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ABSTRACT 

 

 

COMPARISON OF DIGITAL TERRAIN AND FIELD-BASED CHANNEL DERIVATION  

METHODS IN A SUBALPINE CATCHMENT, FRONT RANGE, COLORADO 

 

 
Understanding the reliability of digitally derived channel networks for mountainous 

headwater catchments is important to many water resource and land-use management 

applications. Digital elevation models (DEMs) have become an essential tool for an increasing 

array of mountain runoff analyses. The purpose of this study is to investigate the influence of 

digitally-derived topographic variables on channel network formation for a high-elevation 

glaciated watershed. To accomplish this, our objectives were to (1) test how differences in 

gridded DEM resolution affect spatially distributed topographic parameters of local slope (tan β), 

specific contributing area (αs), and topographic wetness index (TWI) derived from both eight and 

infinite directional flow algorithms, (2) map the actual stream channel network at Loch Vale and 

examine the influence of surface variables on channel initiation, and (3) evaluate the 

performance of common methods for deriving channel networks from gridded topographic data 

by comparing to the observed network.  

We found that coarser DEM resolution leads to a loss of detail in spatial patterns of 

topographic parameters and an increase in the calculated mean values of ln(αs) and TWI. Grid 

cell sizes above 1m result in a substantial shift in the overall cumulative frequency distributions 

of ln(αs)  and TWI towards higher values. A field survey at Loch Vale revealed a complex and 

disjointed channel network, with 242 channelized points and 30 channel heads. We found no 

predictable relationships between channel head locations and geomorphic process domains. 
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Analysis of variance (ANOVA) showed no statistically significant difference in mean ln(αs) and 

TWI for channel head locations grouped by elevation, aspect, slope, formation process or 

upslope land cover type. For most DEM resolutions and flow partitioning algorithms, deriving 

channel networks with spatially constant flow accumulation and TWI thresholds provides poor 

network representation. The publicly available National Hydrography Dataset (NHD) layer 

oversimplifies the channel network by neglecting almost all first and second order channels. 

Many of the DEM-derived channel networks that use spatially constant flow accumulation and 

TWI thresholds also do not reproduce the locations of low order channels in the observed 

channel network well.  Assumptions of topographic control on channel initiation are not shown 

to be valid at Loch Vale, likely due to their inability to capture subsurface processes and 

geologic features important to channel formation.    

However, if using these topographically dependent threshold methods to delineate 

channel networks, we suggest the use of field-based survey data to identify appropriate 

thresholds. With appropriate thresholds, both 1m and 10m DEMs can produce channel networks 

with similar drainage densities to the observed network, even if locations of low order channels 

are not predicted accurately.  Performance degrades for 30m DEMs, so we suggest that DEMs 

with resolutions coarser than 10m should be avoided for channel network delineation.  
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1. Introduction 

 

Topography plays an important role in the spatial patterns of runoff and stream channel 

networks in steep, high elevation watersheds (Anderson and Kneale, 1982). While other factors 

such as bedrock topography and spatial variability of physical soil properties contribute to 

channel network development, methods for deriving networks based on topographic 

characteristics have proven useful for a range of environments.  With the increased availability 

of geographic information systems (GIS) and digital elevation data has come a growing reliance 

on using digital elevation models (DEMs) to map the location of stream channels.  GIS-based 

methods derive channel networks by analyzing topography through gridded calculation of slope, 

contributing area (Hancock, and Evans, 2006; Tarboton et al., 1991; Wolock and McCabe, 2000; 

Zhang and Montgomery, 1994) and various forms of topographic wetness indices (Dietrich et al., 

1993). Yet, prior research has shown that the locations and shapes of DEM derived networks 

vary both with the methods of calculation (O’Callaghan and Mark, 1984; Montgomery and 

Foufoula-Georgiou, 1993) and the spatial resolution of the DEM used (Deng et al., 2007; 

Wolock and McCabe, 2000; McMaster, 2002). When discussing a DEM representation of the 

landscape we use the term resolution to mean the grid cell size, which corresponds to the 

smallest area or topographic feature on the ground that can be represented by the DEM. We 

distinguish this from “scale”, which is applied to mean the extent of the real-world hydrologic or 

geomorphic unit whose response and/or form is being characterized. For example, units of 

interest can range from microscale rock outcrops to more mesoscale hillslopes, to the macroscale 

catchment. 

Accurate demarcation of channel locations and extents is important to many hydrological 

and environmental applications. For modeling purposes, neglecting lower order channels can 
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result in variations of hillslope flow length, channel head location, and drainage density, features 

that all control how water is routed through the landscape and ultimately the nature of simulated 

hydrographs (Zhang and Montgomery, 1994). This becomes particularly significant with the 

many topographically-driven hydrologic models in use today, where the difference between 

representation of channelized and hillslope processes can have large effects on both simulated 

discharge and spatial patterns of groundwater and soil moisture. Improved channel network 

representation can also inform many environmental issues, including water distribution and 

availability for ecological analysis (Iverson et al., 1997), point and non-point source pollution 

management plans (Jaeger et al., 2007), timber harvesting in streamside management zones and 

wildfire remediation (Vides-Solorio, 2003; Garcia-Corona et al., 2004).  

 

1.1 Research Objectives 

 

The objectives of this study are to (1) examine how differences in gridded DEM 

resolution for Loch Vale, a glaciated Rocky Mountain headwater catchment, affect spatially 

distributed topographic parameters of local slope (tan β), specific contributing area (αs), and 

topographic wetness index (TWI) derived from both eight and infinite directional flow 

algorithms, (2) map the actual stream channel network at Loch Vale and examine the influence 

of surface variables on channel initiation, and (3) evaluate the performance of common methods 

for deriving channel networks from gridded topographic data by comparing to the observed 

network. Several studies have examined these issues in lower elevation undulating terrain 

(Hancock and Evans, 2006; McMaster, 2002; Zhang and Montgomery, 1994), but few have 

addressed channel network delineation in exceptionally steep, high elevation basins whose runoff 
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is dominated by melting of a seasonal snowpack. The study location, Loch Vale, represents just 

such a basin, and because of its extreme topography and ongoing history of hydrologic research 

it is an ideal site for this investigation. Study methods include three related phases: (1) DEM 

analysis, (2) Observed channel network analysis, and (3) GIS derivation of channel networks.  

For the Loch Vale watershed, we hypothesize that DEM resolution will have a significant 

effect on terrain representation and the accuracy of the modeled channel network. Channel 

network derivation methods are expected to perform well for downslope channel locations 

having high contributing areas, but will be less accurate for first and second order channels 

where analysis of surface topography cannot characterize important subsurface influences like 

bedrock topography, macropores, bedrock fractures, and piping. 

 

1.2 Background 

 

Digital elevation models and LiDAR 

Topography can be digitally represented in a number of ways through digital elevation 

models (DEM). One type of DEM is the triangulated irregular network (TIN), which implicitly 

represents stream channels with a network of triangular planes to characterize valleys, ridgetops 

and hillslopes with elevations stored at their corners. TINs offer some advantages because they 

can capture curved features and easily incorporate variable spatial resolution (O’Callaghan and 

Mark, 1984); however because gridded representation of elevation with rasters has become the 

most commonly used form of DEM, these will be the only type addressed here.  

 As remote sensing technologies continue to improve, the resolution of gridded DEMs has 

also improved. Landscapes represented by 90, 30, and 10m grid cells that cover entire continents 
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are widely available through outlets like the U.S. Geological Survey’s (USGS) National 

Elevation Dataset (NED). These DEMs are often derived from traditionally developed contour 

maps or optical sensors like the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer. More recently, the use of Light Detection and Ranging (LiDAR) technology has 

allowed for the development of custom elevation datasets with resolutions as fine as 1m
2
. 

Airborne LiDAR uses active remote sensing systems to send downward pulses of light to 

measure the distance between the sensor and terrestrial surfaces. Distance is calculated by 

relating the known elevation of the sensor, speed of light and measured return times of the 

reflected light, resulting in a high density collection of elevation points. Various processing 

algorithms are applied to filter the millions of discrete data points within a sampling footprint 

and identify returns from specific surface classes, including vegetation canopy, buildings, and 

the ground surface. The filtered bare ground elevations are then interpolated to construct a fine 

resolution DEM (Evans et al., 2006). Development of environmental applications for LiDAR 

data remains a promising and active area of research. 

 

Contributing area thresholds for channel initiation 

Distributed channel network models often simulate transitions from hillslope to 

channelized flow based on a contributing area threshold (Tα) calculated from a DEM. 

Algorithms for calculating contributing area typically determine the change in elevation between 

a given grid cell and neighboring cells and then route flow to adjacent cells based on these 

directional derivatives. The D8, or steepest descent algorithm, routes flow to the single 

downslope cell with the greatest drop in elevation. An alternate algorithm uses planar triangular 

facets to route flow towards as many as two cells based on calculation of flow angle, allowing 
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for an effectively infinite number of possible directions (D∞; Tarboton, 1997). D∞ is able to 

represent divergent flow, which can result in more realistic flow networks. Applications of these 

flow direction algorithms have shown mixed results, but some evidence suggests that allowing 

for multi-directional flow can affect the distribution of contributing area and TWI, as well as 

modeled flow pathways (Quinn et al., 1991; Tarboton, 1997; Wolock and McCabe, 1995). 

However, it has also been shown that both algorithms can perform equally well in deriving 

stream networks for steep terrain (McMaster, 2002). 

Using flow direction information, it becomes possible to estimate the area of land 

contributing flow to a given cell of a DEM as the sum of the areas of all upslope contributing 

cells. GIS-based channel delineation methods often use a contributing area threshold to estimate 

the headward extent of channelization. By assuming a threshold contributing area for channel 

initiation, one can then derive a gridded estimation of the channel network. This method is 

rooted in theory first developed by Gilbert [1877] relating slope, distance, and volume of erosion 

and was later refined by Horton [1945], who characterized channel head location by minimum 

overland flow length required to initiate fluvial erosion.  O’Callaghan and Mark [1984] applied 

this method using a DEM by setting a contributing area threshold for stream channel initiation. 

The threshold value can be estimated from prior knowledge of the region, DEM analysis of 

slope-area relationships, or from other information such as blue line vector features in the USGS 

National Hydrography Dataset (NHD). All of these methods present challenges, as field 

information may not be available or would involve arduous field surveys. Existing channel 

network maps are often interpreted from aerial imagery and may neglect low order channels 

concealed by canopy cover.  
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Tarboton et al. [1991] proposed defining contributing area thresholds for channel 

initiation through analysis of slope-area relationships (Figure 1). In their approach, selection of a 

threshold involves derivation of many channel networks for a range of assumed threshold 

contributing areas and plotting the resulting slopes of channel segments against their contributing 

areas. After regression analysis of averaged values, the location of a point of inflection between 

positive and negative slopes of the regression line represents the contributing area that can be 

used as a threshold.  

Montgomery and Foufoula-Georgiou [1993] pointed out that selection of valid thresholds 

in this manner has shortcomings, in that it is constrained by the previously and arbitrarily defined 

networks used as inputs to derive a final network. They also showed that these methods often 

predict erroneously large slope lengths in steep terrain. Instead, they propose estimating  

 
Figure 1: Link slope-source area plot for Big Creek basin, Idaho (Tarboton et al., 1991).  
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appropriate contributing areas through scatterplot analysis of a DEM. For two separate 

mountainous basins, they show that plotting local slope against contributing area for each grid 

cell reveals discrete trends in the relationship that signify physical changes in persistent sediment 

transport process domains. First, there is a break from positive to negative slope of the 

relationship at low contributing areas (Figure 2). This is correlated to a change in sediment 

transport processes at the transition from hillslope to valley landforms, and the breakpoint 

contributing area they identified coincides with reasonable hillslope lengths for the study 

landscape.  A break from less negative to more negative gradient is found at larger contributing 

areas, attributed to where alluvial channel processes begin to persist. In lower elevation soil-

mantled landscapes, this positioning of channel heads will tend to vary over short timescales 

relative to bedrock dominated areas. The authors conclude that for their study basins in coastal 

 
Figure 2: Averaged local slope versus contributing area plot for Schoharie Creek, New York 

(Montgomery and Foufoula-Georgiou, 1993). 
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Oregon, coastal Northern California, and the Catskill Mountains of New York, DEM analysis 

cannot accurately locate current channel head locations and more involved methods are thus 

needed. Ijjasz-Vasquez and Bras [1995] analyzed the slope-area relationship on a pixel-by-pixel 

basis for an Alabama catchment and observed four regions of the scatterplot that were distinct in 

nature. When averaged using bins of at least 500 data points each and plotted on a log-log axis, 

they too found a reversal in the relationship from positive to negative gradient for hillslope to 

valley transitions at small contributing areas and an inflection between unchanneled valleys and 

alluvial channels at larger contributing areas. However, the authors also observed a domain 

between these two regions with a slope-area relationship of very little slope; they assumed that 

slopes below this region are in a fluvial channel domain, as in Willgoose [1989]. This flat portion 

is a result of the averaging procedure, where both channelized and unchannelized pixels of 

similar contributing area are found. This characteristic allowed them to identify a threshold for 

channel initiation by taking the diagonal of a quadrilateral formed by separate linear regression 

lines for each bounding region. The intersection of the diagonal and the data represents a useful 

flow accumulation threshold value (Figure 3). Henkle [2011] applied slope-area analysis to an 

extensive channel survey of the Colorado Front Range, finding that channel heads do generally 

coincide with the predicted regions. 

Well-defined channel initiation thresholds may not be evident in regions where bedrock 

characteristics have greater influence on channel location. As such, other researchers have 

reproduced slope-area analyses for a variety of landscapes with mixed outcomes. Jaeger et al. 

[2007] studied locations of channel heads in two Washington state landscapes with basalt and 

sandstone lithologies and saw no significant slope-area relationship for channel initiation. They 

hypothesized that this was due to unknown subsurface characteristics and/or small sample sizes.  
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Heavily glaciated basins have a complex structure that is not solely controlled by fluvial erosion 

processes, as shown by Brardinoni and Hassan [2006], who examined channel networks in the 

coastal mountains of British Columbia that inherited their landscapes through glacial sculpting.  

Slope-area process domains of previous theory were found to hold on a fine scale in this area but 

were more segmented according to glacial landforms.  

Several more intensive methods for estimating channel initiation have been developed, 

including a shear stress threshold method presented in Dietrich et al. [1993]. This model derived 

erosional thresholds which physically are a function of soil properties, precipitation, and 

topography but are estimated based on a ratio of soil transmissivity and runoff rate. Soil 

transmissivity was estimated with field data, and runoff rates were derived from 

characterizations of landscape curvature and associated assumptions for likelihood of saturation. 

 
Figure 3: Log-log plot of averaged local slope versus contributing area showing process 

domains and region III threshold diagonal for Raccoon Creek basin, Pennsylvania (Ijjasz-

Vasquez and Bras, 1995). 
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The authors then apply this ratio with a roughness coefficient to estimate a critical shear stress 

threshold for channel initiation. Spatially distributed boundary shear stress is calculated as a 

function of critical shear stress, precipitation, roughness, and slope. The authors conclude that a 

useful shear stress threshold can only be calibrated with a map of the complete observed 

drainage network. They do however propose a topographic threshold taking into account αs*S
2
, 

where S = local slope. This approach has been applied with some success elsewhere (Orlandini et 

al., 2011). While these and other proposed channel initiation models (Passalacqua et al., 2010) 

are promising, we have chosen not to include them in this investigation. 

