C6

CER 47-52-13

> Report of the

FLUCTUATION STUDIES IN STILLING WELLS

FOR
ARMCO METERGATE MODEL NO. 101

By

Maurice L. Albertson
Civil Engineering Section
Colorado Agricultural Experiment Station Fort Collins, Colbradoo

Report
of the

FLUCOUATGON STUDIES IN STIJLING VELDS
FOR

$$
\text { A.PMCO IMETERGATE MOTEL IS, ? } 0 \text { ? }
$$

by

Maurice L. Alfertson
(civil Engineering Section
Colorado Agricultural Experiment Station
Fort, Collins, Colorado
prepared for
Armco Drainage and Metal Products, Inc.
Hardesty Division
Denver, Colorado
through
The Colorado Agricultural Feserchi Foundation

January, 1951

In ircdution
In opider to save material, roduco the woight and simplify the $1 \overrightarrow{0}$ of ine 1 momo Metergete Model 101, the Armoo Drainage - and Mive Produzts So., Inen contrastod rith the Colorado AEri cuilura". Fesearch foundation to have tipe Hydraulics Laboratory of Coinrado i mnd M Coijege maks tests to determine the pcssinl.e use of 4-in. diameter stilling wolis instead of the standrid $\dot{\text { inwjo well }}$ 。 An aditional change for the sake of conveniene? end accurany of operation wes the use of fioats ir: the if-or. wells irstaad of the usual measuirirg stick for determining the rater-suriace elevation. Previous tests.which had Leen mede $\dot{\text { Lo }}$ determine the feasibility of such a change demonstra'ech tia': the surge in the 4-in. well made the snaller well imprantical ard the additional storage in the lo-in. wells was necэs?ary $+c$ hol.d the surging to the required mininum.

The critericn which was established prior tin the beginning of the tesus wis that the surging in the $4-\therefore$. wells must not be grecter thail that in the l0-in. wells which have been estahiished by the couris as satisfactory for use with the Meiergate Modol lCl e.s a rato~meas suring device.

Anglysis of the Problen
The probable rezsor for the smaller amount of surging in the 10-in. well than in the 4-in. well is the greater storage capacity of the ic-ir, well so that it acts more like a surge chaiabcr. In anter to rave the mean elevation of the water surface in the i o rolls the same for a given condition, it is resessery that the reristance to the surging flow be relatively the san:e for both inflow and outflow. In other words, the resistence to the infiow motion relative to the resistance to the outflow motion must be the same for both the 10-in. and 4-in. wells.

From the foregoing discussion, investigation falls into two separato problems; (a) comparison of the mean water-surface elevation in the two wells for a given condition of gate opening and discharge, and (b) reduction of the surge in the 4-ind well so that it is no more than that in the l0win, well. A common method of reducing the degree of surging is the use of constrictions in the line which conducts the water in and out of the surge chamber. Therefore, this was proposed as the first method to be tested. At the same time, measurements were to be made of the mean water-surface elevation using both the 4 -in. well with a constriotion, and the lo-in. well without a con.. striction. Bccause of the possible clogging of the orifice which might result from sticks, leaves, and other debris lodging in the stilling well, the orifice was to be made as large as possible.

Analysis of the Problem

Since the surging action is more or less random in nature, a statistical analysis of the surging in the two wells was believed to be a means of comparison the relative standard deviation being the measuremont of comparison. The following section describes the experimental equipment and procedure utilized.

Experimental Equipment and Procedure

In order to simulate as closely as possible conditions in the field, a special canal system was constructed as shown in Fig. 1. Water was supplied by the 14 -in. pump to the head box from where it passed through a 6-in. rock baffle to distribute the flow uniformily across the channcl downstream. From the channcl (which had a bottom width of $L_{t} \mathrm{f}^{\prime}$, and l on l side slopes) the flow passed through the l8-in. metcirgate (this size being chosen as representative of those in use) which was recessed in the sidc of the channel as shown in the plan view of Fig. 1. Special carc was taken to set the gato and construct the approaci. so that a standard gatc setting was obtaincd. Jrom the gate the water passcd through 6 ft . of 18 -in. corrugated pipe to the tail box in which the downstream depth of the flow could be controlled After le aving the tail box, the flow returned to the sump for recirculation.

As shown in Fig. l., the stilling wells were set according to ticu stradards privicusly ostablished -- one well connected to the hoad rall near the facc of tho gatc and the other connectod tre the outlet pipe 1 ft . downstream from the face of the gate. Spesial litinss woro used so that the lo-in. wells and the 4 .ir. Jells could be interchanged without difficulty. Floats with a stem and pointer on them to facilitatc accurate instantancous readings of tine watcr-surface clevation were used in each of the wolls.

