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Abstract. A robotic manipulator can fail in many different ways, and its capabilities after a failure
are a major concern, especially for manipulators used in hazardous and remote environments,
where the cost of repair or replacement is high. This article presents a study of the workspaces of
robotic arms after a free-swinging failure, defined as a hardware or software failure that prevents
the application of actuator torque on a joint. Two analytical methods are discussed. The first is for
planar arms only and is based on a positional inverse-kinematic algorithm that uses polynomial
roots, guaranteeing that all solutions, and therefore the postfailure workspace, can be found. The
second method has no such guarantee, but is applicable to general spatial manipulators. It is based
on a differential technique for tracing the postfailure workspace boundary.
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1. Introduction

Robotic failure tolerance has received significant attention in the literature of
late [1, 2, 3, 4]. Much of this work has addressed the type of robotic failure that
causes a joint on a manipulator to become locked, either because the failure is
intrinsically of the locking type or because brakes are applied to prevent erratic
behavior. A principal concern when addressing the issue of failure tolerance is
the capabilities of the manipulator after a failure, and a number of analyses of
workspaces after a locked-joint failure have been made [5, 6, 7].

A robotic manipulator, however, can fail in many different ways, and it is
important to also look at the capabilities of an arm after nonlocking failures. This
article will focus on the free-swinging type of failure, defined as a hardware or
software failure that prevents the application of actuator torque on a manipulator’s
joint. This type of failure could be caused, for example, by a ruptured seal on
a hydraulic actuator or a loss of power on an electric motor. A free-swinging
failure could also be partial, where limited actuator torque can be applied; this
would occur, for example, when a weaker back-up actuator is used after a failure
of the primary actuator.

After a free-swinging failure, the failed joint moves under the influence of
external forces and gravity. This motion both fosters the potential for secondary
damage and presents the possibility of expanded usefulness after a failure [§].

* This work was supported by Sandia National Laboratories under contract number AL-3011
and by a NASA graduate student research fellowship (grant number NGT9-2).
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The issue of operating manipulators in anticipation of a free-swinging failure was
addressed in [9]. It is the issue of usefulness after a failure as defined through
the reachable hand poses that will be the focus of this article, and the emphasis
will be on kinematically redundant arms. Kinematically redundant manipulators
have been proposed for use in hazardous and remote environments due to their
dexterity before a failure and ability to continue operation after a failure [10, 5, 7].

The postfailure workspace is defined here as the set of all hand poses reach-
able by the manipulator when stationary with zero actuator torque on the failed
joint. The approach to analyzing it will be two fold. First, a method will be estab-
lished for finding joint angles that give a desired hand pose without gravitational
torque on a specific joint (the failed joint)for a three-link planar arm with mass
distributions along the links. This will be used to analyze postfailure workspaces
through exhaustive search. Second, a differential method will be presented for
tracing the postfailure workspace boundary for a general spatial arm. In Sec-
tion 4, the results of the two methods will be compared for the planar case, and
the differential method will be used to find the postfailure workspaces for several
arms where the first approach is not applicable.

2. The Workspace of a Three-Link, Planar Manipulator

In this section, the first of the two methods for analyzing postfailure workspaces
will be given. It will be based on a zero-torque inverse-kinematics algorithm
that guarantees discovery of all solutions for a class of planar arms with the
task of end-point positioning. The approach will be as follows: First, a method
will be given for solving the inverse kinematics for a specific case, that of zero
gravitational torque on the base joint of a planar three-link manipulator with link
masses at the ends of the links. Then a method will be given for mapping any
joint failure for a wide class of three-link, planar manipulators into the specific
case.

A. THE SPECIFIC CASE

Let the specific planar arm be defined as follows: The joint angle for link ¢ is
gi, its link length is nonzero ¢;, its mass is m;, and the center of mass of each
link is located at the end of the link (i.e., centered at Denavit-Hartenberg (D-H)
frame ). Define for each link i a pseudomass ;. For the more general cases,
#; will take on a different meaning and will allow the mapping from the more
general into the specific, but here the pseudomass will equal the mass. That is,

The geometric and inertial parameters of the specific arm are shown in Figure 1.
The base frame will be defined such that the z-axis is perpendicular to the
upward-pointing gravity vector g, and g - g > 0.
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Figure 1. The specific manipulator. The link lengths are £;; the link masses are m;; and
the centers of mass coincide with the origins of the D-H frames (D-H frame n is defined,
for convenience, to coincide with the tip). The ¢;’s are relative joint angles.

