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ABSTRACT OF DISSERTATION 

INVESTIGATING CAUSES OF REGIONAL VARIATIONS IN 

ATMOSPHERIC C0 2 CONCENTRATIONS 

Atmospheric CO2 concentrations are rapidly increasing due to anthropogenic 

activities; however, only about half of the emissions have accumulated in the at­

mosphere, and the fate of the remaining half remains uncertain. Since atmospheric 

CO2 concentrations contain information regarding carbon sources and sinks, it is 

important to understand CO2 variability. This study investigated causes of atmo­

spheric C0 2 variability, focusing on the relationship between CO2 concentrations 

and clouds, the impact of heterogeneous land cover and agricultural production, 

and the effect of redistributing fossil fuel emissions. 

Due to global coverage and sheer data volume, satellite C02 concentrations will 

be used in inverse models to improve carbon source and sink estimates. Satellite 

concentrations will only retrieve CO2 measurements in clear conditions, and it is 

important to understand how CO2 concentrations vary with cloud cover in order 

to optimally utilize these data. This study evaluated differences between clear-sky 

and mean concentrations on local, regional, and global scales. Analyses of in situ 

data, regional model simulations, and global model output all revealed clear-sky 

differences that were regionally coherent on sub-continental scales and that varied 

both with time and location. In the mid-latitudes, clear-sky CO2 concentrations 

were systematically lower than on average, and these differences were not due to 

biology, but rather to frontal convergence of large-scale gradients that were covered 

by clouds. Instead of using satellite data to represent temporal averages, inverse 

models and data assimilation systems that use satellite data to calculate carbon 
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sources and sinks must be sampled consistently with the observations, including 

precise modeling of winds, clouds, fronts, and frontal timing. 

Just as CO2 concentrations vary with cloud cover, variability in atmospheric 

CO2 concentrations is also caused by heterogeneity in land cover and surface fluxes. 

This study focused on the impacts of land-cover heterogeneity and the effects of 

agricultural production on regional variations of atmospheric CO2 concentrations. 

Including sub-grid scale land cover heterogeneity improved simulated atmospheric 

CO2 concentrations by ~ 1 ppm. Implementing a crop-phenology model that 

explicitly simulated corn and soybeans into a coupled ecosystem-atmosphere model 

dramatically improved CO2 fluxes and concentrations over the mid-continent, with 

reductions in CO2 concentration root mean square errors of nearly 50% (over 10 

ppm at some locations). Both the model and observations showed concentrations 

as low as 340 ppm over central Iowa, and a regional gradient of over 30 ppm in ~ 

200 km occurred due to a combination of fluxes and meteorology. Since corn and 

soybeans have such a significant impact on both carbon fluxes and atmospheric 

concentrations, it is essential to model these crops accurately. 

In addition to biological surface fluxes, surface emissions due to fossil fuel com­

bustion also cause variability in regional atmospheric CO2 concentrations. Using 

high-resolution fossil fuel emissions caused differences of over 10 ppm near the sur­

face; and including temporal variability in the emissions impacted regional CO2 

concentrations on monthly timescales, causing seasonal differences of more than 

20 ppm in some locations. Using coarse spatial distributions and unaccounting for 

temporal variability in fossil fuel emissions created biases in the atmospheric CO2 

concentrations and thus may cause significant errors in source and sink estimates 

from atmospheric inversions. 

Katherine D. Cor bin 

Department of Atmospheric Science 
Colorado State University 

Fort Collins, CO 80523 
Summer 2008 
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1 Introduction 

1.1 Why Study Atmospheric CO2? 

The basic reason why the amount of CO2 in the atmosphere is important can be 

formulated as the English physicist Tyndall stated in the 1860s: "How does the 

content of CO2 in the atmosphere affect its radiation balance and consequently the 

heat balance at the Earth's surface?" (Bach et al , 1983). CO2 is transparent to 

shortwave radiation, but not to the infrared wavelengths re-radiated back to space. 

Since C0 2 absorbs longwave radiation and re-emits it to Earth, the temperature at 

the surface must increase for the Earth to radiate to space all the energy received 

from the sun, which is called the "greenhouse effect". Since increasing atmospheric 

CO2 concentrations will impact the Earth's climate, it is essential to understand 

the carbon cycle. The importance of atmospheric CO2 is stated by the National 

Research Council in 1977: "At the heart of the concern is the anthropogenic climate 

change that may be too gradual to detect until it is well advanced, too advanced 

to stop by the time it is detected, and capable of inducing profound changes in 

1 



the delicate environmental balances that determine whether global breadbaskets 

will produce adequate food supplies and whether coastal areas will be affected by 

rising sea levels" (NRC, 1977). 

1.2 The Global Carbon Cycle 

Carbon is exchanged among the atmosphere, oceans, terrestrial biosphere and 

sedimentary rocks (Figure 1.1). Prior to the industrial revolution, the carbon 

cycle can be assumed to have been in balance, with the large ocean (~ 90 Gt C 

yr_1) and biosphere (~ 120 Gt C yr_1) sources approximately equal to the sinks. 

Over land, the amount of CO2 fixed from the atmosphere and taken up by plants 

during photosynthesis is known as gross primary production (GPP). Annual plant 

growth is the difference between photosynthesis and autotrophic respiration, and 

is referred to as net primary production (NPP). Most dead biomass enters the 

detritus and soil organic matter pools, where it is respired (Rh) at a rate that 

depends on the chemical composition of the dead tissues and on environmental 

conditions. In the absence of distrubance, the net carbon flux is the difference 

between Rh and NPP, which is referred to as the net ecosystem exchange (NEE). 

Humans have been perturbing the carbon cycle for the past 250 years, primar­

ily through the combustion of fossil fuels and through land use change. Fossil fuel 

and cement emissions have increased to 7.2 ± 0.3 Gt C yr_1 based on interna­

tional energy statistics for the 1980 to 2003 period (Marland et al., 2005). Land 
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Figure 1.1: The global carbon cycle for the 1990s, showing the main annual fluxes 
in Gt C yr_1: pre-industrial 'natural' fluxes in black and 'anthropogenic' fluxes 
in red. Atmospheric carbon content and all cumulative fluxes since 1750 are as of 
end 1994. From Denman et al. (2007). 

use change has also altered the CO2 flux. Deforestation in the tropics releases a 

signficant amount carbon to the atmosphere, causing a global source of ~ 1.6 Gt 

C yr - 1 (Denman et a l , 2007). 

Due to the anthropogenic sources, atmospheric CO2 concentrations are increas­

ing, with an accumulation of ~ 4.1 ± 1 . Gt C yr_1 (Denman et al., 2007). Natural 

sinks of carbon take up the remainder of the emitted CO2. Most recent estimates 

suggest that the net ocean-to-atmosphere flux is -2.2 ± 0.5 Gt C yr"1 and that the 

net land-to-atmosphere flux is -0.9 ± 0.6 Gt C yr_1. The location and mechanisms 

of the natural sinks is currently a topic of research. 
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1.3 Monitoring the Atmospheric CO2 Concentration 

In the late nineteenth century, Arrhenius and Chamberlain first presented the 

theory that climate changes are related to fluctuations in atmospheric CO2 (Ar­

rhenius, 1896; Chamberlain, 1899). Nearly fifty years later, Callendar (1940) con­

cluded from available C0 2 measurements that the atmospheric C0 2 concentration 

at the turn of the century averaged 290 ppm and has been steadily increasing due 

to man's increased burning of fossil fuel. Callendar (1940) found a 10% increase 

in CO2 concentrations from 1890 to 1935. 

Discussion of atmospheric CO2 ceased until after World War II, when Plass 

(1956) and Revelle and Suess (1957) used 14C in tree rings to show that the increase 

in atmospheric C0 2 was not consistent with Callendar's estimates. This discrep­

ancy led Rossby to argue for more systematic monitoring of the atmospheric CO2 

concentrations around the globe at a chemistry conference in 1954. As a result of 

the conference, the first network of CO2 monitoring stations was established using 

wet chemistry methods (Bach et al., 1983). Data from the stations confirmed the 

increase in C0 2 advocated by Callendar (1958), although the measurements were 

clearly influenced by vegetation. 

At the same time in history, the infrared gas analyzer was invented, which 

measures the extinction of infrared radiation in a column of dry air. This new 

measurement technique allowed continuous monitoring of C02 in the atmosphere 

and rendered an accuracy much higher than the wet chemistry techniques. 
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Since the atmospheric CO2 concentrations remained uncertain, Wexler of the 

U. S. Weather Bureau proposed to measure CO2 in non-polluted air during the In­

ternational Geophysical Year 1956-1958. Under the supervision of C. D. Keeling of 

the Scripps Institute of Oceanography, continuous CO2 monitoring began in early 

1958 at the Mauna Loa Observatory on Hawaii. Measurements have continued at 

this site ever since. In addition to the measurements at Mauna Loa, continuous 

measurements at Antarctica began in 1960, observations were taken from aircraft 

en route from Stockholm to Los Angeles and in the Arctic and North Pacific, mea­

surements were made from ships in the Pacific, and occasional monitoring occurred 

at Point Barrow. 

The first publication using these data focused on large-scale mixing deduced 

from variations in atmospheric CO2 (Bolin and Keeling, 1963), concluding that 

C0 2 was an excellent atmospheric tracer and that land vegetation north of 45°N 

was responsible for net consumption of C0 2 during the northern summer. 

During the 1960s, little interest was shown in expanding the monitoring of 

atmospheric CO2, and most of the research involving C0 2 was focused on studying 

the general circulation of the atmosphere using CO2 as a tracer. The aircraft data 

were organized by Bolin and Bischof (1970); and their analysis focused on the 

seasonal cycle in the northern hemisphere, which reflected the influence of the 

biosphere, and on the 5.7 ppm increase in C0 2 from 1960-1968. 

Following this study, concern was raised about how rapidly C02 could build 

up in the atmosphere. During the 1970s, recognition of a growing world popula-
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Figure 1.2: Time series of atmospheric CO2 concentration at Mauna Loa, Hawaii, 
since 1958. 

tion, the rising per capita use of energy, and the concomitant growth in the rate 

of fossil fuel CO2 emissions focused attention on the atmospheric CO2 increases 

being documented. Keeling et al. (1976) published a more complete picture of the 

fluctuations in atmospheric CO2 (see Figure 1.2). Seasonal fluctuations at Mauna 

Loa were very stable with an annual maximum in spring and a minimum in early 

summer, in agreement with Bolin and Bischof (1970). The long term trend in CO2 

was also analyzed, confirming the increasing atmospheric CO2 concentrations. 

Over the past three decades the measuring network of C0 2 has dramatically 

expanded. In 1980, nine stations around the globe measured continuous CO2 and 

approximately ten flask sites, where CO2 was sampled once a week, were being 

operated by the National Oceanic and Atmospheric Administration (NOAA) (Tra-

balka, 1985). Flask and continuous CO2 measurements are now being made not 
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Figure 1.3: The global network of CO2 observations in 2007. 

only in remote environments characterized by background concentrations of CO2, 

but also in continental locations influenced by both biospheric and anthropogenic 

fluxes. Currently, over 100 surface flask sites are stationed around the world, CO2 

is being measured continuously at more than sixty towers throughout the world, 

and airborne profiles are made regularly at over 20 sites (see Figure 1.3, Denning 

et al. (2007)). To complement the existing ground-based C0 2 network, two satellite 

missions designed specifically to retrieve global measurements of the total column 

dry air mole fraction XQO2 with precisions of ~1 ppm are scheduled to launch in 

December 2008 (Crisp et al., 2004; NIES, 2006). In addition to measurements of 

atmospheric CO2 concentrations, fluxes of carbon dioxide, water vapor, and en­

ergy between the biosphere and the atmosphere are measured over a network of 

tower sites, called FLUXNET (Baldocchi, 2006). FLUXNET is a global network 

of over 150 micrometeorological flux measurement sites that use eddy covariance 

techniques to calculate the surface fluxes. 
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1.4 The Missing Carbon Sink and Atmospheric Inversions 

While concern over the increasing CO2 concentration grew and the network of C0 2 

monitoring stations began expanding to provide data for research, ocean modelers 

first began to express the inability of known ocean sinks to account for all the 

carbon released to the atmosphere from fossil fuel burning and land-use changes 

(Broecker et al., 1979; Siegenthaler and Oeschger, 1978). The unaccounted for dif­

ference between the growth rate of atmospheric concentrations, the anthropogenic 

release rate of CO2, and the uptake rate by known sinks has been dubbed the 

"missing sink", since only approximately half of the emissions have remained in 

the atmosphere. Atmospheric measurements confirmed the existence of a missing 

sink and suggested that the sink is in the northern hemisphere, as the north-south 

gradient of CO2 is substantially smaller than expected if carbon sinks were evenly 

distributed around the world (Tans et al., 1990). Understanding the missing sink, 

including the location of the sink and the processes involved, became a research 

focus that is still being actively pursued. 

A branch of research in the scientific community has focused on understanding 

the carbon sink using inverse modeling. Inversions use atmospheric CO2 concen­

trations and transport models to calculate surface sources and sinks of carbon. 

This method is also referred to as the "top-down" approach since source and sink 

distributions are estimated without knowledge of details regarding finer-scale vari­

ability or underlying processes that cause the fluxes. 
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In the early 1990s, two different hypotheses were proposed to explain the north­

ern hemisphere sink. Keeling et al. (1989) stated that the sink reflected a natural 

source/sink pattern of oceanic CO2 fluxes, postulating that the North Atlantic 

takes up CO2 and transports it south as part of the large-scale ocean circulation. 

In contrast, Tans et al. (1990) showed the sink must be on land using observations 

of air-sea differences in partial pressure of CO2 as constraints in an atmospheric 

inversion. Investigating the two strongly diverging hypotheses dominated much of 

the carbon cycle research in the 1990s. 

Using sixteen different transport models and model variants, the TransCom 

3 project investigated estimates of surface C02 fluxes from an inter-comparison 

of atmospheric C0 2 inversion models. Gurney et al. (2002) found a northern 

land carbon sink evenly distributed across the northern hemisphere. This result 

agreed with direct observations (Baldocchi et al., 2001) and inventory estimates 

(Houghton, 1999; Pacala et al., 2001b); however, estimates of its magnitude vary 

widely from -0.6 to -2.3 Gt C yr - 1 (Heimann, 2001). Large uncertainties in the 

flux estimates exist because of the sparsity of available observations, numerical 

inaccuracy and limited spatial resolution of transport models, representation errors 

between the data and the model, errors in the prior constraint on source/sink 

strengths, and observation errors (Gurney et al., 2002; Bakwin et al., 1998; Engelen 

et al., 2002). 

As the atmospheric measurement network expands and more computer re­

sources become available, inversions are incorporating more sources of data and 
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shifting to higher spatial and temporal resolutions on regional domains. Contin­

uous C0 2 concentrations can be used in both global and regional inversions to 

reduce the data constraint (Law et al., 2003, 2002; Peters et a l , 2007; Schuh et al , 

2008), and assimilation systems are being developed to incorporate satellite data 

(Baker et al., 2006a; Chevallier et al., 2007). Methods have also been developed to 

perform regional inversions to infer fluxes at high temporal and spatial resolution 

(Peylin et al., 2005; Peters et al., 2007; Zupanski et al., 2007). Although advances 

have been made in data assimilation techniques, the missing sink of carbon still 

remains uncertain and a topic of much research. 

1.5 Atmospheric CO2 Variability 

In addition to investigating the missing sink, considerable research has been done 

to understand the underlying causes of variability in the atmospheric CO2 concen­

trations on annual, seasonal, and diurnal timescales. Since Keeling et al. (1976) 

first discussed interannual variability in atmospheric CO2 concentrations, research 

has investigated changes in the growth rate of CO2. The dominant cause of inter­

annual variability in the rate of increase of atmospheric CO2 is atmospheric circu­

lation anomalies and associated changes in temperature and precipitation. Links 

have been found between the interannual growth rate and the El Nino - Southern 

Oscillation (ENSO) (Sarmiento and Gruber, 2002; Keeling et al., 1989; Bacastow, 

1976), the Northern Annular Mode (NAM) (Barnston and Livezey, 1987; Russell 
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Figure 1.4: Variations of atmospheric CO2 concentration by time and latitude 
based on samples collected by the NOAA flask network. 

and Wallace, 2004), and volcanic eruptions (Sarmiento, 1993; Battle et al., 2000; 

Jones and Cox, 2001). 

Keeling et al. (1976) also began a series of studies investigating the seasonal 

cycle of atmospheric CO2. Systematic variations on the order of 10% are now 

known to occur both seasonally and regionally (see Figure 1.4, Conway et al. 

(1994, 1988)). The northern hemisphere has a pronounced seasonal cycle of CO2 

that follows the seasonal growth and decay of the terrestrial biosphere. Tropical 

ecosystems experience a much weaker amplitude in the seasonal cycle, and in the 

southern hemisphere the seasonal cycle is out of phase with that in the northern 

hemisphere and is much weaker due to the larger areal fraction of ocean. 

Atmospheric CO2 concentrations are also known to vary on diurnal timescales 

(Keeling et a l , 1976; Bakwin et a l , 1998; Denning et al., 2003). The diurnal cycle 

of C0 2 near the land surface is driven by the diurnally varying biological fluxes 

and the covariance between the dynamics of the planetary boundary layer (PBL) 
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and the surface fluxes, which is called the rectifier effect (Denning et a l , 1996a,b). 

During the day, low concentrations exist in the deep well-mixed PBL, while at 

night high concentrations build up under the shallow and stably stratified PBL. 

As our understanding of the carbon cycle increases and as our modeling tools 

advance, more of the variability in the atmospheric CO2 concentrations is being ex­

plained. While fifteen years ago the atmospheric CO2 concentrations were regarded 

as well-mixed and synoptic variability was considered noise, those same synoptic 

changes in the concentrations are now being analyzed to further our knowledge 

about atmospheric CO2 and its sources and sinks. 

Atmospheric variability of over 30 ppm at the surface has been shown to be due 

to mid-latitude synoptic weather systems and fronts, and the mechanisms behind 

the variability are being discovered (Parazoo et al., 2008; Geels et al., 2004; Chan 

et al., 2004). Over North America, frontal systems cause large horizontal gradients 

in CO2 due to deformational flow that is associated with cloud cover. Large gradi­

ents in CO2 have also been shown to be due to topography and meso-scale features 

such as land-water surface roughness changes and sea breezes (e.g. Nicholls et al., 

2004; Lu et a l , 2005; van der Molen and Dolman, 2007). While studies have be­

gun to investigate the influence of synoptic and meso-scale features on atmospheric 

CO2 concentrations, future work is required to investigate additional causes of the 

high-frequency variability. 
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1.6 Objectives 

To interpret high frequency C0 2 changes, we need to understand the mecha­

nisms controlling the variability. Forward models are valuable tools to help en­

hance our understanding of the processes driving the atmospheric CO2 variability. 

We have constructed a high-resolution self-consistent, mechanistic model of land-

atmosphere CO2 exchange and transport by coupling an ecosystem model to a 

regional atmospheric model. This coupled model utilizes numerous datasets: me­

teorological fields, soil type, biome type, leaf area index (LAI) and fraction of 

photosynthetically active radiation (FPAR), atmospheric CO2 concentrations, at­

mospheric CO concentrations, OH concentrations, sea-surface PCO2, fossil fuel 

fluxes, and fire emissions. By using these observational constraints, the model 

produces realistic fields that reflect our current understanding of the carbon cycle. 

The main objective of this research is this tool to further our knowledge of the 

carbon cycle. In a series of three studies, this research will investigate causes of 

regional variations in atmospheric CO2 concentrations. While numerous studies 

have investigated CO2 variability due to synoptic systems and meso-scale features, 

little work has been done to investigate the variability of both surface and total 

column concentrations in clear-sky conditions only. In addition, the influence 

of land cover heterogeneity, specific biome classifications, crops and agricultural 

ecosystems, and fossil fuel emissions on atmospheric C02 concentrations is also 

not well understood. 
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The first study focuses on analyzing the implications of measuring CO2 concen­

trations in clear-sky conditions only, as well as the spatial and temporal variability 

of total column CO2 concentrations, to understand representation errors that may 

be introduced into inversions that use total column satellite retrievals. Satellite 

XC 0 2 data will soon be available, and it is essential to correctly implement this data 

into atmospheric inversions to avoid biasing flux estimates. Since satellite data will 

only be available in clear conditions, it is important to understand how C0 2 con­

centrations on clear days compare with average conditions. Chapter 2 compares 

clear-sky concentrations to mean concentrations including all sky conditions at 

two mid-latitude forests in a first look at clear-sky differences using observations. 

Chapter 3 expands the local clear-sky analysis by investigating clear-sky simulated 

total column satellite measurements using a high-resolution cloud-resolving model 

that simulates concentrations over a mid-latitude region and a tropical region. 

Chapter 4 further expands the clear-sky total column CO2 analysis by evaluating 

global clear-sky sampling differences. 

The second study focuses on analyzing the impact of different vegetation cov­

erage on the atmospheric C0 2 concentrations. Chapter 5 evaluates the impact of 

sub-grid heterogeneity on both carbon fluxes and C02 concentrations using a cou­

pled ecosystem-atmosphere model. Chapter 6 implements a crop phenology model 

into the regional model and analyzes the impacts of crops on the atmospheric C0 2 

concentrations. The resulting atmospheric concentrations and gradients in the 

model are compared with an intensive measurement campaign in the Midwest. 
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The final study investigates the sensitivity of atmospheric CO2 concentrations 

to changes in fossil fuel emissions, focusing on analyzing the impacts of spatially 

and temporally redistributing these emissions. Chapter 7 presents a preliminary 

evaluation of a new fossil fuel inventory with high spatial and temporal resolu­

tion and analyzes the resulting changes in the atmospheric C0 2 concentrations. 

Conclusions from the studies are presented in Chapter 8. 
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2 Using Continuous Data to Est imate 
Clear-Sky Errors in Inversions of Satel­
lite CO2 Measurements 

An edited version of this chapter was published by AGU. Copyright 2006 
American Geophysical Union. Reproduced by permission of American Geo­
physical Union. Figure numbers, equation numbers, and citation styles have 
been changed for integration into the dissertation. 

Corbin, K. D. and A. S. Denning, (2006), Using Continuous Data to 
Estimate Clear-Sky Errors in Inversions of Satellite CO2 Measurements, 
Geophysical Research Letters, 33, L12810, doi:10/1029/2006GL025910. 

Abstract 

We used continuous measurements of atmospheric CO2 at two stations to investi­

gate potential errors in inversions of temporal averages of satellite clear-sky column 

retrievals. Compared to the complete data sets, the mid-day CO2 on clear days 

was systematically lower with a larger winter difference. Net ecosystem exchange 

(NEE) of CO2 was enhanced on clear vs. all days, the summer boundary layer was 

deeper, and the CO concentration was systematically lower. During winter these 
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differences cannot account for the C0 2 bias, which must be caused by advection. 

Summertime errors reflect a tradeoff between deeper mixing and enhanced NEE on 

clear days. If these sites represent mid-latitude forests and if the CO2 difference is 

confined to the bottom 15% column mass, then inversions of temporally-averaged 

satellite column data products will incur a -0.2 to -0.4 ppm bias. CO2 concentra­

tions must therefore be assimilated at the time and place observed. 

2.1 Introduction 

An important method to help quantify the large-scale surface exchanges of carbon 

is by tracer transport inversion, which uses atmospheric CO2 concentrations and 

a transport model to infer information about surface sources and sinks (Gurney 

et al., 2002; Rodenbeck et al., 2003; Baker et al., 2006b); however, flux estimates 

are still highly uncertain in many regions due to sparse data coverage (Gurney 

et al., 2003). Due to their global spatial sampling and data volume, satellite CO2 

measurements may help improve the inverse modeling constraint, particularly in 

regions that are poorly sampled by existing ground-based CO2 monitoring net­

works. Global simulations with source-sink synthesis inversion models indicate 

that uncertainties in the atmospheric CO2 balance could be reduced substantially 

if data from the existing in situ network were augmented by spatially-resolved, 

global measurements of the column-integrated dry air mole fraction (XC02) with 

precisions of ~ 1 ppm (Rayner and O'Brien, 2001; Houweling et al., 2004). 
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The Orbiting Carbon Observatory (OCO), scheduled to launch in early 2009, 

is designed specifically to observe X^o2 with ~ 0.3% (1 ppm) precision on regional 

scales (Crisp et al., 2004). OCO will fly in a polar, sun-synchronous orbit just 

ahead of the Earth Observing System (EOS) Aqua Platform with a 13:15 equator 

crossing time and a 16-day repeat cycle; and it will collect high-resolution spectra 

of reflected sunlight in the 0.76 /im 0 2 A-band and the C0 2 bands at 1.61 //m and 

2.06 /im. To maintain an adequate number of soundings even in the presence of 

patchy clouds, OCO will have a 10 km-wide cross-track field of view that is divided 

into eight 1.25 km-wide samples with a 2.25 km down-track resolution at nadir. 

To obtain near-surface information, retrievals of total column CO2 concen­

trations from near-IR spectra measured by space-borne instruments will require 

clear-sky conditions. Systematic differences in atmospheric C0 2 in clear vs. cloudy 

conditions might be expected because of the dependence of the photosynthesis rate 

on the directional character of solar radiation. NEE is strongest on slightly cloudy 

days due to greater light-use efficiency for diffuse relative to direct beam radiation, 

which may lead to lower than average C02 mixing ratios on partly cloudy days 

(e.g. Freedman et al , 2001; Gu et al., 2002). Differences in atmospheric concentra­

tions arising from differences in NEE depend on the spatial scale of the differences 

in radiative forcing: small-scale cloudy patches are expected to have less effect 

on concentrations than large-scale perturbations because of horizontal mixing by 

winds. In winter, since vegetation is not actively photosynthesizing, the a pri­

ori expectation is that C0 2 mixing ratios would not depend on cloud conditions. 
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In addition to differences arising from biology, clouds are frequently associated 

with fronts, changes of air masses and convection with strong vertical motion, so 

atmospheric transport may be systematically different on clear vs. cloudy days. 

Systematic differences in atmospheric CO2 concentrations between clear and 

cloudy conditions would introduce sampling errors into tracer transport inversions 

that use satellite C02 products to represent temporal averages. Satellite retrievals 

of only clear pixels might overestimate spatial or temporal averages of CO2 because 

they will not see conditions with enhanced uptake. Alternatively, heavy overcast 

conditions are expected to suppress NEE due to strongly reduced radiation and 

could lead to systematic underestimation from space-borne measurements during 

the growing season. Sampling errors could also be caused by advection associated 

with cloud cover. Depending on the treatment of the observations in the models, 

this sampling error could potentially introduce a bias; however, if modelers use 

satellite data at the same time and location and with the same atmospheric sit­

uation as the retrievals, these sampling errors would be eliminated. This study 

investigates clear-sky effects using continuous measurements of C0 2 concentrations 

from two tower sites over a period of several years. 