Despite its common use for deriving channel networks, appropriate values for the 

contributing area threshold method have been found to vary widely for different basins. Channel 

heads may form from convergent overland flow, convergent subsurface flow, or landsliding, 

each of which may be controlled by upslope topography yet exhibit varying contributing areas 

sufficient for channel initiation (Montgomery and Dietrich, 1994). In all three cases, thresholds 

for channel initiation can be treated as a function of flow accumulation necessary to produce 

some critical pressure sufficient to mobilize sediment. Depending on local factors and the 

mechanisms of channel initiation such as physical soil characteristics or vegetative cover, 

appropriate values for a contributing area threshold may vary from basin to basin (Kampf and 

Mirus, in press), and often within a single basin (Passalacqua et al., 2010). In areas heavily 

influenced by geologic and subsurface piping, surface contributing area thresholds may provide 

little utility (Jaeger et al., 2007; Orlandini et al., 2011). This suggests significant limitations in 

applying a single threshold value for a given region or catchment, yet application of this 

approach is widespread because practical limitations often inhibit detailed field-based mapping 

of channel networks. In the setting closest to the study area for this thesis, Henkle et al. [2010] 
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recently characterized channel head initiation over a wide area of the Colorado Front Range and 

found an average contributing area threshold of 108,258m
2
, although results display a wide 

variance in observed values. For channel heads mapped at elevation ranges similar to those of 

Loch Vale, an average contributing area of 129,372m
2
 was observed. However, they note that the 

relationship between contributing area and channel initiation tended to break down in basins with 

steep hillslopes (>19%). 

 

Topographic wetness indices 

Topographic analyses have also been used to predict the spatial distribution of runoff 

generation.  The topographic wetness index (TWI) was developed to predict areas of soil 

saturation and likely locations of overland flow for use in the runoff model TOPMODEL (Beven 

and Kirby, 1979). TWI is a function of contributing area and local slope, based on the 

assumption that locations with larger surface area contributing flow and shallower slopes are 

more likely to saturate and accumulate surface water. The index is generally expressed as  

 

 

 

(1) 

                                           

where αs = specific contributing area, and tan β = local slope (Frankenberger et al., 1999; 

Sorenson et al., 2005). Also referred to as specific catchment area, specific contributing area is 

defined as the total upslope area contributing flow to a given location, divided by the specific 

contour length (Chirico et al., 2005; Galant and Hutchinson, 2011). The DEM cell edge length 

has been applied as the value for specific contour length in several terrain analyses (Zhang and 

Montgomery, 1994; Wolock and McCabe, 1995). TWI is commonly tested as a gridded predictor 
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of saturation excess overland flow (Western, 1999; Lyon et al., 2004; Lin, 2006), where higher 

index values represent areas more likely to saturate and produce overland flow from a uniform 

precipitation input event. We propose that areas of mountain headwater catchments regularly 

producing runoff via this process may be more likely to channelize, and thus there is the 

potential for using a characteristic TWI threshold for channel initiation in network derivation. A 

related concept has been applied for use in predicting stream channel locations based on research 

that found channel initiation to be closely correlated to areas producing saturation excess 

overland flow in humid landscapes (Dietrich et al., 1992; Dietrich et al., 1993; Montgomery and 

Dietrich, 1994). In many environments, the steepest portions of mountain headwater catchments 

have shallow soils, more sparse vegetation, and more mass wasting events which all serve to 

reduce the required contributing area threshold for initiation. Grayson and Western [2001] note 

that catchments where TWI can perform well as a predictor of runoff are rare. In short, TWI 

requires lateral flow, and they argue that there are a limited number of environments meeting the 

assumptions that allow for this. Environments with suitable characteristics are limited to a 

particular range of precipitation to evapotranspiration ratios, areas with relatively impermeable 

layers in the subsurface that promote lateral flow, and specific soil and vegetation characteristics. 

Similarly, Woods and Sivapalan [1997] conclude that TWI-based runoff models are most 

appropriate for “well-organized” networks of large area and whose form is a result of catchment-

scale processes. Thus, TWI may not be a viable channel prediction method in more arid, rugged 

landscapes with a thin soil mantle. 
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Existing linear feature datasets 

Channel networks can also be derived by digitizing channel locations from aerial 

imagery. A commonly available resource of vector hydrography is the NHD, for which water 

features were taken from aerial imagery and existing USGS topographic maps. This method 

contains inherent subjectivity in the representation of lower order channels based on map scale or 

visual interpretation, especially when channels are shielded from above by vegetative cover. 

Another widely available source with global hydrographic coverage is the World Wildlife 

Fund/USGS HydroSHEDS dataset. While covering an impressive global extent, HydroSHEDS 

layers were generated from a DEM with a resolution of 3 arcseconds (~90m) and a uniformly set 

flow accumulation threshold of 1000 cells, or about 8km
2
 at the equator (Lehner et al., 2006). 

This methodology results in networks that include only high order channels and are not suitable 

for use in more detailed network mapping. Because of this, researchers have long cautioned 

against the use of such pre-existing line features for drainage analysis (Coffman et al., 1972; 

Scheidegger, 1966).  

 

Effects of DEM spatial resolution 

 Variations in the reliability of topographic algorithms for channel network delineation 

are confounded by the effects of DEM spatial resolution. Wolock and McCabe [2000] examined 

the effects of 100m versus 1000m DEMs for 50 different locations throughout the United States, 

pointing out a loss of information and smoothing effect on terrain from 100m to 1000m. In a 

semi-arid Colorado basin, they found that the 1000m DEM had an increase in the ratio of cells 

exceeding the contributing area threshold, a decreased minimum slope, and an overall increase in 

TWI values. They also concluded that smoothing effects are more pronounced in steep terrain, 
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which is a dominant characteristic of our study area in the Colorado Front Range. Other studies 

have presented varying conclusions on the resolution of DEM that is most appropriate for 

channel network derivation. Montgomery and Foufoula-Georgiou [1993] concluded that a DEM 

with a resolution finer than 30m is needed to represent topographic characteristics essential to 

stream channel initiation in steep terrain.  McMaster [2002] found deterioration in channel 

network derivation performance in DEMs larger than 180m for the Adirondack Mountains of 

New York state. Deng et al. [2007] found large variation in TWI values depending on DEM 

resolution, concluding that a resolution finer than 10m should be used for a rugged mountain 

landscape in Southern California. Zhang and Montgomery [1994] also found that a 10m 

resolution was necessary to represent steep terrain, adding that grid cell size should be at least as 

small as the typical hillslope length required for topographically driven process modeling. 

Orlandini et al. [2011] investigated the effects of DEM resolution on contributing area thresholds 

extracted to observed channel heads, and using 1, 3, 5, 10, 20, and 30m DEMs and found a 

predictable increase in threshold contributing area with grid cell size. Orlandini and Moretti 

[2009] suggest an appropriate grid cell size for flow path delineation of 

  (2) 

 

where  is grid cell size and  is basin area in square meters. 

 The selection of appropriate DEM resolution is intimately linked to the issue of scale in 

hydrologic and landscape analysis. While investigating the processes most important to a given 

hydrologic response, the best DEM resolution will depend on both the scale at which these 

dominate processes operate as well as the nature of the problem being addressed. For example, 

coarse resolution data may be able to effectively capture important processes that are a function 

of glacial macroforms or catchment-scale controls dictating landscape structure. Fine resolution 
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data may instead be required to represent hillslope or microtopographic characteristics that might 

have substantial influence on the channel network development in rugged landscapes. When 

considering the scale associated with the problem of interest, forest hydrologists aiming to study 

the relationship between headwater channel development and upland forest structure may require 

a fine resolution DEM to parse out important variables in a small 1 km
2
 headwater catchment, 

whereas urban water resource managers may only need a coarse 30m DEM to accurately model 

discharge from a larger 5,000 km
2
 basin at downstream outlets far removed from remote 

headwater catchments. 
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2. Study Site 

 

Loch Vale is a 7.3 km
2
 watershed in northern Colorado’s Front Range within Rocky 

Mountain National Park. The watershed ranges in elevation from 3110m at the outlet to 4192m 

at its highest point along the Continental Divide. Loch Vale’s geology is characterized by 

heavily glaciated terrain, which has formed U-shaped valleys bounded almost entirely by steep 

cliffs with extremely porous talus and thin soils covering the lower side slopes and valley floors 

(Figure 4). Because the topography at Loch Vale is inherited from a glaciated past, at the 

catchment scale current geomorphic processes shaping the landscape persist as secondary 

influences within pre-existing glacial troughs.  Basins of this nature tend to exhibit altered 

geomorphic domains, often related to the existence of hanging glacial valleys, that are in 

apparent disequilibrium with general theories of colluvial and fluvial systems (Brardinoni and 

Hassan, 2006; Weekes, 2009). Eastwardly flowing Andrews Creek and Icy Brook are the main 

stream channels, and both streams are partially fed by glacier remnants. Andrew’s Creek 

converges with Icy Brook, which then feeds a 0.053 km
2
 lake that drains to the basin outlet.  

Vegetation is primarily made of up of subalpine fir (Picea engelmanii) and Englemann spruce 

(Abies lasiocarpa) forest in the lower valleys. Higher elevations consist of alpine vegetation or 

exposed bedrock (Clow et al., 2003). The annual hydrograph at Loch Vale is snowmelt 

dominated. On average, the watershed receives 105cm of annual precipitation, with about 62% 

falling between October and April. The winter preceding our channel network survey was 

unusually wet, with 104.7cm of precipitation measured from October through April alone 

(NADP, 2012).
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Figure 4: Loch Vale study site, Front Range Colorado, USA. 
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3. DEM Analysis 

 

 

3.1. Methods 

For the DEM analysis we calculate and compare slope, contributing area, and TWI for 1, 

10, and 30m DEMs with both flow algorithms. We then plot contributing area and local slope for 

the 1m DEM to look for any systematic relationships that can be used to identify potential 

topographic thresholds for channel initiation.   

 

Elevation data source 

Three DEMs with grid cell sizes of 1x1, 10x10, and 30x30m are used for analysis. We 

reference each DEM by its cell edge length, e.g. “the 10m DEM”. The 1m DEM was collected 

via an airborne LiDAR sensor flight commissioned by the USGS. Data were collected during 

August 2010 for Grand County, Colorado and some portions of nearby Larimer and Park 

counties, including Loch Vale. Elevation data were collected and delivered in the Universal 

Transverse Mercator (UTM) projected coordinate system for zone 13, using the 1983 North 

American Datum (NAD). Vertical accuracy is reported to meet a 15cm standard. At 95% 

confidence level, horizontal accuracy is estimated to be at or below 1.04cm in both easting and 

northing coordinates for quality control checks against ten separate base stations. This dataset is 

publicly available through the USGS Center for LiDAR Coordination and Knowledge. Both 10 

and 30m DEMs are also available for Loch Vale from a variety of public sources, including the 

NED. However, in order to isolate the influence of grid cell size from those associated with the 

vertical and/or horizontal accuracy of original elevation data collection methods, the 10 and 30m 

DEMs were created in ArcGIS by resampling the 1m DEM with the commonly used nearest 

neighbor technique, which assigns an elevation value to the pixel based on that of the nearest 
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input value, thereby maintaining real elevation values of the original dataset. Bilinear 

interpolation and cubic convolution are other common resampling methods, but have been 

shown to result in a greater degree of terrain smoothing due to averaging of neighborhood 

elevation values (Le Coz et al., 2009; Wu et al., 2008). 

 

Data processing 

To investigate the effects of DEM resolution on overall terrain characteristics, each of the 

three DEMs were processed in the following series steps. First, we preprocessed them to remove 

sinks, which represent areas of isolated depression that prevent the flow algorithms from moving 

accumulated overland flow down slope. In terrain analysis for hydrological applications sinks are 

often treated as spurious artifacts of DEM production, although it is important to note that DEM 

data may include sinks that are in fact natural features, especially in glacial terrain and with the 

use of a fine resolution DEM (Temme et al., 2005).  The existence of natural sinks is likely to 

increase in steep basins that experience “damming” as a result of landslides and debris flow. 

Ultimately, the utilization of depressionless DEMs may result in less attenuated simulated 

hydrographs and decreased sedimentation in transient soil distribution models (Temme et al., 

2005).  The removal of sinks is required for the flow routing methods tested in this study to 

resolve flow directions and produce a valid flow accumulation grid, and thus we include this step 

here while acknowledging the aforementioned considerations. Next, we calculated each of the 

input variables for TWI (Equation 1).  Local slope (tan β) of each cell is calculated within 

ArcMap as percent rise by taking the vertical and horizontal directional derivative to find 

direction of and maximum difference in elevation between neighboring cells divided by the 
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distance between the cell centers. It is converted to percent rise by multiplying the value by 100. 

Conceptually, this can be expressed as  

 
 

(3) 

 

where 

 

 

(4) 

  

and L is the horizontal distance between cell centers. Percentages can range from 0.00 for flat 

areas, 100.00 for 45° slopes, and approach infinity when vertical. By determining the direction of 

steepest descent, this step inherently determines flow direction. To allow for calculation of a 

TWI, we changed flat cells with slopes of zero to a small arbitrary slope (5x10
-7

). This approach 

has been used in similar studies (Wolock and McCabe, 1995; Wolock and McCabe, 2000) and is 

based on the assumption that even water flowing to flat cells eventually reaches the basin outlet. 

D∞ slope was calculated in the RiverTools DEM software package as rise/run, as described in 

Tarboton et al. [1997], and imported into ArcMap. Slope values were then multiplied by 100 to 

convert to percent rise. 

To calculate specific contributing area (αs), we computed flow direction with the D8 

algorithm in ArcMap’s ArcHydro toolset as well as the D∞ algorithm within RiverTools. These 

two flow direction algorithms are applied for each DEM.  The resulting flow direction rasters 

were then used to calculate a total of six contributing area rasters created by summing the 

number of cells contributing flow to the target cell and adding a value of 1 to include the target 

cell’s area and ensure valid TWI calculations. Finally, αs was calculated as the number of 
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contributing cells ( ) multiplied by the area of each cell ( ), and divided by the length of the 

cells ( ) within the DEM (Equation 5).  

 
 

(5) 

 

Analysis 

To compare topographic variables between DEMs, we calculated summary statistics and 

cumulative frequency distributions of tan β, ln(αs),, and TWI for the 1, 10, and 30m rasters using 

both D8 and D∞ flow direction algorithms.  

Additionally, following the methodologies outlined in Montgomery and Foufoula-

Georgiou [1993] and Ijjasz-Vasquez and Bras [1995], upslope contributing area was plotted 

against local slope for each grid cell to identify distinct process domains evident in the nature of 

the relationship between the two variables. For this analysis, actual contributing area is used in 

lieu of specific contributing area, as this is the default input parameter for defining channelized 

pixels within most GIS toolsets. Keeping with convention, slope was analyzed in the form m m
-1

. 

