Physical modeling of Atmospheric Transport of Stack Emissions at Kahe Electrical Generating Plant (Units 9, 10, 11, 12, 13, and 14) Oahu, Hawaii Volume I

Ъy

R. L. Petersen,* J. E. Cermak** and E. E. Twombly***

Prepared for

Stearns-Roger, Inc. Denver, Colorado

Engineering Sciences

JUL 1 4 1980

Branch Library

Fluid Dynamics and Diffusion Laboratory Fluid Mechanics and Wind Engineering Program Colorado State University Fort Collins, Colorado 80523

April 3, 1980

CER79-80RLP-JEC-ETT50 a

*Research Assistant Professor, Fluid Dynamics and Diffusion Laboratory

^{**}Director, Fluid Dynamics and Diffusion Laboratory ***Research Assistant, Department of Mathematics

ABSTRACT

A topographic model with a scale of 1:650, of the Kahe Electrical Generating Plant (located on the island of Oahu, Hawaii) was tested in a wind tunnel in order to determine the nature of atmospheric transport of stack emissions for Units 9, 10, 11, 12, 13 and 14. Both oil and coal fired units were considered. The heights and configuration of the stacks were varied as were wind velocity and direction. Ground-level concentrations of tracer gas were measured for each combination of conditions. Plume geometry and behavior were observed and recorded by means of still photographs and movies.

ACKNOWLEDGMENTS

The authors wish to recognize the following individuals for their contributions to this research effort: Frank Law for conducting and analyzing velocity measurements; Bob Beasley for supervising the collection of concentration and visual data; Joe Beatty for his assistance in data reduction and report preparation; Jim Maxton for aiding in the velocity measurements, and Bridget Emmer for her assistance in all phases of data collection. Thanks also go to Linda Jensen and Mary Grether for typing the manuscript and Kenneth Streeb and B. A. Hoffman for drafting the figures.

TABLE OF CONTENTS

Chapter		Page
	ABSTRACT	i
	ACKNOWLEDGEMENTS	ii
	LIST OF TABLES	iv
	LIST OF FIGURES	v
	LIST OF SYMBOLS	ix
1.	INTRODUCTION	1
2.	WIND-TUNNEL SIMILARITY REQUIREMENTS	3
	2.1 General	3
	2.2 Parameters Not Equal for Model and Prototype	4 8
3.	EXPERIMENTAL METHODS	11
5.	3.1 General	11
	3.2 Scale Models and Test Facility	11
	3.3 Gas Tracer Technique	12
	3.4 Velocity Profiles	18
	3.5 Flow Visualization	22
4.	ATMOSPHERIC DISPERSION COMPARABILITY TEST (ADCT)	24
	4.1 Description of Model and Tests	24
	4.2 Vertical Profile of Mean Temperature	25
	4.3 Vertical Profile of Intensity of Turbulent	
	Temperature Fluctuations	25
	4.4 Vertical Profiles of Mean Velocity	25
	4.5 Vertical Profiles of Turbulence Intensity	25
	4.0 Evaluation of Mean Velocity Profiles	20
	4.7 Horizontal and vertical concentration	27
	4.8 Ground-Level Longitudinal Profile	27
	4.9 Evaluation of Dispersion Comparability	27
_		
5.	TESTS FOR THE 63° WIND DIRECTION	31
	5.1 Description of the Model and Tests	31
	5.2 Vertical Profiles of Mean Velocity	22
	5.4 Ground-Lovel Concentration Measurements	32
	5.5 Flow Visualization	33
6.	TESTS FOR THE 153° WIND DIRECTION	34
	b.1 Description of the Model and Tests	34
	6.2 Vertical Profiles of Mean Velocity	34
	6.4 Ground-Level Concentration Measurements	33 25
	6.5 Flow Visualization	36
		20
		38
	TABLES	4⊥
	FIGURES	56

LIST OF TABLES

Table		Page
3-1	Model and Prototype Parameters for Each Test	42
3-2	Full-Scale Test Parameters for Kahe Power Plant Study	49
4-1	Summary of Mean Velocity Profile Data for Reynolds Number Independence Test	50
5-1	Summary of Mean Velocity Profile Data With No Upwind Terrain Present and Mean Wind from 63°	51
5-2	Summary of Mean Velocity Profile Data With Upwind Terrain Present and Mean Wind from 63°	52
5-3	Peak Concentration Location Downwind of Stacks for the 63° Wind Direction and 141 MW Units	53
6-1	Summary of Mean Velocity Profile Data With No Upwind Terrain Present and Mean Wind from 153°	54
6–2	Summary of Mean Velocity Profile Data With Upwind Terrain Present and Mean Wind from 153°	55

LIST OF FIGURES

Figure		Page
3-1	Areas Modeled for the 60° and 153° Wind-Tunnel Studies	57
3-2	Location of Units 9, 10, 11, 12, 13 and 14 for Kahe Tests	58
3-3	153° Wind Direction Ground-Level Sampling Locations	59
3–4	63° Wind Direction Ground-Level Sampling Locations for Runs 50-79	60
3–5	63° Wind Direction Ground-Level Sampling Locations for Runs 80-91	61
3-6	Photograph of Model Units 9, 10, 11 and 12 (left side of picture)	62
3-7	Colorado State University Environmental Wind Tunnel	63
3-8	Photographs of (a) Sampling System and (b) HP Gas Chromatograph With HP 3380 Integrator	64
3-9	Typical Sampling System Calibration	65
4-1	Photograph of Spire, Trip and Roughness Setup for Atmospheric Dispersion Comparability Test (ADCT)	66
4-2	Mean Temperature Profile (a) and Intensity of Turbulent Temperature Fluctuations Profile (b) at Stack Location for \overline{T}_{ref} = 297.36 K and u_{∞} = 114.4 cm/s	67
4-3	Mean Velocity (a) and Turbulence Intensity Profiles (b) at Three Different Free Stream Velocities for the Atmospheric Dispersion Comparability Test	68
4-4	Vertical Concentration Profiles at a 1 m/s Wind Speed (Atmospheric Dispersion Comparability Test)	69
4-5	Vertical Concentration Profiles at a 2 m/s Wind Speed (Atmospheric Dispersion Comparability Test)	70
4-6	Vertical Concentration Profiles at a 3 m/s Wind Speed (Atmospheric Dispersion Comparability Test)	71

Figure

4-7	Horizontal Concentration Profiles at a 2 m/s Wind Speed (Atmospheric Dispersion Comparability Test)	72
4-8	Ground Sampling Grid for Kahe Atmospheric Dispersion Comparability Test	73
4-9	Comparison of Observed σ_y Variation Versus Downwind Distance with the Variation Predicted by Pasquill (1976) for $i_y = 0.14$	74
4-10	Comparison of σ_z Variation Versus Downwind Distance with the Variation Predicted by Pasquill (1974) for $z_0 = 10$ and 100 cm	75
4-11	Comparison of Observed $\chi u_a/Q$ Values and Values Predicted Using (1) Pasquill-Gifford C and D Dispersion Rate and (2) Dispersion Rate for a $z_0 = 100$ cm and $i_y = 0.14$ (All Cases for 100 m Stack)	76
5-1	Wind-Tunnel Setup for a 63 ⁰ Wind Direction Without Upwind Terrain	77
5-2	Mean Velocity (a) and Turbulence Intensity Profiles (b) With No Upwind Terrain Present and a Mean Wind from 63° at the Stack Location ([]), 3.1 m Downwind (()), and 5.8 m Downwind (Δ)	78
5-3	Mean Velocity (a) and Turbulence Intensity Profiles (b) at the Stack Location, With the Terrain, a Mean Wind from 63 ⁰ , and Three Different Free Stream Velocities	79
5-4	Maximum Concentration (for Unit 9/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 63 ⁰ Wind Direction	80
5-5	Maximum Concentration (for Unit 10/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 63 ⁰ Wind Direction	81
5-6	Maximum Concentration (for Unit 11/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 63 ⁰ Wind Direction	82
5-7	Maximum Concentration (for Unit 12/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 63 ⁰ Wind Direction	83
5-8	Maximum Concentration (for Unit 9/141 MW) Versus Downwind Distance for a 182 m Stack and a 63 ⁰ Wind Direction	84

Figure

5–9	Maximum Concentration (at Unit 10/141 MW) Versus Downwind Distance for a 182 m Stack and a 63 ⁰ Wind Direction	85
5-10	Maximum Concentration (at Unit 11/141 MW) Versus Downwind Distance for a 182 m Stack and a 63 ⁰ Wind Direction	86
5-11	Maximum Concentration (at Unit 12/141 MW) Versus Downwind Distance for a 182 m Stack and a 63 ⁰ Wind Direction	87
5-12	Flow Visualization for a 136.5 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 63° Wind Direction	88
5-13	Flow Visualization for a 136.5 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 63 ⁰ Wind Direction	89
6-1	Tunnel Setup for the 153 ⁰ "Terrain In" Tests	90
6-2	Locations of Velocity Profiles for the 153 ⁰ Wind Direction	91
6-3	Mean Velocity (a) and Turbulence Intensity Profiles (b); No Terrain Present and Mean Wind from 153 ⁰ for Two Different Free Stream Velocities (See Figure 6-2 for Profile Location)	92
6-4	Mean Velocity (a) and Turbulence Intensity Profiles (b); No Terrain Present and Mean Wind from 153 ^o for Two Different Free Stream Velocities (See Figure 6-2 for Profile Location)	93
6-5	Mean Velocity (a) and Turbulence Intensity Profiles (b); With No Terrain Present, Mean Wind from 153 ⁰ Taken Across the Tunnel at the Locations Shown in Figure 6–2	94
6-6	Mean Velocity (a) and Turbulence Intensity Profiles (b); With Terrain and Mean Wind from 153 ⁰ Taken Down the Center of the Tunnel at the Locations Shown in Figure 6-2	95
6-7	Mean Velocity (a) and Turbulence Intensity Profiles (b); With Terrain and Mean Wind from 153 ⁰ for Three Different Free Stream Velocities at the Locations Shown in Figure 6-2	96
6-8	Mean Velocity (a) and Turbulence Intensity Profiles (b); With Terrain and Mean Wind from 153 ^o Across the Tunnel at the Location Shown in Figure 6-2	97

Page

Figure

6-9	Mean Velocity (a) and Turbulence Intensity Profiles (b); With Terrain and Mean Wind from 153 ⁰ Across the Tunnel for Two Different Free Stream Velocities at the Location
	Shown in Figure 6-2
6-10	Maximum Concentration (for Unit 9/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 153 ^o Wind Direction
6-11	Maximum Concentration (for Unit 10/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 153 ⁰ Wind Direction
6-12	Maximum Concentration (for Unit 11/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 153 ⁰ Wind Direction
6-13	Maximum Concentration (for Unit 12/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 153 ⁰ Wind Direction
6-14	Maximum Concentration (for Unit 9/141 MW) Versus Downwind Distance for a 182 m Stack and a 153° Wind Direction
6-15	Maximum Concentration (for Unit 10/141 MW) Versus Downwind Distance for a 182 m Stack and a 153 ⁰ Wind Direction
6-16	Maximum Concentration (for Unit 11/141 MW) Versus Downwind Distance for a 182 m Stack and a 153 ^o Wind Direction
6-17	Maximum Concentration (for Unit 12/141 MW) Versus Downwind Distance for a 182 m Stack and a 153 ⁰ Wind Direction
6-18	Maximum Concentration (for Unit 9/90 MW) Versus Downwind Distance for a 136.5 m Stack and a 153 ⁰ Wind Direction
6-19	Maximum Concentration (for Unit 9/90 MW) Versus Downwind Distance for a 182 m Stack and a 153 ⁰ Wind Direction
6-20	Flow Visualization for a 136.5 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 153 ^o Wind Direction
6-21	Flow Visualization for a 182 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 153° Wind Direction

Page

LIST OF SYMBOLS

Symbol	Definition	Units
A	Hot film calibration constant	(-)
В	Hot film calibration constant	(-)
С _р	Specific heat at constant pressure	$(m^2 s^{-20} K^{-1})$
CF	Calibration factor	(µv-s/ppm)
d	Diameter of hot film or displacement height	(m)
D	Stack diameter	(m)
e	rms error	(varies)
E	Hot-film voltage	(V)
Ec	Eckert number $\left[u_{o}^{2} / (C_{p_{o}} \Delta T_{o}) \right]$	(-)
F _L	Lagrangian spectral function	(s)
Fr	Stack Froude number $\left[\frac{u_s}{\sqrt{g\gamma D}}\right]$	(-)
g	Acceleration due to gravity	(ms ⁻²)
Gr	Grashof number $\left[\frac{gd^{3}(T_{w}-T_{g})}{v_{g}^{2}T_{g}}\right]$	(-)
h	Height of stack	(m)
i _{x,y,z}	Turbulence intensity in x, y, or z direction [u'/u, v'/u, w'/u]	(-)
I	Current through wire or integrated value	(varies)
k	Thermal conductivity	$(Wm^{-10}K^{-1})$
k _s	Uniform sand grain height	(m)

SymbolDefinitionUnitsPPressure(mb)PrPrandtl number
$$\left[\frac{v_0 \rho_0 C_{p_0}}{k_0}\right]$$
(-)QEmission rate(g/s)Q'Zero order moment of concentration(m/ppm)RVelocity ratio $[u_s/u_{\omega}]$ (-)R_cHot resistance at calibration conditions(Ω)ReReynolds number $\left[\frac{L_0 u_0}{v_0}\right]$ (-)R_HFilm hot resistance(Ω)RiRichardson number $\frac{g}{T} \left[\frac{\partial \theta}{\partial z} \\ \frac{\partial u^2}{\partial z}\right]$ (-)R_mUniversal gas constant(m^2/s^2 °K)RoRossby number $\left[\frac{L_0 \Omega_0}{u_0}\right]$ (-)

$$R(\tau)$$
Autocorrelation(-) t,τ,ξ Time or time scales(s) T,θ Temperature or potential temperature(°K) t_1 Center of gravity of autocorrelation curve(s) t_0 Integral time scale(s) u,v,w Velocities(m/s) u^* Friction velocity(m/s) V Volume flow(m³s⁻¹)

Subscripts

Symbol	Definition
a	Pertaining to ambient conditions
BG	Pertaining to background data
с	Pertaining to calibration temperature
g	Pertaining to gas
h	Pertaining to reference height h
i,j,k	Tensor or summation indices
i	Pertaining to tracer i
m	Model
n	Pertaining to power law
0	General reference quantity or initial condition
P	Prototype
r	Reference quantity
S	Pertaining to stack exit conditions
so ₂	Pertaining to SO ₂ concentrations
w	Pertaining to hot wire
z _o	Pertaining to logarithmic law
ω	Free stream

Superscripts

- Root-mean-square of quantity
- * Dimensionless parameter

Greek Symbols

Symbol	Definition	Units
δ	Kronecker delta tensor	(-)
ε	Tensor permutation tensor	(-)
х	Concentration	(ppm)
x _o	Source strength	(ppm)
Υ	Density ratio $\left[\frac{\rho_a - \rho_s}{\rho_a}\right]$	(-)
٨	Length scale	(m)
μ	Dynamic viscosity	(gm ⁻² s ⁻¹)
ν	Kinematic viscosity	(m ² s ⁻¹)
Ω	Angular velocity	(s ⁻¹)
φ *	Dissipation term	(-)
ρ	Density	(gm ⁻³)
σ _z ,σ _y	Vertical and horizontal standard deviation of concentration distribution	(m)

Physical Modeling of Atmospheric Transport of Stack Emissions at Kahe Electrical Generating Plant (Units 9, 10, 11, 12, 13, and 14) Oahu, Hawaii Volume I

1. INTRODUCTION

Hawaiian Electric Company, Inc. operates a power generating facility on the island of Oahu, which is known as the Kahe Electrical Generating Plant (KEGP). The plant is located west of Honolulu and adjacent to the ocean (see Figure 3-1). Due to increased demand for electricity, additional generating facilities are needed at the site. However, prior to construction, it must be demonstrated that National Ambient Air Quality Standards will not be exceeded.

The purpose of this study was to determine ground-level concentrations of sulfur dioxide emanating from proposed units of the KEGP, namely Units 9, 10, 11, 12, 13, and 14. This was accomplished through the use of physical modeling in the environmental wind tunnel facility at Colorado State University. Subsequently, a test plan was designed for a 1:650 model of the KEGP, its local surroundings, and the proposed units. For selected directions of gradient wind, the atmospheric transport of stack emissions in the vicinity of the KEGP was investigated. Concentrations of tracer gas (simulating sulfur dioxide releases at the plant site) were sampled over the model surface. Overall plume geometry and behavior were observed and recorded by photographing smoke released at the plant site.

This report discusses the criteria necessary for simulating plume transport and diffusion, the experimental methods, and the results of the velocity, concentration, and visual measurements. The results of the concentration measurements for all test runs have been tabulated in Volume II (under separate cover). Color motion pictures and still photographs were utilized to record plume behavior and are on file at Colorado State University and Stearns-Roger, Inc.

2. WIND-TUNNEL SIMILARITY REQUIREMENTS

2.1 General

The basic equations governing atmospheric and plume motion (conservation of mass, momentum and energy) may be expressed in the following dimensionless form (Cermak, 1974; Snyder 1972):

$$\frac{\partial \rho^{\star}}{\partial t^{\star}} + \frac{\partial (\rho^{\star} u^{\star}_{i})}{\partial x^{\star}_{i}} = 0, \qquad (2.1.1)$$

$$\frac{\partial u^{\star}_{i}}{\partial t^{\star}} + u^{\star}_{j} \frac{\partial u^{\star}_{i}}{\partial x^{\star}_{j}} - \left[\frac{L \Omega}{0} \frac{\Omega}{0}\right] 2\varepsilon_{ijk} \Omega^{\star}_{jk} u^{\star}_{k} =$$

$$- \frac{\partial p^{\star}}{\partial x^{\star}_{i}} - \left[\frac{\Delta T L g_{0}}{T 0} \frac{\Omega}{0}\right] \Delta T^{\star} g^{\star} \delta_{i3}$$

$$+ \left[\frac{\nu_{0}}{u_{0}L_{0}}\right] - \frac{\partial^{2} u^{\star}_{i}}{\partial x^{\star}_{k} \partial x^{\star}_{k}} + \frac{\partial}{\partial x^{\star}_{j}} \left(-\overline{u^{\star}_{i} u^{\star}_{j}}\right) \qquad (2.1.2)$$

and

$$\frac{\partial \mathbf{T}^{*}}{\partial \mathbf{t}^{*}} + \mathbf{u}^{*}_{\mathbf{i}} \frac{\partial \mathbf{T}^{*}}{\partial \mathbf{x}^{*}_{\mathbf{i}}} = \left[\frac{\mathbf{k}_{o}}{\rho_{o} \mathcal{L}_{o} \mathcal{V}_{o}}\right] \left[\frac{\mathbf{v}_{o}}{\mathbf{L}_{o} \mathbf{u}_{o}}\right] \frac{\partial^{2} \mathbf{T}^{*}}{\partial \mathbf{x}^{*}_{\mathbf{k}} \partial \mathbf{x}^{*}_{\mathbf{k}}} + \frac{\partial}{\partial \mathbf{x}^{*}_{\mathbf{i}}} (-\overline{\theta^{*} \mathbf{u}^{*}_{\mathbf{i}}}^{*}) + \left[\frac{\mathbf{v}_{o}}{\mathbf{u}_{o} \mathbf{v}_{o}}\right] \left[\frac{\mathbf{u}_{o}^{2}}{\mathbf{L}_{o}}\right] \phi^{*}.$$
(2.1.3)

The dependent and independent variables have been made dimensionless (indicated by an asterisk) by choosing appropriate reference values.

For exact similarity, the bracketed quantities and boundary conditions must be the same in the wind tunnel and in the plume as they are in the corresponding full-scale case. The complete set of requirements for similarity is:

- 1) Undistorted geometry
- 2) Equal Rossby number: Ro = $u_0/(L_0 \Omega_0)$

- 3) Equal gross Richardson number: $Ri = \Delta T gL / T u^2$
- 4) Equal Reynolds number: Re = $u_0 L_0 / v_0$
- 5) Equal Prandtl number: $Pr = (v_0 \rho_0 C_0)/k_0$
- 6) Equal Eckert number: Ec = $u_0^2 / \left[C_{p_0} (\Delta T)_0 \right]$
- 7) Similar surface-boundary conditions
- 8) Similar approach-flow characteristics

All of the above requirements cannot be simultaneously satisfied in the model and prototype. However, some of the quantities are not important for the simulation of many flow conditions. The parameters which can be neglected for this study and those which are important will now be discussed in detail.

2.2 Parameters Not Equal for Model and Prototype

For this study equal <u>Reynolds number</u> for model and prototype is not possible since the length scaling is 1:650 and unreasonably high wind tunnel and stack exit speeds would be required. As will be discussed, this inequality is not a serious limitation.

The Reynolds number related to the stack exit is defined by

$$\operatorname{Re}_{s} = \frac{\operatorname{u}_{s}^{D}}{\operatorname{v}_{s}}.$$

Hoult and Weil (1972) reported that plumes appear to be fully turbulent for exit Reynolds numbers greater than 300. Their experimental data show that the plume trajectories are similar for Reynolds numbers above this critical value. In fact, the trajectories appear similar down to Re_{s} = 28 if only the buoyancy dominated portion of the plume trajectory is considered. Hoult and Weil's study was in a laminar cross flow (water tank) with low ambient turbulence levels and hence the rise and dispersion of the plume would be predominantly dominated by the plume's own self-generated turbulence. These arguments for Reynolds number independence only apply to plumes in low ambient turbulence or to the initial stage of plume rise where the plume's self-generated turbulence dominates.

For similarity in the region dominated by ambient turbulence consider Taylor's (1921) relation for diffusion in a stationary homogeneous turbulence

$$\sigma_{z}^{2}(t) = \overline{2w'^{2}} \int_{0}^{t} \int_{0}^{t} R(\xi) d\xi dt \qquad (2.2.1)$$

which can be simplified to (see Csanady, 1973)

$$\sigma_z^2(t) \stackrel{\simeq}{=} \overline{w'^2 t^2} \stackrel{\simeq}{=} i_z^2 x^2 \qquad (2.2.2)$$

for short travel times; or,

$$\sigma_{z}^{2}(t) = 2w'^{2}t_{o}(t-t_{1}); \qquad (2.2.3)$$

for long travel times where

$$t_{o} = \int_{0}^{\infty} R(\tau) d\tau \qquad (2.2.4)$$

is an integral time scale and

$$t_1 = \frac{1}{t_0} \int_0^\infty \tau R(\tau) d\tau$$
 (2.2.5)

is the center of gravity of the autocorrelations curve. Hence for geometric similarity at short travel times,

$$\frac{\begin{bmatrix} \sigma_z^2 \end{bmatrix}_{m}}{\begin{bmatrix} \sigma_z^2 \end{bmatrix}_{p}} = \frac{\begin{bmatrix} L^2 \end{bmatrix}_{m}}{\begin{bmatrix} L^2 \end{bmatrix}_{p}} = \frac{\begin{bmatrix} i_z^2 x^2 \end{bmatrix}_{m}}{\begin{bmatrix} i_z^2 x^2 \end{bmatrix}_{p}}$$

or,

$$\begin{bmatrix} \mathbf{i}_{z} \end{bmatrix}_{\mathbf{m}} = \begin{bmatrix} \mathbf{i}_{z} \end{bmatrix}_{\mathbf{p}} . \tag{2.2.6}$$

For similarity at long travel times

$$\frac{L_{m}^{2}}{L_{p}^{2}} = \frac{\left[\sigma_{z}^{2}\right]_{m}}{\left[\sigma_{z}^{2}\right]_{p}} = \frac{\left[w'^{2}t_{o}(t-t_{1})\right]_{m}}{\left[w'^{2}t_{o}(t-t_{1})\right]_{p}}$$
$$= \frac{\left[i_{z}^{2}\right]_{m}}{\left[i_{z}^{2}\right]_{p}} = \frac{\left[t_{o}(t-t_{1})/u^{2}\right]_{m}}{\left[t_{o}(t-t_{o})/u^{2}\right]_{p}} = \frac{\left[Li_{z}^{2}\Lambda\right]_{m}}{\left[Li_{z}^{2}\Lambda\right]_{p}}$$

if it is assumed that $t_0 << t$, $t_0/u = \Lambda$ and t/u = L. Thus the turbulence length scales must scale as the ratio of the model to prototype length scaling if $(i_2)_m = (i_2)_p$ or,

$$\frac{L_{m}}{L_{p}} = \frac{\Lambda_{m}}{\Lambda_{p}}$$
(2.2.7)

An alternate way of evaluating the similarity requirement is by putting 2.2.1 in spectral form or (Snyder, 1972),

$$\sigma_z^2 = \overline{w'^2 t^2} \int_0^\infty F_L(n) \left[\frac{\sin \pi n t}{\pi n t}\right]^2 dn = \overline{w'^2 t^2} I \qquad (2.2.8)$$

where

$$I = \int_{0}^{\infty} F_{L}(n) \left[\frac{\sin \pi nt}{\pi nt}\right]^{2} dn$$

$$F_{L} = Lagrangian spectral function$$

The quantity in brackets is a filter function, the form of which can be seen in Pasquill (1974). In brief, for $n > \frac{1}{t}$ the filter function is very small, and for $n < \frac{1}{10t}$ virtually unity.

For geometric similarity of the plume, the following must be true:

$$\frac{L_{m}^{2}}{L_{p}^{2}} = \frac{\left[\sigma_{z}^{2}\right]_{m}}{\left[\sigma_{z}^{2}\right]_{p}} = \frac{\left[w'^{2}t^{2}I\right]_{m}}{\left[w'^{2}t^{2}I\right]_{p}} = \frac{\left[L^{2}i_{z}^{2}\right]_{m}}{\left[L^{2}i_{z}^{2}\right]_{p}}$$

$$\frac{\begin{bmatrix} i_z^2 I \end{bmatrix}_m}{\begin{bmatrix} i_z^2 I \end{bmatrix}_p} = 1$$
(2.2.9)

If $[i_z]_m = [i_z]_p$ the requirement is $I_m = I_p$. For short travel times the filter function is essentially equal to one; hence, $I_m = I_p = 1$, and the same similarity requirement as previously deduced for short travel times is obtained (equation 2.2.6).

For long travel times the larger scales (smaller frequencies) of turbulence progressively dominate the dispersion process. If the spectra in the model and prototype are of a similar shape then similarity would be achieved. However for a given turbulent flow, a decrease in the ambient Reynolds number (hence wind velocity) decreases the range (or energy) of the high frequency end of the spectrum. Fortunately, due to the nature of the filter function, the high frequency (small wavelength) components do not contribute significantly to the dispersion. There would be, however, some critical Reynolds number below which too much of the high frequency turbulence is lost. If a study is run with a Reynolds number in this range similarity may be impaired.

To evaluate whether geometric similarity of the plumes was achieved for this study the σ_{y} and σ_{z} values obtained in the wind tunnel were compared with those quoted as being representative of atmospheric dispersion rates (Pasquill, 1976). If the model σ_{y} and σ_{z} values compare well for the corresponding atmospheric flow the inference is that Reynolds number independence was achieved.

The ambient flow field affects the plume trajectories and consequently similarity of this field between model and prototype is required. The mean flow field will become independent of Reynolds number if the flow

or

is fully turbulent. The critical Reynolds number for this criteria to be met is based on the work of Nikuradse as summarized by Schlichting (1968) and Sutton (1953) and is given by

$$(\text{Re})_{k} = \frac{k_{s}u^{*}}{v} > 75$$

or assuming $k = 30 z_0$

$$\operatorname{Re}_{z_{o}} = \frac{z_{o}^{u*}}{v} > 2.5.$$

In this relation $\mathop{k}\limits_{S}$ is a uniform sand grain height and $\mathop{z}\limits_{O}$ is the surface roughness factor.

The <u>Rossby number</u> Ro is a quantity which indicates the effect of the earth's rotation on the flow field. In the wind tunnel equal Rossby numbers between model and prototype cannot be achieved. The effect of the earth's rotation becomes significant if the distance scale is large. Snyder (1972) puts a conservative cutoff point at 5 km for diffusion studies. He states that for length scales above this value the Rossby number should be considered. For this particular study, the maximum range over which the plume is transported is 5 km in the horizontal and approximately 1 km in the vertical. Hence, the earth's rotation may affect plume transport for similar full scale conditions but was neglected for this study.

When equal Richardson numbers are achieved, equality of the <u>Eckert</u> <u>number</u> between model and prototype cannot be attained. This is not a serious compromise since the Eckert number is equivalent to a Mach number squared. Consequently, the Eckert number is small compared to unity for laboratory and atmospheric flows.

2.3 Parameters Equal for Model and Prototype

Since air is the transport medium in the wind tunnel and the

atmosphere, near equality of the Prandtl number is assured.

Equality of plume transport will be assured if the following conditions are met (Snyder, 1979):

- Fix effluent Reynolds number as large as possible--preferably above 300.
- 2) Match the following parameters in model and prototype

$$R = \frac{u_{s}}{u_{\infty}}$$

$$Fr = \frac{u_{s}}{\sqrt{g\gamma D}}$$

$$\gamma = \frac{\rho_{a} - \rho_{s}}{\rho_{a}}$$

$$\lambda = D/h$$

Implementing the above scaling criteria would give the following relation between model and prototype velocities:

$$(u_{\infty})_{m} = (u_{\infty})_{p} \left(\frac{D_{m}}{D_{p}}\right)^{1/2}$$

and for

$$D_m/D_p = 1:650$$

 $(u_{\infty})_m = 0.0392 (u_{\infty})_p$

The range of ambient free-stream velocities to be simulated is 5.6 to 22.2 m/s or 0.29 to 0.87 m/s in the wind tunnel. Since the tunnel is hard to control at these low speeds and Reynolds number effects may become important, a distorted scaling technique was employed. The technique involved neglecting the plume buoyancy, thus requiring equality of only the velocity ratio (R). An alternate technique of relaxing the density ratio (Y) equality was also considered but the wind tunnel speeds were still found to be less than 1 m/s.

The justification for neglecting plume buoyancy (Fr = ∞) is:

- the wind tunnel speeds can be set at any reasonable value--maintained at approximately 3 m/s for all tests,
- the stack Reynolds numbers can be maintained at values exceeding 300 for all of the tests,
- 3) atmospheric turbulence will quickly dominate the rise since the ambient turbulence intensity levels are high (> 10%) in the wake of the terrain, and
- 4) the assumption is conservative in that the plume rise will be less resulting in higher ground level concentrations than if buoyancy were simulated.

In summary the following scaling criteria were applied for this study:

- 1) $R_m = R_p; R = u_s/u_\infty$. u D
- 2) Re_s > 300; Re_s = $\frac{u_s D}{v_s}$
- 3) $\operatorname{Re}_{z_{o}} > 2.5; \operatorname{Re}_{z_{o}} = \frac{u^{*}z_{o}}{v_{a}}$
- 4) Similar geometric dimensions.
- 5) Equality of dimensionless boundary conditions.

3. EXPERIMENTAL METHODS

3.1 General

A 1:650 model of the Kahe Electrical Generating Plant and the 63° and 153° wind directions were constructed to study the transport and diffusion of effluent emitted from proposed new units under neutral atmospheric conditions. Figure 3-1 shows the terrain areas modeled and associated wind directions. A total of six new generating units were considered (Units 9, 10, 11, 12, 13, and 14). The location of these potential new units is shown in Figure 3-2.

Each test was conducted in a similar manner. Measurements of wind speed and tracer concentrations were made at various locations to document the flow pattern. The tracer concentration measurements were made at ground-level to establish the expected maximum values. Measurements of ground-level concentration were also made with and without the upwind terrain present for several plant configurations to establish the GEP stack height. A series of tests were also run with a flat tunnel--referred to as "Atmospheric Dispersion Comparability Tests"--to document the characteristics of the wind tunnel. The parameters associated with each run are in Table 3-1 and Volume II Table of Contents.

A complete discussion of the experimental techniques follows.

3.2 Scale Models and Test Facility

Construction of the scale topographic model entailed the use of laminated styrofoam sheets cut along corresponding contours. United States Geological Survey maps were photographed and projected to provide the contour patterns. Ground-level sampling taps were installed at various locations for both the 63° and 153° wind directions. For the 153° wind direction the sampling tap locations are shown in Figure 3-3. For runs 50 to 79 for the 63° wind directions, the tap locations are given in Figure 3-4; and for runs 80 to 91, the locations are given in Figure 3-5.

The power plant buildings were modeled from drawings supplied by Stearns-Roger, Inc. The model of Units 9, 10, 11, and 12 is shown in Figure 3-6, and associated operating parameters for all studied units are given in Table 3-2.

The complete model (including the power generating plants and topographic relief) were placed in the Environmental Wind Tunnel shown in Figure 3-7 for testing of neutral flow conditions.

3.3 Gas Tracer Technique

• Test Procedure

The test procedure consisted of: 1) setting the proper tunnel wind speed, 2) releasing a metered mixture of source gas of the required density (that of air) from the release stacks, 3) withdrawing samples of air from the tunnel at the locations designated, and 4) analyzing the samples with a flame ionization gas chromatograph (FIGC). Photographs of the sampling system and gas chromatograph are shown in Figure 3-8. The samples were drawn into each syringe over a 300 s (approximate) time and consecutively injected into the FIGC.

The procedure for analyzing air samples from the tunnel was as follows: 1) a 2 cc sample volume drawn from the wind tunnel is introduced into the flame ionization detector (FID), 2) the output from the electrometer (in microvolts) is sent to the Hewlett-Packard 3380 Integrator, 3) the output signal is analyzed by the HP 3380 to obtain the proportional amount of hydrocarbons present in the sample, 4) the record is integrated and the methane, ethane, propane, or butane concentration is appropriately determined by multiplying the integrated signal (μ v-s) time by a calibration factor (ppm/ μ v-s), 5) a summary of the integrator analysis--gas retention time and integrated area (μ v-s)--is printed out on the integrator at the wind tunnel, 6) the integrated values and associated run information are

tabulated on a form, 7) the integrated values for each tracer are key punched into a computer along with pertinent run information, and 8) the computer program converts the raw data to a normalized prototype concentration (NC) and equivalent full-scale SO_2 concentration (χ_{SO_2}) and the results are printed out in report format (see Volume II).

The integrated values are converted as follows:

NC =
$$\left(\frac{\chi u_{\infty}}{\chi_{o} V}\right)_{m} = \frac{L_{m}^{2}}{L_{p}^{2}}$$
 (3.3.1)

$$\chi_{SO_2} = NC * \left(\frac{\lambda_0^{\vee}}{u_{\infty}}\right)_p$$
(3.3.2)

where

NC = normalized prototype concentration
$$(m^{-2})$$

 $(x)_{m} = [(I - I_{BG})CF]_{i}$
 $(x_{o})m$ = tracer gas source strength in ppm
I = integrated value of sample for tracer i
 I_{BG} = integrated value for background sample
 CF_{i} = calibration factor for tracer i
L = model (m) and full-scale (p) length scales
 u_{∞} = model (m) and full-scale (p) free stream velocities (m/s)
 $(x_{o})_{p}$ = full-scale source strength (ppm) at local temperature
and pressure

V = model (m) and full-scale (p) volume flow rates (m^3/s) The calibration factor was obtained by introducing a known quantity, χ_s , of tracer i in the FIGC and recording the integrated value, I_s , in μv -s. The CF_i value is then

$$CF_{i} = \left[\frac{\chi_{s}(ppm)}{I_{s}(\mu v - s)}\right]_{i} \bullet$$

Calibrations were obtained at the beginning and end of each measurement period. The tracer gas mixtures were supplied by Scientific Gas Products.

• Gas Chromatograph

The FID operates on the principle that the electrical conductivity of a gas is directly proportional to the concentration of charged particles within the gas. The ions in this case are formed by the effluent gas being mixed in the FID with hydrogen and then burned in air. The ions and electrons formed enter an electrode gap and decrease the gap resistance. The resulting voltage drop is amplified by an electrometer and fed to the HP 3380 integrator. When no effluent gas is flowing, a carrier gas (nitrogen) flows through the FID. Due to certain impurities in the carrier some ions and electrons are formed creating a background voltage or zero shift. When the effluent gas enters the FID, the voltage increases above this zero shift in proportion to the degree of ionization or correspondingly the amount of tracer gas present. Since the chromatograph¹ used in this study features a temperature control on the flame and electrometer, there is very low zero drift. In case of any zero drift, the HP 3380 which integrates the effluent peak also subtracts out the zero drift.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentration of tracer within the air in the wind tunnel. Background concentrations were measured and subtracted from all data quoted herein.

¹A Hewlett Packard 5700 gas chromatograph was used in this study (shown in in Figure 3-8).

• Sampling System

The tracer gas sampling system shown in Figure 3-7 consists of a series of fifty 50 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate which in turn raises all 50 syringes simultaneously. A set of check values and tubing are connected such that airflow from each tunnel sampling point passes over the top of each designated syringe. When the syringe plunger is raised, a sample from the tunnel is drawn into the syringe container. The sampling procedure consists of flushing (taking and expending a sample) the syringe three times after which the test sample is taken. The draw rate is variable and generally set to be approximately 300 s.

The sampler was periodically calibrated to insure proper function of each of the check valve and tubing assemblies. The sampler intake was connected to short sections of tygon tubing which led to a sampling manifold. The manifold, in turn, was connected to a gas cylinder having a known concentration of tracer (~200 ppm propane). The gas was turned on and a valve on the manifold opened to release the pressure produced in the manifold. The manifold was allowed to flush for ~1 min. Normal sampling procedures were carried out to insure exactly the same procedure as when taking a sample from the tunnel. Each sample was then analyzed for methane, ethane, propane and butane. Methane, ethane and butane were analyzed to insure that the tygon had not absorbed these hydrocarbons and was not "gassing" them off. Percent error was calculated and "bad" samples (error > 2 percent) indicated a failure in the check valve assembly and the check valve was replaced or the bad syringe was not used for sampling from the tunnel. A typical sampler calibration is shown in Figure 3-9.

• Center of Mass and Variance

The concentration data for the Atmospheric Dispersion Comparability Tests (ADCT) were computer processed to obtain the center of mass (\bar{z}) and the standard deviation (σ_z or σ_y). The parameters were determined by numerically integrating the following equations over the height (and width, where appropriate) of the concentration profiles:

$$Q' = \int_{0}^{\infty} \chi dz \qquad (3.3.3)$$

$$\overline{z} = \left(\frac{1}{Q^{\dagger}}\right) \int_{0}^{\infty} z \chi dz$$
 (3.3.4)

$$\sigma_{z}^{2} = (\frac{1}{Q'}) \int_{0}^{\infty} (z - \bar{z})^{2} \chi dz$$
 (3.3.5)

The numerical integration was obtained using the trapezoidal rule.

• Averaging Time

To determine the averaging time for the predicted concentrations from wind-tunnel experiments the dispersion parameters -- σ_y and σ_z -for the undisturbed flow in the wind-tunnel were compared to those used for numerical modeling studies in the atmosphere. The dispersion rates used in the atmosphere are referred to as the Pasquill-Gifford curves and are given in Turner (1970) and modified values are given in Pasquill (1974, 1976). The results of this comparison as discussed in Section 4 showed that the σ_y and σ_z values in the wind tunnel compare (when multiplied by the length scaling factor 650) with those expected for the atmosphere. Hence, the method used for converting numerical model predictions to different averaging times should also be used for converting the wind-tunnel tests. The EPA guideline series for evaluating new stationary sources (Budney, 1977) conservatively assumes that the Pasquill-Gifford σ_y and σ_z values represent 1-hour average values. To convert to a 3-hour value, multiply by 0.9 ± 0.1, and if aerodynamic disturbances are a problem, the factor should be as high as 1.

Generally, steady-state average concentrations measured in the wind tunnel are thought to correspond to a 10- or 15-minute average in the atmosphere (Snyder, 1979). This line of reasoning is based on the observed energy spectrum of the wind in the atmosphere. This spectrum shows a null in the frequency range from 1 to 3 cycles per hour. Frequencies below this null represent meandering of the wind, diurnal fluctuations, and passage of weather systems and cannot be simulated in the wind tunnel. The frequencies above this null represent the fluctuations due to roughness, buildings, and other local effects and are well simulated in the tunnel. This part of the spectrum will be simulated in the tunnel as long as the wind direction and speed characteristics remain stationary in the atmosphere, which is typically 10 to 15 minutes. At many locations, however, persistent winds of three or more hours may occur. For these cases, the wind tunnel averaging time would correspond to the atmospheric averaging time. For the more typical cases, the wind-tunnel results would have to be corrected for the large-scale motion using power law relations such as given by Hino (1968) or Turner (1970).

3.4 Velocity Profiles

• General

A single film sensor was used to obtain profiles of mean and longitudinal turbulence intensity for each series of tests. The measurements were performed to 1) monitor and set flow conditions, 2) document the flow conditions in the wind tunnel, and 3) for use in calculating surface roughness, power law exponent, and Reynolds stress. Instrumentation used for this portion of the study included 1) a Thermo-Systems, Inc. (TSI) 1050 series anemometer, 2) a TSI Model 1210 hot-film sensor, 3) a type 120 Equibar pressure meter and pitot tube, and 4) a TSI Model 1125 calibrator for velocity calibration. Temperature measurements were obtained using the same hot-film with TSI constant current temperature module. The variation in wire resistance versus temperature was obtained prior to measurement.

The techniques used to obtain the velocity data with this assortment of equipment and data processing techniques will be discussed in more detail.

• Hot-film Anemometry

The transducer used for measuring velocities for this study was a 1210 hot-film sensor. The sensor consists of a platinum film on a single quartz fiber. The diameter of the sensor is 0.0025 cm. The sensor has the capacity of resolving one component of velocity in turbulent flow fields.

The basic theory of operation is based on the physical principle that the heat transfer from the wire equals the heat supplied to the wire

by the anemometer or in equation form (see Hinze, 1975).

$$I^{2}R_{w} = \pi lk_{g}(T_{w} - T_{g})Nu \qquad (3.4.1)$$

where I = current through wire k_g = heat conductivity of gas l = length of wire T_w = temperature of wire T_g = temperature of gas Nu = Nusselt number = F(Re, Pr, Gr $\frac{T_w - T_g}{T_g}$, $\frac{l}{d}$) Re = $\frac{ud}{v_g}$ Pr = $\frac{C_p \mu g}{k_g}$ Gr = $\frac{gd^3(T_w - T_g)}{v_g^2 T_g}$ d = diameter of wire

For most wind-tunnel applications, an empirical equation evolved by Kramers as reported in Hinze (1975) is adequate for representing Nu for a Reynolds number range 0.01 < Re < 1000, or

$$Nu = 0.42 Pr^{0.2} + 0.56 Pr^{0.33} Re^{0.5}$$
(3.4.2)

Free convection from the wire can be neglected for Re > 0.5 when:

 R_{w} = operating resistance of wire

$$Gr Pr < 10^{-4}$$

Alternately, buoyancy may be neglected when:

$$Gr < Re^3$$

The temperature dependence of the resistance of the wire is assumed to follow the ensuing relation:

$$R_{w} = R_{o} \left[1 + b_{1}(T_{w} - T_{o}) + b_{2}(T_{w} - T_{o})^{2} + ... \right]$$

where b₁ are temperature coefficients. Normally the higher order terms are neglected and:

$$R_{w} = R_{o} \left[1 + b_{1} (T_{w} - T_{o}) \right]$$

Substituting the appropriate relations yields the following equation:

$$\frac{I^2 R}{R_w - R_c} = A + B(\rho_c u)^n$$

where

 $R_{c} = \text{resistance of wire at calibration temperature}$ $\rho_{c} = \text{density of air at calibration temperature}$ $A = \frac{\pi \ell k_{f}}{b_{1}R_{o}} 0.42 (Pr)^{0.2}$ $B = \frac{\pi \ell k_{f}}{b_{1}R_{o}} 0.57 (Pr)^{0.33} (\frac{d}{\mu})^{0.5}$

For this study, A, B, and n were obtained by calibrating the wire over a range of known velocities and determining A, B, and n by a leastsquares analysis. Since the calibration temperature of the wire is nearly equal to the temperature in the wind tunnel, no corrections for temperature were applied. Hence, the following equation was used to calculate the instantaneous velocity:

$$u = \left[\frac{\frac{1^{2} R_{w}}{R_{w}^{-R} - A}}{\frac{W^{-} C}{B}}\right]^{1/n}$$
(3.4.3)

Calibration of the hot film was performed with the Model 1125 TSI calibrator and a type 120 Equibar pressure meter where the following relation applies:

$$u = \sqrt{\frac{2\Delta PR_m T}{P_a}}$$

A calibration was performed at the beginning of each day's measurement.

After the wire was calibrated, the desired flow condition was set in the wind tunnel. The free stream velocity was monitored with the MKS Baratron* and pitot tube. Once the desired condition at the reference height was obtained, the pressure meter setting was recorded and used to set and monitor the tunnel conditions for all remaining tests. During all subsequent velocity and concentration measurements, care was taken to ensure the pressure meter reading remained constant.

• Data Collection

The manner of collecting the data was as follows:

- 1. The hot-film probe was attached to a carriage.
- The bottom height of the profile was set to the desired initial height.
- 3. A vertical distribution of velocity was obtained using a vertically traversing mechanism which gave a voltage output corresponding to the height of the wire above the ground.
- 4. The signals from the anemometer and potentiometer device indicating height were fed directly to a Hewlett-Packard Series 1000 Real Time Executive Data Acquisition System.

^{*}For the preliminary tests, a Datametric Mass Flowmeter was used.

- 5. Samples were stored digitally in the computer at a rate of approximately 200 samples per second, and
- The computer program converted each voltage into a velocity (m/s) using the equation:

$$u = \left[\frac{\frac{E^2}{R_H(R_H - R_c)} - A}{B}\right]^{1/n}$$

At this point the program computes several useful quantities using the following equations:

$$\overline{u} = \frac{1}{N} \sum_{i=1}^{N} u_i$$
(3.4.4)

$$\overline{u'^2} = \frac{1}{N-1} \sum_{i=1}^{N} (u_i - \overline{u})^2$$
 (3.4.5)

where N is the number of velocities considered (a 30-second average was taken, hence, 6000 samples were obtained). The mean velocity and turbulence intensity at each measurement height were stored on a file in addition to being returned to the operator at the wind tunnel on a remote terminal.

3.5 Flow Visualization

The purpose of this phase of the study is to visually assess the transport of the plumes released from the stacks. The data collected consist of a series of photographs of the smoke emitted from the stacks for the different tests.

The smoke was produced by passing compressed air through a container of titanium tetrachloride located outside the wind tunnel and transported through the tunnel wall by means of a tygon tube terminating at the stack inlets. The plume was illuminated with high intensity lamps, and a visible record was obtained by means of black and white photographs taken with two supergraphic cameras (lens focal length 127 mm) and color slides taken with a Canon Fl camera (focal length 28 mm). The shutter speed for the black and white photographs was 1/2 of a second and for the color slides 1/2 of a second. Two supergraphic cameras were spaced 1.91 m apart with camera axis perpendicular to the wind flow axis. In this manner, the complete plume trajectory out to 6 km full-scale could be photographed.

A series of 16 mm motion pictures was taken of all tests. A Bolex movie camera was used with a speed of 24 frames per second. The movies consisted of taking an initial close-up of the smoke release after which the camera was panned from the model stack(s) to approximately 6 km downwind in the prototype.
4. ATMOSPHERIC DISPERSION COMPARABILITY TEST (ADCT)

4.1 Description of Model and Tests

For these tests, the Colorado State University Environmental Wind Tunnel was used. The fully developed boundary layer was simulated following techniques recommended by Counihan (1969). At the beginning of the test section, a 7.6 cm trip was positioned, followed by 2 m high spires to achieve maximum boundary layer thickness. The spires were spaced at 91.4 cm center to center. Counihan (1969) showed that with semi-elliptic spires and a 6° wedge, a fully developed boundary layer can be achieved within five to six boundary layer heights. The spire trip arrangement can be seen in Figure 4-1. The desired boundary layer height is 92 cm (giving a 600 m full-scale simulated depth at a 1:650 scale reduction). Hence, the boundary layer should be fully developed within 4.6 to 5.5 m. On the surface of the tunnel 2.54 cm high, uniformly spaced roughness was placed. This configuration was chosen to give a fullscale z_0 value close to 1 m.

For the GEP tests, the stack was to be positioned approximately 10 m downwind of the spires. Hence, velocity and concentration measurements were taken for the ADCT relative to this location. The stack for the ADCT was 15.4 cm high with an 0.77 cm inside diameter. The exit velocity was always set to be 1.5 times the exit velocity at stack top.

Vertical and lateral profiles of concentration through the plume centerline at quarter intervals between the source and the planned study area were obtained. The vertical profiles were repeated for three wind speeds to check Reynolds number independence of the results and the invariability of the results with different test conditions.

Ground level concentrations were taken to compare with the standard Gaussian diffusion equation.

4.2 Vertical Profile of Mean Temperature

One vertical profile of the mean temperature $\overline{T}(^{O}K)$ was taken at the stack location for the tunnel setup discussed in Section 4.1. The mean temperature profile shown in Figure 4-2a indicates a highly uniform isothermal layer representative of a neutral atmosphere.

4.3 Vertical Profile of Intensity of Turbulent Temperature Fluctuations

One vertical profile of intensivy of turbulent temperature fluctuations was taken at the stack location and is shown in Figure 4-2b. Temperature fluctuations are on the order of 0.1 percent or less. The distribution of turbulent temperature fluctuations is shown to be uniform and low throughout the layer indicative of a neutral boundary layer.

4.4 Vertical Profiles of Mean Velocity

Three velocity profiles shown in Figure 4-3a were taken at the stack location to test for Reynolds number independence. The velocity profiles at free stream velocities of 83.1, 214.3, and 327.0 cm/s show no significant dependence over the range of Reynolds numbers used in these tests.

4.5 Vertical Profiles of Turbulence Intensity

Associated with the mean velocity profiles discussed above are corresponding vertical profiles of longitudinal turbulence intensity. The three turbulence intensity profiles taken at the stack location for free stream velocities of 83.1, 214.3, and 327.0 cm/s show no significant change, indicating that Reynolds number independence was achieved.

No measurements of vertical turbulence intensity were taken during this testing.

4.6 Evaluation of Mean Velocity Profiles

The surface roughness factor (z_0) , displacement height (d), friction velocity (u*), turbulent Reynolds number (Re_{z_0}) , power law exponent (n), and corresponding rms errors for the logarithmic and power law regressions $--e_{z_0}$ and e_n respectively--were determined for each profile by fitting the data by a least-squares formula using the following basic equations:

$$\frac{u}{u^*} = 2.5 \ln \frac{z-d}{z_0} \qquad \text{for} \qquad d < z < 100 \text{ m} + d$$

$$\frac{u}{u_m} = \left(\frac{z}{z_m}\right)^n \qquad \text{for} \qquad z_\infty \ge z.$$

and

The results are given in Table 4-1. From the table average values of 1.587 cm and 0.28 for z_0 and n are observed. The average ratio of $\frac{u^*}{u_{\infty}} = 0.129$. The computed estimates of Re_{z_0} range from 183. to 330.--well above the critical value of 2.5 to insure fully turbulent flow.

If z_0 is scaled to full scale, a value of 10.3 m is obtained. Counihan (1975) presents the following formula for computing $\frac{u^{*2}}{u_0^2}$ from z_0 :

$$\frac{u^{*2}}{u_{\infty}^{2}} = 2.75 \times 10^{-3} + 6 \times 10^{-4} \log_{10} z_{0}$$

This gives a value of 0.068 for the expected $\frac{u^*}{u_{\infty}}$. From Table 4-1, the value of $\frac{u^*}{u_{\infty}}$ is 0.129 in poor agreement with expectation. Counihan's (1975) results showed large scatter, however, and few results are available for field z_0 of 10 m. The expected power law index can be predicted from Counihan (1975) as follows:

n = 0.096
$$\log_{10} z_0 + 0.016 (\log_{10} z_0)^2 + 0.24$$

which gives an expected n of 0.26 in comparison to an average observed value of 0.28--good agreement. The boundary thickness observed in all profiles present a range between 50 and 70 cm. The desired thickness is 92 cm to simulate a 600 m full-scale value. 4.7 Horizontal and Vertical Concentration Distributions

Figures 4-4 to 4-6 show the vertical concentration distributions for respective free stream velocities of 1, 2, and 3 m/s. Also tabulated in the figures are the σ_z and \overline{z} values computed by integration as described in Section 3.3 as well as the downwind and lateral distance. The horizontal concentration distributions are shown in Figure 4-7. All dimensions are given in prototype values.