2.2 Methods 

We analyzed continuous data from two towers: a tall television tower near Park 

Falls, WI (WLEF 45.95°N, 90.27°W) and the Environmental Monitoring Site at 
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Harvard Forest, located in north-central MA (HF 42.54°N, 72.18°W). The WLEF 

tower is in a heavily forested zone of low relief, and mixed evergreen and deciduous 

forests dominate the area surrounding the tower (see Davis et al. (1997, 2003) for a 

description of the site and measurements). The C02 is measured at 396 m with two 

independent Licor CO2 analyzers, which have a mean absolute value difference of 

0.25 ppm. To reduce data gaps, we used the average between the two measurements 

when available and a single analyzer when one had missing data. Photosyntheti-

cally active radiation (PAR) is also measured; and the net ecosystem exchange of 

CO2 (NEE, defined as the net flux out of the ecosystem) has been computed using 

eddy covariance methods. The WLEF C0 2 and PAR measurements are available 

from 1995 through 2003, and we used NEE values from 1997 through 2001. The 

HF tower is also in a mixed forest that contains oak, maple, hemlock, and spruce 

(see Wofsy et al. (1993); Goulden et al. (1996) for further details). Groups from 

the Atmospheric Sciences Research Center (ASRC) and Harvard University mea­

sure nearly continuous C0 2 concentrations, CO concentrations, PAR, turbulent 

CO2 flux at 29 m, and the rate of change in canopy carbon storage below 29 m. 

All variables are available from 1993 through 2002. We calculated NEE at HF by 

subtracting the storage measurements from the turbulent C02 flux. 

We sampled the continuous record of near-surface C0 2 at mid-day correspond­

ing to the OCO planned overpass time. We analyzed two time periods: mea­

surements at 1300 local time and the average value measured from 1100 through 

1600 (the mean of six hours). The first represents individual nadir pixels and the 
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second represents the average of retrievals across an atmospheric transport model 

grid cell, which will be the basis of inversions using satellite C0 2 products. At a 

mean wind speed of 10 m/s, a six-hour average is equivalent to a 216 km swath 

of retrievals and comparable to global transport model grid scales. We chose to 

average six hours each day from 1100 to 1600 LST to avoid rapid variations in 

concentration associated with the morning and evening transitions between stable 

and mixed conditions. 

Since long-term boundary layer (PBL) depth data are not available at either 

tower, we analyzed PBL heights from the European Centre for Medium Range 

Forecasts (ECMWF) 40-year Re-Analysis (ERA-40), which has a six-hour time-

step. To capture the daytime PBL depth, we used values at 1800 UTC from the 

grid cells that included the towers. 

We estimated the average difference in C02 , NEE, CO, and PBL depth between 

clear and cloudy days by (1) creating clear-sky subsets of the time-series of each 

variable, (2) fitting separate analytical (harmonic) functions to the clear-sky subset 

and to the entire time-series, and (3) subtracting the two analytical functions to 

obtain a seasonal climatology of the clear-sky minus all-sky difference in each 

variable. Clear-sky subsets were defined by selecting the mid-day values of each 

variable for days on which measured PAR was greater than a threshold value 

defined by month for each site. The threshold PAR values were set by ranking 

measurements from all years at each site, then selecting the value corresponding 

to the percentage of clear days for each month at the nearest city recorded by the 
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National Climatic Data Center (NCDC). The NCDC monthly climatology of clear 

days is based on at least 40 years of data and is determined by human observers 

who categorize each daytime hour as clear if the average cloud cover was less than 

30%. For WLEF, the nearest stations in the NCDC database are Green Bay, WI 

(232 km away); Duluth, MN (175 km); and Minneapolis/St. Paul, MN (262 km 

away). We used an average of the monthly clear-sky days from all three stations. 

At HF, the closest station is Worcester, MA (45 km). Since the NCDC clear-

sky criterion is likely less stringent than satellite requirements, we decreased the 

reported percentages of clear days by 5% to ensure that the clear-sky differences 

are not overestimated by including partly cloudy days with enhanced NEE that 

will not be captured by satellites. The PBL depth clear-sky subsets included the 

same days as the clear-sky C0 2 subsets. 

We separately fit seasonally-varying harmonic functions of each variable to the 

entire time-series and to the clear-sky subset using a linear least squares method. 

We removed data for February 29, de-trended the CO2 concentration, and required 

both the variable being investigated and the PAR measurement to be valid at each 

hour. We found that two harmonics per year fit seasonal variations adequately, 

without introducing spurious noise. Differences between the harmonic fits to the 

clear-sky subsets and to the corresponding complete data sets are presented below 

and interpreted as the seasonal sampling error expected to occur in an average 

year by a satellite which only observes the atmosphere in clear conditions. 
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Figure 2.1: The clear-sky C0 2 sampling bias at WLEF (black) and at HF (gray), 
in ppm. Solid lines depict the 1100-1600 bias and dashed lines show the 1300 bias. 

2.3 Results 

Sampling the CO2 concentration only on clear days resulted in underestimation 

of the mean concentrations at both towers at all times of year (Figure 2.1). The 

seasonal cycle of the sampling error is similar for all cases, with a greater near-

surface difference in winter than during the summer months. At WLEF, the mean 

winter bias is -1.5 ppm and the mean summer bias is -0.8 ppm; and at HF the 

mean biases for winter and summer are -3.2 ppm and -1.5 ppm, respectively. The 

biases at the WLEF tower are smaller than at HF, which could reflect differences 

in vegetation or transport. 

To explain the clear-sky CO2 bias, we analyzed the clear-sky NEE bias (Figure 

2.2). Both towers have a large negative summer bias due to increased photosyn­

thesis on clear days and negligible to slightly positive differences in the winter. 
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Figure 2.2: The NEE clear-sky bias, in /imol m2 s_1. 

Meteorological factors such as increased temperature and water stress may con­

tribute to the changes in magnitude and timing. We investigated the clear-sky 

temperature bias and found that the HF temperatures are greater on clear days 

than on average and that the summertime temperature bias is ~ 0.4°C greater at 

1300 than from 1100-1600. The increased temperatures at 1300 could lead to in­

creased respiration and decreased NEE, and these higher temperatures combined 

with the low solar zenith angle at 1300 may increase the water vapor pressure 

deficit, causing more stress on the vegetation and less CO2 uptake. 

Since the surface C0 2 concentration is dependent on both the surface fluxes 

and vertical mixing, we analyzed the PBL depth clear-sky bias (Figure 2.3). The 

clear-sky bias is positive in the summertime at both towers, with the PBL ~ 200 

m deeper on clear days than on average. During the winter the magnitude of the 

bias is smaller and the PBL is slightly shallower on clear days. 
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Figure 2.3: PBL depth clear-sky bias, in m. 

We estimated the expected C0 2 bias from the mean differences in NEE and 

PBL height using a simple box model. We calculate a summer and winter estimate 

of the clear-sky effect on mixed-layer C0 2 concentration at both towers as 

AC = A ( ™ ^ (1) 
\pzi/MairJ 

where p is the mean density of the mixed layer % is the mean depth of the daytime 

mixed layer, Mair is the molecular weight of dry air, and At = 10 hours is the 

duration over which the NEE difference was assumed to act. The NEE and Zj values 

and the resulting biases are summarized in Table 2.1. Although the box model 

is sensitive to the parameters used, it indicates that the summertime CO2 bias is 

weak at the towers because the lower concentrations from enhanced photosynthesis 

are mixed into a deeper boundary layer, diluting the effect of the larger flux on 

clear days. In winter, the CO2 biases are also weak, which is not surprising since 

25 



the PBL depth and NEE are nearly the same on clear days as they are on average. 

The box model suggests that the large winter CO2 bias observed at both towers 

cannot be explained by differences in surface fluxes or vertical mixing, but instead 

likely results from non-local processes, such as advection. 

Clear 
Total 

Clear 
Total 

NEE 
/zm/m2/s 

1./-8. 
1./-7. 

1.4/-13.5 
1./-12. 

January/July 

m 
WLEF 

650/2100 
700/1900 

HF 
925/2000 
950/1750 

C 0 2 Bias 
ppm 

0.1/-0.1 

0.3/0.1 

Table 2.1: NEE and PBL Height (z») Values Used in the Box Model and the 
Resulting CO2 Biases. 

Finally, we calculated the bias in CO concentrations at HF (not shown). Since 

CO is a ubiquitous by-product of the same combustion processes as CO2 and has 

an average lifetime of only 3 months, CO measurements can provide information 

on the intensity of anthropogenic activities (Palmer et al., 2003; Bakwin et al., 

2004; Suntharalingam et al , 2004). The CO bias has a similar seasonal cycle to 

the CO2 difference; and in both seasons the CO concentration is lower on clear 

days, indicating that the fossil fuel contribution is less. The mean clear-sky bias 

is -44 ppb and -18 ppb for January and July, respectively. Assuming that the 

primary source of CO is fossil fuel combustion and that the anthropogenic fluxes 

in the immediate vicinity of HF are negligible, the CO results indicate that part of 

the CO2 bias is due to less advection of anthropogenic CO2 on clear days. Using 
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an average combustion efficiency of 95% (Miller et al., 2003; Bakwin et al., 2004), 

the CO2 bias resulting from reduced fossil fuel contributions on clear-sky days is 

~ -0.5 ppm in the summer and ~ -1.2 ppm in the winter, or less than half the 

observed CO2 difference at this site. 

2.4 Conclusions 

This study indicates that sampling only in clear conditions leads to a system­

atic underestimation of the mean CO2 concentration at both WLEF and HF. In 

summer, the mean clear-sky bias in mixed-layer CO2 is ~ -1.5 ppm at HF and 

-0.8 ppm at WLEF. A simple box model suggests that enhanced photosynthesis 

on clear days may be offset by a deeper boundary layer, mitigating some of the 

difference. During the winter, the clear-sky effects on NEE and boundary layer 

depth is weak, and the large observed CO2 difference (~ -3 ppm at HF and -1.5 

ppm at WLEF) cannot be explained in terms of local forcing. Seasonal patterns of 

mid-day differences in CO concentration at HF are similar to those of CO2, with 

a greater difference in winter than summer, but are not sufficient to explain the 

CO2 difference. Much of the clear-sky sampling error in CO2 at these sites may be 

attributed to differential advection on clear vs. average days. Satellite retrievals 

of total column CO2 concentrations are expected to be less affected by clear-sky 

sampling error than mixed-layer measurements. If these two sites are broadly rep­

resentative of mid-latitude forested regions and if the CO2 difference is confined to 
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a PBL occupying 15% of the column mass, then inversions of temporally-averaged 

satellite column data products will incur a -0.2 to -0.4 ppm bias. Therefore, satel­

lite total-column CO2 retrievals must be assimilated at the time and location of 

the observations. 
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Abstract 

Due to uniform spatial sampling and sheer data volume, satellite CO2 concentra­

tions can be used in inverse models to enhance our understanding of the carbon cy­

cle. Using column measurements to represent a transport model grid column may 

introduce spatial, local clear-sky, and temporal sampling errors into inversions: the 

footprint is smaller than a grid-cell, total column concentrations are only retrieved 

in clear skies, and the mixing ratios are only sampled at one time. To investigate 

these errors, we used a coupled ecosystem-atmosphere cloud-resolving model to 
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create C0 2 fields over fine (~ 1 ° x 1 °) and coarse (~ 4° x 4°) grid columns from 

1 km2 and 25 km2 pixels that utilized explicit microphysics. We performed two 

simulations in August 2001: one in central North America and one in the Brazilian 

Amazon. Differences between satellite and grid column concentrations were cal­

culated by subtracting the domain-mean column concentration from 10-km wide 

simulated satellite measurements. Spatial and local clear-sky errors were less than 

0.5 ppm for the fine grid column; however, these errors became large and biased 

over the coarse grid column in North America. To avoid these errors, transport 

models should be run at high resolution. Using satellite measurements to repre­

sent bi-monthly averages created large (> 1 ppm) errors for all cases. The errors 

were negatively biased (~ -0.4 ppm) in the North American simulation, indicat­

ing that inverse models cannot use satellite measurements to represent temporal 

averages. Simulated representation errors did not arise because of differences in 

ecosystem metabolism in cloudy vs. sunny conditions; rather, they reflected large-

scale CO2 gradients in mid-latitudes that were organized along frontal boundaries 

and masked under regional cloud cover. Such boundaries were not found in the 

dry-season tropical simulation presented here and may be less prevalent in the 

tropics in general. To avoid incurring errors, inversions must accurately model 

synoptic-scale atmospheric transport and C02 concentrations must be assimilated 

at the time and place observed. 
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3.1 Introduction 

Variations of atmospheric CO2 concentrations contain information about sources 

and sinks which air interacts with as it is transported from place to place. Using 

atmospheric tracer transport models, inverse modelers can quantitatively estimate 

the strengths and spatial distribution of sources and sinks around the world from 

concentration data (Gurney et al., 2002; Rodenbeck et al., 2003; Baker et al., 

2006a). These flux estimates are still highly uncertain in many regions due to 

sparse data coverage (Gurney et al., 2003). Satellite C0 2 measurements have 

the potential to help inverse modeling studies by improving the data constraint 

due to their global spatial sampling and sheer data volume. Previous studies 

have indicated that using spatially resolved, global measurements of the column-

integrated dry air mole fraction (X.C02) with precisions of ~ 1 ppm will reduce 

the uncertainties in regional estimates of sources and sinks of atmospheric CO2 

(Rayner and O'Brien, 2001; Miller et al., 2007; Chevallier et al., 2007). 

Two existing satellites, the Atmospheric Infrared Sounder (AIRS) and the 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIA-

MACHY), provide information about CO2 concentrations. AIRS, on the Aqua 

platform launched in May 2002, measures 2378 spectral channels in the infrared 

(IR) from 3.74 to 15.4 /mi (Aumann et al , 2003). AIRS has a 1:30 AM/PM 

equator crossing time, nine 1.1° by 0.6° footprints in a single FOV, and scans 

± 48.95° from nadir, making 90 measurements per scan. A study by Engelen 
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et al. (2004) demonstrated the feasibility of global CO2 estimation using AIRS 

data in a numerical weather prediction data assimilation system. Since AIRS 

measures IR radiances rather than reflected sunlight, it can be used to measure 

upper tropospheric-weighted CO2 concentrations during the day and at night; how­

ever, atmospheric mixing makes the upper tropospheric CO2 concentrations rather 

zonal, indicating that AIRS data can only inform about very broad features of the 

surface fluxes (Chevallier et al., 2005). SCIAMACHY, which embarked on board 

the European Space Agency (ESA) Envisat satellite in 2001, is a polar-orbiting 

nadir looking instrument that measures reflected sunlight in the UV, visible, and 

near IR regions from 240 to 2400 nm. SCIAMACHY has a 30 x 60 km2 foot­

print that scans across a 960 km-wide swath and a 35 day repeat-cycle with global 

coverage in ~ 6 days. Studies by Houweling et al. (2004) and Buchwitz et al. 

(2005) indicate that SCIAMACHY measurements may be capable of detecting re­

gional C0 2 surface sources/sinks regions; however, accurate SCIAMACHY C0 2 

retrievals are limited to land regions due to low surface reflectivity over the ocean 

and are difficult because of calibration issues and spectral and spatial resolution 

(Houweling et a l , 2004; Buchwitz et a l , 2005). 

Two satellites designed specifically to measure Xco2 with ~ 0.3-0.5% (1-2 ppm) 

precision are scheduled to launch in late 2008: the Orbiting Carbon Observatory 

(OCO) (Crisp et al., 2004; Miller et a l , 2007) and the Greenhouse gases Observ­

ing SATellite (GOSAT) (NIES, 2006). Both satellites will collect high-resolution 

spectra of reflected sunlight in the 0.76 jim O2 A-band and the CO2 bands at 1.61 
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/j,m and 2.06 ^m. A single sounding will consist of simultaneous observations from 

all three bands. OCO and GOSAT will fly in a polar sun-synchronous orbit to 

provide global coverage with an equator crossing time ~ 1300 LST. OCO will orbit 

just ahead of the Earth Observing System (EOS) Aqua platform in the A-train, 

which has a 16-day repeat cycle. To obtain an adequate number of soundings on 

regional scales even in the presence of patchy clouds, OCO will have a 10 km-wide 

cross-track field of view (FOV) that is divided into eight 1.25 km-wide samples 

with a 2.25 km down-track resolution at nadir. GOSAT will orbit at an altitude 

of 666 km with a 3-day recurrence. GOSAT is designed with cross-track pointing 

ability and will sample points with a variable width from 88 to 800 km. 

CO2 concentration fields retrieved from satellites will be used as inputs to 

synthesis inversion and data assimilation models to help reduce uncertainties in 

flux estimates; however, to utilize these measurements, care must be taken to 

sample the models following the satellite sampling strategy as closely as possible. 

Spatial representativeness errors may be introduced into inversions that compare 

C0 2 concentrations from a model grid column to satellite concentrations sampled 

over only a fraction of the domain. Local clear-sky errors may exist in inversions 

that compare concentrations in a grid column that may be partially cloudy to 

total-column CO2 concentrations sampled at the same time but only over clear 

areas. Temporal sampling errors can result from comparing satellite measurements 

to temporally averaged concentrations. Incorrectly accounting for these errors 

could lead to errors in the flux estimates, particularly if they are biased. Spatially 
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coherent biases as small as 0.1 ppm will alter flux estimates and must be accounted 

for (Miller et al., 2007). Chevallier et al. (2007) simulated the impact of undetected 

biases and showed that regional biases of only a few tenths of a ppm in column 

averaged CO2 can bias the inverted yearly sub-continental fluxes by a few tenths of 

a gigaton of carbon. To avoid incurring errors in inversions, the spatial, clear-sky, 

and temporal sampling errors need to be investigated and quantified. 

Spatial representation errors are determined by the spatial variability: as hori­

zontal spatial heterogeneity increases, observations characterize smaller areas and 

representation errors increase (Gerbig et al., 2004; Wofsy and Harriss, 2002). Ger-

big et al. (2004) used aircraft data to investigate spatial representation errors of 

mixed layer averaged C0 2 mixing ratios and concluded that spatial representa­

tion errors reach 1-2 ppm for a typical 200-400 km horizontal resolution grid cell. 

Expanding on Gerbig's analysis, Lin et al. (2004) found column CO2 spatial repre­

sentation errors of ~ 0.6 - 0.7 ppm over North America and ~ 0.2 - 0.3 ppm over 

the Pacific Ocean. Consistent with the results from Lin et al. (2004), an analysis 

of regional X.C02 variability using coarsely modeled (5.5° x 5.5°) total column CO2 

shows that the spatial variability is smaller over oceans than over land and reveals 

that the spatial variability varies seasonally as well as geographically, with higher 

variability during the northern hemisphere summer and lower variability in winter 

(Miller et al., 2007). 

Although studies have investigated the spatial variability and associated repre­

sentation errors of total column CO2, little research has been focused on clear-sky 
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and temporal representation errors. This study analyzes spatial, local clear-sky and 

temporal sampling errors using a cloud resolving, coupled ecosystem-atmosphere 

model, SiB2-RAMS. We performed simulations over a temperate forest region and 

a tropical region, and we investigated these errors for both fine (~ 1° x 1°) and 

coarse (~ 4° x 4°) grid columns by simulating CO2 concentrations over these 

regions using explicit microphysics and grid-cell increments of 1 km and 5 km, 

respectively. 

3.2 Methods 

3.2.1 Model Description, SiB2-RAMS 

The Simple Biosphere Model (SiB2) calculates the transfer of energy, mass, and 

momentum between the atmosphere and the vegetated surface of the earth (Sell­

ers et al., 1996b,a). The coupled meteorological model is the Brazilian version 

of the Colorado State Regional Atmospheric Modeling System (RAMS) (Prietas 

et al., 2006). RAMS is a comprehensive mesoscale meteorological modeling system 

designed to simulate atmospheric circulations spanning in scale from hemispheric 

scales down to large eddy simulations of the planetary boundary layer (Pielke 

et al., 1992; Cotton et al., 2002). Details of the coupled model can be found in 

Denning et al. (2003); Nicholls et al. (2004); Lu et al. (2005); Wang et al. (2007). 

This study focuses on two simulations, one in North America (NA) and one in 

South America (SA). Both simulations consist of four levels of nested grids down 
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• Water • Mixed Forest H Shrubs 
• Deciduous §§ Evergreens • Agriculture 

Figure 3.1: Grid setup over North America, with the nested grids outlined in red. 
The vegetation classifications for the coarse grid column (grid 3) and the fine grid 
column (grid 4) are shown in the bottom left and right images, respectively. The 
red cross indicates the location of the WLEF tower. 

to a fine domain of 97 km by 97 km with a grid increment of 1 km (Figures 3.1 and 

3.2). The NA simulation has 45 vertical levels extending up to 23.5 km, and the SA 

simulation has 32 vertical levels up to 24 km. To simulate cloud and precipitation 

processes explicitly, both simulations use the bulk microphysical parameterization 

in RAMS (Meyers et a l , 1997; Walko et a l , 1995). We use the Mellor and Yamada 

(1982) scheme for vertical diffusion, the Smagorinsky (1963) scheme for horizontal 

diffusion, and the two-stream radiation scheme developed by Harrington (1997). 

At the lateral boundaries we utilize the radiation condition discussed by Klemp 

and Wilhelmson (1978). 
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• Water • Short Vegetation • Shrubs 
• Broadleaf Evergreen • Agriculture 

Figure 3.2: Grid setup in the South American simulation. The four grids in the 
simulation are outlined in red. The red cross displays the Tapajos Km 67 tower. 
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3.2.2 Input Data 

The vegetation cover is derived from the 1-km AVHRR land cover classifica­

tion data (Hansen et a l , 2000), and this study used 1-km resolution Normal­

ized Difference Vegetation Index (NDVI) data from SPOT-4 (Systeme Probatoire 

d'Observation de la Terre polar orbiting satellite; United States Department of 

Agriculture/Foreign Agriculture Service and Global Inventory Modeling and Map­

ping Studies). The meteorological fields in NA are initialized by and the lateral 

boundaries are nudged every three hours by the National Center for Environmental 

Prediction (NCEP) mesoscale Eta-212 grid reanalysis with 40-km horizontal res­

olution (AWIPS 40-km). The SA simulation is initialized and driven by 6-hourly 

lateral boundary conditions derived from Centro de Previsao de Tempo e Estudos 

Climaticos (CPTEC) analysis products. 

Surface carbon fluxes due to fossil fuel combustion, cement production, and 

gas flaring are prescribed from the 1995 CO2 emission estimates of Andres et al. 

(1996), with a 1.112 scaling factor applied to adjust the strength for August 2001 

(Marland et al., 2005; Wang et al., 2007). The air-sea C0 2 fluxes are the monthly 

1995 estimates from Takahashi et al. (2002). The initial CO2 field and the lateral 

boundaries in SiB2-RAMS are set to 370 ppm for NA and 360 ppm for SA. A more 

detailed description of the input data and initialization can be found in Wang et al. 

(2007) and Lu et al. (2005) for NA and SA, respectively. 
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3.2.3 Case Descriptions 

The NA simulation was centered on the WLEF tower in Wisconsin (Figure 3.1) (see 

Davis et al. (2003); Bakwin et al. (1998); Ricciuto et al. (2007) for a description of 

the site and measurements). We analyzed the third grid (lower left panel of Figure 

3.1), which will be referred to as the coarse grid column and the fourth grid (lower 

right panel), which we denote as the fine grid column. The coarse grid column 

was 450 km by 450 km with a 5 km grid increment. The northeastern portion of 

the domain included Lake Superior, the upper and middle regions were dominated 

by mixed forest, and the southern third contained significant areas of agriculture 

and cropland. The fine grid column, which was 97 km x 97 km with a 1 km grid 

increment, was primarily mixed forest and broadleaf deciduous trees with a few 

patches of evergreens. This grid had several small lakes, with one of the larger 

lakes just north of the WLEF tower. 

This case ran from 0000 UT August 11 to 0000 UT August 21, 2001. During 

this ten-day time period, three cold fronts passed over the WLEF tower. The first 

simulated front passed at 0200 local standard time (LST) on August 12, the second 

front passed at 2300 LST the night of the 15th, and the third front passed over 

the tower at 1800 LST on August 17th. During the simulation, the wind was light 

and southwesterly except during the fontal passages, when the wind strengthened 

and rotated clockwise to northerly flow. For a more complete description of this 

case and the meteorological conditions, see Wang et al. (2007). 
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This ten-day time period was chosen to capture the front on August 15-16, 

which caused the most significant CO2 concentration variation seen at the WLEF 

tower that summer. Investigating the representation errors over a time period when 

the concentration at 396 m varied by more than 40 ppm in 36-hours provides an 

estimate of the errors during a significant synoptic event. Since the simulation is 

characterized by considerable C0 2 variability, the error estimates from this case 

are likely to be the maximum errors associated with this site. 

The simulation in SA was centered over the Tapajos River in Brazil (Figure 3.2), 

and ran from 0000 UT August 1 to 0000 UT August 16, 2001. Similar to the NA 

case, we analyzed the third (lower left panel of Figure 3.2) and fourth (lower right 

panel) grids, denoted as the coarse and fine grid columns, respectively. The coarse 

column was 335 km by 335 km with a 5-km grid increment. The Tapajos River 

flowed northward through the center of the domain, and the region was covered 

primarily by broadleaf evergreen forest and short vegetation, which consisted of 

pasture and mixed farming. The fine domain was 97 x 97 km, with a 1-km grid 

increment. The dominant land type for this region was pasture and mixed farming, 

inland water comprised ~ 30% of the domain, and the remaining vegetation was 

broadleaf evergreen forest. On the east side of the Tapajos River, the Km-67 

eddy covariance flux tower measured heat, moisture and trace gas fluxes, CO2 

concentrations, and radiation profiles (Saleska et al., 2003). This case occurred 

during the dry season and was characterized by calm conditions without fronts or 

squall lines. During the simulation, intense trade winds blew almost constantly, 
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little precipitation fell over most of the domain, and the clouds were predominantly 

cumulus. Lu et al. (2005) provide a further discussion of this simulation. 

The unique physical setting of the SA case with respect to the topography 

and the Tapajos River produces a unique mesoscale and micrometeorological en­

vironment (Lu et al., 2005). This time-period was chosen to avoid squall lines and 

organized weather patterns, highlighting CO2 variability due to the heterogeneous 

river and vegetation cover and mesoscale circulations. Analyzing this simulation 

will provide estimates of the representation errors expected from water-vegetation 

interactions including a low-level convergence line. The error estimates from this 

simulation represent estimates from local circulation patterns rather than from 

large-scale features, and these errors provide the expected maximum error of CO2 

due to surface heterogeneity. 

3.2.4 Model Evaluation 

The two simulations analyzed in this study are evaluated against observations in 

complementary publications. Wang et al. (2007) focused on the August 15 frontal 

passage in the North American simulation to analyze the impact of fronts and 

synoptic events on the C02 concentration. A high C0 2 air mass built up in the 

southern Great Plains on August 14-15 because of the slow photosynthesis rate 

caused by hot and dry air over Oklahoma and Texas and strong nighttime respira­

tion in the southeast. This air mass traveled north and was primarily responsible 

for the high concentrations just prior to the front on August 15, although weak 
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local photosynthesis on August 15 and strong nighttime respiration under over­

cast sky conditions also contributed to the accumulation of CO2. Wang et al. 