Data for this plot were extracted from the 1m DEM because it provides the resolution necessary 

to capture the fine-scale topographic complexity at Loch Vale. McMaster [2002] found that slope 

and contributing area grids derived using D∞ flow partitioning more accurately represented 

slope-area relationships, and thus this flow partitioning algorithm was applied here. When 

plotting over 7.3 million data points from the 1m DEM, tremendous scatter in the data results. In 

order to observe overall trends in the relationship both variables were log transformed, first 

adding a value of 1 to each slope to avoid values of 0 becoming infinity after transformation. 

Data points were then averaged by taking the mean corresponding slope for 0.1m
2
 bins of 

contributing area values. This reduced the number of data points to 159. After transformation, 
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two-phase linear regression analysis was performed to identify a breakpoint in the slope-area 

gradient that represents a threshold between unchanneled and channelized pixels. This was found 

by searching for the equations of two regression lines, applied separately to some division of our 

data, that meet to form a breakpoint and minimize the sum of squared residuals (SSR) between 

the data points and regressions (similar to regression lines found in Figure 1). This was followed 

by a bootstrapping procedure to test the null hypothesis that the change in the slope of the 

regressions at the breakpoint is not significant, based on a significance level of 0.05. If the 

resulting p-value is < 0.05, we reject the null hypothesis and accept the break as statistically 

significant. The corresponding flow accumulation value at the breakpoint can then be used as a 

threshold value (Tα) to define channelized pixels later in the analysis. We also applied the 

method outlined above from Ijjasz-Vasquez and Bras [1995] that identifies a threshold value in 

terrain that has a more complex slope-area relationship. Here we visually identified regions with 

trends of distinctive gradient. A transition point was extracted from the diagonal of a 

quadrilateral formed when linear regressions for regions II and IV are connected. The 

intersection of this diagonal with the data signifies a flow accumulation threshold for 

channelization.   

 

3.2. Results 

 

DEM resolution and flow partitioning algorithm 

Because DEMs use a single elevation value to represent the entire area of a grid cell, 

terrain smoothing occurs as cell area increases, resulting in an inherent loss of topographic 

information. This effect is demonstrated in Figure 5, which shows the elevation profile extracted 
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in ArcMap from a Loch Vale hillslope transect with a horizontal distance of 200m. The loss in 

topographic detail can be seen as variations at a 1m resolution are smoothed out with coarser 

DEM resolution.  

Spatial resolution has the same effect on other topographic parameters derived from the 

original DEM. Upon visual inspection, the influence on the spatial distribution of topographic 

parameters is striking (Figures 6a-c). Changing resolution from 1 to 10m results in a significant 

loss of detail in spatial patterns of slope, specific contributing area, and TWI. For the 30m DEM 

these patterns become essentially unrecognizable. Potentially important hydrologic processes 

occurring at sub-cell length scales cannot be captured. Over very large areas with more moderate 

slope, this may not be an issue, and computer processing limitations could outweigh the need for 

fine discretization. However, as previously indicated fine resolution topographic data may prove 

 
 
 

Figure 5: Elevation profile of a Loch Vale hillslope with horizontal distance of 

200m. Y-axis is displayed with a 2.5:1 vertical stretch. 
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essential for deriving accurate runoff networks in basins as steep and rugged as Loch Vale. At 

first glance, both contributing area and TWI seem to represent realistic flow patterns (Figures 6b-

c). This intuitively reinforces the current reliance on easily derived topographic parameters for 

creating stream networks. The D∞ flow partitioning algorithm offers a visual improvement over 

the idealized network derived from D8, as evident in the more natural spatial patterns of 

contributing area and TWI. By allowing runoff to flow into more than one adjacent cell, D∞ 

better represents the braided and often divergent nature of observed flow networks.  
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Figure 6a: Images of ln(tan β) for a 0.12km
2
 portion of Loch Vale. Darker pixels represent higher 

values. 
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Figure 6b: Images of ln(αs) for a 0.12km
2
 portion of Loch Vale. Darker pixels represent higher 

values 
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Figure 6c: Images of TWI for a 0.12km
2
 portion of Loch Vale. Darker pixels represent higher 

values. 
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The statistical effects of DEM resolution and flow partitioning algorithm on topographic 

parameters are presented in Table 1. Summary statistics of TWI and log-transformed tan β and αs 

for the 1, 10, and 30m DEMs were calculated using both the D8 and D∞ flow partitioning 

algorithms. For D8, as DEM cell size increases mean slope increases. While the effect is slight, it 

is notable in contrast to findings of prior studies (Wolock and McCabe, 2000; Zhang and 

Montgomery, 1994). The positive relationship at Loch Vale could be due to a greater degree of 

ruggedness where isolated areas of little to no slope are averaged into larger cells, as opposed to 

rolling terrain with continuous slopes. Maximum slope generally decreases with greater cell size 

for both D8 and D∞ as a result of smoothing. Minimum ln(tan β) is a function of the derivation 

methodology applied, with minimum possible slope specified as 5x10
-7

. Although the mean and 

maximum values of ln(tan β) change with DEM resolution, the cumulative frequency 

distributions for slope are nearly the same for all resolutions (Figure 7). 

Table 1: Summary statistics of topographic parameters for 1, 10, and 30m DEMs using D8 and D∞ 

flow partitioning. Tα4 symbolizes the NHD averaged contributing area threshold of 40,485m
2
, and 

Tα5 the averaged contributing area threshold of 129,372m
2
 from Henkle et al. [2010], with values 

indicating percentage of basin area exceeding the threshold. 

  ln(tan β) ln(αs) TWI 

  Mean Max. Min. Mean Max. Min. 

% 

≥ Tα4 

 

% 

≥ Tα5 

 

Mean Max. Min. 

D8 

1m 3.80 8.61 -14.51 2.11 15.81 0.00 0.31 0.13 -1.69 30.32 -8.52 

10m 3.88 6.67 -14.51 4.09 13.50 2.30 3.00 1.27 0.21 27.89 -4.37 

30m 3.92 5.85 -14.51 4.95 12.41 3.40 9.56 3.89 1.03 26.79 -2.45 

D∞ 

1m 3.71 9.26 -14.51 3.25 15.81 0.00 0.32 0.15 -0.46 30.32 -9.21 

10m 3.76 7.32 -14.51 4.61 13.50 2.30 2.91 1.45 0.21 27.89 -4.37 

30m 3.62 6.29 -14.51 5.25 12.41 3.40 9.00 3.99 1.63 26.91 -2.81 
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DEM resolution has the largest effect on ln(αs), a finding that is consistent with prior 

studies (Montgomery and Foufoula-Georgiou, 1993; Zhang and Montgomery, 1994; Wolock and 

McCabe, 2000). Mean ln(αs) nearly doubles from 1m to the other DEMs, while its cumulative 

frequency distribution shifts substantially out towards higher values with coarser resolution. 

There is a small shift in ln(αs) between 10 and 30m, but is not as large as the shift between the 1 

and 10m DEMs.  This is also exhibited by an order of magnitude increase from the 1 to 10m 

DEM in the percentage of basin area exceeding both the NHD averaged Tα4 of 40,485 m
2
 and 

the Henkle et al. [2010] observed average Tα5 of 129,372 m
2
. Because TWI is a function of both 

tan β and αs, these effects translate to an overall increase in TWI values. Mean TWI and its 

cumulative distribution both increase with cell size, with the largest shift from 1 to 10m 

resolution with D8.  

When comparing flow algorithms, D∞ results in lower mean ln(tan β) and higher mean 

ln(αs) for all DEMs.  D∞ also produces generally higher mean TWI, with the exception of the 

10m DEM which showed no change. Effects from flow algorithm are less apparent for 

cumulative frequency distributions, and there is only a slight increase in the percentage of area 

exceeding the contributing area thresholds. 
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Slope-area relationship 

Our plot of averaged slope vs. contributing area for the 1m DEM of Loch Vale shows 

that local slope generally varies inversely with contributing area (Figure 8a), as found in other 

studies. Analysis of breakpoints in this plot demonstrates a more complex relationship, with 

gradient varying systematically over four distinct regions of the plot (Figure 8b). Such regions 

are indicative of different sediment transport process domains. Region I is characterized by a 

D
8
 

   

D
∞

 

   
Figure 7: Cumulative frequency distributions of topographic parameters for Loch Vale DEMs of 1, 

10, and 30m resolution. 
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positive slope at low values of contributing area with an inflection at approximately 1.55m
2
 on 

the x-axis. This positive to negative inflection has been said to represent a transition from convex 

to concave slope profiles, or hillslopes to valleys. Here, this corresponds to a contributing area of 

only 4.7m
2
,
 
or hillslope lengths of 4.7 m, which is more representative of microscale topographic 

features rather than a hillslope length scale. After this inflection, Region II exhibits a moderately 

negative gradient that could be representative of unchanneled valleys. At high contributing areas, 

Region IV is characterized by a break to more negative gradient. This difference in behavior 

between regions II and IV has been attributed in prior studies to the difference between 

unchanneled and channelized domains (Tarboton, 1989; Montgomery and Foufoula-Georgiou, 

1993; Ijjasz-Vasquez and Bras, 1995). A transitional region III with low negative gradient is 

likely a product of our averaging procedure, which contains slope values averaged from both 

channeled and unchanneled pixels. Within this region likely lies some threshold value above 

which there is sufficient contributing area to initiate channelization (Ijjasz-Vasquez and Bras, 

1995). The results of a two-phase regression analysis identify a breakpoint representing a 

potential contributing area threshold to be within region III at ln(α) = 7.3m
2
, translating to a total 

contributing area threshold of 1480.3m
2
 (Figure 8b). Bootstrapping analysis confirmed this to be 

significant at a 0.05 level, with a calculated p-value = 0.0461 (Table 2). Note that this procedure 

is rooted in analysis that suggests a single breakpoint in the data exists that can be interpreted as 

the threshold between unchanneled and channeled valleys (Tarboton, 1989; Montgomery and 

Foufoula-Georgiou, 1993). Thus, the calculated breakpoint of 1480.3m
2
 does not visually 

coincide with the multiple breakpoints seen in the binned data plot, although it does fall within 

the transitional region III suggested by Ijjasz-Vasquez and Bras, [1995] to represent a transition 

from unchanneled to channelized grid cells. Linear regression lines calculated separately for 
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c) 

 

 

Figure 8: Slope-area plot with averaged data points derived from 1m DEM using D∞.  Process 

domain regions separated by vertical dashed lines are included in b) and c). The solid line in b) 

is the breakpoint calculated with two-phase linear regression. For c), the breakpoint is found at 

the intersection of the diagonal with the data in region III. 
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regions II and IV form a quadrilateral with the vertical lines separating the regions (Figure 8c). 

The diagonal through region III would represent the statistical divide between the unchanneled 

and channelized areas following the method of Ijjasz-Vasquez and Bras [1995]. This divide 

corresponds to a contributing area threshold of 468.5m
2
. 

 

3.3 Discussion 

 

DEM resolution and flow partitioning algorithm 

Using the NHD and the Henkle et al. [2010] Tα values as examples in Table 1, we see 

that if a singular contributing area threshold is applied to an entire basin, a coarser DEM will 

generally result in a large increase in the percentage of cells defined as channels. Also, 

increasing TWI values with cell size suggests that using a coarser DEM will result in more area 

being likely to saturate. Hydrologically, this means that when modeling saturation excess 

overland flow using TWI, the water table will intersect the land surface over a larger percentage 

of the basin during a given precipitation event. The same is observed for using D∞ when 

compared with D8. Routing an order of magnitude more water as channelized flow rather than 

diffuse overland or subsurface flow will result in shorter lag-to-peak and higher overall peaks in 

modeled hydrographs. With sufficient discharge data, it may be possible to analyze many 

Table 2: Results of two-phase linear regression on slope-area plot derived from 1m 

DEM using D∞. 

n 
Calculated 

Breakpoint  
SSR 

Significance 

Level 

Calculated 

p-value 

159 7.3m
2
 0.211 0.05 0.0461 
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different DEMs for predictable effects of grid cell size on hydrograph response in a given basin, 

permitting the development a calibration equation to improve performance when finer resolution 

data are unavailable or infeasible.  

Because applying singular topographic thresholds is so common when deriving channel 

networks, it is important to consider the nature of the landscape when determining appropriate 

DEM resolution. In steep rugged landscapes, microscale topographic features may be important 

controls on hydrologic processes. We have shown that increasing precision of landscape 

discretization at Loch Vale improves the ability to represent recognizable spatial patterns and 

also results in shifts of parameter distributions that are not found between the 10 and 30m DEMs. 

Considering this as well as the typical hillslope lengths and scale of hydrologic processes at Loch 

Vale, for the three DEMs examined we suggest that a 1m resolution is most appropriate when 

deriving hydrologically important parameters from topography.   

The visual improvement of D∞ over D8 flow partitioning is marked, with evidence of 

increased cumulative parameter distributions. The eventual influence of flow algorithm on 

positional accuracy of networks will be addressed later in this investigation.  For runoff 

modeling purposes, one could hypothesize that the relative importance of flow partitioning is less 

for steep slopes that tend to have more unidirectional flow, as found by McMaster [2002]. Again, 

further research into the effects of flow partitioning algorithm on hydrograph response may 

identify predictable relationships. Quantification of hydrologic response is not explicitly 

addressed in this study but does represent an area for future investigation.  

 

 

 



  

35 

 

Slope-area relationship 

When examining the relationship between averaged contributing area and local slope, the 

data at Loch Vale exhibit the systematic relationship identified in studies of other landscapes. 

We identified three distinct process domains defined by the slope-area plot, similar to the process 

domains previous researchers have attributed to hillslopes, unchannelized valleys, and 

channelized alluvial domains; however, the hillslope length identified in this analysis is quite 

small and likely not a good indicator of most hillslope lengths in Loch Vale.  Two-phase linear 

regression and visual analysis of the plots give us predicted contributing area thresholds for 

channel initiation of 1480.3 and 468.5m
2
, respectively. These values are also considerably 

smaller than potential thresholds encountered elsewhere, and as a consequence suggest either 

that channel networks are much denser than predicted in prior studies or that the plot-derived 

thresholds do not accurately capture the transition to channelization in Loch Vale. As applied to 

our D∞ cumulative frequency distribution for ln(αs), these thresholds predict that 8.84% or 

3.71% of the basin grid cells will be represented as channelized in the 1m DEM. This is likely to 

have a significant effect on hydrographs when routing flow in a runoff model.  

The smaller predicted contributing area thresholds in our analysis may be the result of 

several factors. First, the topographic signatures identified here might persist in reality but the 

location of channel heads may be more significantly controlled by subsurface processes. These 

subsurface controls would not be represented in the slope-area relationship. Also, prior analyses 

of the slope-area relationship used DEM resolutions generally only as fine as 30m (Tarboton et 

al., 1991; Montgomery and Foufoula-Georgiou, 1993; Ijjasz-Vasquez and Bras, 1995; 

McMaster, 2002; Brardinoni and Hassan, 2006). By using a 1m DEM it is possible the signatures 

we see here are from microtopographic landscape features whose form exists below the scale of 
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processes controlling landscape and channelization structure. Finally, it is possible that the 

glaciated terrain of Loch Vale is fundamentally different than those environments where a slope-

area relationship was found to accurately depict channel initiation thresholds. In glaciated terrain 

of Loch Vale, the distribution of slope-area regions may not be a straightforward translation to 

corollary landforms on a map, as most prior research on identifying thresholds from slope-area 

plots did not consider the role of glacial landforms. Current geomporphic processes are operating 

secondarily to pre-existing glacial macroforms which shifts the traditional structure of 

geomorphic process domains typically seen with increasing contributing area. One study of 

glaciated landscapes in British Columbia found that hillslope and valley landforms have a 

different geomorphological relationship than more “idealized” rolling topography (Brardinoni 

and Hassan, 2006). In fact, a slope-area relationship may only be predictive of channelization 

thresholds in terrain that is naturally smooth, or where terrain features have been forcefully 

smoothed due to coarse DEM representation of the landscape. 