4.8 Ground-Level Longitudinal Profile

As another test of the similarity of the wind tunnel and atmospheric dispersion in the absence of buildings or other large roughness features, ground-level measurements of concentration in the tunnel were made downwind of the 15.4 cm (100 m full-scale) stack. The ground sampling grid for the cases with a wind speed of 1.0, 2.0, and 3.0 m/s is shown in Figure 4-8.

Figure 4-9 shows the maximum $\frac{\chi u_a}{Q}$ at each horizontal array location plotted versus downwind distance. For comparison the Pasquill-Gifford C and D curves from Turner (1970) are plotted. For all plots and experimental data, h is assumed to be 100 m--the height of the stack. This is approximately true since the exit velocity is 1.5 times the ambient velocity at stack top. From the figure it is evident that the observed concentrations are higher than either of the Pasquill C or D curves. The implications of this result will be discussed in the next section.

4.9 Evaluation of Dispersion Comparability

To determine whether the wind-tunnel dispersion parameters (σ_y and σ_z) agree with those for the atmosphere, the vertical and horizontal concentration profiles were analyzed to determine σ_y and σ_z as discussed in Section 3.3.

The model values were then scaled to the prototype values by multiplying by the length scaling factor of 650.

The atmospheric values for σ_y and σ_z are often assumed to follow the Pasquill-Gifford curves as given in Turner (1970). However, Pasquill (1974, 1976) has recommended a different method for computing these parameters. For σ_y Pasquill recommends the following formula for sampling times up to one hour:

 $\sigma_v = i_v x f(x)$

where f(x) is defined as follows:

x(km)	0.1	0.2	0.4	1.0	2.0	4.0
f(x)	0.8	0.7	0.65	0.6	0.5	0.4

He gives the following equations for σ_{z} :

 $\sigma_z = 0.038 x^{0.72}$ for $z_0 = 10$ cm

and $\sigma_z = 0.050x^{0.68}$ for $z_0 = 100$ cm where x is in km and the constants were derived from Pasquill (1974) for the indicated surface roughness.

Figure 4-10 shows the expected σ_y dispersion rates for the atmosphere with i_y equal to 0.14 in comparison to that observed in the wind tunnel. As can be seen, the results from the wind tunnel seem to follow the curve for $i_y = 0.14$ quite closely. In close the observed values are higher than the calculated curve while at the far distance the values are slightly lower. In general, the results tend to confirm that the horizontal dispersion is similar to the atmosphere for a $i_y = 0.14$. The i_y value was not measured for the tests, but the i_x was. From Figure 4-3 it is evident that $i_x = 0.18$ at stack top. Counihan (1975) reports that a typical ratio of i_x to i_y is 1.37. Using this ratio, an estimated value of $i_y = 0.13$ for the wind tunnel. This agrees well with the value determined to give a good fit to the dispersion results.

Figure 4-11 shows the σ_z values observed in the wind tunnel in comparison to those predicted for a surface roughness of 10 to 100 cm. In general, the results tend to fall above the 100 cm line suggesting that the roughness is more than 100 cm. At the farthest distance, the σ_z values are between the 10 and 100 cm surface roughness curves. In general, the results of both curves suggest that the dispersion in the wind tunnel is similar to the atmosphere for a surface roughness greater than 100 cm and a i_y of 0.14.

The EPA recommends (Huber, 1979) that the wind tunnel be shown to be comparable with Pasquill-Gifford C and D curves. These curves were developed assuming $z_0 = 3$ cm and $i_y = 0.17$ and 0.26 respectively. It is evident that the major reason for the disagreement between the observations discussed in 4.9 and the Pasquill C and D curves in Figure 4-9 are the assumed values for z_0 and i_y . The i_y values in Turner are higher than often observed for neutral conditions. Pasquill (1974) reports on data collected at Porton, England, where i_y ranged from 0.08 to 0.28. The value of i_y increased with increasing instability. Low values were for neutral stability. Also shown in Figure 4-9 is a comparison of the observed $\frac{\chi u_a}{Q}$ with that predicted using the σ_y variation for $i_y = 0.14$, the σ_z values for a 100 cm roughness, and the following equation:

$$\frac{\chi u_a}{Q} = \frac{1}{\pi \sigma_y \sigma_z} \exp \left[-\frac{1}{2} \left(\frac{h}{\sigma_z}\right)^2\right] .$$

As can be seen, the wind-tunnel data agree acceptably with this prediction. Hence, the ground-level results in the wind-tunnel can be said to be representative of a neutral atmosphere if the neutral atmosphere has a i_y of 0.14 and the surface roughness is close to 100 cm. 5. TESTS FOR THE 63° WIND DIRECTION

5.1 Description of the Model and Tests

For the 63° wind direction, the region shown in Figure 3-1 was modeled. For "terrain in" runs, the entire model was placed in the wind tunnel test section. The spire-trip arrangement was identical to the arrangement described in Section 4.1. The only change made in the "terrain out" runs was the replacement of the terrain upwind of the power plant by roughness elements as shown in Figure 5-1.

5.2 Vertical Profiles of Mean Velocity

• No Upwind Terrain

Three vertical profiles of mean velocity were taken at increasing distances downwind of the stack. Table 5-1 contains the locations and identifying names of the profiles used in the associated graph. This table also contains the parameters of the best fit curves described in Section 4.6.

The profiles are graphed in Figure 5-2. As the distance downwind increases the relative wind speed increases near ground level. The boundary layer appears to extend to 60-100 cm.

• Upwind Terrain Present

Three vertical profiles of mean velocity were taken with the upwind terrain in place. The profile identifications, location, and curve fitting parameters are given in Table 5.2. The profiles are plotted in Figure 5-3. The only independent parameter not held constant in these profiles was the free stream velocity. The relative velocity is invariant above a height of 80-100 cm. This implies the boundary layer extends to this height at the stack. This agrees with the desired height of 90 cm discussed in Section 4.1.

5.3 Vertical Profiles of Turbulence Intensity

• No Upwind Terrain

Associated with the velocity profiles discussed in Section 5.2 are vertical profiles of longitudinal turbulence intensity. The profiles are shown in Figure 5-2. As distance downwind increases, the turbulence intensity near ground level increases.

• Upwind Terrain Present

Turbulence intensity profiles in this case are given in Figure 5.3. The invariance of the profiles with increasing wind speed demonstrates Reynolds number independence over the range of speeds studied.

5.4 Ground-Level Concentration Measurements

For these tests a tracer was released from various stacks. The stacks employed in each run are listed in the Table of Contents of Volume II and Table 3-1.

The profiles of maximum measured concentration downwind of the release point are shown in Figures 5-4 to 5-11 for selected test results. The profiles are presented for both the terrain in and terrain out cases on the same graph for ease of comparison. The peak values and associated distances downwind are given in Table 5-3. For a 21 cm (136.5 m) stack, the addition of the upwind terrain consistently moved the peak concentration toward the stack. For example, at Unit 9 the peak moved from more than 7.1 m (4.6 km) without the terrain present to 1.8 m (1.2 km) with the terrain (see Figure 5-4). Similar results can be observed for units 10, 11, and 12 in Figures 5-5 to 5-7, respectively.

At reduced free stream velocities, the peaks occur farther downwind. This can be seen in Figure 5-6 for Unit 11. The peaks without the upwind terrain occur at 7.1 m, 4.9 m, and 4.9 m (4.6 km, 3.2 km, and 3.2 km)

for respective windspeeds of 1.5 m/s, 3.0 m/s and 4.5 m/s (9.1 m/s, 18.1 m/s and 27.2 m/s) while the distances downwind when the upwind terrain is present are 2.3 m, 2.0 m and 2.0 m (1.5 km, 1.3 km and 1.3 km). At Unit 12 the peaks move from 5.8 m (3.8 km) to 2.2 m (1.4 km), Figure 5-7. Also note that the magnitudes of the peak values for Units 11 and 12 are significantly higher when the upwind terrain is included.

If all stack heights are increased to 28 cm (182 m), the peaks occur farther downwind and are smaller. The effect of including the upwind terrain still decreases the distance downwind to the peaks. For example, at Unit 9, Figure 5-8, the peak moves from 5.8 m (3.8 km) to 1.8 m (1.2 km); similarly for Units 10 to 12 in Figures 5-8 to 5-11. The reduction in the magnitude of the peak farther downwind is more noticeable when the stack is increased from 21 cm to 28 cm. The results for Units 11 and 12 (Figures 5-9 and 5-10) show that the peaks are beyond the sample grid -- 6.9 m (4.5 km) downwind of the stack -- when terrain is absent. When the upwind terrain was included the peaks occurred 1 to 2 m (.6 to 1.3 km) downwind of the source.

5.5 Flow Visualization

The visualization of plume dispersion was performed to qualitatively assess the downwash effects of the upwind terrain. Figures 5-12 and 5-13 show the visualization with and without upwind terrain for representative test cases. The terrain causes the plume to be mixed to the ground more quickly and spreads it more in the vertical. The increase in stack height tends to maintain the plume above the ground for a longer time. This can be seen by comparing Figures 5-12 a) and 5-13 a). These results agree qualitatively with those obtained by concentration measurements.

6. TESTS FOR THE 153° WIND DIRECTION

6.1 Description of the Model and Tests

For the 153[°] wind direction the region shown in Figure 3-1 was modeled. The test runs are similar to those taken for the 63[°] wind direction. Tests were run with and without the upwind terrain present. When the upwind terrain was removed a smooth approach was put in place. A photograph of the tunnel set-up with the terrain is shown in Figure 6-1.

6.2 Vertical Profiles of Mean Velocity

• No Upwind Terrain

Four vertical profiles of mean velocity were taken, two downwind and two lateral to the stack location as shown in Figure 6-2. Table 6-1 contains the locations and the names of the profiles used in subsequent graphs. This table also contains the parameters of the best fit curves described in Section 4.6.

The profiles taken downwind of the stack at two wind speeds are compared in Figure 6-3 and are very similar for both wind speeds. The profiles at two wind speeds taken lateral to the stack over the ocean are compared in Figure 6-4 and are almost identical to each other. All four profiles are compared in Figure 6-5.

• Upwind Terrain Present

Ten vertical profiles of mean velocity were taken when the upwind terrain was in place. For a list of profile identifications, locations, and curve fitting parameters see Table 6-2 and Figure 6-2.

The profiles lateral to the stack over the ocean are compared in Figure 6-6 for various wind speeds and downwind locations. The profiles taken upwind of the power plants under study, shown in Figure 6-7, also show an invariance with wind speed and a decrease in velocity near the surface due to the upwind topography.

Comparing the profiles across the tunnel, Figure 6-8 shows variation in the wind speeds near ground level. This is a terrain-induced variation. Similarly, as the distance downwind of the stack increases, the terrain induces variations in the relative velocities at reduced heights. As seen in Figure 6-9, the difference extends to approximately 60 cm.

6.3 Vertical Profile of Turbulence Intensity

• No Upwind Terrain

Associated with the mean velocity profiles discussed in Section 6.2 are corresponding vertical profiles of longitudinal turbulence intensity. The four profiles taken with no upwind terrain, compared in Figures 6-3 and 6-4 are independent of wind velocity which implies Reynolds number independence. The profiles in Figure 6-5 show a fairly homogeneous boundary layer.

Upwind Terrain Present

Turbulence intensity profiles in this case are given in Figures 6-6 to 6-9. In general, the turbulence intensity near ground level has increased downwind of the stack. This shows the effect of the local terrain on the flow field. The turbulence intensity has nearly doubled near ground level with the inclusion of the upwind terrain.

6.4 Ground Level Concentration Measurements

For these tests, a tracer was released from various stacks. The stacks used in each run are listed in the Table of Contents of Volume II and Table 3-4. The data obtained from the measurements are also given in Volume II.

The profiles of maximum concentration downwind of the release point are shown in Figures 6-10 to 6-19. The profiles are presented with both the terrain-in and terrain-out in a single graph for comparison.

The first series of profiles are for a 2 cm (136.5 m) stack with a 141 MW output. The peaks, similar to the results for the 63⁰ wind direction, move toward the stack when the upwind terrain is added.

For Unit 9, without terrain, the peaks occurred beyond the grid. When the terrain was included, the peaks were found between 0.8 and 2 km (Figure 6-10). For Unit 10 (Figure 6-11), the only peak within the sample region was found for a 3.0 m/s wind velocity with the terrain in. The peak occurred 1.3 km downwind of Unit 10.

The peaks for both terrain in and out occurred within the sampling grid for Units 11 and 12, Figures 6-12 and 6-13. The concentrations were found to be higher when the upwind terrain was excluded. The inclusion of the terrain moved the peaks from beyond 2 km downwind to within 1.5 km of the release point.

When the stacks are increased to 28 cm (182 m), the peak concentrations occur farther downwind. In all cases, the terrain-in concentrations are found to be larger than the terrain-out concentrations, however, in no case was the peak found for the terrain-out case. See Figures 6-14 to 6-17.

In Figures 6-18 and 6-19, the results for Unit 9 with a 90 MW output are shown. With the 21 cm (136.5 m) and 28 cm (182 m) stacks, the distances downwind to the peaks lie at 1.4 km and 1.9 km respectively for all the different wind speeds with the terrain in; the distance for the terrain-out peaks lies near 2.2 km for both cases.

6.5 Flow Visualization

The visualization of plume dispersion was performed to qualitatively assess the effects of the upwind terrain on the plume's dispersion

characteristics. Figures 6-20 and 6-21 show the visualization with and without upwind terrain for representative test cases. Addition of the terrain clearly enhances the dispersion of the plume as shown in Figures 6-20 and 6-21. In addition, an increase in plume rise is noticed with the upwind terrain present. REFERENCES

REFERENCES

- Budney, L. J., "Procedures for Evaluating Air Quality Impact of New Stationary Sources," Guidelines for Air Quality Maintenance Planning and Analysis, Volume 10 (OAQPS No. 1.2-029R) Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, July 1977.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," presented at Winter Annual Meeting of ASME, New York, November 17-21, 1974.
- Cermak, J. E. and Mutter, D. G., "Physical Modeling of Atmospheric Transport of Stack Emissions at Kahe Electrical Generating Plant, Oahu, Hawaii," Fluid Dynamics and Diffusion Laboratory, Colorado State University, Ft. Collins, Colorado, Report No. CER77-78JEC-DGM28, April, 1978.
- Counihan, J., "Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the period 1880-1972," <u>Atmospheric</u> Environment, Vol. 9, pp. 871-905, 1975.
- Counihan, J., "An Improved Method of Simulating an Atmospheric Boundary Layer in a Wind Tunnel," <u>Atmospheric Environment</u>, Vol. 3, pp. 197-214, 1969.
- Csanady, G. T., <u>Turbulent Diffusion in the Environment</u>, D. Reidel Publishing Company, Doudrecht, Holland, 1973.
- Hino, Mikio, "Maximum Ground-Level Concentration and Sampling Time," <u>Atmospheric Environment</u>, Vol. 2, Pergamon Press, pp. 149-165, 1968.
- Hinze, O. J., Turbulence, 2nd Edition, McGraw-Hill, Inc., 1975.
- Hoult, D. P. and Weil, J., "Turbulent Plume in a Laminar Cross Flow," Atmospheric Environment, Vol. 6, pp. 513-531, 1972.
- Huber, A. H., "Guideline for Use of Fluid Modeling to Determine Good Engineering Practice Stack Height," USEPA Office of Air, Noise, and Radiation, Research Triangle Park, North Carolina, 27711, Draft for Public Comment EDA-450/4-79-015, June 1979.
- Pasquill, F., <u>Atmospheric Diffusion</u>, 2nd Edition, John Wiley and Sons, New York, 1974.
- Pasquill, F., "Atmospheric Dispersion Parameters in Gaussian Plume Modeling, Part II," EPA Report No. EPA-600/4/-76-0360, 1976.

- Schlichting, H., <u>Boundary Layer Theory</u>, McGraw-Hill, Inc., New York, 1968.
- Snyder, W. H., "Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology," Boundary Layer Meteorology, Vol. 3, pp. 113-134, 1972.
- Snyder, W. H., "Guideline for Fluid Modeling of Atmospheric Diffusion," USEPA Report EPA-450/4-79-016, draft dated June 1979.
- Sutton, O. G., Micrometeorology, McGraw-Hill, Inc. New York, 1953.
- Taylor, G. I., "Diffusion by Continuous Movements," Proceedings, London Meteorological Society, Vol. 20, pp. 196-211, 1921.
- Turner, P. B., Workbook of Atmospheric Dispersion Estimates, U.S. Department of Health, Education, and Welfare, Public Health Service Publ. No. 999, Cincinnati, Ohio, AP-26, 88 p., 1970.

TABLES

					Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	Vol.Flow x10 ⁻³ (m ³ /s)	S.Strength x10 ⁴ (ppm)	Release Ht.(cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
7	141/9 141/10 141/11	153 ⁰ /IN	$1.5 \\ 1.5 \\ 1.5 \\ 1.5$	0.190 0.190 0.190	15 10 10	21 21 21	.55 .55 .55	235.92 242.57 242.57	33.64 51.20 51.20	4.41 4.41 4.41
8	141/9 141/10 141/11 141/12		1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.82 9.07 9.07
9	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13
10	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20
11	141/9 141/10 141/11 141/12		1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.92 9.07 9.07
12	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28	.55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13
13	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20

Table 3.1. Model and Prototype Parameters for Each Test.

					Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	$\begin{array}{c} \text{Vol.Flow} \\ \text{x10}^{-3} \\ \text{(m}^{3}/\text{s)} \end{array}$	S.Strength x10 ⁴ (ppm)	Release Ht.(cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
14	60/12		1.5	0.0417	10	21	.38	111.3	33.64	9.48
15	60/12		3.0	0.0417	10	21	.38	111.3	33.64	18.95
16	60/12		4.5	0.0417	10	21	.38	111.3	33.64	28.43
14	70/13		1.5	0.3167	15	3.45	.93	749.00	16.46	8.40
15	70/13		3.0	0.3167	15	3.45	.93	749.00	16.46	16.79
16	70/13		4.5	0.3167	15	3.45	.93	749.00	16.46	25.19
14	22/14		1.5	0.534	10	3.85	.41	124.27	21.35	8.26
15	22/14		3.0	0.534	10	3.85	.41	124.27	21.35	16.52
16	22/14		4.5	0.534	10	3.85	.41	124.27	21.35	24.79
17 18 19	60/12 60/12 60/12	(missing) " "								
20	90/12		1.5	0.070	10	21	.47	154.19	33.64	7.82
21	90/12		3.0	0.070	10	21	.47	154.19	33.64	15.64
22	90/12		4.5	0.070	10	21	.47	154.19	33.64	23.46
20	40/14		1.5	0.0617	15	4.80	.70	138.61	22.56	7.98
21	40/14		3.0	0.0617	15	4.80	.70	138.61	22.56	15.95
22	40/14		4.5	0.0617	15	4.80	.70	138.61	22.56	23.93
23	90/12		1.5	0.070	15	28	.47	154.19	33.64	7.82
24	90/12		3.0	0.070	15	28	.47	154.19	33.64	15.64
25	90/12		4.5	0.070	15	28	.47	154.19	33.64	23.46
26 27 28	170/12 170/12 170/12	(missing) " "								
29	170/12		1.5	0.1417	15	28	.63	292.40	51.20	7.33
30	170/12		3.0	0.1417	15	28	.63	292.40	51.20	14.65
31	170/12		4.5	0.1417	15	28	.63	292.40	51.20	21.98

					Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	Vol.Flow $x10^{-3}$ (m^3/s)	S.Strength x10 ⁴ (ppm)	Release Ht(cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
32 33 34	223/12 223/12 223/12		1.5 3.0 4.5	0.1533 0.1533 0.1533	15 15 15	21 21 21	.70 .70 .70	434.29 434.29 434.29	51.20 51.20 51.20	10.06 20.12 30.17
35 36 37	223/12 223/12 223/12		1.5 3.0 4.5	0.1533 0.1533 0.1533	15 15 15	28 28 28	.70 .70 .70	434.29 434.29 434.29	51.20 51.20 51.20	10.06 20.12 30.17
38	141/9 141/10 141/11 141/12	153 ⁰ /0UT	1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.82 9.07 9.07
39	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13
40	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095	15 10 10 10	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20
41	141/9 141/10 141/11 141/12		1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.82 9.07 9.07
42	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13
43	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095 0.095	15 10 10 10	28 28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20

		l .			Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	Vol.Flow x10 ⁻³ (m ³ /s)	S.Strength x10 ⁴ (ppm)	Release Ht. (cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
44 45 46	90/12 90/12 90/12		1.5 3.0 4.5	0.070 0.070 0.070	15 15 15	21 21 21	.47 .47 .47	154.19 154.19 154.19	33.64 33.64 33.64	7.82 15.64 23.46
47 48 49	90/12 90/12 90/12		1.5 3.0 4.5	0.070 0.070 0.070	15 15 15	28 28 28	.47 .47 .47	154.19 154.19 154.19	33.64 33.64 33.64	7.82 15.64 23.46
50	141/9 141/10 141/11 141/12	063°/IN	1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095	16 10 10 4	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.82 9.07 9.07
51	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095 0.095	16 10 10 4	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13
52	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095	16 10 10 4	21 21 21 21 21	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20
53	141/9 141/10 141/11 141/12		1.5 1.5 1.5 1.5	0.095 0.095 0.095 0.095	16 10 10 4	28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	8.82 8.82 9.07 9.07
54	141/9 141/10 141/11 141/12		3.0 3.0 3.0 3.0	0.095 0.095 0.095 0.095 0.095	16 10 10 4	28 28 28 28 28	.55 .55 .55 .55	235.97 235.97 242/57 242.57	33.64 33.64 51.20 51.20	17.64 17.64 18.13 18.13

					Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	Vol.Flow x10 ⁻³ (m ³ /s)	S.Strength x10 ⁴ (ppm)	Release Ht. (cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
55	141/9 141/10 141/11 141/12		4.5 4.5 4.5 4.5	0.095 0.095 0.095 0.095	16 10 10 4	28 28 28 28	.55 .55 .55 .55	235.97 235.97 242.57 242.57	33.64 33.64 51.20 51.20	26.46 26.46 27.20 27.20
56	60/12		1.5	0.0417	16	21	.38	111.3	33.64	9.48
57	60/12		3.0	0.0417	16	21	.38	111.3	33.64	18.95
58	60/12		4.5	0.0417	16	21	.38	111.3	33.64	28.43
56	70/13		1.5	0.3167	10	3.45	.93	749.00	16.46	8.40
57	70/13		3.0	0.3167	10	3.45	.93	749.00	16.46	16.79
58	70/13		4.5	0.3167	10	3.45	.93	749.00	16.46	25.19
56	22/14		1.5	0.0534	10	3.85	.41	124.27	21.35	8.31
57	22/14		3.0	0.0534	10	3.85	.41	124.27	21.35	16.62
58	22/14		4.5	0.0534	10	3.85	.41	124.27	21.35	24.93
62	90/12		1.5	0.070	10	21	.47	154.19	33.64	7.82
63	90/12		3.0	0.070	10	21	.47	154.19	33.64	15.64
64	90/12		4.5	0.070	10	21	.47	154.19	33.64	23.46
62	40/14		1.5	0.0617	16	4.80	.70	138.61	22.56	7.98
63	40/14		3.0	0.0617	16	4.80	.70	138.61	22.56	15.95
64	40/14		4.5	0.0617	16	4.80	.70	138.61	22.56	23.93
65	90/12		1.5	0.070	15	28	.47	154.19	33.64	7.82
66	90/12		3.0	0.070	15	28	.47	154.19	33.64	15.64
67	90/12		4.5	0.070	15	28	.47	154.19	33.64	23.46
68	170/12		1.5	0.1417	16	21	.63	292.40	51.20	7.33
69	170/12		3.0	0.1417	16	21	.63	292.40	51.20	14.65
70	170/12		4.5	0.1417	16	21	.63	292.40	51.20	21.98
71	170/12		1.5	0.1417	15	28	.63	292.40	51.20	7.33
72	170/12		3.0	0.1417	15	28	.63	292.40	51.20	14.65
73	170/12		4.5	0.1417	15	28	.63	292.40	51.20	21.98

					Model]	Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	$\frac{\text{Vol.Flow}}{\text{x10}^{-3}}$ (m ³ /s)	S.Strength x10 ⁴ (ppm)	Release Ht. (cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
74 75 76	223/12 223/12 223/12		1.5 3.0 4.5	0.1533 0.1533 0.1533	15 15 15	21 21 21	.70 .70 .70	434.29 434.29 434.29	51.20 51.20 51.20	10.06 20.12 30.17
77 78 79	223/12 223/12 223/12		1.5 3.0 4.5	0.1533 0.1533 0.1533	16 16 16	28 28 28	.70 .70 .70	434.29 434.29 434.29	51.20 51.20 51.20	10.06 20.12 30.17
80	141/9 141/10	063°/0UT	1.5 1.5	0.095 0.095	15.6 10	21 21	.55 .55	235.97 235.97	33.64 33.64	8.82 8.82
81	141/9 141/10		3.0 3.0	0.095	15.6 10	21 21	.55 .55	235.97 235.97	33.64 33.64	17.64 17.64
82	141/9 141/10		4.5 4.5	0.095 0,095	15,6 10	21 21	.55 .55	235.97 235,97	33.64 33.64	26.46 26.46
83	141/9 141/10		1.5 1.5	0.095 0.095	16 10	28 28	•55 •55	235.97 235.97	33.64 33.64	8.82 8.82
84	141/9 141/10		3.0 3.0	0.095 0.095	15.6 10	28 28	.55 .55	235.97 235.97	33.64 33.64	17.64 17.64
85	141/9 141/10		4.5 4,5	0.095 0.095	15,6 10	28 28	.55 .55	235.97 235.97	33.64 33.64	26.46 26.46
86	141/11 90/12		1.5 1.5	0.095 0.070	16 10	21 21	.55 .47	242.57 154.19	51.20 33.64	9.07 7.82
87	141/11 90/12		3.0 3.0	0.095 0.070	16 10	21 21	.55 .47	242.57 154.19	51.20 33.64	18.13 15.64
88	141/11 90/12		4.5 4.5	0.095 0.070	16 10	21 21	.55 .47	242.57 154.19	51.20 33.64	27.20 23.46
89	141/11 90/12		1.5 1.5	0.095 Q.070	16 10	28 28	.55 .47	242.57 154.19	51.20 33.64	9.07 7.82

]				Model				Prototype	
Run	MW/Unit	Wind Dir. Terrain	Free Stream (m/s)	Vol.Flow x10 ⁻³ (m ³ /s)	S.Strength x10 ⁴ (ppm)	Release Ht. (cm)	Stack Dia. (cm)	Vol.Flow (m ³ /s)	S.Strength (ppm)	Free Stream (m/s)
90	141/11 90/12		3.0 3.0	0.095 0.070	16 10	28 28	.55 .47	242.57 154.19	51.20 33.64	18.13 15.64
91	141/11 90/12		4.5 4.5	0.095 0.070	16 10	28 28	.55 .47	242.57 154.19	51.20 33.64	27.20 23.46

		so ₂	so ₂		
 Unit/MW/Type	Volume Flow (m ³ /s)	Source Strength (ppm)	Emission Rate (g/s)	Stack Diameter (m)	Exit Temperature (°K)
9/141/0i1	235.97	33.64	21.12	3.58	355.3
10/141/0i1	235.97	33.64	21.12	3.58	355.3
11/141/Coal	242.57	51.20	33.05	3.58	355.3
12/141/Coal	242.57	51.20	33.05	3.58	355.3
12/60/011	111.30	33.64	9.97	2.47	355.3
12/90/0i1	154.19	33.64	13.80	3.06	355.3
12/170/Coal	292.40	51.20	39.84	4.10	355.3
12/223/Coal	434.29	51.20	59.17	4.55	355.3
13/70/Gas Turbine	749.00	16.46	30.32	6.37	799.8
14/2 2 /Diesel	124.27	21.35	7.06	2.87	588.6
14/40/Diesel	138.61	22.56	8.32	2.89	621.9

Table 3-2. Full-Scale Test Parameters for Kahe Power Plant Study

File Name	x (cm)	y (cm)	z (cm)	z _o (cm)	* u (cm/s)	d (cm)	Rezo	n	u (cm/s)	<u>u*</u> u _∞	e _n	e _z o
KAHE 5	0	0	0	2.3119	13.526	-4.0500	208.472	0.2659	85.94	0.1574	7.254	2.423
KAHE 6	0	0	0	1.1686	23.512	-2.0000	183.174	0.2911	214.32	0.1097	14.408	4.678
KAHE 7	0	0	0	1.2556	39.434	-1.9250	330.089	0.2893	327.00	0.1206	26,597	8.923

Table 4-1. Summary of Mean Velocity Profile Data for Reynolds Number Independence Test

File Name	x (cm)	у (ст)	z (cm)	z _o (cm)	* u (cm/s)	d (cm)	Re zo	n	u (cm/s)	<u>u*</u> u _∞	e _n	e _z
KAHE 30	0	0	0.94	1.4754	43.610	-2.4500	428.95	0.2436	307.69	0.1417	26.681	9.103
KAHE 31	304.8	0	0	0.0046	10.990	-1.0438	0.337	0.1319	299.33	0.0367	5.512	3.307
KAHE 32	579.1	0	0	0.0007	10.006	-0.2828	0.047	0.1138	318.16	0.0314	4.971	2.916

Table 5-1. Summary of Mean Velocity Profile Data With No Upwind Terrain Present and Mean Wind from 63°

Table 5-2. Summary of Mean Velocity Profile Data With Upwind Terrain Present and Mean Wind from 63°

File Name	x (cm)	у (ст)	z (cm)	z _o (cm)	* u (cm/s)	d (cm)	Rezo	n	u(cm/s)	<u>u*</u> u _∞	e n	e _z o
KAHE 16	0	0	0.94	5.7797	14.560	-22.1250	561.016	0.2827	163.77	0.0889	12.578	2.593
KAHE 17	0	0	0.94	5.2083	29.035	-16.5000	1008.153	0.2936	301.27	0.0964	24.529	5.148
KAHE 18								0.2862	461.20		40.216	

			Terrain	ı In	Terrain Out		
Stack Height (m)	Unit	Full-Scale Wind Velocity (m/s)	$ \begin{bmatrix} \chi u_{\infty} \\ 0 \end{bmatrix}_{\max} $ (m ⁻² x 10 ⁷)	Distance Downwind (km)	$[\chi u_{\infty}/Q]$ max (m ⁻² x 10 ⁷)	Distance Downwind (km)	
136.5	9	8.82	100	1.22	97	4.59*	
	10	8.82	138	1.26	81	3.88	
		17.64	159	1.26	143	2.41	
		26.46	174	1.26	176	2.41	
	11	9.07	139	1.49	104	4.64*	
		18.13	197	1.27	151	3.15	
		27.20	212	1.27	169	3.15	
	12	7.82	226	1.34	117	4.71*	
		15.64	228	1.34	185	3.22	
		23.46	268	1.34	216	2.48	
182.0	9	8.82	96	1.44	54	4.59*	
		17.64	126	1.22	91	3.84	
		26.46	129	1.22	123	3.84	
	10	8.82	116	1.76*	53	4.63*	
		17.64	161	1.48	74	3.88	
		26.46	180	1.26	87	3.88	
	11	9.07	106	1.49	56	4.64*	
		18.13	163	1.49	105	4.64*	
		27.20	178	1.27	117	4.64*	
	12	7.82	137	1.84*	53	4.71*	
		15.64	181	1.84*	71	4.71*	
		23.46	199	1.34	105	2.48	

Table 5-3. Peak Concentration Location Downwind of Stacks for the 63⁰ Wind Direction and 141 MW Units.

*Maximum occurred beyond the end of the sample grid.

x (cm)	у (ст)	z (cm)	z _o (cm)	* u (cm/s)	d (cm)	Re zo	n	u (cm/s)	$\frac{u^*}{u_{\infty}}$	e n	e _{zo}
25.4	+ 6.4	0.70	0.3024	24.531	-1.1438	49.454	0.1678	270.14	0.0908	17.247	6.642
25.4	+ 6.4	0.70	0.1214	20.684	-0.5250	16.740	0.1872	316.09	0.0654	13.922	3.096
0	-114.3	0	0.0003	10.369	0.2125	0.021	0.0971	319.86	0.0324	7.577	3.889
0	-114.3	0	0.0008	10.955	-0.0010	0.058	0.0922	305.19	0.0359	6.967	2.867
	x (cm) 25.4 25.4 0 0	$\begin{array}{ccc} x & y \\ (cm) & (cm) \end{array}$ 25.4 + 6.4 25.4 + 6.4 0 -114.3 0 -114.3	$\begin{array}{c cccc} x & y & z \\ (cm) & (cm) & (cm) \\ 25.4 & + & 6.4 & 0.70 \\ 25.4 & + & 6.4 & 0.70 \\ 0 & -114.3 & 0 \\ 0 & -114.3 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

Table 6-1. Summary of Mean Velocity Profile Data With No Upwind Terrain Present and Mean Wind from 153°

File Name	x (cm)	y (cm)	z (cm)	z ₀ (cm)	* u (cm/s)	d (cm)	Rezo	n	u (cm7s)	<u>u*</u> u _∞	e _n	e _{zo}
KAHE 01	0	-114.3	0	0.0019	5.855	0.1038	0.0742	0.1032	149.20	0.0392	5.186	5.255
KAHE 02	0	-114.3	0	0.0016	11.920	-0.0688	0.1271	0.0957	305.35	0.0390	7.826	3.726
KAHE 03	0	-114.3	0	0.0001	13.273	0.2550	0.0088	0.0953	474.52	0.0280	8.483	4.623
KAHE 04	25.4	+ 6.4	0.70	0.3434	9.379	-2.4250	21.472	0.2352	147.47	0.0636	8.118	2.241
KAHE 06	25.4	+ 6.4	0.70					0.2793	292.50		20.154	
KAHE 07	25.4	+ 6.4	0.70	1.0332	35.084	-4.1500	241.659	0.2721	454.50	0.0772	22.925	3.467
KAHE 08	379.7	+ 12.7	0.70	0.0009	8.900	0.0963	0.0534	0.1343	290.55	0.0306	4.130	2.217
KAHE 09	379.7	-114.3	0	0.0003	9.076	0.4600	0.0182	0.1085	289.90	0.0313	8.690	2.074
KAHE 10	170.2	+114.3	0	0.0014	10.086	0.0416	0.0941	0.1009	263.77	0.0382	7.566	2.405
KAHE 11	175.3	+ 20.3	0.70	0.0000	5.472	0.4750	0.0000	0.876	284.44	0.0192	8.641	4.466

Table 6-2. Summary of Mean Velocity Profile Data With Upwind Terrain Present and Mean Wind from 153°

FIGURES

Figure 3-1. Areas Modeled for the 63° and 153° Wind-Tunnel Studies

Figure 3-2. Location of Units 9, 10, 11, 12, 13 and 14 for Kahe Tests

Figure 3-3. 153[°] Wind Direction Ground-Level Sampling Locations

Figure 3-4. 63⁰ Wind Direction Ground-Level Sampling Locations for Runs 50-79.

60

Figure 3-5. 63⁰ Wind Direction Ground-Level Sampling Locations for Runs 80-91.

Figure 3-6. Photograph of Model Units 9, 10, 11 and 12 (left side of picture)

Figure 3-7. Colorado State University Environmental Wind Tunnel

Figure 3-8. Photographs of a) Sampling System and b) HP Gas Chromatograph with HP 3380 Integrator b)

a)

Sample #	Integrated Output from GC (μν-s)
1	205694
2	203629
3	202588
4	204305
5	204430
6	203817
7	204636
8	204425
9	204820
10	202794
11	202874
12	203496
13	197171
14	203790
15	202432
16	202426
17	202317
18	200461
19	200372
20	201950
21	201829
22	201817
23	199365
24	201459
25	200297
26	200940
27	200012
28	200622
29	
30	199445
31	199914
32	198845
33	198725
34	198899
33 24	105162
30	1080/2
20	107662
30	197445
40	196235
40	196938
42	196890
43	147606
44	196634
45	196964
46	197027
47	195721
48	196414
49	196934
50	196582
Calibration	197778

Figure 3-9. Typical Sampling System Calibration

Figure 4-1. Photograph of Spire, Trip and Roughness Set-Up for Atmospheric Dispersion Comparability Test (ADCT).

Figure 4-2. Mean Temperature Profile (a) and Intensity of Turbulent Temperature Fluctuations Profile (b) at Stack Location for \overline{T}_{ref} = 297.36 K and u_{∞} = 114.4 cm/s.

Figure 4-3. Mean Velocity (a) and Turbulence Intensity Profiles (b) at Three Different Free Stream Velocities for the Atmospheric Dispersion Comparability Test

Figure 4-4. Vertical Concentration Profiles at a 1 m/s Wind Speed. Atmospheric Dispersion Comparability Test. (y = 0 for all tests)

Figure 4-5. Vertical Concentration Profiles at a 2 m/s Wind Speed. Atmospheric Dispersion Comparability Test. (y = 0 for all tests)

Figure 4-7. Horizontal Concentration Profiles at a 2 m/s Wind Speed. Atmospheric Dispersion Comparability Test.

Figure 4-8. Ground Sampling Grid for Kahe Atmospheric Dispersion Comparability Test

Figure 4-9. Comparison of Observed $\chi u_a/Q$ Values and Values Predicted Using 1) Pasquill-Gifford C and D Dispersion Rate and 2) Dispersion Rate for a $z_0 = 100$ cm and $i_y = 0.14$. All Cases for 100 m Stack.

by Pasquill (1976) for $i_y = 0.14$.

Distance with the Variation Predicted by Pasquill (1974) for $z_0 = 10$ and 100 cm.

Figure 5-1. Wind Tunnel Set-Up for a 63⁰ Wind Direction Without Upwind Terrain

Figure 5-2. Mean Velocity (a) and Turbulence Intensity Profiles (b) With No Upwind Terrain Present and a Mean Wind From 63[°] at the Stack Location (□), 3.1 m Downwind (○), and 5.8 m Downwind (△)

Figure 5-3. Mean Velocity (a) and Turbulence Intensity Profiles (b) at the 1C Stack Location, with the Terrain, a Mean Wind From 63[°], and Three Different Free Stream Velocities

Versus Downwind Distance for a 136.5 m Stack and a 063° Wind Direction.

Figure 5-9. Maximum Concentration (at Unit 10/141 MW) Versus Downwind Distance for a 182 m Stack and a 063⁰ Wind Direction.

Figure 5-11. Maximum Concentration (at Unit 12/141 MW) Versus Downwind Distance for a 182 m Stack and a 063° Wind Direction.

Figure 5-12. Flow Visualization for a 136.5 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 063⁰ Wind Direction.

Figure 5-13. Flow Visualization for a 182 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 063° Wind Direction.

89

Figure 6-1. Tunnel Set-Up for the 153⁰ "Terrain In" Tests

Figure 6-2. Locations of Velocity Profiles for the 153⁰ Wind Direction

Figure 6-3. Mean Velocity (a) and Turbulence Intensity Profiles (b), No Terrain Present and Mean Wind from 153⁰ for Two Different Free Stream Velocities. (See Figure 6-2 for profile location.)

Figure 6-4. Mean Velocity (a) and Turbulence Intensity Profiles (b), No Terrain Present and Mean Wind from 153^o for Two Different Free Stream Velocities. (See Figure 6-2 for profile location.)

Figure 6-5. Mean Velocity (a) and Turbulence Intensity Profiles (b), With No Terrain Present, Mean Wind from 153⁰ Taken Across the Tunnel at the Locations Shown in Figure 6-2

Figure 6-6. Mean Velocity (a) and Turbulence Intensity Profiles (b), With Terrain and Mean Wind from 153[°], Taken Down the Center of the Tunnel at the Locations Shown in Figure 6-2

Figure 6-7. Mean Velocity (a) and Turbulence Intensity Profiles (b), With Terrain and Mean Wind From 153⁰ for Three Different Free Stream Velocities at the Locations Shown in Figure 6-2

Figure 6-8. Mean Velocity (a) and Turbulence Intensity Profiles (b), With Terrain and Mean Wind From 153[°] Across the Tunnel at the Location Shown in Figure 6-2

Figure 6-9. Mean Velocity (a) and Turbulence Intensity Profiles (b), With Terrain and Mean Wind From 153[°] Across the Tunnel for Two Different Free Stream Velocities at the Location Shown in Figure 6-2

igure 6-13. Maximum Concentration (for Unit 12/141 MW) Versus Downwind Distance for a 136.5 m Stack and a 153⁰ Wind Direction.

Figure 6-14. Maximum Concentration (for Unit 9/141 MW) Versus Downwind Distance for a 182 m Stack and a 153⁰ Wind Direction.

ure 6-16. Maximum Concentration (for Unit 11/141 M Versus Downwind Distance for a 182 m Stack and a 153⁰ Wind Direction.

Figure 6-20. Flow Visualization for a 136.5 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 153⁰ Wind Direction.

110

Figure 6-21. Flow Visualization for a 182 m Stack and a 11.75 m/s Wind Speed a) With and b) Without Upwind Terrain for a 153⁰ Wind Direction.

a)

Physical Modeling of Atmospheric Transport of Stack Emissions at Kahe Electrical Generating Plant (Units 9,10,11,12,13 and 14) Oahu, Hawaii

Volume II

Tabulation of Data

by

R. L. Petersen,* J. E. Cermak** and E. E. Twombly***

Prepared for

Stearns-Roger, Inc. Denver, Colorado

Engineering Sciences

JUL 1 4 1980

Branch Library

Fluid Dynamics and Diffusion Laboratory Fluid Mechanics and Wind Engineering Program Colorado State University Fort Collins, Colorado 80523

April 3, 1980

CER79-80RLP-JEC-EET50 b

U18401 0075510

^{*}Research Assistant Professor, Fluid Dynamics and Diffusion Laboratory

^{**}Director, Fluid Dynamics and Diffusion Laboratory

^{***}Research Assistant, Department of Mathematics

TABLE OF CONTENTS*

Run Identification Parameters

Run	Profile Type	Distance Downwind (m)	Model Free Stream Velocity (m/s)	Page
1G	Ground Level		1.0	1
2G			2.0	2
3 G			3.0	3
1-1V	Vertical	545	1.0	4
2-1V		1090	1.0	5
3-1V		1635	1.0	6
4-1V		2180	1.0	7
1-2H	Horizontal	545	2.0	8
2-2н	(106.3 m	1090	2.0	9
3-2н	above	1635	2.0	10
4-2н	ground level)	2180	2.0	11
1-2V	Vertical	545	2.0	12
2-2V		1090	2.0	13
3-2V		1635	2.0	14
4-2V		2180	2.0	15
1-3V	Vertical	545	3.0	16
2-3V		1090	3.0	17
3-3V		1635	3.0	18
4-3V		2180	3.0	19

Atmospheric Dispersion Comparability Test

*Zeroes entered in Raw Data column of run sheets indicate missing data.

Run	MW/Unit & Fuel	Wind Dir/ Terrain	Stack Height (m)	SO ₂ Emission Rate (g/s)	Free Stream Velocity (m/s)	Page
7	141/9/0 141/10/0 141/11/C	153 ⁰ /IN	136.5 136.5 136.5	21.1 21.1 33.1	4.41 4.41 4.41	20
8	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	21
9	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	22
10	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	23
11	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	24
12	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	25
13	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	26
14	60/12/0 70/13 22/14		136.5 22.4 25.3	10.0 30.32 7.1	9.48 8.40 8.26	27
15	60/12/0 70/13 22/14		136.5 22.4 25.3	10.0 30.32 7.1	18.95 16.79 16.52	28
16	60/12/0 70/13 22/14		136.5 22.4 25.3	10.0 30.32 7.1	28.43 25.19 24.79	29

Routine Concentration Measurement Tests--Full-Scale Parameters

				so ₂		
Run	MW/Unit & Fuel	Wind Dir/ Terrain	Stack Height (m)	Emission Rate (g/s)	Free Stream Velocity (m/s)	Page
20	90/12/0 40/14	153 ⁰ /IN (cont.)	136.5 31.2	13.8 8.3	7.82 7.98	30
21	90/12/0 40/14		136.5 31.2	13.8 8.3	15.64 15.95	31
22	90/12/0 40/14		136.5 31.2	13.8 8.3	23.46 23.93	32
23 24 25	90/12/0 90/12/0 90/12/0		182.0 182.0 182.0	13.8 13.8 13.8	7.82 15.64 23.46	33 34 35
29 30 31	170/12/C 170/12/C 170/12/C		182.0 182.0 182.0	39.8 39.8 39.8	7.33 14.65 21.98	36 37 38
32 33 34	223/12/C 223/12/C 223/12/C		136.5 136.5 136.5	59.2 59.2 59.2	10.06 20.12 30.17	39 40 41
35 36 37	223/12/C 223/12/C 223/12/C		182.0 182.0 182.0	59.2 59.2 59.2	10.06 20.12 30.17	42 43 44
38	141/9/0 141/10/0 141/11/C 141/12/C	153°/OUT	136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	45
39	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	46
40	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	47
41	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	48
42	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	49

				so ₂		
Run	MW/Unit & Fuel	Wind Dir/ Terrain	Stack Height (m)	Emission Rate (g/s)	Free Stream Velocity (m/s)	Page
43	141/9/0 141/10/0 141/11/C 141/12/C	153 ⁰ /0UT (cont.)	182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	50
44 45 46	90/12/0 90/12/0 90/12/0		136.5 136.5 136.5	13.8 13.8 13.8	7.82 15.64 23.46	51 52 53
47 48 49	90/12/0 90/12/0 90/12/0		182.0 182.0 182.0	13.8 13.8 13.8	7.82 15.64 23.46	54 55 56
50	141/9/0 141/10/0 141/11/C 141/12/C	063 ⁰ /IN	136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	57
51	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	58
52	141/9/0 141/10/0 141/11/C 141/12/C		136.5 136.5 136.5 136.5	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	59
53	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	8.82 8.82 9.07 9.07	60
54	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	17.64 17.64 18.13 18.13	61
55	141/9/0 141/10/0 141/11/C 141/12/C		182.0 182.0 182.0 182.0	21.1 21.1 33.1 33.1	26.46 26.46 27.20 27.20	62
56	60/12/0 70/13 22/14		136.5 22.4 25.0	10.0 30.32 7.1	9.48 8.40 8.31	63
57	60/12/0 70/13 22/14		136.5 22.4 25.0	10.0 30.32 7.1	18.95 16.79 16.62	64

		so ₂					
Run	MW/Unit & Fuel	Wind Dir/ Terrain	Stack Height (m)	Emission Rate (g/s)	Free Stream Velocity (m/s)	Page	
58	60/12/0 70/13 22/14	063 ⁰ /IN (cont.)	136.5 22.4 25.0	10.0 30.32 7.1	28.43 25.19 24.93	65	
62	90/12/0 40/14		136.5 31.2	13.8 8.3	7.82 7.98	66	
63	90/12/0 40/14		136.5 31.2	13.8 8.3	15.64 15.95	67	
64	90/12/0 40/14		136.5 31.2	13.8 8.3	23.46 23.93	68	
65 66 67	90/12/0 90/12/0 90/12/0		182.0 182.0 182.0	13.8 13.8 13.8	7.82 15.64 23.46	69 70 71	
68 69 70	170/12/C 170/12/C 170/12/C		136.5 136.5 136.5	39.8 39.8 39.8	7.33 14.65 21.98	72 73 74	
71 72 73	170/12/C 170/12/C 170/12/C		182.0 182.0 182.0	39.8 39.8 39.8	7.33 14.65 21.98	75 76 77	
74 75 76	223/12/C 223/12/C 223/12/C		136.5 136.5 136.5	59.2 59.2 59.2	10.06 20.12 30.17	78 79 80	
77 78 79	223/12/C 223/12/C 223/12/C		182.0 182.0 182.0	59.2 59.2 59.2	10.06 20.12 30.17	81 82 83	
80	141/9/0 141/10/0	063 ⁰ /0UT	136.5 136.5	21.1 21.1	8.82 8.82	84	
81	141/9/0 141/10/0		136.5 136.5	21.1 21.1	17.64 17.64	85	
82	141/9/0 141/10/0		136.5 136.5	21.1 21.1	26.46 26.46	86	
83	141/9/0 141/10/0		182.0 182.0	21.1 21.1	8.82 8.82	87	
84	141/9/0 141/10/0		182.0 182.0	21.1 21.1	17.64 17.64	88	
85	141/9/0 141/10/0		182.0 182.0	21.1 21.1	26.46 26.46	89	
86	141/11/C 90/12/0		136.5 136.5	33.1 13.8	9.07 7.82	90	

Run	MW/Unit & Fuel	Wind Dir/ Terrain	Stack Height (m)	Emission Rate (g/s)	Free Stream Velocity (m/s)	Page
87	141/11/C 90/12/0	063 ⁰ /0UT (cont.)	136.5 136.5	33.1 13.8	18.13 15.64	91
88	141/11/C 90/12/0		136.5 136.5	33.1 13.8	27.20 23.46	92
89	141/11/C 90/12/0		182.0 182.0	33.1 13.8	9.07 7.82	93
90	141/11/C 90/12/0		182.0 182.0	33.1 13.8	18.13 15.64	94
91	141/11/C 90/12/0		182.0 182.0	33.1 13.8	27.20 23.46	95

		RUN #	IG	
		MODE	EL UNIT I	
EREE ST	REAM VEL.		0 M/S a m/S	
VOL. FL	Jw	-52E-0	4M3/5	
SOURCE	STRENGTH	+15E+00	5	
CALIBRA	IION FACTU	R.42E-0	Ī	
RANGE	FTGHT	15.0	0 0 CM	
STACK_D	TAMETER	.7	Š ČM	
SAMPLE	IOIAL (PPM)	(ARFA)	CUNC(-)	
86	0.000	0	0.	
51	0.000	77	0.	
53	0.000	16	Ŭ.	
54	0.000	72	U • U •	
56	.000	314	-288E-05	
57 58	.000	522	•554E-05	
59		382	• 375E=05	
60 61	.000	480	-501E-05	
62	.000	140	●647E=06	
63	.000	658	7296-05	
65	• 000	1078	-825E-05	
67	.000	1589	•192E-04	
68	.001	2152	•264E-04 •291E-04	
70	.000	1375	•165E-04	
71	•000	1895	• 326E=05 • 231E=04	
73	.001	2353	-290E-04	
74	.001	1814	-202E-04	
76	.000	1201	•142E=04	
78		2109	•259E-04	
79	.001	2176	-267E-04	
80	.000	1518	•183E-04	
8Ž	• 000	1311	•157E=04 •287E=05	
83	.001	2201	-271E-04	
84	.001	2154	•205E=04 •119E=05	
00				

