional calibrations with ammonium nitrate particles were done weekly, on January 8, 

January 15, and January 23.  The air beam and flow rates were consistent throughout the study 

period.  Daily, a filter was placed on the inlet so that particle free air was sampled for 10 

minutes, to ensure the baseline is fairly constant and to check for leaks so that there is no false 

particle signal (i.e., the spectra when sampling filtered air should reflect only gaseous species).  

At the end of the study, size calibrations were repeated, and showed that there was little change 

since the beginning of the study. 

 
Figure 2-4.  AMS diagnostic values during the Las Vegas field study.   
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2.3 HR-AMS Data Processing 

Data were acquired via the standard HR-AMS data acquisition (DAQ) software available 

from http://cires.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html.  The 

m/z range was 0-600, though in data analysis (described later) only m/z less than 300 were 

utilized.  Data were processed using the ToF-AMS Analysis Toolkit version 1.51 (termed 

“Squirrel”) and the ToF-AMS HR Analyais Toolkit version 1.10 (termed “Pika”), available from 

the Colorado.edu AMS wiki page (Figure 2-5).  Both toolkits are implemented in Igor Pro 

software; here Igor version 6.22A was used.  HDF files acquired via the DAQ were imported 

into an Igor experiment via Squirrel.  This imports and processes raw data and diagnostic data.  

Details are provided in Appendix A. 

 

Figure 2-5.  Squirrel and Pika dashboards in Igor. 

Mass calibrations were done using fragments from abundant background gases such as 

Ar, O2 and N2, plus fragments from tungsten (atomic symbol W) or phthalates which are found 
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in the AMS, providing a stable set of background ions to use to ensure that the peaks from the 

mass spectrometer are assigned to the correct m/z.  Using fragments from these background 

species in the “closed” mode, i.e., when no particles are present, the relationship between 

individual m/z ions’ time of flight and their exact m/z are determined, and a curve describing this 

relationship determined, which is then used to determine all m/z for the “open” mode, when 

particles are present.   

For unit mass resolution (UMR) data, the standard fragmentation table described in Allen 

et al. was used, to correct for interferences from gaseous species and to correctly allocate 

individual m/z among different aerosol types, i.e., organic, nitrate, sulfate, etc (Allan et al., 

2004).  For example, the signal at m/z 64 could be from SO2
+ ion (from a sulfate aerosol) or from 

organic fragments (e.g., C5H4
+).  At this m/z the organic fraction is calculated based on the signal 

at the m/z where an alkyl group (CH2
+) is subtracted or added to the m/z 64 ion (in this case m/z 

50 and 78), since organic aerosol are usually comprised of long chain hydrocarbons and the 

vaporization/ionization scheme used in the AMS results in a series of CnH2n+1 fragments.  Since 

inorganic species like sulfate, nitrate and ammonium have characteristic fragmentation patterns, 

and only occur at a handful of m/z, these patterns can be taken into account and the mass at each 

m/z from other species, namely organic aerosol, can be determined for the m/z values that have 

both an inorganic and organic component.  Other m/z may have only organic signals, so the full 

signal is assigned to organics. 

Particle size distributions were determined with PToF mode data.  When in PToF mode, 

the aerosol beam is chopped, and particles that make it through the chopper enter a particle time 

of flight (PToF) region, where larger particles take longer to travel through than smaller 

particles.  The time it takes to travel through the PToF region for selected size particles is 
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determined with particles of known diameter, as described earlier.  As part of the post-

processing, a baseline of the time it takes before particles make it through the PToF region needs 

to be determined.  To do this we examine individual runs to find the time it takes before aerosol 

signal is found, and the time at which there are no more particles being transmitted through the 

AMS. 

High resolution (HR) data were determined using the “PIKA” module of the AMS 

software, using standard practices.  Via PIKA, individual unit mass resolution (UMR) m/z can be 

deconvolved into ions of higher resolution, e.g., from m/z 43 to the ions C3H7
+ (mass 43.05478) 

and C2H3O
+ (mass 43.01839), using a Gaussian fit for each HR ion peak width and shape.  In 

PIKA, m/z calibration and baseline from Squirrel were used, and were well fit, as described 

above.  Next, peak width and shape were determined.  Similar to m/z calibration, the Gaussian 

fits for selected calibration ions were generated to develop a relationship between peak width and 

m/z.  CH+, OH+, H2O
+, C2H

+, N2
+, O2

+, Ar+, SO+, C4H2
+, SO+, and C6H5

+ gave the best fitting 

statistics for peak width.  Peak shape was determined using O2
+ and CH+.  The goal is to use the 

fitting ions to develop a smooth peak shape, which PIKA will then use as the shape for all ion 

peaks.  Details are provided in Appendix A. 

  

2.4 Aethalometer Black Carbon Measurements 

2-channel black carbon (BC) data were collected using a Magee Scientific Aethalometer 

model AE-22 with a PM2.5 inlet at 5 L/min.  Flow was monitored with a NIST-traceable flow 

meter; if flows were outside of 10% of the target rate, a flow calibration using the instrument’s 

firmware was done to regain target flow.  Flow checks were done every one to three months; the 
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instrument passed an audit by an outside firm conducted in April 2008.  The Aethalometer has a 

manufacturer-specified lower quantifiable limit (LQL) of 0.05 µg/m3 and precision of 4%.  

Aerosol is collected on a quartz fiber filter tape continuously for 5 minutes, and then the amount 

of optical attenuation through the filter is analyzed using LED light sources at 880 nm and 370 

nm (Park et al., 2010; Hansen, 2002; Hansen, 1998).  Every 5 minutes, the amount of light 

transmitted through a 0.95 cm2 spot on the filter where aerosol is collected is measured.  A beam 

also measures the transmission through a portion of the filter where aerosol is not collected, in 

order to correct variations in lamp brightness and changes in the electronic response of the 

sensor.  The attenuation (ATN) of light through the collecting part of the filter is defined as: 

 

 ATN = 100 * ln (I0 / I) (5) 

where I0 is the intensity through the part of the filter not collecting aerosol, and I is the 

intensity through the collecting part of the filter.  Therefore, a value of 1 would be from a blank, 

while a value of 100 would be extremely dark.  To obtain the attenuation for the 5 minute 

interval, the attenuation of a reading is subtracted from the previous reading, yielding the amount 

of attenuation due to the increase in aerosol deposited in the last 5 minute sampling period.  

From this attenuation value, the Aethalometer then calculates the amount of black carbon present 

based on the manufacturer’s calibration curves relating black carbon concentration and optical 

attenuation.   

Time-stamp and filter tape spot saturation corrections were done using the Washington 

University Air Quality Lab AethDataMasher Version 6.0e.  With the Aethalometer, optical 

absorption at 880 nm (BC channel) and 370 nm (UVC channel) are obtained.  There is enhanced 

absorption from biomass burning-associated organic compounds in the UVC channel compared 
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to the BC channel (Kirchstetter et al., 2004; Sandradewi J. et al., 2008; Jeong et al., 2004); in 

contrast, there is little difference in absorption of diesel exhaust between the two channels.  Thus, 

the difference between the UVC and BC channels can be used as an indicator of the presence of 

biomass burning BC. 

2.5 Sunset Organic and Elemental Carbon (OC, EC) Measurements 

A Sunset OCEC instrument (Bae et al., 2004b; Jeong et al., 2004; Bauer et al., 2009; 

Rattigan et al., 2010) measured organic and elemental carbon on an hourly basis.  The Sunset 

OCEC instrument uses a thermal optical method similar to NIOSH 5040 (Chow et al., 2001; Sin 

et al., 2004) and has a limit of detection of 0.3 µg/m3 for OC and 0.01 µg/m3 for EC (Bauer et 

al., 2009).  Aerosol is drawn through a PM2.5 cyclone inlet with a mass flow controller and a 

carbon denuder at 8 L/min, and deposited on a quartz fiber filter for 47 minutes.  Aerosol is then 

analyzed during an 8-minute cycle by heating the filter to 840°C for 5 minutes to quantify OC, 

and then by introducing an oxidizing carrier gas (He with 10% O2) at 850°C for 3 minutes to 

quantify EC.  The remaining 5 minutes is used for cooling down the oven.  During the filter 

heating, carbonaceous material evolves off the filter as CO2, which is quantified using a non-

dispersive infrared (NDIR) detector.  EC is determined as any carbon evolved off the filter after 

the introduction of He/O2 once the laser-monitored filter absorbance matches the initial 

absorbance measured when the filter was first heated.  After each hourly analytical cycle, 

calibration gas of 5% CH4 with He flushes the system.  Instrument response is calibrated using a 

99.9% reagent grade sucrose solution and a 5% CH4/He calibration standard.  Filters were 

changed nominally every five days, and independent flow checks every two weeks. 
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2.6 Levoglucosan Measurements 

Quartz fiber filters (8”x10”, Pall Life Sciences, TISSUQUARTZ 2500QAT-UP) in Tisch 

231 PM2.5 plates were used in hi-volume samplers (nominal flow rate 68 m3/hr) to collect aerosol 

for later chemical analysis.  Filters were pre-baked at 550 degrees C for at least 12 hours in order 

to remove any organic material.  After baking, filters were individually wrapped in aluminum 

foil and kept in a freezer when not in use.  Samplers were run on automated timers for five 

samples daily: 1) 0500-0900 (local time), to capture morning rush hour conditions; 2) 0900-

1100, to have measurements in parallel with gaseous VOC and carbonyl measurements, reported 

elsewhere (McCarthy et al., 2013); 3) 1100-1700, to capture midday conditions; 4) 1700-0500, to 

capture overnight conditions; and 5) 24-hr filters, from 0900-0900.  The 24-hour filters were 

operated 0900-0900 in order to fully capture the nighttime period when concentrations are 

highest, instead of the more typical operation starting/stopping at midnight.  The midnight to 

midnight schedule would have resulted in a given filter capturing parts of two nighttime periods, 

even though the concentrations may be quite different, thus making that sample difficult to 

interpret.  In addition, the same sampler was used for all 24-hour measurements, so a time when 

site operators were on site (0900) was required to facilitate filter changes.  In addition to the 

collected filters, a trip or field blank filter was nominally collected daily.  Flow checks were done 

in the morning and evening (e.g., 0900 and 1700).   

Filters were stored at the Colorado State University Atmospheric Science chemistry lab 

until use.  Half of 17 selected filters was cut and wrapped in aluminum foil for extraction and 

chemical analysis by EPA ORD labs.  Only a limited number of samples could be analyzed, so 

12 overnight samples were selected since this is the period of highest OM concentrations.  In 

addition, morning and midday filter samples were also extracted for comparison (Olson et al., 
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2012).  Quartz filters were extracted in a solvent mixture of hexane, methanol, and 

dichloromethane (1:1:1) (GC2 grade, Burdick and Jackson) using a Dionex ASE 200 

Accelerated Solvent Extractor.  Chromatographic grade nitrogen was used to concentrate 

samples to a final volume of 300 mL.  A gas chromatograph (GC, Hewlett-Packard 6890N) and 

inert mass selective detector (MSD, HP5973N) was used and chromatographic separation was 

completed using a 30-m, 0.25-mm i.d. with 0.25-mm film thickness capillary column (DB-5MS, 

Part No. 122-5532, J&W Scientific). The GC was operated as follows: injector temperature of 

315 degree C; column flow of 1 mL/min; pressure pulse of 25 psi for 0.5 min; initial GC oven 

temperature initially set at 35 C, ramped at 20 C/min until reaching 160 C, ramped at 2 C/min 

until reaching 315 C. The MSD was operated under selective ion monitoring (SIM) mode. 

Recovery, precision, limits of detection and quantitation, blank levels, calibration linearity, and 

agreement with certified reference materials for compounds analyzed in this study are given 

elsewhere (Turlington et al., 2010).  External calibration curves (5-500 pg/mL) using authentic 

standards (Absolute Standards, Accustandards, and Chiron) were determined for all analytes.  

Deuterated surrogate standards (50-200 pg/mL) (n-C26-d54, n-C30-d62, n-C36-d74, 

chrysened12, benz(b)fluoranthene-d12, indeno(1,2,3-cd)pyrene-d12 and coronene-d12) and 

deuterated internal standards (1000 pg/mL) (n-C20-d42, n-C25-d52, n-C28-d58, n-C32-d66, 

benz(a)anthracene-d12, benzo(e)pyrene-d12, dibenzo(a,h)anthracened14 and dibenzo(a,i)pyrene-

d14) were used for all samples. 

2.7 Other Ambient Measurements 

Wind speed and direction were measured with an RM Young AQ 5305-L at 2 meters 

above ground level (AGL) at Fyfe.  Semi-continuous measurements of PM2.5 K
+, sulfate, nitrate, 

ammonium and other major ions were made using a PILS system coupled to two ion 
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chromatographs (IC).  The detailed design and operation of the PILS is described elsewhere 

(Orsini et al., 2003; Weber et al., 2001; Weber et al., 2003; Sorooshian et al., 2006) and is briefly 

summarized here. The PILS nucleates aerosol particles to form water droplets by mixing a 

denuded aerosol stream with supersaturated steam.  The nucleated droplets are collected into a 

flowing liquid stream by inertial impaction.  The liquid stream, containing an internal LiBr 

standard to determine dilution by condensed water vapor, is split into two streams which are 

injected every 15 minutes to two ion chromatographs (Dionex, DX-500) for measurement of 

major inorganic ion (Cl-, SO4
2-, NO3

-, Na+, NH4
+, K+, Mg2+ and Ca2+) concentrations.  Each IC 

system consisted of a 6-port valve injector fitted with a 200µL sample loop, a pump (Dionex 

GP40 or IP20), Dionex CD20 conductivity detector, an analytical separation column, and a 

suppressor. The cation eluent was 20 mM MSA (methanesulfonic acid) at a flow rate of 1.0 

mL/min (Dionex CG12A/CS12A column and CSRS-ULTRA II suppressor). The anion system 

used a Dionex AS4A-SC/AG4A-SC column pair (1.8mM Na2CO3/1.7mM NaHCO3 eluent) or a 

Dionex AS14A column (8mM Na2CO3/ 7mM NaHCO3 eluent), depending on the campaign, 

with an ASRS-ULTRA II suppressor. 

A PM2.5 cyclone (16.7 LPM, URG-2000-30EH) and two URG annular denuders (URG-

2000-30X242-3CSS) were used upstream of the PILS/IC.  The first denuder was coated with 

Na2CO3 for removal of acidic gases and the second denuder was coated with phosphorous acid to 

remove basic gases. Denuders were exchanged every 5-6 days after calibration and blank checks. 

Blanks were taken by sampling particle-free air, drawn through a HEPA capsule filter (12144, 

Pall Corporation), through the PILS/IC system after a calibration check standard (NO3
-, SO4

2- 

and NH4
+ concentrations of 20 µN and Cl-, Na+, K+, Ca2+ and Mg2+ concentrations of 10 µN) 

was injected. Approximately every 10 days the PILS was cleaned and the ion chromatographs 
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recalibrated. A sample flow rate of 16.7 L/min for the PILS/IC was controlled by a critical 

orifice with a vacuum regulator.  20-minute data were aggregated into hourly concentrations, 

where all three 20-minute measurements within an hour were required to complete an hourly 

average. 

2.8 EPA PMF Methods 

Positive matrix factorization (PMF) is a common analysis which decompose a matrix of 

speciated sample data into two matrices — factor contributions and factor profiles – in order to 

understand the factors or sources impacting the speciated sample data (Poirot et al., 2001; Reff et 

al., 2007; Norris et al., 2008; Engel-Cox and Weber, 2007; Ke et al., 2008; Brown et al., 2012; 

Ulbrich et al., 2009a; Kim and Hopke, 2007).  The two most common programs are PMF2 and 

ME2, in addition to a freely available graphical user interface (GUI) developed by EPA, EPA 

PMF, which uses the ME2 program.  Ulbrich et al., and others  have also expanded on the details 

of PMF application to AMS data, including a PMF analysis package in Igor Pro (Lanz et al., 

2007; Lanz et al., 2010; Ng et al., 2010; Ulbrich et al., 2009a).  The detailed methods of these 

programs have been documented elsewhere (Paatero, 1997; Paatero and Tapper, 1994), and are 

summarized below.   

A speciated data set can be viewed as a data matrix X of dimensions n by m, in which n 

samples and m chemical species were measured. Rows and columns of X and of related matrices 

are indexed by i and j, respectively. The goal of multivariate receptor modeling, for example 

with PMF, is to identify the number of factors p, the species profile f of each source, and the 

amount of mass g contributed by each factor to each individual sample: 

 1

p

ij ik kj ij ij ij
k

x g f e c e
=

= + = +∑
 (6) 



  

 52 

where eij is the residual for each sample/species.  Notation is as follows.  Entire matrices 

are denoted by capital bold-face letters. Columns of the source contribution matrix G may be 

denoted by gk, and similarly rows of source profile matrix F denoted by fk. Matrix C represents 

the modeled part of matrix X. 

In PMF factor elements are constrained so that no sample can have a significantly 

negative source contribution.  PMF allows each data value to be individually weighted.  This 

feature allows analysts to adjust the influence of each data point, depending on the confidence in 

the measurement.  The PMF solution minimizes the object function Q (Equation 7), based upon 

the estimated data uncertainties (or adjusted data uncertainties) uij. 
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ME-2 is the underlying program used to solve the PMF problem in the program of EPA 

PMF (Norris et al., 2008), the user interface that feeds the data and user specifications to ME-2.  

ME-2 then performs the iterations via the conjugate gradient algorithm until convergence to a 

minimum Q value.  The minimum Q may be global or local; users can attempt to determine 

which by using different starting points for the iterative process and comparing the minimum Q 

values reached.  Output from ME-2 is then fed back through EPA PMF and formatted for users 

to interpret. 

Variability in the PMF solution has traditionally been assessed via bootstrapping (BS), 

where PMF solutions using a series of data sets that are resampled versions of the original data 

set are generated.  EPA PMF performs bootstrapping by randomly selecting non-overlapping 
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blocks of samples (consecutive samples, block size supplied by user) and creating a new input 

data file of the selected samples, with the same dimensions as the original data set.  PMF is then 

run on the new data set, and each bootstrap factor is mapped to a base run factor by comparing 

the contributions of each factor.  The bootstrap factor is assigned to the base factor with which 

the bootstrap factor has the highest uncentered correlation, above a user-specified threshold.  If 

no base factors have a correlation above the threshold for a given bootstrap factor, that factor is 

considered “unmapped”.  If more than one bootstrap factor from the same run is correlated with 

the same base factor, they will all be mapped to that base factor.  This process is repeated for as 

many bootstrap runs as the user specifies. 

EPA PMF was used in this application (Norris et al., 2008; Brown et al., 2012).  New 

features within EPA PMF v5.0 allow the user to take advantage of rotational tools available in 

ME-2(Paatero and Hopke, 2008; Paatero et al., 2002).  In general, the non-negativity constraint 

alone in PMF analysis is not always sufficient to produce a unique solution.  To reduce the 

number of solutions, additional information such as known source contributions and/or source 

compositions can be used.  This additional information can be incorporated into the PMF 

solution by “pulling” parts of a PMF solution, such as a factor profile or contribution.  For 

example, if a source type has a typical ratio among elements in its source profile, a PMF-

resolved factor profile could be pulled toward that ratio if the user has good confidence that the 

factor is related to such a source.  The strength of each pull is controlled by specifying a limit on 

the change in the goodness-of-fit parameter Q, dQ.  If the user wishes to perform a weak pull, a 

small limit on dQ would be allowed.  For a stronger pull, a large limit dQ would be allowed. 

These pulls are activated in ME-2 by the use of an optional control file called “moreparams.txt”, 

which is generated by EPA PMF when a user specifies a pull, or can be generated as a text file 
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by a user outside of EPA PMF and ME-2.  When the moreparams file is present, ME-2 generates 

a solution where the base solution is pulled as indicated in the moreparams file.  Additional 

details are available elsewhere (Paatero et al., 2002; Paatero, 2007; Norris et al., 2009). 
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3. Analysis of Aerosol Composition and Factor Analysis 

3.1 Chapter Summary 

Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High 

Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) at an elementary school 18 

meters from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008.  