Nonetheless, because the shape of the slope-area relationship is similar to those identified 

in previously validated methods, the thresholds we have identified may be of significance. We 

test these thresholds for Loch Vale and how the predicted values translate to the accuracy of 

derived channel networks in Chapter 5.  
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4. Observed Channel Network Analysis 

 

4.1 Methods 

Locations of the actual channel network at Loch Vale were collected to examine the 

influence of topographic variables on real world channel heads within the basin and test the 

effects of DEM resolution and derivation methods on the accuracy of derived networks. During 

the summer of 2011 (July – October) a field survey was conducted to map the location and 

extent of channels within the lower portion of the Loch Vale watershed. This area stretches from 

the Loch outlet to the top of Andrews Meadow towards the northwest, below Timberline Falls 

along Icy Brook towards the southwest, and the eastern end of The Loch. Because of time and 

safety considerations, our targeted area could only cover a sub-set of the watershed. For our 

study, a channel was considered any fluvially eroded area that has visible indications of current 

or past concentrated flow within steepened banks (Montgomery and Dietrich, 1989). Reaches of 

channels that transitioned into unchannelized but consolidated overland flow were also included 

as points in the survey. This is necessary due to the large amount of exposed bedrock throughout 

Loch Vale. Many continuous flow paths proceed downslope with spatially discontinuous 

sections flowing over bedrock where channelization is hindered. An inability to access the 

highest portions of the catchment and those made up of extremely steep trough walls represents 

likely sampling bias in our field data collection. We recognize this, but saw it as unavoidable 

under the scope of this investigation. As a result, most of the surveyed channel data was confined 

to valley bottoms which potentially neglect colluvial and bedrock channels. This limits an 

analysis of channel heads as applied to a catchment-wide slope-area plot and the subsequent 

relation to geomorphic process domains. Given our applied definition of a channel and the 
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practical implications of this study for various hydrologic applications, our field survey can still 

inform a better understanding of high-elevation headwaters and the specific objectives addressed 

here. 

To obtain a digital map of the reference network, we collected NAD 1983 projected 

UTM coordinates with a Trimble GeoExplorer handheld GPS unit at the furthest downslope 

point along a flow path and approximately every 5 to 10 meters along the length of each feature, 

up to and including the point of channel initiation or overland flow (whichever was observed to 

be furthest upslope). Each GPS location was averaged over 10-50 readings to achieve a sub-

meter horizontal accuracy after differential post-processing correction. GPS points were also 

taken periodically along the main reaches of Icy Brook.  

The rugged forest terrain at Loch Vale presents issues with accessibility and maintaining 

GPS satellite coverage. Collection of continuous reference line features was not feasible, so a 

robust sample of points was obtained instead.  Linear and point features were generated from 

these data to use as reference features for analyzing spatial accuracy of predicted channel 

networks.  

Additional observable characteristics were recorded at each channel head, including 

photographs of channel initiation points, upslope land cover type (rock or soil/vegetated), 

presence or absence of flow, and formation process – convergent overland flow (cof), convergent 

subsurface flow (csf), or landsliding (L). Evidence of convergent overland flow includes 

vegetation directed downslope and/or debris deposited immediately above the channel head, 

while landsliding can be interpreted from obvious signs of mass wasting. Convergent subsurface 

flow is characterized by a lack of either of the previous signs and/or the presence of seepage 

(Jaeger et al., 2007). 
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After digitizing and overlaying GPS points onto our 1m D∞ rasters, we extracted 

variables of tan β, αs, TWI, aspect and elevation for each point. Here we use D∞, as this was 

shown in McMaster [2002] to be superior when calculating upslope contributing areas in a high 

relief mountainous study area. While it is possible to estimate contributing area and slope from 

field observations, in many instances the only practical method is to extract these from a DEM in 

a GIS. Channel formation process and dominant upslope land cover type attributes were also 

added to each channel head.  We divided points into categories according to these attributes and 

calculated the corresponding mean contributing area and TWI for each category. Analysis of 

variance (ANOVA) was used to test for a meaningful difference between categories in mean 

contributing area and TWI, and a Scheffe test was conducted to identify which specific groups 

varied significantly from one another. We also plotted channel heads on our slope-area figures to 

see how they relate to predicted geomorphic process domains. Lastly, we compared contributing 

area and TWI summary statistics as extracted from our 1, 10, and 30m rasters.  

 

4.2 Results 

 

Field survey 

A field survey produced 242 individual GPS points of observed channels within the 

targeted area at Loch Vale. These points were digitized into vector line features representing 41 

individual flow paths. Of the surveyed points, 30 are identified as channel heads (Table 3), many 

of which begin as flow emerges at the base of talus fields. Figures 9 and 10 display maps of 

survey results. A complete list of surveyed points is included in Appendix A. The alphanumeric 

Point ID convention was developed to assign unique identifiers to each reach and GPS point, but 
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it is not based on any stream ordering methodology. The first letter indicates whether the channel 

is a tributary to Icy Brook (A) or Andrew’s Creek (B). Subsequent letters increase for tributaries 

(and their tributaries) as we moved upstream during GPS point collection. Numbers indicate the 

GPS point with 01 being the furthest downslope point (often at a confluence).  

We observed the channel network at Loch Vale to be quite complex, with disjointed 

stream segments and many localized areas of ground saturation. The geologic and glacial 

influences at Loch Vale have resulted in the development of many subsurface cavities through 

loose talus. Eleven channel heads were observed at points of exfiltration from talus or exposed 

bedrock fractures (“rock”), while the remaining nineteen developed in soil and/or vegetated land 

cover. Figure 11 shows pictures of each of these types of channel heads, with a complete 

collection of pictures for all channel heads found in Appendix B. Soil piping was also prevalent, 

and in several instances flow would emerge from the subsurface, proceed as channelized flow 

downslope, and then disappear to the subsurface only to again emerge downslope along a single 

flow path. Of the surveyed points, 82.9% were characterized as channelized flow (CF), 14.5% as 

flow without channelization (F), and 2.6% as channels with no observed flow (C). For observed 

channel heads, we noted 21 to be a product of convergent subsurface flow, 8 of convergent 

overland flow, 1 that was inactive and too overgrown to be characterized, and none with 

unmistakable signs of mass wasting.  
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Table 3: Data for observed channel heads at Loch Vale.  

Point 

ID 

Feature 

Type 

Channel 

Head 

Formation 

Process 

Elevation 

(m) 
Aspect         αs tan β TWI 

Aa01 CF cof 3107.8 S 7312.49 11.01 6.50 

Ab03 CF csf 3110.9 E 9.55 2.12 1.50 

Ac03 CF csf 3109.5 S 2.41 20.10 -2.12 

Ad05 CF csf 3117.8 S 120.96 17.99 1.91 

Ae06 CF cof 3122.4 S 9918.42 20.00 6.21 

Ah09 CF cof 3149.5 S 1.00 8.53 -2.14 

Ak06 CF csf 3154.3 S 1.39 20.26 -2.68 

Aka02 CF csf 3153.3 N 4.41 15.55 -1.26 

Al16 CF csf 3164.7 N 1.69 4.23 -0.92 

Am03 CF csf 3161.5 S 1.57 9.23 -1.77 

Ama06 CF csf 3163.3 N 823.17 11.18 4.30 

An14 CF csf 3164.5 E 6.36 50.00 -2.06 

Ao07 CF csf 3160.0 E 35531.50 5.00 8.87 

Ap17 CF cof 3180.9 E 5.69 4.13 0.32 

Apa08 CF cof 3165.2 N 47.80 15.01 1.16 

Apb08 C cof 3173.2 E 18.26 16.28 0.11 

Apc05 CF csf 3175.9 N 3.27 16.97 -1.65 

Apca03 CF csf 3175.0 N 787.95 14.33 4.01 

Aq16 CF csf 3182.4 W 2613.36 15.81 5.11 

Aqa06 C unknown 3179.8 W 24.48 13.43 0.60 

Ba03 CF csf 3174.2 E 69.56 28.99 0.88 

Bb05 CF csf 3205.2 S 93049.30 8.55 9.29 

Bc08 CF cof 3226.5 S 909.41 51.54 2.87 

Bca01 CF csf 3203.6 S 4.88 22.00 -1.51 

Bd03 CF cof 3245.8 S 24.39 56.08 -0.83 

Be08 CF csf 3201.1 E 4633.32 0.00 22.95 

Bf02 CF csf 3201.4 N 64.47 0.00 18.67 

Bh06 CF csf 3219.8 E 51.21 40.01 0.25 

Bi07 CF csf 3256.1 N 106.21 19.09 1.72 

Bia01 CF csf 3249.1 E 1.00 29.08 -3.37 
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 Figure 9: Field survey results of the Loch Vale stream network. Derived channels are from the 1m DEM with D8 and an applied Tα of 

40,485m
2
. Polygon features are hand-drawn approximations based on field observation. 

Legend: 

 
Survey area 

 
Channel head 

Strahler Order 

(surveyed channels): 

 
Talus  Derived Tributary  1 

 Wetland  Derived main stems  2 
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a) 

 

b) 

 

Figure 10: Expanded view of field survey results for a densely channelized portion of 

survey area, with a) surveyed channels only; and b) surveyed channels overlain on to 

sample derived channel network. A legend with symbol explanations is found in Figure 9.  
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a) Point ID: Ad05 b) Point ID: Ba03 

 

 

c) Point ID: Ao07 d) Point ID: Aqa96 

Figure 11: Photographs showing examples of observed channel initiation, a) at the point of 

exfiltration from talus, b) at fractures in exposed bedrock, c) over soil and vegetated land cover, and 

d) at an old overgrown channel head with no active flow (channel banks denoted by red dotted line; 

flow begins ~2m downslope). 
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Relationship to surface variables 

 Here we investigate which, if any, observable environmental and topographic variables 

relate to the location of surveyed channel heads at Loch Vale. We first investigate the 

relationship between channel heads and previously discussed geomorphic process domains by 

plotting channel heads with our slope-area plot (Figure 12). Results show points appearing in 

every process domain region without any apparent trends, relationship to regions, or obvious 

contributing area threshold. We then categorize channel head points according to formation 

process, aspect, and upslope land cover, but again see a lack of natural groupings according to 

these surface variables (Figure 13). Quantifying extent of land cover types upslope of our 

channel heads may provide additional information on factors influencing observed contributing 

areas. We attempted to delineate upslope contributing areas above each channel head point with 

our 1m raster. However, the divergent nature of the D∞ flow partitioning complicates this 

procedure and was not compatible with this process in either ArcGIS or RiverTools, thus 

requiring the use of the D8 flow direction raster to delineate upslope areas. As a consequence, 

Figure 12: Catchment slope-area plot including points for observed 

channel heads (squares). 
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a) 

 

b) 

 

c) 

 
Figure 13: Slope-area plot with observed channel head points categorized by a) formation 

process, b) aspect, and c) observed upslope land cover.  
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our results produced individual contributing areas of only one pixel for many channel heads, 

with an insufficient number large enough to be useful in digital interpretation of land cover. 

Next, we explored the statistical nature of our extracted variables for evidence of 

relationships with observed channel head locations. Table 4 displays mean ln(αs) and TWI 

calculated for our sample of 30 channel heads according to environmental variables of elevation, 

aspect, slope, formation process, and upslope land cover type. Figure 14 summarizes the 

distributions of ln(αs) and TWI according to these variables with box and whisker plots. There 

again is no readily apparent variation in mean values of either ln(αs) or TWI according to these 

variables. Here we see wide spread in TWI values relative to the means, with outliers at 22.95 

and 18.67. 

Table 4: Mean ln(αs) and TWI for surveyed channel heads categorized by environmental 

variables. Values were extracted from the 1m D∞ raster.  

Variable Mean ln(αs)  Mean TWI 

Elevation 

(m) 

High (> 3208) 3.72 0.13 

Mid (3158-3208) 4.55 4.02 

Low (< 3158) 3.48 0.99 

Aspect 

North 3.66 3.25 

East 3.98 3.27 

South 4.33 1.43 

West 5.53 2.85 

Slope  

(%) 

Steep (> 56.9) 3.95 0.06 

Moderate (18.7 – 56.9) 2.99 -0.13 

Shallow (< 18.7) 4.58 4.08 

Formation 

process 

cof 4.58 1.77 

csf 4.00 2.96 

Upslope 

land cover 

Rock 4.54 3.30 

Soil/veg 3.89 2.14 
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Figure 14: Box and whisker plots of ln(αs) and TWI at observed channel heads, categorized by 

environmental variables.  
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With no readily apparent relationships thus far, single-factor ANOVA was used to test for 

statistically significant difference in our group means. This test is relatively robust and useful for 

comparing means of two or more groups with unequal sample sizes, but relies on the 

assumptions of normality, homogeneity of variance and independence among all groups (Bewick 

et al., 2004). We applied a natural logarithmic transformation on all data prior to analysis, which 

is a basic method for improving adherence to these assumptions and the reliability of end results 

(Curtiss, 1943; Keene, 1995). Using the single-factor ANOVA tool in Microsoft Excel’s data 

analysis package, if our calculated F-value (F) exceeds a reference critical F-value (Fcrit) chosen 

based on number of groups (u), sample size within each group (n) and significance level p = 

0.05, there is a significant difference between the means. Given a difference, in order to identify 

which specific groups vary between each other the Scheffe test is employed where if a calculated 

test statistic (TS) for two comparison groups exceeds a critical value (CV), their means are shown 

to be significantly different. Here,   

  (6) 

 

where  = between groups degrees of freedom, given by 

  (7) 

 

TS is then calculated by  

 
 

(8) 

 

where   = within group mean squares (“variance”),  = mean for variable of interest of first 

group,   = mean for variable of interest of second group,  = sample size of first group, and  

= sample size of second group. Within group variance is calculated by 
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(9) 

 

where dfwg is within groups degrees of freedom, given by 

 

 

(10) 

 

We repeated this analysis for all pairs of means for each variable. Results of ANOVA are 

reported in Table 5, which show no variable with a calculated  larger than . Thus, with 

95% confidence we found no statistically significant differences between group means as a result 

of any surface variable tested. Therefore, a Scheffe test is not needed here. 

Table 5: ANOVA results for ln(αs) and TWI at observed channel heads according to various 

surface variables as extracted from the 1m D∞ raster. Fcrit values are based on significance level of 

p = 0.05.  Log-transformed values of αs are used to address the assumptions of equal sample 

variance required for ANOVA. 