(2007) concluded that the atmospheric C02 variations during this time period 

were dominated by coherent regional anomalies that were advected by synoptic-

scale systems. In the study, Wang et al. (2007) compared the near-surface mete­

orological fields between observations and SiB2-RAMS for the period 11 August 

2001 through 20 August 2001, including evaluations of temperature, water vapor 

mixing ratio, wind speed, wind direction, net ecosystem exchange (NEE), and C0 2 

concentration anomalies. 

Lu et al. (2005) analyzed the SA simulation depicted here to investigate mesoscale 

circulations and atmospheric CO2 variations over a heterogeneous landscape dur­

ing the Santarem Mesoscale Campaign (SMC) of August 2001, They evaluated 

the modeled CO2 concentrations and fluxes, sensible and latent heat fluxes, tem­

perature, and winds compared to observations, showing that the model captured 

the temperatures, winds, NEE, and daytime CO2 concentrations reasonably well. 

Lu et al. (2005) found that the topography, the differences in roughness length 

between water and land, the juxtaposition of the Amazon and Tapajos Rivers, 

and the resulting horizontal and vertical wind shears all facilitated the generation 

of local mesoscale circulations and a low-level convergence line. 

To evaluate the effect of clouds on the carbon flux and C0 2 concentration, 

we compared modeled NEE and CO2 to the observations sampled at the towers 

located in the domains (see section 3.2.3 for the tower descriptions). For the NA 
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Figure 3.3: Observed (solid) and modeled (shaded, sampled from the grid cells 
including the towers) NEE, in /imol m - 2 s_1, versus radiation, in W m - 2 . Evalu­
ation at NA (top) and results from SA (bottom). For NA, the radiation includes 
longwave, and the values have been subtracted by 200 W m - 2 for easier compar­
ison. The SA radiation is shortwave only. A two-harmonic fit to each time series 
has been overlaid. Mean NA and SA model/data NEE values for radiation > 650 
W m~2 are -9.7/-10.1 and -13.8/-13.1 //mol m~2 s_1, respectively. For moderate 
radiation values between 300 and 650 W m - 2 the resulting NA and SA model/data 
NEE means are -8.5/-6.7 and -14.9/-7.3, respectively. Finally, for radiation < 300 
W m~2 the NA and SA model/data NEE mean values are 0.2/2.8 and -4.2/2.3 
/imol m - 2 s—1, respectively. 

case, we sampled the model at the WLEF tower location and compared hourly net 

radiation, CO2 concentrations at 396 m, and NEE over the 10-day simulation to 

the corresponding hourly observations at the WLEF tower. We performed a similar 

comparison for the S A simulation: we sampled the model at the location of the Km-

67 tower and compared the modeled shortwave radiation, the CO2 concentration 

sampled at 60 m, and NEE over the simulation to the corresponding hourly data 

sampled at the flux tower. 
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To investigate the response of the carbon flux to various cloud conditions, we 

compared the modeled and observed NEE to incoming radiation and overlaid a 2-

harmonic function fit to both the model output and the tower observations (Figure 

3.3). At both locations for conditions with radiation values higher than 650 W 

m~2, which corresponds primarily to clear or mostly clear conditions, the fits to 

both the model and the in situ observations have a constant uptake of ~ 10 /imol 

m - 2 s - 1 and ~ 13.5 yumol m~2 s_1 for NA and SA, respectively. As the radiation 

decreases from 650 W m~2 the carbon uptake also decreases; however, the observed 

decrease occurs at higher radiation values than the modeled decrease. Simulated 

uptake remains relatively constant until the radiation decreases to ~ 400 W m~2, 

while the observed uptake has a higher light saturation and thus begins decreasing 

at higher radiation values. SiB2.5 calculates photosynthesis for a single sun-leaf 

and uses an empirical adjustment to extinction law in conjunction with satellite 

information to adjust carbon flux up to canopy scale (Baker et al., 2005). Using this 

technique is known to result in model photosynthesis reaching light saturation too 

soon, resulting in enhanced uptake for moderate radiation values (e.g. Dai et al., 

2003; Dickinson et al., 1998). The enhanced uptake in the model could decrease 

the surface CO2 concentrations during moderately cloudy to overcast conditions 

and just after sunrise and before sunset. 

To investigate the relationship between cloud cover and CO2 concentrations, 

we compared modeled and observed CO2 concentrations to the corresponding ra­

diation (Figure 3.4). Since the CO2 concentration in the model has a prescribed 
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Figure 3.4: Observed (black) and modeled (grey, sampled from the grid cells in­
cluding the towers) CO2 anomalies (ppm) versus radiation (W m~2). NA results 
(top) and SA results (bottom). The anomalies are calculated by subtracting the 
mean CO2 concentration over each case from the corresponding series. Mean NA 
and SA model/data C0 2 values for radiation > 650 W m~2 are -1.6/-1.1 and -
4.3/-3.1 ppm, respectively. For moderate radiation values between 300 and 650 W 
m~2 the resulting NA and SA model/data CO2 mean anomalies are 3.5/1.6 and 
-2.9/-4.0 ppm, respectively. Finally, for radiation < 300 W m~2 the NA and SA 
model/data C0 2 mean values are -0.4/-0.2 and 0.7/1.9 ppm, respectively. 
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background, we compared the concentration anomalies, which are calculated by 

subtracting the mean of the C0 2 concentrations during the simulated time period 

from the data sets. In both NA and SA, the variability of the CO2 concentra­

tion increases with decreasing radiation, and this characteristic is seen in both the 

model and the observations. For clear-sky conditions with radiation values above 

650 W m~2, the concentrations are lower than the mean. Over NA, the concen­

trations are highest for moderate radiation (between 650 and 300 W m~2), while 

over SA the concentrations increase as radiation decreases. Despite the model 

having enhanced uptake for moderate to low radiation, the mean values for these 

radiation bins remain within ~ 1 ppm. The relatively small differences between 

the modeled and observed concentrations indicate that the model does a reason­

able job of capturing the overall behavior of the CO2 concentration in various sky 

conditions. 

3.2.5 Simulating Satellite Measurements Using SiB2-RAMS Output 

To simulate satellite C0 2 retrievals over the two simulations, we mimic the OCO 

sampling strategy. Since OCO will estimate total column C02 concentrations, 

the modeled concentrations are vertically integrated by pressure weighting using 

a standard atmosphere. All simulated tracks are sampled at 1300 LST to ap­

proximate the satellite overpass time. Since we are investigating small domains 

that satellites will fly over very quickly, we assume that OCO travels due north 

and that all the footprints in a track will be averaged together to yield only one 

46 



concentration for the grid. We created a track width of 10 km by averaging the 

appropriate number of pixels in the x-direction, which corresponds to 10 pixels for 

the fine domain and 2 pixels for the coarse domain. To create one satellite value 

for each possible track, we meridionally averaged the pixels to create a single mea­

surement. Using these criteria, the fine domains have 88 different possible satellite 

tracks: the first track is on the western edge of the domain (x=l:10), the second 

track is one pixel eastward (x=2:ll), and the final track is along the eastern edge 

(x=88:97). The coarse domain in NA has 87 different tracks, and the SA coarse 

domain has 65 possible satellite tracks. 

Since the satellite retrieval requires clear conditions, only pixels with clear-sky 

are included in the simulated satellite concentrations (unless otherwise specified). 

A pixel is considered clear if the cloud optical depth r < 0.2. This threshold was 

selected as it is the approximate threshold for which precise Xco2 retrievals are 

possible (Miller et al., 2007; Crisp et al., 2004). In the NA simulation, two days 

are primarily clear, five days are partly cloudy, and two days are overcast. Over 

SA, six days are completely clear and nine days are partly cloudy. 

3.3 Results 

3.3.1 Total Column C 0 2 Concentrations 

In the NA simulation, the main driver of total column CO2 temporal variability is 

synoptic scale systems (Figure 3.5). A Fourier analysis of the C0 2 concentrations 
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Figure 3.5: Simulated total column C0 2 concentrations at the WLEF tower (black 
line) and the sky conditions (grey line), where 0 indicates clear sky and 1 indicates 
the tower was cloud covered. The vertical dashed lines indicate the three frontal 
passages. 

reveals a significant spectral peak at ~ 3.5 days (at the 95% confidence level using 

an F test), which indicates the dominant timescale of variability is the fronts in 

the simulation. The diurnal cycle also has a significant spectral peak, although 

it is much smaller. Rather than displaying a strong diurnal cycle, the simulated 

total column concentration sampled from the grid cell that includes the WLEF 

tower has three spikes associated with the three frontal passages. The column 

CO2 range is ~ 6 ppm and the standard deviation is ~ 1 ppm. The fronts, which 

are associated with clouds, advect high concentrations from the southwest, where a 

heat wave reduces carbon uptake causing high CO2 anomalies (Wang et al., 2007). 

The lowest concentrations during the simulation occur in clear conditions, when 

the main influence on C0 2 is the local vegetation rather than advection. 
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The NA total column C0 2 spatial variability is also predominantly affected 

by the weather via the frontal passages. The range of column CO2 at 1300 LST 

over the fine grid column varies from 0.2 to 1.8 ppm, with an average of 0.8 ppm 

(Table 3.1). Over the coarse grid column, the C02 range at 1300 LST varies from 

1 ppm to 13.7 ppm, with an average range of 3.5 ppm across the domain and a 

mean standard deviation of 0.6 ppm. Although the surface heterogeneity of the 

coarse domain contributes to increased CO2 variability, the greatest concentration 

ranges occur when the southwestern portion of the domain has high concentrations 

from advection while the northeastern half of the domain has low concentrations. 

Optically thick clouds that are associated with the fronts contribute to higher 

concentrations by reducing photosynthesis due to light-limitation. 

NAfine 
NA coarse 
SAfine 
SA coarse 

Range 
Mean/Max 
0.76/1.81 
3.53/13.71 

1.46/2.1 
2.15/2.91 

a 
Mean/Max 

0.15/0.4 
0.64/1.9 
0.4/0.53 
0.44/0.58 

Table 3.1: Range and Standard Deviation (a) of the Simulated Grid Columns at 
1300 LST. Both the mean values over the entire simulation and the maximum 
values are displayed. Units are in ppm. 

Ground-based measurements of total column CO2 are being made at the WLEF 

tall tower site (Washenfelder et al., 2006). The observatory utilizes a similar tech­

nique as OCO, GOSAT, and SCIAMACHY to measure Xco2 using an upward 

looking Fourier Transform Spectrometer (FTS). The observatory has been mea­

suring Xco2 since May 2004. At WLEF, XC 0 2 is minimally influenced by the 
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diurnal rectifier effect. Washenfelder et al. (2006) present results from a validation 

study involving aircraft data where column observations were measured on five 

dates in July and August of 2004. The column-average concentration varies ~ 7 

ppm between these samples, which is similar in magnitude to the column varia­

tions seen in the SiB-RAMS simulations due to the frontal passages. A plot of the 

seasonal cycle of daytime daily averaged X<?o2 shows day-to-day variability of ~ 

6-7 ppm during the summer (Washenfelder et al., 2006). 

The dominant cause of column CO2 temporal variability in SA is the diurnal 

cycle and mesoscale circulations (Figure 3.6), since this simulation occurs in the 

dry season and is characterized by steady trade winds, nocturnal decoupling, river 

breezes, boundary layer cumulus clouds, and no airmasses or fronts. A power 

spectrum of this series shows the only significant spectral peak is at 1 day. The 

temporal CO2 variability in SA is smaller than in NA, as the range and standard 

deviation of the simulated column concentrations sampled at the Tapajos tower is 

only 3.1 ppm and 0.7 ppm, respectively. The amplitude of the mean diurnal cycle 

is 1.1 ppm. Unlike in NA, there is no correlation between cloud cover and mixing 

ratios. Since this simulation was selected to isolate the influence of local vegetation 

and circulations, the clouds are mid-afternoon cumulus clouds primarily seen on 

the east bank of the Tapajos River due to the low-level convergence line (Lu et al., 

2005). 

Since the SA case has significant surface heterogeneity due to the rivers, the 

spatial variability in this simulation is larger for the fine grid column compared 
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Figure 3.6: Simulated total column CO2 concentrations at the Tapajos tower (solid 
line) and the modeled sky conditions (shaded line), where 0 indicates clear-sky and 
1 indicates the tower was cloud covered. 

to the NA simulation; however, the spatial variability over the coarse domain is 

smaller, which is due to the lack of synoptic-scale features which advected high 

C0 2 in NA. The average total column spatial range at 1300 LST is 1.46 ppm and 

2.15 ppm for the fine and coarse grid columns, respectively (Table 3.1). The C0 2 

spatial pattern at 1300 LST was similar for all days, with a low concentration on 

the eastern half of the domain and higher concentrations in the northwest corner, 

which is primarily due to the topography and surface cover (Lu et al., 2005). 

The total column measurements in SiB-RAMS are consistent with results pre­

sented by Olsen and Randerson (2004). Using the Model of Atmospheric Transport 

and Chemistry (MATCH) three-dimensional atmospheric transport model, Olsen 

and Randerson (2004) investigated the total column C0 2 concentrations. They 

found that at WLEF the greatest variability of column CO2 was linked to syn-
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optic events on the order of 2 to 6 days. In order to influence the column, CO2 

flux anomalies had to accumulate in the lower troposphere over a period of several 

days or there had to be a large-scale replacement of air in the column. Day-to-day 

variations of up to ~ 8 ppm can be seen at the WLEF tower during the summer 

due to synoptic events. Similar to SiB-RAMS, results from Olsen and Randerson 

(2004) show the main driver of column CO2 variability over WLEF during the 

summer is synoptic scale systems, as mid-latitude air-masses with distinct CO2 

concentrations develop in response to surface fluxes and are separated by fronts 

(Parazoo et al., 2008). 

In the Amazon, modeled vertical CO2 profiles were qualitatively similar to the 

observed profiles near the surface, but did not exhibit the same degree of variability 

(Olsen and Randerson, 2004). The amplitude of the average diurnal cycle within 

the Amazon basin was 0.9 ppm in July, which is slightly weaker than the diurnal 

cycle from SiB-RAMS; however, comparison of MATCH column C0 2 to column 

CO2 profiles from aircraft data revealed that MATCH tended to have lower diurnal 

variability than observed. In the tropics, the dominant cause of CO2 variability is 

the diurnal cycle due to the productive ecosystems and the lack of synoptic-scale 

features. 

3.3.2 Spatial Representation Errors 

Since satellite track widths are not the same size as an inverse model grid column, 

using satellite concentrations to optimize a grid column may introduce spatial rep-
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resentativeness errors into the inversion. In this study, the size of the coarse and 

fine domains in both NA and SA correspond roughly to a global model grid size. 

We calculated the spatial errors that inversions would incur from using satellite 

measurements to represent grid columns in central NA and in the Amazon by 

subtracting the domain-averaged 1300 LST total column concentrations from the 

simulated satellite concentrations, which use only clear-sky pixels. The daily re­

sults are compiled into a single sampling distribution for each domain and location 

(Figure 3.7). The mean and standard deviation of the sampling distributions for 

the fine and coarse domains for both NA and SA are provided in Table 3.2. 

NAfine 
NA coarse 
SA fine 
SA coarse 

Spatial 
fi/cr 

-0.01/0.06 
-0.13/0.43 
-0.04/0.21 
-0.04/0.24 

Local Clear-
Sky 
fi/cr 

-0.02/0.06 
-0.12/0.51 
-0.04/0.18 
-0.03/0.19 

Diurnal 
fi/cr 

-0.19/0.33 
-0.25/0.51 
0.1/0.26 
0./0.25 

Temporal 
fi/cr 

-0.44/0.31 
-0.42/0.5 
0.06/0.66 
-0.01/0.64 

Table 3.2: Mean (fi) and Standard Deviation (cr) of the Sampling Distributions 
of the Spatial Representation Errors, the Local Clear-Sky Errors, the Diurnal 
Sampling Errors, and the Temporal Sampling Errors for All Four Cases. Units are 
in ppm. 

The spatial errors for both fine grid columns are unbiased, as the mean of the 

distributions are close to 0. Over NA, all of the errors are within 0.3 ppm; however, 

over SA only 13% of the simulated satellite concentrations were within 0.3 ppm 

of the mean. The standard deviation for SA is 0.2 ppm and the maximum error 

is -0.72 ppm. 97% of the simulated SA tracks are within 0.5 ppm, which is only 

half of the expected spectroscopic retrieval error (Miller et al., 2007). The larger 
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Figure 3.7: Sampling distributions of the spatial representativeness errors in NA 
(solid) and SA (shaded) at 1300 LST compiled from all days of the simulations. 
The x axis is the difference between the simulated satellite concentration and the 
domain mean concentration, and the y axis is the number of satellite tracks that 
correspond to each difference. Negative values indicate an underestimation by the 
simulated satellite measurements and positive values indicate an overestimation. 
Results from the fine grid Columns (top) and distribution of the errors from the 
coarse grid columns (bottom). 
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errors over SA are due to the heterogeneity in that domain and cloud masking in 

NA, since the greatest NA variability occurred when there were clouds and hence 

no satellite retrievals. The relatively small magnitude of the errors is due to the 

limited total column C0 2 variability in the domains. 

The errors that would be introduced into inversions that use satellite measure­

ments to represent coarse grid columns are larger than the errors for a fine grid 

column, which is not surprising since the total column C0 2 is more variable. The 

spatial errors over SA remain unbiased and have a standard deviation similar to 

that of the fine domain. 95% of the satellite tracks capture the domain mean 

within 0.5 ppm. The errors for the NA coarse domain are much larger and neg­

atively biased, with a mean of -0.13 ppm and a standard deviation of 0.43 ppm. 

Although nearly 25% of the tracks are within 0.1 of the mean, 18% of the tracks 

have errors larger than 0.5 ppm and 6% of the tracks have errors larger than 1 ppm, 

which is larger than the expected retrieval error. The large and negatively biased 

spatial errors are due to the large gradients of CO2 due to the frontal passages and 

the cloud masking of the higher concentrations associated with the fronts. 

3.3.3 Local Clear-Sky Errors 

We define local clear-sky errors as errors that are introduced into inversions that 

use clear-sky satellite concentrations to represent a transport model grid column 

that includes clouds. These errors are calculated by subtracting the simulated 

satellite concentrations at 1300 LST using all pixels from the simulated satellite 
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concentrations using only clear-sky pixels. The resulting errors are smaller than 

the retrieval error and are unbiased for the fine domains (Figure 3.8). All the NA 

satellite tracks over the fine grid column that only use clear-sky footprints capture 

the true mean track value within 0.3 ppm. For the SA case, the standard deviation 

is larger and 87% of the tracks are within 0.3 ppm of the true mean. The largest 

error is 0.7 ppm. The SA coarse domain errors are very similar to the errors in the 

fine domain, with 85% of the errors less than 0.3 ppm. The similarity between the 

fine and coarse sampling distributions indicates that differences in carbon uptake 

due to local cloud-cover has a minimal impact on the concentration at a single 

snapshot in time. The local clear-sky errors over the NA coarse grid column are 

negatively biased with a sampling distribution mean of -0.12 ppm. The negative 

bias is due to a few tracks that have large negative errors. Although 80% of the 

simulated satellite concentrations using only clear footprints have errors less than 

0.3 ppm, 3% of the tracks have errors greater than 1 ppm, with errors as large as 

4 ppm. Similar to the spatial errors, large and negatively biased local clear-sky 

errors are due to cloud masking of high frontal CO2. 

To further examine the clear-sky errors, we analyzed local clear minus all-sky 

differences in net ecosystem exchange (NEE), which were calculated in a similar 

manner by subtracting the mean NEE value in a satellite track containing all 

pixels from the corresponding satellite track NEE mean utilizing only clear-sky 

pixels. The resulting errors are very small (< 1 yumol m - 2 s"1). For the fine 

domains, the errors are shifted towards enhanced uptake in clear conditions due 
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Figure 3.8: Local clear-sky total column CO2 errors for NA (solid) and SA 
(shaded), which are the differences between the simulated satellite concentrations 
at 1300 LST using only clear-sky pixels and the simulated satellite concentrations 
at the same time using all the pixels in the satellite track. Errors from the fine 
grid (top) and results from the coarse grid (bottom). 
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to reduced photosynthesis under clouds; however, the errors in the coarse domains 

are symmetrical about 0. Since the clear-sky NEE errors are small, their effect on 

the column CO2 concentration is minimal, indicating that the main driver of the 

large errors seen in the clear-sky C0 2 is the organization of regional CO2 gradients 

along frontal boundaries, which are masked by large-scale cloud systems and not 

observed by satellites. 

3.3.4 Temporal Sampling Errors 

Temporal sampling errors can occur in inversions that use satellite concentrations 

to optimize temporally-averaged concentrations in the model. We calculate tem­

poral errors from using satellite measurements to represent diurnal averages and 

bi-monthly averages. 

Diurnal Sampling Errors 

To calculate the diurnal errors, we subtracted the domain-average diurnal mean 

(0000 UT to 0000 UT) from the simulated 1300 LST satellite tracks (Figure 3.9). 

All the standard deviations for the diurnal errors are larger than the standard 

deviations seen for both spatial and local clear-sky errors. Over SA, the mean 

of the sampling distribution is positively biased by a tenth of a ppm, and the 

entire distribution is positively shifted, indicating that on a fine domain satellite 

concentrations at 1300 LST are slightly higher than the domain mean. 94% of the 

simulated satellite tracks have errors less than 0.5 ppm, and all the tracks have 
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Figure 3.9: Diurnal sampling errors for NA (solid) and SA (shaded), which are the 
differences between the simulated satellite concentrations from each track using 
only clear-sky pixels and the diurnal mean CO2 concentration from the entire 
domain, from 0000 to 0000 UT. 

representation errors less than the expected retrieval error. For the SA coarse grid 

column, the diurnal errors are unbiased, the sampling distribution is symmetric 

about 0, and 95% of the errors are less than 0.5 ppm. The errors indicate that, in 

the absence of synoptic systems, 1300 LST satellite measurements over productive 

ecosystems are generally within 0.5 ppm of the diurnal mean and actually become 

less biased as the domain size increases. This result is similar to results from 

Olsen and Randerson (2004) and Miller et al. (2007) that indicate that column 

measurements over productive ecosystems have a diurnal maximum in the early 

morning, a minimum in the late afternoon, and are near the diurnal mean at 1300 

LST. 
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The diurnal sampling errors for NA are negatively biased by ~ 0.2 ppm for 

both the coarse and the fine grid columns, indicating that sampling at 1300 LST 

underestimates the diurnal average for this case. Over the fine domain, 85% of 

the tracks capture the diurnal average within 0.5 ppm. The remaining tracks un­

derestimate the mean by ~ 1 ppm. Since the total column concentration over the 

domain is driven by synoptic variability associated with cloud cover rather than 

the diurnal cycle due to vegetation, the large errors are idiosyncratic, resulting 

both from clouds masking the high concentrations and the timing of the fronts. 

The bias and standard deviations on the NA coarse domain is even larger. Rather 

than having a small subset of tracks underestimating the diurnal mean, the dis­

tribution is negatively shifted. Only 65% of the tracks have errors less than 0.5 

ppm, indicating that over regions that have large synoptic variability the diurnal 

mean is not well sampled with a clear-sky satellite measurement taken at a single 

snapshot in time. 

Bi-Monthly Sampling Errors 

We calculated temporal sampling errors from comparing satellite concentrations to 

a domain-average bi-monthly mean by subtracting the domain-averaged CO2 mean 

for the entire simulation from the 1300 LST satellite tracks (Figure 3.10). These 

errors are very large for all evidenced by the large standard deviations. 

The errors are biased by -0.4 ppm over NA. The NA sampling distributions for 
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both the fine and coarse domain are negatively shifted, showing that the clear-

sky simulated satellite concentrations systematically underestimate the temporal 

average. Over the both domains in NA only ~ 50% of the tracks had errors less 

than 0.5 ppm. The large positive errors seen by a few tracks in the large domain 

is a result of the satellite concentrations sampled on the August 15, as a few pixels 

in the northwest corner of the domain were clear just prior to the frontal passage 

as the C0 2 concentration was increasing. Sampling between clouds enabled the 

satellite to observe higher concentrations associated with the front, but the front 

caused such a large anomaly in column CO2 that the concentrations were actually 

higher than the domain-averaged temporal mean. At synoptic scales, horizontal 

and vertical mixing work together to cause these strong CO2 variations along 

cold fronts (Parazoo et al., 2008). Since synoptic weather patterns can carry 

large CO2 anomalies and since these weather disturbances and frontal passages are 

associated with clouds, clear-sky satellite measurements have large errors compared 

to temporal averages over regions with synoptic variability. 

Over SA the standard deviation is also large for bi-monthly errors; however, 

the sampling distributions are unbiased. Even in a case driven by local vegeta­

tion and circulation, a substantial number of simulated satellite tracks have errors 

larger than 1 ppm. On the fine domain, only 40% of the tracks have errors less 

than 0.5 ppm, and only 45% of the simulated satellite concentrations have errors 

less than 0.5 ppm on the coarse domain. The large errors indicate that even in 

conditions dominated by local fluxes and circulation patterns, clear-sky satellite 
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Figure 3.10: Temporal sampling errors for NA (solid) and SA (shaded), which 
are the differences between the simulated satellite concentrations from each track 
using only clear-sky pixels and the 10-d domain average. Fine grid column (top) 
and coarse grid column (bottom) results. 
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measurements sampled at 1300 LST cannot represent bi-monthly temporal aver­

ages without a substantial chance of introducing large errors. 

3.4 Conclusions 

Using a coupled ecosystem-atmosphere cloud-resolving model, we investigated 

sampling errors that may be introduced into inversions that use satellite retrievals 

of total column C0 2 in clear conditions. We analyzed two simulations: one over 

the mid-continental United States and one in the Brazilian Amazon. The main 

driver of column CO2 variability in the NA case was synoptic systems associated 

with cloud cover, while the source of CO2 variability in SA was the diurnal cycle 

and mesoscale circulations. 

Spatial representation errors were unbiased and less than 0.5 ppm for a 100 

x 100 km domain; however, the errors increased in the NA case when a single 

satellite track was used to represent a coarse (450 x 450 km) grid column. The 

local clear-sky errors exhibited the same patterns as the spatial errors: the majority 

of the errors were < 0.3 ppm for a 100 x 100 km domain, but the errors became 

negatively biased and large (> 2 ppm) for the coarse grid column of the NA 

simulation. Both the spatial and local clear-sky errors did not increase over the 

coarse SA grid column, where the variability was due to surface heterogeneity 

and local circulations. The main cause of large and biased spatial and clear-sky 

errors was not surface heterogeneity but rather synoptic systems associated with 
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cloud cover. CO2 observations across North America showed large day-to-day CO2 

variations associated with passing weather disturbances manifested as surface cold 

fronts (Parazoo et al., 2008). Parazoo et al. (2008) found that although ecosystem 

response to frontal weather played a role, the majority of the CO2 variations (70-

90%) along fronts was due to horizontal and vertical mixing. Resulting strong 

coherent CO2 patterns were then transported across the continent by horizontal 

advection. Since frontal systems create large gradients of C0 2 that are masked 

by clouds and cannot be sampled, inversions that use satellite measurements to 

represent coarse regions may incur large and biased spatial and local clear-sky 

errors. As inversions are influenced by a bias as small as a tenth of a ppm in the 

total column (Chevallier et a l , 2007; Miller et a l , 2007), satellite concentrations 

cannot be used to represent large regions with significant C0 2 variability due to 

synoptic systems. Our analysis suggests that transport models should be run at 

high resolution to avoid introducing biases. 