Additional collocated continuous measurements of black carbon (BC), carbon monoxide (CO), 

nitrogen oxides (NOx), and meteorological data were collected.  The U.S. Environmental 

Protection Agency’s (EPA) positive matrix factorization (PMF) data analysis tool was used to 

apportion organic matter (OM) as measured by HR-AMS, and rotational tools in EPA PMF were 

used to better characterize the solution space and pull resolved factors toward known source 

profiles.  Three- to six-factor solutions were resolved.  The four-factor solution was the most 

interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA), 

low-volatility oxygenated organic aerosol (LV-OOA), biomass burning organic aerosol (BBOA), 

and semi-volatile oxygenated organic aerosol (SV-OOA).  When the measurement site was 

downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA 

accounting for the rest.  Attempts to pull the PMF factor profiles toward source profiles were 

successful but did not qualitatively change the results, indicating that these factors are very 

stable.  Oblique edges were present in G-space plots, suggesting that the obtained rotation may 

not be the most plausible one.  However, solutions found by pulling the profiles or using Fpeak 

retained these oblique edges, indicating the base solution is likely a best fit, even with rotational 

ambiguity.  On average, HOA made up 26% of the OM, while LV-OOA was highest in the 

afternoon and accounted for 26% of the OM.  BBOA occurred in the evening hours, was 
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predominantly from the residential area to the north, and on average constituted 12% of the OM; 

SV-OOA accounted for the remaining third of the OM.   

3.2 Overview of Aerosol Concentrations During Study 

OM averaged 3.3 µg/m3 during the January intensive campaign, and with BC accounted 

for 74% of the AMS measured mass (Figure 3-1).  The average organic mass spectra (Figure 3-

2) was mostly composed of less oxidized, hydrocarbon-like fragments.  OM was typically 

highest during the evening hours (i.e., 1900 through 2100 LST) with a secondary peak in the 

morning (i.e., 0600-0900 LST, during rush hour commute) as shown in Figure 3-3.  In contrast, 

concentrations of other species such as BC, CO, and NOx had peaks in the early morning and 

overnight (Figure 3-3b shows BC as an example).  AMS fragments associated with HOA, such as 

m/z 57 (C4H9
+) and m/z 43 (C3H7

+), showed a similar diurnal pattern.  AMS fragments associated 

with OOA, such as m/z 44 (COO+), showed only minor fluctuations throughout the day, while 

those used as tracers of biomass burning, such as m/z 60 (C2H4O2
+), were evident only during the 

evening and overnight hours (Figure 3-4).  
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Figure 3-1.  Average composition of PM1 at Fyfe Elementary School in January 2008.  All measurements 
except for BC are from HR-AMS, and BC is from Aethalometer (no size cut). 

 
Figure 3-2.  Average mass spectra during the study.  
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a) 

 
b) 

  
Figure 3-3.   a) Box plot of AMS OM by hour, b) box plot of BC by hour; all units are µg/m3.  Panel a) is 
reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 2012.  

 
Figure 3-4.  Average concentrations of selected m/z (43, 44, 57, and 60) by hour; units are µg/m3. Figure 
is reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 2012. 
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There was only modest correlation (i.e., r2 of 0.40 to 0.60) of OM and fragments such as 

m/z 43, 44, 57, and 60 with BC, CO, and NOx.  Since BC and CO are from primary emissions 

and OM is a mixture of primary emissions and secondary products of atmospheric reactions, the 

modest correlations among these parameters suggest that a large fraction of the OM may be 

secondary in nature.  OM concentrations were similar between upwind (relative to the highway) 

and downwind conditions (medians of 2.0 µg/m3 and 1.6 µg/m3, respectively); there was a higher 

median OM concentration during upwind conditions since these occurred during the evening, 

when wind speeds were lower and the boundary layer shallower than during the daytime, when 

downwind conditions prevailed and higher wind speeds and more dispersion occurred.  OM was 

highest during stagnant, low-wind conditions, with an average of 3.7 µg/m3.  In contrast, some 

other pollutants showed sharper differences between upwind and downwind conditions; for 

example, concentrations of primary emission pollutants such as BC were more than three times 

higher under downwind conditions than under upwind conditions (Roberts et al., 2010).    BC 

had a median concentration of 1.24 µg/m3.  BC is more than twice as high at this site compared 

to a site 2 km away in the urban center but away from freeways (Hancock Elementary School), 

where BC was, on average, 0.5 µg/m3.  This difference (~ 0.74 µg/m3) between the near-road site 

at Fyfe and the urban background site at Hancock suggests that emissions from the freeway are a 

large contributor to the BC at Fyfe, but may not be as large a contributor to OM or other aerosol 

species. 

While OM did have a distinctive diurnal pattern in general, it was episodic during the 

intensive.  A multi-day OM episode occurred with relatively high, sustained concentrations in 

the first week (Figure 3-5).  The episode ended around midnight on January 12 when a storm 

front came through the area.  During the episode, OM concentrations were relatively high during 
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the overnight periods under a stable boundary layer.  A short-duration but very high OM 

concentration episode occurred the evening of January 19, with the highest 2-minute and hourly 

averaged OM concentrations of the entire intensive.  Although sampling took place over four 

weekends, the meteorological conditions during those weekends were quite different, with 

drizzle and rain on the first weekend (Sunday, January 6), a front with high winds and rain on the 

second (Saturday night January 12), a stagnation episode on the third (Saturday January 19), and 

windy conditions on the last weekend.  With the low number of weekends and the wide range of 

meteorological conditions, comparing weekday to weekend concentrations may not be as useful 

here compared to data sets that comprise many weekends. 
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Figure 3-5.  Time series of Aethalometer BC (µg/m3), temperature (degrees C), relative humidity (%), NO2 (ppb), NO (ppb), AMS sulfate (µg/m3), 
AMS nitrate (µg/m3), AMS OM (µg/m3), and wind speed (m/s).  Major tick marks indicate midnight local time for each day.   
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3.2.1 Inorganic Aerosol Patterns 

Temporal patterns for both sulfate and nitrate differed from the temporal pattern for OM.  

Sulfate concentrations were low throughout the study, with an average concentration of 

0.27 µg/m3, and a maximum 20-minute average of 0.88 µg/m3.  These sulfate levels are quite 

low compared to many other areas in the U.S., though typical of the western U.S., as there is 

minimal transport of sulfate into Las Vegas and no major sources of SO2 or sulfate upwind of the 

urban area. 

Nitrate concentrations were episodic but were also typically low, with a median 

concentration of 0.54 µg/m3 and average of 1.09 µg/m3.  The nitrate concentrations are lower 

than is typical in western urban areas.  Nitrate concentrations had little relationship with OM or 

concentrations of other measured pollutants.  In a one-day episode, nitrate peaked above 8 µg/m3 

for three hours, after which it decreased to approximately 2 µg/m3 for the next two days (Figure 

3-6).  Figure 3-7 shows nitrate concentrations with respect to relative humidity and temperature.  

The nitrate episode occurred after a 24-hour period when winds were stagnant, temperatures 

were low (less than 8°C), and relative humidity was relatively high (greater than 55%), including 

during the midday, which was atypical.  Nitrate was greater than 1 µg/m3 on a few other days, 

but these periods typically lasted only a few hours.  These higher concentrations occurred during 

the day and night, with no distinct, consistent diurnal pattern, unlike OM, BC, CO, and other 

pollutants, which peaked in the evening and early morning hours.  



  

Figure 3-6.   Time series of nitrate and OM concentrations (
during 1/8 0600 LST - 1/10 0000 LST.  Arrows indicate the trajectory color for each start time.

63 

 
.   Time series of nitrate and OM concentrations (µg/m3) during 1/7/08-1/11/08, and air mass trajectories backwards every 6 hours 

1/10 0000 LST.  Arrows indicate the trajectory color for each start time.
1/11/08, and air mass trajectories backwards every 6 hours 
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a)    

b)  
Figure 3-7.  Temperature and % relative humidity colored by a) nitrate concentrations; b) date 
time. 
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There have been limited studies of speciated PM2.5 in Las Vegas, with the 2000-2001 Las 

Vegas Valley Visibility/PM2.5 study the one with the most data (Green et al., 2002).  Here they 

found wintertime sulfate concentrations, on average, lower than 0.5 µg/m3, and average nitrate 

concentrations between 0.2 and 0.6 µg/m3 at three sites.  Though no formal apportionment was 

done, based on extensive data analysis they surmised that gasoline and diesel vehicle emissions 

are likely an important source, but that other sources such as residential biomass burning may 

also be a significant contributor. Another study, the Southern Nevada Air Quality Study 

(SNAQS) (Watson et al., 2007), used 10-12 filter samples at 4 sites from January 2003 to 

apportion PM2.5.  80% of the mass was from carbonaceous aerosol, and 38%-49% of the PM2.5 

was attributed to mobile sources.  Biomass burning was 11%-21% of the mass.  These 

apportionments were based on a standard suite of filter analyses, and included OC and EC by 

TOR, sulfate and nitrate by IC, and metals by XRF; since only 24-hour filters on a handful of 

days were collected there was limited opportunity for temporal analyses (time of day, day-to-day 

variation, etc). 

There are very few major sources immediately upwind of Las Vegas, so the amount of 

transported secondary organic carbon and ammonium sulfate is generally low, though there can 

be transport from California.  Some speciated PM2.5 data have been collected as part of EPA’s 

chemical speciation network (CSN) from 2002 to 2007.  Using the data from this 5-year period, 

average sulfate concentrations are 1 µg/m3, and average nitrate concentrations are 0.89 µg/m3, 

though sulfate is lower and nitrate is higher in the winter.  These low values are corroborated by 

Chapter 2 of the IMPROVE network annual report (Hand et al., 2011), which shows that sulfate 

and nitrate concentrations are extremely low in Las Vegas compared to other areas in the U.S. 

and are lower than 1 µg/m3, on average.  Unlike most of the U.S. or much of Europe, there is 
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very little coal-fired power production upwind of Las Vegas, so SO2 (and sulfate) levels are low.  

In many prior studies elsewhere, sulfate concentrations are higher and are correlated with LV-

OOA concentrations; however, as the sulfate levels are so low in Las Vegas, it is unlikely that 

LV-OOA will correlate with sulfate.  As Las Vegas is in an arid desert environment with little 

agriculture in the area, ammonia emissions are relatively low (e.g., 

http://nadp.sws.uiuc.edu/nh3net/) , so ammonium nitrate formation may be limited by the 

availability of ammonia.  Nitrate has been observed to often correlate with SV-OOA, as both 

may be associated with similar transport and formation mechanisms.  When nitrate formation is 

limited by ammonia availability, however, there is little reason to expect it to correlate with SV-

OOA.    

3.2.2 Variations with Meteorology 

Nitrate was episodic and sulfate was very low, so much of the analysis presented here 

focuses on OM and BC.  The monitoring site is located adjacent to the freeway, such that the site 

is downwind of the freeway at angles between 120 and 250 degrees.  However, 

upwind/downwind comparisons are not straightforward here.  Hours with downwind conditions 

occurred 16% of the time, of which 45% of these were during the midday (0900-1700 LST) 

when wind speeds are highest and in between peak traffic periods (Figure 3-8).  During peak 

traffic periods in the morning (0500-0900 LST) and evening (1700-2000 LST), the site was 

downwind of the freeway only 20% of the time.   
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a) / 

b)  
Figure 3-8.  Wind summary during January 5-28 2008: a) fraction of 2-minute AMS data points per hour 
by wind condition (downwind of freeway, upwind of freeway, parallel to freeway [other directions], or 
stagnant [wind speed less than 1 m/s]); and b) wind rose.  Panel b) is reproduced under Creative 
Commons Attribution 3.0, originally published in Brown et al., 2012. 
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37% of the time and are when concentrations are highest, stagnant conditions were also included 

in the analysis in a separate bin.  OM concentrations were generally similar whether our 

monitoring site was upwind or downwind of the freeway (Figure 3-9).  This differs for other 

pollutants such as BC, where downwind concentrations were, on average, more than two times 

higher during downwind conditions.  This shows that the enhancement of being next to the 

roadway is not nearly as large for OM as for BC, since OM is a mixture of primary, semi-

volatile, and more oxidized material, whereas BC is primary material that, in a near-roadway 

environment, predominantly originates from emissions along the roadway.  Like BC, OM was 

higher during stagnant conditions (those with winds less than 0.5 m/s), as a shallow boundary 

layer and minimal dispersion quickly led to the buildup of pollutants.  During the daytime when 

emissions from the freeway may be most prominent, concentrations during downwind conditions 

were higher than during upwind conditions.  Only during the evening hours (1700-2300 LST) 

when other, non-mobile emission sources become important, were upwind concentrations higher 

than downwind.  This increase is likely due to contributions from residential biomass burning, as 

explored further with PMF. 
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a)  b)  
c)

 
Figure 3-9.  Box plot of concentrations (µg/m3) during downwind, upwind and stagnant (wind speed less 
than 0.5 m/s) conditions for a) OM; b) BC, and c) OM, grouped by time of day. 
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conditions.  BC and OM both have a similar pattern in relation to wind speed, with a steep drop 

off in concentration once winds are greater than 1.5 m/s.  OM is similar on average when the 

monitoring site is downwind or upwind of the freeway, but that is due to the diurnal pattern of 

winds, where upwind conditions occur more in the evening when wind speeds are low, while 

downwind conditions occur in the midday, when wind speeds are higher.  The high 

concentrations during low wind speeds from the 280-310 degree sector are in the evening when 

residential biomass burning occurs, as indicated by the relatively high concentrations of m/z 60.  

The mass spectrum changed throughout the day, with more oxidized fragments like m/z 44 

higher in the midday compared to the morning or evening, and biomass burning-related 

fragments like m/z 60 higher in the evening.  Upwind/downwind differences varied by times of 

day, as seen in Figure 3-13, which shows the difference between the upwind and downwind mass 

spectrum by time of day.  In the morning and midday, the downwind concentrations are slightly 

higher, with higher amount of primary, less oxidized fragments like m/z 43 and 55.  In the 

evening, concentrations during upwind conditions are actually higher for all fragments, as the 

upwind direction is the direction of arterial roads plus areas of residential biomass burning.   
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a)  

b)  
Figure 3-10.  OM concentrations (µg/m3) versus wind direction, where number indicates hour of day and 
a) color indicates wind speed (m/s) and b) color indicates m/z 60 concentrations (µg/m3).  The box shows 
the angle when the monitoring site is downwind of the freeway. 
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a)  

b)  
Figure 3-11.  Concentrations (µg/m3) with relation to wind speed (m/s), colored by hour: a) of BC; and b) 
of OM. 
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Figure 3-12.  Average organic mass spectra (µg/m3) during upwind, downwind and stagnant conditions in 
the morning (0500-0900 LST), midday (1200-1600 LST) and evening (1700-2100 LST). 
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Figure 3-13.   Difference between the mass spectrum (µg/m3) during downwind and upwind conditions in 
the morning (0500-0900 LST), midday (1200-1600 LST) and evening (1700-2100 LST).  Positive values 
indicate higher concentrations downwind. 
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Figure 3-14.  OM concentrations (µg/m3) by temperature (degrees C).  The number indicates the hour of 
the day, and color shows the concentration (µg/m3) of m/z 60. 

3.3 Comparisons Between Measurements of Aerosol Species 

A number of collocated measurements were made during the study.  Measurements of 

sulfate and nitrate were made via both HR-AMS and PILS, though sulfate concentrations 

(median via AMS of 0.16 µg/m3) were generally below PILS lower limit of quantification (e.g., 

http://eosweb.larc.nasa.gov/PRODOCS/narsto/document/STL_Supersite_QAFR_v1.pdf) so a 

comparison is not shown.  A Sunset OCEC measured PM2.5 OC and EC, which can be compared 

to HR-AMS OM or derived-OC and Aethalometer BC, respectively.  Scatter plots between 

measurements for these species are shown in figure 3-15.  Nitrate comparisons between AMS 

and PILS shows very good agreement (r2=0.95), though with some modest bias towards the PILS 

(median PILS/AMS ratio = 1.3); this bias is most evident at lower concentrations below 2 µg/m3.  

Aethalometer BC and Sunset EC also compared very well (r2=0.95), but with a significant bias, 

with average BC/EC ratio equal to 1.83.  This bias was consistent across all levels of 

concentration, and had no relationship with OM concentration or time of day.   
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AMS-inferred OC data were averaged for comparison to the hourly Sunset OC data.  

AMS PM1 OC concentrations and Sunset PM2.5 OC concentrations compared well (median 

difference = 0.05 µg/m3, r2=0.89, slope = 0.91; assuming y-intercept=0) across all times of day, 

with the poorest relationship occurring when OC concentrations were less than 0.5 µg/ m3 

(Figure 3-15).  The average and median hourly OCams concentrations during the study were 2.3 

and 1.5 µg/m3, while the average and median Sunset OC concentrations were 2.4 and 1.5 µg/m3.  

The correlation between the AMS and Sunset measurements is similar to or stronger than other 

studies, such as in Tokyo (Takegawa et al., 2005) or in Riverside (Docherty et al., 2011), perhaps 

because in the Las Vegas study the source mixture is less variable than in other studies. 
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a)  

  

c) 

 

b) 

 

d) 

 

Figure 3-15.  Comparison between measurements: a) hourly averaged AMS and PILS NO3; b) hourly 
averaged AMS OM and Sunset OC; c) AMS-derived OC and Sunset OC; and d) Aethalometer BC with 
Sunset EC. All units are µg/m3.
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3.4 Factor Analysis via PMF  

3.4.1 Data 

A matrix of 7,455 2-minute HR-AMS V-mode observations of 198 unit mass resolution 

(UMR) fragments made every 4 minutes during January 2008 at Fyfe was used in EPA PMF 

analysis.  Fragments predominantly from inorganic species such as nitrate and sulfate were not 

retained for EPA PMF analysis.  Fragments m/z 15, 18, 19, 20, 29, and 30 were excluded from 

EPA PMF analysis because of potential interference with nitrogen and oxygen.  While data up to 

m/z 700 are available, many fragments above m/z 200 had low signal-to-noise (S/N) ratios (i.e., 

less than 6), made a minimal contribution to total OM, and were collinear with a number of other 

fragments.  Fragments up to m/z 240 were retained for EPA PMF, a total of 198 fragments.  

Fragments with low S/N may bias the results (Paatero and Hopke, 2003), so the uncertainties of a 

given fragment were multiplied by 3 if the S/N for the fragment was less than 6; this reduces the 

fragment’s influence on the solution.  A global 10% uncertainty was also applied to account for 

additional modeling uncertainty (Norris et al., 2008).  EPA PMF was run in the robust mode, 

which reduces the influence of outliers. 

Each observation was also classified as downwind (wind speed greater than 2 m/s and 

wind direction between 90 and 270 degrees; N=1,360); upwind (wind speed greater than 2 m/s 

and wind direction between 310 and 60 degrees; N=949); other (wind speed greater than 2 m/s 

and wind direction between 60 and 90 degrees or between 270 and 310 degrees; N=461); or calm 

(wind speed less than 2 m/s; N=4,907).  As an additional set of runs, EPA PMF was also applied 

to downwind-only data to examine whether factor profiles change, and how factor contributions 

change.  Since downwind-only data are more heavily influenced by the freeway, we may expect 
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that a downwind-only HOA factor would be more similar to vehicle exhaust source profiles than 

when all data are used.   

The AMS PMF results were averaged up to 20-minute intervals to allow for matching 

with the collocated 5-minute data, which were also averaged up to 20-minute intervals.  The 20-

minute averaged AMS data (N=1491) were also re-analyzed with EPA PMF to evaluate the 

impact of high-mass transient events; profiles and contributions were then compared to the 

results using 2-minute data.  Factor profiles were compared to PMF factor profiles from earlier 

ambient studies (Lanz et al., 2008; Lanz et al., 2007; Ulbrich et al., 2009a; Ulbrich et al., 2009b) 

as well as to source profiles (Mohr et al., 2009; Sage et al., 2008; Weimer et al., 2008) 

originating from a publicly available online database of reference spectra hosted by University of 

Colorado (Ulbrich et al., 2009a; Ulbrich et al., 2009b).  Specifically, source profiles of Honda 

gasoline exhaust and diesel exhaust (Mohr et al., 2009), PMF-resolved OOA and HOA factor 

profiles from Pittsburgh (Zhang et al., 2005a; Zhang et al., 2005b), BBOA factor profiles from 

Switzerland (Lanz et al., 2010; Lanz et al., 2008; Lanz et al., 2007), aged diesel exhaust profile 

from chamber experiments (Sage et al., 2008), and burning and smoldering oak and chestnut 

wood source profiles (Weimer et al., 2008) were used. 

3.4.2 PMF Analysis Summary 

Three- to six-factor solutions were explored with EPA PMF.  Initially, 50 runs from a 

random seed were performed for each number of factors.  Random starting seeds were used to 

increase the likelihood of finding a global minimum of the goodness-of-fit parameter, Q.  The 

stability of Q over these runs, the ratio of Q to expected (theoretical) Q, scaled residuals, the 

Q/Qexpected by fragment and sample, and factor independence (G-space plots) were examined.  If 

these parameters are not stable for a given number of factors, it indicates that a global minimum 
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was not consistently achieved, and that a solution may not be stable (Norris et al., 2008; Reff et 

al., 2007).  In all solutions, the total OM was well apportioned (i.e., slope equal to 1.0±0.10) and 

r2 was greater than 0.95 between apportioned and total OM.   