Variable 
Source of 

Variation 

ln(αs) TWI 

df F Fcrit p-value df F Fcrit p-value 

Elevation 

Between groups 2 0.308 3.35 0.737 2 1.20 3.10 0.316 

Within groups 27    27    

Total 29    29    

Aspect 

Between groups 3 0.174 2.98 0.913 3 0.191 2.98 0.901 

Within groups 26    26    

Total 29    29    

Slope 

Between groups 2 0.578 3.35 0.568 2 1.74 3.35 0.195 

Within groups 27    27    

Total 29    29    

Formation 

process 

Between groups 1 0.165 4.21 0.688 1 0.212 4.21 0.649 

Within groups 27    27    

Total 28    28    

Upslope 

land cover 

type 

Between groups 1 0.259 4.20 0.615 1 0.253 4.20 0.619 

Within groups 28    28    

Total 29    29    
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Relationship to DEM resolution  

The second objective for this portion of the analysis is to examine how the choice of 

DEM resolution used to extract our attributes for surveyed channel heads influences the values 

themselves. Table 6 shows summary statistics for ln(αs) and TWI as extracted from our 1, 10, and 

30m rasters for surveyed channel heads. Results show an increase in ln(αs) with each subsequent 

increase in grid cell size. Log-transformed values are presented here for consistency and for use 

in ANOVA. Un-transformed mean αs values are 5205.0, 2635.8, and 5713.1m for the 1, 10, and 

30m rasters, respectively. Maximum ln(αs) is considerably higher for the 1 and 30m raster as 

compared to the 10m raster, while minimum is simply the ln(αs) of 1 pixel. Mean TWI values 

increase as cell size increases, and maximum TWI is also higher for the 1 and 30m. Box and 

whisker plots for ln(αs) and TWI are presented in Figure 15. 

 

 

 

 

 

Table 6: Summary statistics of D∞ ln(αs) and TWI for surveyed channel 

heads at Loch Vale. 

 ln(αs) (m) TWI 

 Mean Max. Min. Mean Max. Min. 

1m 4.13 11.44 0 2.56 22.95 -3.37 

10m 6.57 9.70 2.30 4.04 8.90 -1.50 

30m 6.61 11.53 3.40 5.13 22.36 -0.69 
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ANOVA shows that our calculated F exceeds Fcrit indicating a significant difference 

between means for ln(αs) as a result of varying grid cell size (Table 7). No difference is found for 

TWI. Given our results for ln(αs), a Scheffe test with the same significance level of p = 0.05 

shows that a difference exists specifically between the 1 and 10m rasters as well as the 1 and 

30m rasters, but not the 10 and 30m.  

Table 7: ANOVA results of ln(αs) and TWI at observed channel heads for different DEM 

resolutions. Fcrit values are based on significance level of p = 0.05. 

 

 ln(αs) TWI 

ANOVA df F Fcrit p-value df F Fcrit p-value 

Between 

groups 
2 9.62 3.10 0.0002 2 2.15 3.10 0.122 

Within 

groups 
87    87    

Total 89    89    

Scheffe Test 1m – 10m 1m – 30m 10m – 30m 1m – 10m 1m – 30m 10m – 30m 

  6.20 6.20 6.20 6.20 6.20 6.20 

  14.19 14.67 0.0040 1.42 4.27 0.76 

 

  

Figure 15: Box and whisker plots of ln(αs) and TWI at observed channel heads as extracted from 1, 

10, and 30m rasters. 
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4.3 Discussion  

 

Relationship to surface variables 

A fundamental assumption in DEM-based channel network derivation is that channel 

initiation can be predicted by surface topography.  Results of our field survey for the actual 

channel network at Loch Vale suggest otherwise. No predictable relationship was observed 

between channel head locations and geomorphic process domains extracted from our DEMs. Nor 

did we find any statistically significant difference in mean contributing area and TWI thresholds 

for observed channel heads as a result of elevation, aspect, or slope. Results were similar when 

comparing variation in formation process and upslope land cover type, with slope-area analysis 

and ANOVA showing no differences in channel head locations according to these variables. Our 

findings for Loch Vale are consistent with those of similarly complex terrain, with Jaeger et al. 

[2007] and Orlandini et al. [2011] both concluding that surface threshold parameters were poorly 

correlated with channel head locations as a result of subsurface controls. However, surface 

parameters have been shown to be dominant influences in channel network development in some 

environments similar to Loch Vale. Henkle et al. [2011] did find Front Range channel heads to 

be mainly associated with region III of their slope-area analysis and that surface variables of 

local slope, contributing area, basin length, annual precipitation and elevation accounted for just 

over half the variation in channel head location, with the other half attributed to unmeasured 

subsurface controls. In contrast, evidence for Loch Vale suggests that important influences on 

channel initiation are not captured by surface topography or other readily observable 

characteristics.  Additionally, we observed a complexity and irregularity in surface water features 

in the field that one would not expect given the assumption of topographic and surface controls 
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on channel network development. It is therefore likely that subsurface processes including 

bedrock topography, piping through talus and porous soil, and fractured bedrock have a 

significant influence on stream channel formation at Loch Vale.  

 

Relationship to DEM resolution 

Accepting the conclusion that observed channel formation is a primarily function of 

subsurface processes, we nevertheless examine further the nature of derived contributing area 

and TWI, as it is common practice to characterize basins by a single topographic threshold. Even 

when field data are available, using a single averaged value extracted from rasters to surveyed 

points can produce wide ranging results dependent on the resolution of the topographic data. We 

previously showed an increase in contributing area with grid cell size, and thus it would be 

expected this results in higher contributing areas extracted to observed channel heads with 

coarser resolution DEMs. By doing this with our 1, 10, and 30m rasters, we show that mean 

ln(αs) and TWI increase with grid cell size. ANOVA confirms a significant difference in mean 

ln(αs) associated with grid cell size at Loch Vale, specifically between our  1 and 10m as well as 

our 1 and 30m rasters. In a coarse raster, large grid cells drain more upslope area, so a single 

channel head point falling within this cell can thereby overestimate flow accumulation applied to 

that specific channel. This risk is balanced by one associated with fine resolution data and the 

error inherent in lower accuracy surveying methods. When using fine resolution DEMs to extract 

topographic variables to surveyed points, GPS positional errors of only a few meters could result 

in channel head points being placed over grid cell locations on a raster that do not match their 

real world location. This can lead to large differences in flow accumulation values between 

adjacent cells and inaccuracies in thresholds associated with a single channel head, especially 
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when based on single-direction flow partitioning or in very rugged landscapes. The same 

concerns may arise due to the positional errors of the original elevation data. The likelihood of 

this effecting our results is minimal, as the horizontal errors for our original 1m DEM is 

estimated to be less than or equal to 1.04 cm. It is important to consider both the resolution of 

topographic data and errors associated with field data collection when attempting to characterize 

channel formation by threshold contributing area, as DEM resolution can considerably influence 

the nature of any derivative channel networks. Given our sub-meter GPS accuracy as well as the 

short hillslope lengths and fine scale of hydrologic processes at Loch Vale, we will apply mean 

αs and TWI values extracted from our 1m D∞ raster as “observed” values in our subsequent 

network derivation analysis. 
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5. Channel Network Derivation  

 

5.1 Methods 

The third phase of our study uses derivative rasters from previous steps with three 

approaches for identifying a channel network in a GIS. First, we analyze NHD flow lines as a 

test network. Additional test networks are derived in ArcMap by applying both flow 

accumulation and TWI channel initiation thresholds (Table 8) to rasters of each resolution using 

both D8 and D∞ flow partitioning algorithms. To accomplish this, all raster cells with values 

below the given threshold were set to null in the raster calculator tool, with the remaining being 

considered channelized and assigned a value of 1. From a gridded representation of channelized 

versus unchannelized cells, we can convert our channel rasters to line and point features for 

Table 8: Test flow accumulation and TWI thresholds for channel network derivation. 

Symbol Threshold Value Source 

Tα1 468m
2
 

Predicted contributing area threshold identified through analysis 

of slope-area relationship for the 1m D∞ raster (Figure 8c), per 

method discussed Ijjasz-Vasquez and Bras [1995]  

Tα2 1,480m
2
 

Predicted contributing area threshold identified through two-

phase linear regression on  slope-area relationship for the 1m D∞ 

raster (Figure 8b) 

Tα3 5,205m
2
 

Mean flow accumulation for the field surveyed channel heads in 

Loch Vale, as extracted from the 1m D∞ raster 

Tα4 40,485m
2
 

Mean contributing area extracted from 1m D8 raster to channel 

initiation points on the NHD flow line product 

Tα5 129,372m
2
 

Mean contributing area extracted from a 10m D8 flow 

accumulation raster in Henkle et al. [2010] for Front Range 

locations within the same elevation range as Loch Vale 

Ttwi1 2.56 
Mean TWI for the field surveyed channel heads in Loch Vale, as 

extracted from the 1m D∞ raster 

Ttwi2 4.04 
Mean TWI for the field surveyed channel heads in Loch Vale, as 

extracted from the 10m D∞ raster 

Ttwi3 5.18 
Mean TWI for the field surveyed channel heads in Loch Vale, as 

extracted from the 30m D∞ raster 
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spatial analysis. To ensure a valid comparison to our surveyed network, all test networks were 

clipped to the extent of the surveyed area and portions overlapping areas of known lakes were 

removed.  

These derivation methods produced a set of 48 test channel networks, plus the existing 

NHD network, that can be compared for accuracy to the observed data. We employ several tools 

to characterize accuracy, the first being simple visual inspection for a qualitative assessment 

based on the surveyed network and our general field knowledge of Loch Vale. Given the 

limitations in modeling channel networks based solely on topography, a simple visual 

interpretation of our resulting test networks is a useful evaluation tool. This process contains 

inherent subjectivity, but with the aid of our surveyed map we can interpret results visually using 

qualitative criteria. The most obvious is general number and density of channels. At first glance 

it is easy to assess whether or not a derived network over or under-predicts channel density. 

Related to this is the appearance of “feathering” which manifests as an overabundance of parallel 

channels branching off from reaches onto planar hillslopes. Indeed, one proposed criteria for 

identifying a contributing area threshold is that which is just large enough to avoid significant 

feathering (Montgomery and Foufoula-Georgiou, 1993). In contrast, it is important to consider 

how oversimplification of a network neglects lower order channels. A second important criterion 

is how well the headward extent of channelization matches that of our known channels. Finally, 

we apply a general assessment of the network’s ability to accurately place real channels. An 

additional criterion might be the representation of disjointedness and flow divergence; however 

these features are often irregular and hard to predict based on current resolutions of topographic 

data. When assessing validity of a derived network through visual interpretation, one should 

strike a reasonable balance between channel density, headward extent and general positional 
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accuracy of channels.  Based on this we evaluate the quality of our derived networks relative to 

each other and categorize each as either “above average”, “average”, or “below average”. An 

above average rating is assigned to networks with aforementioned characteristics similar to the 

observed channel network, a below average rating to those networks having very few of these 

characteristics in common with the observed network, and an average rating to networks that fall 

somewhere between above and below average. 

Drainage density is also calculated quantitatively for each network. Drainage density is a 

common scalable mathematical characterization of a channel network, given by:    

 
 

(11) 

 

where Dd is drainage density in length
-1

, LT is total channel length within the basin and A is basin 

area. For this analysis we restrict basin area to include only the extent of the field survey, which 

allows for valid comparison between derived and observed networks. Total channel length is 

computed by first converting our stream channel raster to polylines connecting the cell centers of 

each channelized pixel. Total channel length is then simply the sum of each individual channel 

segment.  

Next, we calculate the horizontal Euclidean distance of surveyed points to the nearest 

channelized point in each test network to produce a distribution of positional errors relative to 

our reference channel points. To assess performance we calculate root mean squared error 

(RMSE) for each test network. RMSE is used instead of mean absolute error because it increases 

the contribution of larger errors to the metric by squaring each error, and when dealing with 

small headwater channels in heavily dissected terrain these larger errors greatly reduce the utility 

of a channel derivation method. 
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A method for assessing positional accuracy of test features against a more accurate 

reference feature is outlined in Goodchild and Hunter [1997]. This involves defining a buffer 

size around the reference line that contains a given percentage (e.g., 95%) of the total length of 

the test feature. In our study the sampling frequency was not dense enough to produce a 

continuous representation of a linear reference network, so we alter the analysis by calculating 

the horizontal Euclidean distance from our surveyed points to the nearest derived channelized 

point for each network. Then, starting at 0.0m we increase our buffer size in 0.5m increments to 

determine the size needed such that 95% of surveyed points lie within this distance from the 

derived channel network (Figure 16). This analysis is only suitable for testing positional 

accuracy of predicted reaches that actually exist in our surveyed network (i.e., true positives), so 

we selected a sample of six test reaches, consisting of 70 points, which were both predicted by a 

test networks using Tα3 and Ttwi2, and were confirmed to exist by survey data. These include the 

surveyed reaches Be, Ah, Ap, Aq, upper A (Icy Brook; points 20-10), and lower A (points 09-

01). All else equal, setting different topographic thresholds for a given DEM resolution and flow 

 
Figure 16: Schematic representation of feature accuracy assessment with buffer size 

such that 95% of survey points (red points) are less than or equal to this distance 

from derived network channels (blue lines). 
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direction algorithm results in differences of headward extent of channelization but not in the 

locations of channels.  Thus, here we are not assessing performance of our thresholds but rather 

we address how DEM resolution and flow partitioning influence the positional accuracy of 

successfully predicted channel reaches.   

Finally, the ability of each method and DEM to accurately represent channel initiation 

points is examined using two performance indices described in Orlandini, et al. [2011]. By 

defining a radial buffer around each test channel initiation point, performance is quantified by 

summing the number of correctly predicted channel heads (true positives, or TP), and dividing 

by the sum of TP and the number of channel heads predicted that do not actually exist (false 

positives, or FP). Given by Equation 12, this index (r) characterizes the reliability of each result, 

that is, how well it avoids generating false positives. Reliability scores range from 0 to 1, with 

values closer to 1 performing better. 

 

 
 

(12) 

                

Each method is also examined for its sensitivity (s) by Equation 13, which characterizes its 

ability to avoid missing channel heads. 

                 

 
 

(13) 

 

where FN is false negatives, or channel heads that exist in the field but are not predicted. Again, 

values range from 0 to 1, with higher values indicating better performance. Both scores are used 

in conjunction to assess performance of test networks, as good derivation methods should avoid 

both predicting non-existent channel heads and missing real ones. In this analysis we defined our 
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radial buffer to be 30m, equal to the edge length of our largest grid cell size. Derived channel 

heads were identified manually in GIS from channelized points overlain onto a hillshade raster. 

Channel head points were selected at the farthest upslope points of channelization within the 

surveyed area.  In a few cases, following flow lines upslope led to clustered groups of 

channelized pixels; for these cases, we used our best estimate of the precise location of the 

furthest upslope channel initiation.  This method contains some subjectivity in identifying 

channel heads, however is used because an accurate flow network cannot be resolved for the D∞ 

cell data format with either of our GIS platforms. Once our channel head points were identified, 

we calculated the nearest horizontal Euclidean distance between our derived channel heads and 

the surveyed channel heads. Distances less than or equal to the radial buffer are TP while those 

greater than the radial buffer are FP. Lastly, distances from our surveyed heads to the nearest 

derived channel heads were extracted, and those exceeding our radial buffer are FN. 