To simplify calculation of the zero-torque configurations, absolute angles ;
will be used; i.e.,

Y =P +qi; o =0. )

Also, the inward composite pseudomass will be used, defined through

—~ e~ o~

M; = My + g5 Mpyr =0, 3)

When there is no joint-one gravitational torque on the specific manipulator, the
z-coordinate of the first-moment-of-inertia vector of the entire arm must vanish.
This together with the end-effector-position constraint that the arm tip be located

at (pz, py) gives

cily + by + 3l3 Pz
5181 + 820y + 5343 =\|py |, )
Mici18y + Mycyly + Macals 0

where ¢; = cos(1);) and s; = sin(1;). For stability, the y-coordinate of the first
moment of inertia must be negative:

Mlslgl + MzSzEz + M\383£3 < 0. (5
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Using Ms = i, the third entry of (4) gives the following equation in the
absolute-angle cosines:

T?L3C3€3 = —]/\/[\10151 - ]/\-4\262@2. (6)
Then the first entry of (4) allows the elimination of cs,

(7/7\1262>C2 = C (7%361 — ]\7161) - 77’13]%. (7)
And the second entry of (4) allows elimination of ¢, giving

+vVA+ VB +VC =D, . (8)

where
A =38 — (el + pa(My + )7, )
B = m3i(1 - &), (10)
C = M35 — (crls (M + Ma) + pe)’, 11)
and
D = mypy. (12)

Equations (6), (7), and (8) are necessary for (4) to be satisfied. Provided
my # 0 and M3 # O they are restrictive in that they yield a finite number of
solutions if only a finite number of solutions exist. Especially important, (8) is
a necessary condition for ¢| alone. The square roots of (8) can be eliminated as
follows:

Let

E=YA-B-C-D% (13)
and

F=E®+D*C - BC - D*B. (14)
Then the following is a necessary condition for (8) to be satisfied:

F? —4(B+ E)*D*C = 0. (15)

Using the values from (9)-(12), this gives a sixth-order polynomial equation
in ¢;. Provided the number of solutions is finite, this will give six, possibly
nondistinct, values for c¢;, which, as the roots of a polynomial, can always be
found. Substituting these into Equations (7) and (6) gives six sets of cosines
for joint angles one, two, and three. These typically correspond to 48 sets of
angles (each cosine value apart from =1 gives two angle values). Since necessary
conditions were used to find these angles, if a zero-torque solution exists, it must
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be a member of this set. Spurious solutions can be eliminated by substitution
into Equations (4) and (5).

B. THE GENERAL CASES

Now, let the geometry and inertia of a more general arm be defined as follows:
The joint angle for link 4 is ¢;; its hink length is nonzero 4;; its mass is m;; and its
center-of-mass lies at a distance of d; in line along the link, i.e., at {d; — ¢;,0,0)
in D-H frame . It is possible to use a polynomial-root-based method on planar
manipulators with centers of mass that are not in line between D-H frames using
an extension of the approach presented here.

B.1. No Torque on Joint One

Provided the link lengths /; are nonzero, the more general case with a failure of
joint one can be mapped into the specific case by letting the pseudomasses of
the links be given by

P dimg  liyy — di+lm .
7 — 7,+ >
¢; lin

Mpy = 0. (16)

A manipulator with pseudomasses 77; at the D-H frame origins will have the same
joint first moments of inertia and therefore will behave exactly like a manipulator
with masses m,; located at d; along each link for behavior not involving the
second moment of inertia. Thus, after the mapping, (6), (7), and (8) can be used
to find the solution sets for the more general arm provided M, # 0 and M3 5~ 0,
ensuring (6), (7), and (8) are restrictive. For the special cases of vanishing 7, or
M3, (4) becomes simpler and can be solved using a different set of assumptions.
Note the 7;’s may be negative — a negative mass value can be directly used in
Newton’s Second Law of Motion and its derivatives just as is a positive value.

