
DISSERTATION

EMPIRICAL MODELING AND ANALYSIS OF LOCAL SEARCH ALGORITHMS

FOR THE JOB-SHOP SCHEDULING PROBLEM

Submitted by

Jean-Paul Watson

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2003

Copyright c© Jean-Paul Watson 2003
All Rights Reserved

COLORADO STATE UNIVERSITY

July 31, 2003

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY JEAN-PAUL WATSON ENTITLED EMPIRICAL MODEL-

ING AND ANALYSIS OF LOCAL SEARCH ALGORITHMS FOR THE JOB-SHOP

SCHEDULING PROBLEM BE ACCEPTED AS FULFILLING IN PART REQUIRE-

MENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Committee Member

Committee Member

Adviser

Co-Adviser

Department Head

ii

ABSTRACT OF DISSERTATION

EMPIRICAL MODELING AND ANALYSIS OF LOCAL SEARCH ALGORITHMS

FOR THE JOB-SHOP SCHEDULING PROBLEM

Local search algorithms are among the most effective approaches for locating high-

quality solutions to a wide range of combinatorial optimization problems. However,

our theoretical understanding of these algorithms is very limited, leading to significant

problems for both researchers and practitioners. Specifically, the lack of a theory of

local search impedes the development of more effective algorithms, prevents practition-

ers from identifying the algorithm most appropriate for a given problem, and allows

widespread conjecture and misinformation regarding the benefits and/or drawbacks of

particular algorithms. This thesis represents a significant step toward a theory of lo-

cal search. Using empirical methods, we develop theoretical models of the behavior

of four well-known local search algorithms: a random walk, tabu search, iterated local

search, and simulated annealing. The analysis proceeds in the context of the well-known

job-shop scheduling problem, one of the most difficult NP -hard problems encountered

in practice. The large volume of prior research on the job-shop scheduling problem

provides a diverse range of available algorithms and problem instances, in addition to

numerous empirical observations regarding local search algorithm behavior; the latter

are used to validate our behavioral models.

We show that all four local search algorithms can be modeled with high fidelity using

iii

straightforward variations of a generalized one-dimensional Markov chain. The states in

these models represent sets of solutions a given fixed distance from the nearest optimal

solution. The transition probabilities in all of the models are remarkably similar, in that

search is consistently biased toward solutions that are roughly equidistant from the near-

est optimal solution and solutions that are maximally distant from the nearest optimal

solution. Surprisingly, the qualitative form of the transition probabilities is simply due

to the structure of the representation used to encode solutions: the binary hypercube.

The models account for between 96% and 99% of the variability in the cost required

to locate both optimal and sub-optimal solutions to a wide range of problem instances,

and provide explanations for numerous phenomena related to problem difficulty for lo-

cal search in the job-shop scheduling problem. In the course of our analysis, we also

disprove many conjectures regarding the behavior and benefits of particular algorithms.

Our research indicates that despite their effectiveness, local search algorithms for

the job-shop scheduling problem exhibit surprisingly simple run-time dynamics. Fur-

ther, we observe minimal differences between the dynamical behavior of different algo-

rithms. As expected given similar run-time dynamics, although contrary to numerous

reports appearing in the literature, we also show that the performance of different algo-

rithms is largely indistinguishable. Ultimately, our behavioral models serve to unify and

provide explanations for a large body of observations regarding problem difficulty for

local search in the job-shop scheduling problem, and identify new research areas for the

development of more effective local search algorithms.

Jean-Paul Watson
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Fall 2003

iv

TABLE OF CONTENTS

1 Introduction 1

2 The Job-Shop Scheduling Problem 6
2.1 Definition, Notation, and Computational Complexity 8
2.2 Specification and Classification of Problem Instances 9
2.3 The Relative Difficulty of Problem Instances 10
2.4 Solutions: Specification, Properties, and Notation 12
2.5 Quantifying Solution Similarity . 14
2.6 Solutions versus Schedules and Schedule Taxonomy 15
2.7 Visualizing Schedules . 16
2.8 Critical Paths and Critical Blocks . 16

3 Local Search and the Job-Shop Scheduling Problem 19
3.1 Combinatorial Optimization Problems . 20
3.2 Local Search and Combinatorial Optimization 21
3.2.1 The State Space and the Objective Function 22
3.2.2 The Move Operator . 22
3.2.3 The Navigation Strategy . 23
3.3 The Fitness Landscape . 25
3.4 Convergence Properties of Local Search Algorithms 27
3.5 Local Search and the JSP: Core Components 29
3.5.1 State Space, Representation, and Objective Function 29
3.5.2 Move Operators . 31
3.5.2.0.1 The N1 Move Operator . 31
3.5.2.0.2 The N5 Move Operator . 32
3.5.2.0.3 Other Move Operators . 33
3.5.3 The Initial Solution . 33
3.6 Locating Globally Optimal Solutions . 34

4 Developing and Validating Cost Models of Local Search: Methodological
Issues 36

4.1 Static Cost Models . 37
4.2 Quasi-Dynamic Cost Models . 38
4.3 Dynamic Cost Models . 38
4.4 Descriptive Versus Predictive Cost Models 39
4.5 Run-Length Distributions . 40

v

4.6 Test Problems . 40
4.6.1 Random JSPs . 41
4.6.2 Sub-Optimal Random JSPs . 42
4.6.3 Workflow and Flowshop JSPs . 42

5 Structural Characteristics of the JSP Fitness Landscape 44
5.1 Prior Research . 45
5.2 The Attractor Basin Structure of Local Optima in the JSP 46
5.2.1 Attractor Basin Size . 46
5.2.2 Plateaus Versus Local Optima: Plateau Size 48
5.2.3 Plateaus Versus Local Optima: Exit Probabilities 50
5.2.4 A Perturbation Analysis of Attractor Basin Strength 50
5.2.5 Implications . 55
5.2.6 Related Research . 56
5.3 The Global Structure of the JSP Fitness Landscape 56
5.3.1 The Number of Optimal Solutions . 56
5.3.1.1 Related Research . 57
5.3.2 The Mean Distance Between Random Local Optima 58
5.3.2.1 Related Research . 60
5.3.3 Entropy of Random Local Optima . 60
5.3.4 Mean Distance Between Random Local Optima and the Nearest Optimal

Solution . 61
5.3.4.1 Related Research . 62
5.3.5 Backbone Size . 63
5.3.5.1 Related Research . 64
5.4 Other Research on Problem Difficulty and Local Search 64

6 The Baseline: A Random Walk 67
6.1 RW: Algorithm Definition and Methodological Issues 68
6.2 A Static Cost Model of RW . 68
6.3 Sampling Bias and RW . 70
6.4 A Dynamic Cost Model of RW: Preliminaries 72
6.5 A Dynamic Cost Model of RW: A Failed First Attempt 74
6.6 A Dynamic Cost Model of RW: Accounting for Sampling Bias 76
6.7 Relationship Between the Cost Models of RW 79
6.8 An Analysis of Run-Length Distributions of RW 80

7 Tabu Search 83
7.1 An Overview of Tabu Search . 84
7.2 Tabu Search and the JSP: An Historical Perspective 87
7.3 Algorithm and Methodological Considerations 88
7.4 Run-Time Behavior: Some Qualitative Observations 91
7.5 A Static Cost Model . 92

vi

7.5.1 The Number of Optimal Solutions . 94
7.5.2 Backbone Size . 96
7.5.3 The Relationship Between Backbone Size and the Number of Optimal

Solutions . 97
7.5.4 The Mean Distance Between Random Local Optima 98
7.5.5 Mean Distance Between Random Local Optima and the Nearest Optimal

Solution . 99
7.5.6 Models Based on Multiple Landscape Features 101
7.5.7 A note on Backbone Robustness . 102
7.6 Applications of the dlopt-opt Static Cost Model 103
7.6.1 Modeling the Cost of Locating Sub-Optimal Solutions 103
7.6.2 Accounting for the Relative Difficulty of Square Versus Rectangular JSPs 105
7.7 Limitations of the dlopt-opt Static Cost Model 107
7.7.1 Modeling search cost in exceptionally hard random JSPs 107
7.7.2 Assessing Scalability of the dlopt-opt Model 109
7.8 Accounting for Search Bias: A Quasi-Dynamic Cost Model 111
7.9 A Dynamic Cost Model . 114
7.10 Explanatory Power and Applications of the Dynamic Cost Model 119
7.10.1 Modeling the Cost of Locating Sub-Optimal Solutions 119
7.10.2 Accounting for Variability in High-Cost Random JSPs 120
7.10.3 The Impact of Initialization Method on Performance 121
7.11 The Relationship Between the Models . 124
7.12 The Impact of Makespan Estimation . 124
7.13 Run-Length Distributions . 126

8 Iterated Local Search 129
8.1 An Overview of Iterated Local Search . 129
8.2 Iterated Local Search and the JSP: Prior Research 131
8.3 I-JAR: Iterated Jump-And-Redescend . 132
8.3.1 I-JAR: Algorithm Definition . 133
8.3.2 Escape Probabilities Under I-JAR . 134
8.3.3 Assessing the Potential of I-JAR . 136
8.4 Cost Models of I-JAR . 138
8.4.1 Static and Quasi-Dynamic Cost Models 139
8.4.2 A Dynamic Cost Model . 141
8.5 Run-Length Distributions under I-JAR . 145
8.6 An Analysis of the Scalability of I-JAR Performance 147
8.6.1 The Implications of N5 for Local Search Algorithm Design 147
8.6.2 I-JARN5: Algorithm Definition . 148
8.6.3 TSNS-A: Algorithm Definition . 150
8.6.4 Comparative Methodology . 152
8.6.5 Quantifying the Scalability of I-JAR . 154

vii

9 Metropolis Sampling and Simulated Annealing 160
9.1 An Overview of Metropolis Sampling and Simulated Annealing 161
9.2 Simulated Annealing and the JSP . 163
9.3 The MCMC Algorithm: Definition and Methodological Issues 165
9.4 Local Optima and MCMC: A Qualitative Analysis of Run-Time Behavior . 168
9.5 Fitness-Based Escape Probability of Local Optima in the JSP 170
9.6 Is Annealing Necessary to Achieve Competitive Performance? 171
9.7 A Dynamic Cost Model of MCMC . 174
9.8 Run-Length Distributions . 176
9.9 Analyzing the Scalability of MCMC . 177
9.9.1 Algorithm and Methodology . 178
9.9.2 Assessing the Relative and Absolute Performance of MCMCN5 179

10 The Impact of Problem Structure on Landscapes and Cost Models 183
10.1 Contrasting the Fitness Landscapes of Random Versus Structured JSPs . . . 184
10.2 The Impact of Structure on Cost Models of RW 186
10.3 The Impact of Structure On Cost Models of TSTaillard 189
10.4 Re-Assessing the Causal Factor for Differences in the Relative Difficulty of

Random and Structured JSPs . 193

11 Analyzing the State-of-the-Art: Does the Core Meta-Heuristic Really Mat-
ter? 194

11.1 A Generic Framework for Re-Intensification and Diversification 195
11.2 Comparing the Performance of the Enhanced Meta-Heuristics: Methodology 196
11.3 Comparing the Performance of the Enhanced Meta-Heuristics: Results . . . 197
11.4 What Makes the State-of-the-Art the State-of-the-Art? 198

12 Summary, Implications, and Future Research Directions 200
12.1 Cost Models of Local Search . 201
12.2 The Explanatory Power of Cost Models 202
12.3 The Predictive Power of Cost Models . 203
12.4 Implications and Future Research Directions 204
12.5 Final Thoughts . 205

References 207

viii

LIST OF FIGURES

2.1 The disjunctive graph for an optimal solution to the 4×3 JSP instance shown
in Table 2.1. 13

2.2 The hierarchy of schedules in the JSP. 15
2.3 The Gantt chart visualization of the earliest start-time schedule for an op-

timal solution to the 4 × 3 JSP instance specified in Table 2.1. Shaded
regions represent machine idle time. 16

2.4 An earliest-start-time schedule for an optimal solution to the JSP instance
shown in Table 2.1. The solution has two critical paths, labeled A and B. 17

3.1 Examples of Type I (left figure) and Type II (right figure) fitness landscapes. 26
3.2 Pseudo-code for computing the set of operation earliest start times. See text

for details. 30

5.1 Scatter-plot of the number of iterations k of steepest-descent required to
transform random semi-active solutions into local optimum versus the
makespan of the resulting optimum. 47

5.2 The mean basin depths for 100 instances of various rectangular (left figure)
and square (right figure) random JSPs; data points are annotated with
95% confidence intervals. 47

5.3 Histograms of plateau sizes for random 10 × 10 JSPs. Left figure: distribu-
tion for a typical problem instance. Right figure: aggregate distribution
for 100 problem instances. 49

5.4 Histograms of bench exit probabilities for random 10×10 JSPs. Left figure:
distribution for a typical problem instance. Right figure: aggregation
distribution for 100 problem instances. 50

5.5 Distribution of local optima escape probabilities under next-descent for a
typical random 10×10 JSP after accepting a random sequence of 1 (left
figure), 3 (center figure), and 5 (right figure) less-fit neighbors. 51

5.6 Distribution of local optima escape probabilities under next-descent for 100
random 10×10 JSPs after accepting a random sequence of 1 (left figure),
3 (center figure), and 5 (right figure) less-fit neighbors. 51

5.7 Distribution of local optima escape probabilities under next-descent after
accepting 3 less-fit neighbors for typical 30 × 10 (left figure), 50 × 10
(center figure), and 70 × 10 (right figure) random JSPs. 53

ix

5.8 Distribution of local optima escape probabilities under next-descent after
accepting 3 less-fit neighbors for typical 15 × 15 (left figure), 20 × 20
(center figure), and 30 × 30 (right figure) random JSPs. 53

5.9 Distribution of local optima escape probabilities under steepest-descent for
random 10×10 JSPs after accepting a random sequence of 1 (left figure),
3 (center figure), and 5 (right figure) less-fit neighbors. 54

5.10 Distribution of local optima escape probabilities under steepest-descent af-
ter accepting 3 less-fit neighbors for typical 30×10 (left figure), 50×10
(center figure), and 70 × 10 (right figure) random JSPs. 54