			<i>C</i>
		KUN # 2	
			UNITI
		MODE	L.
FREE STR	EAM VEL.	5.00	M/S
EXIT VEL	•	2.31	MIS
VOL. FLU	W	• 10E=0.3	M3/5
SOURCES	TRENGTH	+15E+06	
BACKGROU	ND	+14E+05	
CALIBRAT	ION FACTO	R.42E-01	
RANGE		100	•
STACK HE	IGHT	15.00	CM
STACK DI	AMELER	• /5	CM
SAMPLE	TUTAL	RAW N	ORMALIZED
PT.	(PPM)	(AREA)	CUNC(-)
86	.000	252	•558E-02
51	0.000	12	0.
52	.000	76	•256E-07
53	.000	77	•384E-07
54	.000	78	•513E-07
55	0.000	73	0.
56	0.000	0	U.
57	.000	1497	-182E-04
58	.000	634	.718E-05
ξĞ	lõõõ	401	419E-05
40 40	0.000	73	U.
61	0.000	ŏ	Ŭ.
62	.000	256	233E-05
63	. 000	1336	161F-04
64	. 000	682	7798-05
65	. 666	800	1430F-05
600	.000	1372	166F-04
27	. 666	1 คีร์ล่ดี	2265-04
	.001	2224	2765-04
	001	2153	2665-04
70	000	1454	1776-04
20	• • • • • • • • • • • • • • • • • • •	1754	
72	000	2055	2548-04
72	001	2200	2865-04
15	001	5000	-258E-04
74	• 0001	1408	1825-04
13	• • • • • •	1337	-1625-04
10	• • • • • •	2127	-2635-04
11	• • • • • •	1006	2455-04
(8	• 001	1000	2476-04
[7	• • • • •	エフフロ	2116-04
នុប្	• • • • •	1672	1026-04
81	+ 000	1216	• 17CCTV4 2005-04
82	• 000	1034	• CUUC-V4
87	• 000	2120	• 3045 - VO
83	•001	C1 3A	• 200C = 04
84	• U U I	1383	• CHOL = UH
85	•000	1958	·225E=U4

		- RUN # (36
			UNIT 1
		MODE	EL
FREE STH	EAM VEL.	3.0() M/S
FXTT VEL	•	3.5	5 M/S
VOL. FLO) W	-16E-0	3M3/5
SOURCE	TRENGTH	15E+0	5
BACKGROU	IND	. 72F+02	Ď
CALTERAT	TON FACTO	8-42F-0	ĩ
DANGE	1011 1 8010	100	ñ
STACK HE	TGHT	15.00	й См
STACK DI	AMETER	.7	а См
SANDIE	TOTAL	DAW	JORMAL TZEO
	(DDM)	(ASEA)	$C(M) \subset (-)$
	000	102	418F-05
60 61	0 000	71	
57		60	0 •
25	0.000	07	2055-06
23	• 000	70	+ C 7 3 C - V 0
24	•000	19	090C-VI
55	0.000	08	V •
50	0.000	2.79	V •
5/	•000	0/3	•//IE=05
58	•000	1032	•123E=V4
59	•000	804	• 102E=04
60	•000	13	•128E=07
61	.000	294	• 110E=V4
62	.000	542	• 603E-05
63	•001	1966	•243E=04
64	•000	1107	•133E=04
65	•000	1117	•134E-04
66	.000	1911	•223E-04
67	•000	1775	•218E-04
68	0.000	34	0.
69	.001	2792	•349E-04
70	.001	1859	•229E-04
71	0,000	71	0.
72	.001	2401	•299E-04
73	.001	2556	•319E-04
74	.001	2337	•290E=04
75	.000	1765	•217E-04
76	.000	1766	•217E=04
77	.001	2439	•304E-04
78	.001	2212	•274E-04
79	.001	2143	•266E-04
80	.001	1896	-234E-04
81	.001	ŽŬ91	•259E=04
ăž	.000	1707	.210E-04
ลัวั		184	-144E-05
ผั่ง	1001	2140	-265E-04
ŠŽ	lõõi	1942	-240E-04
25	2000	- 96	-308F-06
0			

		RUN #	1-1V
		MOO	UNIT 1
FREE S	TREAM VEL.	1.0	ถ้าที่/ร
EXIT	EL.	1.1	8 M/S
VOL P	LOW	•52E=0	4M3/5
BACKGH	LOUND	+15E+U	2
CALIBR	ATION FACTUR	R.42E-0	ĩ
RANGE	HETCHT	10	0
STACK	DIAMETER	12.0	0 LM 5 CM
SAMPLE	TOTAL	RAW	NORMALIZED
PI.	(PPM)	(AREA)	CONC(-)
86	•000	173	•256E-07
52	.000	661	•094E=05
	• - • *		
54	•000	1826	•224E=04
22 85	.001	3192	•400E=04
57	.002	5715	.723E-04
58	-002	7456	•946E-04
59	•002	7901	•100E-03
61	.000	1783	•219E-04
-		1001	1000 M
63 64	.000	1281	•155E=04
65	.000	225	•192E-05

		RUN # 2	2-1V
_		MODE	UNIT I
FREE STI	REAM VEL.) M/S A M/S
VOL FL	JW	-52E-04	M3/5
BACKGRO	JND	•15E+06 •80E+02	
CALIBRA	FION FACTO	R.43E-0]	
STACK HI	EIGHT	15.00	Ś CM
SAMPLE	TOTAL	RAW	NORMALIZED
PT. 51	(PPM) -001	(AREA) 2532	CONC(-)
~	001	2407	2436-04
54	.001	2973	•378E-04
55	•001 •001	3027 3588	• 385E=04 • 458E=04
58	.001	3852	•492E-04
61	.001	2017	-253E-04
63 64	•000 •000	$1318 \\ 356$	• 162E=04
66	.000	180	.131E-05
65	.000	441	.472E-05

FREE S EXIT V VOL • F BACKGH CALIBR RANGE	TREAM VEL. /EL. Luw Strength Round Ration Factor	RUN 1 522 • 15E • 69E • 43E	# 3- DDEL 00 18 04 06 02 02 01	1V UN M/5 J/5	[T]
STACK STACK SAMPLE PT • 56	HEIGHT DIAMETER TOTAL (PPM) •001	15 RAW (ARE) 233	00 75 NU A) C	CM CM RMAL UNC +290	-1ZEU (-) 5E-04
51	.001	287	1	•366	óE-04
53 54	.001	297 2561	7 3	-380 -380	JE-04 5E-04
85 57 59 61	•000 •001 •001 •001 •001	97 224 211 205 103	4	• 320 • 28 • 26 • 25 • 12	5E-06 4E-04 7E-04 9E-04 5E-04
63 64 65 87 86	• 000 • 000 • 000 • 000 • 000 • 000 • 000	64 35 31 19 6	7 4 9 4 9 0 4	• 754 • 374 • 326 • 10.	+E-05 2E-05 5E-05 3E-05 5E-06

		KUN #	4-1V UNIT 1
FREE S EXIT V	TREAM VEL.	MOL 1 • 0 1 • 1	DEL DO M/S L8 M/S
VOL . F	LOW	•52E=(14M3/S
SOURCE	STRENGTH	•15E+(16
BACKGR	OUND	•75E+(12
CALIBR RANGE STACK	ATION FACTOR Height	•43E-(10 15•()1)0)0 см
STACK SAMPLE PI.	DIAMETER TUTAL (PPM)	RAW (AREA)	75 CM NORMALIZED CONC(-)
51	.001	1940	•243E-04
53	• 0 0 1	1980	•249E-04
54	• 0 0 0	1522	•189E-04
85	• U U Ŭ	192	•153E-05
57	• U O U	1312	•162E-04
58	•000	$\frac{1269}{1194}\\808$	•156E-04
59	•000		•146E-04
61	•000		•957E-05
63	•000	769	•906E-05
64	•000	449	•489E-05
65	•000	469	•515E=05
66	•000	300	•294E=05
87	•000	86	•150E=06
86	.000	92	•558E - 06

FREE ST EXIT VE VOL• FL SOURCE BACKGRO CALIBRA RANGE STACK H STACK D SAMPLE	REAM VEL. L. UW STRENGTH UND TION FACTU EIGHT LAMETER TOTAL	RUN # MODE 2.00 2.3 102-00 15540 85540 R.422-0 15.00 15.00 RAW	1-2H UNIT 1 EL 0 M/S 7 M/S 3M3/S 5 2 1 0 CM 5 CM 5 CM 5 CM
67 68 69 70	0.000 .000 .000 .000 .000	(AREA) 91 251 778	0. .833E-07 .213E-05 .889E-05
72 73 74 75 76 77 78 79 80 81 82 83	000 002 002 002 002 002 002 000 000 000	3372 5409 7182 6501 5393 3215 1942 1007 3125 77	.421E-04 .682E-04 .910E-04 .916E-04 .822E-04 .680E-04 .401E-04 .238E-04 .118E-04 .292E-05 .647E-05

FREE S EXIT V VOL•F SOURCE BACKBR RANGE STACK STACK	TREAM VEL. EL. Low Strength Ound Alion Factu Height Diameter	RUN # 2 MODE 2.00 2.31 .10E-03 .15E+00 .15E+00 .76E+02 0R.43E-01 100 .15.00 .75	2-2H UNIT 1 M/S M/S BM3/S CM CM
SAMPLE	TOTAL	RAW M	ORMALIZED
PT.	(PPM)	(AREA)	CUNC(+)
67	• 0 0 0	201	•339E-06
68	• 0 0 0	344	•350E-05
69	• 0 0 0	912	•109E-04
70	• 0 0 0	1229	•150E-04
72 73 74 75 76 77 78 79 81 82 83 84	$\begin{array}{c} . 001 \\ . 001 \\ . 001 \\ . 001 \\ . 001 \\ . 001 \\ . 001 \\ . 001 \\ . 000 \\ . 000 \\ . 000 \\ . 000 \\ . 000 \\ 0 00 \end{array}$	2620 3113 3575 3151 3491 2775 15665 12657 279 71	.332E-04 .396E-04 .456E-04 .397E-04 .453E-04 .46E-04 .346E-04 .261E-04 .194E-04 .154E-04 .706E-05 .265E-05

		RUN #	3-2H
			JNIT 1
		MOD	EL
FREE ST	TREAM VEL.	2.0	0 M/S
EXIT VE	EL.	2. 3	7 M/S
VOL. FL	_UW	-10E-U	34375
SOURCE	STRENGTH	•15E+0	6
BACKGRU	JUND	•78E+0	2
CALIBRA	ALION FACTOR	₹•43E=0	1
RANGE	CTOUT	10	0
STACK P		12.0	0 CM
STACK L	JIAMELER	0.4.1	5 64
SAMPLE	TUTAL	RAW	NURMALIZED
P1 +	(PPM)	LAREAT	
£7	000	202	1405-66
69	•000	202	+102E-05
60	• • • • •	555	+ OZVE-V5
70	• 0 0 0	1247	+1020-04
70	••••	1641	•1JJC~04
72	- 0.01	1842	.2375-04
73	.001	2057	258E=04
74	ີ້ບໍ່ດ້ຳ	2303	290F-04
75	lõõi	1964	246F-04
76	.001	2083	2628-04
77	lõõi	2183	2758-04
78	JÖÖI	1872	234F-04
79	.000	1582	-146F-04
80	.000	1523	189F-04
81	.000	- 959	•115E-04
8Ž	.000	714	-830E-05
83	.000	532	-592E-05
84	.000	533	.594E-05

			RUN	Ħ	4-		17	1
			N	10	DEL		4 1	1
FREE S	FL.	VEL.		5.	00 37	M/5 M/5		
VÔL F	ĽŪŴ		•10Ē	- (D'3M	3/5		
BACKGR	L SIKEN	IGTH	• 15t	+ (+ (16 12			
CALIBH	ATION	FACT	JR • 43E	- (uī.			
STACK	HEIGHT		15	11. 1.)0)0 (СМ		
STACK	DIAMET	ER	0.41	•	75	СM		C'A
PT.	. 101 (P	PM)	(ARE	Α)		UNC	(-)	LU
67	• 0	00	24	6		• 19	4 <u>E</u> -	05
69	.0	00	56	18		• 55	12-	05
70	• 0	00	93	36		•10	9E-	04
72	• 0	00	134	7		.16	3E-	04
73	• 0	00	135	33		• 16	4ビー シドー	04
75	. ŭ	ŏŏ	154	Ţ		18	9E-	04
76 77	• U • Ü	00	194	16		•11	作-	04
78	, õ	õõ	16	34		-20	ĪĒ-	04
80	.0	00	15/	0		• 19	36- 76-	04
81	• 0	ŌŌ	148	Ż		18	įĒ-	04
82		00	105	56	•	- 12	05-	05
84	, Ŭ	00	45	5 8		47	ĨĒ-	05

		RUN	#	1-	27		
					UN	11	1
		M	IOD	ËL.			
FREE S	IREAM VEL.	4	• 0	0	<u>1/5</u>		
EXIT V	EL.	<u> </u>	• 3	7	47 S		
VOL. F	LUW	•10E	-0	3M.	3/5		
SOURCE	STRENGTH	•15t	+0	6			
BACKGR	OUND	•85E	+0	2			
CALIBR	ATION FACTOR	1•42E	-0	1			
RANGE			10	0	_ .		
STACK	HEIGHT	15	• 0	0 (CM.		
STACK	DIAMETER		.1	5 (CM.		
SAMPLE	TOTAL	RAW		NUI	4 MA	LI	ZED
ΡΤ.	(PPM)	(ARE	A)	- C (UNC	(-)
51	.000	- 59	2		. 65	4E	-05
52	•000	- 48	9	,	•52	2E	-05
53	•000	- 58	8		.64	BE	-05
54	.001	- 199	5		•24	5E	-04
55	.001	- 379	3		• 4 7	6E	-04
57	.002	- 789	4		.10	UE	-03
58	.003	891	3		.11	3E	-03
59	.002	845	3		10	1Ē	-03
61	.001	- 24ó	1		.30	5E	-04
63	•000	- 111	0		•13	SE	-04
64	.000	18	3		.12	9E	-05
65	.000	8	8		.76	9E	-07
66	0.000	- 7	1	Ű,	•		

		RUN # 2	-27
			UNIT
		MODE	
FORE CT	DEAM VEL	2 05	~
EVIT VE	NEAM VELS	2.00	M/ 3
	. L . •	2.31	MIS
VUL FL	UW	.10E-03	M3/5
SOURCE	STRENGTH	•15E+06	
BACKGRO	UND	-98E+02	
CAL THRA	TION FACTO	R.43E-01	
RANGE		100	
STACK H	FIGHT	15 00	См
	LANGTED	12005	
STACK U	TAUELER	0.000	
SAMPLE	TUTAL	RAW N	URMALIZEU
PT.	(PPM)	(AREA)	CONC(-)
51	•001	2095	•261E-04
53	- 001	2244	-280F-04
54		2563	3205-04
E E	601	2022	• JC 01 - 04
23	• 001	2000	• 3 3 1 5 7 4
21	•001	2304	•421E=04
58	•001	3524	•44/E-04
59	.001	3199	•405E-04
-			
61	- 001	2303	-288F-04
~ *		2000	
£ 1.	0.0.0	606	7600-05
54	+ UUU	200	• / 005 - 07
65	• 000	515	• 545E=05
66	•000	263	•216E-05

FREE SI EXIT VE VOL. FL SOURCE BACKGRU CALIBRA RANGE STACK L STACK L SAMPLE PT.	TREAM VEL. 	RUN # MODI 2.0 2.3 .10E+0 .15E+0 .15E+0 .78E+0 .78E+0 .15 .0 .15 .0 .15 .0 .7 .0 .7 .0 .7 .0 .7 .0 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	3-2V UNIT 1 0 M/5 7 M/5 3M3/5 6 2 1 0 CM 5 CM 0 CM 5 CM 1 0 CM 5 CM 1 0 CM 5 CM 1 0 CM 5 CM 1 0 CM 5 CM 1 0 CM 5 CM 1 0 CM 5 CM 5 CM 5 CM 5 CM 5 CM 5 CM 5 CM 5
51	.001	2495	•315E-04
53	•001	2619	•332E-04
54	•001	2551	•323E-04
85	•000	189	•145E-05
57	•001	2227	•280E-04
58	•001	2278	•287E-04
59	•001	2260	•285E-04
60	•000	$ 1534 \\ 1381 $	•190E-04
63	•000		•170E-04
65	• 0 0 0	687	.795E-05
66	• 0 0 0	465	.505E-05
87	• 0 0 0	97	.248E-06
		RUN # 4	4-21
---------	--------------	------------------------------	---------------------
			UNIT
		MODI	
FOFF C	TOEAM VEL	2 0	5 M/S
	CLAM YELS	5.0	
EVI X	E. L. O	6 1 1 1 1 1 1 1 1 1 1	
VOL F	LOW	. IUE-0	3M3/5
SOURCE	STRENGTH	+15E+00	5
BACKGR	OUND	•97E+0;	2
CAL 1BR	ATION FACTUR	<.43E=0	
RANGE		10	5
STACK	HEIGHT	15.0	й См
STACK	DIAMETED	1 3 1 0	
SAMDI F	TOTAL		
SAMPLE	TUTAL	RAW	VURMALIZED
PI	(PPM)	(AREA)	CUNC(-)
56	•001	1961	•243E=04
51	.001	2399	.300E-04
53	.001	2421	-303E-04
52	. 661	2330	2016-04
JŦ	* • • • •	2330	*C > 1 C ~ V +
05	0.0.0	222	1445-05
63	• • • • • •	223	+104E=02
21	•001	1001	•231E=04
58	•000	1020	·203E=04
59	•000	1693	-208E-04
61	.000	1023	-121E-04
	• • • • •		
63	- 000	830	- 956F-05
00			•/JUL 0J
65	000	472	. 4015-06
22	• • • • • •	221	++71E-00 0006-06
22	• 000	261	• < 7 < 5 = 0 3
81	.000	105	.052E-0/
86	•000	104	.913E-07

-	•• (517 •	KUN #	1-3V UNIT 1 EL
EXIT VI VOL. FI	TREAM VEL. EL. LUW STRENGIH	3.0 3.5 .16E-0 .15F+0	0 M/S 5 M/S 3M3/S
BACKGRI CAL IHR RANGE	OUND ATION FACTOR	•94Ē+0 •42Ē-0 10	2 1 0
STACK STACK	HEIGHI DIAMETER TUTAL (PPM)	15.0 .7 RAW (AREA)	0 CM 5 CM NORMALIZED CONC(-)
51 53	•000 •000	834	•576E-05
54 55 57 58	000. 100. 002.	1381 2198 6419 7854	•165E-04 •270E-04 •811E-04
59	\$005	7755	•982E-04
63	•000	1413	•169E-04
65 66	•000 •000	172 101	.100E-05 .898E-07

		RUN #	2-3	V	
				UNT	T 1
		MI)	051		• •
FORE C	TOFAM VEL	30		10	
	INCAM VEL.	<u></u>	VU M	12	
EXIL V	LL.	3.	22 M	15	
VOL. F	LOW	.16E-	03M3	15	
SOURCE	STRENGTH	.15E+	06		
BACKGR	OUND	185F+	ůž		
CALTOD	ALTON SACTOR	- A 4 -	15		
SALIDA	ATTON PACTOR	++ 35-	NT NT		
RANGE		1	00		
STACK	HEIGHT	15.	00 C	M	
STACK	DIAMETER	•	75 C	M	
SAMPL F	ΤΟΤΑΙ	RAW	NOR	MAL	TZED
DT	TODAL	12354	v čñ	NOT	-1
F I 4	ALE FOR	MALA		AC I	
e= 3	0.0.0	1200		~~~	(* n.)
51	.000	1089	•	209	E=04
52	.000	1032	•	202	E-04
53	.001	1977		241	F=04
54	1001	- 2414		2ú i	F=04
54	* 00 I	6.714	•	C. 7 L	C = 0 +
05	0.0.0	000			11 AE
82	.000	232	٠	132	C-03
51	•001	3607	•	460	上-04
58	.001	3893		491	E-04
50	2001	3823		484	F-04
Ζí	1001	- 2762		áňĭ	E-04
01	••••	2372	•	201	L-04
63	•00T	1941		242	E-04
65	. 000	635	-	710	F-05
22	000	370	•	582	
20	• 000	- <u>CI</u> 3	•	<u>ç 24</u>	
80	•000		•	183	E-06

		RUN	ŧ.	3-	3v -		
					UN	11	1
		N	100	EL			
FRFF S	TREAM VEL.		3.0	0	M/S		
FXIT	FL	3	3.5	5	M/5		
VOL. P	้เป็ญ	-16Ē	-1	ที่จัด	375		
SOUBCE	STRENGTH	156	÷+č	16	0.0		
BACKGH	IND	1786	+1	12			
CALTER	ATTON FACTUR	2.4.46	- (11			
DANGE	ATTON FACTOR	111	10	10			
STACK	HETGHT	16			CM		
STACK	NEAMETED	1.	, . .		C Pr		
STACK	TOTAL	D	. • 1	3	C PT C Maria		250
SAMPLE		RAP		NU	13 M A	Ļ1.	LEU.
M Le	(PPM)		- A I	<u>ل</u>	UNÇ	1.5	1
80	•001	201	9		• 21	95	-04
1	0.03	2.1			~ .		
21	•001	248	59		• 31	DE.	-04
~ .		A					
54	•001	250)4		• 21	1E.	-04
55	.001	249	13		• 31	5E	-04
57	.001	236	8		•53	9E-	-04
- 58	.001	221	1		• 28	OE.	-04
59	.001	- 225	52		• 58	4E.	-04
61	.000	150	14		.18	6E.	-04
		-					
63	.000	117	11		-14	3F.	-04
	• • • • •		•		·	47 44	• •
65	.000		57		-62	1F.	-05
66	. 400		2		130	AF.	- 115
27	000		14		- 84	SE.	-177
82	• • • • • •	1	52		- UH 2 D	25	
00	• UUU 0.01	261			• 0 2	VE!	
23	• 0 0 I	200	1		• 32	75.	-04

			RUN #	4-34
				UNIT)
			MOD	FI
FRF	E STREAM	VEL	3.0	6 M/S
EXT	TVCI	V Luber Ø	 ភូ• <u>័</u> ដ	L M/S
561	1 VELO		165-0	
			•105-0	3113/3
200	KUE DIKE	NGIM	• 135+0	6
BAC	KGRUUNU		• 23E+U	3
CAL	IBRAIION	FACTUR	•4JE-U	1
RAN	GE		10	0
STA	CK HEIGH	T	15.0	0 CM
STA	CK DIAME	TER	. 7	5 ČM
SAM	PIE TO	Γ <u>Δ</u> Ι.	RAW	NORMAL TZED
PT		DDM)	(AREA)	CUNC
• •	• •			
e	1	000	1220	1216-01
2	T • ,	000	1520	•131E=04
-	^	0.0.0	117/	• • • • • • • • •
2	ب ا	000	11/4	•124E-04
5	4 • 1	000	1011	·102E-04
. 5	5.	000	962	•960E-05
8	5 .	000	320	•122E-05
5	7 .	000	951	-946E-05
	8	000	1017	-103F-04
ទី	ă li	lõõ	ี ลีลีว่า	- H62E-05
Ä	í	000	745	6776-05
U	± • '		745	•0112-05
Ľ	3 1	100	749	6415-04
2	J • [500	140	+001E-00
ò	4	100	274	+40UE=05
6	5	100	545	•416E-05
6	•	100	397	•223E-05
8	7 0.0	000	153	Ü.
8	6 0.0	100	117	0.

FREE STI FXTT VEL VOL - ELC SOURCE S BACKGROU CALTERA PANGE	REAM VFL. OW Strength UND FION FACT(RUN # MOD 1+5 8+0 +19F+0 +15F+0 +63F+0 DR+43E-0	7 UNIT 9 EL PROTO 0 M/S 4+ 0 M/S 24+ 0 M/S 24E+ 5 +51E+0 2	9TYPE 53 M/S 17 M/S 9343/S 92	MO(1.4 • 198-(• 198+(• 358+(• 238-(UNIT 10 PRU 50 M/S 24 00 M/S 24 03 M3/S 24E+ 04 51E+ 01 01	0TYPE 53 M/S 17 M/S 0343/5 02	40 195 105 105 105 105 105	UNIT 1 DDEL PR 50 4/5 00 4/5 2 03M3/5 24 06 51 01	1 0T0TYPE 4.53 M/S 4.17 M/S F+03M3/S F+02	
CTACK II	FTOUT	~ ~ ' "	0 04 120	· • •	~1		C 11 14			< - A 14	
STACK H		CI+9	0 64 136.	50 M	51.	00 CM 135.	20 1	21.	100 CM 13	6.50 M	
SIACK D.	IAMFIFR	ر • ک	5 CM3•	A M	•	55_CM3.	58 4		55 CM	3.58 M	
SAMPL F	TOTAL.	PAW	NORMALIZED	PROTOTYPE	RAW	NORMALTZED P	ROLOTYPE	RAW	NORMALIZED	PPOIOTYPE	
PT.	(PPM)	(AREA)	CONC(-)	CONC (PPH)	(ARFA)	CONC(-) C	ONC (PPM)	(AREA)	CONC(-)	CONC (PPM)	
Q1	• 0H4	2176	•112F-04	.031	2524	107F-04	•059	3677	•106E-04	•029	
92	.033	334	•144E-05	.004	382	•161E-05	• 0 0 4	574	.164E-05	.004	
96	.051	1123	•563F-05	.015	1407	.5966-05	•016	2430	.702E-05	.019	
03	.055	1255	•633F-05	.017	1596	•677E-05	.019	2445	.706E-05	.019	
P7	.036	831	•408F-05	.011	1041	.441E-05	.012	1622	468E-05	.013	
89	025	591	.275F-05	008	731	-309F-05	• 0 0 8	1154	-332E-05	009	
9 9	.013	551	.259F-05	.007	265	•111F-05	.003	314	- BA7E-06	-002	
90	.037	1154	.580F-05	.016	943	-399E-05	•011	1301	-375E-05	.010	
7	.010	205	.754F-06	.002	591	.122E-05	.003	600	.172E-05	.005	
р	.018	3.34	-144E-05	.004	478	-185E-05	• 005	1165	-335E-05	.009	
9	013	510	-237F-05	.007	271	-114F-05	.003	471	-134E-05	.004	
10	.004	210	-791F-06	.002	73	-295F-0A	.001	105	-281E-06	.001	
11	001	90	-143E-06	. 600	21	.744E-07	.000	18	-290E-07	.000	
12	.000	28	0.	0.000	6	106F-07	.000	- 9	-290E-08	.000	
13	063	1788	-916F-05	.025	1567	-664E-05	.018	2491	.719E-05	. 020	
17	.001	89	-138F-06	.000	37	-142E-06	.000	43	101E-06	.000	
14	027	1085	543F-05	.015	586	249F-05	.007	738	212E-05	006	
15	007	378	167F-05	. 005	125	516F-06	.001	159	438E-06	001	
16	-002	181	627F-06	.002	้ำ้า	117F-06	.000	15 3	130E-06	2000	
19	091	2120	109F-04	1030	2610	1115-04	.030	ารจัว	113F-04	.031	
10	062	1644	840F-05	023	1711	7268-05	020	2464	712F-05	.019	
20	021	716	- 347F-05	.010	ี รัวส์	2238-05	006	657	188F-05	. 005	
22	.019	787	385F-05	. őíi	421	1778-05	.005	450	1318-05	004	
53	002	176	-600F-06	. 662	40	1555-06	ំព័ត័ត	40	119F-06		
25	0.000	63		0.000	0	0.	0.000	ĬÓ	0.	0.000	
22	000	63	0.	0.000	ï	149F-07	.000	16	232F+07	.000	
ว่า	000	73		. 000	16	5318-07	-000	18	0.	0.000	
30	002	1 42	3678-06	001	34	130F-06	1000	4 ň		- 000	
20	.010	173	2185-05	.006	216	9038-06	.002	243	681F-06	.002	
29	634	1301	6586-05	018	661	-420F-05	.011	าโจ้วี	327F-05	.009	
27	077	2074	1075-04	020	2160	020E-05	025	2866	829F-05	. 621	
26	057	1416	7195-05	. 020	1645	698F-05	1019	2306	666E-05	018	
	• • • • •		- · · · · ·	- · · · · ·		•					

		121111 #	54											
			INTT 9			UNTE 10			UNTT	1		UNIT	12	
		мор	FI Έρρότο	TYPE	MOL	FI PRO	TOTYPE	v	ODEL PE	ίστοιγρε	м	00FI P	ROTOTYPE	
FREE ST	REAM VEL	1.5	0 M/S 8.8	2 M/S	1.5	0 M/S 8	82 M/S	1	.50 M/S	9.07 M/S		1.50 M/S	9.07 M/S	
FXIT VE		4.0	0 4/5 23.5	1 M/S	4.0	10 M/S 23	51 M/S	á á	100 M/S 2	24.17 M/S		4.00 M/S	24.17 M/S	
VOL. FL	ÖW	95F-0	4411/5 .24F+0	34325	956-0	4M3/5 .24E	+03M3/5	- 95F	-04M3/5 .24	F+0343/S	.95	E-0443/5 .	248+0343/5	
SOURCE	STRENGTH	15F+0	6 - 34E+0	2	10F+0	·34E	+02	105	+06 .51	E+02	.10	E+04 .	51E+02	
PACKGRO	UND	.66F+U	2	•	-13E+n	2		.105	+02		.0			
CAL THRA	TION FACTO	P.43F-0	1		- 23E-0	1		•16F	- ()]		.12	E-01		
RANGE		10	Ô.		10	0			100			100		
STACK H	EIGHT	21.0	0 CM 136.5	0 M	21.0	IN CM 136	.50 4	21	.00 CM 13	36.50 M	2	1.00 CM	136.50 M	
STACK D	NIAMETER	.5	5 ČM 3.5	AM		54 CM 3	5R M		•55 CM	3.58 4		•55 CM	3.58 M	
SAMPI F	TOTAL	PAW	ΝΟΡΜΑΕΤΖΕΟ Ρ	ROTOTYPE	RAW	IORMAL JZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE	
ΡΤ.	(PP1)	(AREA)	CONC(-) C	ONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)	
0]	.024	6 3 A	•408E-05	.005	764	.6398-05	•006	1117	.642E-05	.009	509	.268E-05	.004	
02	.044	1124	•112E-04	.010	1544	.130F-04	•015	2364	136E-04	•019	1485	.453E-05	.009	
<u>86</u>	.038	746	.722E-05	.007	1088	.914E-05	• 0.0.9	1884	.109E-04	•015	1321	•581E-05	•008	
63	.034	811	.742E-05	• 007	1076	.904E-05	•008	1633	.941E-05	•013	1014	•446E-05	• 0 0 6	
87	• 039	934	•922E-05	• 0 0 8	1573	106E=04	• 010	1867	-108E-04	• 015	1154	-494E-05	.007	
9.8	.002	185	•126E-05	• 901		•54HF=06	• 0 0 0	85	•4401-00	•001	2.0	U.,	0.000	
p n q	. 122	467	• <u>8515</u> - 05	• 00 H	, 154	•6 10E = 05	• 0 0 5	. 847	.4455-05	• 0.07	344	•1532=02	• 002	
C ()	• 96.9	1140	• 1135-04	• 010	1325	•112E=04	• 0 1 0	1965	• 105E = 04	• 014	250	.4708-05	• 0 0 0	
	• 111	151	• 90 3F - 05	• 001	319	• 25 35 705	• 007	1211	• 3485 = 03 0075 - 05	• 007	11/6	-1972-05	• 110.3	Ν
н ()	. 11 2 1.	007	• 290F = 05	• 000 4	101	7215-05	• 007	1741	• NH/C=05	• 015	330	1405-05	•007	
10	• 0.67	564	- 909F - 09	• 0.05	165	1625-06	.001	106	5455-06	• 0.01	337	0.	0.000	
	• 001	110	5625-06	• 601	24	0775-67	- 000	132	1515-06	.001	Ň	0	0.000	
12	054	1141	1145-04	• 010	16/1	1305-04	-012	2641	152F-04	021	1706	7505-05	.010	
12	073	1437	188F-06	1617	2470	210F-04	.019	3340	104F-04	027	1795	789F-05		
17	000	73	744F-07	. 000	24	977F-07	.000	~~??á	104E-06	.000	Ó	0.	0.000	
14	043	1460	-148F-04	1013	1563	-132F-04	-012	1717	989E-05	.014	718	-316E-05	.004	
15	2018	879	- H63E-05	008	669	-558E-05	.005	551	-314E-05	.004	172	.756E-06	.001	
16	018	860	-844E-05	009	660	-550E-05	.005	551	-314E-05	.004	175	.774E-06	.001	
18	.067	1521	.155E-04	.014	2124	.179E-04	•016	3185	.1A4E-04	.025	1928	.R4RE-05	.012	
10	.067	1632	•166E-04	.015	2532	189E=04	•017	3076	.178E-04	.024	1743	.766E-05	.010	
20	.024	739	•715E-05	.006	H46	.708E-05	•006	1074	.617E-05	•008	481	.211E-05	• 0 0 3	
22	.03]	1227	-123E-04	•011	1216	.102E-04	• 0 0 9	1297	.746E-05	•010	0	0.	0.000	
23	. 992	190	•132E-05	.001	44	•493E-06	•001	71	.354E-06	• 0 0 0	0	9 .	0.000	
25	• 000	59	•212F-07	.000	8	0.	0.000	10	<u>0</u> .	0.000	n n	0.	0.000	
22	.000	64	0.	0.000	17	- 742E-07	• 0 0 0	10	0.	0.000	0	0. •	0.000	
11	.000		•117E-06	•002	13	425E-08	• 0 0 0	.17	-406L-07	• 000	õ	0.	0.000	
20	.003	204	• 147E=05	• 0 0 1	131	• 101E-05	• 0 0 1	121	• h43t = 0 b	• 0 0 1	200	⁰ •••••	0.000	
29	• 016	689	• <u>662E - 05</u>	• 006	, 558	•477E=05	• 0 0 4	.597	• 340E=05	• 005	509	·9145-05	• 0 0 1	
22	.040	1284	•1295-04	• 012	1358	• 1 1 4 <u>E</u> = 0 4	• 0 1 0	1525	+975E=05	• 013		• 341E=05	• 005	
27	• 055	1211	• 154F = 04	.014	1/41	• 15 (E=04	• 014	2334	• 140C=04	• 0 < 0	1419	+ h 2 4 5 = 0 5	• 0 0 9	
26	. 949	987	- 4/45-05	.004	1630	• LU47 = 04	• 0 0 9	1211	alive=04	•010	1044	●434E=03	• U U D	

		PUN #	c,										
		MUD	EL PROTO	TYPE	MO		DIOTYPE	ч	ODEL UNIT 1	OTOTYPE	м	DDEL P	OTOTYPE
FREF	STREAM VEL	4.0	0 M/S 17.6	4 M/S 1 M/S	3.0	00 M/S 1 00 M/S 2	1.64 M/S 3.51 M/S	3	.00 M/S 1	8.13 M/S		3.00 M/S	24.17 M/S
701 .	ři Öw	-95F-0	443/5 .24E+0	34325	95E-1	0443/5 .24	+0343/5	•95Ë	-04M3/5 .24	E+0343/5	• 95	E-04M3/5 .	4E+0343/5
RACKG	E STRENGTH RAUND	-15E+0	6 •34±+0 2	2	• 10E+0 • 24E+0	16 • 341 02	+02	-10E 75E	+06 •51	E+02	• 1 0	E+06 •	512+02
CAL TH	RALION FACTO	R.43E-0	<u>)</u>		-3-E-	n i		16F	-01		.ĭ>	E-01	
CTICK	4614.41	210	0 0 CM 136 E		21	130 0.0 CH 1.74	5 60 M	21	100 00 CM 13	6 50 M	Ċ	100	126.50 M
STACK	STANFIER	.5	5 CM 3.5	8 14	• • •	55 CM	3.58 1	<i>C</i> 1	•00 CM IS	3.58 M	-	55 CM	3.53 M
SVADI	F THTAL	RAW	NORMAL LZED P	RUIUINE	RAH	VORMAL TZED	PROTOTYPE	, RAW	NORMALIZED	PROTOTYPE	DAW CODE O	NORMALIZED	PROTOTYPE
	011	(AVFA) 382	- (990(-) () - 6476-05	0.003	(14+6)	- CONC(-) - 500E-05	(1)NU (PPM)	(AREA) 526	525E-05	CONC (PPM)	345	-305F-05	.002
02	004	164	-182F-05	.001	157	227E-05	.001	277	2355-05	.002	139	123E-05	.001
86	• 017	796	•677E-05	• 0.03	536	•875E=05	• 0 0 4	841	-892E-05	• 005	582	•514E-05	.004
87	.020	501	901F-05	.004	671	11115-04	.005	984	106E-04	.007	638	.564E-05	.004
9.9	.004	220	-301F-05	.001	176	-260E-05	.001	231	192E-05	.001	75	.663E-06	.000
89 00	.021	1127	-134F-04 -224F-04	.006	1162	•) 15E-04 - 194E-04	• 005	1585	.176E=04	.007	405 810	· 7546=05	.002
7	.000	1.84	.854F-07	.000	31	1205-06	.000	1 89	153E-06	.000	ő	0.	0.000
A	• 019	347	•572F-05	.003	569	-931E-05	• 0 0 4	, 227	.992E=05	• 007	884	•781E-05	• 005
10	.014	652	• 177F = 04	.006	1570	-202E-04	•009	492	496E=05	.003	129	• 113E=05	.001
11	.002	206	.271E-05	.001	113	-152E-05	• 0 0 1	110	.408E-06	.000	0	0.	0.000
12	.024	633	• 1 1 8E = 04 234E = 04	• 005	171	-12HE-04	• 0 0 6	1164	-127t-04	.009	1100	-6/3E=05	.005
17	.000	1 82	641F-07	.000	33	154E-06	.000	6035	128E-06	.000	11-0	0.	0.000
14	.037	1109	·250E-04	.010	1521	-210E-04	• 009	1695	-189E-04	• 013	802	•709E-05	.005
15	.007	355	• 3F = 04 • 589F = 05	.005	295	4635-05	.004	330	.094E-05	-005	142	-1/2E=05	• 001
1 A	.027	736	-140F-04	006	842	-147E-04	.007	1515	139E-04	.010	763	.474E-05	.005
19	.037	1037	•205F-04	• 009	1220	•204E=04	• 0 0 9	1698	•199E=04 726E=05	• 0] 3	955	-R45E-05	.006
22	026	854	165E-04	.007	927	154E-04	.007	1157	126E-04	.009	514	458E-05	.003
23	.005	247	-359F-05	.002	186	.277E-05	•001	224	174E-05	.001	120	.106E-05	.001
25	• 000 • 000	87	•1/1F=06	000	30	•103E=06	•000	79	.466t=07	0.000	0	0.	0.000
ຈັງ	.000	ต่	.427E-07		26	342E-07	.000	78	349E-07	.000	ň	ŏ.	0.000
30	.003	180	•?16E-05	• 001	129	·179E-05	•001	184	•127E-05	• 0.01	200	0.	0.000
28	.027	879	• JUZE = 04	-008	549 914	152E=05	•004	1189	-130E-04	• 005	542	+73E=05	.002
27	029	R44	-163F-04	.007	916	-155E-04	• 0 0 7	1296	142E-04	.010	681	-602E-05	.004
26	•017	512	•925E-05	.004	545	.958E-05	• 0 0 4	818	.865E-05	•006	438	•387E-05	•003

		RUN H	10			_							
		мор		TYPE	MO			u	ODEL UNIT 1		м		12 DITUIVPE
FREE ST	REAM VEL	4.5	0 4/5 26.4	6 MZS	4.	รถัм/ร	26.46 M/S	4	.50 ¥/S 2	7.20 4/5		4.50 4/5	27.20 M/S
FXIT VF	1. •	4.0	0 4/5 23.5	1 M/S	4.	00 4/5	23.51 4/5	4	.00 4/5 2	4.17 4/5		4.00 4/5	24.17 M/S
VOL FI	OW STRENGTH	•95E=0	44375 •24E+0 6	34375	-95E-	04M3/5 .2	45+0393/5	• 95E	-04M3/5 .24	F+03M375	- 95	E=0493/5 •7 E+06 •	242+0343/5 51F+02
RACKGR	JUND DAUG	A3E+0	2		27F+	02	42407	2HE	+02		.0	•	110.07
CAL TRRA	TION FACTO	19.43F-0	1		.23F-	01		•16E	-01		.12	E-01	
PANGE	IC TOUT	-10		~ · · ·	1	0.0	26 50 M	21	100	C 50 M	•		126 EA M
STACK C	TAMETER	<1.V	0 LM 100.5	1) M A M	~1.	00 CM 1 55 CM	3,58 4	<i>C</i> 1	-00 CM 13	3.58 M	-	1.00 CM	3.58 M
SAMPLE	TOTAL	RAN	NORMAL TZED P	ROTOTYPE	9 A W	NORMAL TZE	DPROTOTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE
PT.	(PPM)	(AREA)	CONC(-) C	ONC (PPM)	(AREA)	$CONC(\pm)$	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)	(ΔRFA)	CONC(-)	CONC (PPH)
01	• 020	569	•] 55F = 04 105F = 04	• 005	659	• 161E=0	4 • 005	702	+15HE=04	•007	003	.7956-05	.003
84	:812	314	• 736F=05	:002	383		• 003	588	974E-05	.004	428	564E-05	.003
43	. n n a	217	.618E-05	.002	<u>Sur</u>	.701E-0	5 .005	457	.747E-05	.103	326	.430E-05	.002
R7	.013	338	•H13E-05	• 002	408	•972E=0	5 •003	640	+106E=04	• 0 0 5	473	•624E=05	• 0 0 3
00	013	616	• 455F = 05	• 001	469	- 113F-0	∽ •001 4 •003	566	- 436E-05	.001	201	-384E=05	-000
90	015	470	123F-04	014	510	1235-0	4 .004	681	114E-04	.005	447	590E-05	.003
7	.003	100	•542E-06	.000	45	-173E-0	5 .001	195	·286E-05	•001	193	•255E-05	•001
р О	• 014	619	• 4885 - 05 2665 - 06	• 0 0 1	325	-9151-0	5 • 00.5	1413	•] HE=04	.005	740	0765-05	.004
10	1019	AIS	-233F-04	007	741	182F-0	4 005	1655	109E-04	.005	158	208E-05	.001
i1	1003	263	-574F-05	<u>, noż</u>	146	-303F-0	5 .001	103	-131E-05	.001	0	0.	0.000
12	.017	419	•107F=04	• 003	534	•129E=0	4 • 0 0 4	128	-138L-04	• 006	509 874	• 803E=05	• 004
17	. 000	162	-287F-06	1000	35	204E-0	6 .000	32	7826-07	.000	0	0.	0.000
14	026	825	-237F-04	007	หร่ลี	-217E-0	4 .007	1117	-189E-04	.009	625	.924E-05	.004
15	.016	558	•151E-04	.005	571	•132E-0	4 • 0.04	661	-110E-04	• 0.05	339	•445E-05	•002
16	• 007	365	• H99E=05	.003	612	- 140F-0	∽ •002 4 •004	688	.40/E=05	• 002 • 007	647	+107E=05	-000
19	. 004	271	\$99E-05	002	247	663E-0	5 .002	417	677E-05	.003	Žėż	-185E-05	.002
20	.010	344	-832E-05	.002	351	-826E-0	5 .002	467	.754E-05	.003	295	• <u>389</u> E-05	.002
22	.018	606	• 167E ~ 04	• 005	634	•155E=0	4 005	(98	-129E-04 260E-05	• 005	422	•55/E=05 778E=06	• 0 0 3
25	.000	677	-287F-06	.000	190	127F-0	6 .000	- 31	609E-07	.000		0.	0.000
72	0.000	74	0.	0.000	22	0.	0.000	24	0.	0.000	Õ	0.	0.000
11	• 000	102	.606E-06	•000	36	•558E-0	6 •000	,40	•217E-06	• 0 0 0	0 0	<u>0</u> .	0.000
10	.003	198	■ 367E = 05 ■ 102E = 04	.001	132	• 268F = 0	ッ・001 5 - 003	429	-194E=05	001	215	284E=05	0.000
28	.018	560	152F-04	.005	609	148F-0	4 .004	765	128E-04	.006	441	-582E-05	.003
27	.019	553	-150F-04	.004	544	-157E-0	4 .005	886	.149E-04	• 007	574	•757E-05	.003
26	.010	296	•679F−05	•00S	347		-005	493	-809E-05	• 004	315	•417E-05	•005

		HUN #	11										
		MON	UNIT 9				0		UNIT NIT			UNIT	
FDEE C	THEAM VEL	1 5		DITER	M:)		A AD M/C	۳ ۱		0 07 W/S	M.	1.50 M/S	9.07 M/S
FXIT	/FL.	4.0	0 4/5 23.0	51 MZS	4.	00 M/S 2	3.51 M/S	i.	00 4/5	24.17 M/S		4.00 M/S	24.17 M/S
VOI F	TI ŪW	.95E-0	443/5 .24E+0	03M3/S	95E-	04M3/5 .24	E+03M3/S	.95E	-0447/5 .2	4F+0347/5	.95	E-0443/5 .7	24E+0343/5
SOURCE	STRENGTH	•15E+0	6 • 34F+1	20	+10E+	06 • 34	E+02	•1 <u>05</u>	+05 -5	1E+02	•10	E+06 •5	51E+02
CALTUR	ANUNA ANNA FACTO	• / /F + 0			• 1 HE +	02		• 1 BE	+02		• 0	5-01	
RANGE	CULTON 60010	10	0		• < > < -	0.0		+10C	100		• 1 *	100	
STACK	HEIGHT	20.0	о́ см 182.0	00 M	28.	00 CM 18	2.00 4	28	100 CM 1	82.00 M	2	8.00 CM 1	P 00.59
STACK	DIAMETER	.5	5 ČM 3.	58 M	•	55 CM	3.59 4		-55 CM	3.58 M		.55 CM	3.54 4
SANPI F	E TOTAL	RAW	NORMALIZED P	PROTOTYPE	RAW	NORMAL IZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE
PT	(1144)	(ARFA) 073	CONC(-) /	(0NC (PPM)		CONC(-)		(AREA)	CONC(=)	CONC (PPM)	(14+4)	CUNC(+)	CUNC (PPN)
02	043	466	-9636-05	004	1322	111F-04	.010	2015	116E-04	.016	1370	- 605E=05	.008
AA	027	504	467E-05	004	833	697E-05	.006	1326	742E-05	.010	1944 1944	414E-05	006
5	.028	683	.453F-05	.006	900	.754E-05	.007	1298	-746E-05	.010	787	-348E-05	.005
P7	.044	949	·936E-05	.008	1339	•113E-04	• 010	S103	•121E-04	•017	1470	.649E-05	.009
8 P	• 001	40 40	.2945-05	.000	52	+ 320E=05	• 000	42	-14 3E=00	.000	0	0.	0.000
20	619	597	561E-05	-005	651	541E-05	.005	800	456E-05	.006	474	209E-05	.003
7	. 000	70	0.	6.000	25	-641E-07	.000	ő	0.	0.000	Ő	0.	0.000
A	.004	140	.P27E-06	.001	152	-115E-05	.001	553	.120E-05	-002	150	.663E-06	.001
. ?	• 0.02	136	•689E-06	• 001	95	•662F=06	• 0 0 1	58	-294E-06	• 0 0 0	0	0.	0.000
10	0.000	153	+5/15=06	0.001	13	0.	0.001	' ?	0.	0.000	0	0.	0.000
12	.035	879	"+62E-05	.008	1124	945F-05	.009	1593	.918E-05	.013	992	439E-05	.006
13	. 1120	58]	-544E-05	005	722	-602E-05	.005	852	486E-05	.007	445	197E-05	.003
17	.000	HO	-908E-07	.000	52	·295E-06	• 0 0 0	21	-204E-07	• 0 0 0	0	0.	0.000
14	• 0.05	245	•185F=05	• 002	223	 176E=05 150E=05 	•002	213	114E=05 0000E=06	• 005	90	.7985-00	• 0 0 1
12	000	78	- 194F - 09	.000	27	- 8115-07		120	-204E=07	.000	20	0.	0.000
19	043	1041	104F-04	.009	1375	116F-04	• 010	2010	.116E-04	016	1269	561E-05	.008
19	.033	ัดกรั	- 869F-05	<u>,</u> 008	1097	.922E-05	•008	1451	.A35E-05	.011	841	. 372E-05	.005
50	.006	251	•192E-05	•002	234	185F-05	• 0 0 S	580	•153E-05	• 00S	141	•623E-06	• 0 0 1
22	.005	231	• 1 / /E=05	• 0 0 2	221	174E=05 470E=07 470E=07	- 002 - 000	253	•13/E=05 670E=07	.002		4332-00	0,001
25	.000	74	-267E-07	.000	21	299F-07	.000	23	320E-07	.000	ň	ő.	0.000
32	0.000	69	0	0.000	14		0.000	ĩž	0.	0.000	ö	ŏ.	0.000
11	.000	72	-534E-08	.000	18	.427E-08	•000	13	0.	0.000	Õ	0.	0.000
20	.000	.79	-801E-07	• 000	,25	•541E-07	• 0 0 0	,23	• 320E-07	• 0 0 0	20	0. 	0.000
29	.003	164	• 488E=06	.001	110	• / 90t=06	•001	132	•05/C=00	• 0 0 1	245	·1550-00	.000
27	. 029	842	+4105=90 - 8235=05	.007	474	817F=05	• 007	1298	- 746E=05	.010	669	+11/2-05	.004
26	070	721	.693F-05	.006	942	.807E-05	.007	1467	-844E-05	.012	855	-178E-05	.005

		RUN #	12				_						-
		мор	EL UNIT 9	TYOF	мо		0	v		1 OTOTVEE	м		
FREE ST	REAM VEL .	3.0	0 M/S 17.6	4 11/5	3.	00 4/5 1	7.64 M/S	3	.00 M/S 1	A.13 M/S	-,	3.00 M/S	18.13 M/S
FXTT VF	L.	4.0	0 M/S 23.5	1 M/5	4.	00 M/S 2	3.51 M/S	4	.00 M/S 2	4.17 4/5	0-	4.00 M/S	24.17 M/S
SOURCE	STRENGTH	- 95F=0 15F+0	443/5 •24E+0 6 34E+0	34378	• 95E -	06 -34	E+03M375 F+02	• 95E	+06 .24	F+02	.10	E-0443/5 •2 F+06	42+0343/5 S1F+02
BACKGRO	IUND	74F+0	2	r	+ 31E+	02		29F	+02		.0	•	1
CAL THRA	TION FACTO	R.43F-0	1		•36-	01		•16E	-01		•12	E-01	
RANGE	FTONT	2010	0 0 CM 192 0	0 M	- ¹	00 CM 10	2 00 4	29	100 00 CM 18	12 00 M	2	100 9.00 CM 1	182.00 M
STACK D	LAMETER	<u> </u>	5 CM 3.5	0 M A M	70.	55 CM	3.52 4	60	-00 CM 10	3.58 M	-	55 CM	3.58 M
SAMPLE	TOTAL	RAW	NORMALIZED P	POTOTYPE	RAN	NORMAL IZED	PPOTUTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE
PT:	(PPM)	(AREA)	CONC(-) C	ONC (PPM)	(ARFA)	CONC(-)	CONC(PPM)	(AREA)	CONC(=)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)
01	-032	824	• 159E = 04 100E = 04	.007	1041	1/4E=04 12EE=04	• 009	1403	■150E=04	•011	935 782	- ACDL-05	.005
44	1018	395	678E-05	.003	540	897F-05	.004	1859	467E-05	.007	675	596E-05	.004
50	. 007	195	·251F-05	.001	235	.366F-05	-00S	397	429E-05	.003	235	.208E-05	.001
87	.024	5,95	•108F=04	+005	757	-126E-04	•006	1023	·1242-04	•008	853	.754L-05	• 005
2Q	007	277	-426F-05	-000	281	.445F-05	•000	342	- 365E-05	.002	150	133E-05	.001
90	016	495	872F-05	004	567	934F-05	.004	736	824E-05	.006	417	168E-05	.003
7	.000	85	•160F-06	.000	29	•145E-06	• 000	35	-349E-07	• 0 0 0	6	0.	0.000
N N	.011	262	•296E=05	•001	344	•553F=05	•002	272	- 5/0E=05	005	4 <u>1 1</u> 7 0	- 183E-05	• 003
10	.001	116	-886E-06	.000	69	829F-06	.000	້ຣຳ	256E-06	.000	Ó	0.	ດີດດິວັ
iï	.000	85	.160E-06	000	29	.145F-06	.000	30	-116E-07	• 0 0 0	0	0.	0.000
12	.027	602	•112E-04	.005	841	-140E-04	• 0 0 6	1586	•146E=04	•010	922	• <u>815</u> E=05	• 0 0 6
13	.032	186	• 1515=94 1205=06	• 007	1070	-1791-04	•008	1490	-1055-04	.012	054	•/57E=05	0.000
14	013	421	-734E-05	.003	491	787E-05	.004	575	636E-05	.004	24Ž	214E-05	.001
15	.003	157	.170F-05	.001	128	.184E-05	.001	161	.154E-05	• 001	35	.318E-06	.000
16	.001	106	•609E-06	• 0 0 0	54	•572E-06	• 0 0 0	46	108E=06	• 000	1013	0.0045-05	0.000
10		542	• 150E=04 • 902E=05	• 0 0 7	104.3	112F-04	•005	965	109F-04	.007	607	-536E=05	.004
20	1010	131	546E-05	.002	360	580E-05	.003	462	504E-05	.003	243	-215E-05	.001
22	.011	362	-608E-05	.003	399	-647E-05	• 203	495	-543E-05	.004	217	192E-05	.001
23	. 001	103	_•523E=06	• 000	56	+606E=06		51	~•256E=06	• 000	0	0.	0.000
22	0.000	79	1075-07	0.000	21	.854F=08	• 000	29	0.	0.000	0	0.	0.000
าโ	.000	77	0.	0.000	22	-256E-07	.000	ŽÝ	0.	0.000	ň	Ö.	0.000
20	001	108	-651E-06	.000	44	.401E-06	• 0 0 0	47	•210E-06	.000		0.	0.000
29	.005	233	• 332E - 05	.001	- 553	• 346E=05	•002	268	•278E=05	• 0.02	109	•953E=06	• 601
27	.015	210	• 9 305 = 05 • 155 E = 04	.007	940	-157F-04	.007	1247	142F-04	.010	759	-532E-05	.005
26	020	555	-102E-04	005	668	.111E-04	.005	- și i	.103E-04	.007	605	-535E-05	.004