B.2. No Torque on Joint Two

When there is no joint-two torque, the z-coordinate of the first-moment-of-inertia
vector for links two and three must equal the z-coordinate of the second joint.
This constraint can be mapped into (4) by first calculating 73 and 7, using (16)
and then calculating m; as follows:

m] = —Myp — M3. amn
With this, (6), (7), and (8) can be used to find the solution sets for zero joint-two

torque. Since there is no restriction on the value of M, in the specific solution,
this will always work for 7, s # 0.
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B.3. No Torque on Joint Three

When there is no joint-three torque, the z-coordinate of the first-moment-of-
inertia vector for the third link must equal the z-coordinate of the third joint,
This constraint can be mapped into (4) by first calculating ™m3 using (16) and
then calculating M, and m; as follows:

My = —Mj3 (18)
and
7y = 0. : (19)

With this, (6), (7), and (8) can be used to find the solution sets for zero joint-three
torque. This will always work for M3 # 0. (Note this problem can be solved in
closed form, using the fact that the last link must be vertical — the mapping here
is for completeness.)

3. The General Workspace Boundary Problem

Let q be the column vector formed from the g¢;’s. Then for a general arm, the
position and torque/force constraints for a stationary manipulator reaching hand
pose p after a free-swinging failure of joint ¢ (the general equivalent to (4)) are
the following:

p = f(q), (20)
where f(-) is the mapping from configuration to hand pose, and
i =0, 21

where 7; is the required actuator torque on rotational joint 7 or force on prismatic
joint 7. Since a stationary manipulator is assumed, the torque or force 7; will
typically equal g;, the actuator torque/force due to gravity. For rotational joint ¢,
gravitational g; is given by

9i = (Zi-1 X 8;_1) - & (22)
and for prismatic joint ¢ by
gi = Mz - g, (23)

where 2, is the unit vector along joint £+ 1, the z-axis of the fth D-H coordinate
frame; s is the first moment of inertia of the composite rigid body formed by
links £-1 through n referred to the origin of D-H frame /; g is the gravity vector
in the upward direction; and M; is the composite mass of the outboard links.
For rotational joints, the requirement for stability of the zero-gravitational-
torque solution (when 7; = ¢;) is that the composite center of mass of the links
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outboard from the failed joint lie below — with respect to the gravitational field
— the line coinciding with the axis of the failed joint. This is represented by the
following:

(s{_1 X Zi—1) - (Zi-1 x g8) > 0. (24)

The composite first-moment-of-inertia vector s; as expressed in the ith D-H
frame can be calculated through the following two recursions:

My =m; + Miyy; My, = my,. (25)
st = Rip1(sip + it + MisiPisin)s s, = 0. (26)

Here, “Ryy is the 3 x 3 rotation matrix representing D-H frame 7+ 1 in frame 4;
sy is the first-moment-of-inertia vector for link £ referred to and expressed in its
own D-H frame; and p,_,, is the vector from the origin of D-H frame 4 to the
origin of frame /, expressed in frame £.

Solving the two nonlinear Equations (20) and (21) is a difficult problem for the
general case, however, and it is useful to focus only on the postfailure workspace
boundary. For this development, it will be assumed that there are no joint limits.
Let the augmented Jacobian J 4, be given by

JAi:|: 1 }, 27

VTZT

where J is the manipulator Jacobian. Then to be at a boundary configuration,
provided 7; is continuously differentiable, a necessary requirement in addition to
(20) and (21) is

rank(J 4,) < m, (28)

where m is the dimension of the task space (i.e., J is m x n), for otherwise
it would be possible to move in any direction while maintaining zero torque.
Note also that if p is a boundary point of a region reachable with zero actuator
torque through a given multiplicity of solutions, then (28) will be true for some
zero-torque configuration reaching p. This issue of solution multiplicity will be
further addressed in Section 4.

The gradient of gravitational 7, = g; has entries dg; /0g;. For joint 4 rotational,
using (22), the values of these entries are given by

Ggi 8 R * . 8 «
= —Zi| XS+ 2o X |58, g, 29
a4, ( [ 34, 1} ] I { 94, 1} ) g 29

and for prismatic joint 7, by

9g; 0 .
= — MZ = fi—1" 3 30
94, ( 34, 1 g) (30)




62 JAMES D. ENGLISH AND ANTHONY A. MACIEJEWSKI

provided 02;_/0q; and Os}_,/0Oq; are found with respect to the base frame and
g is constant in the base frame.