5.11 Distribution of local optima escape probabilities under steepest-descent af-
ter accepting 3 less-fit neighbors for typical 15×15 (left figure), 20×20
(center figure), and 30 × 30 (right figure) random JSPs. 54

5.12 Histograms of the number of optimal solutions (|optsols|) for 6 × 4 (left fig-
ure), 6 × 6 (center figure), and 10 × 10 random JSPs. 57

5.13 Histograms of mean distance between random local optima (dlopt-lopt) for
6 × 4 (left figure), 6 × 6 (center figure), and 10 × 10 random JSPs. . . . 58

5.14 Histograms of entropy of random local optima (elopt) for 6 × 4 (left figure),
6 × 6 (center figure), and 10 × 10 random JSPs. 60

5.15 Histograms of dlopt-opt for 6×4 (left figure), 6×6 (center figure), and 10×10
random JSPs. 61

5.16 Histograms of the backbone size (|backbone|) for 6 × 4 (left figure), 6 × 6
(center figure), and 10 × 10 random JSPs. 63

6.1 Scatter-plots of drand-opt versus cQ2 for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed. . . . 70

6.2 Histograms of (1) the distance between random semi-active solutions and
the nearest optimal solution and (2) the distance between solutions vis-
ited by RW and the nearest optimal solution, for two different 6 × 6
random JSPs. 71

6.3 Scatter-plots of drw-opt versus cQ2 for 6×4 (left figure) and 6×6 (right figure)
random JSPs; the least-squares fit lines are super-imposed. 72

6.4 Mean cost to locate the optimal solution s∗ for an 10-bit (left figure) and 20-
bit (right figure) problem instance under a random walk, as a function
of the distance i from the initial solution to s∗. 73

6.5 Transition probabilities for two 6× 6 random JSPs under RW generated via
sample-based estimation. 75

6.6 Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under a random walk, for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed. . . . 76

6.7 Transition probabilities for two 6× 6 random JSPs under RW generated via
online estimation. 78

x

6.8 Transition probabilities generated via sample-based estimation (left figure)
and on-line estimation (right figure) for an identical 6 × 6 random JSP. . 78

6.9 Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under a random walk, for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed. . . . 79

6.10 Mean cost for a random walk to locate an optimal solution, given an initial
solution that is distance i from the nearest optimal solution, for two 6×6
random JSPs. 79

6.11 Left Figure: p-values for 1,000 6×6 instances for rejecting the null hypoth-
esis that the actual run-length distributions are exponentially distributed.
Right Figure: The actual and exponential run-length distributions for the
6 × 6 instance with the smallest p-value (p=3.6e-16). 80

6.12 Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov test
statistic for comparing the actual search cost distribution with that of an
exponential distribution. Large values of the test statistic indicate more
significant differences. The horizontal lines indicate null hypothesis re-
jection thresholds at significance p = 0.01 and p = 0.05. 81

6.13 CDFs of the predicted and actual RLDs for two 6×6 instances. The p-values
for the KS test statistic are respectively 0.14408 and 7.57e − 8. 82

7.1 Pseudo-code for the tabu search meta-heuristic. See text for details. 85
7.2 Scatter-plots of the number of optimal solutions |optsols|) versus search cost

(cQ2) for 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs; the
least-squares fit lines are super-imposed. 94

7.3 Scatter-plots of |backbone|2 versus cQ2 for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed. . . . 95

7.4 Scatter-plots of |backbone|x (where x varies depending on the problem di-
mensions - see text) versus |optsols| for 6× 4 and 6× 6 random JSPs; the
least-squares fit lines are super-imposed. 97

7.5 Scatter-plots of the mean distance between random local optima (dlopt-lopt)
versus search cost (cQ2) for 6 × 4 (left figure) and 6 × 6 (right figure)
random JSPs; the least-squares fit lines are super-imposed. 98

7.6 Scatter-plots of dlopt-opt versus versus search cost (log10(cQ2) for 6 × 4 (left
figure) and 6 × 6 (right figure) random JSPs; the least-squares fit lines
are super-imposed. 99

7.7 The offset x from the optimal makespan C∗
max, 0 ≤ x ≤ 25, versus the cost

cQ2(x) required to locate a solution with Cmax ≤ C∗
max +x for two 6×6

random JSPs. The numeric annotations indicate either dlopt−T (x) for a
specific x, or the range of dlopt−T (x) over a contiguous sub-interval of x. 103

xi

7.8 Scatter-plots of the mean distance between random local optima and the
nearest target solution (dlopt-T(x)) versus search cost (cQ2(x)) for sub-
optimal 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs; the
regression lines are super-imposed. 105

7.9 Histograms of dlopt-opt for 10,000 4 × 3 (left figure) and 7 × 3 (right figure)
random JSPs. 106

7.10 Scatter-plots of dlopt-opt versus search cost (cQ2) for easy (cQ2 ∈ [1, 49]),
medium (cQ2 ∈ [50, 499]), hard (cQ2 ∈ [500, 4999]), and very hard
(cQ2 ∈ [5000,∞]) 6 × 4 (left figure) and 6 × 6 (right figure) random
JSPs; the least-squares fit lines are super-imposed. 107

7.11 Scatter-plot of dlopt-opt versus cQ2 for random 10× 10 JSPs; the least-squares
fit line is super-imposed. 109

7.12 Scatter-plot of |backbone|15 versus |optsols| for 10×10 random JSPs; the least-
square fit line is super-imposed. 110

7.13 Histograms of the distance to the nearest optimal solution (dopt) for (a)
100,000 random local optima and (b) 100,000 solutions visited by
TSTaillard for two 10 × 10 random JSPs. 111

7.14 Scatter-plots of dtabu-opt versus search cost (cQ2) for 6× 4 (upper left figure),
6 × 6 (upper right figure), and 10 × 10 (lower figure) random JSPs; the
least-squares fit lines are super-imposed. 112

7.15 Time-series of the distance to the nearest optimal solution for the solutions
visited by a random walk (left figure) and TSTaillard (right figure) for a
10 × 10 random JSP. 114

7.16 The transition probabilities for moving closer to (left figure) or farther from
(right figure) the nearest optimal solution under TSTaillard for a 10 × 10
random JSP. 117

7.17 Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6×4 (upper left figure), 6×6 (upper
right figure), and 10 × 10 (lower figure) random JSPs; the least-squares
fit lines are super-imposed. 118

7.18 Scatter-plots of the predicted versus actual search cost (c) for sub-optimal
6× 4 (left figure) and 6× 6 random JSPs; the regression lines are super-
imposed. 119

7.19 Scatter-plots of the predicted versus actual search cost c for hard and very
hard 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs. 120

7.20 Predicted cost required by TSTaillard to locate an optimal solution, given an
initial solution that is distance i from the nearest optimal solution, for
two 6 × 6 (left figure) and 10 × 10 (right figure) random JSPs. 122

xii

7.21 Left Figure: Scatter-plot of the search cost c for 10× 10 random JSPs using
exact versus estimated makespans of neighboring solutions; the line y =
x is super-imposed. Right Figure: Scatter-plot of the predicted versus
actual search cost (c) for 10 × 10 random JSPs when using estimated
makespans of neighboring solutions; the least-squares fit line is super-
imposed. 125

7.22 Left Figure: p-values for 100 10×10 instances for rejecting the null hypoth-
esis that the actual run-length distributions are exponentially distributed.
Right Figure: The actual and exponential run-length distributions for the
10 × 10 instance with the smallest p-value. 126

7.23 Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov test
statistic for comparing the actual search cost distribution with that of an
exponential distribution. Large values of the test statistic indicate more
significant differences. The horizontal lines indicate null hypothesis re-
jection thresholds at significant p = 0.01 and p = 0.05. 127

7.24 CDFs of the predicted and actual RLDs for two 10 × 10 instances. The p-
values for the KS test statistic are respectively 0.4506 and 4.2062 × 10−8. 128

8.1 Pseudo-code for the iterated local search meta-heuristic. 130
8.2 Pseudo-code for the I-JAR iterated local search algorithm. 133
8.3 Left figure: Histogram of the escape probabilities (next-descent, k = 3)

for local optima visited by I-JAR during search; results are for a typical
10× 10 JSP. Right figure: Histograms of the escape probabilities (next-
descent, k = 3) for random local optima; aggregate data for 100 10×10
JSPs are displayed. 135

8.4 Scatter-plots of the distance to the nearest optimal solution (left figure) and
makespan (right figure) versus the escape probability under next-descent
for a typical 10 × 10 random JSP; the least-squares fit lines are super-
imposed. The corresponding (Pearson’s) r-values are 0.3271 and 0.4269,
respectively. 136

8.5 Scatter-plots of dlopt-opt (left figure) and dijar-opt (right figure) versus search
cost (cQ2) for 10× 10 random JSPs; the least-squares fit lines are super-
imposed. 140

8.6 Left figure: Transition probabilities -full. Right figure: Aggregate transition
probabilities for the same problem instance. 142

8.7 Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under IJAR 6× 4 (upper left figure), 6× 6 (upper right figure),
and 10 × 10 (lower figure) random JSPs; the least-squares fit lines are
super-imposed. 144

xiii

8.8 Left Figure: p-values for 100 10×10 instances for rejecting the null hypoth-
esis that the actual run-length distributions are exponentially distributed.
Right Figure: The actual and exponential RLDs for the 10×10 instance
with the smallest p-value (1.92x10-22). 146

8.9 Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov test
statistic for comparing the actual search cost distribution with that of an
exponential distribution. Large values of the test statistic indicate more
significant differences. The horizontal lines indicate null hypothesis re-
jection thresholds at significant p = 0.01 and p = 0.05. 146

8.10 CDFs of the predicted and actual RLDs for two 10 × 10 instances. The p-
values for the KS test statistic are respectively 0.861 and 2.3649 × 10−12. 147

8.11 Pseudo-code for the I-JARN5 iterated local search algorithm. 149
8.12 Pseudo-code for the TSNS-A tabu search algorithm. 151

9.1 Pseudo-code for the simulated annealing meta-heuristic. See text for details. 162
9.2 Pseudo-code for the MCMC meta-heuristic. See text for details. 167
9.3 Distribution of the probability of accepting two monotonically dis-

improving moves under MCMC for 10 × 10 random JSPs, for tempera-
tures corresponding to UAG = 0.05 (left figure) and UAG = 0.10 (right
figure). 170

9.4 Transition probabilities for two 10 × 10 random JSPs under MCMC at
UAG = 0.15 generated via online estimation. 175

9.5 Scatter-plots of the observed versus predicted mean cost c required to locate
an optimal solution under MCMC for 10 × 10 random JSPs at temper-
atures corresponding to UAG = 0.20 (upper left figure), UAG = 0.15
(upper right figure), and UAG = 0.10 (lower figure); the least-squares
fit lines are super-imposed. 176

9.6 CDFs of the predicted and actual RLDs for two 10 × 10 instances. The
p-values for the KS test statistic are respectively 6.34e− 6 and 8.134e− 8.177

10.1 Histograms of the mean distance between random local optima (dlopt-lopt) for
6× 6 random (left figure), workflow (center figure), and flowshop (right
figure) JSPs. 184

10.2 log10 histograms of the number of optimal solutions (|optsols|) for 6× 6 ran-
dom (left figure), workflow (center figure), and flowshop (right figure)
JSPs. 185

10.3 Histograms of the mean distance between random local optima and the near-
est optimal solution (dlopt-opt) for 6 × 6 random (left figure), workflow
(center figure), and flowshop (right figure) JSPs. 186

10.4 Transition probabilities under RW for typical 6 × 4 workflow (left figure)
and flowshop (right figure) JSPs. 187

xiv

10.5 Scatter-plots of the observed versus predicted mean cost c to locate an op-
timal solution under RW for 6 × 4 workflow (left figure) and flowshop
(right figure) JSPs; the least-squares fit lines are super-imposed. 188

10.6 The transition probabilities for moving closer to the nearest optimal solution
under TSTaillard for two different 6 × 6 flowshop JSPs. 191

10.7 Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6 × 4 (left figure) and 6 × 6 (right
figure) workflow JSPs; the least-squares fit lines are super-imposed. . . 191

10.8 Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6 × 4 (left figure) and 6 × 6 (right
figure) flowshop JSPs; the least-squares fit lines are super-imposed. . . . 192

10.9 Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 10 × 10 workflow and structured
benchmark JSPs; the least-squares fit lines are super-imposed. 192

xv

LIST OF TABLES

2.1 Specification of a 4 × 3 random JSP. 9

5.1 The number of optimal solutions (|optsols|) for 10 × 10 benchmark JSPs. . . 57
5.2 Statistics for the difference between (1) the mean distance between random

solutions (drand-rand) and (2) the mean distance between random local
optima (dlopt-lopt). 59

5.3 The backbone size (|backbone|) for 10 × 10 benchmark JSPs. 63

6.1 The r2 values for linear regression models relating various landscape fea-
tures to search cost (log10(cQ2)) under RW. 69

6.2 The correlation (Pearson’s) between landscape features for 6×4 random JSPs. 70

7.1 Depth statistics for TSTaillard on select random JSPs from the OR Library.
Statistics are taken over a single run of length 1,000,000 iterations. . . . 91

7.2 The correlation (Pearson’s r) between fitness landscape features for 6 × 4
random JSPs. 101

7.3 The correlation (Pearson’s r) between fitness landscape features for 6 × 6
random JSPs. 101

7.4 The correlation (Pearson’s) between search space features for 10 × 10 ran-
dom JSPs. 110

7.5 The differences in both the mean distance to the nearest optimal solution
(dlopt-opt) and search cost (Q2) for various initialization methods, mea-
sured relative to random semi-active solutions (RNDsemiactive). 123

8.1 Statistics for the makespans of the best solutions obtained by I-JAR and
TSTaillard on Taillard’s 15 × 15 benchmark instances. Statistics are taken
over 30 independent trials. Bold-faced entries in a “Min” column indi-
cate equality with the optimal makespan. Italicized entries in a “Min”
Column indicate the best makespan achieved by either algorithm. Bold-
faced entries in a “Mean” column indicate the mean makespan was less
than or equal to that of the competing algorithm. 137