		RUN #	13										
			UNIT 9			UNIT 1	0		UNIT	11		UNIT_1	2
		MOD	EL PROTO	TYPE	MO	NEL PR	OTOTYPE	ч	ODEL P	ROTOTYPE	M	ODEL P	ROTOTYPE
FREE ST	REAM VEL.	4.5	0 M/S 26.4	6 M/S	4.	50 M/S 2	6.46 M/S	4	.50 M/S	27.20 M/S		4.50 M/S	27.20 M/S
FXTT VF	۲ ۲ •	4.0	0 4/5 23.5	1 4/5		00 M/S 2	3.51 M/S	4	.00 M/S	24.17 M/S		4.00 4/5	24.17 M/S
SOUDES	STUENCTH	- 45F = 0	414375 •24149	34375	• 455	044375 .24	E+03M375	• 955	-0443/5 .2	+F+03M3/5	• 95	E-04M3/5 •7	242+0343/5
BACKGOD		+100 +V	0 + 346,49 2	e e	• 105 •	00 034	2+02	• 122	+05 •D	LF + UZ	• 1 0	E-UN +'	
CALTARA	TION EACTO	P.43F-0	1		235	01		165	-01		.12	5-01	
PANGE		10	ō		• 2 ,	ön		4105	100		•16		
STACK 1	EIGHT	28.0	ñ CM 182.0	0 M	28.	00 CM 18	2.00 4	28	100 CM 1	32.00 M	2	8.00 CM 1	N 00.58
STACK D	IAMETER	.5	5 CM 3.5	A M	•	55 ČM 👘	3.58 4	-	-55 ČM	3.58 M		•55 CM	3.58 M
SAMPLE	TOTAL	RAW	NORMALIZED P	RUTOTYPE	RAW	NORMALIZED	PROIOTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE
PT.	(PPM)	(ARFA)	CONC(-) C	ONC (PPM)	(AREA)	CONC(±)	CONC (PPM)	(AREA)	CONC(=)	CONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)
91	.022	615	•173F=04	• 0 0 5	/3/	-184E-04	• 0 0 6	880	-150E-04	•007	554	-863E-05	• 0 0 4
92	• 015	441	• 1 HF = 04	• 0 0 4	735	•132E=04	• 0 0 4	549	• 110E=04	• 0 0 5	515	• 6 8 1 5 - 0 5	• 0 0 3
20	• 0 1 3	347	• 575r = 95 6016 - 06	.003	4 11	• 105E=04	• 003	236	• 900E = 02	• 004	467	+6165-02	• 0 0 3
97	•016	450	1215-04	• 002	656	1375-04	•008	673	• 5 1 0 C = 0 5	+002	576	7595-05	• 0 0 3
88	. 001	117	1458-05	.000	62	1155-05	.000	45	530F-06	.000	J/ 9	0.	0.000
00	006	265	517F-05	002	245	581E-05	-002	269	4428-05	200°	119	157E-05	.001
00	.012	101	-102F-04	.003	448	-110E-04	.003	50A	-858E-05	.004	358	472E-05	.002
7	.002	95	•749F-06	.000	64	.120E-05	.000	85	-123E-05	.001	77	-102E-05	.000
A	.010	223	-502E-05	.002	290	+696E-05	•005	460	.775E-05	.004	429	•566E-05	•003
9	.006	212	•639E=05	• 002	530 230	•571F=05	• 0 0 5	256	-420E-05	500+	105	135E~05	• 0 0 1
10	.001	1.17	•2095-05 5365-06	• 9 9 1	70	 1355=05 3555=05 	•000	45	•530E=05	• 0 0 0	0	0 •	0.000
12	010	% 67	1265-06	• 000	665	•/>>> </td <td>005</td> <td>912</td> <td>+ 7 7 7 7 7 7 1 7</td> <td>•000</td> <td>663</td> <td>V.0725-05</td> <td>0.000</td>	005	912	+ 7 7 7 7 7 7 1 7	•000	663	V.0725-05	0.000
15	024	645	1836-04	005	838	2005-04	• 005	600	1705-04	.008	695	0175-05	.004
17	.000	76	143F-06	000	27	255F-06	.000	20	956E-07	.000	0,1	0.	0.000
14	.011	380	483F-05	003	424	104E-04	.003	4 Š Å	754E-05	003	237	313E-05	.001
15	.003	191	·381E-05	.001	151	-342E-05	.001	133	-206E-05	.001	42	-554E-06	.000
16	.001	124	-167E-05	.001	66	-125E-05	• 0 0 0	44	-513E-06	.000	Ö	0.	0.000
18	.021	580	•) 62F - 04	.005	215	.182E-04	.005	878	-150E-04	•00 <u>7</u>	671	• A85E-05	.004
19	• 017	504	• 1 3 HE = 04	• 0.04	549	•145E-04	• 0.04	701	•119E-04	• 0.05	517	•682E-05	• 0 0 3
20	• 0000		• <u>5175</u> - 05	• 002	5/6	 6601 = 05 707 = 05 	• 002	322	• 2352=02	• 0.02	<15 (15)	• 2855-02	• 001
55	.007	373	+/nnr=05	• 0 0 0	379	•/902-05	• 0 0 2	359	• 3995 - 03 441 E - 04	+003	140	A 23/2-03	.001
25	• 0 0 0	73	4785-07	• 000	16	0. 0.	0.000	16	-860E-08	.000	0	0.	0.000
32	.000	70	0.	0.000	18	255F=07	-000	14	0.	0.000	ŏ	0.	0.000
ว่า	.000	72	159F-07	.000	16	0.	0.000	12	ŏ.	0.000	ň	ů.	0.000
зò	.001	98	.845F-06	.000	43	.663E-06	.000	36	.374E-06	.000	ŏ	0.	0.000
20	.004	197	.400E-05	.001	163	. 372E-05	.001	170	.270E-05	.001	85	.113E-05	.001
28	.006	240	•537E-05	.002	234	-553E-05	•002	274	.451E-05	.002	139	-183E-05	.001
27	•014	550	-153E-04	.005	643	-160E-04	•005	735	-125E-04	• 006	525	•692E-05	.003
26	.013	393	•102E=04	•003	458	•112E-04	•003	530	.896E-05	• 0 0 4	406	•222-02	•005

		RUN #	14							
			11117 13			HNTT 14			INTT 1	2
		MODI	ει βράτο	TYDE	MOC	ເຊິ ີ ຊີວິດ ເ	1TYPE	MO	ດຣະ ເຊິ່ວຊື	OTOTVDE
	THEAM VEL	1 6		0 14 / C	1 6	0 H/C 0	A MYC	1	60 476	0 / 8 4/5
		1.02		0 1/2	1.07				70 175	9.40 M/S
		.		0 117	- 4 • 1 C C C • 0	4		·		2+73 M/2
	LUW	• 37F = 0	173/5 . /55+0	311 3/5	• 7 15 - 1	49.375 +175+1	034375	• 4 6 5 -	04M 1/5 .11	F+03M475
SOURCE	SIRENGIH	• 15F + 01	•10F+0	2	• 1 0F + 0	1 <u>6</u> •215+1	02	•105+	06 .34	++02
HOLKUP	NUND	•12E+0	3		■18E+0	2		• 30E+	02	
саі тяр	PATION FACTO	9.40E-0	1		-31E-0	1		•14E-	01	
PANGE		100	n		10	10		1	0.0	
SIVCK	неіснт	3.4	5 CM 22.4	3 11	3.9	IS CM 25.0	N3 M	21.	00 CM 13	6.50 M
STACK	DIAMETER	. 9'	3 ČM 6.0	5 14	- 4	1 CM 2.0	57 4		38 CM	2.47 M
SAMPIF	ΤΟΤΛΙ	RAW I	UNRMAL TZED P	OTO LADE	RAWN	INRMAL TZEN PI	ROTOTYPE	RAW N	OPMAL TZED	PROTOTYPE
PT 1	(PPM)	(AREA)	CONCI-1 C	ONCIDENT	(ADEA)	CONC(-) C	INC (POM)	(AREA)	CONCI-1	CONCIDENT
61	0.25	3322	0545-05	014	11.7	1505-04	005	1212	1605-04	006
65	017	3345	420F-0E	* 0.00	7.56	0005-05	003	1 314	1055-04	• 0.04
-	•		• 7 37F = V 3	• 01 2	153	.9947-07	• 003	014	+ 107C-04	• 004
22	- 01 9	3171	• • • • • • • • • • • • •	• 21.2	41.5	• <u> </u>	• 002	253	• 9795 - 05	• 0.04
	- 014	< 100	• • • • • • • • • • • •	• 010	400	• 5485 - 05	• 002	2220	• / 0 12 - 05	• 00.5
H /	- 0 / 3	3/41	. 1081-04	.015	603	• R26E=05	• 0 0 3	1043	1205-04	•005
ЯР	• 0.05	450	•997F=06	.001	600	•H22E-05	•003	115	•117E-05	•000
р Q	-01H	1662	•460E-05	.007	1915	•268E-04	• 0 0 9	589	.7016-05	•003
0 0	.021	2383	.675F−05	.010	1452	.202E-04	•007	1062	-128E-04	•005
7	.000	134	•565F-07	.000	24	.8475-07	• 0 0 0	25	.616E-07	.000
8	.039	7621	·223E-04	.033	596	.816E-05	.003	744	-892E-05	.004
9	044	5098	+148F-04	.022	4338	-610F-04	.020	551	-654E-05	.003
10	029	1913	-505F-05	007	4716	-663F-04	.021	ĨŽŔ	-715E-06	.000
11	003	1316	5985-06	001	479	651F=05	ີ້ທີ່ທີ່ວ່	25	616F-07	
12	026	3703	109F-04	016	865	1245-04	.004	าวไว้	150F-04	006
12	0.25	1201	1245-04	019	1007	2705-04	. 000	1675	2045-04	•000
		1.27	5465-07	• 866	26	1175-04	0009	1026	1055-06	• 000
11	• 000	2002	• 3556 = 07	.000	2062	• 1 1 35 = 0.6	• 0 0 0	074	1055-06	•1100
14	• 0 • 0	6470	• <u>6745</u> - 07	• 01 1	647.7	• 4 1 4 5 - 0 4	• 0 1 2	564	• 1075-04	• 0.04
17	. 0.23	1440	• <u>7155</u> - <u>82</u>	• 004		• 3PAE = 04	• 0 1 4	600	• 3 40 5 - 0 5	• 001
16	• 00B	121	·1516-05	• 0.02	1128	·15/F=04	• 005	14	.056E-00	.000
18	.026	3522	-104E - 04	.015	9.16	•130E=04	• 0 0 4	1342	-163E=04	• 0.05
יטן	• 029	3739	•108E-04	•016	1343	-197F-04	•006	1542	-188E-04	•007
50	.011	1278	• 346E-05	.005	793	•109E-04	• 0 0 4	494	•584E-05	•00S
22	.022	2156	•607F-05	.009	2151	•301E-04	•010	710	-850E-05	.003
23	.006	562	133E-05	.002	719	.990F-05	•003	104	.104E-05	.000
25	.000	134	-565F-07	.000	42	-330F-06	.000	22	-246E-07	.000
22	. 0 0 0	129	4174-07	1000	49	439F-06	.000	23	370F-07	1000
21		146	9225-07	000	70	734F-06	. 0.0.0	20	1118-06	
20	0.04	696	1146-05	002	546	7455-05	-002	100	986F-06	
20	015	1546	4261-05	006	1500	2005-04	007	177	563F-05	.002
20	021	2200	6776-05	• 010	1405	2075-04	-007	311	1105-04	.002
	• 0 2 1	2340	• 07 / F = 0 0	• 01 7	1415	1505-04	• 7777	1147	1205-04	• 0.04
11	• 17 4	21.24	• 9000 - 05	• 01.7	1020	• 1 7 0 C 7 0 4	• 003	112(•1 195 - 04	• 005
26	•U15	6439	• NYUE = 05	•010	5 H B	·/.346=05	•00≥	/51	*A015-02	•004

		-211-1 #	15							
		100	UNIT 13	***		UNIT 14			UNIT	2
FREE ST	REAM VEL	3.0	0 M/S 16.7	I YPE	M()	00 4/5 15	52 M/S	ମ୍ ସ		B Q5 M/S
FXIT VE		4.6	6 M/S 26.1	0 M/S	4	04 M/S 22	28 M/S	3	68 M/S 2	3.23 M/S
V01 . FI.	.04	.32F-0	343/5 .75F+0	19432S	•53É-	04M3/5 .12E	0343/5	.425-	-04M3/5 .11	F+0343/5
SOURCE	STRENGTH	•15E+0	6 •16F+0	2	•10E+	06 •2)E+	+02	•10E	.34	E+02
CALTEDA	LIAN EACTA	- 14F+U	3		• (1)	01			-01	
PANGE		10	â		• • • • • • • • • • • • • • • • • • • •	00		• • • • •	00	
STACK H	IEIGHT	3.4	5 CM 22.4	3 14	3.	85 CM 25.	N 60	S1.	00 CM 13	6.50 M
STACK	DIAMETER		3 CM6.0	5 M	•	41 CM	67 4	24.1	39 14	2.47 M
DT	(PDM)	(ADEA)	CONC(-) C	CALC (DDM)	(AUEA)	CONC(-)	CONC (PPM)	(ADEA)	CONC(-)	CONCIDENT
່ ວ່າ	.015	2114	-117F-04	.009	599	-163E-04	.003	702	-168E-04	.003
92	.011	1820	-100E-04	.007	333	.882E-05	.001	462	.109E-04	.002
24	.010	1715	•937F-05	•007	538	•614E-05	• 0 0 1	419	-982E-05	-005
495 197	.008	2060	.1145-04	.005	240	• 6.37F=05	-001	326	·/5/E-05	.001
я́А́	1003	473	148F-05	.001	412	111E-04	.002	72	1276-05	.000
20	.010	1174	.616E-05	.005	942	.260F-04	.004	341	.790E-05	-005
90	.016	5006	-116F-04	• 0.0.9	972	·269E-04	• 0 0 4	671	-160E-04	•003
, ,	.000	49	• 555F = 07	.000	216	-4211-07	• 9 0 0	617	• 370E=07	•000
9	1037	4516	-260F-04	.019	3040	867E-04	.014	829	199E-04	.004
10	025	1937	·1071-04	008	3710	.104E-03	.017	181	-396E-05	.001
11	• 005	265	•747E-06	.001	352	•936E-05	•00S	56	-136E-06	.000
12	• 0 F 6 • 0 F 6	2120	· 130E=04	• 010	1216	■122E=04 337E=04	-005	1002	• 14/E=04 242E=04	• 003
17	0.000	137	0.	0.000	18	0.	0.000	1002	0.	0.000
14	.021	2443	-137E-04	.010	1756	.490E-04	• 0 0 8	717	.172E-04	.003
15	.010	1551	•644E-05	.005	863	.238E-04	• 0 0 4	358	•832E-05	•00S
16	.005	2231	·//21-05	.002	/8/	·//65=04	• 0 0 3	632	• 1910-05	.000
19	1018	2497	140F-04	.010	777	-214F-04	.003	798	192E-04	.004
20	.007	1015	.519F-05	.004	485	-131E-04	• 002	303	.696E-05	.001
22	.014	1658	•904F-05	.007	1515	•338E-04	• 005	595	•119E-04	-00S
25	.004	401	· 1926-05	• 0 0 1	440	. 4665-06	• 002	12	·134E=05	0.000
32	0.000	135	0.	0.000	iģ	0.	0.000	13	ö.	0.000
31	.000	161	•158E-06	.000	<u>5</u>]	.861E-06	• 0 0 0	13	0	0.000
30	.003	442	 1805-05 	• 001	351	-933E-05	• 0 0 1	78	•142E-05	• 0 0 0
29	- 014	1769	-448F-05	004	1/4 020	-2545-04	• 0 0 3	290	•D54E=05	.001
27	014	2012	•111F-04	008	640	175E-04	.003	608	145E-04	.003
26	.009	1536	.831E-05	.006	324	.857E-05	.001	398	.931E-05	.002

		RUN #	16							
		MOÚ	UNIT 13 FL PROT	OTYPE	мо		TOTYPE	M		2 ATATYPE
EREE ST	REAM VEL.	4.5	0 4/5 25.	19 4/5	4.	50 M/S 24	.79 M/S	4	50 4/5 2	R.43 M/S
FXTT VP	ΓL.	325-0	6 M/S 26. 34376 7561	10 4/5	5 - 4 •	04 M/S 22	28 M/5	4.25	68 4/5 2	23.23 M/S
SOURCE	STRENGTH	15F+0	6 • 16E+	0,5 0,7 5	10E+	06 •21E	+02	105	06 .34	E+02
PACKGR	NUND	-14E+0	3		•20E+	02		•15Ë·	102	
CALTHR/	VIION FACTO	R 40F -0	1		•21E-	01		•14E	-01	
STACK H	THAISH	3.4	šсм ss.	43 M	3.	й 85 СМ 25	.03 4	21	00 CM 13	86.50 M
STACK I	MAMETER	.9	3 CM 6.	05 M	•	41 CM 2	.67 M	.	JA CM	2.47 M
SAMPLE		RAW	NORMALIZED	PROTOTYPE		NORMALIZED	CONC (PDM)	(ADEA)	CONCLEZED	CONCIDENT
61	.006	948	.722E-05	. 004	243	.9445-05	• 001	284	.995E+05	.001
02	.007	1165	.915F-05	.004	24,4	-103F-04	• 0 0 1	351	-124E-04	.002
RA	• 006	1205	•951F-05	• 005	156	•576E-05	• 0 0 1	265	·924E-05	•001
87	007	1363	.1096-04	.005	170	• 4 3 4F = 0 5	.001	310	109E-04	-001
я А	.003	386	.220E-05	.001	305	121E-04	.001	58	159E-05	.000
9 P P	• 0 1 9	996	• 764F = 05	•004	715	•294E-04	•003	248	- A62E-05	• 0 0 1
7	. 000	140	• 109F = 04	.000	15	0.	0.000	18	11115-06	•002
Ŕ	.017	3253	.278F-04	.014	181	.682E-05	.001	534	192E-04	.003
9	-026	3320	-284E-04	• 014	1967	• 825E-04	• 0 0 9	651	•235E-04	• 0 0 3
11	.002	244	• 134F = 04	-000	404	•163E=04	-002	140	•454C=05	0.000
12	009	1510	122E-04	006	259	101E-04	.001	434	155E-04	.002
13	• 014	1915	.158E-04	• 009	608	-287E-04	• 003	708	-256E-04	• 0 0 3
14	.015	1685	138E-04	.007	1214		• 005	562	202F=04	.003
15	015	1671	-137F-04	007	1196	494E-04	.005	553	199E-04	.003
16	• 0.05	516	• 335E-05	• 002	500	•241E-04	• 003	.77	•229E-05	• 0 0 0
10	.011	1411	•115E=04 •128E=04	.005	687	-104E=04	• 001	444 560	-159E=04	• 00Z
20	ູ້ກໍດໍຣ	689	490F-05	. Ön 2	302	.110F-04	.001	217	747E-05	.001
22	.011	1263	• 100F-04	.005	890	- 368F-04	• 0.0.4	378	·)34E-04	• 0 0 2
23	003	174	•210t.~05	a 000	322	•129E=04	0.001	52	+13/C=05	0.000
32	.000	124	0.	0.000	15	n .	0.000	23	296E-06	.000
15	.000	143	•312E-07	.000	39	• P05E-06	• 000	δč	•185E-06	• 0 0 0
20	.002	371	- 167E=05	• 001	597	- 4265-05	• 001	210	.7218-05	.001
29	009	1240	982E-05	.005	611	-250E-04	.003	390	139E-04	2005
27	.009	1399	•112E-04	.006	435	•176E-04	•005	423	-151E-04	-005
26	.006	190	•759E=05	• 004	503	•775E-05	•001	281	•984L-05	•001

		RUN # 2	20				
			UNIT 14			SI TIMU	
	-	MODE	I PROTO	TYPE	MON	FL PPOT	OTYPE
EREE ST	REAM VEL.	1.50	M/S 7.9	8 4/5	1.5	0 M/S 7.	B2 M/S
FXTT VE	L. •	1.60	M/S 8.5	2 11/5	4.0	3 M/S 21.	04 M/S
VOI FI.	UW	-62F-04	M3/5 .14E+0	343/5	•70E=0	4M3/5 •15Et	034375
SUURCE :	SIRENGIN -	• 15E+05	• • • • • • • • • • • • • • • • • • • 	5	• 101 + 0	6 • 34 54	-02
CAL TODA	TION FACTO	• / / E + V C			• 1 (E+0) 20E-0		
DANGE	ITON PACIO	100			• 6 10 - 10	, 0	
STACK H	FIGHT	4.80	CM 31.2	0 M	21.0	0 CM 136.	50 M
STACK D	TAMETER	.70		5 M	- 4	7 CM 3.	06 M
SAMPLE	TOTAL	RAWN	INAMAL TZED P	SOTOTYPE	RAW N	ORMAL TZED	PROTOTYPE
PT.	(PPM)	(AREA)	CONC(-) C	ONC (PPM)	(ARFA)	CONC(-)	ONC (PPM)
91	.014	922	-124E-04	.005	1405	.145E-04	•010
02	.009	495	.615E-05	.002	1028	.106E-04	•007
86	.010	482	•596E-05	200	1078	.111E-04	• 007
93	• 0 0 7	381	•447E-05	.005	760	•777E=05	•005
87	.013	587	•751E-05	.003	1504	•155E-04	• 0 1 0
88	• 003	, 731	• • 7 7 = 95	• 0 0 3	46	• 363E=06	• 0 0 0
20	.011	1461	●198F=94 つ04ビー04	•008	4] 13	• 4 2 9 E = 0 5	• 0 0 3
7	• 0 0 0	1400	0.	0.000	1170	1255-06	- 000
Ŕ	1009	688	"HOOF-05	-004	780	-R07E-05	-005
9	.026	4070	-588F-04	.023	372	3755-05	-002
10	.021	3507	-520E-04	020	124	-117F-05	.001
11	200	395	.468E-05	.002	16	.519E-07	• 0 0 0
12	.015	879	-118E-04	.005	1549	-160E-04	•011
13	.023	2066	•293F-04	.011	1636	·169E-04	•011
17	.000	87	-147E - 06	.000	21	•104E-06	• 0 0 0
14	• 003	427	•515E-05	• 0 0 2	115	•108E-05	•001
15	• 009	1419	• 198 <u>5</u> -04	• 008	155	•1156-05	• 0 0 1
	• 004	222	• <u>2005</u> - 100	.005	1663	1715-06	• 0 0 0
18	010	1436	• 13CE = 04	• 0 U T	1647	1705-04	• 0 1 1
20	.007	752	- 9935-05	004	423	42HE-05	.003
22	.014	1747	246E-04	.010	573	583E-05	-004
23	002	433	-524F-05	.002	<u> </u>	209F-06	.000
25	.000	100	-339E-06	.000	13	-208E-07	.000
32	.000	78	147E-07	.000	8	0.	0.000
ן ד	.000	130	.780E-06	• 0 0 0	15	.104E-07	•000
30	.002	428	•517E-05	.002	39	•291E-06	• 0 0 0
29	• 008	1093	•150E-04	• 006	352	·354E=05	• 0 0 S
28	• 014	1341	• 186E - 04	• 007	416	•939E=05	• 005
21	• 115	1155	 169と=04 774ビー05 	.005	1 120	• 1 35F = 0.4	• 009
20	• 010	603	·//4t=U5	• 09.5	1006	• 1 U 3 C = U 4	• 0 0 <i>f</i>

		RUN #	21				
			UNIT 14			UNIT 12	
		MODI	FI ΡΚΟΤΟ	TYPE	n C M	FI PŔŌ	TOTYPE
FREE STE	REAM VEL	3.0	0 M/S 15.9	5 M/S	3.0	0 M/S 15	64 M/S
FXTT VEL	in a second de la companya de	1.6	0 4/5 8.5	2 4/5	4.0	3 M/S 21	04 M/S
VOL	วิพ	-62F-0	4M3/5 .14F+0	232/5	.70F-0	4M3/5 .15F	-DAMAIS
รักเมืองรับได้อ	STRENGTH	156+0	6 236+0	2	105+0	6 . 34F	+02
BACKEDOL	IND			r	205+0	2 • J • L	• 0 7
CAL TODA	TION EACTO	0 395-0	1		205-0	1	
DANCE	FTON PACIO	~+JOL-U 10	1		• 6 1 6 - 0	1	
CTACK US	TOUT	۲U ۵ ۵	0 0 0 0 0 0 0	0 11	210	0 04 136	50 M
STACK DI		4 • 🖓		() P1	2 I O O	1 CM 130	6 D () M
STACK UI	TOTAL	• []		50 10 100	• 4 () A \		
SAMPLE		HAW I	NURMALIZED P	POTUTTE	HAW N	URMALIZED J	PROTUTYPE
P1.	(PPM)	(AREA)		ONC (PPM)	(ARFA)		
91	.009	201	•1 <u>39</u> E=04	•003	985	• 199E = 04	• 007
oS	• 005	319	•577F-05	• 0 0 1	624	• 124E = 114	• 0 0 4
86	. (104	244	•456E-05	•001	474	•927E-05	• 0 0 3
93	.004	263	•512E-05	.001	449	.875F=05	•003
87	.005	285	•577E-05	• 0 0 1	639	•127E=04	• 004
88	.002	117	•824E-06	.000	268	•499F-05	•005
р Q	•008	917	•244F-04	.005	469	•916E=05	• 0 0 3
90	.009	729	•188E-04	• 0 1 4	814	-163E-04	• 0 0 5
7	.000.	79	0.	0.000	29	•311E-07	• 0 0 0
R	• 008	293	•600F-05	•00]	993	-500E-04	•007
9	.019	2372	•672E-04	.013	862	•173E-04	•006
10	.018	3077	-BR0E-04	.017	181	•319E-05	•001
11	.003	586	-146E - 04	.003	28	•104E-07	•000
12	.007	367	•818E-05	.002	806	.162F-04	•005
13	.013	875	•231E-04	.005	1294	.263E-04	•009
17	0,000	80	0.	0.000	26	0.	0.000
14	.013	1420	-392F-04	.008	854	172E-04	.006
15	1011	1509	-418F-04	008	406	-786F-05	.003
16	1005	868	229E-04	.004	93	136E-05	.000
18	007	395	-901E-05	002	813	163F-04	.005
19	.010	633	160F-04	. 003	1016	2058-04	.007
20	004	404	927E-05	.002	388	748E-05	- 002
22	.010	1110	303F-04	.006	607	120F-04	004
53		1525	1285-04	.003	65	1405-05	-000
25	1000	า้ก็ค่	550F-06	. 000	33	1148-06	.000
22	. 000	. 82	0.	0.000	32	0345-07	-000
21	.000	126	1165-05	000	្លុំដ	1565-06	-000
	002	437	- 102E-04	• 000		1485-05	.000
20	004	700	• J V Z C - V 4 2066-04	• 0.0 %	260	600E=05	• 0 0 0
53	• 000	7.7	1045-04	• 004	30V 605	1205-05	• 00 5
57	000	541	• 1940 = 04 1946 = 04	.004	763	• J 798 - 04 1505 - 04	• 002
	• UUM	244	●1.34E.mV4 くんつビー 0.5	• 0 0 1	176	• J 7 9 5 7 0 4 0 7 5 5 - 0 5	+ V V D
25	• 004	507	● D 4 C E = V D	• 1111	497	• 7175 - 45	•003

		RUN 4	22				
			UNIT 14			UNIT 12	
		MODI	FL PROT	OTYPE	MON	FL PRD	TOTYPE
FRFF STR	REAM VEL.	4.5	0 M/S 23.	93 10/5	4.5	0 M/S 23	.46 M/S
FXTT VFL	•	1.6	0 M/S 8.	52 M/S	4.0	3 M/S 21	.04 M/S
VOL FIG)W	•6 <u>2</u> E-0	4M3/S .14E+	0343/5	•70E-0	4M3/S .15E	+0343/5
SOURCE S	NRENGTH	•15E+0	•53E+	02	-10E+0	6 • 34E	+65
HACKGROU	IND	• <u>78F+0</u>	Ċ,		• 805+0	1	
CAL INKAL	TON FACIO	R.386-0			• COE -0	1	
CTICK UP	TOUT	101	0 0 0 21	20.14	2110	() 0 CM 176	En 14
STACK OF		9 ± 0			AT • 1		• D(! · · · · · · · · · · · · · · · · · · ·
SANDLE	TOTAL						
DT	(DOM)	(ADEA)		CONCIDEN		CONCID	CONCODAN
[]	007	405	1425-04	002		2485-04	-005
02	.005	218	6118-05	.001	582	176F=04	.004
86	004	187	476F-05	.001	492	148F-04	.003
03	003	169	-398F-05	.001	446	134F-04	.003
87	.005	206	559F-05	.001	618	-187F-04	.004
88	500	348	-118E-04	500.	72	-196E-05	• 0 0 0
8 9	.006	665	.255E-04	.003	344	-103E-04	•005
00	.007	524	•194E-04	.003	635	.192E-04	• 0 0 4
7	.000	68	0.	0.000	9	•307E-07	• 0 0 0
8	.006	505	•541E-05	.001	860	•261E-04	• 006
9	.016	1822	•7 <u>59</u> F-04	.010	846	•257E-04	• 0 0 6
10	• 015	2534	•107E=03	• 014	148	• <u>429</u> E=05	• 0 0 1
11	-002	380	• 1325-94	• 00	7.00	• 307E=07	• 0 0 0
12	• 005	210	+ 553F - 05	• 0 0 1	190	• 2405 - 04	• 9 9 5
1.7	• 112	121	• 7005 -04	. 004	11/6	+ 37/F = 04 + 412F = 07	• 008
12	.000	1110	4535-04	006	761	.2295-04	.005
16	008	1107	. 448F-04	006	301	- 808E-05	-002
16	.003	1673	2155-04	.003	66	178F-05	.000
18	.007	312	102E-04	.001	819	249F-04	005
10	.009	484	177F-04	.002	951	-289F-04	.006
20	004	336	.112E-04	.001	329	-984E-05	-002
22	.008	813	.320F-04	.004	543	.164E-04	• 0 0 4
23	.005	361	-123F-04	.002	56	.147E-05	•000
25	•000	83	•539E-06	.000	8	0.	0.00
32	0.000	69	0.	0.000	7	0.	0.000
31	•000	107	•128E-05	• 0 0 0	10	•613E-07	• 0 0 0
30	.001	269	• <u>8335</u> - 05	• 001	51	•132E=05	•000
20	.005	546	·204E-04	•003	688	• 359E=05	•002
28	• 007	615	• 234t = 04	• 003	244	• J / 9E = 04	• () () 4
27	• 007	441	• 15HE - 04	.002	121	• 2205-04	•005
26	• () () 4	6.10	• 0KYE = 05	• 001	477	·141E-04	•003

		PIN #	23	
		• · · · •	INT 12	
		MOD		OTVDE
EDEE STO	SEAM VEL	1 5	0 JUC 7	
	CLAM VELO	1 • 7		
FXII VEL	- •	4.0	3. 3/2	04 4/5
VOL FLU) W	·/ <u>95</u> -0	4M3/5 .15E+	0310375
SOURCE S	SIRENGTH	•15 <u>E</u> +0	5 •34E+	02
BACKGROU	JND	-•66E+0	S	
CALTRRAT	IION FACTO	R.38E-0	1	
RANGE		10	0	
STACK HE	EIGHT	28.0	0 CM 182.	00 M
STACK DI	AMETER	. 4	7 (4 3.	06 4
SANDIE	TOTAL		NOPMAL TZED	PROTOTYPE
	(DOM)	(ADEA)		CONCIDENT
	0 000		0	
1	0,000	69	" - 260E 07	0.000
6	.000	22	• 2001.=01	.000
	0.000	11	9	0.000
4	.000	51	•130E=07	.000
5	• 0 0 0	68	• 560E-07	•000
7	0.000	66	0 •	0.000
<u>A</u>	.000	89	.299F-06	•000
Q	.000	71	•651F-07	.000
10	.000	7]	•651E-07	.000
11	.000	70	.520F-07	000
12	005	703	824F-05	.005
13	.003	460	-513E-05	.003
17	000	71	651F-07	. ก็ก็ก่
14	001	۱ÅŜ	1035-05	
15	• 001	75	117F-06	• č č č
14	000	65		0.000
10	0.000	1003	1345-04	0.000
10	007	1070	1045-04	• 00 - 7
19	• 007	004		• 007
20	.001	214	• 1 9 3 - 9 9	• 001
22	• 001	018	•185r-05	• 001
23	0.000	<u> </u>	···	0.000
25	• 000	7.0	•520F-07	•000
32	0.000	65	0.	0.000
3]	0.000	66	Ð •	0.000
30	.000	72	•781E-07	.000
20	.001	181	·150E-05	.001
28	.005	620	.721F-05	.005
27	.007	930	•112F-04	007
26	1005	673	790F-05	1005
	· · · · · ·		- · · · · · · · · · · · · · · · · · · ·	• · · · · · ·

		RIN 4 2	4	
			SI TIVU	
		MODE	L PROTO	TYPE
FRFF STH	REAM VEL.	3.00	M/S 15.6	54 M/S
FXTT VEL	•	4.03	M/S 21.0	14 M/S
VOL. FL)W	•7 <u>9</u> E-04	M3/5 .15E+0	1343/5
SOURCE	SIRENGTH	• 15E+06	• 34E+(12
HACKGROU	JN()	• 54F + 02		
DANCE	LTON PACTO	H.JAK-UI		
CTACK UP	TCUT	.29 00	CN 130 0	
STACK DI		47	CM 102+1	71) (M 1.4. NA
SAMPLE	ΤηΤΛΙ	RAW N	OPMAL TZED	SATATYPE
PT.	(PPM)	(ARFA)	CONC(-) (ONC (PPM)
ī	000	60	-260F-07	.000
2	.000	70	.520E-07	.000
4	.000	71	.781F-07	.000
3	.000	71	•/81F-07	.000
5	.000	72	•104F-06	.000
7	.000	75	+182E-06	• 000
8	.002	295	•591E-05	• 0.05
	• 000	110	• 109F = 05	• ((()))
1 12	• 000	32	• 304r = V5	• 000
1.1	• (7 (7 (7	10	• CHOC-VD	• 9 11 11
13	- 005	645	150E-04	.005
17	.000	73	-130F-06	.000
14	.002	270	-525E-05	500
15	.000	98	.781F-06	.000
16	.000	77	.234E-06	.000
18	.006	773	•183F-04	.006
19	.006	719	·169F-04	.006
50	• 001	237	• 440E=05	• 001
22	- 002	252	• 505t = 05	.002
22	.000	79	• 780r -00	• 000
53	• 000	13	• LOVE = 00	• 000
21	• 000	72	1045-06	.000
30	.000	83	390F-06	1000
20	ົດດຳ	197	-336F-05	1001
28	003	418	9115-05	.003
27	.004	588	-135F-04	004
26	.004	492	.110F-04	.004

		- PUN # 7	25	
			UNIT 12	
		MODE	1 PROTO	TYPE
FORE STR	EAM VEL	4.51	1 M/S 23	66 MIS
EVIT VEL	La PARTE IN C. L. O	4 DC		
	• M			04 07 D
VUL FLU	W	. / 0 0 4	+M3/5 .15E+	1343/5
SOURCE S	TRENGTH	•15E+06	• 34E+	92
BACKGROU	ND	68E+07	2	
CAL TBRAT	ION FACTO	R.38E-01		
RANGE		100)	
STACK HE	IGHT	28.00	1 CM 192.0	10 M
STACK DI	AMETED	. 4		16 14
SAMDIE	TOTAL	D A M	INDMAL TOEN	DOMINTYOE
D	19190	LADEAN		CONCLOSING
		(AREA)		UNU (PPM)
1	• 000	70	•976F-07	• 0 0 0
2	• 0 0 0	73	•215F-06	•000
4	.000	72	•176F-06	.000
3	.000	68	195E-07	.000
5	0.000	67	0.	0,000
7	000	74	-254F=06	. 000
6	• 0 0 1	240	6735-05	• 0 0 0
	• 0 0 1	105	1445-05	- 000
10	.000	100	• 140F = 05	• 0 0 0
10	.000	<u>[</u>]	• 3325-96	• 000
11	.000	11	• 371F=96	.000
12	.004	544	•186F-04	•004
13	.004	579	.200F-04	.004
17	.000	72	.1765-06	.000
14	-002	254	.728F-05	.002
15	.000	161	1315-05	000
16	000	77	3715-06	• 0 0 0
10	005	620	2205-04	• 0 0 0 G
	0.01	401	3166-36	• 0.05
19	• 007	251	• 2105 - 04	• 0.07
20	• 001	<19 	• 5501-05	.001
22	•001	199	·5135-05	•001
23	•000	69	•585F-07	•000
25	.000	69	•535E−07	.000
32	0,000	66	0.	0.000
21	1000	74	-254E-06	. 000
30	•000	80	488F-04	• 000
20	• 0 0 1	164	2775_05	• 0 0 1
22	• 0 0 1	204	• 3775 TV3	• • • •
24	• 992	548	■ LU98.=04 LCCC 04	• 00 4
27	.0(14	493	·166F=04	• 004
26	•003	373	•119E-04	• 0 0 3

		RUN # 2	9	
FREE STE FXTT VEL VOL - ELC SOURCE S BACKGROU CALITEPAT	REAM VEL. 5 Strength JND FION FACTO	MODF 1.50 4.55 .14E-03 .15F+06 .77E+02 .77E+02 .0R.38E-01	UNIT 12 L PROT M/S 7. M/S 22. M3/S 29E+ 51E+	0TYFF 33 M/S 20 M/S 03M3/S 02
STACK HE STACK D SAMPLE PT 1 2 4 3 5	EIGHT LAMETER TOTAL (PPM) 000 000 000 000 000	28-00 -63 RAW N (AREA) 81 114 82 81 81	CM 182. CM 4. OPMALIZED CONC(-) •255E-07 •255E-07 •255E-07 •255E-07	00 M 10 M PROIOTYPE CONC (PPM) 000 000 000 000 000 000
a 0011277456890275	.001 .000 .001 .015 .010 .000 .000 .000	169 91 142 199 98 98 198 99 198 99 2032 1472 273 239 101 77	.586F-06 .992E-07 .892E-07 .414E-06 .714F-05 .466E-05 .134E-06 .771E-06 .892E-07 .140E-06 .125E-04 .889E-05 .125E-05 .103E-05 .153E-06	.001 .000 .000 .001 .015 .010 .009 .009 .009 .009 .009 .009 .009
71 70 29 27 26	.000 .000 .002 .009 .021 .017	87 108 223 758 1687 1349	-637E-07 -198F-06 -930E-06 -434E-05 -103E-04 -811E-05	000 000 002 009 021 017

	RUN # 3	n	
		UNIT 12	
	MODEL	PROTOT	YPE
FREE STREAM VEL.	3.00	M/S 14.55	M/S
FXTT VEL.	4.55	1/5 22.20	91/5
VOL FLOW	-14F-03	43/5 -29F+03	M3/S
SOURCE STRENGTH	15F+06	51E+02	
BACKGROUND	85F+02		
CALTERATION FACTO	2.38E-01		
RANGE	100		
STACK HETGHT	28.00	CM 182.00	6.C
STACK DIAMETER	.63	CM 4.10	8.4 8.4
SAMPLE TOTAL		INMAL TZEN DO	OTOTYPE
	(ADEA)	CONC(-)	
1 000	97 97	1275-07	
2 001	164	0045-04	. 000
	. 0 .	7666-07	• 0 0 0
2 001	120	• / DDD = 0 /	• 0 9 0
	100	• <u>7 3 7 7 4 0</u>	• 0 0 1
7 000	28		• 0 0 0
· · · · · · · · · · · · · · · · · · ·	414	• <u>510</u> = 07	• 000
8 • 004 0 000	410	• 4715 - 92	• 004
	230	• 1915 - 05	• UVC
10 .000	98	• 1 7 3F = UD	• 000
• • • • • • • • • • • • • • • • • • • •	1103	•127F=00	• 0 0 0
16 .014	118/	• 1405-04	• 014
13 013	1072	• 1 2 6 F = 11 4	• 01.3
17 .000	00	•510E=07	.000
14 .004	373	• 366E-95	.004
15 .001	142	· 5865-06	.001
16 .000	99	-166E - 06	• 0 0 0
18 .018	1444	•173F-04	.018
19 .017	-1373	-164E - 04	.017
20 .004	363	• 353E=05	.004
22 .004	367	·3555-05	• 0 0 4
23 .000	101	•191F-06	• 0 0 0
25 .000	106	•255E-06	.000
32 .000	88	·255E-07	.000
31 .000	94	•102E-06	•000
30 _ 000	110	•306E-06	.000
500° 66	240	•196E-05	.002
28 .008	737	•830F-05	.008
27 .014	1141	-134F-04	.014
26 .010	834	•953E-05	.010

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			RUN # 3	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				SI TIMU	
FRFF STREAM VEL. 4.50° M/S 10.04 M/SFXTT VFL. 4.50° M/S 10.18 M/SVOL. FLUW $14F-03M3/S$ $.29E+03M3/S$ SOURCE STRENGTH $15E+06$ $.51E+02$ RACKGROUND $.61E+02$ $.51E+02$ RANGF 100° $.61E+02$ CAL JARATION FACTOR.38E-01RANGFRANGF 100° STACK HEIGHT 28.00° CMSAMPLETOTALRAW NORMALTZEDPROTOTYPEPT.(PPM)(AREA)CONC(-)CONC (PPM)1 000° 2 000° 3 000° 4 000° 3 000° 4 000° 9 000° 10 000° 9 002° 11 000° 12 010° 13 011° 14 004° 369 $272E-05^{\circ}$ 14 004° 15 001° 16 001° 17 001° 18 011° 19 112° 10^{\circ}110^{\circ}120^{\circ}130^{\circ}141^{\circ}141^{\circ}150^{\circ}161^{\circ}170^{\circ}180^{\circ}190^{\circ}190^{\circ}190^{\circ}110^{\circ}110^{\circ}120^{\circ}130^{\circ}141^{\circ}141^{\circ}150^{\circ}<			MODE	I PRO	TOTYPE
FXTTVFL 4.55 M/S10.18M/SV01FLUW $14F-03M3/S$ $29F+03M3/S$ SOURCESTRFNGTH $15E+06$ $51E+02$ RACKGROUND $61E+02$ CALIRRATIONFACTORRANGF100STACKDIAMFTFR 63 CM4.10MMAFTFRCK 000 STACKDIAMFTFRCK 000 STACKDIAMFTFRCK 000 STACKDIAMFTFRCK 000 STACKDIAMFTFRCK 000 STACKDIAMFTFRCK 000 STACKDIAMFTFRCK 000 SAMPLETOTALRAWNORMALTZEDPT(PPM)(AREA)CONC(-)CONC(PPM)CK 000 SAMPLETOTALRAWNORMALTZEDPT(PPM)(AREA)CONC(-)CONC(PPM)100092 $278F-06$ 00087278F-060001000094 $331E-06$ 00110014004369 $272F-05$ 001104140041500116001170011800119102119013102184AE-051100029002	FREE STH	FAM VEL	4-50	M/S 10	DR MIS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FYTT VEL	N 64 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 55	M/S 10	10 4/25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_ •	145-03	117 C 10	
SUBRCE STRENGTH1500 000 000 000RACK GROUND61640000 000RACK GROUND6160 000 182.00 MRACK HEIGHT28.00 CM 182.00 MSTACK HEIGHT28.00 CM 182.00 MSTACK HEIGHT28.00 CM 182.00 MSTACK HEIGHT28.00 CM 120 MPT. (PPM) (AREA) CONC(-) CONC(PPM)1 000 87 278F-06 0002 000 87 278F-06 0003 000 88 243E-06 0003 000 92 278F-06 0003 000 92 278F-06 0005 000 92 278F-06 000100 349E-06 00010 000 98 331E-06 00011 000 98 331E-06 00011 000 98 331E-06 00012 010 857 704E-05 01114 001 101 358F-06 00112 010 857 704E-05 01114 001 104 384F-06 00115 001 147 764E-06 00116 001 101 358F-06 00116 001 101 358F-06 00118 013 1021 848E-05 013199E-05 003199E-05 003199E-05 003199E-05 003199E-05 003199E-05 003199E-05 003199E-05 00320 004 346 252F-05 003199E-05 00320 000 88 243E-06 00030 001 99 340F-		TOPNOTI	+145-0.3	MOVO • 475	+U3M3/3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SOURCE 3	DIRENTIA	• 15E+00	• 51E	+ (1)2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HACKGROU	JN()	-+01F+65		
RANGF 100 STACK DIAMFTER 28.00 CM 182.00 M STACK DIAMFTER $63 CM 4.10 M$ SAMPLE TOTAL RAW NORMALIZED PROTOTYPE PT. (PPM) 1 000 2 278F-06 000 3 000 87 234F-06 000 4 000 96 314E-06 000 4 000 96 314E-06 000 7 001 100 349F-06 001 8 004 397 297F-05 004 9 002 191 115E-05 002 10 0000 98 331E-06 000 11 0000 98 331E-06 001 12 010 857 704F-05 010 13 011 386 729E-05 010 14 004 369 272F-05 004 15 001 147 764F-06 001 16 001 101 353F-06 001 14	CAL THRAL	IION FACTO	R - 3HE - 01		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RANGE		100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STACK HE	EIGHT	28.00	CM 182.	00 M
SAMPLETOTALRAWNORMALTZEDPROTOTYPEPT(PPM)(AREA)CONC(-)CONC(PPM)100092 $278F-06$ 000200087 $234F-06$ 000300088 $243E-06$ 000400096 $314E-06$ 000500092 $278F-06$ 0006001100 $349E-06$ 0019002191115E-050021000098 $331E-06$ 0001100098 $331E-06$ 00112010857704E-0501013011886729E-0500414004369272E-050041500110486E-05013190131021848E-05013190131021848E-0500322004346252E-050042300088243E-0600124000210000310002100003100021000027010842600E-0E00727010842600E-0E007	STACK DI	AMETER	.63	CM 4.	10 M
PT(PPM)(AREA)CONC(-)CONC (PPM)100092 $278F-06$ 000200087 $234F-06$ 000300096 $314E-06$ 000400096 $314E-06$ 000500092 $278F-06$ 0017001100 $349F-06$ 0018004397 $297F-05$ 0049002191 $115E-05$ 0021000098 $331E-06$ 0001100098 $331E-06$ 00012010857704F-0501013011386729E-0500414004369 $272F-05$ 00415001104 $384F-06$ 00116001101 $353F-06$ 00117001104 $366F-05$ 013190131021 $848E-05$ 01320003297209E-0500322004346252F-050042300088243F-0600124000210000031000210000027010862669E-0501727010862669E-05017	SAMPLE	TOTAL	RAW N	ORMAL TZED	PROTOTYPE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PT.	(PPM)	(AREA)	CONC(-)	CONCIPENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	000	62	278F-06	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	000	97	2245-06	• 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	• 000	00	- 747E-00	• 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	• 900	00	• * 4 35 = 00	• 2.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	• 000	20	• 3145 -00	• 000
7 001 100 $349F-06$ 001 9 004 397 $297F-05$ 004 9 002 191 $115E-05$ 002 10 0.000 55 0 000 11 000 98 $331E-06$ 000 12 010 857 $704E-05$ 010 13 011 386 $729E-05$ 011 14 004 369 $272F-05$ 004 17 001 104 $384F-06$ 001 16 001 101 $353E-06$ 001 16 001 101 $353E-06$ 001 18 013 1021 $848E-055$ 013 20 003 297 $209E-05$ 003 22 004 346 $252F-05$ 004 23 001 99 $340F-06$ 001 25 000 88 $243F-06$ 000 31 0.000 21 0 0.000 32 000 238 $157E-05$ 007 28 007 561 $442F-05$ 007	2	• 000		• / / 85 - 115	• 000
R 0.04 397 297E-05 0.04 Q 0.02 191 115E-05 0.02 10 0.000 55 0 0.002 11 0.000 98 331E-06 0.00 12 0.10 857 7.04E-05 0.10 13 0.01 857 7.04E-05 0.01 13 0.01 104 384F-06 0.01 14 0.04 369 272E-05 0.04 17 0.01 104 384F-06 0.01 15 0.01 147 764E-06 0.01 16 0.01 101 353E-06 0.01 16 0.01 101 353E-06 0.01 16 0.01 101 353E-06 0.01 18 0.13 1021 848E-05 0.13 20 0.03 297 209E-05 0.03 22 0.04 346 252E-06 0.00 31 0.000 21 0 0.000<	7	• 001	100	• 349E = 16	•001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	.004	397	• 297F - 05	.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q	.002	191	■115E=05	.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.000	55	Ο.	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	.000	98	•331E-06	.000
13 011 886 $729E-05$ 011 14 004 369 $272F-05$ 004 17 001 104 $384F-06$ 001 15 001 147 $764E-06$ 001 16 001 101 $358E-06$ 001 18 013 1041 $866E-05$ 013 19 013 1021 $848E-055$ 013 20 003 297 $209E-05$ 003 22 004 346 $252F-05$ 004 23 001 99 $340F-06$ 001 25 000 88 $243F-06$ 000 31 0.000 21 0 0.000 30 001 114 $473F-06$ 001 29 002 238 $157E-05$ 007 28 007 561 $442F-05$ 007 27 010 842 $69E-05$ 017	12	.010	857	.704E-05	.010
14 004 369 $272F-05$ 004 17 001 104 $384F-06$ 001 15 001 147 $764E-06$ 001 16 001 101 $353E-06$ 001 18 013 1041 $866E-05$ 013 19 013 1021 $848E-05$ 013 20 003 297 $209E-05$ 003 22 004 346 $252F-05$ 004 23 001 99 $340F-06$ 001 25 000 88 $243F-06$ 000 31 0.000 21 0 0.000 30 001 114 $473F-06$ 001 29 002 238 $157E-05$ 007 27 010 862 $600F-05$ 010	13	.011	886	.729E-05	.011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	004	369	-272F-05	004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	2001	104	-384F-05	.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	.001	147	-764F-06	.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1001	101	-358F-06	. 501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	.013	1041	-866F-05	.013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	013	1021	. HARE-05	013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	003	207	2005-05	003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	• 0 0 3	346	2525-05	• UU 3 004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 004	340	• C) C C = 9 3	• 0 0 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	• 0 0 0		• 340F = 06	• 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	.000	25	• 2435 = 00 2405 - 00	• 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	• 900	21	, • 209E = UD	• (111)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	0.000	. 41		0.000
29 .002 238 .157E-05 .002 28 .007 561 .442F-05 .007 27 .010 .842 .690F-05 .010	30	•001	114	•4/31-06	•001
28 •007 561 •442F=05 •007 27 010 842 •690F=05 010	29	•00S	538	•15/E=05	.002
27 010 842 6005-06 010	28	.007	561	•442F-05	• 0 0 7
	27	•010	842	•690E-05	.010
26 .007 614 .489E-05 .007	26	.007	614	•489E-05	.007