When joint j is rotational, 0%;/0q; and 0s}/0g; can be found with respect to
the base frame as follows:

0 . . N
=% = Zj—1 Xz, ],
0q; 3D
=0, i>i
0 . .
~8q~8; = Zj_| X8}, j <1, ) 32)
j

and when joint j is prismatic,

0

—2 =0, (33)
aq]'

—afsf = 0, J <1,

9g; (34)

= MjZAj—la i >

Let a scalar boundary specifier X;(q) be defined as a function of the joint
variables that goes to zero if and only if J4, loses rank. For example, if J4, is
square, N; can be defined as

R; = det(J4,). (35)

Then if 7; continuously is differentiable, a particular configuration’s hand pose
is a postfailure workspace boundary point only if some configuration reaching it
gives 7; = 0 and X; = 0. These conditions with (24) are sufficient for the point
to be a stable postfailure workspace point when 7; = g;. Note also that ; = ¢,
any «, and R; = 0 are necessary conditions for a boundary point of the region
reachable with 7; = a.

If a manipulator is posed at a postfailure workspace boundary, then to trace the
boundary, a necessary differential condition is a joint-rate vector perpendicular to
both V7; and VX;. Such a trace may depart from the boundary (the conditions are
only necessary), but will not depart from the postfailure workspace (for this, the
conditions are sufficient). A discussion of the related issue of tracing algorithmic
singularities is given in [11].

The gradient of N; as defined through (35) can be found as follows:

aNz‘ aJA- . }
= trace *adi(Ja.) ¢, 36
Oqx, { Oqy, iJa) 0)
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where the partial derivative of J 4, is the partial derivative of J concatenated with
the partial derivative of V7;; i.e.,

Jol
0J 4, Er
- . 37
Oqx {%VQT S

Methods for calculating the partial derivative of the Jacobian are given in [12],
and the partial derivative of gravitational V7; = Vg; can be found through the
procedure below.
Entry 7 of 9Vg;/0qx, equal to the entry (j, k) of the Hessian of g;, is given
by
&g
Bq;0qy,

82 82
= Zi | XS+ 2 X s |+
( [3%‘3% 1} e [5%‘ O 1}

0 . 2 . } [ J } J .,
—Zi | X | =S, |+ |5 Zi-1| X | z—S;_ . 38
0q; I} [3% 1 bgr {3% ) # 9

for a rotational joint, and

8291, 52
=M | z—F%-1]" 3
{5%5%2 l} 8 59

for a prismatic joint, provided the partial derivatives are found with respect to
the base frame and g is constant in the base frame.

The vectors 8°s}/8g;0q), and 0%2;/8q;0qy. taken with respect to the base
frame are given by the following for joints & and j rotational:

+

o 2 = Z xié- < k<1
8(]jaq1c 5 — “5-—1 aqk i J X b
a
— Br X i, K<<, @0
8qj
= (), otherwise,
» ST =2z, X 9 s;, k>j
] g = <j-—1 a P ’
9q;0qx Oy @1
- 72/671 X ——_5%7 k <]
aq]' *
When either (or both) of joints j and k are prismatic,
82
z, = 0. (42)

9q;0qx
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For joint j rotational and k prismatic:

o s; = 2| % s;, k>
i = Zj— 5. i >
o~ T T ag T “3)
= 0, k< 7.
For joint j prismatic and % rotational:
o ST = Zp_| X 0 s;, K<y
i — Rk— ao P i
beoqe " 1 By, g (44)

=0, k> j.
And for joints j and k prismatic:
52
9q;0qs

st =0. (45)

Note that, unlike for the polynomial-root-based technique, the differential
technique is not guaranteed to find the entire postfailure workspace to a prescribed
level of discretization. As will be seen in examples to come, the postfailure
workspace boundary may be composed of a number of disjoint sets satisfying
the boundary condition. As is the typical case for finding zeros of complex
nonlinear equations, there is no guarantee that an initial point in each of these
sets can be found using a general nonlinear equation solving technique on (20)
and (21). For the examples, this problem will be addressed by using a number of
random initial conditions for the nonlinear equation solver and taking the union
of the resulting traces.