8.2 r2 values of static and quasi-dynamic cost models for I-JAR and TSTaillard. . 139
8.3 CPU cost-per-iteration multipliers between the baseline I-JARN5(k = 2)

and both I-JARN5(k = 1) and TSNS-A for Taillard’s random JSP bench-
mark instances. 153

xvi

8.4 Statistics for the makespans of the best solutions obtained by I-JARN5 and
TSNS-A to Taillard’s small (15 × 15 – upper portion, 20 × 15 – lower
portion) benchmark instances. Statistics are taken over 10 independent
trials. The second column indicates either the optimal makespan, or
lower and upper bounds on the optimal makespan. Bold-faced entries in
the ’Min’ columns indicate equality with the optimal makespan. Itali-
cized entries in the ’Min’ columns indicate the best makespan achieved
by any algorithm. Bold-faced entries in a ’Mean’ column indicates the
mean makespan was less than or equal to that of any competing algorithm.155

8.5 Statistics for the makespans of the best solutions obtained by I-JARN5 and
TSNS-A to Taillard’s medium-sized (20 × 20 – upper portion, 30 × 15
– middle portion, and 30 × 20 – lower portion) benchmark instances.
Statistics are taken over 10 independent trials. The second column in-
dicates either the optimal makespan, or lower and upper bounds on
the optimal makespan. Bold-faced entries in the ’Min’ columns indi-
cate equality with the optimal makespan. Italicized entries in the ’Min’
columns indicate the best makespan achieved by any algorithm. Bold-
faced entries in a ’Mean’ column indicates the mean makespan was less
than or equal to that of any competing algorithm. 156

8.6 Statistics for the mean number of evaluations required by I-JARN5 and
TSNS-A to locate optimal solutions to Taillard’s large benchmark in-
stances. Statistics are taken over 10 independent trials. The baseline
algorithm is I-JARN5 with k = 2. The final two columns respectively
indicate the ratio of the mean number of evaluations required by the
respective algorithm to the mean number of evaluations required by
I-JARN5(k = 2). Bold-faced entries indicate the ratio is lower than the
corresponding CPU time-per-iteration ratio (as shown in Table 8.3), i.e.,
the respective algorithm outperforms I-JARN5(k = 2) on that particular
instance. 157

8.7 Mean relative error (MRE) of various algorithms on Taillard’s difficult
benchmark instances. See text for details. 159

9.1 Search depth and mobility statistics for MCMC at various temperatures on
well-known 10 × 10 JSP benchmark instances. An X/Y entry in a cell
indicates a search depth of X and a mobility of Y. Statistics are computed
for individual trials, each consuming 1,000,000 iterations. 168

9.2 Search depth and mobility statistics for MCMC at various temperatures on
a subset of Taillard’s benchmark instances. An X/Y entry in a cell indi-
cates a search depth of X and a mobility of Y. Statistics are computed
for individual trials, each consuming 1,000,000 iterations. 169

xvii

9.3 The performance of MCMC at various temperatures on benchmark 10 × 10
random JSPs; results for ft10 are also shown. Entries represent the mean
makespan of the best solutions found in 30 independent trials. 172

9.4 The mean makespans of the best solutions obtained by MCMC, I-JAR(k =
2), and TSTaillard to Taillard’s 15 × 15 benchmark instances. Statis-
tics are taken over 10 independent trials. Bold-faced entries indicate the
mean makespan was less than or equal to that of any competing algo-
rithm. Italicized entries indicate the mean makespan was equal to the
optimal makespan. 173

9.5 CPU cost-per-iteration multipliers between the baseline I-JARN5(k = 2)
and MCMCN5 at both UAG = 0.10 and UAG = 0.05 for Taillard’s
random JSP benchmark instances. 178

9.6 Statistics for the makespans of the best solutions obtained by MCMCN5,
I-JARN5(k = 1), and TSNS-A to Taillard’s small (15 × 15 – upper por-
tion, 20 × 15 – lower portion) benchmark instances. Statistics are taken
over 10 independent trials. The second column indicates either the op-
timal makespan, or lower and upper bounds on the optimal makespan.
Bold-faced entries in the ’Min’ columns indicate equality with the opti-
mal makespan. Italicized entries in the ’Min’ columns indicate the best
makespan achieved by any algorithm. Bold-faced entries in a ’Mean’
column indicates the mean makespan was less than or equal to that of
any competing algorithm. 180

9.7 Statistics for the makespans of the best solutions obtained by MCMCN5,
I-JARN5, TSNS-A to Taillard’s medium-sized (20 × 20 – upper portion,
30 × 15 – middle portion, and 30 × 20 – lower portion) benchmark in-
stances. Statistics are taken over 10 independent trials. The second col-
umn indicates either the optimal makespan, or lower and upper bounds
on the optimal makespan. Bold-faced entries in the ’Min’ columns indi-
cate equality with the optimal makespan. Italicized entries in the ’Min’
columns indicate the best makespan achieved by any algorithm. Bold-
faced entries in a ’Mean’ column indicates the mean makespan was less
than or equal to that of any competing algorithm. 181

9.8 Mean relative error (MRE) of various algorithms on Taillard’s difficult
benchmark instances. See text for details. 182

10.1 The r2 values of static cost models of the cost required by RW to locate
optimal solutions to 6 × 4 random, workflow, and flowshop JSPs. 187

10.2 The r2 values of static cost models of the cost required by TSTaillard to locate
optimal solutions to 6 × 4 and 6 × 6 random, workflow, and flowshop
JSPs. 189

11.1 Parameter settings for trials involving i-MCMCN5 and i-I-JARN5. 196

xviii

11.2 Mean relative error (MRE) of various algorithms on Taillard’s difficult
benchmark instances. 197

xix

Chapter 1

Introduction

Optimization problems are ubiquitous in both scientific and industrial settings. Given
an instance Π of an optimization problem, the objective is to find a solution s to Π such
that some real-valued cost function F(s) is either maximized or minimized, depending
on the application. Algorithms that are guaranteed to find such extremal values are
known as exact algorithms. Many important optimization problems (e.g., the Traveling
Salesman Problem (TSP) and the Maximum Satisfiability Problem (MAX-SAT)) are
known to be NP -hard [GJ79], such that locating optimal solutions is, unless P = NP ,
computationally prohibitive: in the worst case, run-time is an exponential function of
the size of Π. Given the apparently intractable nature of most optimization problems,
the obvious practical alternative is to employ approximation algorithms, which typically
locate sub-optimal solutions to Π, but in reasonable run-times.

Both exact and approximation algorithms for NP -hard optimization problems are
generally based on one of the following two paradigms: constructive search and local
search. Constructive search algorithms build solutions incrementally, often using a sig-
nificant amount of problem-specific knowledge to guide the search process. Well-known
examples of constructive search algorithms are branch-and-bound and constraint pro-
gramming. Exact algorithms are almost exclusively based on constructive search, using
complete backtracking mechanisms to systematically explore the entire search space. In
contrast, local search algorithms operate by performing iterative modifications to one
or more fully specified solutions, and generally rely on little problem-specific knowl-
edge to guide search. Genetic algorithms, simulated annealing, and tabu search are all
well-known examples of local search algorithms. Local search algorithms are generally
haphazard in their exploration of the search space, and as a consequence, application of
the paradigm is restricted to development of approximation algorithms.

Until the mid-1980s, both exact and approximation state-of-the-art algorithms for
nearly all NP -hard optimization problems were based on constructive search. These
algorithms typically required problem-specific knowledge to both guide search and to
eliminate large regions of the search space from consideration, knowledge that often re-
quired years of research to develop. With few exceptions, e.g., the Iterated Lin-Jungian

1

algorithm for the TSP [LK73], local search algorithms were generally ignored because
they failed to achieve performance that was competitive with the best constructive search
algorithms. This situation started to change in the mid-to-late 1980s with the introduc-
tion of two new local search methods: simulated annealing and tabu search. Researchers
found that local search algorithms based on simulated annealing and tabu search often
equaled or outperformed the best constructive algorithms for a given NP -hard problem,
relied on significantly less problem-specific knowledge, and were far easier to imple-
ment. The combination of simplicity and good performance especially interested prac-
titioners, which, in turn, fueled a subsequent explosion of interest in local search, which
continues unabated. Today, state-of-the-art approximation algorithms for any given op-
timization problem are frequently based on local search.

Despite widespread success, very little is known about why local search algorithms
work so well and under what conditions. This situation is largely due to the fact that re-
searchers typically focus on demonstrating, and not analyzing, algorithm performance.
Most local search algorithms are developed in an ad-hoc manner. A researcher devises
a new search strategy or a modification to an existing strategy, typically arrived at via
intuition. The algorithm is implemented, and performance is compared with that of ex-
isting algorithms on sets of widely available benchmark problems. If the new algorithm
outperforms existing algorithms, the results are published, advancing the state-of-the-
art. Unfortunately, most researchers fail to actually prove that the proposed enhance-
ment(s) actually led to the observed performance increase (typically, multiple new fea-
tures are introduced simultaneously) or whether the increase was due to fine-tuning of
the algorithm, implementation tricks, flaws in the comparative methodology, or some
other factor(s). Hooker [Hoo95] refers to this approach to algorithm development as the
competitive testing paradigm, arguing that “this modus operandi spawns a host of evils
that have become depressingly familiar to the algorithmic research community” and
that the “emphasis on competition is fundamentally anti-intellectual” [Hoo95], (p. 33).
However, although few would argue with Hooker’s criticisms, the competitive testing
paradigm remains the dominant paradigm for developing new algorithms – independent
of whether they are exact or approximate, or based on constructive or local search.

Due largely to the widespread practice of competitive testing, theoretical results con-
cerning the operation of local search algorithms are very limited. In particular, we cur-
rently lack fundamental models of local search algorithm behavior. The importance of
behavioral models cannot be understated. Ideally, behavioral models enable practition-
ers to identify those problems for which a particular local search algorithm is likely to
be effective and those problem instances that are likely to be more difficult than others.
The availability of behavioral models also allows researchers to identify fundamental
similarities and differences between different local search algorithms and identify new
research directions in order to improve the performance of existing local search algo-
rithms. In contrast, the current lack of behavioral models has led to several undesir-
able side-effects, including widespread conjecture and mythology regarding the benefits
and/or operation of particular local search algorithms.

2

This thesis develops several behavioral models of local search algorithms. The ap-
proach taken is both theoretical and empirical. Many in the algorithmic research com-
munity view these two terms as incongruent, instead associating the terms theoretical
and analytical. Hooker [Hoo94] argues that there is no justifiable reason to favor ana-
lytical models over empirical models in the analysis of algorithms. In the hard sciences
such as physics and chemistry, a theory is a model that provides a cohesive explanation
for a set of existing observations, and ideally makes predictions about the outcomes of
new experiments, i.e., a theory is falsifiable. Thus, there is really nothing contradic-
tory about developing theories using empirical methods; as Hooker notes ([Hoo94], p.
203), “Anyone who thinks that empirical science is non-theoretical should take a look at
quantum electrodynamics.” The main objection to the empirical analysis of algorithms
appears largely due to the fact that an algorithm is really a formal system, and therefore,
the consequences (i.e., behavior) of the system should be deducible via an analytical
approach. Why favor an empirical over analytic approach to developing a theory of lo-
cal search? The problem with this analytic, reductionist approach is that the scale of
the analysis is inappropriate. For example, consider the scenario in which biologists
attempted to model cell dynamics in terms of quantum mechanics; even if it was feasi-
ble to develop such a model, the detail and scale of the model would likely prevent any
significant insights into the higher-level dynamics of the cell life-cycle. Returning to the
present context, “Even if one can in principle deduce what the algorithms are going to
do, it is beyond human powers to do so, and even if we did, we would not understand
why they behave as they do” ([Hoo94], p. 205).

In modeling local search algorithms, the primary behavior of interest is the cost re-
quired to locate globally optimal solutions to a specific problem; the ultimate objective
of a local search algorithm is to solve optimization problems. For a given optimiza-
tion problem, different sub-classes of problem instances can be defined, for example
in terms of either dimensionality or through the specification of individual problem fea-
tures. Problem difficulty can vary tremendously, typically by many orders of magnitude,
both between and within such sub-classes. Because local search algorithms are typically
used to solve broad sub-classes of problem instances, and not individual instances, our
objective in modeling the behavior of local search algorithms is to account for the vari-
ability in problem difficulty observed in problem instances belonging to a particular
sub-class. If a single model accounts for the variability in problem difficulty observed
within multiple sub-classes, any differences in difficulty between the sub-classes can be
explained in terms of differences in the distribution of problem instances; otherwise, dif-
ferences must also be explained in terms of the discrepancies between multiple models.

Extant models of local search algorithms are typically expressed in terms of features
present in the underlying search space. Here, the goal is to identify those features that
are most highly correlated with search cost, i.e., problem difficulty. Yet, despite their
simplistic form – algorithm run-time behavior is explicitly ignored – the accuracy of the
resulting models, if they are rigorously quantified at all, is generally quite poor. With the
possible exception of specialized local search algorithms for MAX-SAT, an optimiza-

3

tion formulation of the well-known Boolean Satisfiability Problem, those search space
features that most heavily influence problem difficulty for local search remain elusive.
Research on more complex models of local search algorithms, which capture at least
some aspects of algorithm run-time behavior and, consequently, allow deeper insights,
is nearly non-existent.

The primary goal of this thesis is to develop behavioral models of a number of well-
known and widely-applied local search algorithms. The proposed models vary in com-
plexity, ranging from simple models based on search space features to those that ex-
plicitly model run-time dynamics with very high fidelity. In addition to accounting for
variability in the difficulty of different problem instances, the models provide significant
insight into why local search algorithms can be so effective. Further, by explicitly mod-
eling algorithm run-time dynamics, it is possible to compare and contrast different local
search algorithms in terms of their actual behavior, as opposed to more superficial char-
acteristics. Ultimately, the availability of accurate behavioral models should eliminate
much of conjecture surrounding local search and place the field on a firmer scientific
footing.