Using satellite measurements to represent bi-monthly temporal averages cre­

ated large and biased errors. Even in a location where the main temporal variabil­

ity was due to the diurnal cycle and local circulations, the bi-monthly errors were 

larger than the expected retrieval error. Over NA, the errors were substantially 

negatively biased (~ -0.4 ppm) for both a fine and coarse grid column. Frontal 

systems that created CO2 gradients and that could not be sampled due to cloud 

cover caused not only errors larger than the expected spectroscopic retrieval er­

ror, but sampling biases. Since sampling biases are harmful to inversions, satellite 
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measurements cannot be used to represent temporal averages. As our case study 

chose the synoptic event with the strongest CO2 signal, the errors presented here 

are likely maximum error estimates; however, it is likely that biases will exist for 

all synoptic systems that are associated with clouds. In addition, the model over­

estimated the photosynthetic uptake for moderate radiation values, which could 

cause the role of large-scale advection relative to local changes in carbon flux to 

be overestimated. However, decreasing the uptake would increase the concentra­

tions in cloudy conditions not visible by the satellite and would thus increase the 

negative bias in NA, making the results presented here robust despite this model 

deficiency. 

Systematic variations of CO2 along mid-latitude fronts makes model transport 

a priority. The model and the atmosphere must be sampled consistently, and 

observation operators in inversions must be accurate, including precise modeling 

of winds, clouds, fronts, and frontal timing. To avoid temporal sampling errors 

and biases, atmospheric transport must be modeled accurately and satellite mixing 

ratios must be used to optimize modeled concentrations sampled at the same time. 
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4 Assessing Temporal Clear-Sky Errors 
in Assimilation of Satellite CO2 Re­
trievals Using A Global Transport Model 

An edited version of this chapter was published by Copernicus Publications on 
behalf of the European Geosciences Union. Figure numbers, equation num­
bers, and citation styles have been changed for integration into the dissertation. 

Corbin, K. D., A. S. Denning, and N. C. Parazoo, (2008), Assessing Tem­
poral Clear-Sky Errors in Assimilation of Satellite C0 2 Retrievals Using 
a Global Transport Model, Atmospheric Chemistry and Physics Discus­
sion. 

Abstract 

The Orbiting Carbon Observatory (OCO) and the Greenhouse gases Observing 

SATellite (GOSAT) will make global observations of the total column dry-air mole 

fraction of atmospheric CO2 (Xcoi) starting in 2008. Although satellites have 

global coverage, XCo2 retrieval will be made only a few times each month over 

a given location and will only be sampled in clear conditions. Modelers will use 

Xco2 in atmospheric inversions to estimate carbon sources and sinks; however, if 

satellite measurements are used to represent temporal averages, modelers may in-
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cur temporal sampling errors. We investigate these errors \osing a global transport 

model. Temporal sampling errors vary with time and location, exhibit spatially 

coherent patterns, and are greatest over land and during summer. These errors 

often exceed 1 ppm and must be addressed in a data assimilation system by correct 

simulation of synoptic C02 variations associated with cloud systems. 

4.1 Introduction 

Atmospheric inversions, which use atmospheric CO2 concentrations and a trans­

port model to infer carbon sources and sinks, have provided valuable information 

regarding large-scale surface carbon fluxes (Gurney et al., 2002; Rodenbeck et al., 

2003; Baker et al., 2006b). However, as modelers move to higher-resolution fluxes, 

the uncertainties increase primarily due to sparse data coverage (Gurney et al., 

2003; Dargaville et al., 2005). In addition to the rapidly expanding surface net­

work, CO2 measurements from satellites will be used to quantify regional carbon 

sources and sinks. Studies indicate that spatially dense, global measurements of 

the column-integrated dry air mole fraction of atmospheric CO2 (Xco2) with pre­

cisions of ~ 1 ppm are expected to substantially reduce the uncertainties in the 

C0 2 budget (Rayner and O'Brien, 2001; Baker et a l , 2006a; Chevallier et al., 2007; 

Miller et al., 2007). 

Two satellites designed specifically to measure Xco2 are scheduled to launch in 

late 2008: the Orbiting Carbon Observatory (OCO) (Crisp et al., 2004) and the 
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Greenhouse gases Observing SATellite (GOSAT) (NIES, 2006). Both satellites 

will fly in a polar sun-synchronous orbit with an equator crossing time of ~ 1300 

LST, collecting near-infrared spectra from reflected sunlight. OCO will orbit just 

ahead of the Earth Observing System (EOS) Aqua platform in the A-train, which 

has a 16-day repeat cycle. OCO has a 10 km-wide cross track field of view that is 

divided into eight 1.25 km-wide samples with a 2.25 km down-track resolution at 

nadir. GOSAT's orbit is recurrent every 3 days with a varying swath width from 

88 to 800 km. 

Satellite Xco2 retrievals will be used in synthesis inversion and data assim­

ilation models to quantify carbon flux estimates; however, Xco2 measurements 

require clear conditions and are sampled at a single instance in time. If satellite 

data are used to represent temporal averages, variations in atmospheric CO2 on 

synoptic time-scales may lead to temporal sampling errors. An observational as­

sessment of systematic differences between mid-day C02 on clear-sky versus all 

days using multiyear continuous data at two towers located in mid-latitude forests 

found systematic differences of 1 to 3 ppm in CO2, with lower concentrations on 

sunny days than average (Corbin and Denning, 2006). The differences at both 

towers were greatest in the winter and were not attributable to anomalous surface 

fluxes. Another study used a high-resolution cloud-resolving model to analyze 

temporal sampling errors by comparing simulated satellite data to mean concen­

trations over an area equivalent to a global transport model grid column (Corbin 

et al., 2008). At both a temperate and a tropical site, the differences between 
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satellite measurements and diurnally and bi-monthly averaged transport model 

grid column concentrations were large (> 1 ppm). At the temperate site, the tem­

poral sampling errors were negatively biased because of systematic Xco2 anomalies 

associated with fronts that were masked by clouds. 

While Corbin and Denning (2006) and Corbin et al. (2008) both previously 

showed underestimations of clear-sky satellite concentrations compared to the true 

temporal mean, both of these studies only assessed the differences under specific 

conditions. Corbin and Denning (2006) looked at continuous observations from 

towers that are both located in mid-latitude forests, and Corbin et al. (2008) 

focused on two simulations over limited regions for short time-periods in August. 

In this study, we are expanding on previous research by investigating the clear-sky 

temporal sampling errors using a global atmospheric transport model. In addition 

to assessing clear-sky differences globally, we also investigate how these differences 

vary on seasonal timescales. 

4.2 Model and Methods 

We simulated 2003 atmospheric CO2 concentrations using the Goddard Space 

Flight Center (GSFC) Parameterized Chemical Transport Model (PCTM) (Kawa 

et al., 2004). The dynamical core of PCTM is a semi-Lagrangian algorithm in flux 

form from Lin and Rood (1996). PCTM is driven by meteorological fields from 

NASA's Goddard Earth Observation System version 4 (GEOS-4) data assimilation 
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system (DAS) (Bloom et al., 2005). PCTM was run with 1.25° by 1° horizontal 

resolution, 26 vertical levels up to 20.5 km, and a 7.5-minute time-step with C0 2 

output every 3 hours. For spin-up, PCTM was run for 3 years from 2000-2002. 

The surface fluxes of C0 2 include biological fluxes, ocean fluxes, and fossil 

fuel emissions. Surface sources and sinks associated with the terrestrial biosphere 

are based on computations of hourly net ecosystem exchange from the Simple 

Biosphere Model version 3 (SiB3) (Sellers et al., 1996b,a; Baker et al., 2007). 

Ocean fluxes are adopted from Takahashi et al. (2002), and estimates of fossil 

fuel emissions are from Andres et al. (1996). Comparisons to a network of in-situ 

continuous analyzers showed that the simulation captures synoptic features well 

(Parazoo et a l , 2008). 

To assess temporal sampling differences, for each grid-column in the model 

we compare simulated satellite concentrations to the corresponding concentrations 

that include all conditions. Differences between the simulated satellite data and 

the mean modelled concentrations are assessed on both annual and seasonal time-

scales. While there are large differences in the size of the model grid cells and 

the OCO samples, Corbin et al. (2008) found spatial representation errors are less 

than 0.5 ppm, indicating that it is reasonable to simulate OCO observations from 

a model of this resolution. 

To simulate satellite data, PCTM was sampled using the OCO methodology. 

First, we created a clear-sky subset of PCTM CO2 concentrations. To determine if 

the grid cell is clear, we used downwelling solar radiation data from GEOS-4 and 
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created the clear-sky subset using the top-ranked data per month for each grid cell 

above a specified threshold value. 

Simulating OCO orbit and scan geometry, Rayner et al. (2002) calculated a 

26% probability that a pixel within a transport model grid cell will be clear. 

As cloud cover varies with location and time of year, we investigated both 15% 

and 40% thresholds to assess temporal sampling errors at realistic minimum and 

maximum coverage. Decreasing the threshold value to 15% produces more random 

errors with larger differences, while increasing the threshold to 40% decreases the 

magnitude of the differences but increases the spatial coherency. Since the main 

conclusions from this analysis are robust among all three thresholds, we will show 

the results from the 26% threshold value. 

Since OCO is not yet in orbit, we used CloudSat tracks to determine the 

location and timing of satellite overpasses. CloudSat, an existing satellite in the 

A-train constellation, is flying with a nearly identical orbit only minutes behind 

the proposed OCO orbit (Stephens et a l , 2002). This study used CloudSat tracks 

from January 1 through January 16, 2007, and the tracks are repeated every 16 

days for the entire year; however, we only use data from the ascending branch since 

OCO requires sunlight. The model was sampled at the grid cell that included the 

satellite retrieval at the closest model hour available, using only the concentrations 

included in the clear-sky subset. After sampling the data, the concentrations were 

pressure weighted to create the OCO subset of total column C02 . 
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4.3 Results 

Annual mean temporal sampling errors are calculated by subtracting the annual 

mean total-column CO2 concentration from the annual mean concentration in the 

simulated OCO subset for each grid cell [Figures 4.1 and 4.2]. Differences between 

the satellite-retrieved annual mean and the true annual mean are small in the 

southern hemisphere and increase with latitude. Large differences (> 1 ppm) occur 

over land and in the northern hemisphere. The standard deviation is ~ 0.8 ppm 

over subtropical land in the southern hemisphere, reflecting the large differences 

seen over South America. In the northern hemisphere, zonally averaged standard 

deviations greater than 1 ppm occur. Spatially coherent negative differences can 

be seen over southeastern North America, southern South America, the North 

Atlantic Ocean, and Europe. The zonal average of the annual mean differences is 

~ -0.3 ppm in the northern hemisphere mid-latitudes, indicating inversions may 

incur a negative bias if satellite measurements are used to represent an annual 

mean. 

We calculated seasonal temporal sampling errors incurred from using satellite 

measurements to represent seasonal averages by subtracting the 3-month seasonal 

total column CO2 PCTM concentrations for each grid cell from the seasonal mean 

in the OCO subset at the same grid cell [Figures 4.3, 4.4, and 4.5]. The magnitude 

and location of the differences varies by season. Large differences occur during the 

summer, as the greatest standard deviation in the southern hemisphere is in DJF 
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Figure 4.1: Annual mean temporal sampling errors, obtained by subtracting the 
annual mean at each grid cell from the annual mean in the OCO subset. 
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Figure 4.2: Top) Zonal averages of the annual mean temporal sampling errors. 
The black line indicates the total zonal mean, the green line shows the zonally-
averaged errors over land and the blue line shows the zonally-averaged errors over 
ocean. Bottom) Zonal standard deviations of the annual mean temporal sampling 
errors. 
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Figure 4.3: Seasonal temporal sampling errors, calculated by subtracting the grid 
cell mean for each season from the grid cell mean in the OCO subset. 

and in the northern hemisphere is JJA. Differences also tend to be larger over land 

regions, likely due to the larger biospheric fluxes and fossil fuel emissions. 

The seasonal maps show coherent spatial patterns. In the northern hemisphere 

winter, significant underestimates of the mean are seen in the eastern United States 

and Europe, while slight overestimations are prevalent near India. The regional 

underestimations can be seen in the zonal mean of the errors. The transition period 

during MAM has relatively small errors compared to the other seasons, as the 

standard deviations are less than 1 ppm; however, over tropical South America the 

satellite measurements are higher than the seasonal mean and over higher northern 

latitudes the concentrations over land are biased lower than average. In JJA, over 

the southern hemisphere and tropical oceans the errors are small and random, while 
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Figure 4.4: Seasonal zonally-averaged temporal sampling errors. 
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Figure 4.5: Seasonal zonally-averaged standard deviations of the temporal sam­
pling errors. 
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over southern South America the satellite underestimates the seasonal mean in the 

southern half of the continent and overestimates the mean in the northern portion. 

Large overestimates can be seen in Asia, while underestimates can be seen over 

the north Atlantic. SON is also characterized by larger zonally averaged errors, 

particularly from regional overestimates in Asia and underestimations in South 

America. Calculating seasonal temporal sampling errors reveals large, spatially 

coherent differences between satellite measurements and temporal means that vary 

with time and location. 

4.4 Conclusions 

This study indicates that modelers cannot use satellite measurements sampled 

only in clear conditions to represent temporal averages. The 2003 annual mean 

errors calculated using PCTM are relatively small and randomly dispersed; how­

ever, the errors introduced into inversions using satellite data to represent smaller 

timescales such as seasonal means vary with both time and location and exhibit 

coherent spatial patterns at continental scales. The differences are largest during 

summer months and tend to be greater over land. In the northern hemisphere, 

relatively large regions in North America and Europe underestimate the temporal 

mean in the winter and fall, while these regions have large but random differ­

ences in the summer. Over South America, satellite measurements overestimate 

the concentrations in fall and winter but underestimate the concentrations during 

spring. 
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Although these errors should be investigated for various years using different 

transport models, it is likely spatially coherent patterns would still exist due to 

the covariance between clouds and CO2 concentrations. Systematic variation of 

C0 2 and cloudiness due to advection along frontal boundaries produces differences 

between satellite observations and modeled time-means. It is imperative that 

source/sink estimates from satellite data match the sampling time and location to 

the observation platform. Further, transport models will need to capture correct 

placement and timing of synoptic weather features, including fronts and clouds. 
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5 An Evaluation of SiB3-RAMS and an 
Analysis of the Impact of Sub-Grid 
Land Cover Heterogeneity 

Abstract 

Numerous modifications have been made to the coupled ecosystem-atmosphere 

model SiB3-RAMS. One of the primary changes in the model is the inclusion 

of subgrid land-cover heterogeneity using patches. We evaluate the performance 

of SiB3-RAMS and the sensitivity of modeled CO2 fluxes and concentrations to 

land cover by performing three simulations: using only C3 vegetation, including 

C4 grasses and crops, and using both C3 and C4 biomes while including patches 

of subgrid heterogeneity. SiB3-RAMS overestimates the summertime respiration 

at boreal sites; and the model underestimates the summertime uptake in mixed 

forests, causing the seasonal cycle of NEE to be underestimated at these loca­

tions; however, the model captures the fluxes at needleleaf forests and grasslands 

reasonably well. Inclusion of C4 vegetation and patches alters the net ecosystem 

exchange (NEE) across much of North America (NA). The greatest differences 
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occur in the Great Plains, where C4 vegetation enhances the summertime uptake, 

and over the southeast, where including the land cover heterogeneity reduces the 

magnitude of the regional summer source. Due to the large fractional coverage of 

C4 crops and grasses across NA, it is essential to include these biomes in model 

simulations. Including surface heterogeneity improves the CO2 concentrations in 

the model, reducing the root mean square errors at tower sites by ~1 ppm on 

average. 

5.1 Introduction 

Although inverse models have provided valuable information regarding carbon 

sources and sinks, both the location and magnitude of these sources and sinks, 

as well as the processes driving them, remain highly uncertain (Gurney et al., 

2002; Stephens et a l , 2007; Jacobson et al., 2007). Recent effort has been shifted 

from quantifying sources and sinks on the global scale down to local and regional 

scales with higher time resolution (Peylin et al., 2005; Zupanski et al., 2007; Peters 

et al., 2007; Schuh et al., 2008). Fluxes and concentrations from regional forward 

model simulations can be used in inverse modeling to help improve the source/sink 

estimates. 

In addition to providing a priori flux estimates, regional models have been used 

to study processes driving the variability of atmospheric CO2 concentrations. Sev­

eral studies have used coupled biosphere-atmosphere models to demonstrate the 
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importance of mesoscale variability on C02 concentrations. Nicholls et al. (2004) 

used a coupled model to investigate the mechanisms leading to C0 2 variability over 

the Great Lakes region in the United States, concluding that meteorological pro­

cesses associated with complex terrain, such as katabatic winds and lake breezes, 

lead to substantial C0 2 advection and variability. A study by Lu et al. (2005) over 

a heterogeneous landscape in the Tapajos National Forest in South America also 

shows that C0 2 concentrations and fluxes are sensitive to mesoscale circulations 

induced by topography and differences in roughness lengths between land and wa­

ter, van der Molen and Dolman (2007) used a regional model to demonstrate that 

relatively modest changes in topography can cause large horizontal gradients in the 

boundary layer that persist for hours. These studies all suggest that understand­

ing mesoscale processes is essential in interpreting atmospheric concentrations and 

fluxes, particularly at specific sites on a regional scale. 

Coupled models have also been used to investigate the role of synoptic events 

on atmospheric C0 2 variability (Chan et al., 2004; Geels et al., 2004; Wang et al., 

2007). All these studies show that the C0 2 field is strongly influenced by the atmo­

spheric dynamics. Synoptic systems alter the biosphere fluxes through radiative 

forcing and temperature variability, and synoptic variability in C0 2 concentrations 

is due to a combination of variations in carbon fluxes and large-scale horizontal 

advection and mixing. 

Finally, coupled models have been used to investigate the utility of C0 2 mea­

surements in inverse models by analyzing representation errors (Tolk et a l , 2008; 
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Cor bin et al., 2008). Synoptic variability causes large representation errors, par­

ticularly when observations are used to represent temporal averages. In the mid-

latitudes, clouds associated with frontal systems will inhibit satellite measure­

ments; however, these systems are associated with large concentration gradients 

due to horizontal advection and deformational flow (Parazoo et al., 2008). To 

minimize representation errors in inversions, these regional studies show that CO2 

measurements should only be used to represent modeled concentrations sampled 

at the same time. 

Since regional models are used for a variety of applications, it is essential to 

continually identify shortcomings in the model and implement modifications to 

help improve these tools. One difficulty of regional modeling is correctly clas­

sifying the land cover type. Satellite maps provide high-resolution land cover 

classifications, but frequently these maps do not discriminate between C3 and C4 

vegetation (Hansen et al., 2000; Mu et al., 2007). The partitioning between C3 

and C4 vegetation has important implications on the carbon cycle, as well as on 

surface temperature, humidity, and energy fluxes (Still et al., 2003; Sellers et al., 

1992; Collatz et al., 1992). C4 photosynthesis is a mechanism to overcome pho-

torespiration, and is favorable in hot and dry climates. C4 plants are generally 

favored over C3 plants in arid or semiarid regions, such as the Great Plains of the 

United States. C4 plants are more productive at higher temperatures since the 

rate of photosynthesis in these plants is invariant to a wide range of temperatures, 

unlike C3 plants where the quantum yield decreases with temperature. Incorrect 
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partitioning of C3 into C4 vegetation will alter the carbon fluxes and hence impact 

the resulting concentrations. 

Another difficulty in regional modeling is sufficiently capturing the land cover 

heterogeneity, as the land surface is characterized by pronounced spatial hetero­

geneity that spans a wide range of scales. To incorporate subgrid heterogeneity, 

one common technique in land surface modeling is to introduce patches, which di­

vides the area of each grid cell into fractions covered by various vegetation types. 

Using patches allows the model grid cell to be represented by various land cover 

types, rather than just one dominant biome. Land-cover patches have been used 

in a variety of applications to improve energy fluxes and the hydrological cycle 

(Giorgi and Avissar, 1997; Essery et a l , 2002; Avissar and Pielke, 1989; Over-

gaard et al., 2006); however, little work has been done to investigate the utility of 

patches in simulating CO2 fluxes and concentrations. 

The purpose of this study is to evaluate CO2 fluxes and concentrations from 

the regional coupled atmosphere-biosphere model SiB3-RAMS and to investigate 

the impact of land cover classification. To do this, we perform three separate 

simulations: one that does not include C4 vegetation, one that uses a separate 

C3/C4 fractionation map to partition grasslands and croplands into C3 and C4 

classes, and one simulation that includes both C3 and C4 vegetation as well as 

patches to capture the land cover heterogeneity. Resulting modeled NEE and CO2 

are compared to observations measured at towers across North America. 
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5.2 Methods 

5.2.1 Model Description SiB3-RAMS 

This study uses the Simple Biosphere Model Version 3 (SiB3) coupled to the 

Brazilian version of the Colorado State Regional Atmospheric Modeling System 

(RAMS). This coupled model has been used for a variety of applications (e.g. 

Denning et al., 2003; Nicholls et a l , 2004; Wang et al , 2007; Corbin et al., 2008). 

Details of the model can be found in these previous studies; however, we have 

made numerous modifications. In this section we will briefly outline the important 

aspects of the model and highlight the changes. 

SiB3 calculates the transfer of energy, mass, momentum, and CO2 between the 

atmosphere and the vegetated surface of the Earth (Baker et al., 2003; Sellers et al., 

1996b,a). To parameterize photosynthesis, SiB3 uses the photosynthesis model of 

Farquhar et al. (1980) and the stomatal model of Ball (1988); and the photosynthe­

sis rate is linked with stomatal conductance using the Ball-Berry-Collatz equation 

(Collatz et al., 1991, 1992). The photosynthesis rate for each grid cell is scaled 

from the leaf-level to the canopy using satellite-derived leaf area index (LAI) and 

absorbed fraction of photosynthetically active radiation (FPAR). 

A number of modifications have been added to SiB3 (I. T. Baker, personal 

communication). For more realistic flux calculations, a prognostic equation for 

the canopy air space has been added (Vidale and Stockli, 2005). Model hydrology 

has been improved by adopting the Community Land Model soil/snow submodel, 
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where soil temperature and soil moisture are calculated for ten co-located soil 

layers and up to five snow layers. All snow and soil layers have explicit treatment 

of liquid water and ice, and the root profile in the soil exponentially decreases from 

the surface down to the bottom soil layer. In addition, the effect of soil moisture 

stress on photosynthesis has been modified to allow a more realistic response of 

transpirational load shifting to deep layers when the surface layer dries out, and a 

simple approximation of frost stress has been added. Finally, respiration has been 

partitioned into autotrophic and heterotrophic components to help improve the 

annual cycle of carbon uptake and release. 

To capture spatial land cover heterogeneity, we have implemented the capability 

to represent multiple land use classes within a single grid cell. Each grid cell is 

subdivided into non spatially-explicit patches of different vegetation classifications 

in order to more accurately model sub-grid scale land cover heterogeneity. The 

prescribed vegetation map is used to determine the land cover classification and 

associated fractional coverage of each patch. Since the vegetation map has a 

higher resolution than the model grid cell, the number of pixels for each biome 

is determined. The three biomes with the most pixels are the top three patches. 

The associated fractional coverage is calculated by dividing the number of pixels 

for each of the vegetation classes by the total number of pixels in the model grid 

cell, and weighting each of the associated areas so that the sum of the patch areas 

matches the total area of vegetation in the grid cell. SiB3 calculates the fluxes 

for each of the patches separately, and the total fluxes to the atmosphere are 
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calculated as an area-weighted combination of the contributions from each patch. 

In this study, we used three patches to capture the dominant land cover classes. 

We chose three patches as the area coverage of vegetation classes beyond the top 

three were minimal (< 10%). 

RAMS is a comprehensive mesoscale meteorological modeling system designed 

to simulate atmospheric circulations spanning in scale from hemispheric scales 

down to large eddy simulations of the planetary boundary layer (Prietas et al., 

2006; Pielke et a l , 1992; Cotton et a l , 2002). RAMS is a fully three-dimensional, 

non-hydrostatic model that includes the capabilities to nudge the model fields 

to gridded analysis data, and to incorporate telescoping nested grids, allowing 

the model to solve the equations simultaneously on any number of interacting 

computational meshes of differing spatial resolutions (Walko and Tremback, 2002; 

Clark and Farley, 1984). 

RAMS supports various turbulence closure, short and long wave radiation, 

boundary, and convection schemes. The turbulence closure option used in this 

study is the Mellor and Yamada (1982) scheme for vertical diffusion and the 

Smagorinsky (1963) scheme for horizontal diffusion. The radiation scheme used is 

the two-stream radiation scheme developed by Harrington (1997), and the lateral 

boundaries utilize the radiation condition discussed by Klemp and Wilhelmson 

(1978). For convection, this study used the Grell convective cumulus scheme, 

which is an entraining plume model based on the quasi-equilibrium assumption 

(Grell, 1993; Grell and Devenyi, 2002). 
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5.2.2 Model Initialization and Input Data 

The meteorological fields in SiB3-RAMS are initialized by the National Center for 

Environmental Prediction (NCEP) mesoscale Eta-212 grid analysis with 40-km 

horizontal resolution (AWIPS 40-km). The analyses of horizontal wind, temper­

ature, geopotential height, and specific humidity are also used to nudge both the 

lateral boundaries and the interior grid cells every three hours. 

The land cover classification, leaf area index (LAI), and fraction of photosyn-

thetically active radiation (FPAR) are remotely sensed data with 1-km horizontal 

resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) on 

the NASA AQUA platform. The data were filled and processed by the Numeri­

cal Terradynamic Simulation Group (NTSG) at the University of Montana (Zhao 

et al., 2005; Mu et al., 2007). The vegetation classes were reclassified into the cor­

responding classification in SiB3 using two methodologies. The first method used 

only C3 vegetation classes, since the original MODIS classification did not sepa­

rate C3 and C4 species. The second method used overlayed a C3/C4 percent land 

cover map with 5 minute horizontal resolution from Leff et al. (2004) to further 

discriminate the vegetation classes into C3 and C4 biomes. 

The soil map for SiB3-RAMS is a product of the International Geosphere-

Biosphere Programme (IGBP) (IGBP, 2000). The original data were a soil type 

map of % sand / % clay / % silt values with 5 minute (~ 10 km) resolution. The 

data were then binned into soil classes (Sellers et al., 1996a). 
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Surface carbon fluxes due to fossil fuel combustion are prescribed by the Vul­

can inventory, which represents the U. S. fossil fuel C02 emissions for 2002 at ~ 

10 km spatial scale and hourly (Gurney et al., 2008). Using U. S. Environmental 

Protection Agency (EPA) emissions models and data, Vulcan is a comprehensive 

database that combines inventory data, process attributes, and classification infor­

mation to construct the detailed emissions estimates. Vulcan utilizes three classes 

of input: point sources (i.e. power plants), mobile sources (i.e. vehicle emissions), 

and area sources (i.e. residential sources). To scale the emissions estimates to 

2004, we matched the annual total emissions to the estimated emissions from the 

Energy Information Administration (EIA, 2007). Carbon monoxide emissions from 

anthropogenic activities are set to 1% of the CO2 fluxes (Gamnitzer et al., 2006). 