The tosting procodurc consisted of first zeroing the float gages in each well by filline tho head box with water and shutting the intake valve and outlet pipe. The indicators on the floass were then adjusted to read the same on each tape for a givon watcr-surfacc ol.cvation.

After zeroing the lo-in, wclls, the discharge was varied about 5 times for each of the gate openings. The discharge was measured by the $10 \frac{1}{2}-i n$. orificc moter which had becn calibrated volumetrically using the large measuring tank in the basement of the laboratory, For cach discharge the value of Δh was found as the difforence in watcr-surfacc clevation betwecn the upstream and jowstrom measurine wells. Tho upstroam measurement was made by obscrving the fluctuations in the woll over a poriod of time and cstimating ar average elovation. The fluctuations and moan water-surface elcvation in the downstream woll, however, were determined by one man roading the float gage ot

Exporintertal Equipment and Procedure

intervals of about two seconds with another man recording the readings. A scrics of 6 to 10 readings wero recordod in this manncr on 5-scc. to 15-sec. intorvals until sufficient data had been obtaincd to give an accurate picture of the fluctuation pattern. In the variations scemed to bc smal lonly 40 readings were taken, but in some cascs of large fluctuations as many as 100 readings were necessary. Aftor each run additional measurements were mado on the differontial manometcr connectod to the orifice motcr. The entire procedure required an average time of about 15 to 20 min . although initial runs sometimes required as much as 40 minutes to complete.

Tho lo-in. wells were then mountod on the l8-in. corrugated pipe in place of the 4 -in. wolls, and the same procedure wes followed for each discharge.

Analysis of the Data

In order first to determine whether the mean of the water... surface elevation in the 4 -in. well was the same as that in the lo-in. well under the same conditions, care was taken to measure the discharge during each of the fluctiation deterinima... tions. The compurison is shown in Fig. 2 to be very good -indicating that no consistent deviation exists from the lo-inc well. Because the results were considored to bo satisfactory, no further consideration was given to this part of the problom.

Preliminary measurements werc made with constrictions 1/4-in., 3/8-in,, l/2-in., and 5/8-in. diamctor and with gate openings of 2-in., 4-in., 8-in., and 16-in. Thesc moasurements werc thon uscd to detorminc tho perticular areas requiring further study. For examplo, the data showed thiut the $1 / 4$-in. diamoter constriction and half gate oponing caused a surge of approximatcly half that found with the lo-in. well. With the 3/8-in. constriction, the surge ras about the same as with the l0-in. woll except at moderate gatc openings and high discharges under which conditions it we.s appreciably greater. The l/2-in. and 5/8-in. constrictions, hewevor, gave a damping action which was not approciably bottor than no constriction at all.

As a rosult of the forngoing proliminary measurements and bocauso a constriction as lerge as pormissible was desired, tho remainder of the experimentis were devoted to a more detailed study of orifico-type constrictions 5/16-in. and 3/8-in. diameter. The results of these tests aro tabulatod in Table I and shown graphicaily in Figs. 3, 4, and 5.

In each of these figures the standard devintion of the surges in totil the 4 -in. woll with $3 / 8$-in. orifice constriction and the 10.i.r. well are plotted together. As sinown in Fig. 3 the deviation for discherges less than 3 cfs with a small gate opening of 3 in . is 0.01 ft . or less. This moans that about
70% of the time the fluctuation is less than $0,01 \mathrm{ft}$, above or below the mean water-surface elevation, The surges in the 4 -in. well were about 50% greater than in the $10-\mathrm{n}$. well $a \stackrel{*}{ }$ a discharge of 1 cfs and about 15% greater at 3 cfs .

When the gate was approximately half open at, $87 / 8$ in,, the standard deviation of the surges in the $10-i n$. well was increased (see Fig. 4) to about 0.02 ft . for a discharge of 7 cfs while the 4 -in. well with the $3 / 8$-in, orifice had surges approximately 45% greater than in the 10-in. well.

At full gate opening it was found (see Fig. 5) that the standard deviations of the surge was approximate? y the same for both the $10-i n$, and 4 -in. wells -- being about 0.025 ft . for 8 cfs and about 0.003 ft . for 4 cfs .