One current limitation of the behavioral models developed in this thesis bears imme-
diate disclosure: the models are primarily descriptive, in that they provide a posteriori
explanations for the observed variability in problem difficulty. The reason is simply that
to achieve exceptionally high accuracy levels, it appears necessary to base the behavioral
models on information that is, in general, computationally intractable to obtain, specifi-
cally the set of optimal solutions to a problem instance. Consequently, there is currently
no feasible way to predict the difficulty of a given problem instance. However, this does
not limit the contribution of the models, which unambiguously identify both (1) those
search space features that are highly correlated with problem difficulty and (2) the dy-
namics governing local search processes. Identification of the former provides sharp
focus for future research on predictive models of problem difficulty: Can these features
be estimated with any reasonable level of accuracy, and with what cost? Models of
search processes enable cross-comparisons of different local search algorithms based
on their search dynamics and identify those areas required to improve search efficiency.
Further, the models are also used to form various hypotheses – which are subsequently
verified – regarding other behavioral aspects of local search algorithms.

To develop behavioral models of local search algorithms, it is first necessary to select
a specific context, i.e., optimization problem. The problem selected for this thesis is the
Job-Shop Scheduling Problem, or JSP. Given the vast range of alternatives, the obvious
question is “Why?” The motivation is three-fold. First, the JSP is an interesting opti-
mization problem in its own right, as it is one of the most difficult NP -hard problems
encountered in practice, and despite years of intense study, little is known about what
makes this problem so difficult. Second, in contrast to many other NP -hard problems,
numerous local search algorithms have been introduced for the JSP, enabling a relatively
strict focus on algorithm analysis, as opposed to development and analysis. Third, the
volume of research devoted to the JSP has resulted in numerous observations relating to

4

both the relative difficulty of problem instances and the behavior of local search algo-
rithms. Most of these observations currently lack satisfactory explanations and provide
a further opportunity to validate any behavioral models of local search: more robust
models account for a wider range of observations.

The remainder of this thesis is organized as follows. Background on the JSP and
local search algorithms for the JSP are provided in Chapters 2 and 3, respectively. The
specific types of behavioral models considered and the empirical methodology used to
develop these models are described in Chapter 4. Ultimately, local search algorithm
behavior, and, consequently, any model of this behavior is a function of the interaction
of the search strategy with the underlying search space. A detailed analysis of the pri-
mary structural characteristics of the JSP search space is described in Chapter 5. The
core of the thesis is presented in Chapters 6 through 9, where behavioral models for the
following local search algorithms are developed: a random walk, tabu search, iterated
local search, and simulated annealing. The latter three algorithms have seen widespread
application on a wide variety of combinational optimization problems; a pure random
walk is included as a baseline, which, despite its ineffectiveness, is closely related to
the other algorithms. Most research on the JSP, including that in much of this thesis,
is based on randomly generated problem instances. An obvious question is then the
generalization of the behavioral models to more realistic, structured problem instances;
this issue is analyzed in Chapter 10. The current state-of-the-art algorithm for the JSP
is a variant of tabu search that re-intensifies search around previously encountered high-
quality solutions. It is an open question whether such re-intensification can equally
benefit other local search algorithms; the answer to this question is provided in Chap-
ter 11. The thesis concludes in Chapter 12 with a discussion of the implications of this
research, a laundry-list of open questions, and a summary of the overall contribution to
the algorithmic research community.

5

Chapter 2

The Job-Shop Scheduling Problem

In the most general terms, a scheduling problem specifies a set of tasks to be performed
using a finite set of resources. The objective is to schedule processing of all the tasks
such that some overall measure of efficiency is maximized, e.g., the time required to
complete all tasks. Scheduling is ubiquitous in real-world applications, ranging from
operating systems to large-scale military logistics problems. The details of particular
scheduling problems are highly variable, which led researchers to develop “distilled”
scheduling problems, each abstractly representing a particular class of real-world prob-
lem. Although numerous abstract scheduling problems have been introduced (e.g., see
the recent books by Blażewicz et al. [BSE+96], Brucker [Bru01], and Pinedo [Pin01]),
the most widely studied problem is the static, deterministic job-shop scheduling prob-
lem, hereafter referred to simply as the JSP. In the JSP there are n jobs and m machines.
Each job must be processed on each machine exactly once, for a fixed duration, and in
a pre-specified order; the processing of a job on a machine is called an operation. Each
machine can only process a single operation at a time, and once initiated, an operation
must be processed to completion. Various scheduling objectives have been introduced
for the JSP. However, most research considers the objective of makespan minimization,
i.e., minimizing the maximal completion time of all jobs [BDP96].

Although the JSP is the most widely studied abstract scheduling problem, it is also,
paradoxically, one of the least realistic. Mattfeld [Mat96] notes the following restric-
tions inherent in the definition of the JSP, many of which need not hold in any given
real-world scheduling problem (French [Fre82] provides a similar list):

• No two operations of one job may be processed simultaneously.

• No preemption (i.e., process interruption) of operations is allowed.

• No job is processed twice on the same machine.

• Each job must be processed to completion.

• Jobs may be started at any time, i.e., no release times exist.

• Jobs may be finished at any time, i.e., no due dates exist.

6

• Jobs must wait for the next machine in the processing order to become available.

• No machine may process more than one operation at a time.

• Machine setup times are negligible.

• There is only one type of each machine.

• Machines may be idle within the schedule period.

• Machines are available at any time.

• The machine processing orders of each job is known in advance and is immutable.

Consequently, algorithms for solving the JSP are of little direct use to practitioners,
who must deal with the intricacies of their particular scheduling problem. McKay et al.
[MSB88] even argue that “the [JSP] problem definition is so far removed from job-shop
reality that perhaps a different name for the research should be considered.” Yet, despite
the lack of realism, the JSP has drawn intense attention from researchers in a variety
of disciplines, ranging from operations research to computer science and mathematics;
many of which are at best peripherally involved with real-world scheduling problems.

Why the intense attention on a problem of little practical significance? Mattfeld (p.
8, 1996) [Mat96] argues that “... benefit from previous research can only be obtained
if a widely accepted standard model exists.” However, the primary draw for most re-
searchers is the fact that the JSP is notoriously difficult, widely accepted as empirically
one of the most difficult NP -hard problems, and consequently poses a constant intel-
lectual challenge: despite over 40 years of effort, resulting in hundreds of published
journal articles and tens of dissertations, even state-of-the-art algorithms often fail to
consistently locate optimal solutions to relatively small problem instances (e.g., see Jain
[Jai98], Tables 2.4 through 2.10). The inherent intractability (unless P = NP) of the
JSP is often illustrated by considering the history surrounding attempts to locate opti-
mal solutions to a small benchmark problem instance introduced in 1963 by Fisher and
Thompson [FT63], which was not solved to optimality until 1986. Jain and Meeran
[JM99] provide an overview of the algorithmic developments leading to the solution of
this famous problem instance.

In the remainder of this chapter, we introduce the job-shop scheduling problem and
a number of related concepts that are integral to understanding and developing local
search algorithms for its solution. We begin in Section 2.1 and introduce key sub-classes
of problem instances in Section 2.2; empirical observations regarding the relative diffi-
culty of JSP instances are discussed in Section 2.3. In Sections 2.4 through 2.7, we dis-
cuss the concepts, specification, and visualization of solutions and schedules, in addition
to methods for quantifying the similarities between them. We conclude in Section 2.8
by discussing the notion of a critical path, a concept central to the design of local search
algorithms for the JSP, which we discuss in Section 3.

7

2.1 Definition, Notation, and Computational Complex-
ity

In the n × m job-shop scheduling problem (JSP), there are n jobs, each of which must
be processed exactly once on each of m machines. Each job i is routed through the
m machines in some pre-defined order πi, where πi(j) denotes the jth machine in the
routing order; clearly, 1 ≤ i ≤ n and 1 ≤ j ≤ m. Conversely, let π−1

i (j) denote the
position of machine j in the routing order of job i. The processing of job i on machine
πi(j) is denoted oij and is called an operation. An operation oij is processed on machine
πi(j) for an integral duration τij ≥ 0. For 2 ≤ j ≤ m, oij cannot initiate processing
until oij−1 has completed. The constraints imposed by the job routing orders and unit
capacity restrictions are respectively referred to as precedence constraints and resource
constraints. In contexts where the job and routing order indices of an operation are
irrelevant, we drop the dual subscript notation in favor of the single subscript notation,
e.g., ok or τk.

Each solution s to an instance Ω of the n×m JSP specifies a processing order for all
of the jobs on each machine. There are n! possible processing orders for each machine,
resulting in (n!)m possible solutions to Ω. However, these solutions are often infeasible
such that the combination of job routing orders πi and the machine processing orders
results in a cyclic ordering dependency between at least one pair of operations. Clearly,
realizable job-shop schedules cannot be obtained from infeasible solutions. A solution s
with no such cyclic dependencies is said to be feasible. We denote the set of all feasible
solutions to an instance Ω by SΩ.

Each solution s ∈ SΩ implicitly specifies an earliest possible start time estij for each
operation oij such that all precedence and resource constraints are satisfied; algorithms
for computing the set of estij are discussed in Section 3. The earliest possible completion
time ectij for an operation oij is then given by ectij = estij +τij . The makespan Cmax(s)
of a solution s ∈ SΩ is the maximum earliest completion time of the last operation
of any job i: i.e., Cmax(s) = max(ect1m, ect2m, · · · , ectnm). The optimal makespan,
denoted C∗

max, is equal to the minimal makespan of any solution in the set of all feasible
solutions, i.e., C∗

max = min∀s∈SΩ
(Cmax(s)).

The decision problem of finding a solution to the JSP with a makespan less than or
equal to some constant L is known to be NP -complete for m ≥ 2 and n ≥ 3 [GJS76].
Consequently, the optimization problem of locating a solution with a makespan equal
to C∗

max is (strongly) NP -hard. Even accurate approximation in the JSP is provably
intractable: unless P = NP , no polynomial-time algorithm exists that can guarantee a
solution to the JSP within 20% of the optimal makespan [WHH+97].

8

Operation
Job oi1 oi2 oi3

(i) τi1 πi(1) τi2 πi(2) τi3 πi(3)
1 5 1 8 2 2 3
2 7 3 3 1 9 2
3 1 1 7 3 10 2
4 2 2 3 3 1 1

Table 2.1: Specification of a 4 × 3 random JSP.

2.2 Specification and Classification of Problem In-
stances

An instance Ω of the n × m JSP is completely specified by the set of nm operation
durations τij and n job routing orders πi. We show the specification for a small 4 × 3
instance originally introduced by Foo and Takefuji [FT88] in Table 2.1. Beginning
with Fisher and Thompson [FT63], researchers typically generate problem instances
by sampling the τij independently and uniformly from a fixed-width interval [LB, UB].
Most often LB = 1 and UB = 99, e.g., see Taillard [Tai93] or Demirkol et al. [DMU98].
The definition of the JSP places no a priori restrictions on the form of the job routing
orders πi. Consequently, researchers frequently construct the πi by generating random
permutations of the integers [1..m]. We define random JSPs as instances constructed by
(1) sampling the τij uniformly from a fixed-width interval and (2) generating the πi from
random permutations of the integers [1..m]. Most well-known JSP benchmark instances
are random JSPs. The instance shown in Table 2.1 is a random JSP, with the τij sampled
from the interval [1, 10].

Researchers have introduced specializations of the random JSP by imposing specific
constraints on the job routing orders that more accurately reflect features found in some
real-world job shops. In these more structured JSPs, the set of m machines is partitioned
into wf contiguous, equally-sized subsets called workflow partitions. Clearly, wf = 1 in
random JSPs. In contrast, when wf = 2, the set of m machines is partitioned into two
subsets containing the machines 1 through m/2 and m/2+1 through m, respectively. In
these problems, every job must be processed on all machines in the first partition before
proceeding to any machine in the second partition. No constraints are placed on the job
routing orders within each partition. We refer to JSPs with wf = 2 simply as workflow
JSPs.

In a flowshop JSP, wf = m, and each job must visit the machines in an identical
pre-determined order. The flowshop JSP is closely related to the Permutation Flow-
Shop Problem (PFSP), in which the job processing orders for all machines is identical.
However, the optimal makespan to a PFSP instance is typically higher than the optimal
makespan of the corresponding flowshop JSP, where the job processing orders of differ-

9

ent machines can be variable. For most benchmark problems, the difference is relatively
small. The worst-case difference is substantially larger; Potts et al. [PSW91] show that
the optimal makespan of a PFSP can exceed that of the corresponding flowshop JSP by
a factor of more than 1

2

√
m.

To date, no research has been directed toward generating problem instances with
structured τij , although it is well-known that real-world scheduling problems typically
possess non-random operation processing times [PDS73] [DPS92]. Further, there is evi-
dence that problem structure can have a significant impact on the algorithm performance
[WBWH02]. Although we previously introduced a method for generating structured
permutation flow-shop scheduling problems [WBWH02], which can be easily extended
to the JSP, we do not consider such problem instances here. The present goal is to an-
alyze and understand the large body of research already performed on the JSP, which
necessarily constrains analysis to existing classes of problem instances.

2.3 The Relative Difficulty of Problem Instances

While developing algorithms for solving the JSP, researchers have made numerous qual-
itative observations regarding the relative difficulty of different problem instances. With
few exceptions, these observations appear to be algorithm-independent, such that rel-
ative difficulty with respect to constructive algorithms such as branch-and-bound also
holds for local search. For our purposes, these observations serve to validate the models
of problem difficulty for local search that we develop in Chapters 6 through 9. In partic-
ular, our models should at least be consistent with these observations, and ideally should
provide explanations (relative to local search algorithms) for the observed behavior.

The primary observations regarding the relative difficulty of JSP instances, which
have emerged from nearly 50 years of research, are as follows:

• Given fixed n and m, workflow JSPs are typically more difficult than random
JSPs.

• Given fixed n and m, flowshop JSPs are typically more difficult than workflow
JSPs.

• Given fixed m and wf, square (i.e., n/m ≈ 1) JSPs are typically more difficult
than rectangular (i.e., n/m � 1) JSPs.