Air-sea CO2 fluxes are the monthly estimates from Takahashi et al. (2002). 

Fluxes of carbon due to fire emissions are prescribed from the Global Fire Emis­

sions Database version 2 (GFEDv2) (van der Werf et a l , 2006). The database 

consists of 1° x 1° gridded monthly fire emissions of both C0 2 and CO. 

To initialize respirable carbon, soil moisture, and prognostic variables, we used 

offline SiB3. We ran SiB3 for ten years from 1994-2004, using meteorological 

data from the NCEP Department of Energry (DOE) AMIP-II reanalysis. NCEP 

reanalysis II data were provided by the NOAA/OAR/ESRL Physical Sciences 

Division (PSD) in Boulder Colorado, USA and is available from their website at 

http://www.cdc.noaa.gov. SiB3 calculated the necessary fields for every grid cell. 

It is important to keep in mind that SiB3 is a balanced model: in calculating 
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the respiration factor, the total respiration in a year must equal the total uptake 

during the year. 

The initial C0 2 field and the lateral boundaries in SiB3-RAMS are set and 

nudged every 3 hours to 2004 global concentrations from the Goddard Space Flight 

Center (GSFC) Parameterized Chemical Transport Model (PCTM) (Kawa et al., 

2004). PCTM is driven by meteorological fields from NASA's Goddard Earth 

Observation System version 4 (GEOS-4) data assimilation system (DAS) (Bloom 

et al., 2005), and PCTM has 1.25° x 1° horizontal grid increments, 26 vertical lev­

els up to 20.5 km, and a 7.5-minute time-step with C0 2 output every 3 hours. For 

spin-up, PCTM was run for three years, from 2000-2003. The PCTM simulation 

includes surface CO2 fluxes from SiB3 biological fluxes (Baker et al., 2007), ocean 

fluxes (Takahashi et al., 2002) and fossil fuel emissions (Andres et al., 1996). Com­

parisons to a network of in-situ continuous analyzers showed that the simulation 

captures synoptic features well (Parazoo et al., 2008). 

The initial CO field and the lateral boundaries are set and nudged to 2004 

monthly-mean global concentrations from GEOS-CHEM, a global three-dimensional 

model of tropospheric chemistry driven by assimilated meteorological observations 

from GEOS-4. This simulated CO from GEOS-CHEM has 5° x 4° grid spacing 

and 30 vertical levels up to 66 km [P. Kasibhatla, personal communication]. The 

sink for CO is the reaction with hydroxyl radicals (OH) to create CO2. The OH 

field is a 3-D climatological distribution with monthly temporal resolution, 10° x 

8° horizontal grid increments, and 7 pressure levels (Spivakovsky et al., 2000). 
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5.2.3 Case Descriptions 

In this study, we perform three simulations over North America (NA) with SiB3-

RAMS. All three simulations run from 0000 UT 1 May to 0000 UT 1 September 

2004. The simulations have 150 x 90 gridcells with 40 km horizontal grid incre­

ments and 46 vertical levels up to 24 km. 

The first case, which we will refer to as C3, uses the SiB3 vegetation classes 

that correspond to the original MODIS biome map, which results in no C4 crops 

or grasses. The vegetation class in each grid cell is set to the dominant vegetation 

type. Figure 5.1 shows the fractional coverage of each SiB3 biome class for the C3 

simulation. The majority of the central and mid-western U. S. is classified as C3 

grasses and cropland. The southern and eastern portions of the U. S. are primarily 

covered by deciduous and mixed forests, Canada is predominantly needleleaf forest, 

and the southwestern U. S. is covered by shrubs. 

The second case, C4, overlays the C3/C4 coverage maps and separates out C4 

grasses and crops from the original C3 biome based on the C4 percent coverage 

for each gridcell. Using the C3/C4 map, much of the cropland over Nebraska and 

Iowa is C4 crops, and a significant portion of the western U. S. is C4 grassland. 

Maps of the fractional coverage of each biome class are shown in Figure 5.2. 

The third case, PAT, uses C3 and C4 vegetation classes and utilizes patches, 

allowing three different biome types per grid cell (Figure 5.3). While much of 

midwestern U. S. is still predominantly covered with C3 grassland and crops, the 
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Figure 5.1: Percent land cover classifications using only C3 vegetation classes. 
Fractions < 1. are due to the presence of surface water. 
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Figure 5.2: Percent land cover classifications including both C3 and C4 vegetation 
classes. 
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remaining regions of North America have considerable sub-grid scale heterogeneity. 

The vegetation coverage over the southern U. S. includes contributions from de­

ciduous forest, mixed forest, C3 grasses and crops and C4 grasses. Over Canada, 

many of the grid-cells in the model contain deciduous forest, mixed forest, and 

tundra; and in the west shrubs, forests, and both C3 and C4 grasses all exist in a 

single grid cell and contribute to the land cover heterogeneity. 

5.2.4 Observations 

This study utilized continuous observations of C0 2 concentrations and net ecosys­

tem exchange (NEE) measured at towers across the United States and Canada. 

Figure 5.4 shows a map of the locations of the towers used in this study. The flux 

tower data were obtained from FLUXNET (Olsen et a l , 2004; Baldocchi, 2006), 

and is available on-line at http://www.fluxnet.ornl.gov. The majority of the con­

tinuous C0 2 observations are funded by the National Oceanic and Atmospheric 

Administration (NOAA) Earth System Research Laboratory (ESRL) Global Mon­

itoring Division (GMD) and are publicly available at http://esrl.noaa.gov/gmd. 

Only flux tower sites where the dominant vegetation at the tower matches the 

dominant vegetation in the model grid cell are included. At towers that measure 

C0 2 concentrations at various levels on the tower, we used the data from the top 

level. 

Data from five tower sites in Canada are used to evaluate SiB3-RAMS. The 

Western Peatland Flux Station (WPL) is located in a treed fen with stunted black 
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Figure 5.3: Percent land cover classifications including C3 and C4 vegetation and 
patches. 
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Figure 5.4: The locations of the tower sites used in this study. 

spruce and larch trees (Syed et al., 2006). Near Lethbridge, Alberta, a 36 m flux 

tower (LBR) measures carbon fluxes over a northern temperate grassland. A more 

detailed description of the LBR station can be found in Ponton et al. (2006); 

Flanagan and Johnson (2005); Flanagan et al. (2002). The Boreal Ecosystem-

Atmosphere Study (BOREAS) Northern Old Black Spruce (NOBS) flux tower 

site in central Manitoba, Canada (BOR) is situated on the low-relief terrain near 

the northern limit of the boreal forest, and the vegetation at the site is domi­

nated by 160-year-old black spruce trees (Goulden et al., 1997; Steele et al., 1997; 

Dunn et al., 2007). Continuous CO2 measurements are collected at both the 

Saskatchewan Station (BRM) and the Fraserdale tower (FRD). BRM is located 

in a 111 year-old mature black spruce overstory with feather moss ground cover 

(Amiro et al., 2006), and FRD is located on the southern perimeter of the Hudson 
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Bay lowland on the northern edge of the boreal forest. The tower sits in a small 

clearing at the edge of a reservoir and is in a region with extensive wetland cover­

age (Chan et a l , 2004). Although 2004 data are available at the British Columbia 

Flux Station in western Canada, this flux tower was not included in this analy­

sis as the LAI data was only approximately half of the observations at the site 

(Humphreys et a l , 2003). 

Over the United States, this study uses data from 16 flux towers. The Wind 

River Crane Site (WRC), a flux tower in Washington state, is located in a pro­

tected old-growth coniferous forest dominated by Douglas fir and western hemlock 

(U et al., 2004; Chen et al., 2004). The Niwot Ridge Forest flux tower (NWT) is sit­

uated in a subalpine coniferous forest in the Rocky Mountains on a glacial moraine 

(Sacks et al., 2006; Monson et al , 2005). The WKT tower is located near Moody, 

Texas in the Great Plains of North America over grasslands characterized by cattle 

grazing. High-calibrated C0 2 data are collected at the tower up to 457 m. A more 

complete description of the site can be found at http://www.esrl.noaa.gov/gmdl/ 

(Tans and et. al., 1996; Bakwin et al., 1998; Zhao et al., 1997). The Atmospheric 

Radiation Measurement (ARM) Southern Great Plains (SGP) site makes flux and 

concentration measurements at a 60 m tower over a field containing winter wheat, 

some pasture, and summer crops (Fischer et al., 2007; Sims and Bradford, 2001). 

In Nebraska, the MEAD rainfed site measures reports NEE from carbon flux and 

storage measurements 6 m off the ground above a maize soybean rotation (Verma 

et al., 2005). 
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The Park Falls, Wisconsin tower (LEF) measures both fluxes and concentra­

tions of CO2 in a heavily forested zone of low relief. Mixed evergreen and deciduous 

forests dominate the area surrounding the tower (see Ricciuto et al. (2007); Davis 

et al. (2003); Bakwin et al. (1998) for a description of the site and measurements). 

During the spring and summer of 2004, additional C02 measurements were de­

ployed on four 76 m communications towers forming a ring around the LEF tower 

with a 100-150 km radius. The towers included in the Ring of Towers are Brule 

(BRU), Redcliffe (RED), Fence (FEN), and Wittenberg (WBG). Just northeast of 

LEF, flux and concentration measurements are collected at the Sylvania Wilder­

ness Area (SYL). SYL is in an old-growth forest dominated by eastern hemlock, 

sugar maple, basswoods, and yellow birch (Desai et al., 2005). 

Five of the towers used in this study are located along the East coast. The 

Duke Forest hardwoods flux tower (DHD) in North Carolina is situated in a 80-100 

year old stand in an oak-hickory type forest composed of mixed hardwood species 

with pine as a minor component. The Duke Forest loblolly pine flux tower site 

(DPP) is located in a pine forest composed of even-aged loblolly pine, deciduous, 

oak-hickory, mixed hardwood, and evergreen coniferous species. A more detailed 

description of both towers can be found in Stoy et al. (2005, 2007). Further 

north in Massachussetts, the Harvard Forest tower (HRV) is in a mixed forest 

that contains oak, maple, hemlock, and spruce (see Wofsy et al. (1993); Goulden 

et al. (1996) for further details). CO2 measurements are collected at a tower in 

Argyle, Maine (AMT). The site is characterized by deciduous forest and a heavy 
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population to the south of the tower (Tans and et. a l , 1996; Bakwin et al., 1998; 

Zhao et al., 1997). The last tower in this study is Howland Forest (HOW), which 

collects both fluxes and C0 2 concentrations and is located in a boreal-northern 

hardwood transitional forest consisting of hemlock, spruce, fir, aspen, birch, and 

hemlock-hardwood mixtures (Hollinger et al., 2004). 

5.2.5 Modeled Vegetation Cover at the Tower Sites 

The modeled vegetation classification at each tower is displayed in Table 5.1. For 

each case, the table depicts the fractional coverage of each biome in the model grid 

cell that includes the towers. The biome type at two towers, MEAD and LBR, 

switches from C3 crops and grasses to C4 vegetation. While some locations are 

not characterized by heterogeneous land cover (i.e. SGP, BOR, MEAD), several 

sites have significant contributions from all three biomes used in the PAT case. 

At LEF, C3 grass/crop, deciduous forest, and mixed forest all cover a significant 

portion of the region surrounding the tower. In the model, the NWT tower is in 

a grid cell that includes needleleaf trees, C4 grasses, and C3 grasses; and at the 

Duke sites the vegetation is relatively evenly distributed between deciduous forest, 

C4 grasses, and C3 grasses. 
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Ref. 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 

Site 

WPL 
LBR 
BRM 
BOR 
FRD 
WRC 
NWT 
WKT 
SGP 
MEAD 
LEF 
BRU 
RED 
FEN 
WBG 
SYL 
DPP 
DHD 
HRV 
AMT 
HOW 

Deciduous 
Forest 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,3 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,31 
0,40,0 
0,0,12 
0,0,42 
0,0,12 
0,0,4 
100,100,37 
100,100,37 
0,0,34 
0,15,0 
0,0,16 

Mixed 
Forest 
x,94,94,43 
0,0,0 
0,0,31 
0,0,7 
x,97,97,66 
0,0,17 
0,0,0 
0,0,10 
0,0,1 
0,0,0 
x,0,0,28 
x,99,99,54 
x,86,86,48 
x,100,100,49 
x,0,0,0 
x,85,85,80 
0,0,0 
x,0,0,0 
x,94,94,53 
x,97,97,71 
x,98,98,71 

Needleaf 
Forest 
0,0,0 
0,0,1 
x,94,94,58 
x,100,100,92 
0,0,28 
x,97,97,71 
x,100,100,45 
0,0,0 
0,0,2 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
x,0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 

C3 Grass/ 
Crop 
0,0,41 
x,99,0,17 
0,0,5 
0,0,0 
0,0,0 
0,0,0 
0,0,15 
x,90,90,55 
x,100,100,97 
100,0,3 
100,100,41 
0,0,5 
0,0,26 
0,0,9 
100,100,80 
0,0,1 
0,0,21 
0,0,21 
0,0,7 
0,0,11 
0,0,11 

C4 
Grass 
0,0,0 
0,99,81 
0,0,0 
0,0,0 
0,0,0 
0,0,1 
0,0,40 
0,0,26 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,32 
0,0,32 
0,0,0 
0,0,0 
0,0,0 

C4 
Crop 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
x,0,100,97 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,8 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 
0,0,0 

Table 5.1: Vegetation classification at each of the towers, in percent land cover. 
The first number is the percentage of coverage for the C3 run, the second number 
is the percent coverage for C4, and the final column is the coverage for the PAT 
case. The cover at the actual tower is depicted by an x. The remaining coverage 
not depicted is water. 
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5.3 Results 

5.3.1 N E E Tower Comparisons 

To evaluate SiB3-RAMS, we compare monthly diurnal composites of modeled NEE 

to diurnal composites of the data collected at flux tower sites across the United 

States and Canada (see Figure 5.4 for a location of the towers). The results have 

been grouped by biome type to help elucidate strengths and weaknesses in the 

model. Since assumptions in the eddy covariance technique require turbulent con­

ditions, nighttime respiration may be underestimated in the measurements due to 

low turbulence and air mixing at night (Eugster and Siegrist, 2000; Lee, 1998). 

The night flux problem is by-passed by discarding the data corresponding to low 

mixed periods and replacing them by an assessment based on either the parameter­

ization of the night flux response to climate or on look up tables (Falge et al., 2001; 

Papale et al., 2006). This approach, known as the u* correction, uses the friction 

velocity, u*, as a criterion to discriminate low and well mixed periods. Although 

FLUXNET datasets use the u* correction, there is currently no set standard for 

data removal (Munger and Loescher, 2006; Papale et a l , 2006). Although we will 

analyze all the data, it is important to keep in mind this data limitation when 

evaluating nighttime respiration magnitudes. 

Monthly plots of diurnal composites at the boreal forest sites are shown in 

Figure 5.5. The model does a reasonable job at capturing the seasonality and 

the amplitudes of the diurnal cycle, particularly at WPL; however, the respiration 
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is too high causing NEE to be offset. Two factors may be contributing to the 

high summertime respiration seen at these sties. The first is that SiB3 is forced 

to annually balance respiration and photosynthesis, despite the fact that at many 

locations this assumption is not true. This site may be a sink of CO2, causing the 

net assimilation to be underestimated. The second is that respiration is exponen­

tially related to temperature, and underestimating soil temperatures during the 

winter may be forcing more respiration to occur during the summer months. 

At BOR in August, the amplitude of the diurnal cycle is underestimated. In 

August, this site has a lower modeled water vapor mixing ratio than observed and 

experiences humidity stress during the day, which may be limiting the assimilation. 

Although the vegetation is boreal forest, both sites are classified as wetlands, which 

are not included in the model formulation. One potential cause of the stress is 

the omission of wetlands (Baker et al., 2003). We hypothesize that the inclusion 

of wetland classifications in SiB3-RAMS would increase the relative humidities 

and water vapor mixing ratios seen at the site due to the increased ground water 

available for evaporation, causing a decrease in the daytime stress. 

Monthly plots of diurnal composites at needleleaf forests are displayed in Figure 

5.6. The diurnal composites for May are not shown as the remotely sensed LAI 

data were less than half the observed LAI at both sites, which is likely due to 

snow and cloud contamination in the dataset. The model does a reasonable job 

at capturing the mean daytime uptake and the nighttime respiration. At NWT, 

SiB3-RAMS also captures the correct shape of the diurnal cycle; however, at WRC 
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Figure 5.5: Monthly diurnal composites of the NEE at boreal forest sites. 
Black=observations, Red=C3 simulation, Green=C4 simulation, Blue=Patches 
simulation. 

the model has constant uptake for several hours throughout the daytime rather 

than the v-shape seen in the observations. One potential cause for the mismatch 

in the shape of the daytime drawdown is that the FPAR values are prescribed 

from MODIS data and do not take into account changes with solar zenith angle. 

Another contributing factor may be that the version of SiB3 coupled to RAMS 

does not separate radiation into direct sunlight and shaded fractions, which has 

been shown to better reproduce the daytime v-shaped observations (I. T. Baker, 

personal communication). 

Diurnal composites at the mixed forest sites are shown in Figure 5.7. Both Duke 

Forest sites (which are in the same model grid cell) do not show strong seasonality 

in NEE, but rather have relatively constant uptake over all four months. The 

modeled NEE is close to the mean NEE between the two sites. SYL, HRV, and 

HOW all have a considerable seasonal cycle with increasing uptake through the 
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Figure 5.6: Monthly diurnal composites of the NEE at needleleaf forest sites. 

summer that is not well captured in the model. One contributing factor to the 

model understimation may be humidity stress, which reaches moderate values in 

the day during some periods in July and August at all three sites; however it is 

unlikely that the stress is causing the magnitude of the underestimation seen in 

the model. Observations at HRV indicate that this site is a strong sink due to 

forest regrowth following a disturbance in the 1930s. Since the model is forced to 

balance carbon over a year, it cannot simulate the sink at this location and thus 

underestimates the summertime uptake. 

Monthly plots of diurnal composites at grassland and crop sites are displayed in 

Figure 5.8. At the LBR grassland site, the C3 simulation matches the observations 

reasonably well, as the dominant grasses at the site are C3. The model captures 

the diurnal cycle well during May, June, and August but underestimates the flux 

in July due to mid-day temperature stress. The C4 and PAT simulations switch 

the dominant biome at the site to C4 grasses, thus degrading the fit at the tower. 
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Figure 5.7: Monthly diurnal composites of the NEE at mixed forest sites. In the 
third row at the Duke Forest sites, the solid line displays the fluxes from DPP 
while the dashed line shows the NEE at DHD. 

C4 vegetation removes the stress seen in C3 vegetation, but overestimates the 

daytime drawdown. At the SGP site, the model is dominated by two flaws: too 

much respiration at night for May through August and too much temperature 

stress during the day reducing the photosynthesis. The stress may be enhanced 

at SGP due to a low albedo at the site, causing the surface temperature to be 

overestimated due to the absorption of excess shortwave radiation (Philpott, 2006). 

At MEAD, the model underestimates the drawdown during August and does not 

capture the correct seasonality, with too much assimilation in the spring and not 

enough in late summer. These discrepancies are caused by a mismatch in the 

LAI/FPAR data, which are too high in May and too low in August. 
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Figure 5.8: Monthly diurnal composites of the NEE at crop and grassland sites. 

5.3.2 C 0 2 Tower Comparisons 

Daytime and nighttime root mean square errors (RMSE) for each of the towers 

and for all three simulations are displayed in Figure 5.9. The magnitude of the 

daytime errors is much less than at night. At all tower sites, using patches improves 

the concentration timeseries. The daytime mean RMSE for the C3 simulation is 

6.8 ppm, and using C4 vegetation and patches reduces the mean daytime RMSE 

across all towers to 5.9 ppm. The mixed forest sites have the largest errors both 

during the day and at night, particularly HRV. The large errors at HRV, AMT, 

and HOW are caused by offsets seen in the concentration timeseries: SiB3-RAMS 

has too high concentrations in July and August. The offset is likely caused by 

the incorrect seasonality and the underestimation of the drawdown through this 
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C02 Day 

BRM FRD HRV AMT HOW WKT SGP LEF BRU RED SYL FEN WBG 

Figure 5.9: Root mean square errors at each of the tower sites for the mean day­
time concentrations (top panel) and the mean nighttime concentrations (bottom 
panel). Daytime hours are from 1800 UT to 0000 UT and nighttime hours are from 
0300 UT to 1200 UT. Red=C3 simulation, Green=C4 simulation, Blue=Patches 
simulation. 

northeast region. The errors are particularly large at night from extreme buildup 

of C0 2 in the nocturnal boundary layer. Differences in the RMSE can be seen in 

the Ring of Towers despite the relative close proximity of those towers, indicating 

that local influences between the towers alter the concentrations. 

A Taylor plot of the daytime C0 2 concentrations is shown in Figure 5.10 (Tay­

lor, 2001). The model has skill at calculating CO2 concentrations, as the majority 

of the towers have a fitness score of 0.8 or greater. The correlations between the 

model and the data are high, indicating the model is doing a reasonable job at 
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capturing the seasonal and synoptic scale variability. The normalized standard 

deviations at the majority of the sites is also near 1.0, indicating the model is 

capturing the correct variance seen in the observations. The figure also shows that 

including patches increases the fitness at all the towers, either by increasing the 

correlation or shifting the normalized standard devaition towards 1.0. The three 

outlier sites are H=WKT, S=HRV, and I=SGP. The correlations are low at WKT 

due to missing data in June and August. The correlations are low at Harvard 

Forest due to the offset discussed previously. At SGP the standard deviation in 

the model is too low. This could be caused by underestimation of the uptake 

during the day from the stress seen in the model fluxes at the site, as well as the 

underestimation of the uptake in croplands seen in SiB3-RAMS. 

5.3.3 Distribution of the Net Ecosystem Exchange 

The mean NEE for the growing season, May through August, for the PAT case is 

displayed in Figure 5.11. During the growing season, the majority of the U. S. is 

a sink for C02 , except the south-eastern states where CO2 is being released. The 

largest uptake occurs in the central Great Plains, through Oklahoma and Nebraska, 

and in the upper Midwest, centering around Michigan. The boreal forest is neutral 

to a weak sink of CO2 during the summer; however, a region in northern Alberta, 

Canada is a source during the growing season. The summertime release of C0 2 

is not due to stress, but rather is caused by high summertime respiration. The 
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Figure 5.10: Taylor plot of the daytime mean CO2 concentrations. 
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Figure 5.11: Map of the mean NEE from May through August, 2004. The results 
shown are from the PAT simulation, using both C4 vegetation and patches. 

positive NEE seen from Texas up through Virginia is also due to high respiration, 

rather than plant stress due to humidity, soil moisture or temperature. 

Changing the vegetation cover alters the NEE. Figure 5.12 shows the differences 

between using C4 versus C3 vegetation and the differences from adding patches. 

Including C4 crops and grasses increases the summertime sink of carbon through­

out much of the United States, with changes over 3 /xmol m~2 s_ 1 in some regions. 

Using C4 vegetation has the greatest impact on NEE through the Great Plains 

and western U. S., where a high fraction of the region is covered by C4 grasslands. 

Adding patches to the model also modifies the NEE compared to only using 

the dominant vegetation in each grid cell. Patches moderate the enhanced uptake 

with C4 vegetation seen in Texas and up through the central Great Plains. The 
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Figure 5.12: Maps of the differences between the mean NEE between simulations. 
The left hand panel shows the differences between the C4 simulation and the C3 
simulation, and the right hand panel displays NEE differences between the PAT 
and C4 simulations. 

decrease in NEE seen between PAT and C4 is due to including the mixture of C3 

and C4 grasses and crops found through this region. Increases in the net uptake 

from using patches are seen in the southeast, with changes up to 1 ^mol m~2 

s_1. Changes through this region are not surprising, since the areal coverage of 

vegetation was relatively evenly distributed between deciduous forest, mixed forest, 

C3 grasses and C4 grasses rather the the region being dominated by one specific 

biome. Significant changes in NEE can also be seen in California. Changing much 

of the vegetation to C4 substantially increased the photosynthetic uptake, and 

adding patches reduced the magnitude of the changes caused by using C4 as the 

dominant vegetation, resulting in a moderate sink during the growing season. 

Monthly maps of NEE for the PAT, C4, and C3 simulations are shown in 

Figure 5.13. In May, the boreal forest is a source of C0 2 while the majority of the 
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Figure 5.13: Maps of the monthly mean NEE for each simulation. 

continental U. S. is a sink, with the exception of croplands in Iowa and Nebraska. 

Using patches increases the uptake seen in the southern states and decreases the 

sink in Texas and Oklahoma compared with using only dominant vegetation. If 

C4 vegetation is not included, the southern states become sources of CO2 and 

the uptake of CO2 is reduced throughout the southern Great Plains. The Pacific 

Northwest also has less uptake in the C3 simulation. 

In June nearly all of North America is taking up CO2. The greatest assimilation 

of C0 2 occurs in the central Great Plains and northern Midwest. If patches are 
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not used, the Great Plains become dominantly covered by C4 and have enhanced 

uptake, while reduced uptake occurs through the deep south due to the lack of 

heterogeneity in land cover. Not including C4 vegetation decreases the uptake seen 

throughout much of the western and central U. S. 

Moving to July, much of NA is still a sink, although regions where CO2 is being 

released can be seen, particularly through the northwestern states. The southern 

states are strong sources of carbon, while regions in the Great Plains are strong 

sinks. Similar to the pattern seen in June, not including patches increases the mag­

nitude of the source in the southeast while enhancing the uptake through Texas. 

Not including patches also results in regions through Montana and Wyoming to 

become sources. Not using C4 vegetation significantly reduces the C0 2 uptake, 

causing much of the western Great Plains to become a source. 

In August, the uptake is reduced as the growing season ends. Many of the 

southern and eastern states are sources of CO2, as is a large region of the boreal 

forest. The majority of the western and central U. S. is still taking up CO2, 

although the magnitude of the drawdown has decreased. Not including patches 

has nearly the same effect as in July: an enhanced sink throughout the southern 

portions of the Great Plains and enhanced sources through the southeast. Using 

only C3 vegetation and not including patches results in the northwestern states 

releasing more C0 2 and extends and enhances the sources regions in the southern 

and eastern U. S. 
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Figure 5.14: Total column CO2 concentrations due only to biological fluxes. 

5.3.4 C 0 2 Maps 

A map of the mean May through August total column CO2 concentration due 

only to the biological fluxes for the PAT simulation is shown in Figure 5.14. As 

expected, the spatial pattern of CO2 is similar to the NEE map: high contributions 

of CO2 to the atmosphere occur in the southeast, where the vegetation is releasing 

carbon, while lower concentrations are seen over the central and midwestern states. 

High total column CO2 is also seen in western Canada due to the high respiration 

in the region. 