4. Examples

In this section, an example planar manipulator will be used to compare the
two analytical methods. The first method is guaranteed to correctly establish
the postfailure workspace to the resolution of the exhaustive search and will
be used to verify the second, differential method. Then the differential method
will be used to find the postfailure workspace for a planar arm with offset link
centers of mass and for a planar arm with springs on the joints. The first method
as presented is not applicable to either of these cases. To further illustrate the
generality of the second technique, the final example will be a four-link spatial
manipulator.

A. PLANAR EXAMPLES
A.1. Using the Polynomial-Root-Based Method

The first exampie manipulator will have link lengths of unity, link masses of
unity, and link centers of mass at the link centers (i.e., d; = 1/2, V). The gravity




ROBOTIC WORKSPACES AFTER A FREE-SWINGING FAILURE 65

3

-3

-2 -1 0 1 2 3

Figure 2. The numbers of solutions over the postfailure workspace of the example manip-
ulator following a failure of joint one, as found using the zero-torque positional inverse
kinematics. Any point in the light-gray region can be reached with two distinct configura-
tions after a failure of the first joint, and each point in the dark-gray region can be reached
with four.

2 3

Figure 3. The numbers of solutions over the postfailure workspace of the example manip-
ulator following a failure of joint two, as found using the zero-torque positional inverse
kinematics. Any point in the light-gray region can be reached with two distinct configu-
rations after a failure of the second joint, and each point in the dark-gray region can be
reached with four.

vector will point in the y-direction of the base frame. To find the postfailure
workspace of this arm using the first technique, a 160 x 160 grid was laid over
the arm’s workspace. Then, for each point on the grid, the zero-torque inverse-
kinematic method was used to solve for all stable solutions. These were counted
to get the value for that point on the grid.
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Figure 4. Four configurations reaching the point (0.41, —1.01) with no torque on joint two.
This point lies within the dark-gray region of Figure 3. Link centers of mass are shown by
shaded disks. For each configuration, the center of mass of the composite body formed by
links two and three lies below joint two, making each configuration stable.

The results of using this technique for a failure of joint one are shown in
Figure 2, and the results for a failure of joint two are shown in Figure 3. The
regions shown are for stable solutions, meaning the center of mass of the portion
of the manipulator outboard from the failed joint lies below the failed joint
(i.e., (5) applies). Any workspace point corresponding to a stable solution can
be reached after a failure simply by moving the healthy joints to their required
positions along an arbitrary path. Four configurations reaching a point within the
dark gray region of Figure 3 are shown in Figure 4. For all the configurations, the
composite center of mass of links two and three lies directly below the second
joint.

A.2. Using the Differential Method

Provided Vg; and VX; are not linearly dependent, for a three-link manipulator
a nonzero direction vector for tracing the gravitational postfailure-workspace
boundary can be found using the vector cross product as follows:

This method was used to trace the boundary for the example planar arm of Sec-
tion A.1 by first finding a solution to g; = 0 and N; = 0 with a nonlinear equation
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Figure 5. A trace of the stable postfailure workspace boundary of the example manipulator
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for a failure of joint one. These results agree with those found using the exhaustive-search

method shown in Figure 2.
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Figure 6. A trace of the stable postfailure workspace boundary of the example manipulator
for a failure of joint two. These results agree with those found using the exhaustive-search
method shown in Figure 3.

-1

0

i

2

3

|
!



68 JAMES D. ENGLISH AND ANTHONY A. MACIEJEWSKI

2t

-3

2 1 0 1 2 3
Figure 7. A trace of the stable postfailure workspace boundary for a failure of joint one,
for the planar arm with the link centers of mass offset by 1/4 link length from those of the

previous example manipulator. These results are similar to those of the case with no offset
shown in Figure 5.

solver, then taking discrete steps along the direction vector until returning to the
starting configuration. To prevent drift due to the discrete steps, a feedback cor-
rection term for g; and N; was used. The boundary traces are shown in Figures 5
and 6. These results agree completely with those of the exhaustive-search method.

The tracing method is valid for a broader range of problems, however, and
two additional applications are shown in Figures 7 and 8. Figure 7 gives the
postfailure workspace boundary when the link centers of mass of the example
arm are offset along the y-direction by 1/4 link length. That is, each link’s
center of mass is located at (—1/2,1/4) in its own D-H frame, as compared to
(—1/2,0) for the arm of Figure 5.