		KUN # 32	
		UNIT 12	
		MODEL PROTOTYPE	
FRFF ST	REAM VEL.	1.50 M/S 10.06 M/S	
FXTT VF	•	3.98 4/5 26.71 4/5	
VOL. FL	OW	•15E-03M3/5 •43E+03M3/5	
SOURCE	STRENGTH	•15E+06 •51F+02	
BACKGROU	JND	•63E+02	
CALTERA	LION FACTO	R.38E-01	
PANGE			
STACK HI		21.00 CM 136.50 M	
STACK D.			-
SAMPLE		RAW NORMALIZED PROTOTYPE	•
μτ.		(AREA) (UNC(-) CONC(PPM)	
1	0.000	$53.9 \bullet 0.000$	
<i>ç</i>	0.000	$\begin{array}{cccc} 0 & 0 \\ 0 & $	
4	0.000		
2			
	000		
ó	000		
â	108		
10	001	119 .3326-05 001	
11	• 0 0 0	96 - 196F = 06 - 000	
12	030	2337 1355-04 430	
12	.030	3023 $176E-04$ 039	
17	.000	68 297F-07 000	
14	020	1624 927E-05 020	
15	005	454 2325-05 005	
16	2001	159 •570F-06 .001	
18	0.38	2991 •174E-04 •038	
19	042	3273 •191E-04 •042	
20	.011	921 •509E-05 •011	
22	.016	1252 •706F-05 •015	
23	.001	140 •457E-06 •001	
25	•000	66 •178F-07 •000	
32	•000	71 •475E-07 •000	
31	.000	64 •594F-08 •000	
30	.001	159 •570E-06 •001	
29	• 010	851 •468E-05 •010	
28	•025	1959 •113E-04 •025	
27	.031	2435 •141E-04 •03]	
24	.021	1638 •935E-05 •021	

		RUN # :	२ २	
			UNIT 12	
		MODE	PROF	DTYPE
FREE SIE	CAM VEL.	.3.00	1 M/5 200	71 4/5
VOL FIC	วิพี	-15F-0	1413/5 .43E+	1343/5
SOURCE	STRENGTH	-15E+00	5 •51E+	02
PACKGROU	JND	.86E+02	2	
CAL TRRAI	ION FACTO	R.38E-0)		
STACK HE	тсыт	21 00) 1 CH 136 (50 14
STACK D	IAMETER) $C' 4 4$	56 M
SAMPLE	TOTAL	PAW 1	ORMALTZED	PENTOTYPE
PT.	(PPM)	(AREA)	CONC(-)	CONC (PPM)
1	0.000	79	<u>9</u> •	0.000
6	0.000	82	1. • 6	0.000
4	0,000	83	0	0,000
Ĕ	0.000	82	0.	0.000
7	.000	106	•237F-06	.000
P	.013	1068	-117E - 04	• 0 1 3
10	• 0 0 2	253	• 141E-04 . 198E-05	.015
11	2000	124	451F-06	.000
12	017	1383	-154F-04	017
13	.027	2116	•241E-04	.027
17	.000	1226	• 107F = 05	• 000
14	.006	1369	• 14/F = 04 • 516E = 05	.006
16	004	388	3596-05	004
19	.020	1577	.177E-04	.020
19	• 023	1859	•211E-04	• 023
20	.007	611	• 523E-05	• 0.0 7
23	.0014	170	• 12.5F = 04	.001
25	0,000	180	n	2.005
32	.000	91	•594E-07	.000
15	.000	88	•237F-07	•000
30	• 001	149	• 74Ht = 06 644E = 05	• 0 0 1
28	015	1203	133E=04	.015
27	.ői <i>ź</i>	1399	.156E-04	.017
26	.011	913	.982E-05	.011

UNIT 12 MODEL PROTOTYPE EXTT VEL. 4.50 M/S 30.17 M/S EXTT VEL. 3.98 M/S 26.71 M/S VOL. FLOW .15E-03M3/S .43E+03M3/S SOURCE STRENGTH .15E+06 .51E+02 PACKGROUND .79E+02 CALTERATION FACTOR.38E-01 PANGE
MODEL PROTOTYPE FREE STREAM VEL. 4.50 M/S 30.17 M/S EXIT VEL. 3.98 M/S 26.71 M/S VOL. FLOW .15E-03M3/S .43E+03M3/S SOURCE STRENGTH .15E+06 .51E+02 PACKGROUND .79E+02 .51E+02 CALTERATION FACTOR.38E-01 .00
FRFE STREAM VFL. 4.50 M/S 30.17 M/S EXIT VFL. 3.98 M/S 26.71 M/S VOL. FLOW .15E-03M3/S .43E+03M3/S SOURCE STRENGTH .15F+06 .51E+02 PACKGROUND .79E+02 .60 CALTERATION FACTOR.38E-01 .00
EXIT VEL. 3.98 M/S 26.71 M/S VOL. FLOW .15E-03M3/S .43E+03M3/S SOURCE STRENGTH .15E+06 .51E+02 PACKGROUND .79E+02 CALTERATION FACTOR.38E-01 PANGE
VOL. FLOW .15E-03M3/S .43E+03M3/S SOURCE STRENGTH .15E+06 .51E+02 PACKGROUND .79E+02 CALTBRATION FACTOR.38E-01 PANGE .00
SOURCE STRENGTH .15E+06 .51E+02 PACKGROUND .79E+02 CALTBRATION FACTOR.38E-01 PANGE 100
PACKGROUND .79E+02 CALTERATION FACTOR.38E-01 PANGE 100
CALTRRATION FACTOR. 38F-01
75 A951275 LOV
STACK HEIGHT 21.00 CM 136.50 M
STACK DIAMETER .70 CM 4.55 M
SAMPLE TOTAL RAW NORMALIZED PROTOTYPE
PT. (PPM) (AREA) CONC(-) CONC(PPM)
1 0.000 78 0. 0.000
2 0.000 72 0. 0.000
4 • 000 82 • 623E-07 • 000
3 0.000 74 0. 0.000
5 0.000 73 C. 0.000
7 •000 88 •169E-06 •000
9 • 013 1076 • 178F-04 • 013
9 • 013 1074 • 177F-04 • 013
10 .003 274 .3485-05 .003
11 •000 •01 •553£-06 •000
$12 \cdot 011 954 \cdot 156E - 04 \cdot 011$
$13 \cdot 018 \cdot 1455 \cdot 245E - 04 \cdot 018$
$17 ext{.000} ext{ 83 .80]} = -07 ext{.000}$
14 .013 1037 .171 -04 .013
16 - 001 - 160 + 1457 - 05 - 001
31 0.000 76 0.000
29 .005 451 .663E=05 .004
27 .011 906 .147F=04 .011
26 .007 .607 .941E-05 .007

			35	
			SI TINU	
		MODE	E PROT	NTYPE
FREE STH	REAM VEL.	1.50		06 0/5
	วิพื	-15F-03	ANA/S .43E+	034375
SOURCE	STRENGTH	15E+06	51E+	02
PACKGROU	JND	-66F+02	2	1-
CAI TARA	FION FACTO	R.33E-01		
HANGE	TOUT	2010()) (141 192	0.0 M
STACK D	TAMETED	20.00	1 GM 106. 1 GM 4	55 M
SAMPLE	TOTAL	RAUN	INPMAL TZED	PROTOTYPE
PT.	(PPM)	(AREA)	CONC(-)	CONC (PPM)
]	,000	69	.208F-07	.000
2	• 000	66	-297F-08	• 000
4	. 000	55 40	• 297F=0K	. 000
5	0.000	61	0.	0.000
7	.000	ÅÅ	.134F-06	.000
A	.001	119	-318E-06	.001
9	•000	89	•140F-06	• 0 0 0
10	.000	0.0 0.0	+2978-08	• 000
12	015	1242	+1105-V0 - 698E-05	015
13	010	843	462E-05	016
17	.000	71	-327E-07	.000
14	.002	552	•959F-06	• 0 0 2
15	.000	101	•211E-06	• 0 0 0
	.000	2026	• 145F-06 116F-06	• 0 0 0
19	.020	1578	.898E-05	.020
20	004	356	.172E-05	004
23	.000	77	+683E-07	.000
25	0.000	65	0.	0.000
32	• 000	60	• 297E=08	• 0 C O 0 O O
30	.000	93	• 163E=06	.000
29	004	338	-162E-05	004
28	.013	1070	.596E-05	.013
27	.023	1789	•102F-04	• 023
26	•016	1303	• / 35t = 05	•016
	<u>+</u> ₩₩4		• I / 05 = VD	• U U 4

		RUN # 36	
		UNIT 12	
		MODEL PROTOTYPE	
FREE STE	REAM VEL.	3.00 M/S 20.12 M/S	
FXTT VEL	•	3.98 M/S 26.71 M/S	
VOL. FLC) W	-15E-03M3/5 -43E+03M3/5	
SOURCES	STPFNGTH	•15E+06 •51E+02	
PACKGROL	IND	.68F+02	
CAL TARAL	ION FACTO	R. 38E-01	
RANGE		100	
STACK HE	EIGHT	28.00 CM 182.00 M	
STACK DI	AMETER	.70 CM 4.55 M	
SAMPLE	TOTAL	RAW NORMALIZED PROTOTYPE	
PT.	(PPM)	(AREA) CONC(-) CONC(PPM)	
1	0.000	67 0. 0.000	
2	0.000	68 0. 0.000	
4	.000	72 .475E-07 .000	
3	0.000	67 0. 0.000	
5	0.000	67 0. 0.000	
7	0.000	66 0. 0.000	
R	.003	277 •248E-05 •003	
9	• 0 0 1	124 •664E-06 •001	
10	0.000	66 0. 0.000	
11	• 0 0 1	$110 \cdot 498E - 06 \cdot 001$	
12	.014	1105 •123E-04 •014	
13	.014		
	.000		
14	.005		
15	.001		
	• 000		
10	• 11 1		
20	• 917	1077 • L775 = V4 • V17 202 - 2045 - 05 - 007	
22	• 0 0 4 0 0 5		
55	• 0 0 5		
25	0.000	67 0. 0 000	
32	000	69 119F-07 000	
31	.000	74 7125-07 000	
30	.001	117 5815-06 -001	
29	003	332 313F-05 003	
28		846 923E-05 010	
27	.014	1146 128F-04 014	
26	.000	788 8546-05 009	
	-	· · · · · · · · · · · · · · · · · · ·	

		RUN #	R37		
			UNT	T 12	
		MOD	FI	ΤŐÂ9΄	OTYPE
FREE	STREAM VEL	4.5	0 M/S	30.	17 1/5
FYTT		3.5	A MIS	26	71 M/S
1001		167-0	34376		11 77 3
- COUDO		•12278	24212	• 4 3 5 +	1134375
SOURCE	E SIRENGIA	•17E+V	2	• 515+	02
HACKG	ROUND	• 90E+0	Ś		
CALTRI	RAILON FACTOR	2.38E-0	1		
RANGE		10	0		
STACK	HEIGHT	S8*0	0 CM	182.	00 M
STACK	DIAMETER	.7	0 CM	4.	55 M
SAMPII	F TOTAL	RAW	NORMAL	T7FD	PROTOTYPE
PT.	(PPM)	(AREA)	I DMOD	-	CONC (PPM)
1	000	202	. 446	5-07	000
່ວ	000	0Å	161	5-06	000
C A	• • • • • •	02	• • • • •	5-07	• 000
	• • • • • • •	96	• # 4 0 		• 900
2	• 000	91	• 201		• 0 0 0
3	• 000	94	• 802		• 000
/	.000	. 97	• 1 34		• 0 0 0
8	.004	427	• 205	F-05	• 004
9	-00S	SOB	•511	F-05	• 0 0 2
10	•000	94	.802	F-07	•000
11	.000	95	•980	F-07	.000
12	.011	959	.155	E-04	2011
13	-012	986	.160	F-04	.012
17	.000	94	1802	F-07	. 000
	•	-	•		•••••
15	0.000	72	0.		0 000
16	000	100	197	5-06	000
18	013	1063	174	5-04	013
10	016	1144	100	5-04	• 01 A
20	003	1144	•100 (2)		• 014
22	• 0 · 7 · 7	265	• • • • • •		• 00.5
55	• 004	324	• 275	5-82	• 004
23	.000	191	~~~V>	E-00	• 000
22	0.000	87	.U. •	~ ~ ~	0.000
32	.000	94		01	• 000
31	0.000	89	0.		0.000
10	, 000	108	• 330	F06	•001
29	.005	261	• 306	F-05	•002
28	.007	654	•101	E=04	.007
27	.011	91S	•147	F-04	.011
26	.008	712	•111	F-04	008
					- ·

		RUN # 38											
FREE S	THEAM VEL.	MODEL	UNIT 9 PROTO 1/5 8.8	TTPE	MU(UNII JU JEL PRU SU M/S B	0 0101485 0101485	м 1	UNII 1 UDEL PR •50 M/5	1 01017PE 9+07 m75	M	UNII-1 UUEL PA 1+50 M/S	2 UIUTYPE 9+07 M/5
	EL.	4.00 M	1/5 23.5	1 M/S	4.1	00 M/S 2.	3.51 M/S	4	.00 M/5 2	4.1/ 14/5	. 65	4.00 M/S	24.17 M/5
SOURCE	STRENGTH	•152+06	•34E+0	2.07.2	·10E+	00 • 341	2+02	• I VE	+06 .51	E+ud	•10	E+06 •5	51E+02
CALIBR	ATION FACTO	R.43E-01			• ddt=1	01		•11E •10E	+02		• • • • • • • • • • • • • • • • • • • •	E+02 E-01	
STACK	HEIGHI	21,00	M 136.9	50 M	21.0	00 00 CM 138	5.50 M	~1	100 -00 CM 130	6.50 M	ر. ر	100 1-00 CM 1	36.50 4
STACK	DIAMETER	55 (M 3.5	A M	•	55 CM	3.58 M	•••	•55 CM	3.50 M		-55 CM	3.58 4
PT.	(PPM)	(AREA) CL	(MALIZED F)NC(-) (CONC (PPM)	(AREA)	CUNC(-)	CUNC (PPM)	(AREA)	CUNC(-)	CONC(PPM)	(AREA)	CONC(-)	CONC (PPM)
91	.023	602	564E-05	.005	397	• 341E-05	•003	1271	· 1.381-05	.010	855	.371E-05	•005
86	.004	143	708E-06	:001	139	·335E-06	•000	240	+134t-15	•002	171	.664E-U6	.001
93 87	.018	480	4335-05	•004	295	•253E=05	• U U Z	1081	•626E=05	•009	628	·2696-05	•004
88	.000	71 0		0.000		.687E-07	•000	14	.1/0E-0/	.000	Ű	0.	0.000
90	.004	205	137E-05	.001	113	•945E-07 •970E-06	•000	230	128t-05	200.0	115	420E-05	.001
7	•000	73 0.		0.000	7	.601E-07	• 000	E L	-11/E-0/	.000	U	0.	0.000
	.000	75 Ŭ.	0	0.000	Îŭ	-859E-07	•000	13	•11/E-V/	.000	ŭ	U .	0.000
10	.000	73 0	966E-07	000		•146E-06 •945E-07	• U U U • U U U	25	●おどのビーリ/ ●おどのビーリ/	• () () () • () () ()	ບ ບ	U. U.	0.000
ĨŽ	• 006	192	1236-05	.001	59	.50/E-06	•000	379	-215E-05	.003	538	.902E-00	.001
17	.000	78	107E-07	.000	12	•421E-06	• U U U • U U U	103	.101E-05	• 001 • 000	113	.406E-06	0.001
14	.001	91	150E-06	.000	27	•535E=06	• 000	50	+228E-06	• 000	35	.644E-07	.000
18	.022	544	501E-05	.005	290	-249E-05	•002	1299	.754L-05	.010	825	-357E-05	•000
18	.000	13 0	261E-05	000.0	181	•515E=07	•000	29 572	■ 105E=00 ■ 128E=05	• 000	24	• 111E-07	•000
źģ	003	149	773E-06	001		-756E-06	•001	208	·1154-05	-002	ີ 5 ສີ	.140E-06	.000
23	.000	90	1402-06	.000	32	•2/5E=05	+ 0 0 0 + 0 0 0	45	-1995-00 -5855-07	•000 •000	U U	U • U •	0.000
25	.000	183	644E-07	.000	17	·146E-06	• 0 0 0	25	- 820L-07	• 0 0 0	Ŭ	Ŭ.	0.000
31	.001	50	1408-06	.000	37	•318E=06	•000	4 U	.170E-00	•000	ວ ປ	U.	0.000
30	.001	89	129E-06	• 000	31	-266E=06	•000	51	•234E=06	• 000	U U	U .	0.000
28	.006	ວິ ຈິ	1385-05	.001	166	·143E-05	•001	305	.1/2E-05	-002	131	480E-06	.001
26	.029	664	630E-05	•005	621 477	•533E=05 •410E=05	•005 •004	1550	•901E=05 •848E=05	•012	553 570	•369E=05 •377E=05	•005 •005

		RUN #	39				1						
FREE S EXIT V VOL • F SOURCE BACKGR CALIBR RANGE	TREAM VEL. EL. Low Strength QUND ATION FACTO	MOD 3.0 .95E-0 .15E+0 .83E+0 .R.43E-0	EL PROTO 0 M/S 17.0 0 M/S 23.5 4M3/S .24E+0 6 .34E+0 3 2 0	0TYPE 64 M/S 51 M/S 03M3/S 02	M0 3. 958- 108+ 2084 238-	0011 10 06L PR 00 M/S 17 00 M/S 23 04M3/S 245 06 345 03 02	010174E 1.64 M/5 1.64 M/5 M/5 1.64 M/5 1.64 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M/5	4 34 • 952 • 102 • 352 • 162	UNT 1 UDEL PA .00 M/S 1 .00 M/S 2 -04M3/S .24 +06 .51 +06 .51 -02	1 101017PE 8.13 M/S 4.17 M/S E+U3M3/S E+U2	・9つ ・10 ・12 ・12	UNII 3.00 M/S 4.00 M/S E-04m3/S 4 E+06 E+03 E-02	101014PE 10013 M/S 24017 M/S 240343/S 510402
STACK STACK SAMPLE PT. 91 92	HEIGHT DIAMETER TUTAL (PPM) •010 •015	21.0 RAW (AREA) 3156 3853	0 CM 136.5 5 CM 3.5 NORMALIZED 6 CUNC(-) (.500E-05 .650E-05	50 M 58 M PROTOTYPE CONC (PPM) •002 •003	21. RAW (AREA) 2233 2829	00 CM 136 55 CM 3 NORMALIZED CONC(-) .349E-05 .451E-05	5.50 M 5.58 M PROIDITPE CONC(PPM) .002 .002	21 RAN (AREA) 5420 8/25	. UU CM 13 •55 CM NURMALIZED CUNC(-) •593E-US •980E-US	16.50 M 3.58 M PROLUTTPF CONC(PPM) .004 .007	2 2 AW (ARFA) 3775 6061	1.00 CM 55 CM NURMALIZED CONC(-) .322E-05 .525E-05	136.50 M 3.58 M PRUTUTYPE CUNC(PPM) .002 .004
86 93 88 89 97	.005 .019 .021 .013 .001 .010 .000	1909 4862 4810 2823 1056 3319 912	.232E-05 .866E-05 .855E-05 .428E-05 .492E-06 .535E-05 .182E-06	.001 .004 .004 .002 .000 .002	657 3823 3232 1891 604 2711 249	.7H1E-06 .622E-05 .520E-05 .290E-05 .690E-05 .431E-05 .16/F-06	000 200 200 200 200 200 200 200 200 200	3110 10910 12111 8284 522 5312 370	.323L-05 .124L-04 .138L-04 .929L-05 .199L-05 .581L-05	•002 •008 •009 •005 •000 •000 •004	2546 6714 9236 5415 257 2699	.2132-05 .5892-05 .8072-05 .4682-05 .9852-07 .2452-05	.001 .004 .005 .003 .000 .002
89 10 11 12 13	000 000 000 008 008	828 932 820 997 2180 2645	•215E-08 •225E-06 •365E-06 •290E-05 •390E-05	000 000 000 000 000 001 000 000	223 315 224 255 945 1333	• 361E-07 • 194E-06 • 378E-07 • 910E-07 • 128E-05 • 194E-05	• 000 • 000 • 000 • 000 • 000 • 001	355 403 364 367 5026 4831	.351E-00 .597E-07 .141E-07 .176E-07 .547E-05 .524E-05	000 000 000 000 000 000 004 004	212 202 202 202 202 202 202 202 202 202	-586E-07 -346E-07 -489E-07 -551E-07 -345E-05 -244E-05	000 000 500 500
14 15 16 18 20	.002 .000 .000 .027 .011 .005	1295 934 921 6245 3178 2066	•1092-05 •1092-05 •2022-06 •1162-06 •1162-04 •5052-05 •2662-05	•000 •000 •000 •005 •002 •001	290 651 326 304 4166 2099 1380	· 771E-06 · 771E-06 · 213E-06 · 175E-06 · 681E-05 · 326E-05 · 202E-05	•000 •000 •000 •003 •001 •001	1140 461 379 15128 6419 2647	-1092-06 -9232-06 -1282-06 -3162-07 -1732-04 -7102-05 -2592-05	.000 .000 .010 .012 .005 .005	455 153 173 11241 4484 1359	0. 27/E-06 622E-08 6240E-07 8990E-05 385E-05 108E-05	0.000 000 000 007 003 003
N3222 232 330 29	• 002 • 000 • 000 • 000 • 000 • 000	1425 912 958 827 843 901 1095	•1282-05 •1822-06 •2812-06 •3432-07 •1592-06 •5752-06	•001 •000 •000 •000 •000 •000 •000	898 3129 2322 2324 332 235 235 235	.120E+05 .189E-06 .235E-06 0.618E-07 .227E-06 .812E-06	• 0 0 1 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 6 0 0 • 6 0 0	1091 416 384 352 352 362 575	.865E-06 ./49E-0/ .3/5E-0/ U. .11/E-0/ .261E-06	- 001 - 000 - 000 - 000 - 000 - 000 - 000	482 190 178 145 163 202 239	.2985-06 .3915-07 .2845-07 0.1515-07 .4975-07 .8265-07	• 000 • 000 • 000 • 000 • 000 • 000 • 000
28 27 26	•010 •032 •025	3440 8361 6546	•561E-05 •162E-04 •123E-04	•003 •007 •006	3037 7296 5389	.487E-05 .122E-04 .891E-05	•002 •005 •004	4913 16306 13409	-534E-05 -187E-04 -153E-04	•004 •013 •010	2400 10426 9140	.2008-05 .9136-05 .7998-05	•001 •006 •005

	RUN # 40		UNIT 10	1161	17 11	UNIT 12	2
FREE STREAM VEL. EXIT VEL. VOL. FLOW Source Strength Background Calibration fact	MODEL PROTOTY 4.50 M/S 26.46 4.00 M/S 23.51 .95E-04M3/S .24E+03M .15E+06 .34E+02 .44E+03 OR.46E-02	PE MOD M/S 4.5 M/S 4.0 3/S .95E-0 .11E+0 .24E-0	EL PRÖTOTYPE 0 M/S 26.46 M/S 0 M/S 23.51 M/S 4M3/S .24E+03M3/S 4M3/S .34E+02 3 2 2	MUDEL 4.50 M/S 4.00 M/S .95E-04M3/S .10E+06 .16E+03 .17E-02	PROTOTYPE 27.20 M/S 24.17 M/S .24E+03M3/S .51E+02	MODEL M/S 4.50 M/S 4.00 M/S .95E-04M3/S .24 .10E+06 .13E-02	1017PE 27.20 M/S 24.17 M/S 4.17 M/S 4.17 M/S 4.17 M/S 4.17 M/S 4.17 M/S 4.17 M/S 4.17 M/S
STACK HEIGHT STACK DIAMETER SAMPLE TOTAL PT. (PPM) 91 .335 92 .205 86 .061	21.00 CM 136.50 55 CM 3.58 RAW NORMALIZED PRO (AREA) CONC(-) CON 7460 .241E-04 4730 .147E-04 1730 .443E-05 3080 .906E-05	M 21.0 M 55 TOTYPE RAW N C(PPM) (AREA) 072 6130 044 3480 013 610	0 CM 136.50 M 5 CM 3.58 M ORMALIZED PROIDTY CONC(-) CONC(P) 165E-04 05 927E-05 02 139E-05 00	21.00 CM .55 CM PE RAW NORMALI M) (AREA) CONC(- 0 16220 .301E 8 10040 .185E 4 3120 .554E 7 5730 .104F	136.50 M 3.58 M ZED PROTOTYPE) CONC(PPM) -04 .137 -04 .085 -05 .025 -05 .025	21.00 CM 13 .55 CM RAW NORMALIZED F (AREA) CONC(-) (11590 .165E-04 7420 .105E-04 2830 .402E-05 2840 .546F-05	36.50 3.58 XOTOTYPE CONC (PPM) .075 .048 .018 .025
87 186 88 006 89 016 90 114 7 006 8 005 9 010	4170 128E-04 870 148E-05 1170 251E-05 3060 900E-05 900 158E-05 890 155E-05 940 172E-05	038 2650 004 180 008 630 027 2340 005 160 005 150 005 382 006 145	699E-05 02 206E-06 00 144E-05 01 151E-06 00 124E-06 00 761E-06 00	1 9380 173E 1 230 131E 4 660 936E 8 5400 981E 0 250 169E 0 210 936E 2 433 511E 1 438 521E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7300 0 0 3660 0 0 520E-05 0 0 0 0 0 0 0	•047 0•000 0•000 •024 0•000 0•000 0•000
10 12 12 13 14 038 15 011 16 001 18 024 18 010 038 011 038 011 038 010 040 040 040 040 040 040 040	997 1912-05 2292 6362-05 3355 1002-04 875 1492-05 1505 3662-05 883 1522-05 850 1412-05 5354 1692-04	006 230 019 923 030 1588 004 264 011 833 005 330 004 202 051 3454	343E-06 00 225E-05 00 437E-06 00 200E-05 00 618E-06 00 266E-05 00 920F-05 00	1 334 326E 7 5294 962E 2 7640 140E 1 404 457E 6 1835 314E 2 426 498E 1 271 208E 8 12328 228E	-05 001 -05 044 -04 064 -05 002 -05 014 -05 001 -05 001 -05 001	265 377E-06 4289 609E-05 5514 783E-05 346 492E-06 1016 144E-05 283 402E-06 0 9087 129E-04	002 028 035 002 007 002 0000 059
19 287 20 070 22 036 23 006 32 006 31 006	6426 2142 5845 1518 821 131E 845 139E 05 831 139E 05 831 139E 05 831 139E 05 831 139E 05 831 139E 05 831 139E 05 831 139E 05 845 05 845 139E 05 845 845 05 845 845 05 845 845 845 845 845 845 845 84	062 4531 018 1339 011 1043 004 196 004 199 004 218 004 210 004 210 004 204	122E-04 03 339E-05 01 258E-05 00 258E-06 00 258E-06 00 310E-06 00 288E-06 00 288E-06 00	6 14580 2702 0 3398 6062 8 1555 2612 1 277 2192 1 286 2362 1 291 2452 1 288 2492 1 281 2452	-04 123 -05 028 -05 012 -05 001 -06 001 -06 001 -06 001	10105 144E-04 2191 311E-05 806 115E-05 0 0 0 0 0 0 0 0 0 0 0 0	000 0014 005 0000 0000 0000 0000 0000 00
29 013 28 114 27 303 26 218	1026 201E-05 3316 987E-05 7262 234E-04 5328 168E-04	•006 546 •030 3091 •070 6566 •050 4502	•121E-05 •00 •820E-05 •02 •177E-04 •05 •121E-04 •03	4 504 644E 5 4954 898E 3 14116 261E 6 10314 190E	-06 003 -05 041 -04 119 -04 087	0 2935 9194 6838 972E-05	0.000 019 060 044

		11111	41											
			UNIT 9			UNIT 10)		UNIT	11		UNIT	12	
		100	FL OPOTO	TYPE	M')	NFL PPC	TOTYPE	м	ODFL PP	ROTOTYPE	14	ODEL P	RÖTOTYPF	
FREE S	TREAM VEL .	1.5	0 M/S 8.8	2 14/5	1.	50 M/S 8	1.82 M/S	1	.50 4/5	9.07 M/S		1.50 M/S	9.07 M/S	
FXTT V	FL.	4.0	0 4/5 23.5	1 4/5	4.	00 M/S 23	3.51 M/S	- 4	.00 4/5 2	24.17 M/S		4.00 M/S	24.17 M/S	
V01 . F	(LOW)	.95F-()	44375 .24F+0	34375	.956-	04M3/5 .24E	+0343/5	•95E	-04M7/5 .24	4F+0343/S	.95	E-04M3/5 .	24E+0343/5	
SOUPCE	STRENGTH	15E+0	6 • 34E+0	2	•10E+	06 .345	+02	-10E	+06 .51	LE+02	.10	E+06 .	51E+02	
PACKGR	INUND	• 36F+0	3		•10E+	63		•55£	+03		.96	E+02		
CAL THR	RATION FACTO	R.41E-0	2		• 35E -	02		■15E	-02		.11	E-02		
RANGE		1	0			10			10			10		
STACK	четант	28.0	0 CM 182.0	n M	28.	00 CM 192	2.00 4	28	.00 CM 18	32.00 M	2	8.00 CM	142.00 4	
STACK	DIAMETER		5 CM 3.5	A 14	•	55 CM 3	1.5A M	- ·	.55 CM	3.58 M		•55 CM	3.59 4	
SAMPL F	TOTAL	PAW	NORMALIZED P	ROTOTYPE	RAH	NORMAL IZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMAL IZED	PROTOTYPE	
P1.	(PPM)	(AHEA)	CONC(-) C	ONC (PPM)	(APFA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)	
01	.005	1387	■105E=05	.001	1490	+1125-05	.001	3191	-16 <u>5</u> E-05	.002	3519	.144E-05	•005	
92	• 0.0 <i>F</i>	1585	-439F-06	.001	1402	-104E-05	• 0 0 1	3530	-16/E-05	-005	3543	·1455-05	•002	
86	• 001	187	. 4.151-06	• 0 0 0	249	•110F=06	• 0 0 0	325	•956E=07	• 0 0 0	492	+167E-06	•000	
24	• 000	()	U •	0.000	112	~*~~ U/		320			192	+20/E=00	• 000	
~ ~ /	• (1) (1)	46	1. 5345-04	0,000	125	1705-07	0.000	281	V-2225-07	0.000	100	.1375-00	• 0 0 0	
60	• 0 0 1	645	• 7 14F = UD 4045 - 04	.000	127	6775-07	• 0 0 0	521	• 122E=07	.000	105	1545-06	•000	
	• 001	420	· 494F = 00	.000	3/3	1055-06	.000	281	-0000-07	• 000	226	•1000-00 EE46-07		~
7	• 0 0 1	1000	-407-000	• 000	241	1175-06	- 000	403	1505-06	.000	8.7		.000	÷.
Á	.000	775	- 423E-06	. 000	64	0.	0.000	217	0.	0.000	94	.843F-09	.000	~
q	.000	749	43/F-06	.000	86	0	0.000	242	106F-07	.000	86	0.	0.000	
10	.001	767	415F-06	.000	155	424F-07	.000	409	103E-06	.000	82	ö.	0.000	
11	.000	324	0.	0.000	168	0	0.000	217	0.	0.000	446	-148E-06	.000	
12	001	522	-267E-06	.000	145	3428-07	.000	412	-105E-06	.000	692	-251E-06	.000	
17	.001	772	.420E-06	.000	136	-260E-07	.000	364	.783E-07	.000	151	-232E-07	.000	
17	.001	724	.371F-06	.000	190	.709F-07	• 0 9 0	369	-81JE-07	.000	225	.544E-07	.000	
14	.001	954	.503F-06	.000	375	•252E=06	•000	810	.326E-06	.000	105	.379E-08	.000	
15	.000	766	-414E-05	.000	161	•473E-07	•000	297	.411E-07	.000	Ō	0.	0.000	
16	.000	810	•458F-06	• 0 0 0	108	.407E=0P	• 0 0 0	_281	-322E-07	• 0 0 0	0	0.	0.000	
19	.006	1151	• 806F - 06	• 0 0 1	1155	-930E-06	• 0 0 1	3565	• J 865-05	• 0 0 3	3408	.140E-05	- 00 Z	
10	.002	857	•516E=06	.000	514	• 335E=06	• 200	1014	•440E-00	•001	855	•320E-06	• 0 0 0	
20	• 0 0 1	M 42	•481F-06	.000	250	• 120F=06	• 0 0 0	498	.4311-00	•001	110	-590E-08	•000	
22	.000	386	• / / 11 - 06	.000	104	· · · · · · · · · · · · · · · · · · ·	• 0 0 0	314	• 52HE = 07	• 000	48	~~***3E=0¥	.000	
23	.000	416	• 4555 = 05	• 0 9 9	119	+5700=00	• 0 0 0	674	*/005-07	•000	95	0.	0.000	
22	• 000	1000	• 4 / 65 = 0.5	• 0 0 0	194	•.325E=08	• 000	536	• 1 1 1 5 - 0 7	• 000	105	⁰	0.000	
15	-001	1041	• / 4 7 F + UO	• 0011	113	+ H - F = 0 H	• 0 0 0	638	• • • • • • • • • • • • • • • • • • • •	• 000	101	*>116=00		
20	-000	761	+ 4 / UE = US 4 3 3 5 = 0.6	• 000	270	1435-04	• 000	200	•/50E=0/	.000	104	V. 4225-00	0.000	
20	• 0 0 0	701	3475-04	• 000	106	-1410-00	- 000	34/	6678-07	.000	107	4225-00	•000	
29	• 001	045	. 4945-04	• 000	200	.0628-07	- 000	535	1748-06	• 0 0 0	260	7205-07	.000	
57	2007	1838	1516-05	1001	2180	1695-05	-002	5076	2705-05	.004	54	0.	0.000	
26	0.000	0	0.	0.000	Ő	0.	0.000	- Ó	0.	0.000	Ő	0.	0.000	

		KUN #	42				_						-
		MOD	EL PROTO	TYPE	ма	DEL DE	TOTYPE	ч	ODEL PR	OTOTYPE	м	ODEL P	OTOTYPE
FREE ST	REAM VEL.	3.0 4.0	0 M/S 17.6 0 M/S 23.5	4 M/S 1 M/S	3.	00 M/S 1	7.64 M/S 3.51 M/S	3	.00 M/S 1	R.13 M/S		3.00 M/S 4.00 M/S	18.13 M/S
VOL FLO	DW Strength	.95F-0	4M3/5 .24E+0	3M3/5	95E-	04M3/5 .24	+0343/5	•95E	-04M3/5 .24	F+03M7/5	.95	E-0443/S .	24E+03M3/5
BACKGROU	JND	A3F+0	•.// <u>-</u> .//	r	-26E+	03		-3 <u>8</u> E	+03		-53	E+03	
PANGE	TION FALLO	4.412-0	0		• C/C=	10		•105	10		• 1 1	10	
STACK HE	EIGHT IAMETER	28.0	0 CM 182.0 5 CM 3.5	0 M 8 M	28.	00 CM 18	2.00 4	Se	.00 CM 18	12.00 M	2	8.00 CM 1	182.00 M
SAMPI F	TITAL	RAW	NORMALIZED P	ROTOTYPE	RAW	NORMAL IZED	PROTUTYPE	RAW	NORMALIZED	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE
21	.010	2349	-310E-05	.001	3322	-500E-05	•005	6157	-642E-05	•004	4379	-350E-05	-002
97 84	.009	1831	•204F-05 •281E-06	.001	2568	-377E-05 -455E-06	•005	4815	.493E-05 .713E-06	•003	4252	.339E-05	.002
07	.010	2361	-312F-05	.001	3117	-455E-05	.002	5919	-616E-05	• 0.04	4137	.330E-05	002
88	.000	981	-312F-06	.000	264	147E-07	.000	466	967E-07	.000	ŏ	0.	0.000
n()	.002	1191	.740E-05	.000	814	•114E=07 •911E=06	• 0 0 0	1283	.100E-05	•000	681	-843E-09	•000
7 8	.000	824 888	122E-06	0.000	245	0. 142F=06	0.000	347	0. .678E-07	0.000	242 226	.118E-07	.000
9	.000	797	0.0155.00	0.000	234	0.	0.000	353	0.1245-06	0.000	232	337E-08	.000
11	.000	914	-175E-06	.000	373	192E-06	.000	457	867E-07	.000	263	295E-07	.000
12	.001	865	•754E-07		341 300	•140E-06 •733E-07	•000	806 572	.475L-06 .214E-06	•000	1040	.685E-06 .189E-06	•000 •000
17	.000	873	-917F-07	.000	351	-156E-06	.000	491	-124E-06	.000	278	422E-07	.000
15	.000	307	0.	0.000	233	0.	0.000	440	678E-07	.000	239	A43E-08	.000
18	.009	1691	-126F-05	.009	2102	• 316F-05	•000	5614	-456E-07	•000	4540	.372E-05	.000
10	.004	1348	-106E-05	000	1411	-188E-05	•001	2786	-267E-05	• 002	2122	-160E-05	•001
22	:000	1022	192F-06	.000	376	197E-06	.000	507	142E-06	.000	200	599E-07	.000
25	2000	828	0.	0.000	255	0.	0.000	305	756E-07	.000	228	0.	0.000
72 11	.000	896 901	.139F-06	.000	354	.161F-06	•000	379	0. 711E-07	0.000	252 246	•202E-07	•000
20	.000	886	•118E-06	.000	332	•125E-06	• 000	466	967E+07	.000	226	0.1015-07	0.000
28	:002	1227	•H13E-05	.000	897	105E-05	•000	1254	-972E-06	.001	685	-386E-06	.000
27 26	•013 •013	2962 2697	•435E-05 •381E-05	-002 -002	4163 3923	•637E=05 •598E=05	•003 •003	7371 7430	•7776-05 •784E-05	•005 •005	4595	.368E-05 .413E-05	•003 •003

		RUN #	43				_						
		мор	EL PROTO	TYPE	MO	10EL 1001 1	DTOTYPE	ч	ODEL PE	ROTOTYPE	м	ODEL P	ANTOTYPE
FREE	STREAM VEL .	4.5	0 M/S 25.4	6 4/5	4.	50 M/S 21	5.46 M/S	4	-50 M/S	27.20 M/S		4.50 4/5	27.20 M/S
	VFL. FIUW	.95F-0	U 7/5 .24F+0	1 7/5 17M3/5	• Q < E -	0443/5 .241	2+01M3/5	•95F	-0443/5 .24	F+03M3/5	.95	E-04M3/5 .	242+0343/5
SOURCE	F STRENGTH	+15E+0	6 .34E+0	2	+10E+	.06 .34	E+02 .	•10E	+06 .51	E+02	•10	E+06 .	51E+02
	RATION FACTO	0.41F-0	2		-34E-	02		•15E	-02		• 11	E-02	
PANGE		1	0			10		20	10		-	10	102 00 4
STACK	DIAMETER	28.0	0 CM 182.0 5 CM 3.5	10 M	24.	00 CM 18	2.00 M 3.58 M	28	•00 CM 10 •55 CM	3.58 M		-55 CM	3.59 4
SAMPLE	F TOTAL	PAW	NORMALIZEN	ROTOTYPE	RAW	NORMAL IZED	PROTOTYPE	RAW	NORMALIZED	PROFOTYPE	RAW	NORMALIZED	PROTOTYPE
PT.	(PDM)	(ARFA) 346	CONC(-)		(ARFA) 439	CONC(-)	CONC(0PM)	(AREA) 947	CONC(-)	CONC (PPM)	2561	-285E-05	-001
02	1010	2351	435F-05	201	2905	626E-05	•00S	6289	959E-05	.004	4760	-563E-05	.003
20	.002	1123	•599F-06	• 0 0 0	645 2314	- 834F=06	• 0 0 0	1614	•] ADE - 05	• 0 0 1	1200	125E=05	.001
87	.004	1495	.2966-05	2001	2243	464E-05	.001	5645	852E-05	.004	4756	-63E-05	.003
AA	.000	1056	-303E-06	-000	446	-249E-06	• 0 0 0	574	.667E=07	• 0 0 0	339	•443E-07	• 0 0 0
00	-002	1270	105E-05	.000	934	.1448-05	.000	1443	1528-05	.001	800	.627E-06	.000
7	.000	1073	.446F-06	.000	361	.416E-07	• 0 0 0	638	173E-06	.000	361	•721E-07	-000
Р	.000	925	0. .251F=06	0.000	351	-171F=07	•000	559	-41/E-07	.000	324	+430E=07	.000
10	001	1023	293F-06	.000	506	-396E-06	.000	ខ្មី០ភ្	-113E-06	.000	1086	989E-06	.000
11	.000	1107	-550F-06	• 000	385	-100E-06	• 0 0 0	703	•282E=06	• 0 0 0	378	430E-07	•000
13	.001	1060	4065-06	.000	550	-504F-06	.000	1105	-952E-06	.000	772	-356-06	.000
17	.000	1032	-321F-05	-000	519	+428E-06	• 0 0 0	693	•265E-06	• 000	367	•797E-07	• 0 0 0
14	.000	1020	0. 0.	0,000	333	0.	0.000	573	650E-07	.000	316	1525-07	.000
16	.000	957	•917F-07	.000	356	-293E-07	• 000	_631	-162E-06	.000	319	-190E-07	• 0 0 0
18	.009	1720	- 3495-05 - 242E-05	.001	2590	.3595-05	•002	3600	-9110-05	.004	2691	-302E-05	.003
20	.001	1115	575F-06	.000	544	-597E-04	.000	930	660E-06	.000	529	295E-06	.000
22	.000	1053	- 385F-06	• 000	518	425F-06	• 0 0 0	694 629	.267E=06	• 0 0 0	363	•746E=07	•000
22	0,000	927	n.	0.000	344	0.	0.000	534	0.	0 ពីព័ត្	304	0.	0.000
32	.000	1023	.293E-06	.000	472	•313E-06	• 0 0 0	543	-150E-07	• 0 0 0	363	.7465-07	• 000
30	.000	1013	.263E-06	.000	450	-284E-06	.000	629	158E-06	.000	327	-291E-07	.000
29	.000	743	0.	0.000	323	0.	0.000	,514	0. 1565-05	0.000	1891	•AB1E-06	• 000
29	.002	1450 2878	■1601=05	.000	1107	-147E-05	•001	1469 5861	-1555-05 -889E-05	•001	4091	479E-05	.002
26	i ö i i	2797	.571F-05	005	3459	762E-05	.005	6621	.101E-04	.005	4606	-544E-05	.002
RUN # 44													
---------------------------------	-----------												
INTT 12													
ΜΟΟΕΙ ΡΡΟΤΟΤΥ	DF												
	ic												
FXT1 VFL = 4.03 M/5 21.04	MZ 5												
VOL. FLUM .70E-04M3/5 .15E+03M	375												
SOURCE STRENGTH .15E+06 .34E+02													
BACKGROUND .50F+03													
CALTERATION EACTOR-41E-02													
	141												
STACK DIAMFTER .47 UM 3.06	M												
SAMPLE TOTAL RAW NORMALIZED PPO	TULABE												
PT. (PPM) (AREA) CONC(-) CON	C(PPM)												
01 _007 _8318 _108F=04	.007												
02 009 10377 137F-04	.009												
04 002 2050 330F-05	0.02												
	007												
	• 0 • 1 /												
87 .009 9780 .1286-04	. 004												
88 •001 1160 •911F=06	• 0 0 L												
AO .000 ROO .413E-06	•000												
90 .001 2110 .222E-05	.001												
7 .000 680 .247F-06	1000												
8 .000 770 .372F-06	1000												
0 000 660 2205-06	• 000												
	• 0000												
	• 0000												
11 •000 /10 •289F=06	• 000												
12 .003 3350 .395E-05	• 003												
13 •001 1600 •152E-05	.001												
17 .000 760 .358E-06	.000												
14 .000 770 .372E-06	.000												
15 .000 720 .303F-05	ในอก												
16 000 1030 7316-06	. 000												
19 008 8807 1156-04	609												
10 004 4766 EDDE=DE	• 000												
	. 004												
20 •001 1115 •350E=05	•001												
22 .000 838 .466F-06	• 000												
23 •000 811 •429E-06	•000												
25 .001 1130 .870E-06	.001												
32 .000 844 .474E-05	-000												
31 .000 754 .350F-06	.000												
30 001 1230 1015-05	ได้กา่												
20 000 773 376E-06	• 666												
	• 0 0 0												
	• 001												
27 • 009 9/8/ • 128E-04	.009												
26 .008 9047 .ll8E-04	.008												

		RUN 4 4	÷	
			UNIT 12	
	•	MODE	L PPOTO	TYPE
ERFE STRI	LAM VEL.	3.00	4/5 15.6	4 M/S
FXIT VEL	•	4.03	M/S 21.0	4 11/5
VOI FLUI	H Tornotii	• 7 <u>01</u> - 04	M3/5 .15E+0	343/5
SUURCE S		• 1 TE + UD	• 347 + 0	2
	NU Ton Cacto	• <u>•</u>		
CAL THRAT	10% #4010	9.4(<u>5</u> -02		
STACK HE	ГСНТ	21.00	CM 136.5	0.14
STACK DI	AMETER	.47	CM 3.0	E. M
SAMPLE	TOTAL	RAW N	DAMAL TZED P	ROTOTYPE
PT.	(PPM)	(AREA)	CONC(-) C	ONC (PPM)
91	.008	8905	-228E-04	.008
oŻ	.005	6797	.170F-04	.006
96	.000	1048	.108E-05.	•000
63	.004	5506	.134E-04	.004
87	.006	7434	•187E-04	• 0 0 6
88	.004	5213	-126F-04	.004
4 0	• 000	802	• 198E - 06	• 906
90	• 002	3207	·///>	• 002
	.000	11.35	• J 335 = UD 4675 = 06	• 000
8	• 000	1081	.1175-05	• 000
10	001	1639	2716-05	.001
11	.000	728	194F-06	.000
12	.003	3940	407F-05	003
13	002	2860	.609F-05	.002
17	000	730	-199F-06	.000
14	.000	790	•365E-06	.000
15	.000	580	.508E-07	• 0 0 0
16	.000	690	• <u>4856</u> - 07	-000
18	.007	8500	.2096-04	.007
19	.004	494()	• 1 18F = 94	• (10)4
20	.001	1439	• C 1 35 = 05	• 0 0 1
22	• 000	200	• 7775 = V0 116E = 06	-000
52	0 000	658	• LTOP = 00	e 000
	0000	697	108E-06	1000
21	2000	661	829F-08	000
30	.000	687	-802F-07	.000
29	.001	1286	.174F-05	.001
28	.002	2753	.579E-05	-00S
27	.006	7645	■193E=04	.006
26	.005	6595	•164月-04	.005

		PUN #	45	
FREE STE FXTT VEL VOL FLO SOURCE S BACKGROU CALLERAI	REAM VEL. DW STRENGTH JND FION FACTO	MODI 4.5 4.0 70E-0 15F+0 64F+0 0R.41E-0	UNIT 12 EL PROTO 0 M/S 23.0 3 M/S 21.0 4M3/S .15E+0 6 .34E+ 3 20	0TYPE 46 4/25 04 M/25 03M3/5 02
STACK HE STACK DI SAMPLE PT.	IGHT IAMETER TOTAL (PPM)	21.0 -4 (APFA)	0 CM 136. 7 CM 3. NORMALIZED CONC(-)	50 M 06 M PROTOTYPE CONC (PPM)
92 86 87 87 89 89 89 87 89 87 7	004 002 003 005 004 004 002 002 0002	5420 2570 3990 5570 4950 730 2970 630	.198F-04 .800F-05 .139E-04 .204F-04 .179E-04 .373E-06 .966E-05	004 002 003 005 004 002 002 0.000
00112774568902352	0.000 0.000 0.007 0.007 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	6900 5620 23700 8660 55664 55664 55664 55664 55664 55664 5570 6484 2498 570	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
30 29 28 27 26	0.000 0.000 .002 .005 .004	580 610 2300 6000 4960	0. 0. .688E=05 .222E=04 .179E=04	0.000 0.000 002 002 005 004

		RUN 🎋	47		
			UNI	IT 12	
		400	FI	TÕÄS	OTYPE
FREE STREAM	W VEL	1.5	0 M/S	7.	82 M/S
EYTY VEL	3 Y L. L. O	1 - J	3 4/5	21	0.6
		700000	3 973	. <u>21</u>	04 175
VUL FLUW	-	• / UF = U	4193/3	•175*	0373/3
SOURCE SIR	NGTH	•15F+6	2	• 34t.+	0 3
HACKGROUND		•68E+0	2		
CALIBRATIO	N FACTOR	•41E-0	1		
RANGE		10	0		
STACK HEIGH	41	24.0	O CM	182.	00 M
STACK DIAM	FTER		7 ČM	3.	04 M
SANDLE T	T AI	DAW	MODUAL	1750	DONTATYOE
DT	10001	(AUEA)	CONC		CASCIDD41
F1.	(FFM)	IAREA/			CHALLEPHI
91	.00C	651	• 694	1-22	• 902
92	.004	517	•62	11-95	.004
86	.001	124	• 78]	15-06-	.001
93	.003	415	•480)ビーロラー	.003
87	.003	445	.527	PE-05	.003
88 0	.000	65	0.		0.000
80	. 0 0 0	68	. 69	IF-08	. 000
60	0000	- U1			• 0 0 0
7	0000	75	* JL- 600	JE-67	• • • • •
	● 9 0 9 - ○ ∩ ∩	16		22-01	A 300
0 0	• 000	0 n	9 •		0.000
10 0	• 0 9 0	92	17 •		0.000
Q .	• 000	16	• 5 6 6	2E-01	.000
11	• 000	70	• 346	5E - 97	• 000
12	• 0 0 0	80	•17	35-06	•000
13	.000	74	•899	9E-07	. 000
17	.000	76	• 145	5E-06	.000
14	.000	70	.346	58-07	.000
15	.000	63	.69	F-0A	.000
16	. 000	69	20	75-07	
19	003	357	. 401	nE-05	1003
10	001	120	• • • •		• 00 5
20	• 0 0 L	72	1 1 1 1 1 1 1	0 - 00 0 - 04	*001 000
61	• 900	10	• 1 1 0		• 0 0 0
22	• 000	02	• 5.4	16-08	• 000
23	• 000	68	• 69.	1E = 08	•000
25 0	• 000	67	0.		0.000
32	.000	68	• 69.	1E-08	•000
31 0	.000	67	0.		0.000
30	.000	70	.340	5E-07	.000
29	.000	68	.69	1F-08	1000
28	1000	92		9F-06	. 000
27	002	311		78-05	. 002
34	004	201			• • • • •
/ 0	• • • • •	470	• 206	эц т 0 ()	● 11 / 1 / 4