Differences in the mean total column C0 2 between C3 and C4 and between 

C4 and PAT are displayed in Figure 5.15. Using C4 vegetation results in reduced 

CO2 in the total column over all of NA. The differences are greatest over the Great 
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Figure 5.15: Differences between the total column C02 concentrations. The left 
hand panel shows the differences between C4 and C3 simulations. The right hand 
panel shows the differences between PAT and C4 simulations. 

Plains, where the mean column CO2 is reduced by more than 1 ppm from including 

C4 vegetation. Larger differences can also be seen over Nevada and in California. 

Adding patches slightly increases the mean total column CO2 compared to the C4 

simulation over both California and in northern Texas and Oklahoma. The rest of 

the NEE changes do not alter the total column CO2 in the 4-month time mean. 

Monthly differences in the total column C02 between the PAT, C4, and C3 

simulations are shown in Figure 5.16. In May, the mean total column C0 2 over 

the northwestern U. S. is higher when C4 is included in the land cover. Although 

a large region of reduced uptake is not readily apparent in the NEE map, the 

atmosphere integrates the contributions from individual grid cells to increase the 

total column C0 2 in the C4 simulation. The C4 run also has lower total column 

concentrations in the eastern U. S. Differences in the mean total column concen­

tration between using dominant vegetation versus including patches are minimal. 
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Figure 5.16: Maps of the differences between the simulations for each month. The 
left hand column shows the differences between the C4 and C3 simulations, while 
the right hand column shows the differences between the PAT and C4 simulations. 
May is in the top row and August is in the bottom row. 
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The run with patches has slightly lower CO2 over the western U. S., which again 

results from the integration of slightly enhanced uptake from individual grid cells 

that include heterogeneous vegetation. 

Patterns in the differences between PAT, C4, and C3 are similar for June, July, 

and August. Using C4 vegetation lowers the total column C0 2 over the entire U. 

S. The maximum differences occur in July, corresponding to the month with the 

largest NEE differences, and the differences reach up to 2 ppm in the total column. 

Adding patches reduces the total column C02 over the central and western U. S., 

with the greatest differences in July occuring over California and the Great Plains. 

In July and August, total column C0 2 in the southern and eastern U. S. is ~ 0.1-

0.3 ppm lower due to including land cover heterogeneity. 

5.3.5 Sources of Atmospheric C 0 2 Concentrations 

SiB3-RAMS includes a variety of sources as well as individual atmospheric C0 2 

tracers for each of the sources, and the contribution from each of the sources 

can be analyzed. The C0 2 sources included in the model are lateral boundary 

concentrations from a global model, biological surface fluxes, fossil fuel emissions, 

fire emissions, C0 2 produced from CO oxidation, and ocean fluxes. Figure 5.17 

displays maps of the mean 30 m C0 2 concentrations resulting from each of these 

sources. A map of the contribution of ocean fluxes is not included as the resulting 

C0 2 contribution was < 0.01 ppm. 
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Figure 5.17: Maps of the May through August mean contribution of individual 
sources to the total atmospheric C0 2 concentration, at 30 m. The top left panel 
shows the initial CO2 concentration on May 1. All maps have units of ppm and 
use the concentrations from the PAT case. 
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The dominant contributors to the atmospheric CO2 concentrations over North 

America are the lateral boundary concentrations, the biological fluxes and the 

fossil fuel emissions. The concentrations from the lateral boundaries act to lower 

the total CO2 concentration, particularly over the northern U. S. and the Gulf 

of Mexico. The smallest impact from the lateral boundary conditions is over the 

central and southern portions of the United States, where on average the lateral 

boundaries alter the CO2 concentration by less than 5 ppm near the surface. 

The biological fluxes alter atmospheric CO2 concentrations during the summer 

by as much as 30 ppm on average. Higher concentrations are seen over the south­

eastern U. S., which was a source of CO2. In Canada, the biology also contributes 

~ 20 ppm to the mean concentration. Lower contributions occur over the central 

and western portions of the U. S, where the fluxes are weaker. 

The mean impact of fossil fuel emission on CO2 concentrations is approxi­

mately half of the magnitude of the changes due to the biology. As expected, 

the map of C0 2 concentrations resulting from fossil fuel matches the emissions 

map with higher concentrations in the east coast and California, where the CO2 

concentration increases by ~ 10-15 ppm due to anthropogenic emissions. 

Both fire emissions and the source of CO2 from the oxidation of CO are minor 

contributors to the overall CO2 concentration. Two centers of high CO2 from fires 

can be seen over Canada, contributing over 1 ppm near the surface on average. 

Although this source is small on average, fire emissions are likely important on 

shorter timescales while the fire is burning, particularly in the boreal forest where 
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more fires occur. Unfortunately, the majority of the boreal fires during the 2004 

summer were further north and not included in the simulation. 

The impact of CO oxidation to the C0 2 concentration is minimal in this sim­

ulation, causing mean changes of < 0.1 ppm near the surface. Unlike the previous 

sources where the flux is at the surface, the CO contribution occurs in the atmo­

sphere; however, this source of CO2 concentrations remains minimal at all vertical 

levels. The contribution from CO oxidation is highest over the eastern half of the 

country, where there are more fossil fuel emissions and hence more CO. Over the 

western U. S., the C0 2 concentration increase from the oxidation of CO is less 

than 0.05 ppm. 

5.4 Conclusions 

Substantial modifications have been made to SiB-RAMS: SiB was updated to ver­

sion 3.0, respiration factors are now calculated for every grid cell from offline runs, 

C0 2 is initialized and lateral boundaries are nudged to global concentrations, high 

resolution fossil fuel emissions are included, fire emissions and CO contributions 

are included, and land cover patches are included to represent sub-grid surface 

heterogeneity. This study focused on an evaluation of the NEE and CO2 concen­

trations in the model, as well as the impact of land cover. 

While SiB3-RAMS does a reasonable job simulating fluxes at needleleaf and 

grassland sites, NEE comparisions at several towers within specific biome types 
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reveal several deficiencies that still exist in SiB3-RAMS. SiB3-RAMS overestimates 

the summertime respiration at boreal forest sites, and the model does not capture 

the correct seasonality in the fluxes at mixed forests and croplands. At mixed forest 

sites in the north-eastern U. S., the daytime flux is underestimated during July and 

August. One cause for this underestimation may be that these regions are sinks of 

carbon that are not represented by SiB3-RAMS since it is a balanced model, and 

another contributing factor may be daytime humidity stress. At a C4 cropland 

site, the model overestimated the drawdown during the spring and underestimated 

the uptake in July and August due to remotely sensed LAI data that did not match 

the specific crop field being measured. At a C3 crop site, daytime assimilation was 

underestimated due to temperature stress in SiB3-RAMS. 

Adding sub-grid heterogeneity has a relatively significant impact on the fluxes 

and mean NEE across North America, with changes over 3 //mol m~2 s_1. The 

most significant changes occur in the Great Plains and in the southeast. The 

Great Plains and Midwest has a large contribution of C4 grasses and crops, which 

are characterized by high water-use efficiency and reduced temperature stress; and 

including C4 vegetation increases the summertime sink across these regions. In the 

southeast, using patches decreased the source of CO2 from including the land-cover 

heterogeneity. 

SiB3-RAMS captures the seasonality and the synoptic variability in CO2 rea­

sonably well; however larger differences occur between the model and the obser­

vations in the northeast because of offsets in the model. SiB3-RAMS has high 
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concentrations in this region which likely result from the underestimation of day­

time uptake that was seen in the NEE comparisons. In addition, large nighttime 

errors are due to an overestimation of the buildup in high nighttime concentra­

tions. Comparisons between modeled and observed CO2 concentrations reveal that 

including both C3 and C4 vegetation as well as sub-grid land cover heterogeneity 

improves the model performance, reducing RMSE errors by ~1 ppm on average. 
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6 Effects of Agricultural Product ion on 
Regional Variations of Atmospheric CO2 
Concentrations 

Abstract 

The North American Carbon Program (NACP) Mid-Continent Intensive Cam­

paign (MCI) sponsored measurements of atmospheric concentrations at five tow­

ers centered over Iowa during the summer of 2007. We simulated both CO2 fluxes 

and concentrations for June through August 2007 using the coupled ecosystem-

atmosphere model SiB3-RAMS, focusing on the concentrations over the MCI re­

gion. To improve CO2 fluxes in this region, we coupled a crop phenology model 

to SiB3-RAMS, which calculates the leaf area index (LAI), fraction of photosyn-

thetically active radiation absorbed by the plants (FPAR), and net ecosystem 

exchange (NEE) for both corn and soybeans. Including the crop model dramati­

cally improved the concentrations at all the towers, reducing the root mean square 

errors by nearly half. Concentrations as low as 340 ppm were seen both in the 

model and in the observations. The CO2 gradient between the towers increased 
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throughout the summer until mid-August and had considerable day-to-day vari­

ability. The model simulation showed that large changes in the CO2 differences 

between the towers were due to a large-scale gradient between high concentrations 

to the south of the MCI region and low concentrations to the north. During the 

2007 summer, the southeast United States experienced record temperatures and a 

severe drought, causing the region to be a large source of C0 2 and creating high 

concentrations. Depending on the synoptic conditions, the large-scale gradient 

shifted across the MCI region, creating the large day-to-day variability seen in the 

differences among the towers. 

6.1 Introduction 

Since CO2 is the second most important greenhouse gas in the Earth's atmosphere 

after water vapor, it is an important atmospheric constituent that affects the 

climate. Atmospheric CO2 concentrations have increased by more than 30% over 

the past two centuries due to fossil fuel emissions and land use changes; however, 

only approximately half of the human-induced emissions have remained in the 

atmosphere (Denman et al., 2007). The CO2 growth rate is lower due to the ocean 

and the terrestrial biosphere taking up a significant amount of anthropogenic C02 , 

but the distributions of these sinks and the mechanisms driving them still remain 

uncertain. 

To determine both the spatial and temporal structure of terrestrial carbon 

fluxes, the scientific community has utilized two different approaches: bottom-
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up methods that use in situ data to estimate regional fluxes and top-down at­

mospheric inversions that use variations in measured atmospheric concentrations 

to infer sources and sinks. Inventory measurements provide a detailed assess­

ment of changes in carbon stocks from which atmospheric fluxes can be calculated 

(Dixon et al., 1994; UN-ECE/FAO, 2000; Nabuurs et al., 2003); however, inventory 

data generally fall short of full carbon accounting; consideration of belowground 

biomass, soil carbon, litter and the fate of forest products is inconsistent; spatial 

and temporal heterogeneity is high and not fully accounted for; and obtaining 

broad spatial coverage is very labor intensive (House et al., 2003; Denman et al., 

2007). Process-based models are used in conjunction with inventory data to ex­

trapolate flux observations into regional estimates (Rayner et al., 2005; Pacala 

et al., 2001a; Goodale et al., 2002; Janssens et al., 2003). A direct flux measure­

ment approach uses the eddy covariance technique to measure C0 2 , water and 

energy fluxes between the biosphere and the atmosphere. This technique is uti­

lized in various regional networks (e.g. Baldocchi et a l , 2001; Aubinet et al., 2000; 

Margolis et al., 2006). One limitation of this methodology is that the fluxes have a 

very small footprint (< 1 km2) and are only representative of local fluxes, although 

flux measurements combined with remotely sensed properties are being used to ex­

trapolate flux observations into regional estimates (Gilmanov et al., 2005; Falge 

et al., 2002; Turner et a l , 2003). 

An alternative method to the bottom-up approach is inverse modeling, by 

which the distribution of regional fluxes can be retrieved using observations of 
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atmospheric C0 2 and related tracers within models of atmospheric transport (the 

top-down approach as implemented by Enting et al. (1995); Gurney et al. (2002); 

Rodenbeck et al. (2003)). Prior knowledge of fossil fuel sources and estimates 

of the fluxes and their uncertainty ranges are required to constrain the results. 

Inverse modeling has the attraction that it estimates the total net flux generated 

by the sum of all mechanisms and has smaller uncertainties at large scales; however, 

measurement and modeling errors, uneven and sparse coverage of the data network, 

and errors in transport can introduce errors into the flux estimates (House et al., 

2003; Denman et a l , 2007). 

Comparing and reconciling bottom-up regional fluxes with inversion flux esti­

mates is difficult: inversion fluxes may utilize information from bottom-up fluxes 

making the estimates not fully independent, the time period for which inversion 

models and bottom-up estimates are compared is often not consistent, the land 

area represented by the fluxes may differ, and inversions of CO2 data produce 

estimates of CO2 fluxes which will differ from estimates of carbon fluxes due to 

oxidation of reduced carbon compounds. Due to these difficulties, robust findings 

have been reported only for large-scale regions (Denman et al., 2007; Pacala et al., 

2001a; House et al., 2003). As the atmospheric CO2 observation network expands 

and computing resources improve, the focus of flux estimates is shifting from large-

scale to smaller regional scale estimates with a higher temporal resolution. 

To fully understand the fluxes and the processes driving them, it is essential 

to evaluate both top-down and bottom-up flux estimates. To compare and rec-
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oncile regional fluxes on hourly to annual time-scales using top-down atmospheric 

budgets versus bottom-up ecosystem model-based inventories and to identify the 

mechanisms governing these fluxes, the North American Carbon Program (NACP) 

is funding the Mid-Continent Regional Intensive Campaign (MCI) centered over 

Iowa (Figure 6.1, Ogle et al. (2006)). As part of the MCI campaign, the Na­

tional Oceanic and Atmospheric Administration's (NOAA) tall-tower and aircraft 

trace gas sampling network was expanded with atmospheric measurements from 

radio tall towers and numerous aircraft profiles. CO2 concentrations in the MCI 

region began in spring 2007. In addition to atmosheric concentrations, the MCI 

campaign funded dense inventory and flux measurements throughout the sum­

mer and fall. The region also hosts relatively dense networks of eddy-covaraince 

flux towers, several long-term agricultural experimental sites with time-series of 

carbon stocks, forestry data collected through the United States Department of 

Agriculture (USDA) Forest and Inventory Analysis (FIA) program, annual crop 

yield data collected by USDA National Agricultural Statistics Service (NASS), and 

fossil fuel emissions estimates from the Environmental Protection Agency (EPA) 

Fuel Emission Statistics (Ogle et al., 2006). 

The dense network of data from the MCI can be used for a variety of mod­

eling studies, not only to investigate the carbon fluxes, but also to enhance our 

knowledge of the carbon cycle. Regional models provide a way to quantitatively 

map sources and sinks of CO2 using many different observations (i.e. soil maps, 

vegetation maps, topography, meteorology). Many of the fields independently 
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Figure 6.1: The Mid-Continent Intensive Campaign (MCI) Study Region. 

measured during the MCI campaign are predicted by forward models, and model-

data comparisons lead to the advancement of our understanding of the processes 

and mechansims driving the variability in these fields. In addition to providing 

atmospheric inversions with initial flux estimates that include all known mecha­

nisms, coupled ecosystem-atmosphere models can help interpret the high-frequency 

variability in CO2 concentrations. Since atmospheric C0 2 concentrations contain 

information about sources and sinks of carbon, understanding the mechanisms 

driving the C0 2 variability will help us better estimate carbon fluxes. 

To evaluate and analyze concentrations, it is essential that the fluxes are mod­

eled as accurately as possible using all the processes currently understood. Since 

the MCI campaign is over a region that is heavily farmed for corn and soybeans, it 
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is important that fluxes of these crops match observations. To model corn and soy­

bean fluxes, Lokupitiya et al. (2008) developed a crop-specific phenology submodel 

for the Simple Biosphere Model (SiB3crop) that replaces remotely-sensed leaf area 

index (LAI) and the fraction of photosynthetically active radiation (FPAR) for 

estimating carbon dynamics. Lokupitiya et al. (2008) showed that using a crop 

phenology model signficantly improved simulated carbon fluxes for these crops. 

To improve both CO2 fluxes and concentrations, we coupled the crop phe­

nology model to the ecosystem-atmosphere model SiB3-RAMS. In this study, we 

will investigate the impact of the new crop model on atmospheric concentrations 

and evaluate the modeled C0 2 field against the observations collected during the 

MCI. In addition, we will investigate causes of the variability in the CO2 gradient 

between the towers. 

6.2 Methods 

6.2.1 Model Description 

The base model used in this study is the Simple Biosphere Model Version 3 (SiB3) 

coupled to the Brazilian version of the Colorado State Regional Atmospheric Mod­

eling System (RAMS). The coupled model is described in Chapter 5. In this section 

we will only discuss the modifications not included in the previous description, as 

well as any differences in the model setup. 

In order to more accurately simulate crops, we coupled a crop phenology model 

developed by Lokupitiya et al. (2008) to SiB3-RAMS. The phenology sub-model 
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includes phenology events and growth stages for both corn and soybeans; and it 

calculates the leaf area index (LAI), fraction of photosynthetically active radia­

tion absorbed by plants (FPAR), and net ecosystem exchange (NEE) for these 

two crops. The planting date occurs when the daily mean temperature is above a 

threshold value for a specified number of days. At emergence, the initial biomass 

values are based on observed values and a daily LAI is estimated based on the 

dry weight carbon in the leaves. Throughout the growth cycle, daily increments 

in carbon are based on SiB's daily photosynthetic assimilate. The daily assimi­

lated carbon added to the plant biomass is allocated to four different pools: roots, 

leaves, stems, and products (i.e. flowers, grains, etc.). The amount of biomass 

allocated to each of these pools depends on the number of days since planting 

and on growing degree days, which are calculated based on the number of days 

above a threshold temperature. A fraction of the assimilated carbon is released in 

growth and maintenance respiration. Senescence is induced when the respiration 

outweighs the daily leaf growth, and the crop is harvested after it reaches physio­

logical maturity, allowing some field drying. Further details of the crop model are 

described in Lokupitiya et al. (2008). 

6.2.2 Model Initialization and Input Data 

The meteorological fields, soil map, fossil fuel emissions, and air-sea fluxes are 

described in Chapter 5. The land cover classification, LAI, and FPAR are remotely 

sensed data with 1 km horizontal resolution from the Moderate Resolution Imaging 
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Spectroradiometer (MODIS) satellite on the NASA TERRA platform. The data 

were filled and processed by the Climate and Vegetation Research Group at Boston 

University and are available on-line at http://cliveg.bu.edu/modismisr/index.html 

(Lotsch et a l , 2003; Myneni et a l , 2002). LAI and FPAR data for 2007 were only 

available with monthly time resolution, and we linearly interpolated the data down 

to 8-day composites. 

The vegetation classes from MODIS were reclassified into SiB classes. We used 

the C3/C4 percent land cover map with 5 minute horizontal resolution from Still 

et al. (2003) to discriminate between C3 and C4 crops and grasses. To determine 

corn and soybean coverage, we used a 56 m resolution map provided by Matt 

Hansen at South Dakota State University and aggregated the map up to 1 km res­

olution. The MODIS-trained, Advanced Wide Field Sensor (AWiFS) -based corn 

and soybean product for 2007 covers Iowa and regions immediately surrounding 

the state (Figure 6.2). The crop map was created by integrating high temporal res­

olution data from MODIS with high-spatial resolution data from AWiFS. Using 

a regression tree analysis, time-series of MODIS data were compared to pheno-

logical timing of the development of corn and soybeans trained by AWiFS data 

to determine the fractional coverage that best matched the observations (Chang 

et al., 2007). 

To include crop and soybean land cover, SiB3-RAMS calculated separate fluxes 

for three patches per grid cell. The average flux for every grid cell is an areal-

weighted average of the flux from each patch. If the MODIS map from Boston 
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Figure 6.2: Map of corn (green) and soybean (purple) coverage over the MCI 
region. Provided by M. Hansen. 

University had crop as a vegetation class in any of the patches over the MCI region, 

we utilized the Chang et al. (2007) corn and soy map. The total number of pixels 

of both corn and soybean were counted to determine the fractional area of coverage 

for each crop. The fractional coverage was then compared with the patch areas 

of the three original patch land classes, and the vegetation class was reassigned to 

the dominant three classes. Once the vegetation types were determined, the areal 

coverage of the patches was recalculated to equal the original land cover percent 

from using the original MODIS map alone. It should be noted that the crop map 

covers a limited area centered over Iowa, and no corn or soybeans were specified 

in the model outside this limited region. 

To initialize respirable carbon, soil moisture, and prognostic variables, we used 

offline SiB3crop and calculated these values for every gridcell. We ran SiB3crop 
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for ten years from 1997 through 2007 using meteorological data from the National 

Center for Environmental Prediction (NCEP) Department of Energy (DOE) AMIP 

II reanlysis, which was provided by National Oceanic and Atmospheric Adminis­

tration (NOAA) Physical Sciences Division (PSD) in Boulder, Colorado, USA and 

is available from their website at http://www.cdc.noaa.gov (Kalnay et al., 1996). 

For the gridcells with crops, the crop type was alternated every other year between 

soybean and corn. SiB3 is a balanced model, and for every gridcell the carbon as­

similated in a year equals the total respiration for the year. For corn and soybeans, 

we reduced the respiration factor by 40% to account for the harvest and removal 

of crops (Lokupitiya et al., 2008). 

The initial CO2 field and the lateral boundaries in SiB3-RAMS were set and 

nudged every day to global concentrations from the Parametereized Chemical 

Transport Model (PCTM, see Chapter 5 for more details on the model). Since 

concentrations for 2007 were not available, we calculated monthly mean concen­

trations from 2003 and 2004 and linearly interpolated these to daily values. 

6.2.3 Case Descriptions 

In this study, we performed three simulations over North America (NA) with SiB3-

RAMS. All three simulations ran from 0000 UT 1 June to 0000 UT 1 September 

2007. The coarse grid for all cases had 150 x 90 grid cells with 40 km horizontal 

grid increments and 46 vertical levels up to 24 km. 
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Figure 6.3: Percent land cover classifications for the BASE simulation, which does 
not include corn and soybean crops explicitly. 

The first case, which we will refer to as BASE, used the original SiB3-RAMS 

and did not use corn and soybean crops. A map of the fractional coverage of 

each biome classe is displayed in Figure 6.3. The majority of the area over the 

MCI region was classified as C3 grass/crop, with a small percentage covered by 

C4 grasses and crops. 

The second case, NEST, used the crop phenology model and included a nested 

grid over the MCI region (Figure 6.4). The horizontal grid spacing for the nested 
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Figure 6.4: Grid setup for the NEST simulation. The interior grid is outlined in 
red on the coarse domain. The six red crosses indicate the towers in the MCI 
region that measure continuous CO2 concentrations, and the purple crosses show 
the flux towers in the region. 

grid was 10 km. The vegetation cover for the coarse grid is shown in Figure 6.5 

and the vegetation for the interior grid is displayed in Figure 6.6. On the coarse 

grid, roughly half of the landcover was corn in the MCI region and approximately 

20% of the cover in each gridcell was soybeans. In the nested grid, corn accounted 

for 60-70% of the vegetation over central Iowa and soybeans covered ten to twenty 

percent of the area. The regions outside of the crop map were predominantly 

covered by C3 crops and grases, except for forest regions in Missouri, Wisconsin, 

and Minnesota. 
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Figure 6.5: Percent land cover classifications including corn and soybeans from the 
Hansen (2008) crop map. 
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Figure 6.6: Percent land cover classifications for the interior grid of the NEST 
case, which includes corn and soybeans from the Hansen (2008) crop map. 
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Ref. 
A 
B 
C 
D 
E 
F 

Abrv. 
MEAD 

RL 
CEN 
WBI 
GV 

KEW 

Site 
Mead, NE 

Round Lake, MN 
Centerville, IA 

West Branch, IA 
Galesville, WI 
Kewanee, IL 

Latitude 
41.14 N 
43.53 N 
40.79 N 
41.73 N 
44.09 N 
41.28 N 

Longitude 
96.46 W 
95.41 W 
92.88 W 
91.35 W 
91.34 W 
89.97 W 

Sampling Heights 
20/122 m 
30/110 m 
30/110 m 

31/99/379 m 
30/122 m 
30/140 m 

Table 6.1: Location and sampling height of each of the towers measuring contin­
uous CO2 concentrations in the MCI region. The sampling heights are in meters 
above ground level. 

The third case, CROP, used the crop phenology model on the single coarse 

domain. The vegetation cover for this case is the same as the cover on the coarse 

grid of the NEST case (see Figure 6.5). 

6.2.4 Observations 

This study utilized continuous observations of CO2 concentrations measured at 6 

towers in the MCI region (Figure 6.4; Miles and Richardson, personal communi­

cation). Table 6.1 states the location and sampling heights at each of the towers. 

For all the comparisons in this study, we used the tower level that was closest to 

120 m. 

Five of the towers, MEAD, RL, WBI, CEN, GV, and KEW, are all part of 

the MCI campaign. To measure atmospheric CO2, cavity ring-down spectroscopy 

(CRDS) instruments were deployed. CRDS is a laser-based technique that is able 

to distinguish individual absorption features by measuring the rate of decay of 

specific wavelengths of light in the cavity. Advantages to CRDS are that it is very 

sensitive due to its long path length making the measurements highly accurate, and 
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it has a reduced need for calibration compared to systems used in the Ameriflux 

network. 

The sixth tower, WBI, is funded by the NOAA Earth System Research Lab­

oratory (ESRL) Global Monitoring Division (GMD), and the data are publicly 

available at http://esrl.noaa.gov/gmd (Bakwin et al., 1998; Tans and et. al., 1996; 

Zhao et al., 1997). High accuracy C0 2 measurements at WBI are made by a 

non-dispersive infrared spectroscopy CO2 analyzer. The sample air is dried to a 

dewpoint of -25° by passing the air through a refrigerated, continuously purged 

liquid water trap, then through a Nation drier. About every three hours the in­

strument is calibrated with a sequence of four standards containing 330, 360, 390, 

and 420 ppm C02 . 

Modeled carbon fluxes are compared to data collected at the Fermi National 

Accelerator Laboratory flux tower site in Illinois (FL, 41.86°N and 88.22°W) and 

at the Bondville site in Illinois (BV, 40°N and 88.29°W). In the summer of 2007, 

fluxes from soybeans were collected at the FL site. The data were obtained from 

FLUXNET and is available on-line at http://www.fuxnet.ornl.gov (Olsen and Ran-

derson, 2004; Baldocchi, 2006). 
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6.3 Results 

6.3.1 Impacts of the Crop Phenology Model on LAI, FPAR, and NEE 

Using the crop phenology model dramatically changes the LAI and FPAR for corn 

and soybeans (Figures 6.7 and 6.8). Comparisons of LAI predicted by the crop 

model to observations at Bondville from a point simulation by Lokupitiya et al. 

(2008) show a sample seasonal growth cycle of LAI of both corn and soybeans. 

Figure 6.7 illustrates that the crop phenology model captures the correct timing 

and magnitude of LAI for both these crops. 