 

5.2 Results 

 

Visual interpretation 

Depending on the channel derivation method used, we see large differences in resulting 

channel networks. Table 9 presents the results of a visual assessment for our derived networks 

based on the previously defined evaluation criteria. Figure 17 shows several examples of our 

results, with a complete collection of test networks presented in Appendix C. The lowest two 

flow accumulation thresholds produced channel networks with densities far greater than 

observed, and were rated as below average. Tα1 is smaller than the area of a single 30m grid cell, 

resulting in the entire watershed being defined as channelized for the 30m resolution DEMs. Tα3 
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offers a slight improvement, with D8 at 1 and 10m resolution and D∞ at 1m resolution rated as 

average; however the number of channels is still higher than observed, and channels mostly 

initiate far up what are actually walls of bedrock cliffs. Additionally, we see some degree of 

unnatural parallel feathering. The Tα3 D8 30m and D∞ 10 and 30m networks are highly over-

channelized and rated as below average. Tα4 provides perhaps the best representation of the 

network, capturing many lower order channels and reasonable headward extents. The total 

number of channels is also on par with the known density.  Here the 1 and 10m networks for 

both flow algorithms were rated as above average. The 30m networks for Tα4 are average with 

some false positives and higher headward extents. Finally, for Tα5 there is a drop-off in quality 

due to underrepresentation of channels, but it still produces a reasonable representation of the 

network with some lower order reaches accurately displayed, so we rated all Tα5 networks as 

average. We saw a similar trend in the quality of our Ttwi derived networks as threshold values 

increase. The smallest TWI threshold greatly over-predicts channelization and is rated below 

average, with the exception of the D8 10m raster which has slightly lower density but still some 

feathering. Both Ttwi2 1m networks provide over-channelized results; however the Ttwi2 D8 10m 

Table 9: Qualitative network ratings based on visual assessment as compared to the known 

channel network at Loch Vale. A “+” symbolizes above average networks, “—” symbolizes 

average networks, and those marked with “X” were below average. 

Flow 

algorithm 
DEM Tα1 Tα2 Tα3 Tα4 Tα5 Ttwi1 Ttwi2 Ttwi3 NHD 

D8 

1m X X — + — X X X 

X 

10m X X — + — — + + 

30m X X X — — X — — 

D∞ 

1m X X — + — X X X 

10m X X X + — X — — 

30m X X X — — X — — 
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is an above average representation of the network. Some headward extents are unnaturally high 

but are generally agreeable to the observed network. The remaining three Ttwi2 networks are 

acceptable but slightly over-channelized, most notably an artificial branching from Andrew’s 

Creek in the center of the D∞ images. This same unnatural feature appears in the Ttwi3 D∞ 10m 

image, which we assign an average rating along with both Ttwi3 30m networks. Here the 1m 

rasters are again far too dense and rated as below average. The Ttwi3 D8 10m raster gives us an 

above average representation of the network, on par with the Ttwi2, and likely provides the best 

representation after those in Tα4. The NHD network represents the two main drainages 

satisfactorily but greatly under-predicts channelization, missing all but two lower order channels.   

We also see examples of flow divergence in D∞ networks that are in agreement with the 

known network (Figure 18a); however there are also several instances where these features are 

missed (Figure 18b).  This inconstancy limits the D∞’s advantages in steep terrain such as Loch 

Vale, where physiographic features that lead to divergence are almost impossible to capture with 

even 1m resolution. 
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Tα4 D∞ 1m (above average) Ttwi3 D8 10m (above average) 

  

Tα3 D8 10m (average) Ttwi3 D∞ 10m (average) 

  

Tα3 D∞ 30m (below average) NHD (below average) 

  

Figure 17: Examples of derived networks showing above average, average, and below average 

visual representations. 

 

0.5 km 
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Drainage density 

When dividing the total surveyed channel length of 4,277m by the surveyed area of 

537,800m
2
 we get an observed drainage density of 0.0080m

-1
. Figure 19 shows calculated 

drainage density for our derived networks. Drainage densities will be inversely proportional to 

threshold values, as is clearly evident for all of the derived networks. As a measure of total 

channel length, all Tα4 and Tα5 networks; the Ttwi2 D8 10 and 30m; Ttwi2 D∞ 30m; Ttwi3 D8 10 

and 30m; and Ttwi3 D∞ 10 and 30m networks provide reasonable approximations relative to the 

surveyed network. The NHD drainage density under represents channel length with a value of 

0.0047, and would be even lower were it not for a long reach of surface channel in the northern 

portion of the survey area that was not observed in the field. This highlights the limitations of 

drainage density as a performance measure, since it does not take into account positional 

accuracy or successful representation of any particular channel. 

 

 

 

a) Ttwi1 D∞ 1m  b) Tα3 D∞ 1m  

  

Figure 18: Examples of D∞ (a) capturing and (b) missing observed channel divergence.  

N 

↑ 

 

35 m 
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Positional error 

Table 10 displays RMSE between surveyed channel points and the nearest derived 

channel points. Error increases with grid cell size due to the inherent increase in uncertainty with 

a loss of resolution. We also see a positive relationship with RMSE and threshold value. In a 

majority of derived networks, for a given cell size and threshold value there is lower positional 

  

  

Figure 19: Drainage densities for derived and field-surveyed channel networks, as calculated with a 

survey area of 537,800m
2
. 
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error for D∞ when compared to D8, with the exceptions of Tα1 30m, Tα4 30m, Tα5 10 and 30m, 

Ttwi2 10m and Ttwi3 1m. TWI RMSE tends to be lower when compared to flow accumulation 

thresholds producing relatively similar drainage densities.  

 

 

 

 

 

 

 

Table 11: Results of the feature accuracy assessment showing the buffer 

widths (m) needed for each test network such that 95% of survey points 

are less than or equal to this distance from derived network channels. 

DEM 
Tα3 Ttwi2 

NHD 
D8 D∞ D8 D∞ 

1m 10.5 8.5 5.0 2.5 

n/a 10m 8.0 7.0 8.0 7.0 

30m 26.0 20.0 27.5 22.0 

 

Table 10: RMSE in meters between surveyed channelized points and derived networks. 

Flow 

algorithm 
DEM Tα1 Tα2 Tα3 Tα4 Tα5 Ttwi1 Ttwi2 Ttwi3 

D8 

1m 3.7 8.3 13.8 31.7 62.2 2.3 5.4 7.2 

10m 5.4 8.3 11.7 36.0 58.5 9.1 12.9 26.8 

30m 12.2 13.7 17.5 30.8 62.5 22.1 30.7 44.2 

D∞ 

1m 3.2 6.3 9.7 30.5 62.0 1.7 3.4 7.2 

10m 4.7 6.7 9.6 32.0 59.5 7.5 15.4 24.5 

30m 12.2 13.1 15.0 33.8 70.2 19.8 26.5 31.9 
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Feature accuracy assessment 

Results for the feature accuracy assessment are presented in Table 11. For the 1m 

networks, Ttwi2 D∞ has the shortest buffer width, which is interpreted as having 95% confidence 

that the positional error between our survey points and derived channels is ±2.5m. Ttwi2 performs 

the better for all 1m networks, with D∞ also outperforming D8 for all networks. In contrast, Tα3 

has lower error than Ttwi2 with a 30m resolution. At a 10m resolution, Tα3 and Ttwi2 perform 

equally well. The NHD network does not contain enough lower order reaches to be included in 

this analysis. 

 

Channel head prediction index 

 None of the derived networks perform very well in placement of channel heads based on 

channel head prediction index scores, with no values at or near 1 for reliability and only two for 

sensitivity (Figure 20). The Tα5 1 and 10m networks as well as the NHD network produced 

scores of 0.00 for both indices. Results do however allow us to examine the relative reliability 

and sensitivity of each network. We omitted channel head prediction scores for the extremely 

over-channelized networks, which displayed hundreds of channel head points and would have 

produced unreasonable index scores. Ttwi2 D8 30m is the most reliable predictor of channel 

heads, with Ttwi3 D8 10m; Tα5 D∞ 30m and D8 10m; Tα4 D8 10 and 30m and Tα4 D∞ 30m also 

scoring relatively high. That is, these networks do the best at not producing channel heads that do 

not actually exist. Networks that do the poorest job of this include the aforementioned networks 

scoring zero as well as Tα1 D8 10m and D∞ 10m; Tα2 D∞ 10m,Tα3 D8 30m, and Ttwi1 D∞ 30m. 

The network that was the most sensitive, i.e. did not miss existing channel heads, is Ttwi3 D8 1m. 

Also scoring well are Tα1 D8 1m and D∞ 1m; Tα2 D∞ 1m, and Ttwi2 D∞ 10m. In addition to 
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those scoring 0.00, Tα1 D∞ 10m, Tα3 D8 30m, Tα5 D8 10m and D∞ 10 and 30m, and Ttwi3 D8 

30m performed very poorly. It is interesting to note that several of the more reliable networks are 

relatively insensitive, while more sensitive networks are relatively unreliable. This may be 

because reliable networks are less dense and therefore will perform poorly for sensitivity, and 

vice versa.  

  

 

  

  

Figure 20: Reliability and sensitivity channel head prediction index scores for derived networks. 

Although not shown here, the NHD network produced a score of 0.00 for both reliability and 

sensitivity. Networks not scored due to an unreasonably high number of channel heads are Tα1 D8 

30m, Tα1 D∞ 30m, Tα2 D8 30m, Tα2 D∞ 30m, Ttwi1 D8 1m, Ttwi1 D∞ 1m, Ttwi2 D8 1m, Ttwi2 D∞ 1m, 

and Ttwi3 D∞ 1m. 
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5.3 Discussion 

 

Visual inspection 

Performance metrics and statistical characterizations can provide rigorous and 

transferable evaluation criteria for hydrologists, but when studying an area there is often no 

substitute for on-the-ground knowledge of the actual catchment. Applying this qualitative 

understanding to our derived networks yields perhaps the most valuable results when evaluating 

network performance. Utilizing our basic criteria for visual inspection, we determined that the 

most useful channel networks are derived from both D8 and D∞ algorithms using Tα4 at 1 and 

10m resolutions; as well as Ttwi2 D8 10m and Ttwi3 D8 10m. These networks strike the best 

balance of low order channel representation and general number of channels with reasonable 

headward extent of channelization. Lower thresholds for both flow accumulation and TWI 

typically resulted in over channelized networks and initiation points too far up hillslopes. In 

some places these channels began halfway up talus fields or what are essentially bedrock cliffs. 

This reinforces our notion that geological information proves very important to the channel 

network at Loch Vale. The NHD network was found to be inconsistent with what was observed 

in the field and represented only higher order channels that could likely be observed from aerial 

imagery while missing almost all of our surveyed channels. 

When considering DEM resolution, a 10m cell size provides the greatest number of 

networks rated as either “average” or “above average”.  Although it is possible to derive useful 

networks given an appropriate threshold at a 1m resolution, it generally fared poorly with the 

thresholds we tested, with only six networks rated as “average” or “above average”. Given the 

additional computing power necessary to work with 1m resolution data, using 10m flow 
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accumulation and TWI rasters can provide acceptable channel network results.  Performance 

according to flow direction algorithm did not show any obvious advantage for D∞ versus D8. 

This observation was in agreement with McMaster [2002] who saw no benefits for network 

accuracy in steep terrain as a result of using D∞ versus D8. Both flow accumulation and TWI are 

able to produce acceptable channel networks given appropriate thresholds and DEM resolution. 

TWI is able to represent many localized areas of ground saturation known to be pervasive in the 

field during the snowmelt runoff season. This also allows TWI to capture saturation in larger 

wetlands, which may provide additional utility in wetland hydrology applications. However, the 

degree of complexity and irregularity makes quantifying the accuracy of this characteristic 

extremely difficult. The same is true for D∞ and its ability to represent channel discontinuity and 

divergence. Further investigation into benefits of TWI and D∞ for channel network derivation in 

complex glaciated terrain is warranted.   

Finally, we see that the flow accumulation and TWI thresholds we derived from DEM 

slope-area relationships provide the worst channel network representation overall because they 

over-predict channelization. This supports the earlier finding that locations of observed channel 

initiation were unrelated to these topographic variables.  

 

Drainage density 

Channel initiation thresholds that are dependent on both contributing area and slope 

produce networks with higher drainage density in steeper landscapes, which is generally seen in 

nature for a given climate and lithology (Montgomery and Foufoula-Georgiou, 1993; Kirby et 

al., 2002). Thus, we might expect that Loch Vale has a relatively high drainage density due to the 

steep nature of its topography. Typical values of drainage density range from 2 km
-1

 to 100km
-1
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(Dingman, 2002). Converting from meters to kilometers, our surveyed drainage density is 8km
-1

. 

This is within the expected range albeit on the very low end. We found that most of our drainage 

densities derived using DEM-based contributing area thresholds were higher than what was 

observed, while the NHD network is almost half of observed. Our most accurate results are for 

drainage density are Tα4, Tα5, Ttwi2 and Ttwi3.  

Drainage density has some value as an initial metric for judging the quality of derived 

networks, but it only allows us to compare the total amount of channel length and not the 

spatially explicit accuracy. Less sophisticated hydrologic models may only require total channel 

length as an input parameter, but drainage density alone is less useful for many hydrologic 

applications. Despite showing that TWI can do well to capture the total length of channelization, 

its spatial discontinuity will raise additional considerations when attempting to model flow 

towards a single outlet. 

 

Positional error 

We find RMSE relative to the surveyed network to increase with threshold value. This is 

due to the fact that lower thresholds produce denser networks and inherently shorter distances 

from our surveyed points, despite the possibility it is not modeling the same channel. With a few 

exceptions, derived networks generally have a lower RMSE for D∞ when compared to D8. The 

driving factors behind this are not readily apparent, as the networks where this is not the case 

include a range of thresholds and cell sizes with similar drainage densities.  

Like drainage density, RMSE results should be used with caution, as they are limited to 

only the positional accuracy of derived networks near our surveyed network, so erroneous 

upslope channelization or channels in areas with no surveyed flow lines will not be factored into 
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this performance measure. Also, simply having a denser channel network and finer resolution 

DEM leads to lower RMSE. Both of these limitations represent an issue common when 

attempting to compare continuous features with discrete points because of the inability to 

explicitly match a point from one as a point from the other. The linear feature accuracy test 

presented in Goodchild and Hunter [1997] attempted to address this, yet still relies on continuous 

representation for both the test and reference features and involves limiting analysis extent to 

features that exist in both modeled representations and the real world.  

 

Feature accuracy assessment 

To address the limitations of interpreting positional error, we apply a modified version of 

the linear feature accuracy test from Goodchild and Hunter [1997]. For a given resolution and 

threshold type, results show that D∞ outperforms D8. This advantage may not outweigh the 

limited compatibility of the D∞ algorithm with turn-key GIS stream derivation platforms 

commonly available. At fine resolution TWI has smaller 95% confidence buffer size, but at 

coarse resolution flow accumulation offers narrower confidence bands.  