		RUN # 4	44	
		-	HNIT 12	
		MOM		TYOF
		100		1 TPF
FRFF 5	SIREAM VEL.	3.01	D M/S 15.4	04 M/S
FXIT V	/FL•	4.00	3 M/S 21.0)4 M/S
V01. F	FLOW	.70F-04	4M3/5 .15F+(1447/9
chilore	STDENGTH	156+00	5 3/64	3
DACKOC		735.00	3 \$34 <u>6</u> 71	16
TALKON	COUND	• 13E+U		
CAL THE	CALION FACTOR	•415-01	1	
PANGE] ()	n i i i i i i i i i i i i i i i i i i i	
STACK	HEIGHT	28-00	D CM 182.0	10 M
STACK	NTAMETER	. 4	7 CM 3.0	16 14
CAUDIE	TOTAL	• • • • • • • •	INDUAL TOED	
TAMPLE	L DEFAL		AURMALIZED F	RUTULTER
P1.	(PPM)	(AREA)	CUNC(-) (04C(PPM)
01	-002	308	•650E=05	• 902
92	-002	284	•583E-05	.002
86	001	136	1745-05	. 661
~ ~	.002	20%	0155-05	
24	• 0 0 3	4114	• 91 05 - 0 0	• 0 0 3
×7	. 003	4.14	•101F=04	.003
88	0.000	72	0.	0.000
80	0.000	72	.	0,000
an	1000	87	3875-06	
7	000	74	2765-07	000
~	• 0000		• C 1 0 C = 0 T	• 9 9 9
H	•000	()	• * 298-97	• 0 1 0
9	0.000	68	0.	0.000
10	.000	76	.829F-07	.000
11	0,000	73	0.	0.000
12	601	154	2355-05	0.01
13	• • • • • •	100	4165-02	• 0 0 1
12	• 000	25	• • • • • • • • • • •	• 000
17	•000	11	•1116-96	.000
14	.000	76	-829E-07	.000
15	- 000	77	.111E-06	1000
16	1000	74	276F-07	000
10	007	377	2415-05	002
10	• 003	344	• 041E ~ 0.0	• • • • •
14	• 001	666	• 4125 - 07	• 0.0 1
20	•000	82	•249E-06	•000
22	.000	74	-276E-07	.000
23	0.000	73	0.	0,000
25	0,000	73	0.	0 000
55	0 000		<u>о</u>	0 000
26	0 0 0 0	43	U .	9 • 99 9
31	0.000	7.0	U.	0.000
70	•000	74	•276E-07	.000
20	.000	76	.829E-07	.000
28	.000	100	747F-06	
37	• 002	210	677C-05	0000
21	• 275	210	• SCIETV2	• 996
10	.003	411	• 401F=A2	.003

		RUN # 4	9	
			UNIT 12	
		MODE	r ngg i	OTYPE
EDEE CT	DEAM VEL	A 50	M/C 53	1 C 14/5
ERFE 31	REAM VEL.	4.00		46 7/3
FXII VE	L. •	4.03	M/2 (1.	14 11/3
VOI. FI_	0w	•70E-04	13/5 +156+	0.34375
SOURCE	STRENGTH	15E+06	• 34E+	02
BACKGRO	UND	-59E+02		
CAL TRRA	FION EACTOR	R.41F-01		
PANGE		100		
CTACK U	FIGHT	ວອີກັດ	CM 182	0.0 M
STACK O		20.00	CN 1024	
STALK U	TAMETER			DEATOTYDE
SAMPLE	1014	RAW	URMALIZED.	PROTUTIVE
PT.	(PPM)	(AHEA)	CONC(-)	CONC (PPM)
0 	*00S	302	·101E-04	• 0.0 2
02	.001	100	-581E-05	.001
96	.000	73	.581F-06	.000
97	-002	323	-109F-04	.002
97	.003	รี่ลี่ด้	133F-04	1003
30	000	60	415F-07	000
50	0.000	57	0.	0 000
R.4	0.00	102	1705.05	500
- 40	. 900	LUC .	. • L/0C=VD	• • • • • • • •
1.	0.000	21	Q•	0.000
8	0.000	59	9.	0.000
Q.	• 000	69	•4155-05	.000
10	.000	66	-240F-06	.000
11	0.000	59	0.	0.000
12	.001	144	·353E-05	.001
13	.000	83	.995F-06	.000
17	.000	62	-124F-06	Láoo
14	ວ້ 0 0 0	56	<u>.</u>	0.000
15	0.000	55		0 000
12	0.000	22	17 e	0 000
15	0.000		U	0.000
1 M	.003	341	+11/5-04	• 9 9 3
19	.001	1.30	.2941-05	• 991
20	•000	60	•415E-06	.000
22	• 0 0 0	61	-829F-07	• 0 0 9
23	0.000	58	0.	0.000
25	.000	61	.829F-07	.000
32	0.000	5 <u>Å</u>	2.	0,000
31	. 000	74	622F-06	
20	• 0 0 0	75	5305-04	.000
311	• V V V 0 0 0	71	+00E=04	• 0 0 0
24	•000	(1	• 4 YOR - UD	• 0.00
			1005 01	
26	•00S	323	■109E=04	• 002

FREE ST EXTT VE VOL. FL SOURCE BACKGRO CALTBRA PANGE	REAM VEL . UW STRENGTH DUND VIION FACTO	RUM # 50 MODEL PROTO 1.50 M/S 8.6 3.94 M/S 23.1 055-04M3/S .24F+0 1.14E+05 .34E+0 R.38E+02 10	177PE 12 M/S 17 M/S 13413/S 12	MOC 3.0 105+(105+(205-(205-(UNIT 10 PFL PROT 50 M/S B 54 M/S 23 54 M/S 24E 16 34E 17 17 10	011PE 82 M/S 17 M/S 0743/S 02	40 1. 95E •10E •14E •14E	UNIT 11 DDEL PQ 50 4/S 23 0447/S 24E 0447/S 24E 06 51E 03 02 10	TOTYPE •07 M/S •82 M/S •03M3/S •02	M(401 14 11	UNIT 12 DEL 920 1.50 M/S 2.94 M/S 22 2.94 M/S 22 2.95 .51 2.95 2.92 1.0 1.0	2 510TYPE 9.07 M/S 23.82 M/S 4E+03M3/S 1E+02
STACK H STACK D SAMPLE PT.	EIGHT IAMETER TOTAL (PPM)	21.00 CM 136.9 .55 CM 3.6 RAW NORMALIZED F (AREA) CONC(-) (50 M PROTOTYPE CONC (PPN)	21.(RAW (ARFA)	0 CM 136 55 CM 3. NORMALIZED P CONC(-) C	50 M 60 M ROTOTYPE ONC (PPM)	23 • RAW N (AREA)	00 CM 136 55 CM 3 108MALIZED P CONC(-) C	.50 M .60 M ROTOTYPF ONC (PPM)	21 RAW 1 (AREA) 212	1.00 CM 13 .55 CM NORMALIZED F CONC(-) (36.50 M 3.60 M PROTOTYPE CONC (PPM)
77 78 47 76 70	001 002 001 001	749 0. 918 .933E-07 943 .116E-06 785 0. 757 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	781 851 148 326	.429E-07 .518E-06 .572E-06 .337E-07 .170E-06	•000 •000 •001 •000 •000	1362 2466 1570 1907	-125E-06 -205E-06 -792E-06 -314E-06 -490E-06	• 000 • 001 • 000 • 001	295 288 216 423	153E-06 147E-06 753E-07 280E-06	•000 •000 •000 •000
79 87 94 98	.000 .000 .002 .000	652 0. 727 0. 759 0. 843 .260F-07 2536 .155F-05	0.000 0.000 0.000 0.000 -000	110 185 353 197 5319	.459E-08 .620E-07 .191E-06 .712E-07 .399E-05	• 0 0 0 • 6 9 0 • 0 0 0 • 0 0 0 • 0 0 4	1180 1185 2278 1194 5753	.110E-06 .113E-06 .693E-06 .117E-06 .250E-05	•000 •000 •001 •000 •003	228 318 1163 299 1125	.176E-06 .101E-05 .157E-06 .975E-06	•000 •000 •001 •000 •001
71 72 03 65	.000 004 000 011 023	765 0. 798 0. 842 .251F-07 641 0. 928 .102E-06	0.001 0.001 0.00 0.000 0.000	173 347 180 707 3460	523F-07 186E-06 582F-07 462F-06 257F-05	000 000 000 000 000	1270 2271 1162 5085 12758	.157E-06 .690E-06 .101E-06 .215E-05 .616E-05	.000 .001 .000 .003 .008	297 2284 299 6002 8944	155E-06 212E-05 157E-06 580E-05 872E-05	•000 •003 •000 •009 •012
63 74 73 80	015 000 005 011	3090 204F-05 738 C 989 157E-06 6007 466E-05	062 0.060 007 001	6317 95 504 7589	476E-05 0. 306E-06 573E-05	004 0.000 000 005	9335 1152 2717 3242 4989	437E-05 955E-07 913E-06 119E-05	006 000 001 002	2005 0 2744 210 8483	185E-05 0 258E-05 693E-07 826E-05	•003 0•000 •004 •000 •011
17 67 67 67 67 67	015 011 039 007	994 162E-06 7620 611E-05 5944 460E-05 646 0	000	1615 14694 3030 149 200	116E-05 112E-04 224E-05 345E-07	001 010 002	5785 21536 2253 1214	251E-05 107E-04 670E-06 128E-06	003 015 001 000	5120 6652 233 287 4233	493E-05 645E-05 921E-07 146E-06	.007 .007 .000 .000
87 87 87	-907 -020 -030 -013 -014	742 0 806 0 1237 380E-06 2684 164E-05 10765 893E-05	0.000 0.000 0.000	1034 3452 3974 5852	• 1420-06 • 7125-06 • 2565-05 • 2965-05 • 4405-05	•000 •001 •002 •003 •004	7785 14842 7470 3725	-1062-05 -356E-05 -724E-05 -339E-05 -144E-05	•005 •010 •005 •002	10873 12627 2896 391	106E-04 124E-04 273E-05 249E-06	.015 .017 .004 .000
57477 5477 51	001 003 023 044 061	855 .363E-07 1219 .363E-06 1088 .246E-06 1338 .919E-06 11974 .100E-04	000 000 000 001 009	124 196 1604 5993 18071	-1536-07 -7056-07 -1156-05 -4516-05 -1386-04	•000 •090 •091 •094 •012	1744 9102 21022 27420	-1182-06 -4052-06 -4252-05 -1052-04 -1382-04	.001 .006 .014 .019	1551 11837 18757 15132	• 140E-05 • 116E-04 • 184E-04 • 148E-04	• 002 • 016 • 025 • 020
55 117 114 54 110	-018 -011 -014 -001 -027	9385 814E-05 842 251E-07 806 0 1064 224E-06 935 109E-05	007 000 000 000 000 000	7596 199 585 207 1923	.574F+05 .727F-07 .364E-06 .784F-07 .139E-05	•005 •000 •000 •000 •001	6474 1220 5654 2529 11577	2871-05 1312-06 2452-05 8142-06 5542-05	•004 •000 •003 •001 •008	1048 508 7731 13725	.899E-06 .364E-06 .752E-05 0. .135E-04	•001 •000 •010 0•000 •018
117 109 111 107	036 059 023 002	2540 1556-05 10616 #80F-05 9894 P15E-05 773 0 728 0	001 008 007 0000	5350 17757 9302 246 864	.402E-05 .135E-04 .704E-05 .109E-06 .582E-06	•004 •012 •006 •000 •001	15646 27549 9819 1568 5172	.766E-05 .139E-04 .462E-05 .313E-06 .272E-05	.010 .019 .006 .000 .004	14993 15142 2025 1303 8310	•147E-04 •149E-04 •187E-05 •115E-05 •809E-05	.020 .020 .003 .002 .011
115 108 112	027 044 059 042	1099 256F-06 2807 179F-05 9705 798F-05 6908 547F-05	002 002 007 005	2811 6292 16895 11805	2075-05 4745-05 1295-04 8965-05	002 004 012 008	12606 19737 26618 19558	.608E-05 .990E-05 .134E-04 .971E-05	•008 •013 •018 •018	12385 18416 15965 11608	121E-04 181E-04 157E-04 114E-04	•017 •025 •021 •016

		RUNH	51										
			UNIT 9			UNTI 10			UNIT 1	1		UNIT 1	2
		MOD	FI PROTO	TYPE	MOr	171 280	TOTYPE	N	ODEL PRO	DTOTYPE	MC	DEL P	OTOTYPE
FREE STE	REAM VEL -	3.0	0 4/5 17.6	4 415	3.0	00 4/5 17	.64 M/S	3	.00 4/5 11	A.13 M/S	-	3.00 M/S	18.13 M/S
FXIT VEL	· ·	3.9	4 1/5 23.1	7 1/5	3.4	74 M/S 23	17 M/S	3	94 4/5 2	3.82 M/S		3.94 M/S	23.42 M/S
V01 . FIC	ĴŴ	95F-0	4M3/5 24F+0	3M325	95F-1	14M3/5 .24E	10343/5	•95E	-04M3/5 .241	+03M3/S	.9<	-04M3/5 .7	4E+0343/5
SOURCE S	TPENGTH	16F+0	5 .34F+0	2	101+0	16 · 34Ë	+02	10E	+06 .51	+02	408	+05	51E+02
PACKGROU	JND	.69F+0	3	•	13E+1	13		24E	+03		.146	+03	
CAL TREAT	ION FACTO	9.31F-0	2		-20E-0	12		-14F	-02		118	-02	
PANGE		1	ö			10		•••	10		••••	10	
STACK HE	ЕІбЧТ	21.Ö	0 CM 136.5	n M	21.0	10 CM 135	.50 4	51	.00 CM 130	6.50 M	21	.00 CM 1	36.50 M
STACK D	LAMFIFH	. 5	5 CM 3.6	Ó M		55 CM 3.	60 4		-55 CM	3.60 M		•55 CH	3.60 M
SAMPLE	TOTAL	PAW	NORMALIZED P	ROTOTYPE	RAW	VORMALIZED I	PROTOTYPE	RAW	NORMALIZED	PROTOTYPE	DAW N	IORMALIZED	PROTOTYPE
PT.	(PPM)	(ARFA)	CONC(-) CO	ONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-) (CONC (PPM)	(ARFA)	CONC(-)	CONC (PPH)
77	.000	A56	.297F-06	.000	270	.20AE-06	•000	586	.449E-07	.000	205	.137E-06	.000
78	.001	726	.637F-07	.000	251	.179E-06	.000	672	.448E-06	• 000	910	.153E-05	.001
67	.002	565	Ο.	0,000	224	.13AF-06	.000	1084	.878E-06	.001	1395	.249E-05	.005
76	.001	936	•44]F-06	.000	547	.6338-06	•000	889	.675E-06	•000	325	.368E-06	.000
70	.001	431	Ο.	0,000	735	.920E-06	•000	1074	*848E+06	•001	244	.214E-06	.000
79	.001	1361	-120F-05	.001	157	•352E-07	•000	562	•215E-07	.000	178	*835E-07	•000
87	.000	797	.191E-06	.000	247	•173F-06	•000	234	0.	0.000	139	.594E-08	.000
A4	.006	996	.548F-06	.000	653	•795E-06	• 0 0 0	1696	.152E-05	•001	3636	•693E-05	.005
00	+001	1180	-879E-06	.000	800	-102E-05	• 0 0 0	504	.273E-06	•000	159	.455E-07	•000
R A	.010	2377	• 30 3E - 05	.001	4200	•623E=05	• 0 0 3	6445	-64AL-05	• 0 0 4	1471	•264E=05	•005
71	.001	850	• 304F-06	• 0 0 0	271	•210F=06	• 0 0 0	404	-168E-06	•000	_ 525	.770E-06	• 0 0 1
72	.008	736	•817E-07	.000	545	• 165E=06	• 0 0 0	1552	·137E-05	• 0 0 1	5395	+104E=04	• 0 0 7
50	.001	499	•552E=06	.000	495	+5541-06	• 0 0 0	284	.428E-07	•000	144	+15HE=0/	•000
02	.024	1091	• / 191 = 06	.000	1500	.2098-05	• 0 0 1	100/1	•1555-04	• 011	8321	·10/E=04	• 91]
45	• 026	2045	• 349E-05	• 000	2795	• 4 0 8 5 - 0 5	• 0.02	14025	- 445-04	+010	10571	-2006-04	• 014
51	. 11 1 4	2200	• 349F = 05	. 002	5000	,H986-05	• 0.04	1051	• [[[[]]]]	• 0 0 3	2345	+4355-02	• 0 0 3
74	+ 0.01	014	· / / / = / 0	.000	360	• 1400 TUD	• 0 0 0	1344	1155-05	•000	1202	+1900-00	+000
	-007	ECUO	• 4 325 = UD 9 705 = 05	- 000	53/3	7005-05	.000	1224	-1125-05	.002	4 5 0 0	2145-06	.000
76	016	612	A # 1 90, # 0 3	0.000	610	5005-06	.000	5425	5415-05	.004	รั้งรั้ง	163F-04	
23	*010	833	2565-06	000	1048	1405-05	.001	6722	468F-05	.003	2713	-006F-05	.006
68	0.25	6247	- 397F-05	004	12220	1855-04	008	17949	185F-04	.013	7026	1365-04	
61	033	5850	926F-05	004	11459	173F-04	008	16629	171E-04	.012	7183	140F-04	010
69	000	751	-109F-06	.000	161	414F-07	.000	376	1336-06	.000	359	442E-06	. 800
25	008	803	202F-06	2000	574	.674F-06	.000	1837	156E-05	.001	4744	-913E-05	.006
82	018	760	1258-06	.000	941	-130E-05	.001	6952	.701E-05	.005	9396	183E-04	.013
86	1023	1097	-730F-06	1000	3300	.490E-05	.002	11354	.116E-04	008	9188	179E-04	.012
66	.012	2278	-285E-05	2001	3438	506E-05	.002	6102	612E-05	.004	2938	-555E-05	.004
at	014	7136	-116F-04	.005	6454	.107E-04	.005	4690	.464E-05	.003	800	1325-05	.001
52	.001	426	•243E-06	.000	371	.367E-06	•000	348	.110E-06	.000	307	•339E-06	.000
F4	.002	1045	•636E=06	.000	503	.70 HE-06	• 0 0 0	583	-355E-06	• 000	791	.130E-05	.001
47	.016	948	.442F-06	.000	1247	.)70E=05	• 0 0 1	5872	-588E-05	.004	8605	.168E-04	• 011
K 3	,028	1078	•6955-06	.000	3322	.488E-05	• 0 0 S	13115	.1342-04	.009	15553	.2395-04	.016
51	.041	6567	-105E-04	• 005	10545	-150F-04	• 0.07	19125	1072-04	•014	11299	•221E-04	• 015
55	• 017	7451	•121F-04	• 005	6698	•101E-04	• 0.05	6375	• 640E=05	• 0.04	1768	+3537-02	• 0 0 2
117	• 0 0 0	186	•1/1F-05	+ 000	S03	•115E=06	• 0 0 0	1.309	• 589E = 07	• 000	- 621	+20/L=00	• 0 0 0
114	• 0.0 %	1007	• 7081 - 00	• 000	944	• 1 / 5 2 - 0 5	• 001	1970	•1405-02	• 0.01	1041	• <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	+004
54	• 00 }		• • • • • • • • • • • • • • • • • • • •	• 000	2024	• 184F = US	• 0 0 0	1154	-9/45-00	• 001	0706	1015-04	.000
110	.020	1622	• DD / F = UD 1676 - DE	• 0000	2643	• / 5 4 5 T U S	+001	11006	•/0/E=00	•003	0005	1765-04	• 013
100	* 0.26	6615	• 1 · · / · · · · · · · · · · · · · · · ·	• 0 0 1	2272	1236-04	- 006	17767	1935-04	.013	10572	2075-04	.014
111	1018	6503	1048-04	1005	6270	9415-04	.004	6256	628E-05	.004	1562	2885-05	. 0.0.2
107	1001	727		• 000	187	7508-07	.000	526	200F-06	. 000	827	1375-05	1001
106	1010	845	2776-06	1000	125	1075-05		าวัล ไ	369F-05	.003	5248	1015-04	. 007
115	018	1160	- H43E-06	.000	2457	355F-05	.002	744A	794E-05	.005	8089	157E-04	.011
108	020	2307	2401-05	1001	4021	7336-05	.003	13665	140E-04	.010	10917	214F-04	lõis
112	034	5152	803F-05	.004	8672	131F-04	.006	16261	167E-04	.011	9906	193E-04	.013
116	,014	รี่ว์หัก	-442F-05	004	5475	-819E-05	.004	5149	.512E-05	.004	2149	- 199E-05	.003

	RUN # 52							••			2	
FREE STREAM N	(FL. 4.50 M) 3.94 M	PROTOTYH /S 26.46 M	1/5 4	100FL PI	20TOTYPE 26.46 M/S 23.17 M/S	M(4 3	0DEL PI	ROTOTYPE 27.20 M/S 23.82 M/S	M0 4	DEL P9	10TOTYPE 27+20 M/5 23+82 M/5	
VOL FLOW SOURCE STRENG BACKGROUND	.95F-04/43 TH .16F+06 .76E+03	/S .24E+03M3 +34E+02	958 • 958 • 108 • 218	-04M3/5 .2 +06 .3 +03	4E+03M3/5 4E+02	•95E •10E •27E	-04M3/5 .2 +06 .5 +03	4F+0343/5 1E+02	.95Ë .40Ë .15Ë	-04M3/5 •7 +05 •5 +03	4E+0343/5	
PANGE	ACTOR.41E-02		•226	10	56 50 14	+15t·	-02 10	24 50 4	•115		36 E0 4	
STACK DIAMETE	RAW NOR	4 136.50 4 3.60 14LT7ED PROT	M IOTYPE RAW	NORMALIZEI	39.50 M D PROIOTYPE	RAW	NORMALIZED	3.60 M PROIOTYPE	RAW N	55 CM	PROTOTYPE	
PT. (PF 77 .00	PM) (AREA) CUI	NC'(-) CON((PPM) (ARFA 205 205	() CONC(-)	CONC (PPM) 0.000	(AREA) 341	-115E-06	CONC (PPM)	(ARFA) 197	-135E-06	CONC (PPM)	
78 .00 47 .00	1 885 - 13 758 -	369E-06 352E-08	.000 466 .000 269	•632E=0 •155E=0	6 •000 6 •000	1526	-558E-06 -207E-05	•000	1394	-158E-05 -389E-05	•005	
76 .00 70 .00	17 A02 . 17 659 0.	1336-06	.000 421).000 1246	-523E-0	6 •000 5 •001	1454 3159	.105E-05 .477E-05	•001 •005	877	-227E-05	•001 •000	
79 .01 87 .00	1 927	488E-06 946E-06	.000 454 .000 827		5 •000 5 •000	395 833	-202E-06	•000 •000	185	.235E-06 .877E-07	• 0 0 0	
84 .00 00 .00	08 1015 1 01 1032 1	741E-06 787E-06	.000 707 .000 739	•122E-01	5 •000 5 •000	3660 381	.540E-05 .178E-06	•003 •000	3882	117E-04 157E-06	•005 •000	
9A .01 71 .00	5 <u>1847</u> 1 755 0.	310E-05 C	.001 4614).000 230	.107E-0 .606E-0	4 •003 7 •000	9683	.155E-04 .245E-06	•007 •000	2803	.P30E-05	.004	
72 .00	07 660 0. 00 912 •	446F-06).000 478 .000 446	.661E=0 .584E=0	6 •000 6 •000	1559 393	.212E-05	•001 •000	4091 213	.123E-04 .185E-06	.006	
• ? •01	3 623 0. 12 170 0.		1207 1000 1207	-243E-0 267F-0	5 •001 6 •000	5183 861	.811E-05 .971E-06	+004 +000	5813 1330	-177E-04 -368E-05	.008 .002	S
63 01 74 00	3 2325 - 9 1758 -	446E-05 285E-05	001 3359	.764E-01 .497E-01	5 .002	7312 5341	.116E-04 .437E-05	•005 •004	2959 2473	.727E-05	•004 •003	Ű
73 .00	15 R94 11 32 0	395E-06 0	.000 665 .000 96	•111E=0	5 •000 0•000	1383 285	.193E-05 .198E-07	.001	2830 655	.A38E-05	•004 •001	
75 .01	3 AAA 2 1029	372E-06	000 1146 000 1378	-224E-0	5 •001 5 •001	4452 4897	.690E-05 .764E-05	•003 •003	6813 5126	.209E-04 .156E-04	•010 •007	
AR 02 61 01	4455	105F-04 970E-05	003 6776	-159E-0	4 • 005 5 • 002	14357 12610	233E-04	.011 .009	7725	.237E-04 .971E-06	•011 •000	
49 00 85 00	0 765 6 854	284F-07 281F-06	1000 205 1000 733	0. 128E-0	0.000 5 •000	365	-152E-06 -220E-05	•000	425	-849E-06 -105E-04	.000	
87 .01 86 .01	6 953 6 1077	562E-06 914E-06		-246E-0		5288 6515	.829E-05 .103E-04	.004	7159	219E-04		
44 DO 01 01	9 613 0 . 2 5459	134F-04		-220E-0	5 .001	3655	559E-05	.003	4255	128E-04	006	
52 00	n 647 n. 1 810	0	2000 200	0. 313F=0	0.000	294	-347E-07	.000	472	996E-06	.000	
AR .01	3 793	08E-06	000 1334	274F-0	5 001	4763	742E-05	.003	6375	1958-04	009	
	4690	12F-04	-003 7397	174E-0	005	13094	212E-04	.010	A952	276E-04	.013	
117 .00	0 440	267F-06	•000 340 •000 975	327F-0	.000	394	-200E-06	000	309	4865-06	000	
	3 1898	325E-05	.001 1176	•235E-0	•001	2334	-3405-05	\$00.	243	2798-06	.000	
113 :01	7 1495	2105-05	.001 3125	-708F-0		7119	•113E-04	•005	6526	200E-04	.009	
111 .01	1 4381	01F=04	.003 4237	•977E-0	• 003 • 003	4072	-1930-04 -628E-05	.003	1539	4346-05	.005	
107 00	н <u>94</u> ғ	5431-06	-000 271 -000 1052	•160E=00	•000 •001	2677	-3975-05	• 005	2700	·111E-04	• 001	
	936 • 8 1645 •	53F-05	•001 <u>3551</u>	•196E=0 •732E=0	•005	7854	·125E-04	.006	6830	-209E-04	.010	
112 .01	5 4132 ·	959F-05 110E-04	.003 6196 .003 4190	• 145E-04 • 966E-05	• •004 • • 003	4805	.1748-04 .749E-05	•008 •003	2294	.670E-05	.010	

		HUN #	53							-			
		MOD		TYDE	MO		TATVE				м		DITOTY PF
FREE S	TREAM VEL .	1.5	0 MZS 8-8	12 14/5	1.	50 M/S 8	82 MZS	1	.50 M/S	9.07 475		.50 M/S	9.07 M/S
FXTT V	FL.	4.0	0 M/S 23.5) M/S	4.	NN M/S 23	.51 M/S	4	.00 M/S 2	4.17 M/S	4	.00 M/S	24.17 M/S
VOL FI	IUW	. 25E-0	44375 ·54E+0	343/5	• 95E -	04M3/5 •24E	+0343/5	• 9 5E	-04M3/5 .24	E+03M3/5	- 955	-04M3/5 •	245+0343/5
BACKCD	STRENGTH	• 15E+0	5 • 34E.+0	12	• 10E + -	116 • 34 E	,+0,~	- 10E - 20E	+0.2 +0.2	E+02	.126	+03	215405
CALTHO	ALION FACTO	2.41F-0	2		22F-	n2		15F	-02		116	-02	
PANGE		j	Ô		••••	10		••••	10		••••	10	
STACK	HEIGHT	28.0	0 CM 182.0	0 M	28.	0 CM 182	•00 M	28	.00 CM 18	2.00 M	28	3.00 CM	183.00 4
STACK	I) I AME I FIR	- 0 A H + 5	5 CM 3.5 มายมหา 1 7 ติง ถ		0 4 4		000101V0E	0	•55 CM	3.50 M 000101VPE			2.3.54 M
PT.	(PPM)	(AHEA)	CONCI-1 C	ONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC(PPM)	(ARFA)	CONC(-)	CONC (PPM)
77	.001	1445	-595E-06	.001	439	.239E-06	.000	394	.578E-07	.000	210	.930E-07	.000
78	.001	176	.4H3E-06	•000	331	-152E-06	• 0 0 0	456	•920E-07	• 0 0 0	256	•141E-06	• 000
76	• 001	255	• 4 / 3F = 06	• 0 0 0	228	-6975-07	• 000	417 585	163E=07	.000	650	-562E-06	.000
70	.001	739	448F-06	.000	192	315E-07	.000	632	199E-06	.000	199	-815E-07	.000
79	.002	875	.576F-06	.001	378	.190E-06	•000	749	.253E-06	.000	895	-RORE-06	•001
87	• 001	972	• 568E - 06	• 001	513	.290E-06	• 0 0 0	465	•969E=07	• 0 0 0	185	•668E=0/	• 0 0 0
94	.001	602	-7/05-06 -318E-06	. 000	210	-541E-07	.000	473	.1015-06	.000	837	-748E-06	:001
9A	002	463	565F-06	.001	598	-367E-06	.000	1012	398E-06	.001	246	-131E-06	.000
71	.000	612	- 327F-06	.000	166	-186E-07	•000	329	.220E-07	.000	168	.491E-07	• 0 0 0
72	-001	728	•437E-06	-000	183	• 323E = 07	• 0 0 0	650	•199t =06 7455 = 07	•000	423	-315E-05	•000
02	.000	200	- 303F=07	.000	100	4528-07	.000	315	143E-07	.000	360	250E-06	.000
45	1003	660	-773F-06	.000	380	·191E-06	.000	1585	.714E-06	.001	1346	128E-05	.002
63	.005	784	-490F-06	• 000	745	•502E-06	• 0 0 0	2826	·145E-05	-002	1345	-1295-05	• 0 0 2
74	• () () •	.114	-4541-07	• 000	173	- 3475-05	•000	526	1315-06	.000	607	-508F-06	.001
90	0,000	79	0.	0.000	27	0.	0.000	78	0.	0.000	0	0.	0.000
75	.002	265	n.	0.000	236	.751E-07	•000	812	-248E-06	.000	870	•782E-06	.001
62	• 0.05	414	•613E=06	• 001	1002	•694E=06	•001	2788	·1386-05	.002	1365	·1305-05	• 002
61	.006	1654	-1316-05	.001	2831	-217E-05	.002	3196	140E-05	\$00.	909	-823E-06	.001
60	.000	544	-396E-06	.000	143	0.	0.000	289	0.	0.000	121	0.	0.000
25	.003	850	•553E-06	• 000	331	•152E=06	• 0 0 0	1173	-497E-06	• 001	1564	•151E=05	• 0 0 2
87	.010	700	• 541F = UF	.000	687	-430E-06	•001	4191	-174E-05	-003	- 3568	-4202-05	.005
66	.006	633	-347E-06	:000	1103	448E-06	.001	3349	169E-05	\$00°	2009	207E-05	.003
91	.001	41	0.	0.000	558	.687E-07	• 0 0 0	528	-132E-06	• 0 0 0	367	•257E-06	• 0 0 0
52	• 003 • 003	843	•546F=06	• 000	910	-5195-06	• 0 0 1	15/3	1975-06	.001	1002	-920E-06	.001
63	.016	810	-5155-06	.000	1347	972E-06	.001	6870	362E-05	.005	6719	699E-05	.009
53	029	1605	.127E-05	.001	5478	.460E-05	.004	15276	.825E-05	.011	9111	.0392-05	.013
5]	.038	7785	•712E-05	.006	15198	.102E-04	• 0 0 9	18927	-103E-04	•014	5937	•607E-05	• 0 0 8
1,17	• [1]]	6743	・ つわたたー りつ ・ んちんだー りろ ・	• 005	4927	- 385E - 05	• 0 0 3	6169	8375-07	.002	356	- 114E=00	.000
114	.000	409	1351-06	.000	212	-557E-07	.000	321	176E-07	.000	327	215E-06	.000
54	0,000	53	0.	0,000	0	0.	0.000		0.	0.000	0	0.	0.000
110	• 023	1128	- R16F=06	• 001	2199	+166F=05	• 001	9736	-520L-05	• 007	9330	-962E-05	• 013
109	044	10488	-967E-05	:009	13867	1116-04	.010	19580	106E-04	.015	7455	-766E-05	.010
111	.014	6713	.610F-05	005	5023	-394E-05	.004	4940	.256E-05	.004	947	-R63E-06	.001
107	.002	770	-477E-06	• 0 0 0	216	-590E-07	• 0 0 0	614	-179E-06	• 0 0 0	844	•7555-06	• 001
106	.014	1262	•523F=06	• 0 0 1	2772	-103E=05 -212E=0E	•001	4541	·/ 14E=05	.003	10443	- 108F=05	.009
100 .	019	2503	212F-05	.002	6040	476E-05	• 0 0 4	19786	102E-04	.014	13352	139E-04	.019
112	.049	9475	. 909F-05	.008	14555	.116E-04	•010	22083	-120E-04	.016	9527	-982E-05	.013
116	.016	6561	•596E-05	.005	5752	•45.3E=05	• 0 0 4	5945	•311E-05	•004] 454	•139E-05	• 0 0 2

FREE STE FXTT VEL VOL - ELL SOURCE S PACKGROU CALTARA	REAM VFL. DW Strength UND TION FACTO	RUN # 54 MODEL 3.00 M/S 4.00 M/S .95F-04M3/S .16F+03 7.41E-02	T 9 PROTOTYPE 17.64 M/S 23.51 4/S .24E+03M3/S .34E+02	MOO 3.0 95E-0 17E+0 27E-0	UNIT 10 EL PP0 0 M/S 17 0 M/S 23 6 324 6 34 8 3 2 2	TOTYPE •64 M/S •51 M/S •03M3/S •02	40 910 10 10 10 10 10 10 10 10 10 10	UNIT 1 DDEL 9 00 M/S 1 00 M/S 2 04 M3/S 24 04 51 03 02	1 0TOTYPE 8.13 M/S 24.17 M/S E+03M3/S E+02	• 951 • 401 • 0 • 1 1 1	UNIT 1 00EL 9 3.00 M/S -04 M3/S .2 5.05 .5	2 01017PE 18+13 M/S 24+17 M/S 24+17 M/S 24+17 M/S 54E+03 51E+02
9404947787609740812325343052819526612433157440391 1066787 HB 107678777777787609740812325363052819526612433157440391 110714075559	JND I I ON I I ON I I GHT FAL (PO) 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 00000 00000 00000 000000	$ \begin{array}{c} \text{A} = 0 \\ A$	$\begin{array}{c} 182.00 \\ 3.59 \\ M \\ 17E \\ 0.57$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{A} = 23 \\ \text{A} = 162 \\$	• 00 • 00 • 00 • 000 • 0000 • 000	EEE 8) 205 2 ARE110339144258283189925753964039474848172854910 205 2 ARE11033914425828318992575154596851138239661233 122005 11027158252249774838601033 122005 110275964039474848172854910 205 2 4043 2269533 122005 110275964039474848172854910 205 2 4043 2269533	18 20 18 20 18 20 19 20 10 11 20 20 20 21 22 23 24 25 26 27 28 29 20 20 21 21 22 23 24 25 26 27 28 29 20	M M PE 3.550 OF 3.550 OF 3.550 OF 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000	•0110 •1110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••110 ••00 ••	- -	A2.00 M PRONC (PPM) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000
107 106 115 108 117 116	002 010 018 029 029 029	725 -114 902 -147 1020 -170 2220 -396 2056 -366 227 -203	051-05 001 052-05 001 052-05 001 052-05 001 052-05 002 052-05 002 052-05 002 052-05 002 052-05 002	162 953 1995 4920 5041 558	-7432-07 -1352-05 -3042-05 -7762-05 -7962-05 -7142-06	•000 •001 •003 •004 •000	3012 6951 13078 12554 1461	-7762-05 -310E-05 -744E-05 -142E-04 -136E-04 -139E-05	•002 •005 •010 •009 •001	4622 7457 9935 9867 1174	-11255-05 -9655-05 -1565-04 -2085-04 -2085-04 -2455-05	007 011 014 014 002

FREE SE EXIT VE SOURCE BACKGRO CALTBRA	REAM VEL . UW STRENGTH UND TION FACTO	(706 // 55 MODEL PROTOT 4.50 M/S 5646 4.00 M/S 23.51 95F-04M3/S 23.51 16F+06 34F+03 84F+03 96.41F-02	YPF M/S M/S M/3/S	MODEL 4.50 M/ 4.00 M/ 0955-04M3/ 1055-04M3/ 2255-02 2255-02	MIF 10 PROTOT S 25.46 S 23.51 S 24E+02 .34E+02	YPF M/S M/S M3/S	MO 4. 9555++ 1055- 155-	UNIT 11 DFL P27 50 4/5 24 04 4/5 24 06 51E 06 51E 03 02	TOTYPE •20 M/S •17 M/S •03M3/S •02	MO 4 • 95F • 405E • 21E • 11E	UNIT 1 DEL UNIT 1 .50 M/S .00 M/S -04M3/S .2 .03 .05 .03 -02 10	2 01017PF 27.20 M/S 24.17 M/S 4E+0343/S 1E+02
STACK H STACK D SAMPLE PT • 77 78 47 76 70	EIGHT 1 AMETER TOTAL (PPM) .000 .000 .000 .000 .000	29.00 CM 1H2.00 .55 CM 3.59 PAW NORMALIZED PA (ARFA) CONC(-) CO A30 0. 713 0. 934 .25HF-06 A74 .BBUF-07 9A3 .39AF-06 491 104F-06	H MTYPE NC(PPM) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	28.00 CM -55 CM RAW NORMA (ARFA) CONC 271 -33 291 -58 625 -89 286 -70 748 -11 283 -63	182.00 3.58 LIZED PRO (-) CON 9E-07 2E-07 2E-07 3E-07 3E-07 0E-07	M TUTYPE C(PPM) •000 •000 •000 •000	28. RAW N (AREA) 4490 4485 4883 4883 5875	00 CM 182 55 CM 3 0RMALIZED P CONC(-) C .802E-07 .149E-07 .776E-07 .248E-06 .644E-07	•00 M •58 M ROTOTYPF ONC (PPM) •000 •000 •000 •000	28 PAW N (ARFA) 258 281 232 255 0	.00 CM 17 .55 CM 0 0RMALMIZED 0 .0800C(-) 0 .154E-06 .141E-06 .721E-07 .144E-06 0.	82.00 3.58 PROTOTYPE CONC(PPM) .000 .000 .000 .000 .000 .000 .000
774081770065	0001 0001 0000 0004 0000 0001 0005 0008	1007 • 469E-06 870 • 767E-07 906 • 179E-06 1434 • 168E-05 823 0 952 • 256E-07 1014 • 496E-06 957 • 324E-06	000 000 000 001 000 000 000 000 000	726 11 302 10 425 40 2397 51 265 19 305 11 734 11 576 77 1310 25	4925-005 9-0-007 9-007 9-007 9-007 9-005 9-0000000000	000 000 000 000 000 000 000 000	513 7774 21487 21487 8691 2163 2163 2163 21733	127E-06 563E-06 195E-06 283E-05 347E-07 677E-06 285E-05 733E-05 379E-05	000 000 001 000 000 000 000 000 001 003	247 4665 2703 11052 2404 2598 2560	182E-06 905E-06 207E-06 107E-06 285E-06 185E-05 135E-05 655E-05 912E-06	• 000 • 000 • 000 • 000 • 001 • 001 • 000 • 003 • 003
67787678195	004 002 002 007 004 013 006 000 000	929 -244E-06 968 -355E-06 317 0- 1003 -454E-06 749 0- 3661 -400E-05 843 0- 818 0-	000 000 000 000 000 000 000 000 000 00	535 .67 435 .43 741 .12 832 .13 942 .13 5959 .13 2959 .13 2957 .0 340 .5 340 .20	4E-06 1E-06 9E-05 9E-05 9E-05 1E-06	• 000 • 000 • 000 • 000 • 000 • 000 • 000 • 000	775 7782 2888 24677 3895 4398 1398	0 560E-06 572E-06 405E-05 335E-05 131E-04 571E-05 0 159E-05	0,000 ,000 ,002 ,002 ,002 ,006 ,003 0,000 ,001	238 1170 1400 1764 0 209 2227 4797	909E-07 301E-05 373E-05 103E-05 487E-05 0 0 0 632E-05	000 001 002 005 0002 0000 0000 0000 0000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	010 013 005 0.000 001 001 011 019 024 029	A70 .767-07 1099 .727F-06 1869 .291F-05 976 .378F-06 927 .239E-06 835 0. 1459 .175E-05 4700 .110F-04 5402 .129E-04	000 000 000 000 000 000 000 000 000 00	757         145           2132         455           2132         455           2431         452           1011         183           3375         75           7677         183           3839         863	1554 1555 1555 1555 1555 1555 1555 1555	• 000 • 001 • 001 • 000 • 000 • 000 • 000 • 000 • 000 • 000 • 000 • 000	5908 2562 464 713 4517 8191 11208 3378	914E-05 914E-05 351E-05 443E-07 458E-06 674E-05 128E-04 178E-04 486E-06	004 0002 0000 0000 0003 0005 0008 0008 0008	5094 10440 5785 5757 5037 5037 5037 5037 5037 5037 503	153E-04 262E-05 116E-05 151E-04 236E-04 236E-04 342E-06	007 000 000 000 000 000 001 000 001 000 000
11/4 11/4 11/4 11/7 11/7 11/7 11/7 11/7	.001 .007 .010 .012 .023 .008 .001 .008 .012 .023	970 970 970 972 366F-06 972 366F-06 972 366F-05 4357 994F-05 4357 105F-05 4673 105F-06 969 358F-06 1077 6645-06 1763 961F-05	000 000 000 000 003 003 000 000 000 000	586         80           300         10           1222         23           2520         54           6403         14           3338         74           343         20           811         13           1518         30           3564         14           1518         14           3564         14	4455 	000 000 000 0002 0002 0002 0000 0000 0	25624 497655 111665 30171 50221 50221 991			366051 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57723 57725 57725 57725 57725 57725 57725 57725 57755 57755 577555 57755555555	108E-04 173E-04 185E-04 185E-04 132E-05 102E-05 102E-04 160E-04 160E-04 160E-04 160E-04	005 0.000 008 009 009 001 000 005 007 011

		QUN #	56			· ·				
			HMIT 15			UNIT 14			UNIT	3
	_	MOD	EL PROT	OLABE	MO	NFL PRO	TOTYPE	<b>M</b> 1	ODEL PH	INTO YPE
FRFF	STREAM VEL	1.5	in M/S 9,	48 H/S	1.	50 M/S 8	.31 M/S	1	.50 M/S	A.40 M/S
FXIT	VFL.	3.6	8 M/S 23.	23 4/5	4.	02 M/S 22	.2A M/S	4	.66 M/S 2	6.10 M/S
V01 . 1	FIOW	.428-0	4M3/5 .11E+	0343/5	•53E-	04M3/5 •12E	+03M3/5	• 32E	-03M3/S .75	6E+03M3/5
SOUPCI	E STRENGTH	.16E+0	16 .34E+	102	10E+	06 .215	+02	.10E	+06 .16	5E+02
BACKG	RAUND	-63F+0	3	•	. 15E+	13		• 59E	+03	
CALTRI	RATION FACTOR	2.34F-0	12		-30S-	02		•14E·	-02	
PANGE		1	0			10			10	
STACK	HEIGHT	21.0	0 CM 136.	50 M	3.	А́ СМ 25	N F0.	3	.45 CM 2	2.43 M
STACK	DIAMETER		8 CM 2	47 M		41 CM 2	67 4		93 CM	6.05 M
SAMPI	F TOTAL	RAW	NORMAL TZED	PROTOTYPE	RAW	NORMAL TZED	PROTOTYPE	RAW	NOPMALIZED	PROTOTYPE
PT.	(PPM)	(ARFA)	CONC(-)	CONC (PPM)	(ARFA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)
77	005	690	-114E-06	.000	11470	.147E-04	.005	933	.105E-06	.000
78	.000	18	0.	0.000	1383	.872E-06	.000	158	0.	0.000
67	029	1791	237F-05	.001	55701	.753E-04	.024	17295	-247E-05	.004
76	.016	1475	172E-05	<b>.</b> 001	28689	-383E-04	•012	11722	.179E-05	•003
70	.016	- 97A	.703F-06	.000	4204	.474F-05	•005	62449	.974E-05	.014
79	2002	735	.206E-05	2000	4306	.484E-05	.002	737	.741E-07	• 0 0 0
A7	2002	726	-188F-06	000	3741	410E-05	.001	2241	.310E-06	•000
84	.039	3894	-666F-05	2003	16683	-104E-03	.033	13638	.209E-05	.003
00	036	3629	612F-05	002	71998	976F-04	• 0.31	12586	.193E-05	.003
99	.029	2493	380E-05	2002	5794	692F-05	•00S	108211	.169E-04	.025
71	.013	1519	-181F-05	.001	4451	-50AE-05	•00S	44970	.700E-05	.010
72	.027	6811	-126E-04	005	46()()4	.620E-04	• 0 2 0	10555	.156E-05	.002
63	.000	647	-266F-07	.000	164	0.	0.000	505	.377E-07	.000
.72	.041	8684	.165E-04	.007	62329	•844E-04	• 027	33785	•222E=02	.008
65	.040	9330	•174E-04	.007	52346	.707E-04	•023	46447	.723E-05	•011
63	.016	3510	•588E-05	.002	7318	.900E-05	•003	49281	.768E-05	•011
74	.007	2003	-280E-05	.001	4717	•544E-05	• 0 0 2	19949	-30HE-05	.005
73	.015	4432	.776F-05	.003	25356	• 337E-04	•011	6463	.971E-06	.001
90	.013	3682	.623F-05	.002	21469	-284E-04	• 0 0 9	5582	-833E-06	.001
75	.027	7908	.144F-04	.006	39794	•535E-04	• 017	18780	·2005-02	• 0.04
62	.013	4391	.768F-05	.013	15487	.2025-04	•006	14655	-552F-02	• 0 0 3
6.8	.036	8655	-164F-04	.006	19429	.242E-04	• 0.08	93461	·1465-04	•021
61	.013	1107	•967E-06	.000	943	•269E-06	• 0 0 0	55548	• <u>8665</u> =05	• 013
60	.002	1246	·125E-05	•000	3711	.406E-05	•001	856	•927 <u>E</u> =07	• 0 0 0
p <b>G</b>	.0]4	5369	•968E-05	.004	20095	•255E-04	• 0 0 8	9440	·1445-05	•00 <u>2</u>
52	.024	BULB	-167E-04	.007	24819	• 345E=04	• 012	< 35 ( [	• 3575=02	• 0 0 2
R.A.	-023	8149	•154E=04	• 006	23446	• 3116 - 04	• 0 1 0		• 451 2 - 92	• 007
66	• 005	1451	•167E=05	• 0 0 1	1986	• 4 4 4 5 - 0 5	• 0 0 1	13911	• (145-05	• 0 0 3
81	.010	1440	· 1055-05	• 0 0 1	5201	• 1 / ZE = 0 =	• 0 0 1	1/02/	1265-04	• 010
52	.002	1131	• 1025-05	• 6 0 0	1014	• 19 18 = 0.5	• 0 0 1	1023	-1245-00	• 000
64	- 001	224	• HIHE - 0/	• 000	22676	+1715-07	• 0 0 0	33314		• 000
p 4	• 021	1271	• 1555 = 04	• 0 0 5	56247	• 200E - 04	• 010	36614	• 344L-03	• 005
53	.124	10431	· / 11/5 - 114	• 00 8	22014	- 3005-04	• 0 0 0	72627	1125-04	017
51	.0.11	94A1	+ 1910-04 (000-05	• 007	6105		007	76171	1248-04	
	• 0.22	(733)	+47 3F -05	• 0.02	4135	-4045-00	.001	17471	11115-06	
11/	-012	11.32	• 10 15 = 0 5 0616 = 06	• 0 0 4	13/00	1765-04	.006	16021	247E-05	.004
114	-015	2711	4916-09	* 0 0 7 4 0 0 7	6610	4035-05	.003	7787	1188-05	.002
1.4	• 000	5/11	+4705-04	• • • • • •	17109	•/11/3E=0/3	.007	23182	3505-05	005
112	*010	6337	• 1 <del>4 3 5 - 0 4</del>	• 0 0 0	17400	2205-04	.007	28575	4435-05	.007
112	. 020	6.361	1715-04	• 0 v co	16622	2195-04	007	71761	112E-04	.016
109	017	2420	4615-04	.002	4274	4845-05	.002	59617	930F-05	.014
	• 007	1620	+4015-00	• 0.02	1400	3676-05	- 001	2386	- 332F-06	
107	012	1010 630E	0716-00	004	11365	-1455-04	.005	16345	252F-05	.004
110	• 11 1 1	ובוד	+ 7710-00 1006-04	• 004	12466	1615-04	.005	22231	344F-05	
112	• • • • • • • • • • • • • • • • • • • •	6112	1005-04	• 007	16204	2125-04	.007	33857	526F-05	.008
112	027	2017	1705-04	• 0.0.7	15414	2065-04	.007	60002	936F-05	.014
116	• 017	4184	7265-05	.003	6740	821F-05	.003	35030	544E-05	.008
110	• 11 1	-+100	• 12.01 = 0.5	• 6 6 9 3	01.40				₩.2.₩.₩.₩. 18.₩P	• • • • • •