PMF factors were classified by their temporal pattern and the comparison of their profile 

with source profiles and profiles from previous studies.  The typical AMS PMF factors of HOA, 

LV-OOA, and BBOA were resolved in every solution with three or more factors, and the 

identification of each factor profile was based on its similarity to profiles available in the 

literature, the abundance of key fragments in each profile, and each factor’s temporal pattern.  

For example, the LV-OOA factors displayed a significant amount of m/z 44 and were similar to 

the OOA factor identified in Pittsburgh and elsewhere.  BBOA factors had typical tracer 

fragments of m/z 60 and 73, which are produced during AMS analysis of levoglucosan and 

related anhydrosugars produced during biomass combustion (Lee et al., 2010; Lanz et al., 2008; 

Sandradewi et al., 2008; Schneider et al., 2006).  The HOA factors were similar to the HOA 

factor from Pittsburgh and a diesel exhaust source profile.   

With more than three factors, semi-volatile OOA (SV-OOA) was also resolved.  This 

factor’s profile was similar to that of aged diesel exhaust and was more episodic than HOA or 

LV-OOA profiles.  With five and six factors, additional factors that occurred during the 

nighttime were resolved.  The additional nighttime factors occurred nearly every night coincident 

with BBOA between 1700 and 0200 LST, and contributions were higher with low wind speed 

conditions and with winds from the north (upwind).  With peaks of m/z 41, 43, 55, and 91, it is 

unclear what these “night OA” factors may represent.  The change in the BBOA between the 

four- and five-factor solutions and its temporal variability suggest the additional fifth factor may 

be related to biomass burning, but the lack of known tracer fragments and correlation with source 
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profiles makes this link difficult to prove.  We focused the remainder of the analyses on the four-

factor solution.  Figure 3-16 summarizes the amount of OM apportioned by factor and a 

comparison of measured and apportioned OM.  In the 4 factor solution, PMF on average under-

apportioned the OM, with an average difference between the sum of PMF factors and the 

measured OM of 0.18 µg/m3.  Table 3-1 summarizes the correlation of factor profiles with 

selected source, aged source, and PMF factor profiles from other studies. 
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a)

 

b)  

Figure 3-16.  a) OM apportioned by factor number, and b) comparison of measured and apportioned OM, 
with a 1:1 line.  Figures are reproduced under Creative Commons Attribution 3.0, originally published in 
Brown et al., 2012. 
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Table 3-1.  Correlation (r2) of PMF factor profiles with Pittsburgh OOA PMF profile (Zhang et al., 2005a), Pittsburgh HOA PMF profile, gasoline 
and diesel exhaust source profiles (Mohr et al., 2009), aged diesel exhaust profile (Sage et al., 2008), charbroil source profile(Lanz et al., 2007), 
oak-flame source profile (Weimer et al., 2008), oak-smolder source profile, chestnut-flame source profile, chestnut-smolder source profile, and 
levoglucosan profile (Schneider et al., 2006).  Correlations from 0.80 to 0.90 are denoted in italics, and those greater than 0.90 are denoted in 
bold. 

N Factor 
Pitt 
HOA 

gas- 
oline 

Diesel Pitt OOA Aged 
diesel 

charbroil Oak 
smolder 

Oak  flame levo-
glucosan 

Chestnut 
flame 

Chestnut 
smolder 

3 LV-OOA 0.59 0.58 0.58 0.98 0.95 0.26 0.88 0.91 0.74 0.83 0.89 

 HOA 0.97 0.92 0.95 0.46 0.75 0.57 0.29 0.71 0.49 0.50 0.62 

 BBOA 0.80 0.73 0.76 0.67 0.82 0.40 0.44 0.89 0.77 0.77 0.85 

4 LV-OOA 0.38 0.39 0.38 0.99 0.87 0.13 0.93 0.83 0.70 0.80 0.84 

 HOA 0.99 0.96 0.98 0.48 0.77 0.60 0.32 0.69 0.48 0.50 0.62 

 BBOA 0.47 0.41 0.44 0.59 0.64 0.20 0.39 0.75 0.80 0.77 0.80 

 SV-OOA 0.91 0.84 0.87 0.57 0.79 0.49 0.37 0.80 0.58 0.60 0.71 

5 LV-OOA 0.46 0.46 0.46 0.99 0.90 0.18 0.91 0.88 0.72 0.82 0.87 

 HOA 0.99 0.97 0.98 0.47 0.78 0.61 0.32 0.68 0.49 0.50 0.62 

 BBOA 0.71 0.69 0.69 0.86 0.91 0.37 0.69 0.95 0.89 0.91 0.97 

 SV-OOA 0.90 0.82 0.85 0.56 0.78 0.47 0.37 0.79 0.56 0.58 0.69 

 Night OA I 0.60 0.51 0.59 0.42 0.61 0.27 0.26 0.57 0.30 0.35 0.45 

6 LV-OOA 0.13 0.16 0.15 0.59 0.46 0.05 0.54 0.47 0.44 0.51 0.51 

 HOA 0.12 0.17 0.14 0.55 0.38 0.11 0.60 0.42 0.43 0.49 0.48 

 BBOA 0.24 0.26 0.24 0.72 0.57 0.13 0.66 0.59 0.56 0.63 0.64 

 SV-OOA 0.24 0.28 0.25 0.61 0.48 0.12 0.60 0.54 0.54 0.59 0.61 

 Night OA I 0.33 0.36 0.34 0.54 0.48 0.16 0.47 0.53 0.55 0.56 0.61 

 Night OA II 0.14 0.16 0.15 0.49 0.35 0.03 0.47 0.42 0.42 0.44 0.47 
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3.4.3 Factor Analysis Details 

The factors in the four-factor solution were HOA, LV-OOA, and BBOA factors, plus a 

semi-volatile OOA (SV-OOA) factor.  The HOA and LV-OOA factors were better resolved than 

in the three-factor solution.  Profiles of each factor, the average factor concentration plus other 

species’ concentrations by hour, and a time series of concentrations are provided in Figures 3-17 

to 3-21.  Figure 3-22 provides scatter plots of factor contributions with selected collocated 

measurements:  HOA with BC, HOA with CO, SV-OOA with nitrate, and LV-OOA with sulfate.  

Factor profiles were compared to profiles available in the literature to help confirm 

identification; regression statistics were reported using Pearson correlation values, and each 

scatter plot associated with the regression statistics was examined to ensure that the correlation 

was not biased by the large range of concentrations of the individual m/z fragments.  

Bootstrapping, in which many runs are used to gauge the uncertainty of the base solution (in this 

case 300 runs with an r2 of 0.60), showed good reproducibility of the factors.  All factors were 

reproduced at least 98% of the time, demonstrating that these factors are stable and characterize 

the solution space well.
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Figure 3-17.  PMF factor profiles through m/z 200 for the four-factor solution. Figure is reproduced under Creative Commons Attribution 3.0, 
originally published in Brown et al., 2012. 
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Figure 3-18.    PMF factor contributions, OM, BC, CO, and wind speed averaged by hour.  Figure is 
reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 2012. 
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Figure 3-19.  Notched box plots of factor contributions (µg/m3) by hour in the four-factor solution for 
BBOA, LV-OOA, HOA, and SV-OOA (µg/m3).  Notches indicate median, the boxes the interquartile range 
(IQR), the whiskers 1.5*IQR, and the points beyond the 1.5*IQR are plotted individually.  Figures are 
reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 2012. 
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Figure 3-20.  Notched box plots of factor contributions (% of total OM) by hour in the four-factor solution 
for BBOA, LV-OOA, HOA, and SV-OOA (µg/m3).  Notches indicate median, the boxes the interquartile 
range (IQR), the whiskers 1.5*IQR, and the points beyond the 1.5*IQR are plotted individually.  Figures 
are reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 2012. 
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Figure 3-21.  Time series of PMF factor contributions, BC, sulfate, nitrate, and OM (all in µg/m3), plus wind direction.  Times when the monitoring 
site is downwind are outlined by the dashed box.  Figure is reproduced under Creative Commons Attribution 3.0, originally published in Brown et 
al., 2012. 
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a) b) 

c) d)  

Figure 3-22.  Scatter plot comparisons of PMF factor contributions for: a) HOA and BC; b) HOA and CO; 
c) SV-OOA and nitrate; and d) LV-OOA and sulfate. Figure is reproduced under Creative Commons 
Attribution 3.0, originally published in Brown et al., 2012.    
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Pittsburgh OOA factor profile (r2 of 0.99; Table 3-1).  LV-OOA accounted for 26% of the OM 

with four factors and showed only small diurnal variability in its concentration, though it was a 

much greater percentage of the OM during the daytime than at other times.  Similar to other 

factors and total OM, LV-OOA concentrations were lower at higher wind speeds, though it was a 

higher percentage of OM at higher wind speeds.  LV-OOA showed little correlation with other 

pollutants; ozone, which often showed a moderate correlation with LV-OOA in other studies, 

was not measured here.  Sulfate is also often correlated with LV-OOA, but during this study 

sulfate levels were extremely low, with a median of 0.16 µg/m3.  LV-OOA is heavily oxidized 

and likely part of a background OM, and it may be transported into Las Vegas.  In addition, there 

are very few SO2 sources upwind of Las Vegas, so there is very little sulfate transported into the 

area.  Thus, we may not expect LV-OOA concentrations to be correlated with sulfate here. 

The BBOA factor accounted for 12% of OM, on average, and was similar to the BBOA 

factor found in the three-factor solution.  This factor had 64% of the m/z 60 fragment, which is 

associated with levoglucosan and related anhydrosugars (Schneider et al., 2006; Lee et al., 2010; 

Lanz et al., 2007); the contribution from BBOA was well correlated with m/z 60 (r2 = 0.86).  The 

remainder of the m/z 60 was in SV-OOA (28%) and LV-OOA (8%).  This portion of m/z 60 is 

likely from carboxylic acids rather than anhydrosugars.  This BBOA factor is most likely from 

residential wood burning in the evenings rather than wildfire emissions since there was little 

regional wildfire activity in the winter; furthermore, the contribution was nearly zero during the 

daytime, with a sharp rise in concentrations nearly every evening after 1700 LST that peaked 

around 2100 LST.  While the BBOA factor concentration began to decrease after around 2100 

LST, its relative contribution to OM remained above 15% until after midnight.  The factor was 

highest in terms of both concentration and relative contribution to OM under low wind speed 
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conditions (i.e., less than 2 m/s).  This profile is similar to a smoldering Chestnut profile 

(r2=0.80) and the levoglucosan combustion profile (r2=0.80) (Schneider et al., 2006).  This 

BBOA factor is mostly associated with winds from the north and west—the direction of a large 

residential neighborhood upwind of the freeway.  When using five factors, the BBOA factor 

profile has even better correlations with both of these profiles (r2 of 0.89 and 0.91), plus an r2 of 

0.95 with an oak flaming profile.  However, since the fifth factor is unidentified, we have 

focused on the four-factor solution.   

The HOA factor accounted for 26% of the OM and had peaks of m/z 41, 43, 55, 57, and 

other fragments typical of hydrocarbon-like fragments.  HOA concentrations were highest during 

the early morning and overnight periods and, as a percent of total OM, the factor’s contributions 

were highest during the early morning (0600-0800 LST).  The HOA factor profile has a high 

correlation with diesel exhaust (r2=0.98) and gasoline exhaust (r2=0.96) source profiles (Mohr et 

al., 2009).  The HOA profile here was very similar to that observed in Pittsburgh (r2=0.99).  This 

factor is likely heavily influenced by the mobile emissions on the adjacent freeway but may also 

have originated in part from other sources.  Similar to concentrations of BBOA and other 

pollutants such as BC, HOA concentrations rapidly decreased with increases in wind speed, 

though on a relative basis there was no significant difference in its contribution.  With sustained 

winds (i.e., greater than 2 m/s), HOA concentrations were significantly higher under downwind 

conditions.  HOA had modest correlation with collocated measurements of CO (r2=0.66), NOx  

(r2=0.64), and BC (r2=0.68).  This may be in part because BC, CO, and NOx have large 

differences between upwind and downwind conditions.  For example, BC is twice as high under 

downwind conditions (average 2.3 µg/m3) than upwind conditions (average 1.2 µg/m3), while 

OM (and HOA) do not have as large a difference.   
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The last factor resolved was designated as semi-volatile OOA (SV-OOA), which 

accounted for 35% of the OM.  It showed strong peaks of m/z 41, 43, 55, 57, 67, 69, and 71 but 

also had some contribution from m/z 44, with a 43/44 ratio of 6, almost half the value for HOA 

(11).  The SV-OOA factor profile had a moderate correlation with Pittsburgh HOA and with 

chamber-aged diesel exhaust (r2 of 0.91 and 0.79, respectively), and lower correlation with 

Pittsburgh OOA (r2=0.59).  SV-OOA contributions were highest in the evening and overnight 

hours, though on a relative basis its contributions were generally very consistent across all hours.  

Like HOA, SV-OOA factor contributions decreased with higher wind speeds, but its relative 

contribution was not significantly different among wind speed ranges.  In other studies, this 

factor sometimes has a modest correlation with nitrate.  Here, nitrate was extremely episodic, in 

that its concentrations were less than 0.5 µg/m3 half the time, with a day-long episode of 

concentrations greater than 4 µg/m3 and a few hours during which concentrations intermittently 

exceeded 2 µg/m3.  In contrast, SV-OOA was present during nearly the entire study and had a 

modest diurnal pattern similar to other factors where it was highest in evening hours.   

It is also possible that the SV-OOA factor contains some contribution from cooking 

organic aerosol (COA), as the SV-OOA factor shows similarities in both profile and temporal 

patterns to a COA factor found in London and Manchester (Allan et al., 2010).  Similar to the 

COA profile, the largest peaks in the SV-OOA profile are at m/z 41 and m/z 55, and in both 

profiles m/z 41 is greater than m/z 43 and m/z 55 is more than twice m/z 57; this is in contrast to 

HOA, where m/z 43 is greater than m/z 41, and m/z 55 is only slightly higher than m/z 57.  

Similar to the COA factor, our SV-OOA factor peaks, on average, in the evening, again in 

contrast to HOA, which peaks in the morning and evening hours associated with rush hour.  

There are, however, times when the SV-OOA factor is high that are not likely periods of high 
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cooking emissions, such as late morning or midday.  Expanding to five factors was inconclusive, 

since the fifth factor was similar to SV-OOA and COA but was generally collinear with BBOA; 

it was unclear what this fifth factor represented, so we have retained the SV-OOA label for this 

factor, with the caveat that there is likely some COA influence.  

To help confirm factor identification and understand the OM composition difference 

between upwind and downwind conditions, we examined the factor contributions during 

downwind (N=1360) and upwind (N=949) conditions and compared them to the average over the 

study period.  We also examined the OM composition under downwind conditions (N=195) from 

0500 to 0900 LST, when the impact from emissions on the freeway is expected to be highest.  

Results are summarized in Figure 3-23.  As expected, HOA contributions are higher under 

downwind conditions; during morning downwind conditions, HOA accounts for 49% of the OM.  

SV-OOA was, on average, similar during upwind, downwind, and stagnant conditions, except 

during morning downwind situations when it was only 23% of the OM.  The minimal difference 

with different wind directions suggests that SV-OOA is a slightly aged factor that is not 

characteristic of direct, primary emissions.  BBOA contributions were low, on average, under 

downwind conditions and higher (16% on average) during upwind conditions.  LV-OOA 

contributions were relatively lower during morning downwind conditions and relatively highest 

during midday periods, regardless of wind direction. 
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Figure 3-23.  Attribution of OM by factor in the four-factor solution over all data, during downwind 
conditions only, during downwind conditions between 0500 and 0900 LST only, during downwind 
conditions midday, during upwind conditions only, during stagnant conditions, and during 2300-0500 LST 
only.  Figure is reproduced under Creative Commons Attribution 3.0, originally published in Brown et al., 
2012. 

3.4.4 Further Analysis of PMF Solution Space 

Fpeak is a parameter available in PMF to rotate the entire solution, a process that can 

help indicate if there is rotational freedom in the solution.  G-space plots of the base solution 

show distinct edges, indicating some factor interdependence.  The four-factor solution had the 

least number of edges (Figure 3-24).  An edge between LV-OOA and BBOA occurs in the four-

factor solution when BBOA is low but LV-OOA is present.  This may be due to the difficulty in 

finding a “fixed” profile that accounts for BBOA, which likely changes over the course of an 

evening as the emission rate from biomass burning decreases and the emissions become more 

processed in the atmosphere.  This idea is supported by the six-factor solution, in which 

additional factors better separate out and apportion BBOA and other sources.   
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Figure 3-24.   G-space plot for the four-factor solution.  Figure is reproduced under Creative Commons 
Attribution 3.0, originally published in Brown et al., 2012. 

 

The plot of HOA and LV-OOA has sufficient points at each axis so that there is no 

consistent edge away from the axes, but a subset of points shows a consistent ratio of 2.4 

between HOA and LV-OOA.  These points occur under all conditions throughout the study.  In 

the five-factor solution (not shown) this is still evident, and there is more of an edge in the G-

space plot.  In the six-factor solution (not shown) this group of points is not as prominent, as the 

mass of LV-OOA under these high-mass conditions is now associated with night OA II.  This 

suggests that the night OA factors may be informative, even if it is not clear what their sources 

are. 
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To ascertain whether the solution changes or whether these edges can be rotated to the y- 

and x-axes, rotation using Fpeak was performed.  PMF runs were conducted with Fpeak values 

at increments of 2 between 8 and –8 for a total of eight runs.  In general, minimal change was 

seen in the factor profile, contributions, and G-space plots; Q increased by less than 0.1% for the 

runs with the highest Fpeak value and by even less under other Fpeak values.  Since there is little 

change in the solution with Fpeak-induced rotations, the base solution appears to be rotationally 

unique.  The oblique edges in the G-space plots may be due to co-dependence among factors, or 

modeling errors, such as variation in true source profiles during the monitoring campaign. 

The four-factor solution was further explored with ME-2 rotational tools available in 

EPA PMF.  In each scenario, fragment ratios in factor profiles were pulled toward source profile 

ratios.  In one scenario, the ratio of m/z 43/44 in the SV-OOA factor (6.75) was pulled toward the 

m/z 43/44 ratio in the 5-hour aged diesel exhaust profile (1.34).  In another scenario, the m/z 

57/55 and 41/43 ratios in HOA (0.78 and 0.80) were pulled to the ratios in the diesel exhaust 

profile (1.03 and 0.69, respectively).  The BBOA factor ratio of m/z 60/91 was pulled to the 

chestnut smolder profile ratio (1.96 to 7.20).  Lastly, 157 points along an apparent edge in the 

SV-OOA versus LV-OOA G-space plot were pulled in an attempt to force additional 

independence between these factors.  Seeing how the solutions change, in terms of factor 

profiles, dQ, and G-space plots, can help us understand the stability of the original solutions.  

Different maximum dQ values were allowed for each combination; 1% and 3% of Q(robust) 

were calculated, and these values were used for the maximum dQ allowed for a given pull.  In 

the G-space pull, each point was allowed a dQ of 0.2%, for a total dQ of 31%. 

The results from these pulls are summarized in Table 3-2 and Figure 3-25.  Since results 

were similar with dQ values of 1% and 3%, only the dQ of 1% are shown, except for the BBOA 
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pull, where both are provided as an example.  In general, most pulls resulted in only minor 

changes in the HOA and LV-OOA factor profiles and contributions.  For example, when the 

HOA factor was pulled toward the diesel exhaust profile, the correlation between the two 

increased by only 0.02.  In all pulls, the correlation between BBOA and the chestnut smolder 

profile improved (e.g., correlation improved from 0.79 to 0.88 with the BBOA pull).  However 

this was often at the expense of the SV-OOA profile, where the amount of m/z 44 was much 

lower compared to the base solution, and in some pulls, was actually zero.  While LV-OOA and 

HOA did not vary much between these pulled solutions, the changes in SV-OOA and BBOA 

profiles and contributions suggest some rotational freedom in these two factors.  LV-OOA and 

HOA factors are similar across many studies, but the SV-OOA and BBOA factors vary among 

studies, and within this study under different pulling scenarios, because these factor profiles 

represent semi-fresh factors that are likely changing minute-to-minute in the atmosphere.  

Overall, the pulling results indicate that the base solution is likely at a global Q minima, and that 

there is little rotational freedom in the unpulled, base solution, in particular regarding the 

contributions of SV-OOA and BBOA. 