• Given fixed n, m, and wf, relative problem difficulty is largely algorithm-
independent.

We now describe each of these observations in more detail, noting in advance that al-
though researchers have proposed intuitive explanations for each of these observations,
rigorous causal explanations remain elusive.

Workflow and flowshop JSPs differ from random JSPs in that the job routing orders
πi are more structured. While the presence of structure often makes problems easier

10

to solve, assuming the existence of an algorithm that exploits this structure, this is not
the case in the JSP. Specifically, given fixed, arbitrary n and m, the average difficulty
of problem instances, as measured either by the cost required to locate an optimal so-
lution or to prove optimality of a solution, is proportional to wf, i.e., those instances
that possess more workflow partitions are likely, on average, to be more difficult. In
particular, the most difficult instances are flowshop JSPs, where wf = m. Evidence
for this observation stems from a wide variety of sources. For example, Storer et al.
[SWV92] introduced sets of 50 × 10 random and workflow JSPs in 1992; since then,
the random instances have been solved to optimality, while the optimal makespans of
all but one of the workflow instances are unknown. Similarly, the most difficult 10× 10
benchmark instances, Fisher and Thompson’s infamous 10 × 10 instance and the orb
instances introduced by Applegate and Cook [AC91], are all “nearly” workflow or flow-
shop instances, in that the requirement that a job be processed on all machines in one
workflow partition before proceeding to any machine in the next workflow partition is
occasionally violated.

Large differences in the relative difficulty of square (i.e., n/m ≈ 1) versus rectangu-
lar (i.e., n/m > 1) JSPs are easily illustrated by considering the best-known makespans
for the problems in Taillard’s benchmark suite of JSP instances, which we discuss in
Section 4.6. Here, the optimal makespans of all the relatively small 20 × 20 and
30 × 20 instances are currently unknown, while the optimal makespan for all of the
larger 50× 15, 50× 20, and 100× 20 instances are known, despite astronomical differ-
ences in the sizes of the search space. Taillard [Tai94] performed an in-depth analysis
of changes in relative difficulty as n and m are varied, concluding that for a tabu search
algorithm, the cost of locating optimal solutions grows polynomially with increases in
n and m when n/m ≥ 6. In contrast, when n/m ≈ 1, increases in n (or equivalently
m) yield apparently exponential increases in the cost required by the same tabu search
algorithm to locate optimal solutions.

The third observation stems from the fact that in a set of fixed-sized problem in-
stances with a given wf, the easy (difficult) instances are easy (difficult) for all search
algorithms. So-called “open” problem instances, i.e., those for which the optimal
makespan is not known, have resisted solution by numerous algorithms based on dra-
matically different computational paradigms. Similarly, when the optimal makespan is
known, the computational effort required to locate an optimal solution is consistently
predictable from the historical reputation of the difficulty of a given instance.

The class of JSP instances that are considered “intractable”, in that the optimal
makespan has not been determined, clearly depends on the state-of-the-art in available
computing power. Jain and Meeran [JM99] indicate that a problem instance can be
considered hard or intractable if it possesses the following properties:

• n · m ≥ 200

• n ≥ 15

• m ≥ 10

11

• n < 2.5m

They further observe that “The problem is made more intractable when [wf=2] and
in such a situation n need not be less than or equal to 2.5m” ([JM99], p. 407). Al-
though this classification was introduced in 1998, it is still valid: significant advances
in computing power has not significantly expanded the range of tractable JSP instances.
It is currently beyond the power of exact algorithms to consistently determine optimal
makespans to 20 × 15, 20 × 20, and 30 × 15 benchmark instances, and approximation
algorithms have great difficulty locating optimal or even high-quality sub-optimal so-
lutions to these same instances. Even though smaller instances, e.g., 15 × 15 are now
considered tractable, this does not necessarily imply that it is easy for approximation
algorithms to locate optimal solutions; rather, it is possible for some approximation al-
gorithms, likely after extended periods of computation, to occasionally locate an optimal
solution.

2.4 Solutions: Specification, Properties, and Notation

One approach to specifying solutions to an n×m instance Ω of the JSP is to simply list
the job processing orders γj for each machine j, 1 ≤ j ≤ m. For example, an optimal
solution to the 4 × 3 instance shown in Table 2.1 is given as follows:

• γ1 = (1, 3, 2, 4)

• γ2 = (4, 1, 2, 3)

• γ3 = (2, 3, 4, 1)

Each machine processing order γj is simply an ordered permutation of the integers [1..n]
such that γj(i) denotes the ith job in the processing order of machine j. Conversely, let
γ−1

j (i) denote the position of job i in the processing order γj of machine j.
The precedence constraints imposed by the specification of the instance Ω introduce

at most one predecessor and one successor operation for any operation oij. We denote
the corresponding “job” predecessors and successors of oij respectively by JPij and JSij,
which are defined as follows:

• ∀i 6= 1, JPij = oi(j−1)

• ∀i 6= m, JSij = oi(j+1)

• JPi1 = JSim = ∗

where ∗ denotes a “null” or non-existent operation.
Similarly, for any operation oij , the set of machine processing orders γj introduce at

most one additional predecessor and successor operation apiece. We denote the corre-
sponding “machine” predecessors and successors of oij respectively by MPij and MSij,

12

o

o

o o

o

o

o o

o o

oo

Precedence Constraint

o o

1311 12

21 22 23

31 32 33

41 42 43

Disjunctive Constraint Machine #1
Disjunctive Constraint Machine #2
Disjunctive Constraint Machine #3

src snk

Figure 2.1: The disjunctive graph for an optimal solution to the 4×3 JSP instance shown
in Table 2.1.

which are defined as follows, given that oij is processed on machine x = πi(j) at posi-
tion y = γ−1

x (i):

• ∀y 6= 1, MPij = oγx(y−1)π−1
y−1(x)

• ∀y 6= n, MSij = oγx(y+1)π−1
y+1(x)

• if y = 1, MPij = ∗

• if y = n, MSij = ∗

where ∗ again denotes a non-existent operation.
An alternative method for specifying solutions is via a disjunctive graph. Instead of

explicitly specifying a job processing sequence for each machine, a disjunctive graph
specifies the relative processing order for each pair of jobs on a machine. Further, a
disjunctive graph (redundantly) specifies the precedence constraints imposed by the job
processing orders πj . Formally, a disjunctive graph is a directed graph G = (V, C ∪D).
The vertex set V contains nm + 2 vertices, where nm of these vertices represent the
operations of the n jobs, while the remaining two vertices represent dummy operations
known as the source and the sink, which we respectively denote osrc and osnk. Both
osrc and osnk are orphaned, in the sense that they do not belong to any job and are not
processed on any machine, such that τsrc = τsnk = 0. A precedence constraint is defined
between (1) osrc and each operation oi1 and (2) each operation oim and osnk.

The edge set C contains a directed edge for each precedence constraint imposed
by the job routing orders and the osrc and osnk operations. The edge set D contains a

13

directed edge between each distinct pair of operations that are processed on the same
machine. The edges (oij,oik) ∈ C are oriented such that j < k. Edges in C imposed by
the source and sink operations are respectively oriented as (osrc, oi1) and (oim, osnk). The
edges (oij,okl) ∈ D, by definition processed on the same machine x = πi(j) = πk(l),
are oriented such that γ−1

x (i) < γ−1
x (k). In Figure 2.1, we show a disjunctive graph for

an optimal solution, identical to the example solution specified via γ1 · · ·γ3 above, to
the instance specified in Table 2.1.

The job processing order and disjunctive graph specifications are equivalent, in that
one can be easily transformed into the other. Both methods can also be used to rep-
resent solutions in a search algorithm. For example, the source and sink operations
serve to equip the disjunctive graph with a single entry and exit point, which in turn
facilitates computation of various solutions attributes, including feasibility and opera-
tion start times. Although neither method is directly used to represent solutions for the
local search algorithms we consider, aspects of both methods are incorporated, e.g., see
Section 3.5.1. Further, the methods are used to compare and contrast various solutions,
as discussed below in Section 2.5.

2.5 Quantifying Solution Similarity

The disjunctive graph specification of a solution also provides a straightforward mea-
sure of the similarity or “distance” between two solutions. Recall that the precedence
constraints are independent of any particular solution to a given problem instance. Thus,
two solutions differ only in the orientation of their disjunctive (directed) edges. For any
solution s ∈ SΩ, the orientation of a disjunctive edge between two jobs i and j on ma-
chine k can be represented as a Boolean variable, which we denote precedesi,j,k(s). If
job i is processed before job j on machine k in solution s, precedesi,j,k(s) = true; oth-
erwise, it is false. The distance D(s1, s2) between two solutions s1, s2 ∈ SΩ to an n×m
JSP Ω is then given by

m
∑

i=1

n−1
∑

j=1

n
∑

k=j+1

precedesi,j,k(s1) ⊕ precedesi,j,k(s2) (2.1)

where the symbol ⊕ denotes the Boolean XOR operator. We denote the normalized
distance 2·D(s1,s2)

n(n−1)
by D(s1, s2) (0 ≤ D(s1, s2) ≤ 1). Equation 2.1 can also be used

to compute the distance between pairs of infeasible solutions or between infeasible and
feasible solutions. Finally, nothing in the definition of Equation 2.1 is specific to the
disjunctive graph – the distance can also be computed when solutions are specified as
machine permutations; the term “disjunctive graph distance” is used primarily for his-
torical reasons.

14

Inadmissible
 Schedules

Semi-Active
 Schedules

Non-Delay
Schedules

 Active
Schedules

 Optimal
Schedules

Figure 2.2: The hierarchy of schedules in the JSP.

2.6 Solutions versus Schedules and Schedule Taxonomy

A feasible solution s ∈ SΩ specifies a job processing order for each machine in which
there exist no cyclic ordering dependencies between pairs of operations. Any reference
to time in a solution is implicit – an earliest possible start time can be computed for each
operation. In contrast, a (feasible) schedule specifies a start time for each operation of
each job such that the precedence and resource constraints are satisfied. In general, there
is a one-to-many relationship between solutions and schedules, as there is no require-
ment to start operations at the earliest possible time; assuming an infinite time horizon,
there are infinitely many possible schedules arising from any given solution. We refer
to schedules in which operations are started later than their earliest possible start time
as inadmissible. However, to achieve the makespan Cmax(s) it is necessary to schedule
some subset of the operations at their earliest possible start time; the exact subset is
introduced in Section 2.8. Consequently, operations are in practice assigned to their ear-
liest possible start time; the resulting schedules are known as admissible or semi-active.
Clearly, there exists a one-to-one relationship between solutions and (admissible) semi-
active schedules; we use the two terms interchangeably.

In a semi-active schedule, the only way to reduce the makespan is to re-order the job
processing order on at least one machine. In particular, it may be possible to move an
operation earlier than its assigned start time without delaying the start time of any other
operation, e.g., if there is idle time in the middle of a machine sequence. Such a move
is called a global left shift, and a schedule in which no global left shifts are possible
is called an active schedule. A schedule in which no machine is kept idle if there is
an operation available for processing is called a non-delay schedule. By definition, all
non-delay schedules are also active schedules.

We show the taxonomy of schedules in the JSP in Figure 2.2. At least one optimal
schedule is necessarily active [GT60], but there may exist no optimal schedule that is
non-delay; Fang [Fan94] provides counter-examples. Although restricting search to the
set of active solutions appears advantageous, it is not always practical; the problem of

15

M1

M2

M3

5 10 15 20 25 30 320
Time

o o o

o

oo

o o

o

o

o

o
5 76 10 32

4 5 13 22 32

7 14 25 27

25

0

0

0

11

12

1321

22

23

31

32

3341

42

43

Figure 2.3: The Gantt chart visualization of the earliest start-time schedule for an opti-
mal solution to the 4 × 3 JSP instance specified in Table 2.1. Shaded regions represent
machine idle time.

verifying that a solution is active, i.e., checking that no global left-shifts are possible,
is NP -complete [Vae95]. Consequently, most local search algorithms for the JSP re-
strict search to the space of semi-active solutions. Nevertheless, active and non-delay
schedules do play an important role in local search, as we discuss in Section 3.5.3.

2.7 Visualizing Schedules

Solutions can be easily specified via a set of job processing orders or a disjunctive graph;
however, in both cases the notion of time is only implicit. Although we could easily
annotate these specifications with the assigned start time in the corresponding schedule
(again, we assume semi-active scheduling), the result is difficult to interpret and fails to
provide immediate insight into the qualitative nature of the overall schedule. To more
effectively visualize schedules, we turn to a scheme known as a Gantt chart [Gan19],
which simply records the activity of each machine over the duration of the schedule.
In Figure 2.3, we provide a Gantt chart visualization of the earliest start-time schedule
for an optimal solution, identical to that shown in Figure 2.1, to the 4 × 3 instance
specified in Table 2.1; here, C∗

max = 32. The activity of each machine is indicated on a
horizontal “time-line”, where gray and white areas respectively represent active and idle
times. Gantt charts can be used to identify bottleneck machines, potential flexibility in
the schedule, and critical paths, as we discuss next in Section 2.8.

2.8 Critical Paths and Critical Blocks

A semi-active schedule is generated by starting operations in a solution s at their earliest
possible time. However, it is possible to start some subset of operations later, yet still

16

M1

5 10 15 20 25 30 320
Time

o o o

o

oo

o o

o

o

o

o

1,2

1,1

1,32,1

2,2

2,3

3,1

3,2

3,34,1

4,2

4,3

5 76 10 32

4 5 13 22 32

7 14 25 27

25

0

0

0

Critical Path

Critical Path

A

B

A1

A2B1

B2

Figure 2.4: An earliest-start-time schedule for an optimal solution to the JSP instance
shown in Table 2.1. The solution has two critical paths, labeled A and B.

yield a schedule with makespan Cmax(s). Let lftij denote the latest finish time of opera-
tion oij such that if all operations oij complete processing by lftij the resulting solution
will have a makespan equal to Cmax(s); as with the earliest start times, the latest finish
times are implicitly specified by s. Define the latest start time lstij of an operation oij as
lftij − τij . In order to generate a schedule from s with makespan Cmax(s), all of the oij

must be assigned a start time in the interval [estij, lstij] such that the selected times are
mutually consistent, i.e., all precedence and disjunctive constraints are satisfied.