In this study, both the LAI and FPAR for corn and soybeans from MODIS used 

in the BASE case gradually increase throughout the simulation, reaching maximum 

values of ~ 2.5 and 0.8, respectively (Figure 6.8). Using prescribed LAI and FPAR 

does not capture the growth cycle in the crops nor the specific characteristics for 

corn and soybean. For corn, various studies show that crops grow rapidly through 

June to reach maximum LAI values in mid-July of ~ 5.5-6.5 (Howell et al., 1996; 

Maddonni et a l , 2006; Williams and Lindquist, 2007; Pachta, 2007). The crop 

phenology model, CROP, does a much better job at capturing the LAI growing 

cycle for corn, reaching a maximum LAI of ~ 0.7 around July 15 and then declining 

after reaching physiological maturity; however, CROP tends to overestimate the 

maximum LAI compared to mean values reported in the literature. The associated 

FPAR reaches a maximum just under 1.0 and remains constant until harvest, when 

it rapidly declines. 
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Figure 6.7: Leaf area index (LAI) of crops in rotation in Bondville. Corn in 1999 
is displayed in the top panel and soybeans in 2000 are displayed in the bottom 
panel. The drop of LAI towards the end of the growing season represents the field 
drying and harvest events (from Lokupitiya et al. (2008)). 
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Figure 6.8: Leaf area index (LAI, left panel) and fraction of photosynthetically 
active radiation (FPAR, right panel) from the BASE simulation without the crop 
model (blue) and from the CROP simulation (red). The values plotted are the 
means from all of the gridcells that have corn (solid) and soybeans (dotted). In 
the BASE case, since these crops are not included, we plotted the mean MODIS 
LAI and FPAR for the corresponding gridcells. 

Differing from corn, soybeans generally grow later in the summer and typically 

reach maximum LAI values of ~ 5-6 in the beginning to mid August (Malone, 

2001; Jones et a l , 2003; Wang et al., 2003; Cohen et al., 2003; Suyker et al., 2005). 

The CROP simulation captures the seasonality of soybean growth much better 

than the prescribed LAI from MODIS, although the maximum LAI in the model 

may occur slightly later than times reported. The magnitude of the maximum LAI 

for soybeans is reasonable, but on the low side of the typical range. The FPAR in 

the CROP case follows the LAI curve, increasing to ~ 0.9 in mid-August. 

To provide an estimate of the annual cycle in NEE for both corn and soybeans, 

as well as to depict the skill of the crop phenology model, monthly mean NEE for 

the BV site from Lokupitiya et al. (2008) are displayed in Figure 6.9. The mean 
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NEE for corn and soybeans from this study is displayed in Figure 6.10. The CROP 

simulation dramatically changes the NEE for corn. While the BASE model has a 

relatively constant daytime NEE of ~ 10 ^mol m~2 s'1 that slightly increases from 

May to August, CROP has much greater uptake with a more realistic seasonality. 

According to literature, maximum daytime crop uptake during the peak grwoing 

season between mid-June and mid-August is 55-70 /j,mo\ m~2 s_ 1 (Suyker et al., 

2005; Verma et a l , 2005; Lokupitiya et a l , 2008). The CROP simulation daytime 

maximum NEE for corn matches reported values well and captures the timing of 

the increase in drawdown at the beginning of June as well as the decrease of the 

NEE at the end of the growing season during harvest. The day-to-day variability 

seen in the corn NEE is due to synoptic events and correlates well with changes 

in temperature and radiation. 

For soybeans, the change in NEE caused by including the crop model is less 

significant. The BASE model again has a relatively constant daytime uptake that 

increases from ~ 5 /rniol m~2 s_1 in June to ~ 10 /j,mo\ m~2 s_1 in August. Us­

ing the crop phenology model changes the timing of the increase in NEE. Rather 

than a gradual increase throughout the season, the CROP simulation has limited 

daytime drawdown until mid-July, when the soybeans begin growing rapidly. The 

maximum daytime uptake using the crop phenology model is ~ 20 /xmol m~2 s_ 1 

throughout August. According to observations, the peak drawdown for soybeans 

is 25-35 jumol m - 2 s_1 during August and the crops do not begin actively photo-

synthesizing until July (Verma et al., 2005; Turner et al., 2003; Lokupitiya et al., 
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Figure 6.9: Monthly means of net ecosystem exchange (NEE) for Bondville site. 
Observed and predicted NEE from SiB before any modification (top), and simula­
tion results from the new crop phenology model (bottom). Even years are soybeans 
and odd years are corn (from Lokupitiya et al. (2008)). 
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Figure 6.10: Mean NEE for corn (top) and soybeans (bottom) for both the BASE 
(blue) and CROP (red) simulations. Since the BASE simulation does not include 
corn and soybean explicitly, we calculated the mean NEE from the corresponding 
gridcells where the vegetation cover was C4 crops for corn and C3 grass/crop for 
soybean. 

2008). The CROP case does a reasonable job at simulating the mean timing of the 

drawdown, but underestimates the magnitude of the maximum daytime uptake. 

Carbon dioxide flux measurements over a soybean field for 2007 are available 

at one site in the MCI region (FL, see Figure 6.4 for a location of the flux tower). 

The CROP simulation has very good synchrony with the observations: minimal 

fluxes both during the day and at night until the end of June; increasing daytime 

uptake and nighttime respiration through July, and high daytime drawdown during 

August (Figure 6.11). While SiB3-RAMS captures the seasonality in NEE, it 

underestimates the magnitudes of the daytime fluxes, as observations show daytime 

maximum NEE values of ~ -30 ^mol m - 2 s_1. The model also underestimates the 

nighttime respiration compared with the observations. 
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Figure 6.11: NEE observed at the Fermi National Accelerator Agricultural Site 
over a soybean field (black) and modeled NEE at the nearest soybean gridcell in 
the CROP simulation (red). 
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6.3.2 Distribution of the 2007 NEE 

The mean growing season NEE, June through August, for both the BASE and 

CROP simulations, is displayed in Figure 6.12. During the summer of 2007, the 

entire southeastern U. S. is a source of CO2, as is California. Photosynthesis is 

shut down in the model through this region due primarily to temperature stress, 

although daytime humidity stress also contributes. According to the National 

Climatic Data Center, the summer of 2007 was the 6th warmest for the U. S. in 

the past 113 years, with the highest temperatures in the southeast and in the 

west. The southeastern U. S. experienced a heat wave in August, breaking over 

70 records for all-time high temperatures and for the most days above 90° F and 

100° F. The 3-month Standardized Precipitation Index for June through August 

2007, calculated by NOAA, shows that southeastern U. S. was exceptionally dry 

and southern California was moderately dry. It is very likely that the stress in the 

model is realistic due to the climatic conditions throughout the summer; however, 

the magnitude of the carbon release may be overestimated, as some areas are a 

mean source of more than 6 /^mol m - 2 s'1 during the summer. 

The northern half of the United States and regions of Canada are summertime 

sinks of carbon. Using the crop phenology model dramatically changes the mean 

NEE in the MCI region. The moderate sink over the central U. S. in the BASE case 

becomes a significant sink, with mean NEE values of more than -6 /Ltmol m - 2 s"1. 

The enhanced uptake over Iowa is due to the inclusion of corn and soybeans into 
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Figure 6.12: Map of the mean NEE from June through August, 2007, for both the 
BASE (left) and CROP (right) simulations. 

the model, which have significantly more drawdown during the summer months. 

Altering the NEE impacts the atmospheric CO2 concentrations (Figure 6.13). 

Adding an explicit representation of corn and soybeans in the model lowers the 

concentrations due to the enhanced uptake. The differences between the CROP 

and BASE mean concentrations are more than 1 ppm in the total column over 

central Iowa (which corresponds to 22 ppm near the surface). The impact of the 

mean concentration change extends out to Canada due to atmospheric transport, 

although the magnitude of the difference decreases away from the MCI region due 

to mixing. 

6.3.3 Analysis and Evaluation of Atmospheric C 0 2 Concentrat ions 

This section presents results from analyzing the CO2 concentrations; however, we 

only include concentrations from June 15 rather than from June 1. The initial CO2 
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Figure 6.13: The mean June through August total column concentration difference 
between CROP and BASE, calculated by subtracting the mean BASE concentra­
tions from the CROP concentrations. 

concentrations on June 1 are much lower than observed, causing the concentrations 

in the model simulations to increase initially and creating unrealistic seasonality. 

To avoid including this in our analyses, we excluded the first fifteen days. 

C02 Maps 

A map of the mean June through August concentration at 120 m is displayed in 

Figure 6.14. The mean concentrations reflect the NEE map, with higher concen­

trations over the southeast where the region is a source of C0 2 and lower concen­

trations in the northern U. S. and Canada, where the vegetation is a summertime 

sink. In the eastern half of the country, the mean wind flow is southerly from 

the Gulf Coast and up the coastline, advecting the higher concentrations in the 
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Figure 6.14: Mean CO2 concentrations at 120 m from June through August from 
the CROP simulation. The mean wind vectors at 120 m are overlaid. 

southeast northward. In the southern portion of the MCI region, over Nebraska, 

northern Missouri, and Illinois, there is a strong gradient of C0 2 where the con­

centrations change over 30 ppm as the land shifts from being a source to a sink. 

In the northern U. S. and Canada, the mean wind flow is westerly, transporting 

low CO2 across the continent. On the west coast, the mean wind flow is northerly, 

advecting the higher concentrations from California down the coast. 

Using the nested grid from the NEST simulation, we can zoom in on the mean 

concentrations over the MCI region (Figure 6.15). Figure 6.15 shows the strong 

gradient that is seen in the CROP case, with a change of over 15 ppm between the 

southern and northern towers in the MCI. A region of low CO2 exists over northern 

Iowa, due to the strong drawdown from the crops. The southerly winds advect 
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Figure 6.15: Mean CO2 concentrations at 120 m from June through August from 
the interior grid in the NEST case. The mean wind vectors at 120 m are overlaid. 
The black dots represent the towers. 

the low concentrations northward so that the center of the low CO2 anomaly is no 

longer over central Iowa. 

C02 Evaluation at the Towers 

At each of the six towers in the MCI region, we calculated the root mean square 

errors (RMSE) between the observations and the three cases, including both the 

CROP case and the NEST case which both used the crop phenology model (Figure 

6.16). Including the crop phenology model reduces the day and night errors at all 

the towers except WBI at night, where the errors are higher due to low concen­

trations in both CROP and NEST. Focusing on BASE versus CROP, all of the 

daytime errors are cut in half when the crop model is included. This substantial 
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Figure 6.16: Root mean square errors (RMSE) for daytime (1800 - 0000 UT, 
top) and nighttime (0300 - 1200 UT, bottom) for the three cases: BASE=blue, 
NEST=green, and CROP=red. 

reduction is due to the concentrations being too high in the BASE model, causing 

offsets of more than 20 ppm at some of the towers. The errors at night are also 

substantially reduced at all towers except WBI, which is in the center of the MCI 

region. 

Comparing BASE with NEST, in general modeling corn and soybeans reduces 

the errors, especially at the three southern-most sites (MEAD, CEN, and KEW). 

The errors are actually larger at the two northern sites (RL and GV). These large 

errors in the NEST case are due to the concentrations being too low and thus offset 

from the observations. Since the mean wind flow is southerly, underestimating 
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the concentrations at the northern sites indicates that including the crop model 

overestimates the total uptake in the region, which would cause the concentrations 

to be too low as air is advected across the the strong sink. 

Including the nested grid actually increases the errors from the CROP case, 

which only a used single grid. The increase is due to offsets between the NEST case 

and the observations, with the NEST concentrations being lower than observed. 

The change in errors between the two cases suggests we are overesetimating the 

fraction of crops in the MCI region, as the mean uptake for both corn and soy­

beans remains the same for NEST as it was in CROP. We hypothesize that a 

detailed investigation into the crop map and fractional coverage of both corn and 

soybean would fix the underestimation seen in the concentrations, as aggregating 

the original 56 m map up to 10 km likely overestimated the areal crop coverage. 

To evaluate the synoptic variability in SiB3-RAMS, we created a Taylor dia­

gram of the daytime minimum concentrations (Figure 6.17, Taylor (2001)). In­

cluding the crop model increases the correlations at all towers and for both cases. 

Calculating fluxes specific for corn and soybeans improves the model and increases 

the skill of the model by more accurately capturing both the synoptic variability 

and the seasonal trend. Using the nested grid increases the standard deviations, 

as the day-to-day changes in concentrations are overestimated due to the over-

estimation in the areal coverage of the large sink. The CROP case decrases the 

normalized standard deviation at half of the sites (RL, CEN, and GV)) and in­

creases the standard deviations at MEAD and KEW. 
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Figure 6.17: Taylor diagram of the daytime minimum concentrations for the BASE 
(blue), NEST (green), and CROP (red) cases. Daytime minima are used to remove 
the diurnal cycle of C02 to investigate the model's ability to capture the synoptic 
variability. The contours indicate a fitness score based on a combination of the 
normalized standard deviation and the correlation (Taylor, 2001). The towers are 
labeled A-F as in Table 6.1. The gradient between the towers is also calculated for 
the both observations and the simulations, and is represented by G. The gradient 
is the highest daytime minimum concentration across all towers minus the lowest 
daytime minimum concentration on the same day. 
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The gradient between the towers is relatively highly correlated for all three 

cases, indicating that even the BASE model does a reasonable job at capturing 

the changes in the gradient across the tower network, despite the concentrations 

being too high at all towers. Including the crop phenology model increases the 

standard deviation of the gradient, hence the model overestimates the day-to-day 

variability in the gradient. 

Further Analysis of the CO2 Gradient over the MCI Region 

The lowest concentrations both observed and modeled are at RL and WBI, and 

the CROP case matches the magnitudes of these concentrations relatively well, 

capturing concentrations less than 340 ppm seen in the observations (Figure 6.18). 

Without including the crop phenology model, SiB3-RAMS cannot recreate these 

low concentrations and the modeled C0 2 is shifted upwards by nearly 20 ppm. In 

general, the highest observed and modeled concentrations are at the two southern­

most sites, MEAD and CEN, although towards the end of August the observations 

have the highest concentrations at WBI and GV. The model does capture the 

increase at these towers; however, it underestimates the magnitude of the change. 

Figure 6.18 also shows the seasonal cycle in the CROP case differs slightly from 

the observations. While both the model and the observations have decreasing con­

centrations through June, the model overestimates the decrease and has minimum 

concentrations in mid-July while the concentrations in the model are still decreas-
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Figure 6.18: Daytime minima at all the towers for the CROP simulation (top) 
and the observations (bottom). Each tower is a different color: MEAD=black, 
RL=purple, CEN=blue, WBI=green, GV=yellow, and KW=red. 
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ing and do not reach their minimum values until the end of July. SiB3-RAMS also 

underestimates the concentrations at RL and GV during mid-August. 

Overall, SiB3-RAMS does a reasonable job at capturing the magnitude of the 

gradient between the towers (Figure 6.19). The gradient increases with the growing 

season until mid-August, when the differences between the towers begin to shrink. 

The mean gradient in late June is ~ 15 ppm in the observations, increases to ~ 30 

ppm in mid-August, and decreases to ~ 18 ppm by the end of August. The model 

captures the overall shape; however, SiB3-RAMS overestimates the gradient both 

at the beginning of the simulation and during mid-August, which indicates the 

magnitude of the sink in Iowa is too strong in the model, causing the model to 

overamplify the large increases in the gradient. The CROP simulation captures 

the day-to-day variability in the gradient quite well, which was also indicated by 

the high correlation values seen in Figure 6.17. 

Changes in the magnitude of the gradient are due to synoptic weather patterns 

shifting the location of the large-scale gradient seen between the low concentrations 

in the north and the high concentrations in the southeast. On 16 July the gradient 

across the towers is the largest seen during the summer, with a change of over 40 

ppm across the region. The CO2 map for 16 July shows that the large-scale 

gradient occurs over northern Missouri, crosses the southwestern corner of Iowa, 

and continues up across South Dakota (Figure 6.20). The mean wind flow over 

the central U. S. is from the south, helping to advect the high concentrations from 

the south further north. Zooming in to the MCI region shows that the large-scale 
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Figure 6.19: The measured gradient between the towers (black) and the simulated 
gradient in the CROP case (red). The gradient is the difference between the lowest 
and highest daytime minimum values across the towers. 
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Figure 6.20: Mean daytime (1800 - 0000 UT) concentrations on 16 July, 2007 at 
120 m for the CROP case with the mean wind vectors overlaid. 

gradient runs through the center of the towers, causing the southernmost towers, 

MEAD and CEN, to have concentrations over 30 ppm higher than the rest of the 

towers (Figure 6.21), although it should be noted that the NEST simulation does 

overestimate the magnitude of the gradient. 

Three days later, on 19 July, the C0 2 differences between the six towers is less 

than 10 ppm. Low CO2 concentrations extend across nearly the entire MCI region, 

and the mean wind is northerly (Figure 6.22). The large-scale gradient now occurs 

over further southwest, over northern Kansas and up through Nebraska. Focusing 

on the MCI region, the lowest concentrations are centered over central Iowa. The 

large-scale gradient in C0 2 is shifted further southwest and no longer impacts any 

of the towers due to the northerly wind flow (Figure 6.23). 
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Figure 6.21: Mean daytime concentrations on 16 July at 120 m over the MCI 
region in interior grid of the NEST case. 

160 



350 360 370 380 390 400 410 420 430 440 
ppm 

Figure 6.22: Mean daytime concentrations on 19 July at 120 m for the CROP 
case. 

Although the concentrations are only displayed for these two cases, we investi­

gated other days and found the results to be similar. High gradients occur when 

the mean wind is southerly, causing high concentrations from the south to be ad-

vected northward. This synoptic weather pattern causes the large-scale gradient 

to shift over the MCI region and causes large differences in the concentrations 

between the towers. On days when the gradient between the towers is low, the 

wind is from the north, advecting the low CO2 from the crops over Iowa further 

south so that all the towers have lower concentrations. 
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Figure 6.23: Mean daytime concentrations on 19 July at 120 m for the interior 
grid of the NEST simulation. 
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6.4 Conclusions 

In 2007, the North American Carbon Program (NACP) launched a Mid-Continent 

Intensive Campaign (MCI) centered over Iowa to investigate C0 2 sources, sinks, 

and concentrations, measuring high calibrated CO2 concentrations at six towers 

across the region. In this study, we analyzed CO2 fluxes and concentrations for that 

summer using the coupled ecosystem-atmosphere model SiB3-RAMS. To improve 

the C0 2 fluxes over the mid-continent region, we coupled a crop phenology model 

to SiB3-RAMS, which replaced the MODIS LAI/FPAR with predicted values. 

Simulating both corn and soybeans explicitly with the crop model made the fluxes 

for these two crops more realistic compared with the observations and dramatically 

altered the fluxes over the central mid-continent region, increasing the mean uptake 

to more than 6 //mol m - 2 s"1. The changes caused the mean total column CO2 

concentration to decrease by over 1 ppm over the region, and the concentrations 

near the surface decreased by more than 20 ppm. 

During the summer, the southeast U. S. experienced both a heat wave and 

a drought. The climatic conditions stressed the plants, significantly reduced the 

photosynthesis while increasing the respiration, and resulted in the southeastern 

region of the country being a large summer source of CO2. Humidity and temper­

ature stress in California, also due to hot and dry conditions, caused this state to 

be a source of CO2 as well. The northern half of the continent was a moderate 

summertime sink for CO2. 
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The mean summer distribution of C0 2 matched the NEE map, with high con­

centrations in the southeast and low concentrations in the north. The high south­

ern concentrations created a large-scale gradient over the mid-continent, with dif­

ferences of over 4 ppm in the total column and over 40 ppm at 120 m. Shifting 

of this large-scale gradient impacted the concentrations at the towers. When the 

mean flow was southerly, the gradient crossed through the MCI region and cre­

ated differences of over 30 ppm between the towers; however, when the wind was 

northerly the large-scale gradient shifted to the southwest and smaller differences 

were seen. 

Comparing the modeled CO2 concentrations with tower data collected during 

the MCI Campaign, the C0 2 concentrations over the MCI region dramatically 

improved when the crop model was included, reducing the RMSE at all all towers 

by nearly half. Including the crop phenology model also improved the synoptic 

variability in CO2 concentrations as well as the gradient seen across the towers. 

Concentrations lower than 340 ppm were seen during July and August in both 

the model and in the observations. This study showed that corn and soybeans are 

highly productive crops that signficantly impact both C0 2 fluxes and concentra­

tions, and to model the mid-continental region accurately both these crops must 

be included. 
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7 A Preliminary Analysis on the Effects 
of Fossil Fuel Emissions on Regional 
Atmospheric CO2 Concentrations 

Abstract 

To improve fossil fuel emissions estimates, Gurney et al. (2008) created a high spa­

tial and temporal resolution inventory, Vulcan. Since the Vulcan database will be 

used in a variety of applications, it is important to investigate the effects of changes 

in the spatial and temporal distribution of fossil fuel emissions on atmospheric CO2 

concentrations. Using the coupled ecosystem-atmosphere model SiB3-RAMS, this 

study compared CO2 concentrations from the previous coarse emissions (Andres 

et al., 1996) to concentrations using the Vulcan inventory. Changes in the spatial 

distribution caused differences of over 10 ppm near the surface, with the largest 

changes in California and in the eastern half of the United States. Including 

seasonality in the emissions also altered regional CO2 concentrations, with the 

largest differences occuring over the southeast, where higher concentrations oc-

cured during the summer and lower concentrations occurred during the remainder 
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of the year. The magnitude of the seasonal changes was more than 20 ppm at 

some locations. This study demonstrated that using coarse spatial disbributions 

and unaccounting for temporal variability created biases in the concentrations and 

thus may cause significant errors in source and sink estimates from atmospheric 

inversions. 

7.1 Introduction 

Even though the atmospheric C0 2 concentration is increasing rapidly, only about 

half of the C0 2 emitted by human activities is accumulating in the atmosphere. 

The portion of the emitted C0 2 not present in the atmosphere is absorbed by sink 

processes on land or in the ocean: the C02 is either taken up by terrestrial ecosys­

tems due to an excess of primary production (photosynthesis) over decomposition 

or is dissolved in sea water and mixed into the deep ocean. Using atmospheric 

tracer transport models, inverse modelers can quantitatively estimate the strengths 

and spatial distribution of carbon sources and sinks around the world from C0 2 

concentration data; however, in order to make these estimates, the fossil fuel C0 2 

emissions must be accurately estimated and removed so that the biospheric and 

oceanic fluxes can be isolated and quantified. 

Compared with other aspects of the carbon cycle, fossil fuel C0 2 emissions have 

been considered to be relatively well understood, as nation-level CO2 emissions for 

the industrialized world have been quantified at annual and sometimes monthly 

timescales (Marland and Rotty, 1984; Biasing et al., 2005; Gurney et al., 2007). To 
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downscale CO2 emissions from fossil fuel burning to spatial scales smaller than the 

national level, the emissions were allocated to a 1° x 1° map using political units 

and population density (Andres et al., 1996). Although these emissions estimates 

are adequate for studies that use sub-continental spatial scales and annual mean 

temporal scales, as studies reduce both the spatial and temporal resolutions of 

interest the emissions estimates have several shortcomings: the emissions lack 

seasonal and diurnal variation, the estimates have a coarse spatial resolution, and 

the estimates use population density to subdivide the national estimates while 

the combustion often does not scale with population. In a sensitivity study of 

atmospheric inversions by Gurney et al. (2005), not including the seasonality in 

fossil fuel emissions produced biases of up to 50% of seasonal flux estimates at the 

height of the growing season in regions where fossil fuel emissions are large. 

To improve fossil fuel emissions estimates, Gurney et al. (2008) produced a 

high-resolution inventory, Vulcan, of anthropogenic emissions with ~ 10 km grid 

increments and hourly timesteps over the United States. By incorporating CO2 

emissions factors into a process-based, data-driven air-quality emissions model, 

Gurney et al. (2008) generated a comprehensive database that combined inven­

tory data, process attributes, and classification information. The Vulcan inven­

tory utilizes three classifications of input: point sources (i.e. power plants), mobile 

sources (i.e. vehicle emissions), and area sources (i.e. residential sources). This 

high-resolution fossil CO2 inventory will be used in a variety of scientific applica­

tions to enhance our understanding of the carbon cycle. 
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The new Vulcan inventory will replace the previous coarse, population based 

fossil fuel estimates in both forward and inverse modeling studies. Since the emis­

sions will alter the atmospheric CO2 concentrations, as well as the sources and 

sinks predicted by these models, it is important to understand the effects of both 

the spatial distribution and the seasonality of fossil fuel emissions on the atmo­

spheric CO2 concentrations. This study investigates the impact of the Vulcan 

emissions on CO2 concentrations using a coupled ecosystem-atmosphere model, 

S1B3-RAMS. 

7.2 Methods 

7.2.1 Model Description, Initialization, and Input Data 

The model used in this study is the Simple Biosphere Model Version 3 (SiB3) cou­

pled to the Brazilian version of the Colorado State Regional Atmospheric Modeling 

System (RAMS). The model is described in Chapter 5. The meteorological fields; 

soil map; vegetation coverage; leaf area index (LAI) and fraction of absorbed 

photosynthetically active radiation (FPAR); fire emissions; air-sea fluxes; initial 

respirable carbon, soil moisture and SiB3 prognostic variables; CO2 initial and lat­

eral boundary concentrations; CO initial and lateral boundary concentrations; and 

OH concentrations are all described in Chapter 5. This study used the vegetation 

cover that included both C3 and C4 vegetation and three patches per grid cell to 

capture sub-grid land cover heterogeneity. 
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To investigate the impact of spatial and seasonal redistribution in fossil fuel 

emissions estimates on atmospheric CO2 concentrations, this study utilized two 

different inventories of fossil fuel emissions. Both of the annual anthropogenic 

source estimates were matched to the total estimated emissions from the Energy 

Information Administration (EIA, 2007). The first inventory used is the Andres 

et al. (1996) 1° x 1° distribution of C 0 2 emissions from fossil fuel consumption and 

cement manufacture (Figure 7.1, left panel). This inventory covers all of North 

America, including emissions over Canada and Mexico. Anthropogenic C 0 2 was 

emitted constantly in each grid cell of the SiB3-RAMS simulation domain at each 

timestep. 

The second inventory used is the Vulcan high-resolution dataset by Gurney 

et al. (2008) (Figure 7.1, right panel). The Vulcan emissions have ~ 10 km hor­

izontal resolution, which was aggregated up to the grid cell increment used in 

SiB3-RAMS. The emissions estimates change every hour and include the seasonal 

and diurnal cycles of fossil fuel emissions. The Vulcan database only includes 

emissions over the United States. 

7.2.2 C a s e D e s c r i p t i o n s 

In this study, we performed two simulations over North America with SiB3-RAMS. 

Both simulations ran for an entire year, from 0000 UT 1 January 2004 to 0000 UT 

20 December 2004. The simulations had 150 x 90 gridcells with 40 km horizontal 

grid increments and 46 vertical levels up to 24 km (see Figure 5.3 for the domain 
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Figure 7.1: Fossil fuel fluxes from the Andres et al. (1996) distribution (left panel) 
and the Vulcan inventory by Gurney et al. (2008) (right panel). The Andres et al. 
(1996) flux was calculated from the annual emissions estimates and is emitted 
every timestep in the model. The flux from Vulcan shown is the annual mean 
emissions for comparison. In the model the Vulcan emissions change hourly. 

region and landcover classification). The first case, which we will refer to as FF95, 

used the fossil fuel emissions estimates by Andres et al. (1996). The second case, 

HRFF, used the Vulcan inventory by Gurney et al. (2008). 