With the G-space pull, 157 points along an edge in the LV-OOA/SV-OOA scatter plot 

were pulled to reduce LV-OOA to zero.  LV-OOA concentrations on these points were 

successfully reduced towards zero, so that the edge was less well defined.  This resulted in a dQ 

of 9%, but an improvement in the comparison of the BBOA profile to the chestnut smolder 

profile (r2 from 0.79 to 0.93) and in the SV-OOA to aged diesel profile comparison (r2 from 0.69 

to 0.72).  The SV-OOA m/z 43/44 ratio also decreased from 4.4 to 2.9, which is similar to the 

ratio of other studies summarized in Ng et al (Ng et al., 2010).  HOA and BBOA contributions 

increased, while LV-OOA and SV-OOA contributions decreased.  Even though Q increased by 
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9%, these results are useful to show that contribution pulls based on the G-space plots helped 

improve the factor profiles, and to show what may be the bounds in the base solution results. 

 

 

Figure 3-25.    Attribution of OM with four factors for base run (base); ratio of m/z 41/43 in the HOA profile 
pulled toward the diesel exhaust profile (HOA pull); ratio of m/z 43/44 in the SV-OOA profile pulled toward 
the 5-hour aged diesel profile (SVOOA pull); ratio of m/z 60/91 in the BBOA profile pulled toward the oak-
flame source profile with different dQ values (BBOA dQ 1 and 3 pull); m/z 44 in LV-OOA profile pulled up 
maximally (LVOOA pull); and edge points on the HOA/LV-OOA G-space plot pulled down to the y- and x-
axes (G space pull). Figure is reproduced under Creative Commons Attribution 3.0, originally published in 
Brown et al., 2012. 
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Table 3-2.    Summary of pulls on the four-factor solutions, all with a maximum allowed dQ of 1%, except for one iteration with BBOA to Chestnut 
smolder (dQ=3%), and except for the edge points pull, which had a total allowed dQ of 31%, or 0.2% per point with a total of 157 points. 

Pull 
SV-OOA to Aged 

Diesel 
HOA to Diesel 

BBOA to Chestnut 
Smolder (dQ=1%) 

BBOA to Chestnut 
Smolder (dQ=3%) 

Edge points on 
SV-OOA vs. LV-

OOA 
Target Ratio m/z 43/44 

from 6.75 to 1.34 
Ratio m/z 57/55 from 
0.78 to 1.03 and ratio 
m/z 41/13 from 0.80 
to 0.69 

Ratio m/z 60/91 
from 1.96 to 7.20 

Ratio m/z 60/91 from 
1.96 to 7.20 

157 points pulled 
to axis 

Change in target 
values? 

Yes Yes Yes Yes Yes 

dQ 0.1% 0.5% 0.4% 1.3% 8.8% 
Improved G-space 

plot? 
Worse LV-OOA 
vs. SV-OOA plot 

No change No change No change No change but for 
forced points 

LV-OOA vs 
Pittsburgh OOA 

Declined r2 from 
0.99 to 0.93 

No change No change No change No change 

HOA vs Diesel No change Slightly better No change No change No change 
BBOA vs Chestnut 
smolder 

Slightly better; 
excl. m/z 44 

Improved r2 from 
0.79 to 0.87 

Improved r2 from 
0.79 to 0.88 

Improved r2 from 
0.79 to 0.86 

Improved r2 from 
0.79 to 0.93 

SV-OOA vs Aged 
Diesel 

Improved r2 from 
0.62 to 0.69 

Slightly worse r2 
from 0.62 to 0.57 

Worse r2 0.62 to 
0.56, due to m/z 44 
= 0 

Worse r2  0.62 to 
0.56, due to m/z 44 = 
0 

Improved r2 from 
0.69 to 0.72 

Other Changes of 
Note 

0 m/z 44 in BBOA 
factor; 
unreasonable 
result 

Large decrease in m/z 
44 in SV-OOA, 
resulting in 43/44 
ratio of 21, higher 
than HOA ratio of 10 

In SV-OOA m/z 44 
= 0; unreasonable 
result 

In SV-OOA m/z 44 = 
0; in BBOA m/z 55 = 
0; unreasonable result 

SV-OOA m/z 
43/44 ratio 
changed from 4.4 
to 2.9 
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3.5 Interpretation and Limitations of Factor Analysis Results 

Evaluating solutions with different numbers of factors, comparing profiles to source 

profiles, examining temporal trends, and exploring rotational ambiguity with the rotational tools 

available in ME-2 can lead to a greater understanding of the AMS data set.  In general, all the 

factors were consistent under multiple scenarios, suggesting high confidence in their 

apportionment.  Increasing the number of factors from four helped to better characterize the 

solution space, but the additional “night OA” factors are not easily attributable to known sources.  

Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be 

the most plausible one.  Since solutions found by pulling the profiles or using Fpeak retained 

these oblique edges, there appears to be little rotational freedom in the base solution and it can be 

judged as reasonable.  

The Q/Qexp ratios for most fragments were around unity (i.e., between 0.8 and 1.3), 

indicating that the obtained Q values were approximately equal to the expected values, and the 

Q/Qexp values for each sample date/time were also reasonable (Figure 3-26).  Large Q/Qexp values 

in the time series occurred during sudden 2-minute spikes in OM concentration and during 

extremely low concentration periods, meaning the PMF solution does not explain the OM very 

well during these periods.  Some fragments had Q/Qexp ratios below 0.5, indicating that 

computed Q values were significantly smaller than the expected Q values.  This discrepancy is 

most likely due to the global uncertainty (sij increase of 10%); since the Q/Qexp ratios for some 

m/z were fairly low, the 10% value may be too high for these m/z but appropriate for many other 

fragments.  The Q/Qexp ratios were between 1.3 and 2 for several m/z, indicating that the average 

residuals are between 11 and 14% of xij for these m/z, since Q depends quadratically on the 

average size of the residuals.  The Q contributions drop sharply above m/z=198, as most of these 
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fragments had low S/N ratios and were downweighted.  The large residuals may indicate that the 

PMF solution does not fully characterize these fragments; fragments with high Q/Qexp include 

m/z = [44, 60, 73, 85, 86, 111, 112, 113, 114, 123, 124, 125, 126, 137, 138, 140, 141, 154, 155, 

156].  Inaccurate subtraction of the inorganic component from xij before PMF analysis is a 

possibility, though many of the fragments with high Q/Qexp do not have an inorganic component.  

More likely, the large residuals are due to the variation of factor profiles with time and/or to the 

presence of an occasional, spurious, or localized source(s). 

a)  

b)    
Figure 3-26.   Q/Q(expected) a) by fragment for the four-factor solution (the highest Q/Q(expected) values are for 
m/z 113, 86, 60, and 140, all of which are greater than 3), and b) by date/time, along with OM (µg/m3) 
values (tick marks with the date indicate midnight on that date).  Figures are reproduced under Creative 
Commons Attribution 3.0, originally published in Brown et al., 2012.   
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is expected because a number of the previous studies occurred in the summer and/or in 

environments with a higher amount of oxidized aerosol than the present study.  Previous studies 

in Los Angeles, Pittsburgh, rural British Columbia, and elsewhere have typically found that at 

least one-third of the OM was attributable to LV-OOA, originally termed OOA I (Allan et al., 

2003a; Ulbrich et al., 2009a; Docherty et al., 2008; Jimenez et al., 2009; Sun et al., 2009).  The 

lower amount of LV-OOA observed during the wintertime Las Vegas study could be due to less 

transported/aged aerosol, lower biogenic emissions, and/or less overall atmospheric oxidation 

compared to summertime.  In Zurich, a wintertime study found 52% to 57% of the OM to be LV-

OOA (Lanz et al., 2008), 69% of which originated from non-fossil sources such as wood 

burning.  In Las Vegas, there is a much lower concentration of BBOA than in Zurich, leading to 

a smaller concentration of LV-OOA from non-fossil sources and a smaller concentration of LV-

OOA overall.   

3.6 Summary 

EPA PMF v4.0, with its new rotational tools, was successfully applied to a near-road, 

high time resolution AMS data set.  HOA was a quarter of the OM (24%), and higher under 

downwind conditions (about 40%).  In addition to this local, primary OA, there was a highly 

oxidized background of OA (LV-OOA) that, on average, constituted 29% of the OM, and a less 

oxidized, semi-volatile fraction that accounted for 34% of the OM.  During the evening hours, 

biomass burning (BBOA) was also seen, likely from the surrounding residential area.  Rotational 

tools allowed for additional analysis of the PMF solution space, increasing our confidence in the 

results. 
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4. Elemental Analyses of Organic Aerosol 

4.1 Chapter Summary 

Understanding the organic matter/organic carbon (OM/OC) ratio in ambient aerosol is 

critical to achieve aerosol mass closure in routine particulate matter (PM) measurements, to 

assess the sources of and the degree of chemical processing organic aerosol particles have 

undergone,  and to relate ambient pollutant concentrations to health effects.  Of particular interest 

is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal 

gradients in source emissions are common.  We provide results of near-roadway high-time-

resolution OM concentration and OM/OC ratio observations during January 2008 at Fyfe 

Elementary School in Las Vegas, Nevada, 18 meters from the US 95 freeway soundwall, 

measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-

AMS).  The average OM/OC ratio was 1.54 (±0.20 standard deviation), typical of environments 

with a low amount of secondary aerosol formation.  The 2-minute average OM/OC ratios varied 

between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73.  The 

ratios were highest during periods of low OM concentrations and generally low during periods of 

high OM concentrations.  OM/OC ratios were low (1.52 ±0.14 on average) during the morning 

rush hour (average OM = 2.4 µg/m3) when vehicular emissions dominate this near-road 

measurement site.  The ratios were slightly lower (1.46 ± 0.10) in the evening (average OM=6.3 

µg/m3), when a combination of vehicular and fresh residential biomass burning emissions was 

typically present during a period characterized by strong atmospheric stability.  The hourly 

averaged OM/OC ratio peaked at 1.66 at midday.  OM concentrations were similar, regardless of 

whether the monitoring site was downwind or upwind of the adjacent freeway throughout the 
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day, though they were higher during stagnant conditions (wind speed < 0.5 m/s).  The OM/OC 

ratio generally varied more with time of day than with wind direction and speed.   

4.2 Daily Patterns of OM/OC Ratio 

Daily averaged OM/OC ratios varied between 1.44 and 1.73, with an average of 1.54, 

while daily concentration averages of OM were between 1.1 and 6.6 µg/m3.  Generally the 

OM/OC ratio was low when OM was high; this occurred when stagnant conditions led to a build-

up of OM concentrations (Figure 4-1).  The lower OM/OC ratios are consistent with more fresh, 

primary aerosol, while the higher values mean more oxygen, hydrogen, and/or nitrogen is 

associated with the organic aerosol, likely from atmospheric processing.  Higher OM 

concentrations are also expected to cause increased partitioning of the semi-volatile, less 

oxidized material to the particle phase (Sage et al., 2008; Robinson et al., 2007), leading to lower 

OM/OC ratios.  No clear relationship of OM/OC with temperature was evident in the data set, 

even though temperature plays a role in gas/particle partitioning and can, therefore, influence the 

ambient OM concentration.  Hourly averaged temperature ranged between -1.6 to 15.5 degrees 

C.  On a daily average basis, higher wind speeds were associated with higher OM/OC ratios.  

When the urban area is well ventilated we expect more oxidized, aged, regional aerosol to 

comprise a greater proportion of the OM.  This relationship is clearer when examining hourly 

averages (discussed later).  For the observed daily average OM/OC ratio range of 1.44 to 1.73, if 

OC is measured and OM calculated with the traditionally assumed urban OM/OC ratio of 1.4, 

then the estimate of OM could be biased low by up to 17%. 
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Figure 4-1.  Time series of hourly averaged OM/OC ratio and OM concentration (µg/m3). 

a)  

b)  
Figure 4-2.  Relationship of OM/OC, OM with temperature: a) hourly averaged OM (µg/m3) and 
temperature (°C) colored by OM/OC ratio, with numbe rs indicating hour of day; and b) average daily 
OM/OC ratio, OM concentration (µg/m3), temperature (°C) and wind speed (m/s).  
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4.3 Diurnal Patterns of OM/OC and Elemental Ratios 

Concentrations of OM were highest in the evening hours when wind speeds were low, 

atmospheric stability was relatively high, and a combination of local primary emissions 

(including residential biomass burning) occurred (Brown et al., 2012).  A secondary OM peak 

typically occurred during the morning rush hour; Figure 4-3 summarizes the average diurnal 

variability of OM, OM/OC, BC, CO, wind speed, temperature, and small vehicle volume during 

the study.  Large-vehicle volume (not shown) peaked in the midday and was low overnight.  

Traffic volume peaked in the morning and evening hours, with speeds averaging between 55 and 

65 mph.  For comparison, BC and CO had similar concentration peaks in the morning and in the 

evening.     

The AMS-derived OM/OC ratio was on average higher in the midday (1.67) and at 0300 

LST (1.70) than in the morning (1.55 at 0600 LST) and evening (1.47 at 2100 LST).  The low 

ratio in the morning hours corresponded with the morning rush hour and typically low wind 

speeds.  Under these conditions and time of day, the predominant source of organic aerosol is 

likely fresh emissions from the freeway and the larger urban area, with a low amount of SOA.  

The OM/OC ratio of 1.54 is indicative of fresh aerosol, and in particular of fresh vehicle 

emissions (Chirico et al., 2010; Reff A. et al., 2009).  The increasing OM/OC ratio during the 

day is consistent with aerosol aging and SOA production.   

Between 1500 LST and 1700 LST, the OM/OC ratio rapidly drops from 1.67 to 1.50, 

then remains low until the minimum of 1.47 at 2100 LST.  During this time, average OM goes 

from a minimum of 1.3 µg/m3 at 1500 LST to 3.3 µg/m3 at 1700 LST, reaching a peak of 5.9 

µg/m3 at 2100 LST, as a combination of vehicular emissions from the evening rush hour and 
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residential biomass burning contribute OM while wind speeds decrease and atmospheric stability 

increases (Brown et al., 2012).   

 
Figure 4-3.  Average diurnal pattern of small-vehicle volume (counts/hour*1000), difference in 10 m and 2 
m temperature (positive values indicate a stronger ground-level temperature inversion), BC (µg/m3), CO 
(ppm), wind speed (m/s), average concentration by hour and PMF factor (µg/m3), OM (µg/m3), and 
OM/OC ratio at Fyfe during January 5-28, 2008, by hour (LST). 

 

While examination of diurnal averages is valuable, the aggregation of many data points to 

calculate the averages may mask additional features in the data.  In particular, there are 

differences in OM/OC ratios both with time of day and with OM concentration.  Figure 4-4a 

shows the OM/OC ratio vs. OM concentration for four times of day:  morning rush hour (0500-

0900 LST), midday (0900-1700 LST), evening (1700-2300 LST), and overnight (2300-0500 

LST).  At all times of day, OM/OC is lower and the range of values decreases when OM 

concentrations are higher, as also seen in Figure 4-4b.  The observed relationship between 

OM/OC and OM might result from greater gas-to-particle partitioning of more volatile organic 

compounds when OM is present at higher concentration (Robinson et al., 2007; Lipsky and 
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Robinson, 2006).  Cappa and Jimenez (2010) determined that biomass burning organic aerosol 

(BBOA) and primary, hydrocarbon-like organic aerosol (HOA) have the greatest potential for 

aerosol formation because the semi-volatile material associated with BBOA and HOA is most 

likely to move to the particle phase under high OM, low temperature conditions.  This semi-

volatile material has a relatively low OM/OC ratio and can move into the particle phase under 

these high OM conditions without first undergoing extensive oxidation.  Chan et al. (2010) also 

demonstrated that OM/OC decreases with increased OM concentrations, though they ascribed 

this trend to different source mixtures as well as increased partitioning at their site, near Toronto. 
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b)  
Figure 4-4.   (a) median OM/OC ratio by OM concentration (µg/m3) bin and time of day, with 95% 
confidence interval, with log scale on x-axis; and (b) hourly averages of OM/OC ratio and OM 
concentrations (µg/m3) colored by hour.  Originally published in Brown et al., 2013. 

 

The diurnal variations of the Las Vegas OM/OC ratio are largely driven by changes in 

O/C ratio, and to a lesser degree, H/C ratio.  Figure 4-5 shows the diurnal pattern of O/C and 

H/C, and Figure 4-6 shows a scatter plot of H/C versus O/C for hourly averages, also known as a 

van Krevelen diagram (Heald et al., 2010).  H/C is highest in the morning and evening (overall 

average 1.75), while O/C is highest in the middle of the day (overall average 0.30).  On the H/C 

versus O/C scatter plot, starting in the lower right corner at 0300 LST, average H/C is at its 

lowest and O/C at its highest.  As the morning commute (and associated fresh vehicle emissions) 

begins, there is a slow increase in H/C and decrease in O/C; at 0600 LST, when the morning 

commute is nearing its peak, there is a sharp increase in H/C and decrease in O/C.  Starting at 

0800, H/C slowly decreases and O/C slowly increases until 1600 LST.  During this midday 

period, mixing heights increase, temperatures rise, and increased atmospheric oxidation occurs, 

leading to lower OM concentrations and higher O/C.  As OM is diluted and temperatures 
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increase, more organic matter can partition to the gas phase; the species partitioning to the gas 

phase are expected to have lower O/C ratios than the species remaining in the particle phase, 

further increasing the O/C ratio of the particle phase.   
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a)  

b)  

c)  

Figure 4-5.  Diurnal pattern in January 2008 of a) O/C ratio; b) H/C ratio; and c) OM/OC ratio.  Boxes 
show the interquartile range, whiskers the 5th and 95th percentiles, dashes the median, and solid colored 
line the mean. 
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Figure 4-6.  H/C vs O/C ratio averaged by hour during all hours of January 2008, colored by OM 
concentration; each number indicates the hour (LST).   

 

By 1700 LST, the evening commute has begun and atmospheric stability increases, 

leading to a large increase in H/C and a decrease in O/C.  Over the next 6 hours, OM peaks, H/C 

remains high (evening average of 1.58) and O/C remains relatively low (evening average of 

0.24).  During the evening, in addition to fresh vehicle emissions, residential biomass burning 

contributes to OM, as seen via analysis of the data with positive matrix factorization (PMF) 

(Brown et al., 2012).  As OM increases and temperature decreases in the evening, more organic 

compounds can partition to the particle phase, further increasing OM and the H/C ratio.  By 2300 

LST, the emissions associated with the evening commute and residential biomass burning have 

decreased, leading to a slow decrease in OM, a decrease in H/C, and an increase in O/C 

throughout the night.  A number of studies (Donahue et al., 2012; Kroll et al., 2011; Jimenez et 

al., 2009; Aiken et al., 2008) have demonstrated that direct, primary emissions typically have 

O/C of 0-0.17; heavily oxidized organic aerosols have O/C of 0.67-1; semi-volatile organic 

aerosols have O/C between 0.33 and 0.67; and biomass burning organic aerosols have a very 
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wide range of 0.07-0.42.  Thus, a combination of mobile source and residential biomass burning 

emissions, in addition to oxidized background organic aerosol, can easily result in the observed 

O/C and OM/OC ratios at this Las Vegas site.   

4.4 Additional H/C versus O/C Ratio Analyses 

Figure 4-7 summarizes the van Krevelen diagrams for all 2-minute data measured during 

January 2008.  H/C and O/C span a wide range.  At lower OM concentrations, O/C is high and 

H/C is low, indicating that the OA is well oxidized.  When OM is high, H/C is also high and O/C 

relatively low, indicating that high OM concentrations occur when fresh emissions (high H/C) 

are a large source of OM.  These high OM concentrations typically occur in the evening (Figure 

4-7b).  High H/C with low O/C also occurs in the morning, but OM concentrations are not as 

high as in the evening. 

Figure 4-8 shows Van Krevelen diagrams where data points are colored by the fraction of 

OM coming from different PMF factors: HOA, LV-OOA, SV-OOA and BBOA.  At high H/C 

and low O/C, HOA is highest, while at high O/C LV-OOA is highest.  BBOA by mass is highest 

in the evening when H/C is high and O/C is low, and points of high BBOA fraction occur along 

the lower edge of the data range.  SV-OOA is highest when H/C is high across a range of O/C 

values. 
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a)  

b)  

Figure 4-7.    H/C vs O/C when OM > 0.5 µg/m3 for a) all 2-minute data, colored by OM concentration, 
and b) hourly averages, colored by OM concentration and with numbers indicating hour of the day. 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 4-8.  H/C vs O/C ratio by fraction of OM from: a) HOA; b) BBOA; c) LV-OOA; and d) SV-OOA; 
numbers indicate hour of day. 