The foregoing tests revealed that the $3 / 8$-in, orifice constriction damped the surges so they were no greater than those in the $10-i n$, well when the gate was wide oper, At low discharges and small gate openings, the surges were quite small regardless of the type of well. When the gate was half oper, however, the surges were appreciably greater in the 4-in. wril with the $3 / 8-i n$. orifice than in the $10-i n$, well. This probakly resulted from the shape and location of the separction zone rela. tive to the inlet to the stilling well and would no doubt have been different for gates of other sizes than 18-in.

In view of the foregoing data and observations, the halfgate opening was believed to be most critical for the 18-in. gate and therefore a smaller orifice of $5 / 16$ in, was tested for this situation. Fig. 4 shows that the 5/16-in orifice damped the surges so that they were less than the surges in the lo-in. well except for low dishares where the sureing was rolatively small and unimportert.

Because the 5/16-in, orjfice constriction was adequate for damping the surges under the criticai condition of half gate opening, the assumption was ras that it would be equally effeotive for other gate opening and therofore further tests were not necessary.

Conclusions

1. The mean watur-six fece elavition in the L-in. stilling well
is the same as in the lo-in, well -- all other factors remaining constant.
2. Althongh the 3/3-in. orifice constriction damps the surges in tha lt-in. stilling well so that they aro epproximately the same as those in the lo-in. well for lareo and small gate openings, the inu umodiats gate openings requirs on orifice 5/15-in. diametcr to damp the surgos satisfactorily.
```
\therefore. \therefore %...
```


Recommendations

1. Because of the heavy surging found at intermediate gate openings, the 5/16-in, orifice should be used throughout.
2. In order to determine whether plugging of the orifice and sticking of the floct are prohlcms likoly to be enccunt,cred, speoial fiejd installntions and tests over a pariod of time are necessnry.

Table 1
EXPEPIMETITAL FLUCTUATION DATA FOR 18-IN. ARMCO METERGATE

Orifice	Well	Gate	Differential	Standard Relative	Discharge	
Size	Size	Opening	Head	Deviation Deviation	Q	
in	in	in	in feet	σ	σ	σ
inches inches inches	Δh	in feet	Δh	incfs		

None	10	18	0.212	0.0053	0.0260	5.15
	11	11	0.570	0.0242	0.0425	8.01
"	"	"	0.406	0.0134	0.0330	6.96
"	"	"	0.281	0.0092	0.0328	5.84
"	"	"	0.126	0.0028	0.0222	3.78
"	"	$87 / 8$	0.060	0.0013	0.0217	1.57
"	"	"	0.349	0.0037	0.0106	3.77
"	"	"	1.14	0.0088	0.0077	6.96
"	"	"	0.620	0.0061	0.0098	5.03
"	"	"	0.946	0.0160	0.0170	6.28
"	"	3	1.072	0.0062	0.0058	2.62
"	"	11	0.894	0.0061	0.0068	2.37
"	"	"	0.626	0.0046	0.0074	1.96
"	"	"	0.388	0.0020	0.0052	1.58
"	"	"	0.210	0.0015	0.0071	1.17
3/8	4	18	0.561	0.0218	0.0389	8.09
	,	"	0.443	0.0116	0.0268	7.39
"	"	"	0.344	0.0115	0.0334	6.40
"	"	"	0.344	0.0152	0.0438	6.40
"	"	"	0.242	0.0072	0.0298	5.40
"	"	"	0.069	0.0011	0.0160	2.76
"	"	$87 / 8$	1.190	0.0301	0.0253	7.05
"	"	"	1.043	0.0159	0.0152	6.52
"	"	"	1.043	0.0191	0.0183	6.52
"	"	"	0.757	0.0117	0.0154	5.49
"	"	"	0.445	0.0076	0.0171	4.26
"	"	"	0.076	0.0020	0.0263	1.77
"	"		1:420	0.0111	0.0078	2.91
"	"	11	0.999	0.0057	0.0057	2.44
"	"	"	0.701	0.0047	0:0067	2.05
"	"	"	0.378	0.0032	0.0085	1.48
"	"	"	0.231	0.0025	0.0108	1.18
5/116	"	$87 / 8$	1.348	0.0145	0.0108	7.37
	"	"	1.348	0.0192	0.0142	7.37
"	"	"	0.870	0.0068	0.0078	5.42
"	"	"	1.086	0.0169	0.0156	6.64
"	"	"	0.391	0.0059	0.0151	3.97
"	"	"	0.037	0.0016	C.OL 043	1.29
"	"	"	0.133	0.0028	0.0210	2.36
"	"	"	0.237	0.0035	0,0148	3.11

RELATION of DISChiace
\qquad STGMDARD DEVIATIOR OF FLUCTIATION