The set of operations oij such that estij = lstij are known as critical operations. If
the actual start time of a critical operation is delayed by even a single time unit, then
the makespan of the resulting schedule is guaranteed to be larger than Cmax(s). A
contiguous sequence of critical operations starting at time t = 0 and ending at time
t = Cmax(s) is called a critical path, such that no machine idle time exists along the
path. In general, a solution s can have multiple critical paths, and a single critical
operation can be shared by multiple critical paths.

Alternatively, we can define the time-to-end tteij of an operation oij in s as the differ-
ence between Cmax(s) and the latest possible end time of oij such that the schedule s is
still feasible and has a makespan not exceeding Cmax(s). Consider a solution s and the
inverse s′ of s, obtained by inverting all of the edges in the disjunctive graph of s, such
that the roles of osrc and osnk are exchanged. The tteij of s are then equivalent to the estij
of s′. Under this notation, an operation is critical if and only if estij+τij+tteij = Cmax(s),
i.e., when there is no “slack” in the scheduling of oij.

In Figure 2.4, we show the earliest-start-time schedule for an optimal solution (iden-
tical to that shown in Figure 2.3) to the JSP instance shown in Table 2.1. The solution
has two critical paths, A and B. Each critical path is composed of sub-sequences of
critical operations on the same machine; these sub-sequences are called critical blocks.
Critical path A is composed of critical blocks on machines 3 and 1, containing three
operations and a single operation, respectively. Analogous, critical path B is composed
of critical blocks on machines 1 and 3, respectively containing one and three operations.

17

No critical operation is shared by more than one critical path.
Critical paths play a central role in most high-performance algorithms for the JSP,

for the following reason: given a complete and feasible solution s ∈ SΩ, the only
way to reduce Cmax(s) is to re-order the sequence of operations on all critical paths
[vLAL92]. Re-ordering the operations along a single critical path is not guaranteed to
reduce Cmax(s), although several researchers implicitly make this assumption. The lat-
ter only holds when some of the critical operations on the path under consideration are
shared by all critical paths; by re-ordering the operations on a random critical path, we
are implicitly re-ordering the operations on all critical paths.

18

Chapter 3

Local Search and the Job-Shop
Scheduling Problem

Local search is a general algorithmic paradigm for solving combinatorial optimization
problems, including the JSP. Although local search algorithms first appeared in the
1970s, widespread application did not occur until much later. The first local search
algorithms for the JSP were introduced in the late 1980s, when simulated annealing and
tabu search were shown capable of locating high-quality solutions to notoriously diffi-
cult problem instances in relatively short periods of time. The success of these initial
explorations fueled an explosion of interest in local search algorithms for the JSP, such
that most variants of local search have been applied to the JSP by at least one group
of researchers. Currently, algorithms for the JSP based on local search are widely ac-
knowledged as state-of-the-art [BDP96] [JM99] [NS03]. The superiority of local search
for the JSP is even more remarkable if one considers the competition: over the last 50
years, researchers have applied nearly every optimization method to the JSP, ranging
from approaches based on mixed integer linear programming and Lagrangian relaxation
to branch-and-bound and greedy constructive heuristics.

In this chapter, we provide a general overview of local search for combinatorial
optimization, and detail its application to the JSP. We begin with a general definition of
a combinatorial optimization problem in Section 3.1. The key concepts underlying local
search algorithms, and how they are used to solve combinatorial optimization problems,
are introduced in Section 3.2. The performance of local search depends to a large degree
on the fitness landscape, a concept defined in Section 3.3. The introduction to local
search concludes in Section 3.4 with a discussion of the general behavioral properties
of these algorithms. We then shift to the specifics of local search algorithms for the JSP.
The core components found in all of the local search algorithms considered in this thesis
are detailed in Section 3.5. Much of the analysis of local search algorithms for the JSP
presented in later chapters is based on the set of optimal solutions to a problem instance;
the algorithm used for computing these sets is documented in Section 3.6.

19

3.1 Combinatorial Optimization Problems

Before defining a combinatorial optimization problem (COP), we first distinguish be-
tween a problem and a problem instance. Intuitively, a problem is a general description
of a particular type of task. The details of a particular task are specified by a problem
instance. For example, the task of determining whether a graph contains a Hamiltonian
Cycle is a problem, while an instance of the Hamiltonian Cycle problem specifies the
vertex and edge sets of a particular graph of interest. We denote a combinatorial opti-
mization problem by Π and an instance of Π by Ω. Ω is drawn from some (possibly
infinite) universe of possible problem instances, which we denote UΠ.

An instance Ω of a combinatorial optimization problem Π is fully specified by two
components: the state space and the objective function. The state space S is a finite,
although typically astronomically large, set of possible solutions to Ω. The objective
function F assigns a numeric ’worth’ to each state s ∈ S . The only formal restriction
on F is that there must exist a total order of the co-domain, such that a maximal or
minimal value is well-defined. Typically, F : S → R

+ or F : S → Z
+. The objective

function is commonly referred to as a fitness function.
Given a COP, the ultimate objective is to locate a solution s ∈ S such that F (s) is

optimal, i.e., minimal or maximal. Without loss of generality, we assume the objective
is minimization unless otherwise noted. Most COPs of practical interest are NP -hard,
such that optimization is inherently intractable, or at the very least extremely expensive.
Depending on the problem, sub-optimal solutions are acceptable, and the search objec-
tive is relaxed to locating the highest-quality solution possible in the alloted run-time.
For example, in many scheduling, logistics, and transportation problems, all feasible
sub-optimal solutions are executable, although they incur larger costs than absolutely
necessary. In other problems, sub-optimal solutions are useless. For example, in the
protein structure prediction problem, the objective is to predict the three-dimensional
structure of a sequence of amino acids. Because fully folded natural proteins possess
minimal free energy, solutions that yield sub-optimal free energy may exhibit very dif-
ferent three-dimensional structure than that observed in nature.

To solve a particular problem using local search, the problem must first be formu-
lated as a COP. For many well-known and widely-studied NP -hard problems, formu-
lation as a COP is straightforward. For example, in the Traveling Salesman Problem
(TSP) a salesman is given a set of n distinct cities ci, 1 ≤ i ≤ n, and the distances
d(ci, cj) ∈ R+ between all distinct pairs of cities ci and cj. The problem for the sales-
man is to find a tour (i.e., a Hamiltonian cycle) such that the tour length is minimal. A
COP formulation of the TSP is trivial: the state space S consists of the set of n! permu-
tations of the n cities, and the objective function F simply maps a permutation π to the
total tour distance Σn−1

i=1 d(cπ(i), cπ(i+1)) + d(cn, c1) (in this formulation, some elements
of S are redundant, as there are only (n − 1)!/2 unique tours).

Local search algorithms can also be applied to NP -complete decision problems.
However, in contrast to the TSP, these COP formulations are often somewhat forced, as

20

the notion of solution quality is not immediately relevant in a decision problem. For ex-
ample, in the Boolean Satisfiability Problem (SAT) we are given a formula Φ in proposi-
tional logic containing n variables and a conjunction of m clauses. A clause is a disjunc-
tion of some number of literals, each of which is either one of the n Boolean variables
or their negation. The problem is to determine whether there exists a set of assignments
to the n Boolean variables such that each of the m clauses is satisfied, i.e., at least one
literal in each clause is true. To formulate SAT as a COP, we define the state space S

as the set of all 2n possible assignments to the set of n Boolean variables. To define the
objective function, we let F map a variable assignment s to

∑m
i=1 satisfied(i, Φ, s), where

satisfied(i, Φ, s) returns 1 if the ith clause in Φ is satisfied under s, and 0 otherwise. The
resulting formulation is known as MAX-SAT, which enables local search algorithms to
solve certain instances (specifically, satisfiable instances) of the SAT decision problem.
If a local search algorithm is guaranteed to locate an optimal solution s, and F (s) = m,
then the problem is satisfiable; otherwise, it is not satisfiable. However, as we discuss
later in Section 3.4, the behavioral properties of local search severely limit the practical
applicability of local search to SAT and other decision problems.

Numeric parameter optimization problems can also be formulated as COPs for solu-
tion by local search algorithms. Pervasive in engineering fields, the objective is to find
a minimal or maximal value of some high-dimensional continuous function. To formu-
late these problems as COPs, we simply discretize each input parameter. The objective
function is then identical to the original function, with the exception that the domain of
the function is restricted to the set of values allowable under the chosen discretization.

3.2 Local Search and Combinatorial Optimization

Local search proceeds via iterative modifications to complete solutions, in contrast to
more traditional constructive optimization algorithms (e.g., branch-and-bound) that in-
crementally extend partial solutions into complete solutions. We restrict our attention
to the sub-set of local search algorithms that operate via iterative modifications to a
single complete solution s. Well-known examples of such single-solution local search
algorithms are simulated annealing, tabu search, and iterated local search. A significant
number of local search algorithms maintain a set or population of solutions, including
genetic algorithms [Mit98], optima linking [RW97], and path relinking [GL97]. How-
ever, because the behavior of single-solution local search algorithms is poorly under-
stood, it is only pragmatic to develop a full understanding of the simplest (albeit still
powerful) class of local search algorithms before tackling more complex derivatives.

All single-solution local search algorithms consist of the following four core com-
ponents: the state space, the objective function, the move operator, and the navigation
strategy. Search begins from an initial solution s = sinit that is generated either at ran-
dom or via some heuristic procedure, and proceeds via a sequence of iterations. The
move operator specifies the set of allowable modifications to the current solution s at

21

any given iteration, one of which is selected by the navigation strategy to serve as the
basis for the next iteration. The best solution encountered in any iteration is stored and
returned when the algorithm terminates. We now explore each of these four compo-
nents in more detail, providing simple examples of each as applied to both the TSP and
MAX-SAT.

3.2.1 The State Space and the Objective Function

Both the state space S and the objective function F are taken directly from Ω, the prob-
lem instance under consideration. For example, in an n-city TSP instance, the state
space consists of the set of n! permutations, each representing a possible tour; the objec-
tive function simply returns the total length of the input tour. In an n-variable, m-clause
MAX-SAT instance, the state space consists of the set of 2n Boolean vectors of length n;
the objective function returns the number of the m clauses that are satisfied. In general,
the details of how solutions are represented can impact the definition of both the move
operator and the navigation strategy. However, this is not the case for many well-known
combinatorial optimization problems – including MAX-SAT, the TSP, and the JSP. Con-
sequently, details of the representation can be ignored when discussing a particular local
search algorithm, although those details can have a major impact on implementation ef-
ficiency.

3.2.2 The Move Operator

Given a state space S , the notion of locality in a local search algorithm is provided by
the move or neighborhood operator N . N defines the set of allowable modifications
to the current solution s in any given iteration. In single-solution local search algo-
rithms, N : S → P(S), where P(S) denotes the power set of S . More complicated
move operators, e.g., those whose domain and/or codomain are cross-products of S and
P(S), respectively, are found primarily in evolutionary algorithms and other related ap-
proaches such as optima linking, path relinking, and scatter search. Given a solution s,
the set N (s) is known as the neighborhood of s. Similarly, if s′ ∈ N (s), then s′ is said
to be a neighbor of s.

Local search algorithms often employ rather simple move operators. For example,
the most widely used move operator for MAX-SAT maps each solution s ∈ S to the
subset of n solutions (where n is the total number of Boolean variables) in S that differ
from s in the value of a single variable assignment; this is known as the ’1-flip’ neigh-
borhood. Similarly, most local search algorithms for the TSP are based in part on the
2-opt move operator [LK73], where the neighbors of a solution s ∈ S are defined as
the subset of

(

n
2

)

solutions in S obtained by inverting the sub-tour between any pair of
distinct cities on the tour specified by s. More complex move operators can be obtained
via straightforward generalization of these basic operators, e.g., k-flip move operators
in MAX-SAT and k-opt move operators in the TSP.

22

Move operators can vary significantly in their attempts to maintain logical locality.
Both the 1-flip and 2-opt move operators induce the minimal possible change to the
current solution s: 1-flip inverts the value of a single Boolean variable, while 2-opt
changes exactly 2 edges. However, in local search algorithms such as iterated local
search, the differences between neighboring solutions can be much more substantial,
e.g., under the k-opt move operator for the TSP [JM97]. In both cases, however, the
perturbation is local in the sense that a neighboring solution is obtained via a single
application of a move operator. We raise this issue to note that a ‘local’ search algorithm
may in fact proceed by making drastic modifications to individual solutions.

Mathematically, the move operator N induces a relation on the space S × S , and
the properties of this relation can influence the performance of local search. For sim-
plicity, we refer to the relation induced by N simply as N . Although both the 1-flip and
2-opt move operators are symmetric, in that s′ ∈ N (s) ⇒ s ∈ N (s′), this is generally
not required (and is not true in the case of the JSP – see Section 3.5.2). Further, N is
necessarily transitive and anti-reflexive. Beyond defining the immediate neighborhood,
a move operator also defines the connectivity of the search space, i.e., what solutions
can be reached via a finite sequence of moves from an initial solution. A move oper-
ator N is said to induce a connected search space if from an arbitrary solution there
always exists a sequence of moves to an optimal solution. N is said to induce a fully
connected search space if there exists a sequence of moves between any two arbitrary
solutions. Both the 1-flip and 2-opt move operators induce fully connected, and con-
sequently connected, search spaces. However, many powerful, problem-specific move
operators induce disconnected search spaces.

3.2.3 The Navigation Strategy

The mechanism for selecting some neighbor s′ ∈ N (s) at each iteration of local search
is embodied in the navigation strategy, which we denote by ∆. One of the simplest navi-
gation strategies follows the basic principle of gravity: select a neighbor s′ ∈ N (s) with
F (s′) < F (s). Two well-known variants of this greedy strategy form the core of all most
navigation strategies. In next-descent search, the neighbors N (s) are randomly ordered,
and the first neighbor s′ ∈ N (s) such that F (s′) < F (s) is selected. In steepest-descent
search, the neighbor that provides the maximal decrease in the objective function value
(argmins′∈N (s)F (s′)) is selected, with ties broken randomly.