 

Channel head prediction index 

Consistent with conclusions in our observed channel network analysis, all of our 

networks perform poorly when predicting channel initiation. Simply deriving less dense 

networks can reduce appearance of channel heads that do not exist (more reliable); however 

calibration in this manner will sacrifice the ability to correctly depict existing channel heads 

(sensitivity). Overall, the best networks for predicting channel initiation should simultaneously 
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be reliable and sensitive. A simple interpretation might be the highest average index score, but 

users must be aware of the tradeoffs if sacrificing one for the other.  

Because of the complexity in channel initiation processes, channel head prediction 

continues to be an active area of research. For watersheds where derivation methods allow for 

accurate channel head prediction, further studies might attempt to compare index scores against a 

large sample of grid cell sizes to identify predictable relationships between grid cell size and 

performance. Also, our results suggest the need for more comprehensive quantitative metrics to 

evaluate derived channel networks against observed data. Those used here have limitations and 

must be interpreted carefully, and often in isolation. For example, channel head reliability and 

sensitivity can be misunderstood in isolation, as often networks performing well in one metric 

score poorly in another. There is no one quantifiable method for effectively assessing overall 

network accuracy. 
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6. Conclusions 

 

The purpose of this study was to investigate the influence of digitally derived topographic 

variables on channel network formation. To accomplish this, our objectives were to (1) test how 

differences in gridded DEM resolution affect spatially distributed topographic parameters 

important to channel network derivation, (2) map the actual channel network at Loch Vale and 

examine the influence of surface variables on channel initiation, and (3) evaluate performance of 

common methods for deriving channel networks from gridded topographic data by comparing to 

the mapped network at Loch Vale.  

For initial DEM analysis of Loch Vale, increasing grid cell size leads to a loss of 

information and visual detail for slope, specific contributing area, and topographic wetness 

index. This also causes increased mean specific contributing area and topographic wetness index 

with a shift in their cumulative frequency distributions toward higher values; most notably from 

the 1m DEM to coarser resolutions. D∞ flow direction algorithm has same effect, although to a 

lesser extent. When using a spatially static topographic threshold, coarser DEMs will model 

more channelization and likely lead to flashier simulated hydrographs with higher peak flows. 

These results show that the 1m DEM contains the most topographic information and suggests 

that it is the most appropriate resolution when deriving hydrologically important parameters from 

topography at Loch Vale. A slope-area scatterplot analysis revealed expected geomorphic 

signatures; however they corresponded to unreasonably small hillslope lengths and predicted 

contributing area thresholds which are not shown to be valid for the Loch Vale channel network. 

This is a potentially significant finding that warrants re-examining the relationship between 
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slope-area landscape characterization, geomorphic process scale, DEM resolution and the 

observed channel network form in steep headwater catchments. 

A field survey revealed a complex and discontinuous channel network that one would not 

expect given an assumption of topographic control on channelization. When analyzing readily 

observable surface variables, we found no systematic relationship to locations of channel 

initiation. This leads us to conclude that subsurface processes, such as soil piping, bedrock 

topography, macropore flow and bedrock fractures have a significant influence on channel 

formation at Loch Vale. 

Finally, our topographically derived channel networks generally perform poorly when 

compared to the observed network. This supports the conclusion that thresholds based on 

topography are largely inadequate for Loch Vale. Spatially variable thresholds may improve 

results, however given the dominance of subsurface controls results would not be physically 

related to the nature of channelization and would primarily rely on calibration based on known 

channel network data. We also find that the NHD network greatly oversimplifies channelization 

and has little value for detailed mapping for high-elevation headwaters. Despite the inability to 

explain channelization via topography, we can make some useful conclusions for improving 

performance of DEM derived channel networks from topographic thresholds. At Loch Vale, the 

10m DEM performs the best overall while the 1m DEM is also useful given an appropriate 

threshold value, which will differ from the thresholds that are most effective for coarser DEMs. 

The 30m DEM performed poorly, thus the use of DEMs coarser than 10m for channel network 

derivation should be avoided. When evaluating the accuracy of modeled channel networks, 

results should be validated against field surveyed data. We found that the most useful 
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performance assessment tool is qualitative assessment based on field knowledge, suggesting the 

need for more comprehensive quantitative performance metrics.  

The intent of this study was not to develop a new methodology for deriving accurate 

channel networks for a glaciated high-elevation catchment, but rather to test how well some 

fundamental and often unacknowledged assumptions in channel network derivation hold in such 

an environment. We found that assumptions of topographic control on channel initiation are not 

valid at Loch Vale. These assumptions are fundamental to the derivation methods tested here and 

so often used in a variety of environmental applications, so it is important that users understand 

their limitations when applying them in landscapes like Loch Vale where surface topography 

does not control locations of channel initiation.  
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Appendices 

Appendix A: Raw field data of surveyed channel points 

Legend 

Feature type: 

 CF = channel with flow 

 C = channel with no flow 

 F = flow with no channel 

 

Channel Head Formation Process: 

csf = convergent subsurface flow 

cof = convergent overland flow 

 L = Landsliding 

Field Notes: 

 * = denotes a channel head 

 

Point 
ID 

Feature 
Type 

Channel 
Head 

Formation 
Process 

Northing 
(UTM) 

Easting (UTM 
Zone 13) 

Field Notes 

Ab01 F   4460283.633 444000.113   

Ab02 F   4460265.496 443976.224   

Ab03 CF csf 4460268.793 443953.040 * exfiltrates from rock below meadow 

Ab04 F   4460229.327 443860.959 saturated meadow from pt 03-05 

Ab05 F   4460216.980 443799.572 fans to top of meadow 

Ab06 F   4460187.346 443785.460 exfiltrates from talus 

Ae01 F   4460145.296 443742.310 
wide saturated marshy area with visible 
flow path 

Ae02 F   4460161.604 443695.157   

Ae03 F   4460139.314 443691.420   

Ae04 CF   4460123.465 443670.683   

Ae05 CF   4460077.553 443644.232   

Ae06 CF cof 4460053.888 443640.064 * ~10m below meadow 

Ae07 F   4460058.798 443631.149   

Ae08 F   4460038.743 443616.317 
flows from bottom of saturated marshy 
meadow 

Aa01 CF cof 4460020.959 443634.923 * fans into wide saturated marshy area 

Aa02 F   4459978.991 443590.285   

Aa03 F   4459952.110 443574.638   

Aa04 F   4459921.979 443562.302   

Aa05 F   4459901.455 443549.707   

Ac01 CF   4459867.483 443552.860 fans into 3 channels at Loch 

Ac02 CF   4459823.252 443519.107   

Ac03 CF csf 4459816.583 443532.054 *, exfiltrates from talus 

Ad01 CF   4459818.847 443539.837 3 small tributaries from talus 

Ad02 CF   4459807.961 443540.039   
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Ad03 CF   4460576.162 444124.160   

Ad04 CF   4460581.734 444127.756   

Ad05 CF csf 4460590.231 444134.320 *, exfiltrates from talus 

Ag01 F   4460606.247 444143.352   

Ag02 F   4460614.427 444148.163   

Ag03 F   4460564.003 444086.842   

Ag04 F   4460571.250 444076.068 exfiltrates from talus 

An01 F   4460582.006 444072.819 fans into wide saturated marsh 

An02 CF   4460589.190 444078.236   

An03 CF   4460622.829 444119.120   

An04 CF   4460630.541 444133.180   

An05 CF   4460537.604 444055.187   

An06 CF   4460548.049 444049.042 poor reception (17 pts) 

An07 CF   4460557.011 444043.010 poor reception (12 pts) 

An08 CF   4460534.113 444040.369 poor reception (13 pts) 

An09 CF   4460548.826 444031.579 small trib 

An10 F   4460554.790 444018.777   

An11 F   4460559.334 444003.334   

An12 CF   4460561.822 443996.449 poor reception (51 pts) 

An13 F   4460423.921 444022.929   

An14 CF csf 4460432.077 444012.513 * emerges from talus field 

Ao01 CF   4460438.125 444005.114   

Ao02 CF   4460435.370 443988.394   

Ao03 CF   4460428.535 443984.816   

Ao04 CF   4460417.978 443975.065 poor reception (16 pts) 

Ao05 F   4460416.579 443961.019 no reception 

Ao06 F   4460413.376 443944.588 poor reception (17 pts) 

Ao07 CF csf 4460224.298 443871.034 * poor reception (54 pts) 

Ap01 CF   4460118.728 443862.516 joins with Icy (divergent segment) 

Ap02 CF   4460164.447 443710.549 joins Icy above marsh 

Ap03 CF   4460187.163 443697.373 under snow (width not determined) 

Ap04 CF   4460188.475 443686.077 small trib 

Ap05 CF   4460198.277 443682.983   

Ap06 CF   4460056.553 443750.667   

Ap07 CF   4460015.584 443745.916 trib here 

Ap08 CF   4460005.724 443736.561 under snow 

Ap09 CF   4459991.028 443724.408   

Ap10 CF   4459986.702 443715.034 poor reception (20 pts) 

Ap11 CF   4459974.570 443706.503 short trib from upper marsh 

Ap12 CF   4459959.792 443720.598   

Ap13 CF   4459962.500 443731.917   

Ap14 CF   4459956.179 443744.028   

Ap15 CF   4459900.240 443707.262   

Ap16 CF   4459894.548 443702.151   

Ap17 CF cof 4459886.704 443690.998 * 

Apa08 CF cof 4460024.248 443620.100 * extends from bottom of a marsh 

Apa07 CF   4459860.549 443553.044   

Apa06 CF   4459855.287 443557.234   
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Apa05 CF   4459854.899 443562.855   

Apa04 CF   4459852.634 443566.365   

Apa03 CF   4459857.137 443570.780   

Apa02 CF   4459858.166 443578.322   

Apa01 CF   4459852.622 443565.979 joins with Ap just above fishing meadow 

Apb01 CF   4459850.002 443568.091 joins with Ah 

Apb03 CF   4459834.545 443557.679 generally marshy and treeless area 

Apb02 CF   4459831.491 443562.456   

Apb04 CF   4459830.075 443572.154   

Apb05 CF   4459824.173 443580.896   

Apb06 CF   4459819.664 443583.625   

Apb07 C   4459811.673 443583.087   

Apb08 C cof 4459798.537 443587.680 *, also took garmin point 

Apc01 CF   4459796.105 443595.201 poor reception (29 pts) 

Apc02 CF   4459782.590 443600.062   

Apc03 CF   4459778.048 443599.051 poor reception (28 pts) 

Apc04 CF   4459773.234 443604.682   

Apc05 CF csf 4459766.765 443608.252 
*emerges from under large fallen tree 
below talus; next to Icy transect 

Apca01 CF   4459758.619 443613.408   

Apca02 CF   4459751.384 443613.633   

Apca03 CF csf 4459742.385 443614.531 *, poor reception (29 pts) 

Aq01 CF   4459739.380 443625.827   

Aq02 CF   4459736.451 443620.965   

Aq03 CF   4459729.207 443621.781   

Aq04 CF   4459795.719 443626.745   

Aq05 CF   4459790.008 443638.365   

Aq06 CF   4459783.434 443651.374   

Aq07 CF   4459813.424 443606.504 
Flat, generally saturated area around 
flowpath 

Aq08 CF   4459801.263 443614.281 
channel reincised by short plung from 
exposed rock 

Aq09 F   4459795.745 443622.336 Flow over exposed rock 

Aq10 CF   4459794.057 443624.702   

Aq11 CF   4459788.963 443623.034   

Aq12 CF   4459755.159 443624.730 ~1.5m cascade 

Aq13 CF   4459864.565 443511.521   

Aq14 CF   4459869.794 443508.998 
channel splits (flow divergence into Aq 
and Aqa 

Aq15 CF   4459872.317 443503.901   

Aq16 CF csf 4459873.376 443498.044 *, small weir gage, emerges from talus 

Aqa01 CF   4459874.792 443494.145 emerges from talus and joins Aq 

Aqa02 M   4459878.627 443490.445 observed flow through talus via opening 

Aqa03 F   4459880.770 443486.442 
becomes very rocky and fans, infiltrates, 
Aqaa joins, evidence of past sheetwash 

Aqa04 CF   4459879.425 443482.447   

Aqa05 CF   4459872.895 443475.155 
flow begins ~2.5 meters below channel 
head 

Aqa06 C unknown 4459872.291 443467.346 *, old overgrown channel bed 
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Aqaa03 C   4459864.820 443460.794   

Aqaa02 C   4459862.781 443449.221   

Aqaa01 C   4459868.502 443436.775 
entire channel bounded by exposed 
bedrock, overgrown grasses 

Al01 CF   4459872.945 443432.482   

Al02 F   4459831.908 443513.892 
generally saturated area without a distinct 
channelized flowline 

Al03 F   4459835.076 443507.673   

Al04 CF   4459834.180 443494.135 still in marsh 

Al05 CF   4459835.609 443486.970   

Al06 CF   4459838.910 443477.225   

Al07 CF   4459847.383 443461.081   

Al08 CF   4459854.200 443454.140   

Al09 CF   4459824.281 443515.767   

Al10 CF   4459827.613 443512.419   

Al11 CF   4459821.593 443503.898   

Al12 CF   4459815.562 443493.869   

Al13 CF   4459809.025 443483.782   

Al14 CF   4459800.498 443481.435   

Al15 CF   4459784.685 443470.971   

Al16 CF csf 4459781.066 443457.175 *, emerges from rocky soil 

Ala01 F   4459772.381 443451.174 eroded rocky bed but no definable banks 

Ala02 F   4459766.702 443439.435 
exfiltrating from crack in large bedrock 
outcrop 

Am01 CF   4459756.113 443435.848 joins Ama 

Am02 CF   4459749.251 443418.773   

Am03 CF csf 4459737.205 443412.871 *, emerges from talus/rocky soil 

Ama06 CF csf 4459723.093 443395.071 
*, emerges from boulder at edge of 
meadow, USGS mark (pic 418) 

Ama03 CF   4459711.115 443386.541   

Ama05 CF   4459698.948 443367.092   

Ama04 CF   4459692.519 443357.940 joins with Am 

Ama02 CF   4459814.864 443499.728 enters marshy area 

Ama01 CF   4459808.532 443492.983 
loses consolidated flow in marsh after this 
point 

Ah01 CF   4459798.223 443485.661 
could not acquire satellite signal the rest 
of the channel 

Ah02 CF   4459785.404 443477.063 disappears underground, re-emerges later 

Ah03 CF   4459776.139 443483.457   

Ah04 CF   4459765.382 443490.678   

Ah05 CF   4459752.215 443493.604 
disappears underground and re-emerges 
~5m later 

Ah06 CF   4459744.795 443495.564   

Ah07 CF   4459782.448 443469.535 rechannelizes under brush 

Ah08 F   4459775.679 443468.989 fans into marshy area 

Ah09 CF cof 4459754.301 443468.339 *, forms from draining marsh 

Af02 CF   4459730.829 443461.336   

Af01 CF   4459728.746 443449.083 point of confluence with Icy 

B01 CF   4459717.149 443440.456 ~3m above confluence with Icy 
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Bh01 M   4459698.426 443415.643 
enters Andrew's Creek through 
subsurface 