 

4.5 Variations by Wind Speed and Direction (Upwind/Downwind) 

We also examined how the OM/OC ratio and OM and BC concentrations vary with 

changes in wind speed and wind direction (i.e., whether the monitoring site is upwind or 

downwind of the adjacent freeway).  OM and BC were higher during low wind periods.  Figure 

4-9 shows the relationship of hourly OM with wind speed and OM/OC ratio:  once winds are 
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greater than 2 m/s, OM is nearly always below 5 µg/m3, and the OM/OC ratio is generally 

greater than 1.6.  With low wind speeds, OM is high, and the OM/OC ratio is quite low, 

averaging 1.4.   

BC has a pattern similar to OM, with much higher concentrations when wind speeds are 

less than 2 m/s.  With higher wind speeds and greater ventilation, aged/oxidized regional aerosol 

makes up a larger proportion of the OM.  Note that lower OM concentrations may lead to the 

less-oxidized material partitioning into the gas phase, reinforcing a higher OM/OC ratio.  The 

opposite is true when higher OM concentrations lead to more semi-volatile, less oxidized 

material partitioning into the particle phase.  

 
Figure 4-9.  OM concentrations (µg/m3) as a function of wind speed, colored by OM/OC ratio. 

 

There was little trend in H/C and O/C with wind speed or direction, except that low wind 

speeds are associated with high OM concentrations, and thus higher H/C and lower O/C.  Figure 

4-10 shows van Krevelen diagrams colored by wind speed and direction.  As seen with OM/OC 

ratio, there was no statistically significant difference in the H/C to O/C relationship during 

upwind versus downwind conditions.  Rather, wind speed and time of day were more important 

than wind direction. 
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a) 

 

b) 

 
Figure 4-10.   H/C vs O/C ratio by a) wind speed, and b) wind direction.  In panel b, green indicates the 
direction when the monitoring site is downwind of the freeway, which mostly occurred during midday.  In 
both plots, numbers indicate hour of day. 

 

Since concentrations vary significantly by time of day, we compared values during 

upwind, downwind, and stagnant conditions, grouped into five times of day (Figure 4-11):  

overnight (0000-0600), morning (0600-0900), midday (0900-1600), evening (1600-2100), and 

late evening (2100-0000).  During all time periods, OM is consistently higher during stagnant 

conditions.  The OM/OC ratio is broadly similar under all upwind/downwind/stagnant regimes 

for a given time period.  During the morning rush hour, when OM/OC on average dips to 1.51, 

there is no statistical difference in the OM/OC ratio at the 95% confidence level between 

upwind, downwind, or stagnant conditions.  In the midday, OM is higher and OM/OC lower 

during downwind conditions compared to upwind conditions; this is the time of day when winds 

blow generally perpendicular to the freeway, so it is the time of the most direct influence of fresh 

freeway emissions at the site.  During the 1600-2100 and 2100-0000 LST periods, OM/OC is 

similar regardless of wind direction, with a median value between 1.41 and 1.45.  During the 
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overnight period before the morning rush hour, OM/OC is the most variable, especially during 

downwind conditions.   

 

 

Figure 4-11.  Values by time of day bin during downwind, upwind, and stagnant (wind speed < 0.5 m/s) 
conditions for (top) OM concentrations and (bottom) OM/OC ratio.  Top figure is reproduced under 
Creative Commons Attribution 3.0, originally published in Brown et al., 2012. 

4.6 Discussion 
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took place in locations and/or times of year with more photochemistry and thus higher OM/OC.  

For example, Mexico City and Riverside summertime average OM/OC ratios were around 1.8 

(Williams et al., 2010; Aiken et al., 2008), and the ratio can be even higher at rural sites, such as 

2.3 in rural British Columbia (Sun et al., 2009), and 1.9 at rural Midwestern sites (Bae et al., 

2006).  The average ratio of 1.54 is typical of relatively fresh vehicle or other emissions, such as 

those generated in laboratory settings (Chirico et al., 2010; Mohr et al., 2009).  In Las Vegas 

during the summertime, the OM/OC ratio would likely be higher, as increased photochemistry 

would lead to higher oxygen content and higher OM/OC ratios.    

The day-to-day variability in the OM/OC ratio is quite large, suggesting that using a fixed 

OM/OC value in PM mass closure calculations, even one that changes seasonally, may be 

insufficient to achieve accurate mass closure on individual days.  In national scale networks like 

CSN and IMPROVE, neither OM/OC nor OM is measured; rather, an assumed OM/OC ratio 

must be employed to estimate the OM from OC measurements, or the OM/OC ratio may be 

imputed, e.g., by assuming that any PM2.5 mass unaccounted for is due to the unmeasured O, H, 

and N associated with the OC.  Since OC often accounts for one-third to one-half of the average 

PM2.5 mass (Hand et al., 2011), the use of a fixed OM/OC ratio is likely the largest uncertainty in 

trying to achieve mass closure.  Even with semi-continuous measurements, such as those from 

the Sunset OCEC analyzer, OM/OC cannot be determined.  Health studies that rely on OC 

measurements may under- or over-estimate exposure to OM, and converting OC to OM with a 

fixed OM/OC ratio represents a significant source of uncertainty.   

As seen in Figure 4-4, OM/OC decreases with increasing OM concentrations.  This is 

especially evident in the evening, when mobile source emissions are at a peak, wind speeds are 

low, and atmospheric stability is increased.  The low OM/OC at higher OM is likely due to a 



  

121 

combination of fresh particulate and semi-volatile emissions accompanied by the movement of 

some semi-volatile material into the particle phase as OM concentrations increase.  The low 

OM/OC ratio at high OM concentrations indicates that there may be a large effect from gas-to-

particle partitioning of relatively fresh, less oxidized material, since if emissions were first 

oxidized before partitioning into the particulate phase, the evening OM/OC ratio would likely be 

higher than the observed 1.4.  Robinson (2007) and others have demonstrated that as particle 

concentrations increase, semi-volatile material is more likely to move into the particle phase.  

Here, this mechanism may lead to a rapid rise in OM and corresponding decrease in OM/OC 

ratio in the evening, as fresh, less-oxidized material partitions into the particle phase without first 

undergoing extensive oxidation. 

4.7 Chapter Conclusions 

The wintertime diurnal and daily variations in OM/OC ratio in Las Vegas were 

determined using an HR-AMS.  HR-AMS measurements correlated well with measurements 

made by a Sunset OC analyzer.  We found that the OM/OC ratio was on average 1.54 (± 0.20 

standard deviation), and the daily average varied between 1.44 and 1.73.  OM/OC was generally 

lowest, approximately 1.4, during the morning and evening hours when OM was highest.  A 

combination of peak emissions and stable atmospheric conditions in the evening may lead to 

increasing OM and, as more volatile material partitions into the particle phase, decreasing 

OM/OC.  The diurnal variation of the OM/OC ratio suggests it is a combination of regional, 

oxidized background aerosol with a high OM/OC ratio (i.e., OM/OC ratio of 2 or higher), 

dominant during the daytime, which is then combined with fresh, low OM/OC ratio emissions 

(i.e., with OM/OC ratio of 1.2 to 1.5) in the morning and evening.  Day-to-day variability in the 

fine particle OM/OC ratio is quite large, suggesting that using a fixed OM/OC value in PM mass 
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closure calculations, even one that changes seasonally, may be insufficient to achieve accurate 

mass closure on individual days. Health studies that rely on OC measurements may under- or 

over-estimate exposure to OM, and converting OC to OM with a fixed OM/OC ratio represents a 

significant source of uncertainty; thus, air quality managers may not have sufficient information 

about the importance of OM contributions to PM2.5 to make optimal regulatory decisions.   
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5. Particle Size Analyses 

5.1 Chapter Summary 

Observations of the particle size distribution by mass during our study were analyzed to 

understand how the organic size distribution is different than the distribution of inorganic 

species, and how the organic size distribution varies with time of day and meteorology.  OM had 

a very broad average size distribution, indicating a mixture of fresh, less oxidized smaller 

particles and more aged, oxidized particles.  In contrast, the inorganic species like nitrate had 

mass clearly associated with larger particles only, i.e., vacuum aerodynamic diameter (dva) of 

500 nm.  There was only modest difference in OM size distribution by time of day or 

upwind/downwind/stagnant conditions, though the larger size particles (e.g., greater than 200 

nm) were enhanced in heavily oxidized fragments like m/z 44.  Time series analysis revealed OM 

was well distributed between 100 and 400 nm dva during the evenings when OM was highest.  

These analyses support the chemical analyses shown in earlier chapters, which suggest that 

primary, less oxidized particles and biomass burning are a large fraction of the OM. 

5.2 Average Size Distribution by Species 

Over the course of the study, OM had on average a very broad size distribution (Figure 5-

1), while inorganic species, ammonium, sulfate, and nitrate, all had a sharper size distribution, 

with peaks at 400-500 nm dva.  Ammonium nitrate and ammonium sulfate are formed as a result 

of the reaction of gaseous ammonia with sulfuric and nitric acids, oxidation products of SO2 and 

NOx.  Their large particle sizes observed here suggest that these products likely formed by gas-

to-particle partitioning onto the surface of pre-existing aerosol particles or, perhaps, droplet 

processing.  OM exhibited a large particle size range.  Larger particles may result from 
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condensation of organic gases onto existing particles, coagulation of smaller particles, or 

oxidation in atmospheric droplets via aqueous reactions.  Smaller particles may reflect fresh 

particle formation from emissions or new particle formation from oxidized VOCs.  This 

combination of pathways and mixture of fresh and aged particles likely leads to the observed 

broad size distribution. 

 

 
Figure 5-1.  Size distribution (dM/dlog10dva) of OM, nitrate, sulfate and ammonium by vacuum 
aerodynamic particle diameter (dva) during January 2008. 

 

5.3 Characterization of OM Size Distribution and Composition 

As seen in Figure 5-1, the average size distribution of OM is quite broad, in contrast to 

the inorganic species.  In Figure 5-2, the average OM mass spectra for particles with dva less than 

100 nm, between 100 nm to 300 nm, 300 nm to 600 nm and greater than 600 nm are shown.  In 

addition, the ratio between m/z 43 and m/z 57 with m/z 44 (43/44 ratio, 57/44 ratio) is also 

shown; these ratios can be used to understand the relative portion of HOA-type aerosol 

(represented by m/z 57) or SV-OOA type aerosol (m/z 43) to LV-OOA-type aerosol (represented 

by m/z 44).  There is little variability in the average spectra among each size bin.  However, 

there is some variation in the 43/44 ratio, with a lower ratio in the largest 2 size bins (1.35 for 
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600-1000 nm, and 2.11 for 300-600 nm) compared to smaller particles sizes (range of 2.42-2.61).  

This is consistent with the idea that more oxidized particles, enhanced in m/z 44, are more aged 

and associated with larger particles, leading to a lower 43/44 ratio in the particles with dva greater 

than 300 nm, and in particular those greater than 600 nm.  

  By examining the size distributions of m/z fragments that are examples of the range of 

organic aerosol we can better understand the type of aerosol that may be important in different 

size ranges.  For fresh, primary HOA-type aerosol, m/z 57 can be used; for HOA and SV-OOA, 

m/z 43 can be used; for heavily oxidized OOA-type aerosol, m/z 44 can be used; and for BBOA, 

m/z 60 can be used.  Differences between m/z are better seen in Figure 5-3, which shows the size 

distribution of these four fragments over the whole study.  Similar to OM, m/z 43, 57 and 60 all 

have broad size distributions, generally with most mass between 200 to 400 nm dva, though with 

some modest mass even below 100 nm.  In contrast, m/z 44 has a peak between 300 to 500 nm 

dva, more similar to the secondary inorganic species.  These results indicate that smaller size 

particles are not only freshly emitted particles, but are a mixture of fresh, HOA-type organic 

species mixed with more aged, oxidized species.   
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Figure 5-2.  Average mass spectra of OM and ratios of m/z 43 to 44 and 57 to 44 for particles of dva: 40 to 
100 nm, between 100 nm to 300 nm, 300 nm to 600 nm and greater than 600 nm.  

 
Figure 5-3.  Size distribution of m/z 43, 44, 57 and 60 (primary y-axis) and OM (secondary y-axis). 
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200 nm dva is where the majority of the mass of the inorganic species resides, possibly indicating 

this size range is where the more processed aerosol are, whereas fresher, organic-dominated 

particles are less than 200 nm dva.  Particles less than 200 nm dva would also account for the 

majority of particle number.  Figures 5-4 through 5-6 step through organic mass spectra for 

particles greater than and less than 200 nm dva, on average and for the morning, midday and 

evening.  There is little difference between the smaller and larger diameter spectra in the 

evening, with the difference between spectra for every m/z less than 0.01.  In the morning and 

midday the major difference between the smaller and larger diameter spectra is fraction of signal 

from m/z 44 (and m/z that are directly proportional to m/z 44 such as 28).  In midday, m/z 44 is 

7% of the signal in the larger size particles, and is 5% of the signal in the smaller particles.  In 

the morning, m/z 44 is 5% of the signal in the larger particle spectrum and 3% in the smaller 

particle spectrum.  These differences are small, though do suggest the smaller particles have less 

mass from heavily oxidized organic aerosol compared to the larger particles.     
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Figure 5-4.  Average organic mass spectra (fraction of signal by m/z) during morning (0500-0900 LST) for 
(top) particles less than 200 nm dva, (middle) particles greater than 200 nm dva, and (bottom) the 
difference between the top and middle spectra. 
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Figure 5-5.  Average organic mass spectra (fraction of signal by m/z) during midday (1100-1500 LST) for 
(top) particles less than 200 nm dva, (middle) particles greater than 200 nm dva, and (bottom) the 
difference between the top and middle spectra. 
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Figure 5-6.   Average organic mass spectra (fraction of signal by m/z) during evening (1700-2100 LST) for 
(top) particles less than 200 nm dva, (middle) particles greater than 200 nm dva, and (bottom) the 
difference between the top and middle spectra. 

 

5.4.2 Changes in OM Size Distribution by Time of Day 

The OM size distribution was typically broad throughout the day, even as OM 

concentrations changed.  Figure 5-7 summarizes the average OM size distribution in morning, 

midday and evening; the average concentration by hour is also shown.  The size distribution of 
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During morning, midday and evening OM has an average broad size distribution.  In the 

evening, there is relatively more mass in smaller particles less than 200 nm d

times of day.  This broader size distribution with similar mass from 100 nm d

from 400 nm dva particles in the evening indicates the presence of smaller, fresh/less oxidized 

particles compared to other times of day.  This result is consistent with the low OM/OC, low O/C 

and high H/C ratios observed in the evening.  With higher OM, low inversion layers and low 

wind speed in the evening, smaller, fresh particles may be forming during the evening, leading to 

the broad size distribution.  
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b)
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During morning, midday and evening OM has an average broad size distribution.  In the 

evening, there is relatively more mass in smaller particles less than 200 nm dva compared to other 

distribution with similar mass from 100 nm dva particles 

particles in the evening indicates the presence of smaller, fresh/less oxidized 

particles compared to other times of day.  This result is consistent with the low OM/OC, low O/C 

d high H/C ratios observed in the evening.  With higher OM, low inversion layers and low 

wind speed in the evening, smaller, fresh particles may be forming during the evening, leading to 

 

 
a) average concentration by hour for OM and BC (µg/m3), with circles indicating the time of 

(morning, midday and evening); b) size distribution (dM/dlog10dva) of OM for morning (0600
(1700-2200). 

Differences in the size distribution of example m/z further demonstrate the importance of 

fresh, small particles in the morning and evening.  Figure 5-8 shows m/z 43, 44, 57 and 60 for 

0900 LST), midday (1200-1500 LST) and evening (1800-2100 LST).
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times, m/z 44 has a peak around 300-400 nm, and in the evening it also has a secondary peak 

around 100 nm.  m/z 57 and m/z 43 also have a peak around 300-400 nm, but have a wider 

distribution down to the smaller size range, especially in evening when the amount of mass is 

similar between 100 to 400 nm.  m/z 60 is only evident in the evening, and it also has a wide size 

distribution, similar to m/z 57. 
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a) morning

 

b) midday

 

c) evening

 

 

Figure 5-8.    Size distributions of m/z 43, 44, 57 and 60 during: a) 0500-0900 LST; b) 1200-1500 LST; and c) 1800-2100 LST.
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Next, the differences in OM size distribution during upwind, downwind and stagnant 

conditions, by time of day, were examined (Figure 5-9).  At all times concentrations are higher 

during stagnant conditions than upwind or downwind conditions.  Under stagnant conditions, 

there appears to be slightly more mass from smaller size particles, e.g., less than 200 nm, 

compared to upwind or downwind conditions.  During midday and 0000 LST there is slightly 

more mass from these smaller particles during downwind conditions compared to upwind 

conditions as well, possibly due to influence from emissions on the freeway.  This effect is not 

noticeable during the morning or evening, possibly because concentrations are higher from both 

upwind and downwind conditions in these times; a similar lack of difference between upwind 

and downwind conditions during morning and evening is also seen for OM and OM/OC. 

 

a) 

  

b) 

 

c) d) 

 
Figure 5-9.    OM size distribution during stagnant, upwind and downwind conditions for a) 2200-0500 
LST; b) 0500-0900 LST; c) 0900-1700 LST; and d) 1700-2200 LST. 

3.0

2.0

1.0

0.0

dM
/d

lo
g 1

0
d v

a 
(µ

g 
m

-3
)

10
2 3 4 5 6

100
2 3 4 5 6

1000
vacuum aerodynamic diameter (nm)

 stagnant
 upwind
 downwind

3.0

2.5

2.0

1.5

1.0

0.5

0.0

dM
/d

lo
g 1

0
d v

a 
(µ

g 
m

-3
)

10
2 3 4 5 6

100
2 3 4 5 6

1000
vacuum aerodynamic diameter (nm)

 stagnant
 upwind
 downwind

2.0

1.5

1.0

0.5

0.0

dM
/d

lo
g 1

0
d v

a 
(µ

g 
m

-3
)

10
2 3 4 5 6

100
2 3 4 5 6

1000
vacuum aerodynamic diameter (nm)

 stagnant
 upwind
 downwind

6

5

4

3

2

1

0

dM
/d

lo
g 1

0d
va

 (
µ

g 
m

-3
)

10
2 3 4 5 6

100
2 3 4 5 6

1000
vacuum aerodynamic diameter (nm)

 stagnant
 upwind
 downwind



  

135 

 

5.5 Time Series Analysis of OM Size Distribution 

OM followed a typical pattern of high evening concentrations, a secondary peak in the 

early morning, and low concentrations other times of day.  During all times of day, the OM 

distribution was fairly broad, though in the evening there was more mass from smaller particles 

than in other times of day.  Figures 5-10 through 5-12 show time series of the OM size 

distribution for multi-day periods where hourly average OM concentrations were greater than 5 

µg/m3 during multiple days.   

In general, OM and m/z 60 vary together during the evenings, when concentrations are 

highest.  On evenings with hourly OM concentrations greater than 10 µg/m3 after a rapid 

increase in OM (e.g., January 9, 11, 19, and 22, etc), OM mass is predominantly in the 100 nm to 

500 nm range.  Evenings where the increase is slower or concentrations are lower, such as 

January 10, 12, 23, and 25, concentrations are shifted slightly, with more mass in particles in 200 

-500 nm range.  In both sets of evenings there is still modest OM even below 100 nm.  While 

there is not a clear picture of a shifting size distribution during the evening, i.e., of smaller 

particles growing into larger particles, mass in particles less than 100 nm occurs when OM and 

m/z 60 concentrations are at their highest.  Once OM begins to decrease around midnight, OM 

remains predominantly in the 100-500 nm range, but there is little mass in particles with dva less 

than 100 nm.  January 9 and 11 are good examples of this process.  These results further suggest 

that the particles with dva less than 100 nm are due to extremely fresh emissions, as there is little 

mass in these particles once fresh emissions from biomass burning and mobile sources decrease 

in the 2300-0100 LST time frame.  
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Figure 5-10.  Time series contour plot of dOM/dva by size during January 9-13 2008, with OM and m/z 60 concentrations µg/m3.   
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Figure 5-11.  Time series contour plot of dOM/dva by size during January 17-21, with OM and m/z 60 concentrations in µg/m3.   
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Figure 5-12.  Time series contour plot of dOM/dva by size during January 22-28, with OM and m/z 60 concentrations µg/m3. 
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Figure 5-13 shows the OM size distribution when the fraction of OM from each PMF 

factor is relatively high: when LV-OOA is greater than 60% of the OM, (N=646, OM average = 

0.71 µg/m3), when HOA was greater than 55% (N=128, OM average = 4.11 µg/m3), when SV-

OOA was greater than 60% (N=167, OM average = 5.42 µg/m3), and when BBOA was greater 

than 35% (N=105, OM average = 3.12 µg/m3).  Sufficient points were available with a threshold 

of 60% for LV-OOA and SV-OOA, but a lower threshold was used for HOA and BBOA in order 

to include more samples in the analysis.  The OM size distribution under high HOA conditions 

peaks at around 250 nm dva, while the size distribution during high LV-OOA conditions peaks at 

between 385-460 nm dva.  The high HOA conditions typically occur in the morning and evening 

under calmer winds (average wind speed = 1.5 m/s), when fresh emissions are the main source of 

particles and OM is high.  High LV-OOA conditions occur when wind speeds are high (average 

wind speed = 2.75 m/s), when regional, oxidized aerosol are the main influence on OM; OM is 

also lower during these periods.  High BBOA conditions result in a size distribution that looks 

like a combination of HOA and LV-OOA, with peaks between 300-400 nm dva. 