		411.1 4	57							<b>`</b>
				- vor	MO	NEI 14	TOTYPE	M		OTOTVOF
corr i	CTOFAL MEL	2 0	A M/C 10 0		ر ۱۹ ۱	00 M/S 16	62 M/S	3	00 4/5 1	6.79 M/S
- MFF - 1	VELAM VELA	2+0	R M/S 21.2	3 4/5	4	02 M/S 22	28 M/S	4	66 4/5 2	6.10 M/S
	FLOW	42F-0	44375 .11F+0	113/5	.53F-1	0443/5 .12E	+0143/5	•35E•	-03M3/5 .75	E+03M3/5
รอับดิก	E STRENGTH	.15F+0	6 .34E+6	2	-16E+0	06 •SIE	+02	.10E	•06 •16	E+02
RACKG	หกมุ่งก	-67E+0	3		•10E+0	0.4		•24Ē·	+03	
CALTER	RATION FACTOR	?.3HE-0	5		• 50E-1	02		•14t·	-02	
PANGE		- 1	0		2	))) ), , , , , , , , , , , , , , , , , ,	<b>N N</b>	2	10 CM 3	N FAC
SIACK	HEIGHT	21.0	0 CM 135.5	<u>n</u> M	3.1	45 LM 75	67 M		47 UM 6	6.05 M
SINCK	DIAMETER TOTAL				D A W	NODWAL TZED	PROTOTOR	RAW I	NORMAL TZED	PROTOTYPE
	Γ ΙΟΤΑL (ΟDM)	(AUEA)		A JC (PON)	(AREA)	CONCIE	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)
5 7 7	014	327	-650F-06	.000	32865	.873E-04	.014	923	.214E-06	•000
78	049	1504	343F-05	001	108923	.2958-03	• 0 4 7	3614	.106E-05	.001
67	075	2065	-572E-05	2001	72138	.195E-03	• 031	11855	·3645-05	• 0 0 3
76	008	428	.106F-05	.000	12716	•321E-04	• 0 0 5	12492	1016-06	• 00 3
70	.013	731	•258E-06		421	0.	0.000	5/923	-141C=04	.015
79	.002	5/3	0.	0.000	0,000	•144 <u>C</u> =04	0.002	1971	0.	0.000
87	0.000	4405	1725-04		70715	1915-03	.030	9883	302E-05	\$00.
00	0.000	4040	0.	0.000	0	0.	0.000	0	0.	0.000
68	017	1635	395F-05	001	390ľ	.794E-05	.001	65677	.205E-04	•015
71	005	1141	193E-05	.000	10142	.250E=04	• 0 0 4	1560	•413E-06	•000
ήŻ	.022	4526	-158E-04	.003	40976	.110E-03	• 017	6262	·1895-05	• 0 0 1
97	.000	688	-91HE-07	.000	151	0.	0.000	12212	•217E=00	• 000
92	.030	7574	• 2H2E-04	• 005	49700	1135-03	• 0 / 1	26067	-4095-05 837F-05	-005
65	• 030	8130	• 105F=04 404E=05	.005	2014	2785-05	.000	27102	-841E-05	.006
<u> </u>	• 001	630	• 1995 = V5	0.000	3142	597F-05	.001	-1167	290E-06	.000
74	- 011	3117	100F-04	.002	19941	519F-04	.008	4966	149E-05	.001
80	:015	<u></u>	0.	0.000	410	0.	0.000	63760	.199E-04	.015
75	.019	6311	-231F-04	.005	27521	•727E-04	•015	11679	• <u>358</u> E-05	•003
47	.009	3749	-126E-04	.002	11996	• 301E-04	• 005	9638	.2948-05	• 002
AA	.023	5525	•203E=04	• 004	13746	.3495-04	005	60773	1275-04	.009
F1	.000	226	0.	A.000	2691	0. 4405-05	- 001	1101	361F-06	.000
29	.001	2671	1165-04	.002	14733	3765-04	1006	4755	141E-05	001
00	016	5457	212F=04	.004	21232	554F-04	.009	12230	376E-05	.003
36	014	6001	218F-04	004	15811	406E-04	.006	15256	.470E-05	.003
66	.002	1271	247E-05	000	1709	.193E-05	• 0 0 0	4135	-122E-05	•001
01	.001	ัรกร	0.	0.000	928	0.	0.000	2566	•728E=06	• 0.01
c 2	.001	853	•756E-06		2700	.490E=05	• 0 0 1	155/	+4125=00 2705=06	• 0 0 0
F. 4	• 000	607	0.	0.000	16106	"- 3865-0A	-006	10718	- 328F-05	200
63	• 012	4987	■1//F=04 2665=04	• 0 0 3	15077	410E-04	•007	19258	596E-05	004
	• 015	6000	2544-04	005	14528	3715-04	.006	47336	148E-04	.011
55	:013	1959	52HF-05	<b>1</b> 001	2533	-137E-05	.001	51065	-159E-04	.012
117	000	197	-527F-06	.000	1088	-233E-06	• 0 0 0	1295	-330E-06	• 0 0 0
114	008	3621	.121E-04	.002	10117	•250E-04	• 0.0.4	-5585	·16/E=05	•001
54	.008	<b>5</b> 550	•635E-05	• 001	5564	+125E=04	• 00 č	12550	-07HE-07	• 107
110	•011	5356	-1921-04	• 004	11753	1075-04	•005	11787	- 362E - 05	.003
113	• 00 2	4013	•13/E=04 	.003	11184	270F-04	004	41278	129E-04	.009
110	011	2144	-604E-05	1001	2497	409E-05	•001	38120	.119E-04	.009
177	. 001	1154	1995-05	. 000	2275	-349E-05	.001	1574	.418E-06	.000
106	001	586	736E-07	.000	1347	.105E-05	• 0 0 0	1680	451E-06	• 000
115	.004	4503	-157E-04	.003	8533	•205E-04	• 0 0 3	11391	• 349E-05	• 00 -
108	.014	6502	-239F-04	.005	10573	•262E=04	• 0 0 4	20418	• D48E=05	• 0 0 5
112	• 015	5552	•200F-04	• 004	8964	•218E=04	• 0 0 3	33735	- 1055-04	.007
116	• 0.0 0	1987	• 5 191 - 05	•001	2005	+4 19C=Uh	•001	21101		• • • •

		4UN #	58							<b>`</b>
			11NI1 12				01400			STOTVOF
		MOÜ		11 YPF	() IN / 1		03 M/C	4	50 4/5 2	5.19 MZS
ERFE SI	TREAM VEL	4.7	0 11/2 28.4	13 11/2	4.		20 M/C		66 4/5 2	10 M/S
FXIT VF	- L. •			24 00/5	ຣາຊີ.		63M3/8	326	03M3/5 .75	+034375
VOI FI	UW .	. 4 / 0	41177 .118+0	146 175	• 7 30 - 0	06	.62	105.	06 16	F+02
SUNACE	21850011	• 1 nr + 0	0 <u>•</u> .04671		9254	0.2	W7,	SOF	03	
HACKISH'	IUNI	* <u>555</u> * V	2		205-1	02		14F-	.02	
LALIMK/ Dance	VITOA PACIO	4.376.49	c n		• 0.04	10		••••	ïo	
CTACK L	JE LOUT	21 1	й см 136 ч	50 M	3.1	AS CM 25.	0 <b>1</b> 1	3.	45 CM 2	2.43 M
STACK P	TAMETED		8 CM 2.4	47 M		41 ČM 2.	67 4		.93 CM I	6.05 M
SAMPLE	TOTAL	RAW	NORMAL TZED	PROTOTYPE	RAW	NORMAL TZED P	PROTOTYPE	RAW N	IORMALIZED I	PROTOTYPF
PT.	(PPM)	(AREA)	COVC(-) (	CONC (PPM)	(ARFA)	CONC(-) C	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)
77	012	812	-152E-05	.000	27056	.111E-03	•01S	1155	.266E=06	• 000
78	037	1365	.492F-05	.001	83380	•342E-03	•036	2204	.7595-06	• 000
47	024	1789	•752F-05	.001	51537	•211E-03	•023	3303	-128E-05	• 001
76	006	1236	•412E-05	.001	8398	• 342E=04	•004	1030	· 30 3E = 03	+ 901
70	.008	738	-107E-05		413	•1426=05	• 000	30009	•101C-04	0.000
79	.002	455	0.	0.000	4915	.1996-04	• 002	770	7075-07	
A7	.020	481	0.	0.000	40	• 349E = 07	022	4064	163F-05	
94	• 0 2 5	35.13	• J MAE = 94	.007	107	4348-06	. 000	670	343E-07	.000
00	• 000	21.22	• 340F = 00	*001	2406	955F-05	.001	34238	158E-04	.008
71	• 010	6162	2405-05	. 000	7558	307F-04	.003	845	.121E-06	.000
72	1013	2621	126F-04	.002	25656	1058-03	.011	2340	.823E-06	.000
65	.000	498	0.	0.000	125	179E-06	.000	690	.477E-07	• 0 0 0
02	019	5316	-291E-04	.004	33155	.136E-03	.014	4922	.204E-05	• 0 0 1
45	019	7491	.425F-04	.006	26374	.)08E-03	•015	10580	•469E=05	• 002
67	.006	2049	·911E-05	.001	2937	117E-04	• 0 0 1	15454	1005-06	.003
74	.001	704	• 862F-06	.000	1422	• / 5 5 5 7 0 5	•001	1676	4165-06	
73	• 00B	2417	-117F - 04	- 002	13497	• 5512 = 04	• 0 0 0	46457	2175-04	.011
90	• 011	. 537	• 1778 - 06	.000	10276	7845-04	-008	4941	205F-05	. 601
75	• 0 1 2	4.1/6	1535-04	• 000	10610	425F=04	.005	4378	178E-05	.001
62	• 007	5070	+100E=04 000E=04	003	7840	3105-04	003	32929	152E-04	.007
	008	035	229F-05	. 000	716	-261E-05	.000	07516	.144E-04	.007
20	:002	1125	344F-05	.000	2644	.105E-04	.001	912	•1255-06	•000
85	006	2179	991F-05	.001	10335	.421E-04	• 0 0 4	2056	-690E-06	.000
82	.011	4467	.239F-04	.003	14764	.603E-04	• 006	5620	•5367-02	•001
A.A.	000	3911	.205F-04	.003	12538	•512E-04	• 005	5329	.2705-05	• 0 0 1
66	.003	1546	.603E-05	.001	2259	• R95E - 05	• 0 0 1	22210	• 405-00	• 001
ក្	.004	971	•250E-05	• 000	457	• 154E=05	• 0 0 0	32039	·1710-04	.000
52	.002	1038	• 2915-05	.000	200	0575-04	.000	720	618E-07	.000
<u>64</u>	• () () ()	2726	• C41E=00	• 000	11619	4505-04	.005	5124	213E-05	.001
P 3	.008	2164	2745-04	00/5	11071	489F-04	005	10400	461E-05	-002
	• 012	6073	2776-04	004	8327	330F-04	.004	25457	-117E-04	.006
21	*010	1436	5358-05	.001	1003	379E-05	.000	30495	.141E-04	.007
117	000	579	9518-07	. 000	821	-304E-05	.000	710	.571E-07	+000
114	005	2432	115E-04	.002	6549	. 266E-04	.003	2660	•973E-06	• 0 0 0
54	005	2244	.106E-04	.001	5914	.240E-04	.003	3832	-152E-05	• 0 0 1
110	.007	3608	187F-04	.002	8205	-334E-04	•004	2083	•511E-05	+001
117	.007	3676	.191F-04	.003	6964	•293E=04	•003	2195	.3105-05	• 002
109	.012	4420	•237E-04	•003	1246	• 307E=04	•003	24700	1145-04	.006
111	.007	1737	•720E=05	• 901	1749	0725-05	.001	810	108F-06	.000
107	• 003	1915	• 7775-05	.000	6604	2015-04	.002	2804	104E-05	. 661
105	.004	5356	• 1046 -04	+091	6300	250F+04	.003	6003	254E-05	.001
112	• UU/5 A A 3	3207	- 10004	1002	1122	299F-04	.003	9598	423E-05	2002
110	• 0 0 0	3671	191F-04	1003	5647	229E-04	-002	18945	-862E-05	.004
112	:007	2737	133E-04	500	4014	-165E-04	•00Z	14367	.647E-05	•003
* F F F F				₩ ₩ 11 5						

		KUN # 6	52				
			UNIT 14			UNITIC	
		MODE	L PROTO	TYPE	00M	EL PRJ	DITPE
FREE ST	REAM VEL.	1.50	)M/S 7.9	8 M/S	1.5	U M/S /	62 M/S
EXIT VE	L.	1.00	) M/S 8.5	2 1/5	4.0	3 M/S - 21	.04 M/S
VOL. FL	ŬŴ	.62E-04	M3/5 .14E+0	3M3/5	•70E-0	4M3/5 +15E	HUJM3/S
SOURCE	STRENGTH	.16E+U6	•23E+0	2	■10±+0	5 •34È	+02
BACKGRO	UND	.86E+03	3	-	·15E+0	3	
CAI THRA	TION FACTO	R.30E-02	5		.20L-0	2	
RANGE		10	Ĵ		1	U	
STACK H	EIGHT	4.80	бСЧ 31.2	0 M	21.0	Ú CM 136.	•50 M
STACK D	TAMETER	. 10	) CM 4.5	5 M	• 4	7 CM 3.	No 4
SAMPLE	TOTAL	RAW N	JURMALIZEU P	RUTOTYPE	RAW N	URMALIZED (	PROTOTYPE
PT.	(PPM)	(AREA)	CUNC(-) C	ONC (PPM)	(AREA)	CUNC(-) (	CONC(204)
77	.004	8131	.100E-04	• 004	227	•790E-07	•000
78	029	53296	.124E-04	.028	518	.381E-06	•000
67	.033	60594	■825ビ=04	•032	839	•715E-06	•000
76	.013	23281	•310E-04	.012	697	.567E=06	•000
70	.001	2706	-255E-05	•001	534	•39HE-UD	•000
79	.001	2552	•233E-05	.001	301	■150E=06	•000
87	.000	950	•150E-06	.000	227	.790E-07	•000
84	.031	55258	•752E-04	•029	5508	.214E-05	•001
90	.019	34598	•400E-04	.018	1480	·138E-05	•001
88	.007	11346	■145E=04	.006	1883	-180E-05	• 001
71	.003	6020	•713E-05	• 003	889	.167E-06	• 0 0 1
72	.019	32701	•44Uビ=Ü4	.01/	2557	·250E-05	•002
93	.000	844	0.	0.000	275	-129E-06	•000
92	.035	56726	•/72E-04	.030	6959	.708E-05	• 005
65	•034	54937	•747E-04	•059	6985	.710E-05	•005
63	•00b	12841	-166E-04	.000	2806	.276E-05	• 002
74	.001	2063	•166E-05	•001	559	-800E-07	• • • • • •
73	.012	18070	.23dE-04	•009	4043	+404E=05	•003
80	.004	5874	•692E-05	.003	1300	•119E=05	•001
75	.023	31564	·424E-04	•017	8741	• 8935-05	• 005
62	.012	16277	•213E-04	•008	5080	•513E=05	• 0 0 3
68	.021	29623	• 397E-04	• 016	8581	• B / BE = V D	•005
61	.001	2651	+247E-05	• 001	322	+2125-00	• 0 0 0
69	.001	2141	•1//E=05	•001	669	• 9115-02	• 0 0 0
85	•013	10322	•214E=04	• 0 0 H	0995	•/116-05	•005
82	• 023	22002	• 343E=04	•012	13317	•13/2-04	• 0 0 9
86	.023	24955	•333E=04	• 01.3	13405	.1445-04	•010
66	• 025	23201	•4016-04	• 018	13310	+143E-04 443E-04	• 10 9
81	.002	3400	·420E=05	• NUZ	100	• 002E-V0	•000
54	• 001	2042	•103C=03	• 001	274	-1495-00	•000
54	0001	1200	•891C=00	• 000	14162	- 1465-00	• • • • • •
23	• 050	24616	• 21 35 704	• 0 1 1	21607	.2265.04	- 015
23	029	20010	• JJ4E-04	+014	17660	1825-04	
51	• 021	20020	+ 31 3E - 04 2 3 6 6 - 06	013	2061	1095-05	- 001
,??	• 004	1427	7705-06	• (10,5	211	1665-06	.000
<u></u>	• 0 0 0	12556	1618-04	.005	7555	769F-05	.005
127	0000	1004	2105-06	. 000	244	967F-07	.000
ารัส	017	16867	2215-04		12862	1325-04	.009
112	.010	16/80	2206-04	.009	15458	1548-04	.010
112	- 025	23662		1012	โห้วังไ	188F-04	
fĭí	.004	5600	-6561-05	. 603	2547	-254E-US	-002
167	.001	2117	2011-05	.001	753	.620E-U6	.000
106	.010	10764	13/F-04	.005	7253	7388-05	• 005
115	.016	13977	1816-04	. 607	12545	124E-04	.005
រំតំន័	. 02ĭ	17497	230F-04	.009	18025	186E-04	•012
ίĭž	020	18189	239F-04	009	15706	-162E-U4	.011
116	.004	5347	-62UE-05	-002	3025	.299E-05	.002
* * *				• • •			

	RUN # 63	
		UNIT 12
FREE STREAM VEL	3.00 M/S 15.95 M/S	3.00 M/S 15.64 M/S
EXIT VEL.	1.60 M/S 8.52 M/S	4.03 M/S 21.04 M/S
VOL. FLUW	•62E-04M3/5 •14E+03M3/S	•70E=04M3/S •15E+03M3/S
BACKGROUND	•102+00 •232+02	-17F+03
CALIBRATION FACTOR	R.38E-02	•20E-02
RANGE		$\frac{10}{20}$ cm $\frac{126}{20}$ m
STACK DIAMETER	4.60 LM 31.20 M	-47 CM 3-06 M
SAMPLE TOTAL	RAW NORMALIZED PROTOTYPE	RAW NORMALIZED PROTOTYPE
РТ. (РРМ)	(AREA) CONC(=) CONC(PPM)	(AREA) CONC(=) CONC(PPM)
78 .054	1/00/ •464E=04 •009 97555 ·267E=03 ·052	
67 .041	73809 2022-03 046	2952 5785-05 002
76 .010	18/75 •497E-04 •010	1090 •1916-05 •001
70 .001		
87 0.00Ū	760 0. 0.000	158 0. 0.000
84 • 036	59891 •163E-03 •032	6320 ·128E-04 ·004
88 .006	9038 -227E+04 -004	2502 4855=05 .002
71 .004	7561 187E-04 004	1209 2166-05 001
72 • 020	31629 .852E-04 .017	4924 •9885-05 •003
93 .000	46423 126F=03 025	
65 012	20025 5318-04 010	3125 614E-05 002
63 •006	7833 *1946-04 .004	3081 .6055-05 .002
73 -010	15037 .393F=04 .008	3615 -716F=05 -002
80 .000	1314 .140E-05 .000	463 609E-06 000
75 •018	24539 •656E=04 •013	7731 •157E=04 •005
68 .014	16466 .433E=04 .008	8857 181F=04 003
61 .006	7718 1916-04 004	3945 785E-05 003
6 <b>2</b> • 001	2883 •574E-05 •001	476 •6365-06 •000
82 .015	12123 •313E=04 •000 18199 •481F=04 •009	4327 •804E=V5 •003 8062 •164E=04 •005
86 .013	15090 395E-04 008	8455 .172E-04 .006
66 • 014	14855 • 388E-04 • 008	9631 •197 <u>E-04</u> •007
52 .001	2045 • 342E=05 • 001 2617 • 500E=05 • 001	560 -811E=05 •001
64 .001	1276 130E-05 000	612 919E-06 000
83 •012	13666 • 355E-04 • 007	7948 •1625-04 •005
51 .015	14244 .371F=04 .007	
55 003	340 <u>1</u> .717E-05.001	2047 3902-05 001
117 •000	1405 •165E-05 •000	356 •387E-06 •000
54 .000		362 - 399F=06 -000
110 .010	10465 .267E-04 .005	7225 .147E-04 .005
113 •010	10226 •260E=04 •005	$6831 \cdot 138E - 04 \cdot 005$
111 .003	3499 .744E=05 .001	2631 512F=05 002
107 .003	2974 599E-05 .001	2105 .402E-05 .001
106 •006	621/ •150E=04 •003	4289 •856E=05 •003
	10197 2598=04 .005	8705 177F=04 -006
īĭž <b>.</b> ŭiū	9566 2428-04 005	8344 .170E-04 .006
116 .003	3806 8298-05 002	2730 •532E+05 •002

	RUN # (	54				
	MOD	UNIT 14	A+V05	400	UNIT 12	TOTYPE
FREE STREAM VEL.	4.5	0 M/S 23.	93 M/S	4.5	0 M/S 23	.46 M/S
EXIT VEL.	1.6	0 M/S	52 M/S	4.0	3 M/S ,21	04 M/S
SOURCE STRENGTH	+02E=0	4MJ/5 +14E+ 6 -23E+	0303/5	•10E=0	4M3/5 •156 6 •346	+02
HACKGROUND	.69E+0	3	- L	+84E+0	2	
CALIBRATION FACTO	R.38E-07	2 n		•20E-0	20	
STACK HEIGHT	4.8	ŏСМ 31.	20 M	21.0	0 CM 136	.50 M
STACK DIAMETER	•7		55 M	е 4   Дані — АІ		06 M
PT. (PPM)	(AREA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC (PPM)
77 .000	10773	0.	0.000	85	• 312E-08	• 000
67 .033	56997	233E-03	.031	3063	9298-05	•000
76 .012	20483	-820E-04	.011	2050	.613E-05	.001
	1654	-399E=05	.001	610	.164E=05	•000
87 .001	1116	176E-05	.000	_797	2222-05	.000
84 • 028	43991	-178E-03	•023	7181	•221E-04	• 0 0 5
88 .006	6909	258E-04	.003	4196	1282-04	.003
71 .004	8309	•316E-04	.004	363	.870E-06	• 000
93 .000	663	.9992-04	0.000	106	686E-07	.000
92 •021	28609	.116E-03	015	92 <u>0</u> 2	.284E-04	• 006
65 0.000	5223	U	000.00	3301	100F-04	500
74 .002	2958	940E-05	.001	1893	5642-05	.001
73 •008	12429	+487E-04	.006	2900	.8/8E=05	<u>000</u>
75 0.000	173	0	ŏ,ŏŏŏ	58	ŏ.	0.000
62 006	6546	•243E=04	•003	3664	•112E=04	•002
61 .001	1225	2228-05	:000	671	1835-05	.000
69 0.000	10662	0.4135-04	၀ • ၀၀၀	3344	0.1025-04	0.000
82 .012	13795	543E-04	.007	6857	211E-04	.005
86 •009	10133	• 391E-04	• 005	5483	-168E-04	•004
81 .005	4341	151E-04	002	4323	1322-04	.003
52 .001	<b>ຊໍ</b> ຊໍຊູໄ	908E-05	• 001	350	-829E-06	• 000
83 .009	10369	.401E-04	.005	5977	184E=04	•004
53 •012	11035	4296-04	. 006	8692	-268E-04	• 005
51 .009	3220	- 327E=04	.004	3050	•229E=04	.005
117 .001	1585	371E-05	.000	326	•755E-06	• 0 0 0
	7112	.266L-04	.003	3485	.106E=04	200
110 .008	818Ž	311E-04	004	5155	158E-04	.003
113 •007	6687	•249E=04	•003	5791	-178E-04	•004
111 •004	3080	990E-05	.001	3418	104E-04	•002
107 001	2277	-658E-05	-001	528	-138E-05	• 000
115 .006	6224	229E-04	.003	4315	132E-04	.003
108 .005	5619	-204E-04	.003	4042	•123E+04	• 003
112 .008	5915	•217E-04	003	7394	•228E=04	0.005
			44000	•		

	RUN # 6	55	
		UNIT 12	
ICC CTREAM VEL	MODE	L PROTO	TYPE
LAT VEL	4.0		
DI FIOW	.70F-04	M3/5 .15F+(	343/5
JURCE STRENGTH	15E+00	-34E+0	12
ACKGROUND	•73E+03	3	
ALIBRATION FACTOR	2•36E-02		
TACK DETCHT	29 00	ו ראו 1927	NO M
TACK DIAMETER	20.00		K M
AMPLE TOTAL	RAW.	NORMALIZED P	ROTOTYOE
РТ. (РРМ)	(AREA)	CONC(-) (	CONC (PPM)
77 0.000	730	0.	0.000
<b>67</b> 0.000	720	0	0.000
76 .000	1090	434E-06	. 0 0 0
70 .000	1810	963F-07	000
79 0.000	750	0.	0.000
87 .000	770	•482E-07	.000
	1520	.451E-06	• U 0 1 • 0 0 0
88 0.000	670	0	0.000
71 0.000	720	0	0.000
72 .000	1170	-530E-06	<b>0</b> 00
•3 •000	750	-241F-07	• 0 0 0
	1170	•530E=06	• 0 0 0
<b>63</b> .000	850	-1458-06	.000
74 .000	810	963E-07	000
73 .001	1470	.891E-06	.001
80 .001	1680	•114E-05	• 0 0 1
<pre>/5 •001 &lt;2 •001</pre>	1930	• 145t=05 1405=05	• 0 (* )
68 001	1420	- 831E-06	- 001
61 .001	1380	-783E-06	.001
69 .000	939	.252E-06	.000
<u>95</u> .001	1968	•149E-05	• C 0 1
82 .002	3037	•2/8t-05	• 0 9 2
66 -002	3332	• 3765 - 05	-002
S005	3156	-292E-05	SOOL
52 .000	971	•540E-02	.000
<u>64</u> .001	2274	•186E - 05	• 0 0 1
53 006	4048	+005-05 -898F-05	• 003
51 .004	6026	-538F-05	.004
55 .001	1441	.856F-06	.001
117 .000	949	•264F-06	.000
114 .002	3/56	• 364E=05	• 002
	6550	• C145 - 05 - 701E - 05	• 001
113 2006	8671	956E-05	.006
109 .006	8405	.924E-05	.006
111 .001	1944	-146E-05	• 0 0 1
	1260	▲ 5 3 8 = 05 = 21 2 0 5	• 0 0 0
	5000	• 5615 - U5 - 500F-05	• UH 3 0 0 4
108 009	12090	137F-04	009
112 .007	8970	-992F-05	.007
116 .002	3480	•331E-05	•002

		QUIN # 6	.6	
			LINIT 12	
		MODE	TOPOT	TYPE
FDEE CTOF	AM VEL	3,00	M/S 15.	54 44/5
	ավու քերնուտի	4.03	M/S 21	14 14/5
		705-04		12412/5
COURCE STO	DENCTH	166-04	346+0	
DACKODALINI		•105+00	аран — арте, та В	16
CAL TODATT	) Nu ractor	• COE TU 3		
CAL PARALIN	JA FALLUR	- 305-VZ		
CTACH UET	ามา	20 10	ר גע ג בפר גע	
STACK DIAL	371   467560	20.00		
STOCK DIA	M <u>r. Ir</u> k rotal	- 13 A LI N		
DAMPLE		(ADEAL	CONC(-)	CONCIPCIA
17 1 A 17 7		<u>900</u>		
70	000	004	3476-06	000
	.000	1170	7715-06	000
74	• 000	1945	108F-06	000
10		894	8105-07	• 0 0 0
70	• 000	1227	1155-05	000
07	• 000	1952	- 068F-06	• 0 0 0
A 1	• 0 0 0	1155	7355-06	600
~ 4	1000	1027	1856-06	000
2 <b>0</b>	• 000	1065	-51HE-06	1000
70	*000	054	2505-06	• • • • • •
71	-001	1506	1585-05	001
	n 000	764	• £.000.≂000 ∩	2 200
		2104	324E-05	001
15	• 000	2350	• 124C=03	0001
<u> </u>	000	1135	• 0,02F = 0.0	• 6 6 6
<b>,</b>	• 0 0 0	1246		000
74	4000	2045	2845-05	601
00	• 000	064	2755-06	•001
75	• 001	2374	367E-05	001
23	0.61	2448	1955-05	• 0 0 1
29	0.01	2408	445F-05	001
29	0001	1311	1115-05	005
40	000	ີ ລໍຊັ່ດັ່	939F-07	.000
96	• 000	2713	449F-05	. 001
32	003	5223	1055-04	.003
96	003	4928	992E-05	.003
6.9.9.6	• 0 1 3			
A 1	.000	1006	-376E-06	.000
52	.000	1234	925F-06	.000
64	.000	1221	-894F-06	.000
83	004	5464	.111F-04	.004
53	006	8198	177F-04	016
51	004	6416	-134F-04	.004
55	.000	1222	.896F-06	000
117	000	946	.231F-06	000
114	003	4343	.841E-05	003
<b>\$</b> 4	000	1013	• 393E-06	.003
110	1005	6620	-139E-04	.005
113	005	6852	.145E-04	005
109	.005	6656	-140E-04	• 0 0 5
111	.001	1523	.162E-05	• 0 9 1
107	.000	1404	•133E-05	.000
106	.003	4752	.940E-05	.003
115	.004	5772	.119F-04	.004
108	.006	8373	.181E-04	• 0 0 %
112	.004	6265	.130F - 04	• 0 0 4
116	.001	2217	.329F-05	.001

	PUN # 67
	UNIT 12
EDEE CTUEAN VEL	MODEL PROTOTYPE
FREE SIREAM VEL.	
SOURCE STRENGTH	15F+06
PACKGROUND	85E+03
CALTBRATION FACTO	R.36E-02
RANGE	10
STACK HEIGHT	28.00 CM 182.00 M
STACK DIAMETER	
DT (DDM)	(ADEA) CONC(-) CONC(DDM)
77 .000	-857 $-217E-07$ $-000$
78 .001	1525 2446-05 001
67 .000	987 .491F-06 .000
76 .000	873 •795E-07 •000
70 .000	1038 •676F-06 •000
79 <u>000</u>	1290 •1596=05 •000 904 1665=04 000
	1224 1356-05 000
90 .000	1454 218F-05 000
88 .000	1008 567F-06 000
71 .000	989 •499E-06 •000
72 .001	2140 •466F-05 •001
<u>93</u> .000	
	3577 •1025=04 •002
<b>6</b> 00 <b>6</b> 3	1134 - 102F - 05 - 000
74 .000	958 387E-06 000
73 .001	2306 \$265-05 .001
90 .000	900 <b>.</b> 90-3795. 556
	2905 7286_05 002
61 .002	2948 • 758E-05 • 002
69 .000	1177 •118F-05 •000
95 .002	2734 •680E-05 •002
82 .003	4530 •133E-04 •003
86 .003	4686 • 1395-04 • 003
	1460 220E-05 000
52 .000	978 4595-06 000
64 .000	925 -267E-06 -000
A3 .003	5158 •156E-04 •003
53 .004	6366 •1995-04 •004
51 .003	5056 • 152k = 04 • 003
• • • • • • • • • • • • • • • • • • • •	1380 •1045-05 •000
114 .002	3334 .8975-05 .002
54 0.000	851 0. 0.000
110 .003	5131 •155E-04 •003
113 .004	5470 •167E-04 •004
	1233 1386-05 000
106 -002	3486 •952E=05 1002
115 .002	3798 106E-04 .002
108 .004	6197 •193F=04 •004
112 .004	5323 •162F-04 •004
116 .00]	1696 •305E=05 •001

RIN & 6A UNIT 12 MODEL 1.50 M/S 4.55 M/S .14E-03M3/S PRÖINTYPE 7.33 M/S 22.20 M/S .29E+0393/S .51E+92 FREE STREAM VEL. FREF STREAM VEL FXTT VEL. VOL. FLOW SOURCE STRENGTH .16F+06 .63E+Ŭ3 RACKGROUND CALLBRATION FACTOR. 38E-02 RANGE 10136.50 STACK HEIGHT STACK DIAMETER 21.00 CM M 63 CM 4.10 M RAW NORMALIZED PROTOTYPE SAMPLE TOTAL Рт. 77 (MAA) (ARFA) CONC(-) -177F-07 CONC (PPM) .000 .000 658 •433E-06 •306E-06 .001 78 .001 1349 .001 1137 .001 47 0.000 547 (). 0.000 76 0.000 79 0,000 81 0. **0** • 0.000 87 0.000 495 .003 -152E-05 .003 24 3161 .761E-06 00 .00S 1393 .002 .000 .204E-06 .291E-05 .914E-06 .577E-05 .000 71 968 .006 .006 72 5462 .002 03 2148 .002 02 .012 10216 .012 332 65 0 . 0.000 0.000 152E-05 720E-06 272E-05 63 .003 .003 .00] .001 1825 74 .006 5145 73 .006 .005 -246E-05 -455E-05 -652E-05 .005 75 4724 6.2 .009 8190 .009 .013 11460 68 .013 .001 •633E-06 .001 6.9 1681 -548F-06 .001 1530 25 .00i .020 .020 17082 92 .990E-05 .020 .020 17186 .996F-05 86 -226E-05 4378 .005 66 .005 •267E-05 •286E-07 52 .005 5060 .005 .000 .000 676 64 .021 17420 -101E-04 .021 83 102A •138E-04 •114E-04 •109E-05 • 059 53 23483 .023 .023 51 19517 .002 .002 55 2448 .001 1593 13793 -1092-05 -580E-06 -792E-05 -247E-05 -110E-04 .001 117 .016 .016 114 .005 .005 54 4731 .022 110 18915 •05S .024 -118E-04 -814E-05 -221E-05 20167 113 .017 14162 109 4299 111 .005 .005 •164E-05 •703E-05 3356 .003 106 .003 .014 .014 115 .029 108 .029 -140E-04 23952 .025 20794 .121F-04 112 16974 -983E-05 .020 .020 116

		RUN # 6	•		
		MODE	UNIT 12		
FREE STRE	AM VEL.	3.00	14.64	5 1/5	
FXTT VEL.		4.55	1/5 22.20	1.1/5	
SOUPCE ST	RENGTH	•14E=03	13/5 -79F+U	503 37 5	
PACKGROUN	ີ	.66F+03	• 2 • 1		
CAL TBRATI	ON FACTOR	4.38E-02			
STACK HEI	GHT	21.00	CM 136.50	) M	
STACK DIA	MEIFR	.63	CM 4.10	) M	
SAMPLE			ORMALIZED PR	POTOLYPE	
77	0,000	93		0.000	
78	0.000	40	0.	0.000	
61 76	.002	2652	-240E=05	.002	
70	.002	2074	170E-05	.002	
70	.000	954	.353E-06	• 9 9 9	
87	- 005	4845	5036-05	.005	
00	.000	126	.782E-07	.000	
	0.00	1050	1705-06	000	
72	.006	5315	- 560F-05	.006	
	• • • •				
02 45	.014	12354	•141E=04	• 014	
63	. 865	4876	507E-05	.005	
74	.004	3565	• 349E-05	.004	
73	• 002	4987	•521E=05	• 005	
75	.013	11437	-130E-04	.013	
×2.	.008	7171	•783E-05	-008	
61	:000	916	• 307E-06	1000	
69	.001	1078	•205E-06	.001	
<u>6</u> 5	.008	6361	• 790F=05	•008 •007	
86	.012	10205	-115E-04	.012	
66	-008	7079	•772E-05	.008	
9] 5 <b>2</b>	.007	1315	• 1596-05 • 7876-06		
64	.000	794	-160E-06	000	
83	.015	12475	•142E-04	.015	
51	.023	18163	•2245-04 •211F-04	.022	
55	.004	3774	-375E-05	.004	
117	.002	2165	•181E-05	• 002	
114	• 0 1 0	0040	• • • • • • • • • • • • • • • • • • •	• 010	
110	-015	12546	·143E-04	-015	
113	.015	14601	• 1475-04 • 168F-04	.017	
111	005	4513	·463E-05	ູ້ລູດຮ	
107	•002	2559	•228E-05	• 00S	
115	.002	1904	• 150E-05	.002	
108	.017	14420	.166F-04	.017	
112	.015	13133	•150F-04	.015	
110	• VV4	+ 1 A A	● ♥ CLDE( ■ V D)	• U.U.+	

		RUN # 7	0	
			UNIT 12	5 - 1 - 1 <b>- 1</b>
FREE STH	REAM VEL.	MODEI 4.50 4.55	M/S 22.20	4/S
VOI FLO	JW STOCNOTH	-14E-03	M3/S .29E+03	117/S
BACKGROU	IND	•10E+08	• DIC+ 96	
CAL TRRA	LON FACTO	R.38E-02 10		
STACK HE	EIGHT Eameted	21.00	CM 136.50	iM Mi
SAMPLE	TOTAL	RAW N	ONALIZED PR	OTOTYPE
77	.000	723	•144F-07	.000
78 67	.001	4773	•834F-06 •732E-05	• 0 0 1 • 0 0 5
76	003	3079	•427E-05	003
70	.000	735	-361E-07	000
н <i>1</i> я4	.005	4809	•739E+05	.005
00	-000	752	•668E-07	•000
71 72	•000 •007	995 6278	.487E-06 .100E-04	•000 •007
02	.000	806	•164F-06	.000
65 63	0.000	6231	996E-05	•007
74	.000	740	-1345-06 -5796-05	.000 .004
75	011	10022	-168E-04	.011
62	.006	5636	-888F-05	006
68	•017	14615	• 6446 - 04	.017
40 85	000	960 5095	•442E-06 •791E-05	.005
8 <u>2</u>	.012	10200	-171E-04 -161E-04	.012
66	.009	7807	-128E-04	009
52 52	.011	9477	•158E-04	.011
64 87	• 000 • 010	9179	• 192E - 06 • 153E - 04	.000
53	.015	12630	-215E-04 -201E-04	.015
55	.005	4998	-7736-05	.005
114	006	5514	• 945F - 05	.006
54	.001	1557	•152E-05 •127E-04	.001
113	.008	7192	•117E-04	008
111	.005	4603	-7026-05	005
106	.005	5130	•1107-05	.005
115	.008	6972 9897	•113E-04 •166E-04	.008
112	.012	10381 4834	•174F-04 •743E-05	•012 •005
	-			

		RUN # 7	1		
			SI TIMU		
		MODE	L PROTO	TYPE	
FREE STR	EAM VEL.	しょうり	1/5 1.1	3 M/S	
	• nal	4.00	M3/6 20510	0 9/0	
SOUDEES	TRENGTH	155+06		1913/3 19	
BACKGROU	ND	A7F+03		C	
CAL TRRAT	ION FACTO	37E-02	•		
RANGE		10			
STACK HE	IGHT	28.00	CM 182.0	n M	
STACK DI	AMETER	. 63	CM 4.1	0 M	
SAMPLE	TOTAL	RAW N	DRMALIZED P	ROTOTYPE	
PT.	a 000	(AREA)	<u>çove(-)</u> c		
77	0,000	0.10 AG1	SALE_07	0.000	
67	-000	1072	1005-06	1000	
75	000	1244	231F-06	. 800	
70	.000	1947	.109E-06	000	
79	.000	967	.600E-07	000	
	-				
94	.001	1374	• 31 SE-06	.001	
20	.000	1013	• HH4E -07	• 000	
<u>д</u> д	6 000	500 500	• n43r ~ 07	a ann	
12	001	1347	320E-06	1001	
63	0.000	870		0.000	
62	002	2300	.120F-05	002	
55	.003	3545	.1658-05	.003	
53	.000	1099	•142E-06	.000	
74	.000	1035	• 1025-06	.000	
7.3	+001	2024	+/(3t=V5 1135=04	.001	
75	004	1042	-1926-05	000	
62	2002	2380	933E-06	.002	
68	004	4190	-205F-05	004	
61	.000	000	.185F-07	.000	
6.0	0,000	600	1).	0.000	
A 5	.003	3550	•1456-05	•0.03	
22	+ 00H	6940	• 3/75 - V5	• (10 %	
66	006	5000	- 3116-04	• 0 0 7	
a)	2000	100	.742F-07	2000	
5Ż	.000	930	.3716-07	.000	
6.4	.000	990	.742F-07	.000	
FR	.009	8530	•455E-05	.009	
53	.014	11560	•567E-05	.014	
50	.014	1670	• 0030 = V5 4066 = 06	• 014	
117	.000	1040	1055-06	. 0001	
114	008	7280	-396F-05	.008	
54	.000	990	·742E-07	000	
110	.014	11760	.673E-05	.014	
113	• 014	15050	· 589E-05	.014	
100	- 215	13110	• /5/F=95	.015	
107	• 0 0 1	1750	+0405-400 5446-06	• 001	
106	1011	9610	540F-05	.011	
AF	₩ 41 Y J	t is de cé	ಆಗ್ ನಗಳ ಗಳಲ್ಲಿ ಕಾರ್ಟ್ ಕಾರ್ ನಾಡ್	<b>a</b> w a t	
108	.025	18050	.106E-04	.022	
112	.017	14240	•926F-05	.017	
116	. 905	5050	•258E−05	.005	

		RUN # 7	2	
FREE STRE FXTT VEL VOL FLOW SOURCE SI BACKGROUN CALTBRATI RANGE STACK HEI	IAM VEL . RENGTH ID ION FACTO IGHT	400E 3.00 4.55 14E-03 15E+03 8.37E-03 8.37E-02 28.00	UNIT 12 L PROTO M/S 14.6 M/S 22.2 M3/S 29E+0 .51E+0 CM 182.0	TYPE 5 M/S 0 M/S 3M3/S 2 0 M
STACK DIA SAMPLE PT. 77	(PPM) 0.000	63 RAW N (ARFA) 850	CM 4.1 DRMALIZED P CUNC(-) C D.	0 M ROTOTYPE ONC (PPM) 9.000
6778997706677776668865685551111111111111111111111	$\begin{array}{c} 0.009\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.$	$\begin{array}{c} \text{R}45032223609441975471224959486190000209522923609411103313886 \\ 1110393609443975479143051909123939313886 \\ 181015397548695292939109123313886 \\ 181015397548695291091239313886 \\ 1810153975486952910959494959496952910959209520952095209520952095209520952095$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

		RUN # T	7 3	
ERFE STR EXIT VEL VOL - FLU SOURCE S	EAM VEL. W Trength	MODE 4.51 4.55 14E-03 15E+06	UNIT 12 EL PROTO M/S 21.0 5 M/S 22.0 5 M3/S 29E+0 5 FE+0	0178F 98 M/S 20 M/S 13M3/S 12
CALTBRAT RANGE STACK HE STACK DI SAMPLE PT. 77 78 47 76 70	ION FACTU IGHT AMETER TOTAL (PPM) .001 .001 .001 .001 .001	R. 37E-07 1( 28.0( 28.0( 0 0 0 0 0 0 0 0 0 0 0 0 0	CM 182.0 CM 182.0 CONC(-) 136E-05 662E-06 784E-06 133E-05 152E-05	00 M 10 M 2ROTOTYPE CONC (PPM) 001 001 001
79 97 94 98 71 77 98 71 77 98 66 34	001 000 001 001 000 002 002 001 003 004 002 002	1542 760 1909 1373 916 285 1925 2925 1925 4124 293 1139	147E-05 185E-07 215E-05 116E-05 443E-06 200E-05 403E-05 626E-05 626E-05 720E-06	001 000 001 000 000 000 002 001 004 007 007
8744468886856855551 8744468886856855551 1157	0.000 905 004 005 001 001 003 007 008 000 000 000 000 000 000 000 000	425 425 425 425 425 425 425 425 425 425	0. 665E-05 646F-05 152E-05 157E-05 197E-05 193E-04 113E-04 953E-05 421E-06 556E-08 308E-06 103E-04 120E-04 123E-05 0. 537E-05	0.000 005 004 005 001 007 008 000 000 000 000 000 000 000 000
114 110 113 109 111 107 106 115 108 112	0.007 007 009 009 009 001 000 005 008 010 009	5715 6682 7742 7869 1896 4918 6729 8393 7690	0 110E-04 130E-04 132E-04 219E-05 271E-05 271E-06 773E-05 111E-04 151E-04 129E-04	0,000 007 009 009 001 000 005 008 010 009

RUM # 74 **NWIL 1S** PROTOTYPE MODEL 1.50 M/S 3.98 M/S 10.06 M/S 26.71 4/S FREE STREAM VEL. FXTT VEL. -15E-0343/S .43E+0313/5 VOI . FIOW .15E+06 SOURCE STRENGTH -51E+02 BACKGROUND .62E+03 CALTBRATION FACTOR.37E-02 RANGE 10 0 CM 136.50 M 70 CM 4.55 M NORMALIZED PROTOTYPE 51.00 STACK HEIGHT •70 STACK DIAMETER SAMPI F RAW TOTAL Рт. 77 (PDM) CONC(-) (ARFA) CONC (PPM) -334F-07 -127F-06 .000 .000 678 .000 .000 842 78 -520F-06 .001 1530 .001 67 .000 -149F-06 .00è 76 880 -180F-05 .000 .000 974 70 .000 .000 79 691 .409E-07 0.000 564 87 0.000  $\Delta$ . 0.000 .002 .748E-06 1929 54 591 а**.** 0.000 0.0 127E-05 293E-06 .003 .003 AA 2934 1133 .001 .001 71 2100 .102E-05 .00Ż 72 .002 590 0,000 33 0 . 0.000 .008 -357E-05 -452E-05 .009 6966 02 .010 8538 .010 65 .005 4572 -559E-02 .005 63 .000 .780F-07 .000 74 756 .003 .003 -145F-05 73 3161 -148E-05 .003 3208 .013 -357E-05 .008 6875 .008 75 .010 .451F-05 .010 8520 £2 15953 703E-05 229F-06 .016 .01.6 6.0 .001 .001 1020 61 •111E-06 •189E-05 .000 8]4 .000 69 .004 .004 25 3936 ·5545-05 .012 10320 .012 92 .017 14152 14353 •773E-05 •813E-05 .017 RA .018 .018 66 -231E-05 .005 .005 4656 A ] .275E-06 •00I .001 52 1100 .000 .105E-06 .000 803 64 .670E-05 12343 .015 .015 23 -119E-04 .026 .026 21533 53 17706 .025 51 .022 .976E-05 .007 -329F-05 .007 6382 55 .179E-06 . 000 932 117 .000 .011 .011 .485E-05 9105 114 .000 -129E-06 .000 846 54 .021 -944E-05 .021 17204 110 .020 .919E-05 113 .020 16710 .024 .106F-04 .024 19225 100 -260E-05 -598E-06 -593E-05 .006 .006 5164 111 .001 .001 1667 107 11005 .013 106 .013 .01Å -825F-05 .013 15055 115 .023 .023 18923 -105F-04 108 .026 .026 20926 -116F-04 112 -558E-05 .012 10394 116 .015

2114 # 75 UNIT 12 MODEL PROTOTYPE 20.12 M/S 26.71 M/S .43E+03M3/S .51E+02 3.00 4/5 FREE STREAM VEL. 3.58 M/S .15E-03M3/S FXTT VFL. VOI FIOW VOL FLUW Soupre Strength .15E+06 PACKGROUND .64F+03 CALTBRATION FACTOR.37E-02 RANGE 10 STACK HEIGHT СМ 136.50 21.00 м O CM 4.55 M NORMALIZED PROTOLYPE STACK DIAMETER .70 TOTAL SAMPI F PAN CONC(-) +469E-07 Рт. 77 (PPM) CONC (PDM) (APFA) .000 .000 585 -865E-06 -170E-05 .001 1401 .001 78 1002 .002 2134 67 1005 .002 2151 -172E-05 76 .000 .000 70 966 368F-06 . 773 -147F-06 .000 79 .000 605 0. 0.000 87 0.000 .006 .006 5692 -577F-05 -126F-07 94 555 ,000 00 .000 .395E-05 .004 .004 4100 Q R .673F-06 .001 .001 71 1533 .005 -518E-05 .006 72 5177 63 .480E-07 .000 .000 586 .015 .016 -142F-04 92 13057 . 022 -196F-04 022 17772 45 . 452E-05 189E-06 .005 .005 4596 63 809 .000 74 .000 .469F-05 .005 .005 4749 73 -510E-06 .000 .000 828 80 .010 8591 .010 -908E-05 75 .107F-04 .012 67 .012 .012 9994 -112E-04 .01S AA 10454 .006 -5391-05 .006 5357 61 .000 .441E-06 .000 59 1030 .533E-05 . 366 .006 5311 25 22 .013 11189 -120E-04 .013 . ejá 14710 -161F-04 .014 26 -143E-04 66 .016 .016 -125E-05 91 .001 1742 .001 •1605-05 •214F-06 •251E-07 •112E-04 •195E-04 .000 57 .000 831 .000 .000 64 666 -510--015 .012 10487 A3 .022 53 17711 51 .017 -153E-04 -293E-05 .017 14075 .003 3206 55 .003 .223F-06 .000 .000 117 839 •738F-05 •174E-06 .008 .008 114 7104 .000 .000 796 54 ·125E-04 .014 11601 .014 110 -148E-04 .016 .016 13634 113 11572 3124 .125E-04 109 .014 014 . .003 .003 .283E-05 111 .573F-06 .001 .001 1145 107 ,004 .008 6595 .680E-05 106 .012 10511 .109E-04 .012 115 .016 13253 ·144F-04 .016 108 .012 .012 -109E-04 112 10147 3558 .333E-05 116 .004 .004

	RUN # 7	6	
FREE STREAM VEL. FXIT VEL. VOL. FLOW SOURCE STRENGTH BACKGROUND CALIBRATION FACTOR	400E 4.50 3.98 15E-03 15E+06 66E+03 37E-02	UNIT 12 L PROTOT M/S 30.17 M/S 26.71 M3/S .43E+03 .51E+02	YDE M/S M/S M3/S
MACKGROUND         CALLBPATION       FACTOF         RANGE         STACK       HEIGHT         STACHT       HEIGHT	$\begin{array}{c} \bullet \bullet$	$\begin{array}{c} CM & 136.59\\ CM & 7E0 & CO\\ CM & 7E0 & CO\\ CM & LI7E0 & CO\\ CO & 175E-055\\ e & 16351E-055\\ e & 16351E-055\\ e & 16351E-006\\ e & 1751E-006\\ e & 118 & 151E-006\\ e & 11351E-004\\ e & 11364E-004\\ e & 1965E-004\\ e & 1964E-004\\ e & 1962E-004\\ e & 1962E-004 \\ 1962E-004\\ 1962E-004\\ 1962E-004\\ $	M TC(0007641000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10926 12675 4429 1426 7193 8331 10788 10788 10805 4720	176E-04 206F-04 646F-05 131F-05 112F-04 131E-04 174E-04 174E-04 695E-05	013 015 005 001 008 010 013 013

RUN # 77 UNIT 15 MODEL PRÖTOTYPE 10.06 */5 26.71 */5 .43E+03*375 .51E+02 1.50 4/5 FREE STREAM VEL. VEL. FXIT VOI FIOW SOURCE STRENGTH .15F-03M3/5 .I6E+06 BACKGROUND .66E+03 CALTERATION FACTOR.37E-02 RANGE 10 STACK HEIGHT STACK DIAMETER 28.00 CM 182,00 14 C 4 .70 4.55 7.6 SAMPL F TOTAL PAN NORMALIZED PROTOTYPE CONC(-) •447F-07 PT. 77 CONC (PPM) (PPM) (AREA) .000 .000 747 .000 -2815-07 716 .000 78 .000 .000 67 704 -217F-07 0. 76 0.000 640 0.000 .000 ·179E-07 .000 697 70 -238F-07 .000 70 .000 708 0.000 θ. 0.000 27 674 .605 .000 -453E-07 24 744 - 399F-07 .000 .000 738 00 .503F-07 .000 .000 776 RR. -524F-07 .000 .000 762 71 -285F-06 -233F-07 1196 .001 72 .001 .000 .000 207 03 .001 -556E-06 1702 .001 92 .002 -813E-06 .002 45 2182 -21HE-06 .000 1070 43 .000 .000 .426F-07 .000 743 74 .470F-05 .001 .001 1541 73 .000 -104E-07 . 200 683 20 -192F-05 4245 .004 75 .004 .971F-06 .002 ,002 2477 62 -231F-05 .005 .005 4:470 6A .000 .271F-07 .000 714 61 6785-07 .000 .000 700 60 ·1216-05 .003 .003 24 2922 .007 -337E-05 .007 6953 82 425E-05 406E-05 177E-06 .009 .009 8505 QA .009 8239 .009 66 .000 .000 994 91 .119E-06 .099 .000 886 5.2 .000 .000 -453E-07 749 64 .496F-05 .011 9926 .011 83 .01A .018 .798F-05 15552 53 560F-05 .ois .012 51 11117 4 1001 -523E-06 -147E-05 1640 .071 55 034 .000 .000 117 .000 .009 7998 3435-05 114 ٠ 937E-08 .000 .000 681 54 ٠ .016 .736F-05 .016 110 14410 -800E-05 .018 .018 15603 113 -834F-05 .018 109 .018 16242 -139E-05 .003 3257 .003 111 ,002 .002 .715E-06 1998 107 -520E-05 .012 .012 10377 106 .oiö -456E-05 .015 9181 115 .023 .023 .103F-04 108 19913 010 16871 .868E-05 •0īš 112 4257 -192E-05 116 .004 .094

		RUM 4 7	14	
		-	UNIT 12	
		MODE	L PP0101	I Y P F
FRFF STR	EAM VEL.	3.00	1 4/5 20.12	2 M/5
FXIT VEL	•	3.98	11/5 26.71	1 4/5
VOL . FLU	W	-15E-03	143/5 .43E+01	3 ²³ 37S
SOURCE S	IRENGTH	-10E+06	•51E+02	>
HACKGROU	ND TATE	-79 <u>E</u> +03		
CALTREAT	TON EVCTO	R-315-02		
CTACK UE	TOUT	20 00	C. 105 8/	
STACK DI	AMETED	CD+U1		) P-1 T 54
SAMOLE		DAN	1024AL 17EG 02	δοτάτχος
DT	(DDM)	(APEA)		
77	000	412	-268F-07	.000
78	000	865	-336F-07	000
67	.000	896	.117F-06	000
76	.000	906	.127F-06	.000
70	.000	869	.868F-07	• 060
79	.000	838	•546E-07	• 0 0 0
ค7	0.000	770	0.	$0 \cdot 0 \cdot 0$
94	• 001	1412	•670E-06	• 0 6 1
20	• 0 0 0	1008	• 2375-06	• 0 (12)
<u>нн</u>	.000	894 002	+1155=00	• 000
71	.000	200	+100E=00	• 0 0 0
02	• 00.5	849	• 2025 - 05 . 1945 - 05	• 0 G () ·
92	.003	3546	.2955-05	1003
<u>45</u>	1006	5498	505F-05	006
63	001	1495	.758F-06	001
74	.000	1029	.259F-06	.000
73	.003	2913	.228E-05	.003
80	0.000	782	0.	0.000
75	• 0 0 7	6821	• 546E - 05	• 0 6 7
62	• 005	4693	• 4185 - 05	• 0.05
68	• 006	5868	·544F-05	• UU5
61	.000	620	• <u>3345</u> = 07	• 012-2
05	• 000	600	2755-05	0004
02	011	10189	101E-04	011
86	.010	0257	907E-05	.016
66	loiŏ	8879	567F-05	.010
<u>81</u>	.001	1226	.470F-06	.003
52	.000	906	•157E-06	.000
64	.000	1155	•394E-06	.000
83	• 013	11458	-114E = 04	• 0 1 3
<u> </u>	• 018	16161	• 155F=04	• 0 1 9
51	• 01.3	11591		• 01.3
117	.000	026	• 1005 - 00 1405 - 06	• 0 0 2
114	000	8710	- 2505-05	• • • • • • • •
54	004	4468	- 3945-05	.004
110	014	12445	125F-04	014
<b>ī</b> i3	2012	10988	.109F-04	.012
100	.014	12743	.128E-04	.014
111	.001	1985	• ) 28E-05	.001
107	• 001	1326	•577E-06	• 001
106	•010	8948	+H/4F=05	.010
115	• 013	114/1	• 1 (9F=04 1 - 26° 04	01.5
112	• U 1 M 01 H	13034	1716-04	• U1 M 01 G
116	• 11 15	13434	•151E=04 307E=05	• 017
TID	• 993	3021	• <u>3917</u> <b># 73</b>	• UU.3