7.2.3 Observations 

This study utilized continuous observations of CO2 concentrations measured at 

tower sites across the United States (see Figure 5.4 for a location of the towers 

and Chapter 5 for a complete description of the data). Table 7.1 lists the towers 

that were analyzed in this study. The Canadian towers were not included since 

the Vulcan estimates only cover the U. S. The Ring of Towers over the central U. 

S. (BRU, RED, FEN, and WBG) only measured C0 2 concentrations from May 
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Ref. 
A 
B 
C 
D 
E 
F 

Site 
WKT 
SGP 
LEF 
BRU 
RED 
FEN 

Lat (N) 
31.32 
36.62 
45.92 
46.47 
46.83 
45.74 

Lon (W) 
97.33 
97.5 
90.2 

91.57 
90.84 
88.43 

Ref. 
G 
H 
I 
J 
K 

Site 
WBG 
SYL 
HRV 
AMT 
HOW 

Lat 
44.82 
46.25 
42.54 
45.03 
45.2 

Lon 
89.06 
89.35 
72.17 
68.68 
68.74 

Table 7.1: List of the towers that collected 2004 CO2 concentrations and that were 
used in this study. 

through August. Measured concentrations were compared to the closest model 

level available, and measurements at the highest elevation were used if the concen­

trations were collected at various levels. 

7.3 Results 

7.3.1 Evaluation of Atmospheric C 0 2 Concentrations 

To evaluate the impact of different fossil fuel emissions on atmospheric CO2 con­

centrations, we compared modeled concentrations to tower measurements. To 

evaluate any seasonal impacts of the fossil fuel emissions, we separated the year­

long simulations into three time periods: January through April (JFMA), May 

through August (MJJA), and September through December (SOND). For each 

of these three time periods we calculated the root mean square errors (RMSE) 

between the model and the measurements (Figure 7.2). 

Using the Vulcan high-resolution inventory has very little impact at all the 

towers and over all three time periods. Changes between the FF95 case and the 

HRFF case are usually less than 1 ppm, and the mean change across all the 
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Figure 7.2: Root mean square errors at each of the tower sites for January through 
April (top left), May through August (top right), and September through Decem­
ber (bottom center). The blue bars show the results from the FF95 case and the 
red bars show the results from the HRFF case. 
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towers was < 0.2 ppm for all three time-periods. The errors are reduced at the 

towers in the northeastern U. S. during the beginning of the year; however, the 

errors are increased for the remainder of the year due to the concentrations being 

shifted slightly higher in the HRFF case. Although the concentrations did improve 

at WKT throughout the year and in the northeast during the winter and early 

spring, in general using the Vulcan database minimally increased the RMSE. 

To investigate the impact of high resolution emissions on the synoptic vari­

ability of CO2 concentrations, we created Taylor diagrams for both cases and for 

all three time periods (Figure 7.3, Taylor (2001)). Similar to the results from the 

RMSE evaluation, using the Vulcan inventory only has a minimal impact on the 

concentrations at the towers. During the growing season when SiB3-RAMS has 

the most skill (MJJA), the HRFF case has slightly higher standard deviations at 

five of the towers, indicating the magnitude of the day-to-day variability increased 

slightly; and in MJJA the correlation at WKT in Texas marginally improved. In 

JFMA, the differences between the FF95 and HRFF cases are negligable except 

at SGP, where using the Vulcan inventory further increased the already overes­

timated variability. Using the Vulcan emissions has the greatest impact on the 

modeled CO2 concentrations during fall and winter. The model skill is slightly 

higher in the HRFF case, and this marginal improvement is caused by a reduction 

in the standard deviations and slightly increased correlations at half of the towers. 

The small magnitude of changes at the towers can likely be primarily attributed 

to their locations, as all of these towers are located in relatively remote regions 
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Figure 7.3: Taylor diagrams of the daytime minimum concentrations for the FF95 
(blue) and HRFF (red) cases. The towers are labeled A-K as in Table 7.1. The 
missing towers during both JFMA and SOND are due to missing data. 
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heavily impacted by biology but not by fossil fuel emissions. The Vulcan inventory 

will likely have a more significant impact in regions more dominantly affected 

by anthropogenic emissions, and should be evaluated more thoroughly at towers 

located closer to metropolitan areas. 

As a side-note, the poor performance of the model during the winter months is 

due to large offsets between the model and the observations. The concentrations 

in the model are too high and the respiration from the biology is too strong. In 

addition to causing large offsets, the incorrect biological fluxes over-amplify the 

synoptic-scale variability. 

7.3.2 Annual Mean C 0 2 Distribution 

The annual mean C0 2 contribution from fossil fuel emissions for the HRFF case 

is displayed in Figure 7.4. Fossil fuel emissions significantly contribute to CO2 

concentrations over the eastern half of the U. S. and over California. Atmospheric 

CO2 concentrations are increased by more than 6 ppm over the entire eastern half 

of the country, with concentrations of over 20 ppm seen due to the combustion of 

fossil fuels. The highest concentrations from anthopogenic emissions occur over 

large cities, such as San Fransisco, Los Angeles (LA), Chicago, and New York 

City. A line of high fossil fuel C0 2 can be seen over northern Kentucky and 

West Virginia due to point sources. Higher C02 concentrations due to fossil fuel 

emissions are advected northward from the Gulf of Mexico and accumulate as they 

travel northeastward off the continent. Strong wind currents also occur along the 
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Figure 7.4: Annual mean 30 m CO2 concentrations due only to fossil fuel emissions 
for the HRFF case. Annual mean wind vectors at 396 m are overlaid. 

Pacific coast, where emissions from LA are advected southeastward into the Pacific 

Ocean. 

The fossil fuel contribution to atmospheric CO2 concentrations over the central 

and western U. S. is low, and on average less than 4 ppm of the total atmospheric 

C0 2 concentrations over this region comes from fossil fuel emissions. Throughout 

the northern portion of the U. S. and Canada the wind is primarily zonal, and the 

influence of fossil fuel emissions over these regions thus remains low as atmospheric 

CO2 concentrations are advected across the country. 
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7.3.3 Impacts of Spatial Redistribution 

To isolate the impact of altering the spatial distribution of fossil fuel emissions, 

we investigated differences in the annual mean. To highlight the differences in 

the spatial distribution between the Andres et al. (1996) and Gurney et al. (2008) 

emissions estimates, Figure 7.5 shows the differences in the annual mean fluxes. 

Distributing the fossil fuel emissions using data and a process-based model rather 

than using population density redistributes the emissions. In general, the emissions 

are reduced over broad areas in the Vulcan inventory. To compensate for this 

reduction, individual grid cells have much higher emissions. The individual pixels 

that have high emissions correspond to power plants or industries that are high 

polluters. In the central U. S., changes can also be seen due to traffic patterns: 

higher emissions through central Kansas and Nebraska correspond to the major 

interstates that run through these states. In the northeast, higher emissions are 

found in the northern-most states, while the emissions are reduced over New York 

state and northern Pennsylvania. The increase over Massachusetts is likely the 

cause of the slightly higher concentrations seen at the tower locations in this region. 

The annual mean change in CO2 concentration at 30 m is displayed in Figure 

7.6. The changes in annual mean concentration reflect the redistribution of the fos­

sil fuel emissions, with changes up to ~ 6 ppm near the surface in some locations. 

The most significant changes occur in California, where the region surrounding San 

Fransisco has higher concentrations while the regions downwind of LA have con-
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Figure 7.5: Difference between the annual mean fossil fuel emissions estimates 
by Andres et al. (1996) and Gurney et al. (2008), calculated by subtracting the 
Andres et al. (1996) emissions from the annual mean flux in the Vulcan inventory. 

siderably lower concentrations, with differences over 6 ppm. The lower emissions 

near the coastline of LA are being advected to the southwest by the strong wind 

currents down the coast. To the north of California, lower concentrations occur in 

the HRFF case over Oregon and Washington, despite the higher emissions seen in 

the central regions of both states. One potential cause for the reduced near-surface 

concentrations may be the timing of the emissions combined with vertical mixing. 

Lower concentrations in the HRFF case also occur over Colorado and New Mexico, 

while higher concentrations are seen over eastern Montana and North Dakota. 

Changes in the atmospheric CO2 concentration due to spatial redistribution 

are more frequent in Texas and throughout the eastern U. S. In eastern Texas, a 
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Figure 7.6: Annual mean CO2 concentration differences at 30 m between the FF95 
and HRFF cases (HRFF - FF95). 

gradient of over 10 ppm in the annual mean occurs due to lower concentrations 

between Dallas and Austin and higher concentrations along the Louisiana border. 

The high concentrations are caused by several high polluting gridcells rather than 

by high emissions throughout the entire region. Several other dipoles of higher 

and lower concentrations can be seen throughout the eastern U. S. 

7.3.4 Impacts of Temporal Redistribution 

Monthly total fossil fuel emissions over the U. S. in the Vulcan inventory are dis­

played in Figure 7.7. The total emissions have a seasonal cycle, with maximum 

emissions in July and August and lower emissions during the spring and fall. A 
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Figure 7.7: Monthly total fossil fuel emissions over the United States from the 
Vulcan inventory. 

small secondary maximum occurs in January. This seasonal cycle differs from the 

mean seasonal cycles for 1981-1985 and for 1998-2002 reported in Biasing et al. 

(2005). In Biasing et al. (2005), maximum emissions occurred in January and 

the secondary maximum in the summer was smaller than the Januaury emissions; 

however, the magnitude of the summer maximum substantially increased between 

the 1980s and the 1990s. It should also be noted that the seasonality in the resi­

dential and commercial sectors have not yet been included in the Vulcan inventory 

(Gurney et al., 2008). These emissions make up ~ 11% of the total emissions, and 

thus including their seasonality may alter the seasonal cycle. 

Maps of the monthly distribution of the Vulcan emissions aggregated to the 

SiB3-RAMS domain are displayed in Figure 7.8. Consistent with the total seasonal 

cycle, broad-scale increases in fossil fuel emissions occur in early spring through 

the summer. Lower emissions are seen in February and in the fall (SOND). These 
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Figure 7.8: Seasonal cycle of the Vulcan fossil fuel emissions estimates. The fluxes 
shown are the differences between the monthly mean emissions and the annual 
mean emissions. 

broad-scale chanages are relatively small in magnitude (< 1 /^mol m~2 s_1), but are 

persistent over large areas. In general, the point sources follow a similar seasonal 

cycle as well; however, the seasonal cycle at several of the point sources does vary. 

For example, in Texas individual gridcells with emissions higher than the annual 

mean can be seen in September and October, with lower emissions during January 

and February. Both the broad-scale seasonality and the seasonality at smaller, 

individual gridcells will impact the atmospheric CO2 concentrations. 
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Including seasonality in fossil fuel emissions impacts regional C0 2 concenra-

tions on monthly timescales. Monthly differences in CO2 concentrations at 30 m 

are shown in Figure 7.9. Differences due to including a seasonal cycle in the fossil 

fuel emissions can clearly be seen in the eastern half of the country. During the 

spring, concentrations over the east coast in the HRFF case are lower compared 

to the concentrations in the FF95 case, with changes of a few ppm. Moving to 

summer, concentrations over the eastern U. S. are higher in the HRFF case, and 

the magnitude of the differences increases. The largest differences between the 

two cases occur in August, where near-surface C0 2 is more than 15 ppm lower 

in the HRFF case at individual grid cells. On average, differences between 3-6 

ppm are seen over the entire region. In the fall when the emissions decrease, the 

concentrations in the HRFF case also decrease, and broad-scale differences of 4-6 

ppm on average occur in the southeast, with maximum differences in November. 

Between lower concentrations in the fall and higher concentrations in the summer, 

the amplitude of the seasonal differences is more than 20 ppm at some locations. 

The seasonality in the concentrations is less dramatic over the central and west­

ern United States, where the contribution of fossil fuel emissions to the total CO2 

concentrations is smaller. 

In certain locations, the sign of the differences remain the same throughout 

the year, but the magnitude of the differences changes from month to month. 

Over Texas, the region of lower C0 2 between Dallas and Austin persists year-

round, but the magnitude of the difference varies from ~ 1 ppm in the fall to 
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Figure 7.9: Monthly differences in the 30 m concentrations between the FF95 and 
the HRFF cases (HRFF - FF95). 
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over 3 ppm in the spring. Similar features can be seen over Montana and North 

Dakota, with differences between FF95 and HRFF varying from less than 1 ppm 

in September to more than 4 ppm in January. Over California, the changes due to 

spatial redistribution dominate over the seasonality in emissions, as the plume of 

low CO2 concentration from the southern coastline persists throughout the year; 

however, differences of more than 15 ppm occur in November and December. Lower 

concentrations are also seen over Oregon and Washington year-round in the HRFF 

run, with a seasonal amplitude of ~ 2-3 ppm. 

7.4 Conclusions and Future Work 

Although fossil fuel emissions are considered to be well known on national and 

annual scales, the emissions on finer spatial and temporal resolutions have high 

uncertainties. To improve these emissions estimates, Gurney et al. (2008) created 

the Vulcan database: a high-resolution fossil fuel emissions inventory over the 

United States with ~ 10 km horizontal grid spacing and a 1 hour timestep. The 

Vulcan inventory will be used in a variety of applications to advance our knowledge 

of the carbon cycle; thus it is essential to understand the impact these emissions 

have on C0 2 concentrations. In this study we investigated the effects of spatial and 

temporal redistribution of fossil fuel emissions on atmospheric CO2 concentrations 

using a coupled ecosystem-atmosphere model. 

This study showed that changes in the distribution and timing of fossil fuel 

emissions alter near-surface CO2 concentrations on regional scales, particularly in 
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California and in the southern and eastern U. S. Comparisons between two sim­

ulations, one with coarse fossil fuel emissions (FF95, Andres et al. (1996)) and 

one with high-resolution emissions (HRFF, Gurney et al. (2008)) revealed mini­

mal differences at 11 towers that measure C02 concentrations across the United 

States; however, these towers were all located in relatively remote regions. Larger 

differences in atmospheric CO2 concentrations were seen on regional scales. Redis­

tributing the fossil fuel emissions using a process-based model rather than scaling 

the estimates with population decreased the emissions over broad regions and in­

creased the emissions in individual grid cells due to point sources. The resulting 

impact on the CO2 concentrations was to create patterns of alternating high and 

low concentrations, particularly in the southern and eastern regions of the country, 

compared to concentrations from the coarse estimates. Differences of over 10 ppm 

on regional scales were seen near the surface, with the greatest differences over 

southern California, where the HRFF concentrations were much lower. 

Including temporal resolution in fossil fuel emissions impacted regional CO2 

concentrations on monthly timescales. Monthly differences of 3-6 ppm on average 

occurred in the eastern United States. Compared to the FF95 case, the concentra­

tions from the HRFF case were higher during the summer and lower the rest of the 

year in this region, and the amplitude of the seasonal differences was more than 

20 ppm for many locations. Large differences were also seen over California, where 

the HRFF concentrations were consistently lower by more than 15 ppm during the 

winter. 
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The C0 2 concentration differences seen in this study indicate that redistribut­

ing fossil fuel emissions will impact atmospheric inversions. The differences be­

tween the FF95 and HRFF cases were spatially coherent over large regions and 

were persistent on monthly timescales. This study demonstrated that using coarse 

spatial disbributions and unaccounting for temporal variability created biases in 

the concentrations and thus may cause significant errors in source and sink esti­

mates from atmospheric inversions. 

Future work needs to be done to further investigate the Vulcan inventory. 

Comparisons of CO2 concentrations at sites located closer to metropolitan areas 

should be performed to evaluate the database, and comparisons of atmospheric 

CO concentrations could also be conducted to help evaluate Vulcan. Case studies 

may highlight changes seen on local scales, including the effects of both seasonal 

changes in emissions as well as diurnal changes. 

The diurnal cycle in Vulcan changes day-to-day and exhibits a distinct season­

ality, with a maximum amplitude in the diurnal cycle during the winter. Future 

work should be done to investigate the impact of this variability on CO2 concen­

trations. For this study, we calculated differences in the amplitude of monthly 

mean CO2 diurnal cycles; but rather than reflecting the seasonal cycle of the di­

urnal amplitudes, the patterns matched the distributions of the monthly mean 

differences. Since analysis of the diurnal CO2 cycle is difficult due to the strong 

covariance with the boundary layer depth, we conducted the same analysis using 

column concentrations and found that the differences were minimal (< 0.5 ppm). 
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These two analyses suggest the impact of the diurnal cycle in fossil fuel emissions 

is minimal compared with the seasonal changes; however, the diurnal cycle may 

have a large impact on local scales and should be investigated further. 
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8 Conclusions and Recommendations 

8.1 Conclusions 

Since the Industrial Revolution, atmospheric CO2 concentrations are rapidly in­

creasing from the combustion of fossil fuels and biomass burning; however, only 

about half of the anthropogenic CO2 emissions accumulates in the atmosphere. 

The oceans and terrestrial biosphere must be taking up the remainder of the emis­

sions, but the mechanism and location of this sink remains uncertain. A vari­

ety of approaches are used to investigate the missing sink of carbon, including 

bottom-up flux estimates from inventory data, regional extrapolation of local flux 

measurements, and top-down inverse modeling studies that use atmospheric CO2 

concentrations to estimate sources and sinks. 

In order to advance our knowledge on carbon fluxes, it is important to under­

stand the variability in atmospheric CO2 concentrations. Originally, studies inves­

tigated the annual and diurnal cycles of CO2 concentrations and the latitudinal 

gradient between the poles. As our understanding of the carbon cycle improved, 

focus began shifting from global scales down to regional scales; and synoptic-scale 

variability, which was once considered noise, is now being analyzed. 
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This study investigated causes of the variability in atmospheric CO2 concen­

trations, focusing on the relationship between CO2 concentrations and clouds, the 

impact of heterogeneous land cover and agricultural production, and the effect of 

redistributing fossil fuel emissions. The covariance of clouds and C0 2 concentra­

tions, the productivity of agricultural crops, and the temporal variability in fossil 

fuel inventories all cause significant changes in atmospheric CO2 concentrations. 

Knowledge that concentrations systematically vary with cloud cover on regional 

scales will help modelers optimally utilize satellite data; knowledge that concen­

trations are dramatically impacted by crops, which are large sinks of CO2 during 

the growing season, as well as understanding the phenology driving this produc­

tivity, will help improve model estimates of both CO2 fluxes and concentrations; 

and knowledge that the spatial and temporal distribution of fossil fuel emissions 

causes significant regional CO2 concentration differences and thus must be prop­

erly accounted for will help improve source and sink estimates from atmospheric 

inversions. 

Due to global sampling and sheer data volume, satellite total column C0 2 con­

centrations will be used in inverse modeling to improve estimates of C0 2 sources 

and sinks; however, satellite CO2 concentrations, which have a footprint much 

smaller than typical model grid cells, will only be sampled in clear conditions. In 

order to optimally utilize these data, it is important to understand the regional 

variability of CO2 concentrations between the satellite footprint and the model 

grid increment, and also the variability in concentrations due to cloud cover. An-
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alyzing in situ continuous concentrations showed that atmospheric CO2 concen­

trations were systematically lower on clear days than on average, likely due to 

advection rather than local fluxes. On a regional scale, simulations using a cou­

pled ecosystem-atmosphere cloud-resolving model over both the mid-latitudes and 

the tropics revealed that the temporal variability of atmospheric total column CO2 

concentrations was much greater than the spatial variability over regions equiv­

alent to model grid cells and that a single measurement collected in clear-sky 

conditions did not represent time-averages. Similar to the results from the local 

analysis, CO2 concentrations over the mid-latitudes were systematically lower than 

the mean. Higher concentrations were due to frontal systems that covaried with 

cloud cover, causing these events not to be sampled. Expanding the analysis to the 

global scale showed similar results: regional differences in clear-sky concentrations 

compared to the mean occurred and varied with location and season. 

Since C0 2 variability is related to cloud cover, which varies depending on me­

teorology, clear-sky measurements cannot be used to represent time-averages. To 

avoid introducing large errors, models must be sampled at the same time and in the 

same synoptic conditions, making model transport a priority to accurately capture 

the winds, clouds, fronts, and frontal timing. In constrast to the temporal errors, 

spatial differences were smaller than the expected spectroscopy errors, indicating 

that using satellite measurements sampled consistently in the model only over a 

smaller area will be representative of a model grid cell. 
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Just as C0 2 concentrations vary with sky conditions, CO2 variability is also 

caused by surface fluxes. Using a coupled ecosystem-atmosphere model, SiB3-

RAMS, we investigated the impacts of land cover heterogeneity and agriculural 

crops on the atmospheric CO2 concentrations. Including sub-grid scale land cover 

heterogeneity and C4 vegetation improved the modeled concentrations by ~ 1 ppm; 

however, one of the deficiencies of the model was underestimating photosynthetic 

drawdown in agricultural ecosystems. 

Including a crop phenological model for both corn and soybeans dramatically 

altered both CO2 fluxes and concentrations. Compared with flux tower measure­

ments, using the crop phenology model improved both the magnitude and the 

timing of the assimilation during the growing season. Using atmospheric C0 2 con­

centrations collected during the Mid-Continent Intensive (MCI) Campaign showed 

that including crops reduced the root mean square errors in the model by nearly 

50% over the region. Simulating both corn and soybeans explicitly also improved 

the synoptic variability in the model. 

The dramatic improvement in SiB3-RAMS showed that crops have a signif­

icant impact on atmospheric CO2 concentrations. Both measured and modeled 

concentrations reached as low as 340 ppm over the mid-continent region during 

the summer of 2007. Combined with mesoscale meteorological variability, the in­

tense uptake from crops lowered CO2 concentrations and contributed to gradients 

of over 30 ppm near the surface over only ~ 200 km. Since crops influence both 

CO2 fluxes and concentrations, it is important to model them accurately. 
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In addition to biological surface fluxes, surface emissions due to fossil fuel com­

bustion also cause variability in regional atmospheric CO2 concentrations. Using 

the coupled ecosystem-atmosphere model SiB3-RAMS, we performed a preliminary 

analysis of the effects of changes in the spatial and temporal distribution of fos­

sil fuel emissions on atmospheric C0 2 concentrations. Using data combined with 

a process-based model to disbribute the fossil fuel emissions rather than scaling 

the estimates with population caused differences of over 10 ppm near the surface, 

with the largest changes in California and in the eastern half of the United States. 

Including seasonality in the emissions impacted regional CO2 concentrations on 

monthly timescales. Monthly differences of 3-6 ppm on average occured in the 

eastern United States. Compared to the FF95 case, the concentrations from the 

HRFF case were higher during the summer and lower the rest of the year in this 

region, and the magnitude of the seasonal changes was more than 20 ppm at some 

locations. Large differences were also seen over California, where the HRFF con­

centrations were consistently lower by more than 15 ppm during the winter. Using 

coarse spatial distributions and unaccounting for temporal variability in fossil fuel 

emissions created biases in the atmospheric C02 concentrations and thus may 

cause significant errors in source and sink estimates from atmopsheric inversions. 

All three causes of variability investigated in this study significantly impacted 

regional CO2 concentrations. Maximum total column CO2 concentration differ­

ences for all three studies are displayed in Table 8.1. Including agricultural pro­

duction by using a crop phenology model for corn and soybean had the greatest 
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Cause 
of 

Variability 
Satellite Clear-Sky 

Agricultural Production 
Fossil Fuel Redistribution 

Spatial 
Temporal 

Spatial 
Temporal 

Regional 
Difference 

(ppm) 

0.8 
2.2 
4. 

0.9 
2.3 

Table 8.1: Total column variability due to the three causes investigated in this 
study: clear-sky concentrations from satellites, agricultural production, and fossil 
fuel redistribution. The values shown are the maximum total column differences, 
in ppm. 

impact on CO2 concentrations, causing regional changes of up to 4 ppm in the 

total column. The magnitudes of the differences caused by both clear-sky sam­

pling and redistributing fossil fuel emissions are roughly half the magnitude of the 

changes from agricultural production. The differences due to temporal averaging 

of clear-sky conditions and temporally redistributing fossil fuel emissions are both 

~ 2 ppm. The temporal differences are much greater than the spatial differences, 

which alter total column concentrations by < 1 ppm. 

8.2 Recommendations for Future Work 

While this study identified three important causes of atmospheric CO2 variability, 

it is important to continue investigating causes of CO2 variability and to continue 

improving models of both fluxes and concentrations. Regional differences between 

clear-sky concentrations and the mean occur globally and vary with both time and 

location; however, we did not investigate the mechanisms causing these differences. 
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The regional simulation and work by Parazoo et al. (2008) and Wang et al. (2007) 

show that in the mid-latitudes frontal systems combine and reoganize large-scale 

flux anomalies into narrow bands of high CO2 associated with cloud cover via de-

formational flow. Further work into the mechanisms in other regions, particularly 

in the tropics and high northern latitudes, would help elucidate the causes of the 

clear-sky differences. 

This research also showed that using clear-sky total column CO2 measurements 

to represent time averages would cause significant errors in atmospheric CO2 in­

versions. Future work could be done to determine the utility of satellite concentra­

tions in inversions, focusing on the effects of sampling only in clear conditions. An 

analysis of an inversion using all possible satellite data (including simulated con­

centrations under clouds) versus an inversion that include only clear-sky soundings 

would reveal differences due to the cloud cover and potential under-sampling of 

the synoptic variability. Although several studies have investigated the usefulness 

of satellite CO2 concentrations (e.g. Houweling et al., 2004; Baker et al., 2006a; 

Chevallier et al., 2007), none has focused on the impacts of sampling concentrations 

only in clear conditions. 

Focusing on the variability driven by agricultural productivity rather than me­

teorology, future work could be done regarding the impact of agricultural ecosys­

tems on atmospheric concentrations. Since we only included crops over a limited 

region, future work to determine the impact of crops over the entire U. S. is re­

quired. To do this, a necessary first step is to create maps of crop coverage for the 
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entire U. S. Model simulations using the corn and soybean crop phenology model 

could also be evaluated against other data collected during the MCI campaign, 

such as carbon stocks and annual crop yield. Evaluating the model against ad­

ditional independent data would help to identify shortcomings and lead to model 

improvement. Other crops could also be simulated using a phenological submodel, 

such as wheat and rice. 

Several different analyses into the model behavior would help to improve the 

model performance and our understanding of various processes. The model eval­

uation in this study showed that the fluxes over northeastern forested regions 

underestimated the drawdown. While this was likely due to these regions being 

strong sinks of carbon not included in the model, further investiation into repre­

senting forest cover at various stages in development may help improve the fluxes 

for this biome type. The simulations in the study were very sensitive to vegeta­

tion stress, and the stresses in the coupled model were quite different than the 

stresses in the offline model used for spin-up. A further analysis into the causes 

of the stress may help reveal the sensitivity of the model to various parameters. 

One potential cause for the different stress is the meteorological driver data, and 

an investigation into different options, such as National Centers for Environmen­

tal Prediction North American Regional Reanalysis data and meteorological data 

from the European Center for Medium-Range Weather Forecast may be beneficial. 

One other problem we noticed while performing this study is that while changes 

in temperature, pressure, and winds in the model were simulated well, variability 
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in shortwave radiation seemed to be underestimated and not well correlated with 

observations. Analysis and further investigation of different radiation parameteri-

zations may help improve simulations. The day-to-day variability in fluxes could 

also be improved by including shaded and direct fractions of solar radiation. 
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