Bh02 CF   4459688.408 443409.772   

Bh03 M   4459746.503 443400.743 meanders through talus 

Bh04 CF   4459749.257 443392.170   

Bh05 CF   4459746.987 443376.333 emerges from subsurface 

Bh06 CF csf 4459742.348 443361.426 
*, initiates from talus (briefly), then 
disappears to subsurface 

Ba01 CF   4459740.067 443357.928 confluence with Andrews Creek 

Ba02 CF   4459744.272 443367.384   

Ba03 CF csf 4459740.757 443365.239 *, emerges after large boulder 

Bc01 CF   4459734.662 443363.583   

Bc02 CF   4459776.494 443564.577   

Bc03 CF   4459774.847 443571.522   

Bc04 CF   4459776.712 443580.251   

Bc05 CF   4459770.798 443584.803   

Bc06 CF   4459761.277 443583.538 point of exfiltration 

Bc07 F   4459747.541 443581.055 
point of infiltration (underground for 
Bc07-Bc06) 

Bc08 CF cof 4459738.321 443581.034 * head forms after cascades from rock 

Bca01 CF csf 4459731.768 443580.285 *, 1m long trib 

Bd01 F   4459724.613 443579.284 point of infiltration (disjointed segment) 

Bd02 CF   4459712.938 443579.066   

Bd03 CF cof 4459706.335 443586.189 * 

Bd04 F   4459698.424 443595.065 point of exfiltration (no-channelized flow) 

Bb05 CF csf 4459687.783 443601.331 *, exfiltrates from talus 

Bb04 CF   4459682.254 443612.854 infiltrates into talus 

Bb03 CF   4459674.470 443622.852 exfiltrates from talus 

Bb02 CF   4459670.615 443627.752   

Bb01 CF   4459731.968 443582.398 enters into backwater ponded area 

Ai01 CF   4459728.384 443587.685   

Ai02 CF   4459706.292 443603.571 braided channels between pt 2 and 3 

Ai03 CF cof 4459698.491 443608.410 
drains from embryo pond, disappears 
under large boulder 

Bg01 n/a   4459685.888 443613.497 
water emerges and puddles, no further 
flow downslope 

Bi01 CF   4459685.144 443614.204 reinfiltrates 

Bi02 CF   4459706.196 443606.746   

Bi03 CP   4459698.053 443618.380 
emerges as ponded area (~7x5m with 
banks) 

Bi04 CF   4459691.997 443625.515 
re-emerges, ponded, immediately 
reinfiltrates 

Bi05 CF   4459921.962 443558.699 infiltrates underground 

Bi06 CF   4459989.642 443485.581   

Bi07 CF csf 4459994.966 443481.069 *,emerges from boulder and rocky soil 

Bia01 CF csf 4459997.705 443475.691 
* emerges from soil and reinfiltrates ~2m 
downslope 

Bj01 CP   4460199.500 443432.461 general size of ponded area 

Bj02 CP   4460207.736 443434.158 general size of ponded area 
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Bj03 CP   4460219.566 443439.270 general size of ponded area 

A24 CF   4460230.468 443459.206 point of divergence 

A22 CF   4460236.490 443465.098 divergent segment of Icy 

A21 CF   4460195.438 443416.068 divergent segment of Icy below A22 

A20 CF   4460196.796 443412.651 single stem of icy below Ak 

A23 CF   4460202.824 443401.879 divergent segment of Icy 

A19 CF   4460225.817 443400.743   

A18 CF   4460232.647 443400.794 point of confluence with Andrew's 

A17 CF   4460244.988 443405.167   

A16 CF   4460262.610 443410.889 
point of short divergence during high 
flows 

A15 CF   4460281.080 443421.195   

A14 CF   4460205.937 443399.949 point of flow divergence in high flows 

A13 CF   4460283.445 443430.513 same segment as point 7 divergence 

A12 CF   4460304.314 443421.982 point opposite 8 on main stem 

A11 CF   4460320.049 443424.838 
just above a divergence before steep 
section 

A10 CF   4460328.170 443418.996   

A09 CF   4460168.436 443384.496 point of divergent flow 

A08 CF   4460177.851 443369.331 same segment as point 12 divergence 

A07 CF   4460188.081 443356.400 point opposite 13 on main stem 

A06 CF   4460196.181 443350.654 
point on main stem where 13's segment 
rejoins 

A05 CF   4460202.751 443340.377   

A04 CF   4460214.684 443336.117   

A03 CF   4460221.077 443327.938 point of confluence after short divergence 

A02 CF   4460236.231 443317.309   

A01 CF   4460154.304 443350.760 flows into the Loch 

Ak01 CF   4460153.555 443351.610   

Ak02 CF   4460090.744 443274.101   

Ak03 CF   4460126.302 443181.988   

Ak04 CF   4460122.721 443178.561   

Ak05 CF   4460117.635 443176.561   

Ak06 CF csf 4460114.659 443170.983 *emerges from subsurface after Ak 

Aka01 CF   4460112.499 443159.990 about a 2.5m tributary, joins Ak here 

Aka02 CF csf 4460106.357 443139.627 *, emerges from soil 

Bf01 CF   4460073.924 443146.601 confluence with marshy area 

Bf02 CF csf 4460061.596 443149.208 
*, emerges from subsurface about 3m 
above confluence 

Be01 CF   4460047.391 443147.411 Confluence with Andrews Creek 

Be02 CF   4460039.032 443146.162   

Be03 CF   4460036.101 443138.238   

Be04 CF   4460032.550 443134.978   

Be05 CF   4460028.341 443129.855   

Be06 CF   4460043.151 443142.515   

Be07 CF   4460046.491 443153.335 USGS stream gage 

Be08 CF csf 4460045.469 443147.389 * emerges 10m downslope from talus 

Aj01 CP   4460049.737 443142.264 ponded (with banks) surface water 
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Appendix B: Photographs of observed channel heads 

 

 

Point ID: Aa01 Point ID: Ab03 

  

Point ID: Ac03 Point ID: Ad05 
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Point ID: Ae06 Point ID: Ah09 

  

Point ID: Ak06 Point ID: Aka02 
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Point ID: Al16 Point ID: Am03 

  

Point ID: Ama06 Point ID: An14 
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Point ID: Ao07 Point ID: Ap17 

 

 

Point ID: Apa08 Point ID: Apb08 
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Point ID: Apc05 Point ID: Apca03 

 

 

Point ID: Aq16 Point ID: Aqa06 
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Point ID: Ba03 Point ID: Bb05 

  

Point ID: Bc08 Point ID: Bca01 
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Point ID: Bd03 Point ID: Be08 

 

 

Point ID: Bf02 Point ID: Bh06 
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Point ID: Bi07 Point ID: Bia01 
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Appendix C: Derived channel networks 
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Appendix D: ArcGIS data architecture 

 

File geodatabase schematic 

 

  

LochVale_ThesisData.GDB 

 

 
-Field Map 

 
Surveyed area, glaciers, lakes, talus, wetlands 

 

Survey channel points, survey channel heads, feature accuracy test 

sample reach points 

 

NHD Flowlines, surveyed flowlines, no signal flowline, survey 

footpath 

 
-One_Meter, Ten_Meter, Thirty_Meter 

 
Catchments (All of Loch Vale)  

 

Outlets, ln(αs), ln(tan β), TWI, derived channel network points, 

derived channel heads 

 
derived channel network lines, derived channel heads 

 

-Rasters: Hillshades, aspect, flow direction, flow accumulation (# of cells), 

αs, ln(αs), slope (rise/run), tan β (percent), ln(tan β), TWI, derived channel 

networks 

 
-Near Tables: Feature accuracy tests, surveyed heads to derived heads, 

derived heads to surveyed heads, surveyed channel network points to 

derived channel network points 
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Object naming conventions 

 

Object Description 
Object 

Type 
Naming Convention 

Catchment outlet Point Outlet_[DEM resolution] 

Catchment area Polygon Catchment_[DEM resolution] 

DEM Raster DEM_[DEM resolution] 

Sink filled DEM Raster DEM_[DEM resolution]_fil 

Hillshade Raster hillsha_[DEM resolution] 

Slope (rise/run) Raster [Flow direction algorithm]_[DEM resolution]_slp 

Slope (percent) Raster [Flow direction algorithm]_[DEM resolution]_slppct 

Natural log of slope 

(percent) 
Raster [Flow direction algorithm]_[DEM resolution]_lslppct 

Flow direction Raster [Flow direction algorithm]_[DEM resolution]_fdr 

Flow accumulation (# of 

cells) 
Raster [Flow direction algorithm]_[DEM resolution]_fac 

Specific contributing 

area 
Raster [Flow direction algorithm]_[DEM resolution]_sca 

Natural log of specific 

contributing area 
Raster [Flow direction algorithm]_[DEM resolution]_lnsca 

Topographic wetness 

index 
Raster [Flow direction algorithm]_[DEM resolution]_twi 

1m D∞ tan β for 

extraction to slope area 

plot 

Points ln_slope_1m 

1m D∞ αs for extraction 

to slope area plot 
Points ln_sca_1m 

Derived channel 

network 
Raster [Threshold]_[Flow direction algorithm]_[DEM resolution] 

Derived channel 

network 
Points [Threshold]_[Flow direction algorithm]_[DEM resolution]_pt 

Derived channel 

network  
Polylines [Threshold]_[Flow direction algorithm]_[DEM resolution]_line 

Derived channel 

network clipped to 

survey area with lake 

extent erased 

Polylines 
[Threshold]_[Flow direction algorithm]_[DEM 

resolution]_line_clip 

Derived channel 

network heads 
Points 

[Threshold]_[Flow direction algorithm]_[DEM 

resolution]_heads 

NHD flowlines clipped 

to Loch Vale 
Polylines NHD_Flowlines_LV 

NHD flowlines clipped 

to survey area 
Polylines NHD_Flowlines_LV_clip 

Surveyed area Polygon SurveyArea 

Survey footpath Polyline Survey_Path 

Areas with no GPS 

signal 
Polygon No_Signal 

Known flowlines not 

surveyed  
Polylines NoSig_Flowline_Clip 
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Surveyed channel 

network (all points 

collected) 

Points Survey_ChannelPts_ALL 

Surveyed channel 

network for analysis  
Points Survey_ChannelPts_ref 

Surveyed channel 

network for analysis 
Polylines Survey_flowline 

Surveyed channel heads Points Survey_ChannelHeads 

Surveyed reaches for 

feature accuracy test 
Points AccuracyTest_reaches 

Distances from surveyed 

channel points to derived 

channel points (for 

distribution of errors 

analysis) 

Near 

Table 
[Threshold]_[Flow direction algorithm]_[DEM resolution]_dist 

Distances from surveyed 

sample reaches points to 

derived channel points 

(feature accuracy test) 

Near 

Table 

AccuracyTest_[Threshold]_[Flow direction algorithm]_[DEM 

resolution] 

Distances from surveyed 

channel heads points to 

derived channel heads 

(channel head prediction 

index) 

Near 

Table 

SurveyHeads_indx_[Threshold]_[Flow direction 

algorithm]_[DEM resolution] 

Distances from derived 

channel heads to 

surveyed channel heads 

(channel head prediction 

index) 

Near 

Table 

[Threshold]_[Flow direction algorithm]_[DEM 

resolution]_heads_indx 
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GIS processing flow chart 
 

DEM Analysis: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dinf_1m_fac 

(area) 

*Analysis 

extent mask 

Raster Calc 
(01x10-7) 

Dinf_1m_slppct  

D8_1m_slppct  

Raster Calc 

Dinf_1m_lnslppct  

D8_1m_lnslppct  

Dinf_1m_lnsca  

D8_1m_lnsca  

Raster Calc  

D8_1m_fac 

Dinf_1m_fac 
Raster Calc 

(fac*L2)/L 

Dinf_1m_sca D8_1m_sca 

*Catchment mask 

Dinf_1m_slp 

(rise/run) 

Raster Calc 

Slope (percent)  D8_1m_slppct  

Resample 

(nearest 

neighbor) 

DEM_10m 

DEM_30m 

Steps same as 

1m 

DEM_1m Fill sinks DEM_1m_fil 

*import into 

ArcMap 

Dinf_1m_slppct  

ArcHydro Flow 

direction (D8) 

D8_1m_fdr 

Watershed 

Catchment_1m 

(polygon) 

ArcHydro Flow 
accumulation 

D8_1m_fac (# of 

cells) 

Create feature 
(point) 

Outlet_1m (pour point) 

*Manually I.D. outlet  

Rivix 
RiverTools 

(D∞) 

Dinf_1m_slp 

(rise/run) 

Dinf_1m_fac 

(area) 

Raster Calc 
(area# of 

cells) 

*import into 

ArcMap 

Dinf_1m_fac (# 

of cells) 

Raster Calc 
(01) 

*export to 

RiverTools 

Dinf_1m_twi  

D8_1m_twi  

Raster Calc 

(ln[sca/slppct]) 
  

USGS 

LiDAR 

Legend: 

 Raster  External data 

 Feature shapefile  Table 

 Processing step  Included in geodatabase 
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Observed network analysis: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Survey_ChannelPts_ALL 

*import 

into 

ArcMap 

Field 

observations/notes 

Edit attribute table 

manually (paste to 
new fields) 

Survey GPS 

points (NAD 
1983 UTM 

zone 13) 

Extract values to 
points 

Dinf_1m_lnslppct  D8_1m_lnslppct  

Dinf_1m_lnsca  

D8_1m_lnsca  Dinf_1m_twi  

D8_1m_twi  

Manually delete 

non-channel points 
Survey_ChannelPts_ref 

Manually export 
channel head points 

as new shapefile  

Survey_ChannelHeads 
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Channel Network Derivation: 
 

Channel network derivation 

 

 

 

 

 

 

 

 

 

 

 
Positional error 

 

 

 
 

Feature accuracy assessment 

 

 

 
 

Channel head prediction index 

 

Steps same 

as Tα 

D8_1m_sca 

Dinf_1m_sca 

D8_1m_twi  

D8_1m_twi  

Raster 

calculator: 

SetNull(“[twi 
raster]” ≤ Ttwi, 

1) 

Ttwi1_D8_1m 

Ttwi1_Dinf_1m  

ArcHydro 

stream 

definition w/ 
test threshold 

Tα1_D8_1m 

Tα1_Dinf_1m  Steps same 
as Tα 

Raster to point Tα1_D8_1m_pt 

Raster to 

polyline 

Tα1_D8_1m_line 

Clip 

Tα1_D8_1m_line_Clip 

Catchment_1m 
(polygon) 

lakes_lv (polygon) 

Erase 

Generate near 

table 
Survey_ChannelPts_ref 

Tα1_D8_1m_pt 

Tα1_D8_1m_dist 

Survey_ChannelPts_ref 
Manually select 

and export 

sample reach 
points as new 

shapefile 

AccuracyTest_reaches Generate near 

table 

Tα1_D8_1m_pt 

AccuarcyTest_Tα1_D8_1m 

Manually select 

derived channel 

head points and 
export as new 

shapefile 

Tα1_D8_1m_pt Tα1_D8_1m_heads 

Generate near 
table (distance 

from derived to 

nearest survey) 

SurveyHeads_indx_Tα1_D8_1m 
Survey_ChannelHeads 

Generate near 
table (distance 

from survey to 

nearest derived) 

Tα1_D8_1m_head_index 