By iterating greedy descent, local search will eventually arrive at a solution s ∈ S

from which no immediate improvement in the value of the objective function is possible;
s is known as a local optimum, such that ∀s′ ∈ N (s),F (s′) ≥ F (s). Unless s is also a
globally optimal solution, the navigation strategy must then guide search to unexplored
regions of the search space. When there exists a neighbor s′ ∈ N (s) such that F (s) =
F (s′), s is actually contained in a plateau, which may or may not be locally optima; this
issue is discussed further in Section 5.2.

Within the local search community, strategies for escaping or avoiding local optima

23

are commonly referred to as meta-heuristics. Formally, a meta-heuristic is a heuristic
that dynamically alters the behavior of the core local search heuristics, typically in re-
sponse to the properties of recently visited solutions. In most local search algorithms,
the core heuristic is greedy descent; a meta-heuristic is activated when the descent strat-
egy becomes trapped in a local optimum, and deactivated once search is directed toward
new regions of the search space. Conceptually, meta-heuristics and greedy descent are
distinct forms of navigation strategies, each operating at a different level of abstraction.
However, in practice, the boundary between the two is often fuzzy, for example in simu-
lated annealing. Consequently, meta-heuristics are often viewed as atomic entities, such
that the distinction between the core heuristic and the meta heuristic is ignored. We
present them as such, while at the same time acknowledging any intended distinction
between the core and meta heuristic. Finally, we note that a local search algorithm is
in practice synonymous with the meta-heuristic it employs. For example, tabu search
frequently refers to a complete local search algorithm, with the remaining components
implicitly defined.

Perhaps the most obvious way to escape a local optimum is to generate a new start-
ing solution sinit and then re-initiate greedy descent. This process can be iterated until a
global optimum is located. The resulting meta-heuristic is commonly referred to as iter-
ated descent, which is distinct from the next-descent and steepest-descent procedures. In
practice, iterated descent is a simple way to improve the performance of the core greedy
descent strategies. Further, iterated descent can locate very high-quality solutions for
some combinatorial optimization problems, e.g., see Beveridge et al. [BGS97].

Clearly, the probability of iterated descent locating a global optimum approaches 1 as
the number of greedy descents N approaches ∞. However, from a practical standpoint,
iterated descent is only effective if the fitness distribution of the local optima assumes
a certain form, i.e., one in which the left tail of the distribution is non-negligible. For
many well-known combinatorial optimization problems, the fitness distribution of local
optima in small problem instances satisfies this requirement. At the same time, it has
been empirically demonstrated that such tails typically vanish at larger problem sizes
(for example in the TSP), causing iterated descent to perform poorly due to what has
come to be known as a “central limit catastrophe” [JM97].

More established and recognized meta-heuristics include simulated annealing (and
the related Metropolis sampling procedure), tabu search, and iterated local search. These
“big 3” are by no means an exhaustive list of the meta-heuristics available for devel-
oping single-solution local search algorithms. Nor do these meta-heuristics necessar-
ily represent the state-of-the-art for a particular combinatorial optimization problem,
although this is often the case. Rather, these meta-heuristics are widely applied and
well-studied, each providing good, if not exceptional, performance on a wide range of
problems, including the JSP. For these reasons, we restrict our attention to this sub-set
of meta-heuristics. The general concepts underlying these meta-heuristics are discussed
in Chapters 7 through 9, in addition to specific variations as applied to the JSP. With the
notable exception of guided local search [BV98], competitive local search algorithms

24

for the JSP are based either entirely or in part on one of these three meta-heuristics
[JM99]. Popular meta-heuristics that are (not) currently considered competitive on the
JSP are evolutionary algorithms and ant colony optimizers.

Analysis of meta-heuristics is relatively rare. Yet, analysis is critical in making
targeted improvements to existing meta-heuristics. Often, the motivation for a new or
modified meta-heuristic is ad-hoc, based on some very general observation or intuition.
But, as we discuss in Chapter 5, because the factors that influence the performance of
existing meta-heuristics are poorly understood, ad-hoc modifications may actually do
little to rectify “known” deficiencies. Further, researchers rarely prove, a-posteriori,
that the proposed modification is directly responsible for any observed differences in
performance. By analyzing well-known, existing meta-heuristics, we hope to establish
the deficiencies and benefits of these algorithms, and propose more principled methods
for developing new meta-heuristics.

3.3 The Fitness Landscape

Given a local search algorithm A and a combinatorial optimization problem Π, we are
interested in determining what makes a particular instance Ω ∈ UΠ easy or difficult for
A. Problem difficulty, or equivalently search cost, is dictated by the interaction of A
with the underlying search space. For example, suppose all globally optimal solutions
to Ω reside in a small region of the search space containing otherwise poor local optima.
If A consistently biases search toward regions of the search space containing generally
high-quality local optima, then the cost (on average) of locating optimal solutions to Ω
using A is likely to be large. In contrast, if A intensifies search in regions of the search
space with poor local optima, then A is more likely to locate optimal solutions to Ω in
shorter run-times.

Due to the central role of the search space in determining problem difficulty, much
of the research on models of problem difficulty has concentrated identifying structural
features of the search space that are likely to influence the cost of local search. Given
a local search algorithm A, the search space is defined by the combination of (1) the
state space S , (2) the move operator N , and (3) the objective function F . Formally, we
define the search space L = (S ,N ,F) as a vertex-weighted directed graph G = (V, E)
in which:

1. V = S

2. ∀v ∈ V , the weight wv of v is equal to F (v)

3. E = {(i, j)|i 6= j ∧ ∃i, j : i ∈ N(j)}

Within the local search community, the graph G is known as a fitness landscape, a
concept first introduced by the theoretical biologist Sewall Wright in 1932 [Wri32].

25

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

F(x
)

x

Local Optima

Local Optima

Global Optimum

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20

F(x
)

x

Bench

Local Optimum

Global Optimum

Bench

Bench Bench

Figure 3.1: Examples of Type I (left figure) and Type II (right figure) fitness landscapes.

We provide two examples of very simple fitness landscapes in Figure 3.1; in general,
landscapes are high-dimensional and extremely difficult to visualize. In both examples,
V = {1, 2, ..., 20} and N (x) = {x − 1, x + 1}, subject to the boundary conditions
N (1) = {20, 2} and N (20) = {19, 1}. Type I fitness landscapes are characterized by
deep, punctuated valleys with abrupt changes in the fitness of neighboring solutions. In
contrast, Type II fitness landscapes are dominated by plateaus of equally fit neighboring
solutions, with discrete jumps in fitness between the plateaus. We differentiate between
the two types of fitness landscapes for three reasons. First, different terminology is
associated with the two landscape types. Second, Type I and Type II landscapes have
different implications for the design of navigation strategies. Third, these two types are
representative of the fitness landscapes found in most NP -hard optimization problems.
For example, the TSP and MAX-SAT respectively possess Type I and Type II fitness
landscapes.

In a Type I fitness landscape, the two key features of interest are local optima and
global optima. A local optimum is a point x ∈ S such that ∀y ∈ N (x), F (x) ≤ F (y).
In our example Type I landscape, the following vertices are local optima: 3, 7, 13, 16,
and 18. A global optimum is a point x ∈ S that is both locally optimal and ∀y ∈ S ,
F (x) ≤ F (y). In our example Type I landscape, vertex 13 is the sole global optimum.
The attractor basin of a local optimum s consists of all s′ ∈ S such that s results with
non-zero probability when a descent-based procedure is applied to s′; as first noted by
Reeves [Ree98], attractor basin membership may be stochastic due to the different forms
of randomization commonly found in descent procedures.

Plateaus are the dominant feature of Type II fitness landscapes. Informally, a plateau
is simply an interconnected region of the fitness landscape where all points have equal
fitness. Formally, a plateau is defined as a set P ⊆ S such that:

1. ∀x ∈ P , F (x) = C for some constant C

2. For any two points x, y ∈ P there is a sequence of elements {x, a1, ..., an, y} such

26

that ∀i, ai ∈ S and F (x) = F (a1) = ... = F (an) = F (y) = C

3. (a) a1 ∈ N (x), (b) ∀i 6= n − 1, ai+1 ∈ N(ai), and (c) y ∈ N(an)

If for some x ∈ P there exists a y ∈ N (x) such that F (y) < C, the plateau is called a
bench, and all such solutions y are called exits. If there are no exits from a plateau, then
the plateau is a local optima. If the plateau is locally optimal and ∀x ∈ S , C ≤ F (x),
then the plateau is also globally optima. All benches, local optima, and global optima
are labeled in our example Type II fitness landscape. There are many additional nuances
regarding the terminology of features found in Type II fitness landscapes; an overview
can be found in Frank et al. [FCS97].

The qualitative differences between Type I and Type II fitness landscapes have an
important impact on the design of navigation strategies and meta-heuristics for local
search. For example, both next-descent and steepest-descent typically terminate once a
solution s is located with no lower-fitness neighbors. The implicit, built-in assumption
is that the local optimum s is not a member of a plateau, or that if s is a member of
a plateau, then the plateau itself is locally optimal. In general, these assumptions do
not hold when dealing with Type II fitness landscapes; if greedy descent terminates at
a local optimum, it is possible that the optimum resides on a bench, from which an
exit may exist. Additionally, the attractor basins in Type II fitness landscapes are often
very shallow. For example, Frank et al. [FCS97] have shown that in MAX-SAT, it is
often possible to escape a local optimum by accepting a single non-improving move.
Consequently, the emphasis on navigation strategies in Type II fitness landscapes is on
moving quickly from one plateau to another, either by finding an exit from a bench, or by
accepting non-improving moves. In contrast, in Type I fitness landscapes the emphasis
is on escaping local optima with potentially large and deep attractor basins (although
this emphasis can be misguided, as we show in Chapter 5).

3.4 Convergence Properties of Local Search Algorithms

A defining characteristic of many constructive optimization algorithms is completeness:
upon termination, an optimal solution is always returned. Completeness is derived from
the fact that an algorithm systematically explores the entire search space, although the
enumeration is typically implicit, e.g., as occurs in branch-and-bound. Only through
such systematic exploration can an algorithm both locate an optimal solution and prove
the optimality of the solution. In contrast, local search algorithms generally do not per-
form a systematic exploration of the fitness landscape, and are therefore incomplete:
although they can locate optimal solutions, they lack the ability to prove the optimality
of these solutions. Several researchers have noted that it is at least possible to specify
a complete local search algorithm. For example, any single-solution local search algo-
rithm can be made trivially complete by systematically re-starting the algorithm from
all possible solutions [Hoo98] – at which point the local search aspect of the algorithm

27

is largely irrelevant. To date, all practical implementations of local search algorithms
are incomplete.

In Chapters 6 through 9, the difficulty of a problem instance for local search is
equated with the cost, in terms of the total number of iterations, required to locate an
optimal solution. However, because local search algorithms are incomplete, there ex-
ists the possibility that the proposed measure is ill-defined, i.e., a global optimum may
never be encountered. Although strictly incomplete, there are many local search algo-
rithms that will eventually locate an optimal solution given a sufficiently large run-time.
This observation has led researchers to acknowledge the ability of some local search
algorithms to act in some sense as if they are complete.

With very few exceptions, local search algorithms are inherently stochastic. Suppose
that a stochastic local search algorithm A is executed on a problem instance Ω of size
K, and requires a CPU time of RTA,Ω,K to locate an optimal solution; RTA,Ω,K = ∞
if an optimal solution is never located. Because A is stochastic, RTA,Ω,K is a random
variable. Given this framework, we follow Hoos [Hoo98] in extending the traditional
notion of completeness by classifying the behavior of a stochastic algorithm A (and by
inference a local search algorithm A) on problem instances Ω of size K into one of the
following three categories:

• Complete: A stochastic algorithm A is complete if for each problem size K there
exists a Tmax,K such that for all problem instances Ω of size K, P (RTA,Ω,K ≤
Tmax,K) = 1. In other words, for each problem size K, there exists an instance-
independent but size-dependent CPU bound Tmax,K such that if A is allowed to
run for time Tmax,K, it is guaranteed to locate an optimal solution.

• Asymptotically Complete: A stochastic algorithm A is asymptotically com-
plete if for each problem instance Ω of size K there exists a Tmax,Ω such that
P (RTA,Ω,K ≤ Tmax,Ω) = 1. In other words, there exists an instance-dependent
CPU bound Tmax,Ω such that if A is allowed to run for time Tmax,Ω, it is guaranteed
to locate an optimal solution.

• Incomplete: A stochastic algorithm A is incomplete if there exists a problem
instance Ω of size K for which limt→∞ P (RTA,Ω,K ≤ t) < 1. In other words,
there exist problem instances for which A will never locate an optimal solution,
independent of the allocated CPU time.

No practical implementations of local search algorithms are complete; the only
known complete stochastic search algorithms are certain constructive algorithms that
employ stochastic backtracking procedures, such as Rapid Randomized Re-Starts
[GSK98]. Local search algorithms are therefore either asymptotically complete or in-
complete. Two factors are directly responsible for the particular classification: the move
operator N and the navigation strategy ∆. A necessary condition for approximate com-
pleteness is that the move operator N induce a connected search space. Further, this

28

condition is independent of the navigation strategy, i.e., a navigation strategy can never
overcome inherent deficiencies in the move operator. Finally, given a connected search
space, the property of asymptotic completeness requires that the navigation strategy
must eventually visit every point in the fitness landscape at least once, and avoid be-
coming trapped in particular regions of the fitness landscape.

3.5 Local Search and the JSP: Core Components

We now describe the set of core components found in all of the local search algorithms
for the JSP that we consider in later chapters. Specifically, we detail the state space,
representation, objective function, move operators, and initialization method; we defer
descriptions of meta-heuristics to those chapters in which we analyze the behavior of
specific local search algorithms.