When SV-OOA is high, there is a broad OM distribution between 150 nm and 320 nm, 

peaking around 250 nm dva.  It is initially surprising that the size distribution during high HOA 

conditions has more mass from larger particles compared to high SV-OOA conditions, since 

HOA is typical of fresh emissions, while SV-OOA characterizes slightly aged conditions.  

However, 66% of the high HOA conditions are between 0600-0800 LST, when fresh HOA-type 

particles are emitted and combined with larger, aged particles “leftover” overnight, thus resulting 

in a size distribution that accounts for both the smaller, fresh particles and the larger processed 

particles.  High SV-OOA conditions occur in the evening (49% during 1700-2000 LST, 64% 

during 1700-2200 LST), when OM is much higher than at any other point in the day.  During 
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these times the amount of fresh and slightly aged OM dwarfs the amount of mass from large, 

oxidized particles, resulting in a broad size distribution.  It may be that the PMF factors cannot 

characterize the evening time period well, when concentrations quickly rise and OM composition 

quickly moves from a more-oxidized regime to a fresh, less oxidized regime.  As discussed in 

Chapter 3, when more factors are used in PMF, the additional factors are found only in the 

evening, and devolve the SV-OOA factor into factors that are apparent in the early and later 

evening.   

 

 
Figure 5-13.  OM size distribution when the fraction of PMF factors is high: when HOA is >55%; (green 
trace); when LV-OOA is >60% (orange trace); when SV-OOA is > 60% (blue trace); and when BBOA is > 
35% (brown trace).
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5.6 Case Study: Three example mornings 

OM concentrations increased during the morning rush hour, although concentrations 

were on average lower than evening concentrations.  The relatively low peak during the morning 

is somewhat surprising, since during the morning rush hour there is a peak in vehicle emissions.  

However, the morning rush hour occurred when the ground-level inversion layer typically began 

to break (see Figure 4-3), while the evening rush hour occurred just as the inversion layer began, 

so increased mixing during the morning rush hour may help explain these differences.  Earlier 

figures show the size distribution during the morning overall and by wind direction/speed.  As an 

example case study, Figure 5-14 shows the OM size distribution during three consecutive 

mornings on January 10 through January 13, paired with the time series of OM and other 

parameters.  In these examples, we can see that the average morning distribution seen earlier is 

quite representative, though with some morning-to-morning variability.  On the mornings of 

January 10 and 12 there is more mass in the larger diameter particles, while on the morning of 

January 11 the distribution is centered at 200 nm ds.  During these mornings, OM has a small rise 

in concentration, as do CO and BC.  Wind speeds are light, less than 2 m/s, and only on the first 

of these three mornings is the monitoring site downwind of the freeway.  This is the morning 

with the highest concentrations, though still modest compared to evening levels.  The 10 m – 2 m 

temperature difference becomes non-negative between 0800 and 0900, indicating the break-up of 

the overnight inversion layer.  The combination of this break-up and decrease in emissions as the 

morning rush hour wanes leads to lower concentrations by 0900-1000 LST.



  

Figure 5-14.  Time series of wind speed, direction, 10 m 
OM for the morning of January 10, 11 and 12. 
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rection, 10 m – 2 m vertical temperature difference, BC, CO, OM and NO3, with OM size distributions of 
 

, with OM size distributions of 
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5.7 Case Study: Hourly Progression of January 10 evening 

As an additional case study, the changes of the OM size distribution during a typical 

evening, January 10, were also examined; Figure 5-15 shows a time series of OM and other 

species, along with the 2-hour averaged OM size distribution for 1700-1900, 1900-2100, 2100-

2300 and 2300-0300 LST.  OM increased from 1.9 µg/m3 at 1600 LST to 13.3 µg/m3 at 2100 

LST (hourly averages), then slowly decreased overnight until 0500 LST the next day.  During 

the first two hours the size distribution is broad but with the most mass around 400 nm dva.  

During the next four hours OM is high and the mass size distribution is shifted to smaller 

particles between 100 to 400 nm.  After the evening rush hour, from 2300 to 0300 LST, OM 

declines slowly and has a size distribution centered between 200 to 300 nm dva.  This example 

suggests a large influx of small particles during the evening rush hour, when residential biomass 

burning also occurs.   



  

Figure 5-15.  Time series of wind speed, direction, 10 m 
OM and NO3, with OM size distributions of OM for the evening of January 10 during 17
2100, 2100-2300 and 2300-0300 LST.

5.8 Additional Analyses 

Additional analyses of particle size data were 

and are only briefly summarized here.  One analysis was to evaluate if the PAH content of 

smaller and larger particles differ.  

could be classified into two general types: 1) particles with d

BC but low in PAH content; and 2) particles with d

content and lower in BC content.  BC

to evaluate BC content directly.  In addition no particle number distribution data were collected, 
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Time series of wind speed, direction, 10 m – 2 m vertical temperature difference, BC, CO, 
, with OM size distributions of OM for the evening of January 10 during 1700

LST. 

Additional analyses of particle size data were performed but were generally not fruitful, 

and are only briefly summarized here.  One analysis was to evaluate if the PAH content of 

and larger particles differ.  Slowik et al (Slowik et al., 2004) showed that soot particles 

could be classified into two general types: 1) particles with dva less than 100 nm that are high in 

BC but low in PAH content; and 2) particles with dva around 400 nm that are high in PAH 

content and lower in BC content.  BC data were not available by particle size, so 

to evaluate BC content directly.  In addition no particle number distribution data were collected, 

 
2 m vertical temperature difference, BC, CO, 

00-1900, 1900-

but were generally not fruitful, 

and are only briefly summarized here.  One analysis was to evaluate if the PAH content of 

showed that soot particles 

less than 100 nm that are high in 

around 400 nm that are high in PAH 

so we are unable 

to evaluate BC content directly.  In addition no particle number distribution data were collected, 
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so we are unable to identify periods when sub-100 nm dva particles were dominant; if we could, 

we could perhaps evaluate case studies when smaller particles were in high concentration.  Using 

the AMS data, we calculated the fraction of OM from PAH for multiple size bins, averaged over 

the entire study period: less than 100 nm, 100-300 nm, 300-600 nm, and greater than 600 nm dva.  

The PAH fraction was between 2.9-3.5% of total OM for all size bins, so results were 

inconclusive.  With either BC data by size or particle number distribution data we may have been 

better to able to evaluate different soot types proposed, but were not able to here. 

In addition, the nitrate size distributions during the one high nitrate concentration period 

of January 8 -10 were investigated.  However, nitrate consistently had the same size distribution 

as shown in Figure 5-1, with a peak around 450 nm, shown in a time series in Figure 5-16.  The 

relatively invariable size distribution is indicative of aged, processed particles, as expected for 

nitrate.  Nitrate concentrations were low during the rest of the study.  In addition, Figure 5-17 

shows the size distribution of sulfate, which was extremely low during the study.  Sulfate is 

consistently found in larger particles throughout the study, since sulfate is likely in aged and well 

processed particles.   
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Figure 5-16.  Time series contour plot of dNO3/dva by size during January 9-13 2008.   
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Figure 5-17.  Time series contour plot of dSO4/dva by size during January 5-28 2008.

4

5

6

7

8

9
100

2

3

4

5

6

7

8

9
1000

va
cu

um
 a

er
od

yn
am

ic
 d

ia
m

et
er

 (
nm

)

1/7/2008 1/9/2008 1/11/2008 1/13/2008 1/15/2008 1/17/2008 1/19/2008 1/21/2008 1/23/2008 1/25/2008 1/27/2008

2.0

1.5

1.0

0.5

0.0

dS
O

4 /d
va  µ

g/m
3



  

148 

6. The Importance of Urban-Scale Sources: Residential Biomass 

Burning 

6.1 Chapter Summary 

The impact of residential biomass burning in Las Vegas on carbonaceous aerosol 

concentrations was evident through a number of measurements made at Fyfe Elementary School 

in winter 2007/2008.  During January 2008, detailed high time resolution measurements of 

organic matter (OM) were made with an Aerodyne High Resolution Aerosol Mass Spectrometer 

(HR-AMS), including a biomass burning tracer, the fragment C2H4O2
+ at m/z 60 which is derived 

from levoglucosan and other anhydrosugars produced from combustion of cellulose and hemi-

cellulose.  Hourly concentrations of water soluble potassium (K+), another indicator of biomass 

burning, were measured with a particle into liquid system with ion chromatography (PILS-IC).  

Measurements of levoglucosan via gas chromatography-mass spectroscopy from 12-hour 

overnight quartz fiber filters were also made.  On average, 12% of the OM, and 25% of OM 

during the nighttime, was apportioned to biomass burning via PMF analysis of AMS data.  Using 

source profiles and levoglucosan data, on average 33% of the OM was attributed to biomass 

burning in the nighttime, when OM reached its peak.  Levoglucosan and AMS C2H4O2
+ were 

strongly correlated (r2=0.92).  K+ correlated well with C2H4O2
+ (r2=0.86) during the evening 

(1800-2200 LST), with a ratio to C2H4O2
+ on average at 1.4, but overnight the correlation slowly 

decreased and the ratio increased, so that by midday the correlation approached zero, and the 

ratio reached a peak, possibly due to loss of C2H4O2
+, but not K+,  by aging processes.  While K+ 

may be an indicator of BB, it is not necessarily a good tracer for source apportionment alone, as 

contributions of non-BB sources to K+ appear to be significant and can change day to day.  
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Aethalometer measurements of BC were done at Fyfe and an urban background site during June 

2007-June 2008.  Using the difference between UV and BC channels from the Aethalometer for 

apportioning BC from biomass burning, we found that BB was on average 5% of the BC, and 

7% during the evening; BCbb was only evident in the wintertime.  There was only a modest 

correlation (r2=0.40 to 0.60) of BCbb and of UV-BC difference with C2H4O2
+ and with 

levoglucosan.  The much lower contribution to BC compared to OM, and the low correlation 

with C2H4O2
+, may be due to the heavy influence of fossil fuel combustion emissions on a 

nearby freeway.   

6.2 Ambient Concentrations of Biomass Burning Markers  

Concentrations of organic matter, black carbon, and biomass burning indicators 

(levoglucosan, C2H4O2
+, K+, and UV-BC difference) varied widely from day to day during 

January 2008, typically reaching a peak in the early evening (i.e., 1900 through 2100 LST).  

Figure 6-1 shows a time series for these species during January 2008.  OM on average was 3.3 

µg/m3, while BC was 1.8 µg/m3.  Other aerosol and gaseous species were also measured, and are 

summarized elsewhere (Brown et al., 2012); in January 2008, OM and BC comprised 74% of the 

PM1 mass measured via the AMS and aethalometer, excluding metals and crustal material which 

were not measured.  At a nearby urban CSN site (4701 Mitchell St, AQS ID 32-003-0020) OM 

and EC were 68% of the total measured species in January 2008, based on 24-hour filter data.  

BC at Fyfe is higher than typical for urban sites, since the monitoring site is located next to the 

US 95 freeway.  For comparison, in January 2008 BC concentrations at the Hancock urban site, 

more than 2 km from a freeway, were less than 1 µg/m3, and 24-hour filter EC at the CSN site 

averaged 0.8 µg/m3.  The OM concentrations are not particularly high for an urban area, and are 

typical of OM concentrations found in prior Las Vegas studies.  This average is similar to the 
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average OM concentrations based on 24-hour filter data collected on 5 days in January 2008 at 

an urban CSN site in Las Vegas, where the non-blank corrected average OC was 2.8 µg/m3.  

Using a standard blank correction of 1 µg/m3 (Chow et al., 2010; Frank, 2010), this results in 1.8 

µg/m3.  Using an average OM/OC ratio of 1.54 (Brown et al., 2013), this translates to an OM 

level of 2.8 µg/m3, which is close to our AMS-OM average of 3.3 µg/m3.  C2H4O2
+

 

concentrations averaged 0.018 µg/m3, and between 1800-0000 LST were nearly three times 

higher at 0.040 µg/m3.  PILS K+ concentrations were, on average, 0.033 µg/m3, and levoglucosan 

concentrations during the 12-hr overnight samples averaged 0.14 µg/m3.  For comparison, the 

CSN site concentrations of elemental potassium during the same time frame were 0.03 µg/m3 

across five measurement days.   
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Figure 6-1.  Time series of Aethalometer BC, AMS OM, Aethalometer UV-BC difference, PILS K+, AMS C2H4O2

+, and levoglucosan from quartz 
fiber filters at Fyfe during January 2008 (all units µg/m3).   
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Figure 6-2 summarizes the typical diurnal pattern of the semi-continuous measurements.  

BC concentrations were similar in the morning and evening, associated with the rush hour 

commute times.  OM had a minor peak in the morning, and was on average three times higher in 

the evening than in the morning.  C2H4O2
+, K+, and UV-BC difference all show a very similar 

average diurnal pattern.  K+ concentrations decrease more slowly than C2H4O2
+ after midnight, 

possibly suggesting that C2H4O2
+ is being lost due to other mechanisms than those affecting the 

conservative species K+, such as partitioning from particle to gas phase or atmospheric reactions.  

K+, C2H4O2
+, and UV-BC difference are all at a minimum in the midday, when emissions of 

residential biomass burning are low, wind speeds and dispersion are higher, and OM is lower. 

OM has a similar pattern as these BB indicators, while BC has a different pattern; 

concentrations of BC reach similar average maxima in the morning and evening.  The diurnal 

pattern of BC indicates that mobile source emissions related to rush hour traffic are likely the 

most important source of BC.  With low concentrations in the midday and a steep rise in 

concentrations in the evening, the diurnal OM pattern is likely due to a mix of fresh emissions in 

the morning and evening with the rush hour and other activities, plus an additional evening 

source of biomass burning.  This was further demonstrated with PMF analyses on the AMS data 

(Brown et al., 2012), which showed that fresh, hydrocarbon-like organic aerosol (HOA) was 

present in the morning and evening, and that additional semi-volatile oxidized organic aerosol 

(SV-OOA) and biomass burning organic aerosol (BBOA) were evident in the evening peak.   
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Figure 6-2.  Average concentration by hour for Aethalometer BC, AMS OM, UV-BC difference, PILS K+, 
and AMS C2H4O2

+ (all units µg/m3), plus correlation (r2) by hour of PILS K+ versus AMS C2H4O2
+. 
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C2H4O2
+, there was only a moderate correlation of PILS K+ (r2=0.66) or UV-BC difference 

(r2=0.53) with levoglucosan; no correlation was seen between levoglucosan and BC (r2=0.16).  

The lower correlations are perhaps not surprising, as both BC and K+ have other non-biomass 

burning sources, and levoglucosan may be depleted during the 12-hour sampling period via 

atmospheric reactions or phase partitioning to the gas phase, while BC and K+ would not 

undergo similar processes.  BC and K+ are emitted primarily during flaming combustion, while 

levoglucosan more during smoldering combustion(Lee et al., 2010), which may also cause the 

lower correlation.  The very low correlation with BC is likely because next to a roadway BC is 

predominantly from mobile sources, rather than biomass burning.  The modest correlation of 

levoglucosan with UV-BC difference, in the context of no correlation with BC, indicates that the 

UV-BC difference can be indicative of biomass burning aerosol, even when total BC is 

overwhelmingly from traffic-related sources. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 6-3.  Scatter plots of levoglucosan concentrations µg/m3 with a) AMS C2H4O2
+ (µg/m3), b) PILS K+ 

(µg/m3), c) UV-BC difference (µg/m3), and d) BC (µg/m3). 
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indicated by similar diurnal patterns, the measurements of biomass burning indicators were 

somewhat correlated, with some differences between species and time of day.  The overall 

correlation coefficient (r2) between K+ and C2H4O2
+ was 0.56, but if the concentrations for each 

hour of the day are examined separately, there is a large range in this correlation coefficient 

(Figure 6-2).  Between 1800 and 0000 LST, when fresh biomass burning emissions are most 

likely, the correlation coefficient between K+ and C2H4O2
+ was 0.84, and then slowly decreased 

through the morning until 1200 through 1600 LST, when the correlation coefficient was 0.19.   

UV-BC difference had only a modest correlation with C2H4O2
+, of r2=0.43, similar to the 

comparison of UV-BC difference with levoglucosan.  When comparing BC versus C2H4O2
+ 

there is a good correlation during the evening (r2=0.80), during the period of strong residential 

wood combustion, and only a modest one in the morning (r2=0.35)  There was a poor correlation 

between K+ and both BC and UV-BC difference.  Overall these results suggest that either K+ and 

UV-BC difference are only modestly good indicators of biomass burning here in Las Vegas next 

to a roadway, and/or that there are other sources of K+ and BC at the monitoring site.  It is clearly 

plausible that the majority of BC is from traffic-related emissions, which may complicate the 

relationship between UV-BC difference and levoglucosan or C2H4O2
+.  For K+, the modest 

correlation with levoglucosan or C2H4O2
+ may be due to differences in emissions of these 

species during flaming and smoldering processes, or of minor sources of K+ confounding the 

relationship. 
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 C2H4O2
+ K+ UV-BC difference 

K+ 

 

  

UV-BC 
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Figure 6-4.  Scatter plots of hourly average C2H4O2

+, PILS K+, UV-BC difference and BC concentrations; on select graphs, colors and numbers 
indicate hour of day LST, and all units are µg/m3. 
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6.3.3 Urban Background Levels of m/z 60 and C2H4O2
+ 

There is a clear, strong relationship of levoglucosan with m/z 60 and C2H4O2
+.  However, 

there can be contributions to m/z 60 and C2H4O2
+
 from non-biomass burning sources, like 

organic acids (Cubison et al., 2011).  Cubison et al 2011 (Cubison et al., 2011) suggested that 

there is a background level of m/z 60, so that even when biomass burning is null there will still 

be some small concentration of m/z 60.  This background m/z 60 can be seen when evaluating the 

fraction of OM from m/z 60 versus the fraction from m/z 44 (Figure 6-5).  There is a background 

of m/z 60 evident during the morning and midday hours of 0.4 % of the OM; during the evening 

the fraction of mass from m/z 44 is much lower and the fraction from m/z 60 is much higher.  In 

figure 6-5b, we can see how the day progresses, with the morning have a low m/z 44 fraction and 

m/z 60 fraction, followed by a midday increase in m/z 44 fraction, then in the evening an increase 

in m/z 60 fraction and decrease of m/z 44 fraction.  This further shows the important contribution 

of biomass burning during the evening only, while mobile source emissions contribute to OM in 

throughout the day. 

 



  

a) 

b) 

Figure 6-5.   Scatter plot of the fraction of OM from 
hour of the day, for: a) all data (hourly averages); and b) hourly averages by hour during the study.
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Scatter plot of the fraction of OM from m/z 44 and m/z 60, with color and numbers indicating 
hour of the day, for: a) all data (hourly averages); and b) hourly averages by hour during the study.
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6.3.4 Ambient Ratios of Biomass Burning Markers and Comparison to Source Profiles 

We also compared the ratios between species in ambient measurements to ratios found in 

source profiles.  Figure 6-6 shows the diurnal variation of the correlation and ratio of C2H4O2
+

 

and K+.  In an open flame experiment, Lee et al  found a C2H4O2
+/levoglucosan ratio of around 

0.14 for numerous flaming and smoldering experiments with multiple biomass fuels (Lee et al., 

2010).  The average C2H4O2
+/levoglucosan ratio in the 12-hour overnight samples in our study 

was 0.28.  Other molecules such as acids or other oxidized species can also contribute to 

C2H4O2
+.  With the 12 hour sample time and abundance of other urban sources, it is possible that 

additional secondary products contributed to C2H4O2
+

 concentrations, leading to a higher 

C2H4O2
+/levoglucosan ratio here compared to laboratory studies.  The K+/levoglucosan ratio for 

the 12-hour sample periods averages 0.52.  Puxbaum et al.,  summarize source profile ratios, and 

report the K+/levoglucosan ratio for a mixture of European sites with 24 hour filter samples, and 

after determining soluble, non-sea salt K concentrations (Puxbaum et al., 2007).  The value of 

0.52 here is in the range found at the European sites, where the average ratio across sites ranged 

between 0.2-2.1.  Source profiles from Fine et al., and Schauer et al., however, report 

K/levoglucosan ratios of 0.1-0.2(Fine et al., 2004a; Schauer and Cass, 2000).  Thus it appears 

that there may be additional non-biomass burning sources of K that are contributing to the 

concentrations in this study and in Puxbaum et al., 2007, and/or that levoglucosan is aging faster 

than K over the course of multiple hours required for sampling.  Differences in fuel type between 

what is used in Las Vegas and in these studies, as well as differences in the amount of flaming 

versus smoldering burning emissions may also play a role. 
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Figure 6-6.   Correlation and median ratio by hour during the study of K+ and C2H4O2

+. 