RUN # 79 UNIT 12 PROTOTYPE MODEL. 4.50 M/S 30.17 M/S 26.71 M/S FREE STREAM VEL. VFL. FLOW 3.98 4/5 15E-0343/5 FXIT VOI . FLUW SOURCE STRENGTH .43E+03H3/S •15E+06 .51F+02 .14E+04 CALTBRATION FACTOR, 37F-02 10 RANGE STACK HEIGHT 58.00 ( 'A 182.00 М .70 CM 4.55 STACK DIAMETER М SAMPLE RAW NORWALIZED PROTOTYPE TOTAL PT. (PPM) (ARFA) 1435 CONC(-) CONC (PPM) .17/F-07 .000 .000 77 .000 1430 .464F-08 .000 78 -514E-07 -4H2E-08 .000 67 .000 1456 76 .000 1427 .000 ۰. 0.000 70 1419 0.000 .000 1462 .010 70 .611E-07 1368 97 0.000 0. 0.000 2038 .001 -087F-06 .001 94 .000 1556 -2125-06 .005 00 1110 0. 9A 0.000 0.000 .000 ·1225-06 .000 71 ·2281-05 .002 .002 2843 72 -143F-07 1436 .000 .000 33 .004 .004 .562F-05 07 4919 .005 65 .739E-05 .005 6024 .001 ·117E-05 .001 63 2151 1524 .000 .161E-06 .065 74 .002 .002 .241E-05 73 3174 ·263F-05 .002 .002 3061 90 -R78F-05 .006 6888 .005 75 .004 .530F-05 .004 42 4720 .005 5235 ·6126-05 .005 68 .161F-07 .000 1434 .000 51 .000 1606 -202F-06 .000 69 .003 .456F-05 .003 25 4262 -119F-04 92 .009 8807 .009 .008 ·103F-04 .003 AA 7337 .007 7452 .007 -967F-05 66 .000 -321F-06 . 0no A 1 1624 .276F-06 52 1596 .000 .000 .000 1527 .165F-06 .000 64 .009 83 8853 .1195-04 .009 .013 .013 -173F-04 57 12194 9902 51 .010 ·136E-04 .010 .001 ·113E-05 .001 55 2129 .000 ·589E-06 1604 117 .000 .786F-05 6315 5153 .០០៩ .006 114 .004 .004 ·549E-05 54 -131E-04 .010 9551 .010 110 .010 129F-04 135F-04 .010 9478 113 9835 .010 109 .010 ·1296-05 .001 **\$**2556 .001 111 -12-25-05 -9425-06 -8225-05 -1195-04 5010 .001 107 .001 .006 .006 106 6542 .004 8855 115 • () 0 🕾 -158E-04 -129E-04 .012 11235 108 .012 .000 112 04 13 .009 116 .001 2657 1985-05 .001

MODEL DEDITYPE MODEL DEDITYPE 1.50 M/S B.87 M/S 95E-04M3/S 23.51 M/S .10E+05 .34E+02 .21E-02 .34E+02	21.00 CM 136.50 A	RAN NORMALIZED PROIO YPE	4]2 •784F-08 •000		475 -572E-07 .000			22239 .148E-05 .001	753 .2755-06 .000					400 • 760F+07 • 000 400 • 760F+07	460 •455E+07 •000	500 · 151E-06 · 000			450 • 376F-07 • 000		10/14 .HOME-05 .007	1443 .502F-06 .000			10008 .760F-05 .007	448 4470E=06 +040 448 4470E=08 +000
AUN # 80 MODEL PROTOTYPE MODEL PROTOTYPE 1.50 M/S 23.51 M/S .95F-04M3/S 24F+03M3/S .34F+03 .39F-02 .39F-02	21.00 CM 136.50 M	RAW NORMALIZED PROFORMED	(AKEA) CONC (~) (ONC (FUN) A47 0.000	1146 271F-06 -000	131F-06 .000	895 .349F-07 .000	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2426 148F 05 101	842 0.	R35 0. 0.00	1003 • 13/F=05 • 000 031 • 606=07 • 000		6402 .525F-05 .005	881 •21/5=0/ •000 882 •2265=07 •000		1010 .143E-06 .000	5644 45]F=05 004 0006 7475=05 001	1081 -210F-06 -000	788 0. 000	5820 .462F=05 .004	10981 .954F-05 .009	947 .838F-07 .000	807 0.000	103/ •1095-00 •000 5481 •436F-05 •004	11180 .972E-05 .000	933 •707E-07 •000 777 0•
FREE STREAM VEL. Exit vel. Voi flow Source Strength Rackground Cai traiton factof Cai traiton	STACK HEIGHT	SAMPLE TOTAL			<u>د</u>	0000			.000	000	13 • 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		17 • 000		000	21 .006		24				000 • 000		36.0.0	35 • 000

		RUN # 8	31				
		MOOR	UNIT 9	OTYPE	MOO	UNII 10 FI 920	FOTYPE
FREE STR	EAM VEL.	3.00	5 M/S 17	64 MZS	3.0	บิพ/ธ 17	.64 M75
EXIT VEL	€ ₩	4.0(	M/S = 23	51 M/S	4.0	0 M/S 23	-51 M/S
SOURCE	TRENGTH	.16E+U		10211275	•10E+0	6 • 34Ĕ	+02
BACKGROU	ND SACTO	•99E+U3	3	-	+55E+0	4	
RANGE	IUN FACIU	R.395-02	ร์		• CIE-0.	2	
STACK HE	IGHT	21.00	) CM 136.	50 M	21.0	Ü CM 135	•50 M
STACK UL	TUTAI	RAW N	5 CM - 34 NORMAL 17FD	58 M PPOIOTYPE	•5 Raw N	5 CM 3 DRMAI TZFD	•58 M 92010172F
PT.	(PPM)	(AREA)	CUNC(-)	CONC (PPM)	(AREA)	CUNC (-)	CONCIPPMI
1	.000	1040	•102E-06	• 000	620	-118E-06	• 000
3	.000	1123	+258E-V6	.000	619	.116E-06	.000
4	.000	1090	•196E=06	• 000	877	•520E-06	•000
6	.000	1998	-226E-07	.000	582	-580E-07	•000
7	.000	1157	• 322E-00	.000	630	-133E-06	•000
ĝ	-000	3279	• 432E-05	.000	1224	.106E-05	•000
10	.008	5417	•835E-05	• 004	6507	•935E-05	• 004
12	.002	1234	+07E=00	•000	613	-401E-05	•002
13	.000	1253	-503E-06	.000	654	.171E-06	•000
14	•000	1064	■147E=06 ■558E=05	.000	672	•199E=05	•000
16	.013	9221	155E-04	.007	9689	.143E-04	.005
17	.001	1162	-3326-05	• 000	1294	·117E-05	• 001
19	.000	1024	.716E-07	.000	704	-249E-00	•000
20	.000	979	0.	0.000	.677	-207E-05	• 000
52	.005	9961	•169E=05	•004	5494 9351	• 138E-04	•001
23	.005	2608	.306E-05	.001	5211	.731E-05	.003
24	.000	1038	980F-07	0.000	622	-121E-06	•000
26	.000	1106	-226E-06	. 600	654	171E-06	•000
27	.004	4557	•673E=05	• 003	2047	-235E=05	•001
້ຊິອິ	002	1741	.142E-05	.001	2754	346E-05	.002
30	•000	965	0.	0.000	649 504	•163E=06	•00ù
32	.000	1088	192E-06	.000	660	180E-06	•000
33	.004	4263	•617E-05	• 003	3552	·263E=05	•001
35	:001	1339	•145E-04	.000	1612	167E-05	•005
36	.000	960	0.	0.000	716	.268E-06	• 000

		RUN # 8	32				
		MOOS	UNIT 9	01405	MO	UNI 10	TATYAC
FREE ST	REAM VEL.	4.5(	14/5 26.	46 475	4.	50 M/S 25	.46 MZS
EXIT VEL	1.	4.00	M/S 23.	51 M/S	4.(	10 M/S 23	-51 M/S
SOURCE	STRENGTH	.16E+U6		031375	• 955 - ( • 10£ + (	14M3/3 •24C 16 •34E	+0373/5
BACKGROU	JND	-96E+U	3		•51E+0	13	
CALIBRA	IION FACTO	R.40E-02	5		•21E-0	2	
STACK HE	EIGHT	21.00	) СМ 136.	50 M	21.0	00 CM 136	• 50 M
STACK DI	LAMETER	•55	5 CM 3.	58 M	•	5 CM _ 3	.5H M
PT	(PPM)	(AREA)	CUNC(-)	PROTOTYPE	(APEA)	CONC(-)	PROTOTASE
''ī	.000	1892	0.	Ŭ. NU0	556	.116E-06	•000
2	.000	961	0.	0.000	725	•517E-05	• 0 0 0
3	-001	1237	• 110E=05 • 782E=06	• 0 0 0	539	●/う9ビーU/ -150ビーU5	•000
Ś	000	1053	•257E-06	<b>.</b> 000	<b>1</b> 575	161E-06	.000
é	•000	996	.941E-07	• 000	489	V.	0.000
8	.001	1579	176E-05	.001	672	-392F-06	•000
9	.003	3556	.740E-05	\$00.	946	.104E-05	•000
10	.009	6171 1262	• 149E=04	• 004	6270	•137E=04	•004
12	.000	1505	-131E-06	.000	515	•190E=07	•UU2
13	.000	890	0.	0.000	559	·123E-06	• 000
14	.000	1051	+251E=06	• 0 0 0	1453	•854E=07	• 0 0 0
16	011	7702	-192E-04	.006	7902	.176E-04	•005
17	•001	1049	•245E-06	• 000	11.94	•163E=05	• 0 0 0
19	.000	1009	•105E-00	• 000	223	• 300E=07	•000
ŜÓ	000	ĨŎĨŔ	·157E-06	.000	485	0.	ບໍ່ມີບໍ່ນັ້ນ
21	•004	4294	•950E=05	• 0 0 3	1905	•332E-05	•001
23	.003	1963	•285E=05	•005	3266	•141E=04 •655E=05	•004
24	0.000	951	0.	0.000	473	0.	0.000
25	.000	979	•456E=07	• 0 0 0	622	•273E=06	• 0 0 0
27	003	3681	7752-05	.002	1736	-2928-05	•001
28	• 009	6921	•170E-04	• 005	6248	•136E=04	• 0 0 4
30	-001	963	•511E-00	0,000	1054	•130E=05	•000
31	0.000	949	Ŭ	0.000	507	0.	0.000
32	•000	1053	•257E-06	• 000	543	•854E=07	•000
34	.008	6046	•145E=04	•002	5198	•111E=04	•001 •003
35	.002	1828	-247E-05	.001	1958	.344E-05	•001
36	.000	975	•342L-07	•000	541	.807E-07	• 400
		HUN # 8	55				
---------	----------------	--------------	------------------	------------	-------------	-------------------	-----------------------------------------
		40.00	UNII 9	() =		UNITIO	101100
		MODE	L PROI	UTTPE	พบบ	EL PRO	IUTTE
LAFF DI	NEAM VEL.	1+5(	<u>) m/5</u> _8.	82 M/S	1	0 M/S 0	•82 M/S
EXIL VE	<b>L</b> .	4.0(	) M/S 23.	51 M/S	4.	10 M/S 23	•51 M/S
VUL FL	OW STOCNOTU	• 95E - 04	+M3/5 .2424	-03M3/5	• 95L=(	14M3/5 + 245	+0373/5
SUURCE	SIRENGIA	+10E+06	2 • 34E+	•02	• 10E+C	• 342	+02
BACKGRU	UNU FACTO	-91E+U	5		• 396+9	13	
CALIBRA	FION FACTO	R.40E-02			•21t-Q	2	
RANGE	510 JT	20 10		<b></b>			
STACK H		28• ñ	j ÇM 182.	00 M	20.0	10 CW 195	• 00 1
STACK U	LAMEIER	• • • •		58 M	•	5 (M 3	• 23 M
SAMPLE	TUTAL	RAW	NURMALIZED	PROTOTTPE	RAW	URMALIZEU	PROTUTIPE
P1 •	(PPM)	LAREAT		CONCIPPM	TAREAT		CONCIDENT
¥.	• 000	1018	• 4 / 35 - 0 /	• 000	438	• 3995 - 07	•000
Ś	•000	998	•201E-01	• 000	423	•211E-01	•000
4	•000	1420	•420E=00	•000	550	•134E-00	• 000
4	•000	1004	• 34 3E=07	•000	464	•001E=07	•000
5	•000	1288	• 2905 - 00	•000	6/5	•22/E-00	•000
9	• 000	988	•195E-01	• 0 0 0	413	•1985-07	• 0 0 0
1	.000	, 995	• 200E =0 (	•000	453	•514E=0/	•000
8	.000	1004	_+389E=07	• 000	481	. 136E-07	• 900
. ?	0.000	, 709	V•1215 04	0.000	347	0.	0.000
10	•000	1037	• 1 4 1 5 = 0 5	• 0 0 0	221	•101F-00	• 0.0.0
11	.000	395		• 000	412	• 005E - 0 /	•000
12	.000	1020	V	0.000	4 3 0	• 3 3 2 E = 0 1	•000
13	.000	1038	0008E+01		23 <u>+</u>	+498E=07	• 000
14	•000	304	V. 705	0.000	431	• 340E TU/	•000
15	• 001	1020	• / 905 = 00	.001	701	• 2482 - 00	• • • • •
18	.002	<b>6</b> 338	•12(5=05	•001	1943	• I C 3E = 05	• 001
16	• 000	1113	•1915-00	• 000	244	•123E=00	•000
18	•001	1449	• 4 4 / E = 0 0	• 000	[3]	+2/1E-00	• 000
12	.000	1346	• 3405 - 00	• 000	282	•150E-VO	• 0 0 0
20	• 000	1113	•13(5-00	• 000	210	•1035-00	• 000
51	• VUZ	2001	•1/15-05	• 002	1120	• 5/9E - V9	• 001
55	.005	1075	+2015-05	• 0.0.5	4040	• 289E-05	•003
23		1013	V+1005-00	• 000	1153	.002E-00	0.01
54	0.000	1015	V.	0.000	324	9.0405-07	0.000
22	• 000	1413	+450-07	• 0 0 0	497	• 00255 - 01	• 0 0 0
59	• • • • •	1107	•130E=00	•000	403	• / 325 - 4/	•000
51	• 003	3070	• 2315-02	• 002	1203	• 943E - VO	• 001
20	•009	6132	+4/95-05	• 004	0130	• <u>5026</u> -05	• • • • • • • • • • • • • • • • • • • •
57	• 000	1115	•1345=09	•000	<b>D</b> RU	• 2315 - 09	• 0 0 0
30	•000	12/7	• COCC-01	•000	422	• 293E - UT	• • • • • •
37	• • • • • •	1541	• 20UE - UD	• 000	043	•2036-00	• 0 1 0
36	• • • • •	1661	• 2335-00	• 0 0 0	480	• / COL = U /	• 0 0 0
33	• 0 0 5	4/94	• 5235-05	• 0 U 3	2499	• 10/ 2 - 05	• • • • • • •
34	002	2012	• 343C=03	• 005	1002	1106#05	• • • • • •
33	• UUZ	2012	+ 7/UE = UO	• 0 0 1	1071	•119C-U3	• • • • • •
30	• • • • •	710	+ / 4 C C - VO	• () () ()	370	•0335.00	= 0 0 0

		- KUN # 8	84				
			9 TINU			UNIT 10	
		MODE	EL PROT	TOTYPE	MOD	IEL PROT	JTYPE
REF STE	REAM VEL .	3.0	0 1/5 17.	64 M/S	3.0	U M/S 17.	64 M/S
FXIT VEI		4.00	กัพ/รี 23.	51 M/S	4.0	0 M/S 23.	51 M/S
	1 W	955-0	MA1/5 . 2454	11243/2		64375 26F+	014125
Soliber -	STOCNETH	165+14	403/3 •24C	10303/3	10540		
SUURCE :	SIRENOID	+10E+00	0 0.34C1	r v <b>z</b>	• 1 V C + (		02
DACKGRU		- 14C TUA	4		• 765 - 0	3	
CALIBRA	FION FACTO	R.40E-0	2		+21C-0	2	
RANGE		10	0			0	
STACK HE	EIGHT	28.00	0 CM 182,	.00 M	28.0	00 CM 182.	.00 M
STACK D.	LAMETER	• 55	5 CM 34	58 M	• 5	55 CM 3.	58 M
SAMPLE	TOTAL	RAW (	NURMALIZED	PROFOTYPE	RAW	IURMALIZED P	ROTOTYPE
PT.	(PPM)	(AHEA)	CUNC(-)	CONC (PPM)	(ARFA)	CUNC(-) 0	ONC (PPM)
' ' <b>i</b>	.000	1456	1336-07	.000	945	427F-07	.000
5	000	1 160	0.	0.000	645	4276-07	-000
5	• 0 0 0	1439	0325-07	0.000	440	- 6655 - 07	.000
3	• 000	1430	+ 732E-VI	• 0 0 0	200	6005E-07	•000
4	• 000	1421	• <u>&lt; &lt; </u>	• 000	225	• 3305 - 07	• • • • •
5	.001	1208	.220L-UD	•000	1542	•99(E-00	• • • • •
6	•000	1269	0.	0.000	1050	•101E=00	•000
7	.001	2065	•129E-05	• 0 0 1	1353	●688E=06	•000
8	.000	1393	•761E-08	•000	948	•475E-07	•000
9	.000	1/44	•675E=06	• 000	1003	.134E-06	•090
10	.001	1851	.879E-06	.000	1511		•000
iĭ	.000	1414	-475F-07	. 0 0 0	<u>วิบิจิล</u> ิ	-190F-06	.000
12	.000	1370	0.	0.000	946	44 1F-07	.000
15	0.000	1360	õ.	0.000	FÓÀ	0.	0.000
15	0.000	1221		0.000	026	040F-08	. 000
12	• 0 0 0	2666	2225-05	• 0 0 0	1251	6225-06	.000
15	• 0 0 1	2304	• 2 2 3 5 - 0 5	•001	1211	• UZ ZE · UO	• • • • • •
10	.004	2100	• # 2 < 5 * 8 2	• 0 0 4	3555	•41/6-05	• 002
17	.000	1004	• 523E=00	• 000	945	.421E-01	•000
18	•000	13/8	0.	0.000	1201	.45/E-06	• 0 0 0
19	.000	1514	•238E-06	• 0 0 0	1369	•714E-06	•000
20	.000	1397	•152E-07	.000	921	.475E-08	•000
Žĺ	003	3578	.416E-05	500	1972	.167E-05	• 001
22	.006	5102	706E-05	.003	4455	-560E-05	•003
23	.001	1546	244F-06	. 666	1469	-872F-05	• 000
24	001	2021	1208-05	. 001	1017	1575-06	. 306
55	. 000	1454		0.000	1 วีวีอี่ย์	4505-06	1000
22	0.000	1330	<u></u>	0.000	1000	A 437C 00	0.000
57	0.000	3630	V. 055-05	V • 000	2051	1705-05	0.000
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	• 00 3	2220	• 405E - 05	• <u>00</u> e	5031	• 1796-03	•001
58	.007	0101	• 909E-05	• 004	55/3	• (3/E=V5	• 0.0.3
29	.000	1420	.590E-07	• 0 0 0	1070	•24UE-UB	• 000
30	•000	13/3	U •	0.000	940	.348E-U/	• 000
31	.000	1600	•401E-06	•000	1043	.198E-06	•000
32	.001	1620	•439E-06	•000	1538	•981E-06	•000
33	.003	3697	.439E-05	.002	2623	.270E-05	• 0 U Ī
34	.007	5956	-869E-05	.004	5308	.695E-05	•003
35	Lõõi	1601	403F-06	. 666	1504	927F-06	.000
36	. 000	1480	.1736-06	- 000	1657	220F-06	.000
30		1400	AT17C-00	• • • • •			••••

		- RUN # 8	35				
			UNIT 9				
		MODE	EL PROT	OTYPE	MON	FL PRU	HUITPE
FREE STRE	EAM VEL	4.50	) M/S 26.	46 M/S	4.5	0 M/S 26	.46 M/S
FXIT VEL	•	4.00	) 1/5 23.	51 M/S	4.0	0 M/S 23	.51 M/S
VOL FLON	Ŵ	.95F-04	M3/5 .24F+	034375	.95E-0	4M3/5 .24E	+03M3/S
SOUDAES	TRENGTH	16F+06	- 34F+	02	.10E+0	6 • 34E	(+02
BACKGDOIII	NO	135+02			.80E+0	3	
CAL TODAT	TON FACTO	12 4 OF - 02	5		•SiE-0	2	
	TYNG THUCTU		ň		)	.)	
CTACK UF	TOUT	20.00	́см 182.	00 M	28.0	D CM 182	2.00 M
CTACK NI	AMETED		5 ČM 3.	58 M		5 CM 3	1.58 M
CANDI C	TOTAL	DAW	INRMAL TZEN	PROTOTYPE	RAW N	ORMAL TZED	PRNTOTYPE
	(DOM)	(ADEA)	CONC (-)	CONCIPPIN	(ARFA)	CONC(-)	CONC(PPM)
	000	1210		0.000	819	-451E-07	• 0 0 0
ļ	* 000	1200	0	0.000	<b>BIR</b>	-309F-07	• 0 0 0
5	• 0 0 0	1 31 6	- S C • 	0.000	826	617F-07	.000
	.000	1217	····	000	815	354F-07	.000
4	.000	1363	2055-06	• 000	012	-266F-06	.000
2	• 000	1222	• 200r = 00	• 0 0 0	7.15	A.	0.000
· 6	•000	1241	094 <u>€</u> £;™VO	n 0000	1117	752E-06	.000
/	• 000	100	400F-07	600	1421	736F-07	.000
R	• 000	1.2.2.2	+ 0 C 0 C = V I 1 0 K C = 0 E	• 600	807	230E-06	.000
9	.000	1/22	• 1 2 DE - 0 D	• 000	1768	2155-05	-001
1.0	.001	2020		6 • 0 0 0 0	1212	078F-06	.000
11	• 000	1600	1776-06	0.000	1050	356F-06	.000
12	.001	1332	1725-05	0.01	026	2995-06	-000
13	• 001	1960	• 1 / CF = V ->	0 000	086	441E-06	.000
14	• 100	1000	V. 2045-05	001	1294	1155-05	1000
15	• 001	6247	• 2 945 - 90 6 5 3 6 - 0 5	• 0 0 0	2203	615F-05	-002
15	• 004	3703	•0065.=V0	0 000		1285-06	.000
17	.000	1613	V. 07	0.000	ACA	1336-06	.000
18	.000	136/	~•314C=V/	• <del>• • • • • •</del>	000	.4375-06	1000
10	.000	1744	17 •	0 000	909	1125-06	
50	• 000	1120		0.000	1654	1705-05	
21	- 002	3003	• 4935 - 92	• 0 0 1	2024	7105-05	2002
22	.005	4592	• 9035-95	• 003	1/21	1605-05	-000
23	• 0 0 1	1517	• 57.3t = 95	• 0 0 0	3431	1/25-06	- 000
24	.001	1875		• U U U	1012		-000
25	•000	16/1	0.	0.000	1016	• 50 50 - 00 65 / 5 - 07	1000
26	.000	1393	•260F-00	• 9 9 9	1016	+0345-07 3615-05	.001
27	.003	3763	·6935-05	• 00	1050	0705-05	.003
28	.006	5636	•123E=04	• 004	4454	• 0 / UE = UD	.000
29	.001	1950	.1816-05	•001	1871	• 04 30 T V 0 / 0 35 T 0 7	.000
30	.000	1297	0.	0.000	814	+4035-07	• 0 0 0
31	.000	1267	0.	0.000	80.3	• / 1 / = 0.5	A () () () 0.0.0
32	.001	1862	•156E-05	• 0.00	957	• 301E-00	• (UU () 0 0 1
33	.002	3105	•50-E-05	• 0 0 2	1409	•2 39F = 05	• 1111
34	.005	4820	-100E-04	• 0 0 3	3996	• / 50+ -05	• 110 2
35	.001	1750	<u>124E-05</u>	•000	1668	· 2005 - 05	• 11 11
36	.000	1565	0.	0.000	1005	•4H12=05	•000

		RUN # 1	86				
			JMET 11			UNIT 12	
		MODI	FI PRÓTI	TYPE	401	FL PRO	TOTYPE
FORE STR	DEAM VEL	1 5		1-7 14/5	1 . 4	0 M/S 7	.82 M/S
	AC Mass Address	1.0	0 M/C 24		2. r	5 M/C 21	0/ M/S
FXTT VEL	. •.	4.0	U M/S 64.	1/ 2/0	17 A 17 A		-04 0/3
VOL. FLU	) W	•95F-0	4M3/5 .24E+	030375	•/06=0	14M3/5 •155	+0.173/5
SOURCE S	STRENGTH	- <b>1</b> 6E+0	6, <u>•51E+</u>	0.5	●10E+0	)5 • 34b	+02
RACKGROU	IND	-16F+0	4		- H2E+1	13	
CAL TODA	TTON EACTO	P. 40F-0	2		21F-0	12	
	<b>1 *</b> 0/* 1 /(010	1	'n		1	0	
CT.OK	TAUT	21 1	0 CM 126	2 <b>3</b> 44	01 0	<u>й см. 136</u>	50 M
ZIACK M		C1+V	<u>u Cal</u> [35.		× 4 • 1		
STACK DI	LAMFIER	• 5	5 (.4 .5•		• 4		しゅいり べし ふつんてんていわだ
SAMPLE	TOTAL	RAW	NORMALIZED	NOTOTANE	RAY N	DRMALICED	PROTUTYPE
PT.	(PPM)	(AREA)	- CONC(-)	LONC (PPH)	(ARFA)	CONC(-)	CONCIPPMI
1	.000	1615	0.	0.000	825	.974E-08	• 0 0 0
2	0.000	1615	0.	0,000	816	0.	0.000
S S	000	1643	262F-07	000	1416	-649E-06	• 0 0 0
,	+ U D U	1272	<b>E</b> 70 <b>E</b> -07	• 8 8 6	1456	4335-07	-000
4	.000	10/0	UF - UT	. 000	11/3	25/5-06	. 000
5	•001	2040		• 001	1192	0155-06	• 0 0 0
6	.000	1615	0.	0.005	1015	• < 1 2 2 7 0 0	• 0 0 0
7	• 0 0 0	1538	0.	0.000	952	•14/E=05	•000
ρ	.002	1831	.202F-06	<b>,</b> 000	2533	•186E-05	•001
Ċ,	004	3642	.189F-05	.003	<b>5198</b>	.140F-05	•001
10	<b>1</b> 001	2028	- 386F-06	1001	867	-552F-07	• 0 0 0
1 1	. 000	1640	3185-07	000	9.51	3795-07	.000
님	• 000	1440	50/5-07	• 0 0 0	1640	3578-07	.000
10		1007	• 304C=07	0 0 0 0 0	767		0.000
1.3	0.000	1221	9 <b>•</b> • • • • • • • • • •	0.000	2767	1. JOIE-05	0.00
14	.003	2055	•411F-05	• 0 0 1	3103	• 17 [ 2 - 0 -	• 9.92
15	,0]3	8034	.600E-05	• 0119	1144	• <u>DAPE</u> - Up	• 005
16	.004	4560	•275F-05	• 0.0 %	1507	•747F=06	• 0 0 0
17	1000	1564	().	6.000	879	.682E=07	•000
10	000	1698	7758-07	2000	1242	•461E-06	• 0 9 0
10	000	15.12	0.	a. a a a a	929	122E-06	.000
	* 0.01	1708	1715-06	0.00	1 ฉัง วั	1265-05	.001
20	* 0.21	1172	0000	• 0 1 4	10000	1005-04	007
21	.020	11471	• 9 <u>C</u> 3 F = 9 5	• <u>V</u> ± .2	10940	1665-06	. 001
22	.008	6/91	• 4 d 3 h = 0 5	• 0.0 7	7.744	• 1002-00	• 0 0 1
23	.001	2355	•692E=06	• 0 0 L	950	• 1734E - 00	• (/ () ()
24	.000	1554	C •	0.000	746	•136E=05	<b>•</b> 000
25	0.000	1592	С.	0.00	812	0 •	0.00
26	.006	3585	■184E = 05	.003	5841	•544E=05	• () () 4
27	020	11591	932F-05	1013	10515	.105E-04	• 0 0 7
20	• 611	<b>1</b> 8976	548F-05	.00.2	3449	285F-05	.002
50	• 0 0 0	1628	1216-07	• 666	950	145F-06	.000
~~	• 0.00	102.0	1166-04	• 0 0 0	1276	6045-06	2000
30	• 0 0 1	1 ( 4 )		• 0 0 0	13/0	4155-04	.000
31	• (10)	1544	U.	0.000	1649	• 4 1 25 20	• V U U
32	,007	4292	•250E=05	• 0 9 3	6471	• <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	• 0.04
33	.022	12739	.104E - 04	•014	11642	•117E=04	• 0 <u>0 8</u>
34	.013	10029	.786E-05	.011	4609	•410E-05	•003
35	1001	2180	-528F-06	001	1142	•353E-06	•000
36	000	1631	149F-07	1000	902	-930F-07	• 0 0 0
<b></b>	• ** ** **	1001	• 1 <b>•</b> 1 • 1 • 1	• 12 17 12			•

		RUN # )	BI HALT II			HATE 12	
FREE ST	REAM VEL.	MODI 3.0	EL PROTO 0 4/5 18+1	11YPE 3 M/5	MOD 3.9	FL PRO	TOTYPE •64 M/S
EXTT VEL	Ū₩ D	4.0 •95E-0	0 M/S 24.1 443/5 •24E+0	7 14/5	4.0 •70E-0	13 M/S 21 14M3/S •15E	•04 M/S +0343/S
	JND JND FION FACTO	• 14F+0	n •n⊥r≠≀ 4 2	⁴	•130E+0 •64E+0 •21E=0	13 12	τ <i>ν' ζ</i> ,
PANGE STACK H	FIGHT	1 21.0	0 0 CM 136.F	in M	21.0	0 0 CM 136	•50 M
STACK D.	TAMETER	RAW I	5 CM 3.5 Normalized P	A M ROTOTYPE	RAW N	7 CM 3 IORMALIZED	PROTOTYPE
PT	(PPM) .000	(AREA) 1425	CONC(-) C +110F-06	ONC (PPM) -	(ARFA) 654	CONC(-) .238E-07	CONC (PPM) .000
23	001	1773	•760E-06 •191E-05	.001	1044 870	•868E-06 •491E-06	• 0 0 0 • 0 0 0
4	.001	1902	•100E-05		633	0. 649E-07	• 0 0 0
67		2165	• 8565-06 • 1495-05	.001	968 4350	•703E=06	•000
9	-005 -008 -004	5177 6074 3272	•3546-05 •8806-05	-006 -002	4021	-731F-05	•002
11	001	2141	-145F-05 -137E-05	001	792 812	.322E-06 .366E-06	• 0 0 0 • 0 0 0
13	-000 -003	1366 2175	°. •151E-05	0.000	816 3922	•374E-06 •709E-05	•000 •000
15		9246	147E - 04 101E - 04	.019 .007	2260 3903	•1/9E=04 •350E=05	•005
17		1968	•570E-05 •112E-05	.001	1337 927 729	-1905-05 -614E-06	•000
20	.002	1791	• 774E=08 • 794E=06 • 151E=04		2162	-329E-05 -185E-04	•001 •006
22	010	7783	120F-04 613F-06	008	3455 2308	-609E-05 -360E-05	•002 •001
24 25		2090 1385	•135E-05 •355E-07	.001 .000	801 718	•342E-06 •162E-06	•000 •000
26	.003 .014	2397	•193E-05 •127E-04	.001 .009	3382	•593E=05 •157E=04	•002
28	.000	1206	•128F=04	0.000	4939 691 704	104E-06	•000
21	.000	1407 2116	.766E-07	.000	607	0. 467E=05	000.00
77 74	.012	7009	105E-04 125E-04		7141 4531	•141E-04 •841E-05	•005 •003
75	002	$1996 \\ 1818$	•118E-05 •844E-06	.001 .001	$2118 \\ 9574$	•319E-05 •193E-04	•001 •006

		RUM # 3	3.2				
			UAIT_11			UNIT 15	
		MODE	EL PROTO	TYPE	MO	HE PRO	IDITPE
FRFF ST	REAM VEL.	4.5	0 M/S 21.2	0 11/5	4.	11 M/5 /3	+45 M/S
FXTT VF		4.0	0 M/S 24.1	7 10/5	4.1	13 M/S 21	.04 M/S
VOL. FL	OW	•95E-04	4M3/5 +24E+0	3₩3/5	• / 0E = (	14M3/5 .15E	N03M375
SOURCE	STRFNGTH	•16E+0	5 •51E+0	2	•10E+0	• 34E	+02
BACKGRO	UND	-15E+04	4		• 68E + C	3	
CAI THRA	IION FACTO	$R \cdot 40E = 0$	2		•576-0	12	
PANGE		1		<b>.</b> .			<b>Fo</b> 14
STACK H	EIGHT	51.00	0 CM 136.5	0 14	S1•(	10 CM 130	• 50 M
STACK D	TAMETER	• 5	5 CM 3.5	B M	• 4		UA M DOATOTVOE
SAMPLE	1010	RAW	VURMALIZED P	RUIDIYEE	HOW V	DRMAL LEED D	CONCLOOM
PT.	(PPM)	(AHFA)	CUNC() C	() IC (PPM)	(ARFA)	CONC(-)	
1	0.000	1490	0.	0,000	2004	1005-05	0.000
<u>S</u>	.001	21.34	• 1675-15	• 001	16/3	• 1938 TUD	• 000
3	-002	2116	• <u>1455</u> - US	• 002	1697	•1/10-07	• 0 0 0
4	.001	2334	• < < 3F = 1/2	• 0 0 1	829	•48/F-06	• 0 0 0
5	.001	2258	• 2025-05	.001	950	+8/25-05	• 0 0 0
<u><u></u></u>	.001	21/1	• J / 8F = 95	• 0 0 1	898	•/115-05	• 000
7	.001	2/41	• J 981 = 05	+ 0 0 1	440	• 103E = 05	• 000
н	.005	6480	• 4 UGF = UD 1 205 0 4	• 0.0 4	4000	1225-04	• 0 0 3
10	.000	<u>0004</u> 4500	• 1 79r = 04 oc4c = 06	+ 0 0 5	1766	• 1 3/F = 04 223F = 05	• 00 3
10	+ 104	4747	• MODE = VO	• 004	1000	• 2 2 3 1 - V 3	-000
14	+ 0 0 1	65.34	• 1905 - 90 / 055 - 06	. 000	674	• 0.1 .3r. = V 0	0.000
15	• 000	1942	• 4 7 3 C = 0 0	• 000	868	5915-06	-000
1.5	• 001	2108	1605-05	1001	2024	7205-05	-002
14	012	7364	1646-04	007	7333	216F=04	005
14	****C	6442	1375-04	1006	2452	575F-05	. 001
17	• 000	2182	1816-05	2001	824	4715-06	.000
10	• 0 0 1	2228	1936-05	.001	881	655F=06	.000
10	• 0 0 1	2042	1415-05	1001	423	7925-06	.000
20	*001	1974	122F = 05	.001	1 346	229F-05	-001
21	1012	7667	169F-04	1008	7182	211F-04	005
52	008	6571	141F-04	.006	3034	-764F-05	.002
23	1000	1677	3915-06	.000	727	-156F-06	.000
54	1001	2263	2128-05	.001	821	.461E-06	• 0 0 0
25	0.000	<b>โลร์</b> ร์	0.	0,000	345	0.	0.000
26	.002	2551	284F-05	.001	2117	.467E=05	•001
27	010	6115	128F-04	006	5790	-166F-04	• 004
28	1009	6717	-145F-04	1007	3336	.862E-05	-005
20	2000	1572	-967F-07	.000	750	-230E-06	•000
20	.000	1889	-995F-06	.000	695	.519E-07	.000
31	.001	1451	- 879F-06	.000	1017	.110E-05	•000
32	2002	2196	.185F-05	.001	1847	•379E-05	•001
33	2003	6116	.128E-04	.006	5266	.140F-04	•003
74	.009	6738	-146F-04	.007	3540	•923F=05	•005
35	.001	2426	·244F-05	.001	1125	•145E=05	•000
36	.001	2031	·134E-05	.001	866	•607E-06	• 0 0 0

		RUN # 1	<b>a</b> Q				
			UNT1 11			UNIT 12	
		MOOL	ະເ ີ້ອອີດາດ	TYPE	MO	OFI PÂÖ	TOTYPE
EDEE CI				ALZC	1		30 M/C
	INCAM VEL.	1.0	2 TV 2 7 • 1	1 11/3	1		• DC 11/ D
FXTT VF	۲ <b>L •</b>	4.0	0 11/5 24.1	7 1975	4.	03 M/S 21	• 14 M/2
VOL FL	0W	•95E-0	4M3/S .24E+0	313/5	.70E-	04M3/5 •15E	+034375
SOURCE	STRENGTH	.16F+0	5 .51F+0	2	-10E+	06 .348	+02
BACKGO	NUND	125+0	4	<	SOF+	03	
	TION CACTO	10 2 2 2 2 - 0	т Э		216-	0.0	
CAL THRI	ALTON MODIL	18 • 4 VC 7 V			• < 1 = =		
RANGE		1				10	
STACK H	HEIGHT	58.0	D CM 182.0	0 M		00 CM 182	•00 M
STACK D	NEAMETER	•5	5 04 3.5	A M	•	47 CM 3	1.06 M
SANDI F	TOTAL	PAH I	UDRMAL TZED P	ROTOTYPE	RAW	NORMAL TZED	PROTOTYPE
DT	1000	(ADE A)	CONCIENC	ONC (DOM)	(ADEA)	CONC(-)	CONCIPENT
F 1 •		- INCLAI			6 3 6	4005-07	0000
J	.000	1667	11.		8.35	• 4 9 75 - 0 7	• 11 11 1
2	• 0 0 0	1284	•411+-07	.000	145	•170E=05	• 9 9 9
3	.000	1240	0.	0.000	594	•649E-08	• 0 0 0
. 4	2000	1241	-476F-07	.000	611	-249F-07	•000
5	-000	โลด์ไ	1325-06	.000	635	-50AF-07	.000
		1 36.5	1106-06	• 000	637	0	0.000
2	• 000	1355	• 1 1 00 - 00	• 0 0 0	2.77	""""	0.000
/	• 001	1/1.5	• 44/8 - 00	• 001	1223	• < 1 1 5 - 2 5	• 1/ 1/ 1
R	• 9 0 0	1381	•13SE-06	• 0 0 0	650	•6/1E=0/	•000
9	.000	1351	.1048-06	.000	629	•444E=07	• 0 0 0
10	-000	1310	•654E-07	.000	579	0.	0.00
11	000	1344	-1015-06	. 000	588	0	0.000
12	000	1320	1126-06	<b>*</b> 000	571	0.	0.000
16	• 000	1,700	• 1 1 C C = U O	• 0 0 0	344	3045-06	0000
1.3	• 0.01	1036	• 3000 - 400	• 001		•2046-06	• • • • • •
14	• 000	1335	•BH/E-0/	• 0 0 0	805	• 2355-05	•000
15	.003	2781	-1448-05	.005	1550	■104E=05	$\bullet 001$
16	2001	1801	•524F-06	.001	643	•595E-07	•000
17	000	1465	210F-06	1000	646	-627F-07	•000
10		1417	1661-06	000	SSH	0.	0.000
12	• 11(11)			• 0000	6.25	4005-07	
19	• 000	1310	• D / 3t = V /	• 0 0 0	523	• 400 - 01	• 0 0 0
20	• 000	1260	• 2625-07	• 0 0 0	982	•475E=00	• 0 0 0
21	.006	4706	• 324E-05	.004	3021	•263E=05	•005
22	-002	2961	.1618-05	.002	912	■350E=06	•000
22	000	1286	430F-07	.000	600	-130F-07	• 0 0 0
52	0 000	1167	0	0.000	572	0.	0.000
24	V • V 9 C	1000	N • 		620	"EE25-07	.000
25	• 000	1640	• 3745 = 07	• 000	10,39	• 7775 - 01	• 0 1 0
26	• 001	1613	• 348F-06	.000	1919	• 144E=05	• 0.01
27	.000	6176	•461F-05	.006	4388	•413E=05	•003
28	-006	5159	• 366F - 05	.005	1507	•994F-06	• 0 0 1
20	000	1422	-170F - 06	1000	597	-974F-08	.000
57	• • • • • •	1510	2525-04	້າດດ	701	1225-06	.000
	• 000	1019	• C D C C T N D	• • • • •	7.72		
31	• 0.01	1222	• < 7 11 = 19	• 9 9 9		• <u>CH 25 - VE</u>	• U U U
32	.003	2222	·91/E-06	.001	6455	• < 9.35 = 95	• 0 0 1
33	.011	7184	•555F-05	•00a	5482	•579E=05	• 004
34	.008	6568	498F-05	.007	2111	·165E-05	.001
25	001	1820	-550F-06	.001	649	-660F-07	• 0 Ŭ Õ
1-7 	• 0000	1220	1166-06	ົ້ດດີດ້	604	0.	0.000
4.00	• 000	T '20''2	♦ UEDF = UD	* V U U	000	17 D	V # 0 0 0

			RUN 4	90				
				UNIT 11			UNIT 12	
			MOD	EL PROT	OTYPE	MOr	NFL PRÜ	TOTYPE
	FRFF S	STREAM VEL.	3.0	0 M/5 18.	13 1/5	3.1	00 M/S 15	.64 M/S
	FXTT V	FL.	4.0	0 M/S 24.	17 11/5	4.1	NA M/S 21	.04 M/S
	VOL. F	WÜT	.95F-0	443/5 .24F+	0343/5	.70E-0	0443/5 .15E	+03M3/5
	SOURCE	STRENGTH	-16F+0	6 - 51F+	02	10F+1	16 - 34E	+02
	RACKGR	DUND	15F+0	4		- H2E+1	ก่าว รัฐรัฐรัฐ	
	CAL TAR	ATTON FACTOR	2.40F-0	2		21F-1	n z	
	RANGE		1	ñ		* 6- 4 Su	<b>i</b> n	
	STACK	HEIGHT	28.0	о́см 182.	00 14	28.1	NO CM 182	-00 M
	STACK	NTAMETER		S CM S.	Lig ha	2.000	47 CM 3	106 M
	SAMOLE	TOTAL	DAW.	NOPMAL TZEN	üönrnrvor	O AN .	JAPMAI TZEN	DONTATVOE
	DT	(00M)	(ADEA)	CONCLET	CONCIPONI	LADEAN	CONCILL	CONCIDENT
	1	000	1672	1645-06		1465 K/	2165-07	
	2		1620	1505-06	- 000	800	1715-04	• 9 9 9
	5	.000	1029	• 1 7 7 E • UO	• 100	0 14 4 0 15 A	• 1 / 1 C TUC	• 0 0 0
	. 2	* 1100	1622	1648-06	. 000	074	• <u>n445</u> - 07	• 0 0 0
	#	• 000	1336	• 1545 - 05	• 0 0 0	8.19	• 4 1 1 E = 0 7	• 0 0 0
	2	• 000	1(10	• 361E+UO	• 9 0 0	200	• 8378 -07	•000
	5	• 001	2008	• 80/r - VO	• !!!!		• 359E V5	• 0 0 0
	7	• 001	1467	• (905-05	• 9 9 1	1026	•4575=05	• 0 0 0
	8	.000	בכבן	• 2055-07	• 99.9	942	•2/55-06	•000
	9	-001	2205	• 1231-05	•001	1144	• 79RE=06	• 0 0 0
	10	•001	2294	• 140E-05	• 0 0 1	984	• 356E=06	• 0 0 0
	11	•00I	1985	•824E-06	• 0 0 1	1938	•492E=06	• 000
	15	•000	1670	•235E-06	•000	793	0.	0.000
	13	• 000	1743	• 372F-06	•000	859	.952E-07	•000
	14	•000	1582	•710F-07	•000	958	■309E=06	•000
	15	.004	3360	•339E-05	• 0.0.2	2611	• 389E-05	•001
	16	•003	3806	+423F-05	•00.3	1453	•139E-05	• 0 0 0
	17	,000	1836	•546F-06	•000	981	•359E-06	•000
	18	.000	1544	0.	0.000	897	■177E=06	•000
	19	.000	1541	0.	0.000	863	.104E-06	•000
	20	.000	1605	•114E-06	.000	816	·216E-08	•000
	21	.006	4305	.516E-05	.064	3683	•620E-05	.002
	22	.006	5633	•764E-05	.005	2421	.347E-05	• 001
	27	.001	1915	.693€-06	.000	960	.314E-06	• 0 0 0
	24	.000	1714	•318E-06	.000	978	·353E-06	• 0 0 0
<b>'</b> ,	25	2001	1840	-553E-06	.000	1036	.478E-06	• 0 0 0
	26	2001	1929	.719F-06	1000	1330	-111F-05	• 0 0 0
	27	006	4440	-541F-05	004	4000	-680F-05	-002
	28	.009	6898	-100F-04	1007	3407	-561F-05	.002
	20	.000	1656	-209F-06	.009	798	0.	0.000
	20	.000	1601	-106E - 06	1000	424	195F-07	.000
	21	1000	1600	1056-06	. 600	752	0	0.000
	32	.000	1663	2226-06	.000	1136	-694F-06	-000
	22	006	4474	5485-05	. 0.0.4	4110	7155-05	1002
	24	• 806	7140	1055-04	* 667	2067	-686F-05	1002
	25	• 001	2056	-0576-05	001	851	7705-07	1000
	26		1644	1226-07	000	810		0.000
		• ******	T	• / C / C / C / U / F	• U W S	010	17 🗰	V • 0 0 0 V

		- BUA # -	91				
			UNIT 11				1
		MOD	ຍ ເບັດຊີ	TYPE	MOL		TOTYPE
COPP CT	OF ALL LIFT		0 4/6 -7	20 11/5	<u> </u>	ым/с <b>э</b> й	45 M/S
FREE DI	REAM VEL.	4.02	V 11/2 2/•/		· • • ·		0 / M/C
FXTT VF	L, •	4.0	0 115 64.	1/ 8/5	4.	13 11/2 61	• 94 - 87.2
VOL. FL	ÛW	•95E-0	4M3/S .24E+	03@3/5	• 7 0E - 0	14M3/5 •15E	+03M375
SOURCE	STRENGTH	-16F+0	6 •51F+	02	+10E+0	16 • 34E	+02
BACKGRO	UND	18E+0	4		-97F+0	13	
CALTODA	TION EACTO	0 105-0			218-1	าว์	
DAL INTO	1100 - 40.10	···••••••••••••••••••••••••••••••••••	C.		• C. I.U		
RANGE	TOUT	<b>D D D</b>		o.c. 14	20		0.0 34
STACK H	EIGHT	28.0	0 0 0 182.	0() M	6 th • 1	IN CM INC	• 11 0 M
STACK D	IAMETER	•5	5 CM 3,9	58 M	• 4	47_CM3	• <u>16</u> M
SAMPLE	TOTAL	RAW	NORMALTZED I	PROTOTYPE	FRAM	JORMAL TZED	PROTOTYPE
PT.	(PPM)	(APEA)	CONC(-)	CONC (PPM)	(AREA)	CONC(-)	CONC(PPM)
' <b>' 1</b>	001	2560	2075-05	. 601	1111	-453F-06	.000
-	• (1()]	1901	1025-04	000	665	7625-07	.000
6	• (11)-1	1041	• 1 7 6 7 9 9	• 0 17 1	1100	7065-06	000
3	• 001	6403	• 1 5 35 - 0 5	• 0 0 1	1144	• / 055-05	0 000
4	• 0 0 1	SSS3	• 1145-05	• 0 9 1	954	0.	0.000
5	.001	2579	·212E-05	.001	1204	•755€=06	• 0 0 0
6	.001	2462	-179E-05	.091	1162	-618E-06	• 0 0 0
	001	2671	2385-05	1001	1147	-537E-06	• 200
6		1665	2265-06		1331	1175-05	.000
~	• 0000	1701	-7708-08	• 0 0 1	1627	19/5-05	.000
4	• 0.0 2	Chill.	• < 196 = 0.2	• 0 17 1	1226	• 1045 - 07	• 0 0 0
10	•001	5101	•248F-05	• 0.04	1622	• 10/F - 0-5	• 000
11	•001	2463	• 179E=05	• 0 0 1	1175	•650E=06	• 1) () ()
12	.001	2374	■155E=05	.001	1181	•680E=06	• 0 0 0
13	2000	1518	0.	0.000	1010	•125E=06	•000
1 /	0.01	1023	282E-06	1000	1917	-307F-05	• 0 0 1
1.4	0.05	2012	- E04E-05	003	1107	1055-04	.002
12	• 0 0 5	6600	• 0 · · · · · · · · · · · · · · · · · ·	• 003	1401	1605-06	.000
10	• 003	40.58		• 0 7 7	1491	• 1000 - 000	• 100
17	.000	1415	1.	0.000	947	• <u>5936</u> - 97	• • • • • •
18	.000	1843	■574F=07	•000	1007	•115E-06	• 0 0 0
19	.000	1660	0.	0.000	1034	-203E-06	• 0 0 0
20	2001	2247	-130F-05	.001	1306	-13RE-05	• 0 0 0
21	006	5085	914F-05	004	3975	.975F-05	-002
55	• • • • •	4703	9076-05	004	216.4	-387F-05	-001
65	• 005	1005	-0070-00	• U 7 4 <del>4</del>	076	1465-07	
2.5	.000	1323	• <u> </u>	• • • • • •	0.07	• • • • • • • • • • • • • • • • • • • •	0 000
24	0.000	1/2/		0.000	231	19. AAAAA	V • 0 0 0
25	• 000	1858	•182F=07	•000	997	• H = H = 07	• 9 0 0
26	.001	S050	•553F-06	•000	] 48()	• 165E=05	• 0 0 0
27	006	4953	•849F-05	.004	3913	.955F-05	• 005
ົ່ວຊື່	0.06	5306	106F-04	1005	2896	-625E-05	• 0 0 1
50	.000	1616	n .	0 000	OAA	535F-07	.000
×	• 11 11	20064	2 7 7 C . D 4	0 • 0 0 0 0 0 0 0	1106	1005-04	
30	•000	6904	• <u>D</u> / [ = UD	• 11 11	1125	• # 7 5 5 5 10	• 9 0 0 6 6 6
15	•000	5065	· 6/1F-06	• 0 0 0	1136	• > < 1 = 9.5	• 9 9 9
32	.001	5585	■159E=05	• (101	1554	-SSIF-02	• 000
23	.006	4778	-828E-05	.004	4062	■100E=04	•00S
74	.007	5994	-117F-04	.005	3111	.694€-05	•002
25		2408	161F-05	.001	1031	-193F-06	•000
3 C	• 0 0 1	1977	6025-07	• č o ô	944		0.000
4 61	• 000	1044	• CVCr = VI	•000	200	( F	♥ ♥ 0 0 Ø