Figure 8 shows the postfailure workspace boundary for the example arm (no
y-direction offset) after a joint-two failure with springs of stiffness numerically
equal to ||g|| on the joints (for angles in radians); i.e., actuator torque is given by

i = g; + |lglla, @7

with g; calculated using (22). The spring counters the force of gravity and enables
the arm to reach farther away from the base, but not to reach near the base: the
central tear-drop-shaped region is not reachable after a failure of the second joint.
But even with this central void, the area of the postfailure workspace is much
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Figure 8. A trace of the postfailure workspace boundary for a failure of joint two, for the
planar arm with a spring of stiffness numerically equal to ||g|| at joint two. These results

vary considerably from those found for the case of no spring in Figure 6: the center region
here has no solutions and the two-solution region is much larger.

larger in Figure 8 than in Figure 6, showing the benefit of using a spring. Any
point lying between the two curves in Figure 8 is reachable after a failure, but
the required positions of the healthy joints must be reached along a path that
gives the required spring torque — i.e., it is path dependent.

B. A SPATIAL EXAMPLE

This section will study a spatial arm and will look at all zero-torque solutions,
both stable and unstable. The example manipulator will be four link, with the
following D-H parameters for all links ¢: a; =1, d; =0, oy =7/2, and 6; = ¢;
(based on the labeling scheme of Paul [13]). Each link has unit mass, located at
the link center ((—1/2,0,0) in its own D-H frame). The gravity vector points in
the positive y-direction of the base frame, and the end-effector tip is located at
the origin of the fourth D-H frame.

If a failure of joint ¢ is the focus, then to trace the postfailure workspace bound-
ary, a direction vector perpendicular to both Vg; and VR; is needed. Because
there are four joints, the subspace of direction vectors at any boundary point is
at least two dimensional. This allows a third constraint.
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2}

z=1

-2

Figure 9. A trace in the z = 1 plane of the postfailure workspace boundary condition of
the example spatial manipulator for a failure of joint one. There are 16 independent regions
enclosed by boundary traces, labeled with the letters a—p. Points in region a have two zero-
torque inverse-kinematic solutions; points in regions b, d, and o have four; points in regions
¢, e, g, h,j, 1, n, and p have six; and points in regions f, i, k, and m have eight. These include
all zero-torque solutions, both stable and unstable.

The constraint that will be used here is confinement of the trace to a plane.
With this, the direction vector must induce tip motion perpendicular to the plane’s
normal. If v is the normal vector to the constraint plane, then a direction vector
can be found as follows:

(Vai)"
deN| [ (VR)T ], (48)
vy
where N (-) denotes the null space.
The results of tracing the boundary condition for the example manipulator in

the plane z = 1 are shown in Figure 9. There are 16 separate regions enclosed
by the boundary-condition trace, each containing from two to eight solutions per
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Figure 10. Two configurations of the example spatial manipulator with zero torque on the
first joint reaching the point (0.9, —2.6, 1.0). This poini coincides with the location of the
letter a in Figure 9.

point. All possible traces are shown (based on an extensive search), and hence
the multiplicity of solutions cannot change within an enclosed region (where
the region does not include the boundary points). Note, however, that the traces
between regions f and i, and between k and m do not separate different solution
multiplicities. The trace conditions are necessary for a multiplicity boundary, but
not sufficient. Because both stable and unstable solutions were used in finding
Figure 9, not all points are reachable by a slow-moving manipulator after an
arbitrary joint-one failure. Two configurations reaching a point within the post-
failure workspace with zero joint-one torque are shown in Figure 10. Both of
these are stable solutions, satisfying (24).

5. Concluding Remarks

In this article, two methods were presented for analyzing robotic workspaces
after a free-swinging failure. The first method involved solving the zero-torque
inverse kinematics for a three-link planar manipulator. This was done by finding
and solving a polynomial equation in the cosine of the first joint angle for a
specific case and then mapping more general cases into the specific one using
the concept of pseudomass. The second, differential, method involved defining
a direction vector along which joint motion induced end-effector motion that
followed the workspace boundary. This method was used to trace boundaries by
discretizing motion along the direction vector and using feedback error correction
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to prevent drift. As opposed to the polynomial-root-based method, the differential
method could be used with any spatial or planar manipulator. The two methods
agreed in examples where both were applicable, and the differential method was
demonstrated in several examples for which the first method was not applicable.
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