6.4 Biomass Burning Apportionment via Multiple Methods  

With the suite of biomass burning tracers observed here, there are multiple methods 

available to apportion the contribution of biomass burning to OM: 1) PMF-AMS, where PMF is 

applied to the AMS data to determine contributing factors, including BBOA (Lanz et al., 2007; 

Ulbrich et al., 2009a); 2) use a AMS (C2H4O2
+*OM) -1 ratio reported in laboratory source 

experiments for biomass burning fuels, and estimate the amount of OM from BBOA; and 3) use 

a (levoglucosan/OC)-1 ratio as reported in filter-based source profiles, then based on the 

levoglucosan concentrations estimate the amount of OC, and using an assumed OM/OC ratio, 

estimate BBOA contribution to OM.  Since methods 2 and 3 rely on source profiles, these 

methods should estimate primary emissions, if the source profiles represent only primary 

emissions.  The PMF factor approach in method 1 may include primary and some amount of 

secondary aerosol formation associated with BBOA.  However, the PMF method could 

underestimate secondary OA from biomass burning in the obtained BBOA factor if the 

secondary OA is chemically more similar to the SV-OOA or LV-OOA than to primary BBOA.  

Since SV-OOA concentrations observed here are typically concurrent with and higher than 



  

162 

BBOA, secondary OA associated with biomass burning emissions may not be fully captured in 

the BBOA factor.  With only three PMF factors, i.e, with no SV-OOA factor, BBOA is higher 

than when four factors are used; it may be that with three factors more of the secondary OA 

associated with biomass burning is contained in the BBOA factor.  Table 6-1 summarizes the 

fraction of OM apportioned via each method.  Reported in Brown et al  and in an earlier chapter 

are the results from the PMF-AMS method, where using unit mass resolution AMS data and the 

EPA PMF program, on average 12% of the OM was attributable to biomass burning organic 

aerosol (BBOA).  During overnight periods BBOA was on average 26% of the OM.   

A number of studies have reported a range of OM/C2H4O2
+ ratios from source 

experiments.  Lee et al  report a value of 34.5 for the OM/C2H4O2
+ ratio generated in biomass 

burning experiments (Lee et al., 2010).  Alfarra et al  used a combination of PMF and 14C 

analyses to determine a similar ratio for OM to m/z 60, equal to 36, for wintertime wood 

combustion in Zurich, and suggested use of this ratio as a conservative estimate for apportioning 

BBOA (Alfarra et al., 2007).  Using the ratio of 34.5, on average BBOA is estimated as 15% of 

the OM, similar to but slightly higher than the PMF-AMS results.  When using just three factors, 

BBOA is on average 15% of the OM, matching the estimate for this method.  For overnight 

periods, 32% of the OM is BBOA via this method, again similar to the 26% estimate from PMF-

AMS.  Since the PMF-AMS method results in BBOA estimates that are lower than using source 

profiles, secondary BBOA appears not to be captured in the PMF factor; it likely is contained 

instead in the SV-OOA factor. 

Fine et al. report an OC/levoglucosan ratio of 7.35 for residential biomass burning 

emissions, used here to apportion BB OC based on our filter levoglucosan measurements (Fine et 

al., 2002a).  Recent studies have reported a wider range of levoglucosan/OC emission ratios 
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depending on biomass fuel type and burn conditions (Sullivan et al., 2008; Puxbaum et al., 2007; 

Minguillon et al., 2011).  The 7.35 value is representative of fireplace combustion of hardwoods, 

which is likely appropriate for the Las Vegas area.  Schmidl et al  developed a similar factor for 

Austrian fuels of 7.1 based on test burns in a tiled stove (Schmidl et al., 2008).  Puxbaum et al. 

suggest an OM/OC conversion factor of 1.4 based on their calculations from the data reported in 

Fine et al .  During the wintertime evening in Las Vegas, when biomass burning is most 

prevalent, the average OM/OC ratio is 1.46 (Chapter 4), so a value of 1.4 for biomass burning 

appears reasonable.  This yields a conversion of biomass burning OM equal to 

levoglucosan*7.35*1.4.  Using this conversion, 33% of the OM is from biomass burning during 

the overnight periods.  This range matches well with the 32% apportioned via the C2H4O2
+/OM 

ratios, and is slightly higher than the 26% apportioned via PMF-AMS.   

Apportionment of BBOA by these different methods is summarized in Table 6-1, and the 

fraction of OM by each method for periods with levoglucosan data is shown in Figure 6-7.  

Figure 6-8 shows how the PMF-BBOA compares with levoglucosan measurements and 

levoglucosan-BBOA apportionment.  All but the highest levoglucosan concentration data points 

fall about the 1:1 line between PMF-BBOA and levoglucosan-BBOA in Figure 6-8, and on most 

evenings the three apportionment methods yield a similar result.   

The sample with the highest disagreement between methods was the night of January 19, 

where levoglucosan-BBOA is 1.6 times higher than PMF-BBOA and 1.4 times higher than 

C2H4O2
+-BBOA.  As seen in Figure 6-1, this was not only the evening of the highest 

levoglucosan and m/z 60 concentrations but also OM.  It may be that PMF is under predicting the 

amount of BBOA since the OM concentration and possibly composition is quickly changing, or 

that the AMS is missing some BBOA in the very small (less than 50 nm) or very large (greater 
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than 700 nm) diameter particles where transmission is low.  The Q/Qexpected ratio and scaled 

residuals from PMF during this evening are low, indicating a good fit, but during this evening 

SV-OOA is also very high, so it’s likely that some of mass assigned by PMF as SV-OOA is 

actually BBOA.  Since a constant profile is needed in PMF, differences in the BBOA 

composition between evenings means a “typical” or average profile is found, and when there are 

deviations from this profile mass appears to be apportioned to SV-OOA.  However, as the results 

are consistent for all the other data points, our conclusion is that the three BBOA methods 

compare rather well most of the time. 

 

Table 6-1.  Fraction of OM apportioned during 12 overnight (1700-0500 LST) periods, January evenings, 
and over all hours, via PMF-AMS, C2H4O2

+/OM ratios, and levoglucosan. Apportionment by levoglucosan 
is only available for the 12 overnight filter sample periods. 

Sample range fOM from BB via 
levoglucosan 

fOM from BB via 
PMF-AMS (BBOA) 

fOM from BB via 
C2H4O2

+/OM ratios 

12 12-hour overnight 
periods 33% 26% 32% 

All evenings (1800-2300 
LST) n/a 15% 21% 

All hours n/a 9% 14% 
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Figure 6-7.  Percentage of OM apportioned by three methods for each time period where levoglucosan 
was quantified; boxes indicate nighttime averages (1700-0500 LST). 

 

Figure 6-8.  Comparison of PMF-BBOA concentrations versus levoglucosan (primary y-axis) and BB OM 
by levoglucosan (secondary y-axis); all units µg/m3. 
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7. Conclusions and Recommendations 

7.1 Conclusions 

With multiple high-time resolution measurements we have investigated the variability 

and sources of aerosol next to a major freeway during winter in Las Vegas, Nevada.  Using data 

gathered via a HR-AMS and Aethalometer we can understand the composition of the aerosol.  

OM averaged 3.3 µg/m3 during the January intensive campaign and was typically highest during 

the evening hours (i.e., 1900 through 2100 LST) with a secondary peak in the morning (i.e., 

0600-0900 LST, during rush hour commute).  Temporal patterns for both sulfate and nitrate 

differed from the temporal pattern for OM.  Sulfate concentrations were extremely low 

throughout the study, and nitrate concentrations were episodic but were also on average very low 

(less than 1 µg/m3).  In contrast to the inorganic species, BC had a median concentration of 1.24 

µg/m3, which was more than twice as high as nitrate, an order of magnitude higher than sulfate, 

and a third of OM.  BC is more than twice as high at this site compared to a site 2 km away in 

the urban center but away from freeways (Hancock Elementary School), where BC was, on 

average, 0.5 µg/m3.  OM comprised on average 48% of the measured aerosol, and was the focus 

of much of our analyses. 

Black carbon followed the typical diurnal traffic patterns with peaks in concentration 

during the morning and evening rush hours.  The coincident patterns indicate that next to the 

freeway a large fraction of the BC is from vehicular emissions on the freeway and in the local 

area.  Unlike BC, OM peaked in the evening, with a secondary peak in the morning.  Using 

PMF, the OM was deconstructed into its main components, which revealed that the HOA 

component behaved similar to BC and traffic patterns, with peaks of similar magnitude in the 
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morning and evening.  In the evening, there was additional OM from SV-OOA and BBOA, 

leading to higher OM concentrations compared to the morning, when SV-OOA was low and 

BBOA minimal.   

The change in OM mixture throughout the day was reflected in the diurnal changes of its 

elemental composition.  H/C ratio was highest, and O/C and OM/OC ratios lowest, during the 

evening when OM concentrations were highest.  Thus, during the highest concentration periods, 

it appears that the OM is mostly primary in origin, i.e., not very oxidized (low O/C and OM/OC).  

The average OM/OC ratio was 1.54 (±0.20 standard deviation), typical of environments with a 

low amount of secondary organic aerosol formation.  This ratio is dependent on the mix of 

emissions impacting a monitoring site, dispersion, atmospheric oxidation, and gas/particle 

partitioning.  The OM/OC ratio is highest in the midday, when dispersion increases and 

atmospheric oxidation processes are highest.  In the evening, a combination of fresh emissions 

and gas-to-particle partitioning under stable conditions appears to rapidly drive OM up and the 

OM/OC ratio down. 

BC exhibited typical upwind/downwind patterns, where concentrations are much higher 

when the monitoring site is downwind compared to when it is upwind of the freeway.  However, 

there was no significant difference in OM between upwind and downwind concentrations on 

average.  While BC is primary emissions, and thus dependent on the relationship between the 

monitoring site and source locations, OM is a constantly changing mixture of primary and 

secondary aerosol, meaning it is less variant to changes in wind direction.  The size distribution 

of OM was similar between upwind and downwind conditions as well, but under stagnant 

conditions, there was relatively more mass from smaller, fresh particles (those with vacuum 

aerodynamic diameter of less than 100 nm) compared to during upwind or downwind conditions.  
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These size distribution results further show the influence of fresh emissions during low wind 

speed conditions, and the complex nature of OM. 

Given the sampling location next to a twelve-lane freeway, urban-scale biomass burning 

was found to be a surprising source of substantial OM.  Multiple methods were used to quantify 

the impact of BBOA on OM, using HR-AMS data as well as levoglucosan data from filters, and 

confirmed by PILS K+ measurements.  On average, BBOA was 9%-14% of the OM, but only 

was present during the evening hours, when OM was highest.  During the overnight period 

between 1700 and 0500 LST, BBOA contributed between 26%-33% of the OM (range from 

different analysis/measurement techniques).   

Overall this suite of measurements and analyses yielded a comprehensive look into near-

roadway aerosol, and in particular, how OM is different than more commonly measured species 

such as BC.  While BC is a primary emission and does not react or form in the atmosphere, OM 

is a combination of primary emissions and secondarily produced aerosol, which can vary 

throughout the day as atmospheric conditions change.   

7.2 Recommendations 

Based on the analyses presented here, there are a number of recommendations that would 

further explore the data collected as part of this study, enhance future near-road field studies, and 

better understand receptor modeling results, discussed below. 

Potential additional steps with measurements from current study: 

• Perform chemical analyses on additional, archived filters from this study for 

levoglucosan, hopanes, PAH and other organic species to develop a complete 

time series of these compounds.  Then apply CMB, PMF or other apportionment 
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methods to determine the impact of biomass burning, vehicular emissions and 

other sources on OM. 

• Analyze Sunset OC/EC ratio data to compare with typical ratios from vehicular 

(car and truck) and biomass burning emissions, as well as to crudely estimate 

primary and secondary OC using OC/EC ratios.  

• Use dispersion models to model CO and BC from roadway emissions at Fyfe 

Elementary, and compare to observed CO and BC concentrations to understand if 

models such as the American Meteorological Society/Environmental Protection 

Agency Regulatory Model Improvement Committee (AERMIC) Dispersion 

Model (AERMOD) can correctly predict near-road aerosol concentrations.  

Utilizing the BC results, predictions could also be made of OC, assuming a range 

of OC/BC ratios based on observations. 

 

In future near-roadway studies: 

• Conduct a study at Fyfe Elementary similar to this one, but in summer, to 

understand how the influence of mobile source emissions may change in 

summertime, when temperatures are very high, boundary layer heights are higher, 

inversions are rare, and secondary organic aerosol may be the largest component 

of OM. 

• Include aerosol size instrumentation to gain a broader view of particle size 

distribution variations, particularly for particles with diameter less than 50 nm, 

which are typically high next to a roadway and are not quantifiable by the HR-
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AMS.  This could be done simply with a total particle counter (e.g., condensation 

particle counter), where total particle number is dominated by ultrafine particles, 

with a scanning mobility particle size (SMPS) instrument where the number of 

particles in multiple size bins can be determined, or with a micro-orifice uniform 

deposit impactor (MOUDI) instrument where different size particles are impacted 

on a series of impaction substrates to be later analyzed for OC/EC/organics or 

metals and ions. 

• Include VOC and/or SVOC measurements, to understand the contribution of 

mobile sources and other sources to the VOC/SVOC mixture, which can be used 

to help interpret the changes in OM with changes in meteorology and time of day.  

Recent work (Xie et al., 2013) has suggested that including such measurements 

can help elucidate sources of OA, and potentially better identify contributions 

from mobile sources, etc. 

Refinement of receptor modeling methods 

• New algorithms are becoming available in EPA PMF to understand uncertainty in 

PMF factors and to better understand the robustness of solutions.  These 

algorithms could be used to better understand the quality of the PMF solutions 

found here, and help indicate which solutions (3, 4, or 5 factors) are most robust. 

• Utilize other receptor models such as Unmix and CMB to evaluate the HR-AMS 

data.  Unmix relies on “edges” between species, as observed in scatter plots, to 

determine factors.  Unmix may be better able to resolve BBOA, SV-OOA and 

other factors separate from HOA and LV-OOA.  CMB requires known source 

profiles; with CMB, cooking OA, which was not found here, and a spectrum of 
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BBOA and SV-OOA source profiles, which are variable among sites and OA 

conditions, could be used to determine the best fit.  If separate diesel exhaust and 

gasoline exhaust source profiles are available, these could be used to potentially 

quantify gas/diesel contributions to OM.  

 

7.3 Implications 

Residential biomass burning is a significant and underrepresented source of PM.  

Despite being next to a major freeway in a city with little tradition of residential biomass burning 

for home heating, biomass burning was an important source of PM in the wintertime.  This 

source is minimal in the national emission inventory for Las Vegas, and as other sources are 

better controlled and decrease in emissions over time, residential biomass burning will be more 

important to understand, characterize and potentially control. 

PM next to roadways is predominantly organic and unlikely to be well modeled by 

existing tools 

EPA requires a hotspot analysis for PM for any freeway project in a PM2.5 non-attainment 

or maintenance area.  Modeling tools for PM hot spot analyses such as AERMOD and 

CAL3QHCR are not well adapted to model rapid formation of secondary OM next to a roadway, 

rather they focus only on primary emissions such as BC; therefore, they are likely to 

underestimate the amount of near-road PM.  If modeling results are compared to ambient 

measurements, modeling for most roadways may be inadequate to understand and predict near-

road PM concentrations. 

Exposure to high concentrations of near-roadway aerosol can be highly variable 
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While there are clear health effects associated with living, working and attending school 

next to major freeways, this work shows that concentrations and thus exposure to near-roadway 

aerosol is highly variable, both in terms of composition and in concentration.  Health studies 

examining aggregate near-road concentrations, such as annual or seasonal averages, may miss 

links between short-term exposure to different levels and composition of near-road PM, e.g., 

times when OM and PAHs are high but BC low, or times when O/C ratio is high, etc.
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Mass calibrations against background m/z were done using the “SQ_mz_cal” panel in 

Squirrel.  Fragments due to background gases like Ar, O2 and N2, plus fragments from tungsten 

(atomic symbol W) or phthalates which are found in the AMS, provide a stable set of 

background ions to use to ensure that the peaks from the mass spectrometer are assigned to the 

correct m/z.  In the calibration panel, we select fragments that are from the background species 

that are evident when the AMS is operating in “closed” mode, i.e., when there is no aerosol 

being analyzed by the MS.  Usually at least four peaks are used, including one peak at a higher 

m/z above 90.  Here, we used CH+ (m/z 13), O2+ (m/z 32), Ar (m/z 40), C5H2+ (m/z 50), and 

C8H5O3+ (m/z 149), and tested the fits of all the other available fitting fragments as well.  We 

first test the fit on individual runs (i.e., 2-minute averages); Figure A-1 shows the fit for an 

example run (#30559).  Once fits are reasonable for a handful of example runs, we next process 

all runs.  Figure A-2 shows a summary of the fit between DAQ and our manual calibration; 

nearly all runs have a fit ratio (DAQ/Squirrel) within 0.05, indicating a stable calibration.  

Evident in the figure are some runs where the fits are well beyond +/- 0.05.  These runs were 

“blacklisted” and excluded from any analysis, as the calibrations were insufficient.   
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a)  

b)  

Figure A-1.  a) Calibration for example run using CH+ (m/z 13), O2+ (m/z 32), Ar (m/z 40), C5H2+ (m/z 
50), and C8H5O3+ (m/z 149); the red line shows the ion time of flight fit so that each m/z can be correctly 
found; the accuracy is the comparison of this post-processing fit to the in-field calibrations; and b) raw 
data (black) for O2+ ion and Gaussian peak shape fits (red).  The goal is to have the red line in the middle 
of the red Gaussian fit; the red and black vertical lines may not necessarily line up, depending on the 
initial m/z calibration used in the field and DAQ. 
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Figure A-2.  Ratio of DAQ/Squirrel calibration by run number.  Values beyond +/- 0.005 (0.5%) were 
excluded from analysis. 

To correctly quantify each m/z peak area, the baseline of the MS signal during open and 

closed modes needs to be determined.  As part of the post-processing, the baseline was checked 

for 10 v-mode runs every third day, to ensure there was no sudden change in the baseline during 

the monitoring campaign.  We found that the baseline did not change noticeably during the 

study. As seen in Figure A-3, the baseline was large for the m/z originating from gaseous species, 

such as m/z 15 and 28 from N2, which is typical.  The correction for the baseline was effective, as 

indicated by the green line centered on 0, which is the difference between the open and closed 

modes and after baseline correction.   
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Figure A-3.    Baseline diagnostic panel for example run.  The red line is the baseline fit, which should 
follow the black line, which is the measured baseline.  The alternating grey and pink areas are the areas 
where there is peak integration (pink) and no integration (grey)  The blue lines are signal at given m/z.  
The orange and green show the difference between the open and closed mass spectra without baseline 
correction (orange) and with baseline correction (green); the green should be centered about 0 to indicate 
correct baseline subtraction.  

A standard fragmentation table (frag table), as described in Allen et al. (Allan et al., 

2004), was used to account for interference of gaseous species such as nitrogen and oxygen, and 

to ensure correct allocation of the UMR signal among aerosol species such as nitrate, 

ammonium, and organics. For example, the signal at m/z 64 could be from SO2
+ ion (from a 

sulfate aerosol) or from organic fragments (e.g., C5H4
+).  At this m/z the organic fraction is 

calculated based on the signal at the m/z where an alkyl group (CH2
+) is subtracted or added to 

the m/z 64 ion (in this case m/z 50 and 78), since organic aerosol are usually comprised of long 

chain hydrocarbons and the vaporization/ionization scheme used in the AMS results in a series of 

CnH2n+1 fragments.  Since inorganic species like sulfate, nitrate and ammonium have 

characteristic fragmentation patterns, and only occur at a handful of m/z, these patterns can be 

taken into account and the mass at each m/z from other species, namely organic aerosol, can be 
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determined for the m/z that have both an inorganic and organic component.  Other m/z may have 

only organic signals, so the full signal is assigned to organics.  As part of the fragmentation 

pattern, there is a correction for CO2 gas.  Often this correction is fairly stable throughout a field 

study, though may need to be modified in chamber or laboratory experiments where CO2 is 

produced at levels greater than is typical in the ambient atmosphere.  We used a default CO2 gas 

concentration of 370 ppm.  We can examine if this assumed concentration is correct by 

comparing the mass at m/z 43, which is entirely organic, and m/z 44; if the CO2 gas correction is 

not correct, there will be a bias evident, i.e., the data will not trend through the origin.  As seen in 

Figure A-4, the data do trend through the origin, so no change to the CO2 correction was made.  

Another check of the corrections and frag table is to examine the measured ammonium compared 

to the amount of ammonium predicted by the measured sulfate and nitrate, assuming all sulfate 

and nitrate are associated with ammonium (i.e., NH4NO3 and (NH4)2SO4).  As seen in Figure A-

5, predicted and measured ammonium agree extremely well, with the exception of one outlier, 

suggesting the corrections and frag table settings are correct.   
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a)  

b)   
Figure A-4.  Concentrations of m/z 43 and 44 for a) our study, and b) example data showing an incorrect 
offset for CO2 (from http://cires.colorado.edu/jimenez-group/wiki/index.php/Field_Data_Analysis_Guide)  
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Figure A-5.  Measured ammonium compared to predicted ammonium based on sulfate and nitrate 
concentrations and assuming neutralization of sulfate and nitrate by ammonium.  The line represents the 
1:1 line.   

Particle size data were processed using the “ptof corrections” tab available in Squirrel.  

When in PToF mode, the aerosol beam is chopped, and particles that make it through the 

chopper enter a particle time of flight (PToF) region, where larger particles take longer to travel 

through than smaller particles.  The time it takes to travel through the PToF region for selected 

size particles is determined with particles of known diameter, as described earlier.  As part of the 

post-processing, a baseline of the time it takes before particles make it through the PToF region 

needs to be determined.  To do this we examine individual runs to find the time it takes before 

aerosol signal is found, and the time at which there are no more particles being transmitted 

through the AMS.  Before particles make it through the PToF region, we are only measuring 

gaseous species like CO2.  Figure A-6 shows the PToF corrections dashboard.  Here we select a 

series of individual runs and high mass m/z such as m/z 57, 43 or 44, and examine the time it 

takes in the PToF chamber when we typically see signal.  In our dataset, particles traveled 

through the PToF region in between 1000 and 4500 µs, consistent with calibration values 

performed in the field.   
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Figure A-6.  PToF corrections dashboard.  The plot is showing the amount of signal at m/z 57 by time in 
PToF chamber (µs) for an example run 40370. 

High resolution (HR) data were processed with the “PIKA” module provided by CU 

Boulder and Aerodyne, version 1.10, following procedures laid out in the HR data analysis guide 

wiki (http://cires.colorado.edu/jimenez-group/wiki/index.php/High_Resolution_ToF-

AMS_Analysis_Guide), conceptually shown in Figure A-7.  Via PIKA, individual unit mass 

resolution (UMR) m/z can be deconvolved into ions of higher resolution, e.g., from m/z 43 to the 

ions C3H7
+ (mass 43.05478) and C2H3O

+ (mass 43.01839), using a Gaussian fit for each HR ion 

peak width and shape.  Only ions up to m/z 100 were determined, since above this threshold it is 

difficult to separate out ions within a given UMR m/z since the number of ions per m/z is much 

higher than for m/z less than 100.  Since more than 95% of the organic signal is typically 

included in ions less than m/z 100, this has little effect on determining OM via HR ions.  In 
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PIKA, m/z calibration and baseline from Squirrel were used, and were well fit, as described 

above.  Next, peak width and shape were determined.  Similar to m/z calibration, the Gaussian 

fits for selected calibration ions were generated to develop a relationship between peak width and 

m/z.  CH+, OH+, H2O
+, C2H

+, N2
+, O2

+, Ar+, SO+, C4H2
+, SO+, and C6H5

+ gave the best fitting 

statistics for peak width.  The summary of the fit across the entire dataset for V mode for a subset 

of these calibration fragments is shown in Figure A-8.  The time series was inspected to identify 

any problematic runs, which may occur when usually-negligible peaks are abundant and 

overwhelm the signal of neighboring ions, or under fast data acquisition mode (i.e., less than 1 

minute), of which the latter is not applicable here; no runs were excluded with this inspection.  

Figure A-8b shows a time series for the peak width using one fitting fragment, O2
+, for a subset 

of the study. Next, peak shape was determined using O2
+ and CH+.  The goal is to use the fitting 

ions to develop a smooth peak shape, which PIKA will then use as the shape for all ion peaks.  

Figure A-9 shows the peak shape using the five fitting fragments, i.e., an overlay of each 

fragments’ normalized peak shape.  While the tails are slightly larger than the perfect Gaussian 

fit, this is not unusual, and the tails are smooth, indicating a good shape.   
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Figure A-7.    Example process of identifying UMR m/z in Squirrel, and then breaking down each UMR 
m/z into individual HR ions.  From “Squirrel and Pika Analysis Comparison”, Donna Sueper, 2010 AMS 
User’s Meeting; http://cires.colorado.edu/jimenez-
group/UsrMtgs/UsersMtg11/2010UsersMtgSquirrelPikaCompar.pdf.   
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a)  

b)  

Figure A-8.  a) Peak width versus m/z for selected best fit fragments for entire data set in V mode, along 
with linear fit (yellow/green) and power fit (green); a linear fit was used, and the error bars indicate the 
standard deviation; b) time series of peak width fit for O2

+ fitting fragment for example 4 days (January 10-
13). 
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Figure A-9.  Peak shape of fitting fragments (Ar+, CO2
+, O2

+, C2H
+, C+) for V mode data. 

Next, the ion fits for key m/z were examined visually for a handful of samples, i.e., two 

samples each day, for the difference between the open and closed signals.  The key m/z included: 

28, 32, 39, 43, 44, 55, 57, 60, 73, 80, 81, 90, 95, 96, though other m/z were also examined.  The 

default list of fitting ions was used initially, with only a few modifications.  The default list 

includes the typical HR ions found in the ambient environment; adding additional ions may help 

improve the fits of each series of peaks, but these additional ions may not actually be present in 

detectable quantifies, so including them in the fitting is often not appropriate.  Peak shape was 

assessed by examining the left side of m/z 48 and 64, which do not have any ions to their left, 

and by examining the right side of m/z 41, which has no ion to the right.  The peak shape 

appeared to be a good fit for these three examples (two of which are shown in Figure A-10).  For 
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examined, with the goal of +/- 5% for each fitted peak.  Following recommendations of best 

practices for HR analysis, a conservative approach was used, where an ion was included in the fit 

only if the residuals were greatly improved by its addition.  Organic nitrogen species often have 

little or no signal, but their inclusion can improve residuals.  Two examples showing the 

improvement in fit when including these trace ions are shown in Figures A-11 and A-12, for m/z 

59 and 72 when C3H9N
+ and C3H6NO+ are included and excluded, respectively.  The inclusion of 

these ions improves residuals, and visual inspection over multiple runs indicates this signal is 

real, so these ions were included in the fits for all runs.  

The fits over all runs and m/z were assessed by examining the time series and mass 

spectra of individual “families” of HR ions, e.g., family CH are all ions with C and H, family 

CHO are all ions with C, H and O, etc.  Examples of mass spectra and time series are shown in 

figures A-13 and A-14.  The mass spectra by family is consistent with what was seen with UMR 

data, and shows a relatively high amount of family CH, again consistent with less oxidized 

aerosol at the monitoring site location during the winter.  In addition, the HR and UMR mass for 

OM by sample was compared, in order to understand if the two methods were consistent.  As 

shown in Figure A-15, there was excellent agreement between HR- and UMR-resolved OM.  

Lastly, elemental ratios were calculated for OM, using the W mode data for samples where OM 

was greater than 0.3 µg/m3 and the ratios specified in Aiken et al 2007(Aiken et al., 2007). 
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a)  

b)  

Figure A-10.    Peak fitting of open, closed and open-closed spectrum for example run of a) m/z 48 and b) 
m/z 41.  The green or pink vertical lines indicate the exact mass of the ion along the x-axis, the black line 
and circles show the raw data, the orange line the open spectrum fits and residuals, the brown line the 
closed spectrum fits and residuals, and the pink lines the difference spectrum fits and residuals; black 
ions (e.g., C3H5

+) indicate fit ions, and the grey ions indicate ions that were not included in the fit. 
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Figure A-11.    Fits for example run for m/z 59 with C3H3N
+ included (top) and excluded (bottom). 
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Figure A-12.  Fits for example run for m/z 72 with C3H6NO+ included (top) and excluded (bottom). 
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Figure A-13.  Mass spectra by HR family for entire study; note y-axis differences for each graph, 
particularly that organic nitrogen species are more than an order of magnitude lower than the typically 
more abundance CH and CHO families. 
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Figure A-15.  Comparison of UMR (y-axis) and HR (x-axis) concentrations for a) OM and b) nitrate. 
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PAH data were collected via three methods: 1) from the HR-AMS, at 2-minute 

resolution; 2) from the PAS instrument, at 5-minute resolution, starting January 15, 2008;  and 3) 

from GC-MS analysis of extracts from quartz fiber filters collected at various times during 

January 2008.  Table B-1 summarizes these measurements.  Each method measures PAH in a 

different manner.  With the HR-AMS, total PAH are calculated based on work in Dzepina et al., 

2007, who used a number of PAH standards to develop a fragmentation table for calculating 

PAH, while comparing the mass spectra to NIST standards.  In the PAS, aerosol are exposed to 

UV light, causing PAH on the aerosol surface to photoemit electrons, which are translated into a 

concentration based on manufacturer specifications.  Quartz fiber filters were taken and analyzed 

by GC-MS as described in Section 2.6 and elsewhere (Olson et al., 2012). 

In Mexico City, Dzepina et al. report a range of agreement between the three methods 

used here.  They report an r2 of 0.39 between PPAH and APAH, but better agreement between 

APAH and FPAH for specific PAH types, e.g, PAH with molecular weight (MW) 226 + 228 had 

an r2=0.99, and for MW 276+278 an r2=0.80.   

Here, we compare how PPAH, APAH, and individual FPAHs compare among each other 

and with BC and AMS PMF factors.  First, using the continuous measurements for the period 

between January 15th and January 28th, when PPAH and APAH measurements were both 

available.  PPAH had a similar pattern to BC (r2=0.86), while APAH was more similar to OM 

(r2=0.79).  Figure B-1 shows a time series of these measurements, and scatter plots of the PAH 

measurements versus BC and OM.  As shown in Figure B-2, there is modest agreement between 

PPAH and APAH measurements (r2=0.49), which was better than in Mexico City (Dzepina et al., 

2007).  Figure B-3 and Tables B-1 and B-2 show scatter plots and correlations of these two PAH 

measurements with AMS PMF factors as well as BC and OM.  PPAH is extremely well 
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correlated with BC, but not with other measurements, while APAH has a modest correlation 

(r=0.62) with BBOA.  Somewhat surprisingly, neither PAH measurement has a good correlation 

with HOA, despite PAH being from primary emissions, similar to in concept what HOA 

represents.  While PPAH is tightly correlated with BC, also a primary emission, PPAH appears 

to be a good measurement of true primary emissions, as denoted by BC, while APAH may have 

some influence from secondary products. 

 

  

Figure B-1.  (top) time series of hourly PPAH, APAH, BC, and OM concentrations, and (bottom) 
PAH concentrations against OM and BC concentrations. 
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Figure B-2 Scatter plot of hourly averaged PPAH and APAH measurements, colored by OM 
concentrations. 

Table B-1.  Correlations (r) between hourly measurements of PMF factors (SV-OOA, HOA, BBOA, LV-
OOA), OM, BC, APAH and PPAH during January 15 -28 2008; colors indicate high (red) to low (green) 
correlations. 

 

SV-OOA HOA BBOA LV-OOA OM BC PAS PAH AMS PAH 

SV-OOA 1.00 

       HOA -0.52 1.00 

      BBOA -0.42 -0.07 1.00 

     LV-OOA 0.21 -0.72 -0.40 1.00 

    OM -0.07 0.00 0.36 -0.24 1.00 

   BC -0.18 0.19 0.25 -0.29 0.85 1.00 

  PAS PAH -0.12 0.27 0.18 -0.37 0.77 0.93 1.00 

 AMS PAH -0.21 0.04 0.62 -0.38 0.87 0.74 0.68 1.00 

 

 

 

 

Table B-2.  Correlations (r) between hourly measurements of PMF factors (SV-OOA, HOA, BBOA, LV-
OOA), OM, BC, and APAH during January 6 -28 2008; colors indicate high (red) to low (green) 
correlations. 
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SV-OOA HOA BBOA LV-OOA OM BC AMS PAH 

SV-OOA 1.00 

      HOA -0.82 1.00 

     BBOA -0.32 0.11 1.00 

    LV-OOA -0.50 0.06 -0.21 1.00 

   
OM 0.27 -0.18 0.28 -0.43 1.00 

  BC 0.34 -0.15 0.12 -0.51 0.87 1.00 

 AMS PAH 0.16 -0.11 0.51 -0.49 0.89 0.77 1.00 

 

 

Figure B-3.  Scatter plot matrix of hourly measurements of PMF factors (SV-OOA, HOA, BBOA, LV-
OOA), OM, BC, APAH and PPAH during January 15 -28 2008. 
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Neither PPAH nor APAH measurements compared well with the sum of total measured FPAH or 

of total measured hopanes, as shown in the scatter plot matrix in Figure B-4 and correlation 

matrix in Table B-4.  APAH had a high correlation with chrysene (r=0.80) and modest 

correlation with benzo(b)fluoranthene (r=0.69) and benzo(e)pyrene (r=0.66).  PPAH did not 

have a correlation higher than 0.48 with any individual FPAH.  

Lastly, APAH and PPAH measurements were compared with levoglucosan, to identify if 

evenings with high wood smoke concentrations were also high in PAH.  Figure B-5 shows a 

modest correlation between APAH and levoglucosan values (r2=0.38), with generally high 

APAH values with higher levoglucosan.  Driving the correlation low are daytime periods when 

APAH concentrations are relatively high but levoglucosan is not, plus one outlier nighttime point 

when OM concentrations were very low (less than 1.5 µg/m3).  Without the 5 daytime points and 

one outlier point, the correlation is much higher (r2=0.65).  A modest relationship between 

APAH and BBOA is also seen in Table B-2 and Figure B-3, showing that biomass burning is a 

source of PAH, but is not the main source, even in the evening.    

Results indicate that PPAH measurements are more closely related to BC concentrations 

than OM, APAH or specific FPAHs, while APAH are closely related to chysene concentrations.  

PAH measurements correlated modestly with hopanes and levoglucosan, indicating PAH are 

from a mix of mobile, biomass burning and potentially other urban sources.
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Table B-3.  Concentrations of FPAH by sample (ng/m3), originally reported in Olson et al., 2012. 

Sample 
day 

Sample 
Hours 
(LST) 

no
rh

op
an

e 

ho
pa

ne
 

ho
m
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op

an
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py
re

ne
 

ch
ry
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ne

 

be
nz
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flu
or

an
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nz

o(
k)

flu
or

an
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en
e 
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nz

o(
e)

py
re

ne
 

be
nz

o(
a)

py
re

ne
 

pe
ry

le
ne
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de

no
(1

,2
,3

-
cd

)p
yr

en
e 

be
nz

o(
g,

h,
i)p

er
yl

en
e 

co
ro

ne
ne

 

S
um

 F
P

A
H

 

S
um

 h
op

an
es

 

5-Jan 1700-0500 21.5 12.9 14.9 4.4 8.8 12.4 6.7 7.8 7.1 5.4 8 10.9 9.2 80.7 49.3 
6-Jan 900-1100 20.1 21.8 11.8 10.2 4.9 18.1 25.2 10.8 25.5 0 13.3 6.9 25.9 140.8 53.7 
7-Jan 1100-1700 33.9 20.4 23.3 37.4 8.5 11.5 9.8 7.6 12.2 10.5 7.8 11.1 2.2 118.6 77.6 
8-Jan 900-1100 77.9 48.2 54.7 63 28.6 42.1 31.9 27.3 42.1 32.3 29.3 41.2 16 353.8 180.8 
9-Jan 1100-1700 19.4 13.9 13.2 40.6 10.9 13.3 11.4 8.5 12.7 10.6 7.7 10.8 0.7 127.2 46.5 

10-Jan 1100-1700 17.5 13.3 11.3 59.4 11.8 13.3 10.1 8.5 12.2 10.5 7.4 9.2 0 142.4 42.1 
11-Jan 1100-1700 71.4 41.7 51 57.4 20.8 22.8 12.6 15 18.4 11.9 14.3 26.6 5 204.8 164.1 
12-Jan 1100-1700 17.1 12.7 11.5 70.8 12.9 17 12.5 10.7 14.3 10.8 9.4 15.1 0.9 174.4 41.3 
14-Jan 1100-1700 38.4 23.7 26.9 65.2 9.8 10.9 9.7 7.3 11.6 10.6 6.5 7 0 138.6 89 
16-Jan 500-900 74.4 46.3 56 24 11.2 17.4 14.9 11.4 16.3 15.4 12.6 15.6 8 146.8 176.7 
16-Jan 900-1100 22.3 24.4 14.6 14.8 4.9 18.1 25.1 11 26.1 29.5 0 6.9 5.5 141.9 61.3 
18-Jan 900-1100 53.6 39.8 36.1 21 14.4 26.3 27.9 16.4 30.3 0 18.7 17 9.1 181.1 129.5 
19-Jan 1100-1700 35.8 22.5 26.9 19 27.3 36.9 12.1 24.3 29.1 13.3 30.7 55.2 26 273.9 85.2 
20-Jan 900-1100 54.9 36 38.7 27.6 29.6 42.7 31.1 23.5 36.3 30.9 0 25.7 14 261.4 129.6 
20-Jan 0500-0500 31.8 23.6 26.6 14.3 14.2 16.6 6.1 10.4 9.3 3.8 11.1 17.6 8.9 112.3 82 
21-Jan 500-900 72.6 28.4 53.8 28.9 23.9 29.1 21.1 19 25.6 17 21.3 33.9 14.2 234 154.8 
21-Jan 900-1100 33.4 29.9 21.7 20.7 11 22.7 26.4 13.9 28.2 29.8 15.8 13 5.9 187.4 85 
21-Jan 0500-0500 49.4 27.4 41.9 28.6 31.8 35 12.2 20.2 26.8 6.7 22.6 26.2 16.6 226.7 118.7 
22-Jan 1100-1700 22 15.1 14 59.1 7.9 9.7 9.1 6.2 10.3 10.2 0 4.6 0 117.1 51.1 
23-Jan 900-1100 55.5 40.5 38.1 33.5 18.9 30.5 28.5 19.3 32.6 30.7 21.3 24.9 11.5 251.7 134.1 
23-Jan 1700-0500 35.1 20.3 28 15.8 31 37.2 13.8 23.5 22.2 8.2 23.7 35.8 19.2 230.4 83.4 
24-Jan 500-900 54.2 33.4 37.2 25.2 19.3 24.3 17 15.7 23 16.5 17.2 27.3 10.7 196.2 124.8 
24-Jan 900-1100 28.9 35.2 18.1 14.1 10.4 23.3 26.6 14.6 28.2 0 0 14.2 4.9 136.3 82.2 
25-Jan 900-1100 73 45.8 47.5 23.7 17.3 27.9 28.4 18.1 30.8 31.2 19.6 20.6 12.5 230.1 166.3 
26-Jan 900-1100 80.4 52.2 56.4 23.3 27.7 42.6 31.6 26.2 37.7 31.3 30.2 34.2 18.3 303.1 189 
27-Jan 900-1100 32.3 26.5 20 18.8 16.6 27.7 27.8 16.5 31.5 30.3 18.6 16.7 5.7 210.2 78.8 
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Table B-4. Correlation matrix of FPAHs, BC, OM, APAH, PPAH, and AMS PMF factors during the 26 sampling intervals with FPAH data; colors 
indicate high (red) to low (green) correlations. 
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INDENO(123CD)PYRENE 0.56 0.44 0.58 -0.12 0.67 0.67 0.27 0.73 0.54 0.27 1.00 

BENZO(ghi)PERYLENE 0.56 0.41 0.60 -0.09 0.87 0.82 0.21 0.87 0.56 0.28 0.79 1.00 

CORONENE 0.35 0.31 0.38 -0.50 0.59 0.70 0.34 0.71 0.57 0.09 0.67 0.69 1.00 
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Figure B-4.  Scatter plot matrix of filter PAH measurements with APAH and PPAH. 

 

Figure B-5.  Scatter plot of levoglucosan and APAH concentrations during day (triangles) and night 
(circles), colored by OM concentrations. 
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