3.5.1 State Space, Representation, and Objective Function

For an n × m instance Ω of the JSP, all of the local search algorithms we consider
restrict search to the sub-space of feasible solutions SΩ. Solutions are encoded using
the “permutation-and-graph” method [NS96], which is a restricted form of the disjunc-
tive graph containing no redundant disjunctive edges. Let s ∈ SΩ be specified via
the set of machine processing orders γj, 1 ≤ j ≤ m. Under the permutation-and-
graph method, s is represented as a vertex-weighted directed graph G(γ1, . . . , γm) =
(V, C ∪R(γ1, . . . , γm)). The sets V and C are identical to those found in the disjunctive
graph, with the exception that vertices and edges involving osrc and osnk are omitted. The
edge set R(γ1, . . . , γm) contains an edge (oij, ojk) if and only if (1) x = πi(j) = πj(k)
and (2) γ−1

x (i) = γ−1
x (j) − 1. In other words, disjunctive edges only exist between

adjacent operations in a machine order. Each vertex oi ∈ V is weighted by τi. In terms
of implementation, G(γ1, . . . , γm) can be encoded using two vectors of length mn, re-
spectively tracking the machine predecessor and successor operations (if they exist) of
each operation oi, 1 ≤ i ≤ mn; the job successor and predecessor operations need not
be stored, as they can be computed directly from the operation indices. Additionally,
we maintain pointers to the first and last operation to be processed on each machine. It
should be clear that the following can be easily extracted from the resulting encoding:
(1) the set of machine processing orders γi, (2) the machine predecessor and successor
operations MPij and MSij of any operation oij.

The objective function F (s) simply returns the longest vertex-weighted path in
G(γ1(s), . . . , γm(s)), i.e., the makespan Cmax(s). To compute Cmax(s), we first com-
pute the set of operation earliest start times using the algorithm shown in Figure 3.2,
due to Taillard [Tai94]. Let o denote the start operation. If o = ∗, then all of the
estij will be recomputed. If o 6= ∗, then only the estij of operations oij “downstream”
from o will be re-computed. Recall that estij = max(estMPij

+ τMPij
, estJPij

+ τJPij
)

29

function computeESTs (o)
Q = ∅
∀i, marked(oi) = false
if (o = ∗) then

Q = {oi|MPi = JPi = ∗}
else

Q = {o}
end
while Q 6= ∅ do

select an arbitrary oi ∈ Q
marked(oi) = true
Q = Q \ {oi}
compute esti
if JSi 6= ∗ then

pred = MPJSi

if pred 6= ∗ or marked(pred) then
Q = Q ∪ {JSi}

end
end
if MSi 6= ∗ then

pred = JPMSi

if pred 6= ∗ or marked(pred) then
Q = Q ∪ {MSi}

end
end

end
end

Figure 3.2: Pseudo-code for computing the set of operation earliest start times. See text
for details.

for any oij; by convention, est∗ = τ∗ = 0. The makespan Cmax is then given by
max(ect1m, ect2m, . . . , ectnm), with ectij = estij + τij . If necessary (see Section 3.5.2),
the set of operation tteij can be computed using an analogous algorithm that propa-
gates start-times from the rear of the schedule to the front. Both computeESTs and the
algorithm for computing the tteij are specializations of well-known algorithms for con-
structing a topological sort of the vertices in a directed graph, and typically consume
over 95% of the run-time in local search algorithms for the JSP.

30

3.5.2 Move Operators

Through purely syntactic manipulation of the machine processing orders, one can eas-
ily define a number of problem-independent move operators for the JSP. However, in
contrast to other combinatorial optimization problems (e.g., MAX-SAT), local search
algorithms for the JSP based on problem-independent move operators generally provide
very weak performance. The reasons are three-fold. First, the makespan of the current
solution cannot be reduced unless the move operator re-orders some sequence or sub-
sequence of critical operations [vLAL88]. By focusing on arbitrary operations, many
of the moves generated by problem-independent operators are provably non-improving.
Second, random manipulation of machine processing orders generally leads to infeasi-
ble solutions, forcing problem-independent move operators to perform computationally
expensive cycle checks. Third, the size of the neighborhood under problem-independent
move operators is generally quite large, leading to high-cost evaluation of the full neigh-
borhood.

The explosion of interest in local search algorithms for the JSP largely stems from
the development of powerful, problem-specific move operators, which use a deeper
structural knowledge of the JSP to focus search on the subset of moves that have the
potential to both decrease the makespan of the current solution and when possible avoid
infeasible solutions. All of the local search algorithms we consider are based on two
well-known problem-specific move operators for the JSP, which we denote N1 and N5 ;
our notation is borrowed from Blażewicz et al. [BDP96].

3.5.2.0.1 The N1 Move Operator The canonical problem-specific move operator
for the JSP was introduced by van Laarhoven et al. in 1992 [vLAL92] and is commonly
referred to as the N1 operator. The neighborhood of a solution s under the N1 operator
consists of the set of solutions generated by inverting the order of a pair of adjacent
operations on the same critical block in s, i.e., two operations oij and okl such that (1)
ectij = estkl, (2) πi(j) = πk(l), and (3) γ−1

x (i) = γ−1
x (k) where x = πi(j) = πk(l).

By focusing strictly on critical operations, N1 avoids a large subset of the moves that
cannot immediately reduce the makespan of the input solution s. Further, all neighbors
of s under N1 are feasible [vLAL92], eliminating the need for cycle checking. van
Laarhoven et al. also prove that the search space under N1 is connected: from an ar-
bitrary (feasible) solution, there exists a sequence of moves that leads to some global
optimum. Consequently, any local search algorithm based on the N1 operator at least
has the potential to exhibit asymptotically complete behavior. In contrast to move op-
erators for many well-known combinatorial optimization problems, the N1 operator is
asymmetric [Kol99]: s′ ∈ N1 (s) ; s ∈ N1 (s′). Nowicki and Smutnicki [NS96] show
that if N1 (s) = ∅, then Cmax(s) = C∗

max. In other words, if no move is possible from s,
which can occur if each critical block consists of a single operation, then s is optimal.

The neighborhood under N1 can be defined relative to either a single (typically
random) critical path, or all critical paths. As indicated in Section 2.8, re-sequencing the

31

order of operations on a single critical path is not guaranteed to reduce the makespan,
although this is commonly assumed. In our use of N1 , we follow Taillard [Tai94] in
inverting the order of critical operations appearing on any critical path.

Given a current solution s with the associated esti and ttei, the makespan Cmax(s
′) of

neighboring solutions s′ ∈ N1 (s) can either be computed exactly or it can be estimated.
Suppose s′ is obtained by inverting the order of two critical operations ok and ol; by con-
vention, assume that ok appears before ol in the machine processing order. To compute
Cmax(s

′) exactly, we first construct the machine processing orders of s′, subsequently
invoking computeESTs(ol) and computeTTEs(ok) to respectively update the esti and
ttei of operations in s′. Note that only the esti of operations downstream (and including)
ol and the ttei of operations upstream (and including) ok can be altered by inverting the
order of ok and ol. In contrast, estimation of Cmax(s

′) relies only on the esti and ttei of
the current solution s. Following Taillard [Tai94], we define the following:

• est
′

l = max(estMPk
+ τMPk

, estJPl
+ τJPl

)

• est
′

k = max(est
′

l + τl, estJPk
+ τJPk

)

• tte
′

k = max(tteMS
′

l
, tteJS

′

k
) + τk

• tte
′

l = max(tte
′

k, tteJSl
) + τl

The estimated makespan Cmax(s
′) is then given by max(est

′

l + tte
′

l, est
′

k + tte
′

k).
In Chapters 6 through 9, we develop cost models for various local search algorithms

based on the N1 operator. Although no longer considered state-of-the-art, the con-
nectivity property of the N1 operator enables these local search algorithms to exhibit
asymptotic completeness, a property that greatly simplifies the development of our cost
models. The distance between two solutions also plays a major role in our cost models;
ideally, such a distance should be expressed in terms of the underlying move operator.
Although computing the exact number of moves under a given move operator to trans-
form solution s1 into solution s2 is NP -hard [Vae95], the disjunctive graph distance
D(s1, s2) does provide a lower bound on the number of moves under N1 .

3.5.2.0.2 The N5 Move Operator Since its introduction, researchers have identified
several deficiencies of the N1 operator. Specifically, there exist many pairs of adjacent
critical operations for which swapping their relative order cannot improve the makespan
of the current solution. Based on these observations, more constrained variations of
the N1 operator have been developed. Here, the design goal is to eliminate provably
poor moves while retaining the ability to locate improving solutions [JRM00]. The key
observations were made by Matsuo et al. [MSS88] and Nowicki and Smutnicki [NS96].
Matsuo et al. proved that the makespan of the current solution can only be improved by
swapping adjacent pairs of operations that include either the first or last operations of a
critical block. Nowicki and Smutnicki further showed that swapping either the first two
operations on the first critical block or the last two operations on the last critical block

32

can never improve the makespan of the current solution. Following Blazewicz et al.
[BDP96], we refer to the move operator enforcing both restrictions as the N5 operator.

The N5 operator is noteworthy because it is an integral component of state-of-the-
art local search algorithms for the JSP [NS96] [NS01][NS02][NS03]. Relative to N1 ,
the neighborhood size under N5 is very constrained. Further, the fitness landscape
under N5 is disconnected, such that local search algorithms based on N5 can never be
asymptotically complete. Yet, counter-intuitively, this drawback has not impeded the
performance of local search algorithms based on N5 .

In Chapters 8 and 9, we introduce several variations of local search algorithms based
on the N5 operator. Following Nowicki and Smutnicki [NS96], we restrict the pairs of
adjacent critical operations to those appearing on a single critical path. Experimental
results reported by Jain et al. [JRM00] indicate that the performance of local search al-
gorithms based on N5 is independent of the details of the method for selecting a critical
path (even if all critical paths are identified). Consequently, we extract the sequence
of operations along a random critical path, beginning at an arbitrary operation oy with
ecty = Cmax(s) and traversing backward along critical job/machine predecessors until
an operation ox is encountered with estx = 0. Under this methodology, we only need
to maintain the set esti of operation earliest start times. Nowicki and Smutnicki [NS01]
indicate that estimation of neighboring solution makespans can detrimentally impact the
performance of tabu search algorithms based on N5 . Thus, we compute the makespan
of neighboring solutions exactly; when swapping a pair of critical operations ok and ol,
we update the operation esti by invoking computeESTs(ol).

3.5.2.0.3 Other Move Operators Another trend in the design of move operators for
the JSP is to expand the neighborhood size by swapping either multiple pairs of adjacent
critical operations or pairs of non-adjacent critical operations. By increasing the number
of neighbors, the goal is to increase the probability of locating an improving solution.
Although diametrically opposed to the trend toward more constrained variants of the
N1 operator, high-performance local search algorithms based on such operators do ex-
ist, e.g., the algorithm by Balas and Vazacopoulos [BV95]. Blazewicz et al. [BDP96]
provide an excellent overview of move operators for the JSP, including N1 and N5 .

3.5.3 The Initial Solution

We initiate search in all of our algorithms from either random semi-active solutions or
random local optima. To construct a random semi-active solution, we use a method
introduced by Mattfeld [Mat96]. Given an n × m problem instance, we first construct
a vector v consisting of m ’1’s, followed by m ’2’s, . . ., terminated by m ’n’s. For
example, given a 4 × 3 instance, v = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]. We then construct a
random permutation of the indices 1 through mn, and re-order v accordingly. To build
a solution, v is scanned from indices 1 to mn. Let x = v[i] denote the job located at
position i in v. At each iteration i, the next available operation oxy of job x is added to the

33

end of the machine order γπx(y). Upon termination, the resulting solution is guaranteed
to be acyclic. We construct a random local optimum by applying steepest-descent local
search to a random semi-active solution; ties between equally good moves are broken
randomly.

Researchers have introduced a wide variety of initialization methods for the JSP. We
use random solutions as a baseline, as it is unclear what benefit, if any, more complex
initialization methods have on the performance of local search. We introduce some of
these additional methods and analyze their impact on performance in Section 7.10.3.

3.6 Locating Globally Optimal Solutions

Although the focus in this thesis is on local search algorithms for the JSP, complete
constructive algorithms are required to identify the optimal makespans of the test prob-
lems introduced in Section 4.6. Further, much of our analysis requires knowledge of all
optimal solutions to a problem instance, which again requires a complete constructive
algorithm for the enumeration. Complete, constructive algorithms for the JSP fall into
two broad categories: branch-and-bound and constraint programming. Both types of
algorithm are equally effective on the relatively small (e.g., 10 × 10 and smaller) prob-
lem instances we consider. For our experiments, we (admittedly arbitrarily) selected a
state-of-the-art constraint programming algorithm.

The history of constraint programming (CP) and the JSP is relatively short, although
very effective search algorithms have been developed in this time. CP algorithms for the
JSP search the space of 2(m·

n(n−1)
2

) possible orientations for the m · n(n−1)
2

disjunctive
edges of D in the disjunctive graph G = (V, C ∪ D). CP algorithms are formulated to
solve decision problems. Thus, we must first specify a target makespan L, such that the
goal is to identify a solution with a makespan ≤ L. To determine the optimal makespan
of a JSP instance, we begin with L equal to the makespan of a random semi-active
solution, and iterate the CP algorithm for successively smaller values of L. The process
terminates once a makespan K is identified for which no solution exists, such that the
optimal makespan C∗

max is given by K + 1.
Search in CP is constructive. At each step there exists a partial solution s where

some set D′ ⊆ D of disjunctive edges remain unoriented; each such edge specifies
a pair of operations which have yet to be sequenced. CP algorithms for the JSP use
variable ordering heuristics to select an edge x ∈ D′ to orient, and use value ordering
heuristics to select a particular orientation for x. After selecting an orientation for an
undirected edge x ∈ D′, CP algorithms for the JSP perform constraint propagation,
which reduces the range of feasible operation start and end times. These ranges can
then be used to determine whether a specific orientation is required to produce a feasible
solution, or if any orientation leads to an infeasible solution. If there exists an edge
x ∈ D′ with no orientation leading to a feasible solution, search backtracks. If there
exists an edge x ∈ D′ requiring a specific orientation, that orientation is selected. When

34

neither case is applicable (both orientations are feasible for all x ∈ D ′), the variable
and value orderings heuristics are used to select and orient a disjunctive edge. The
effectiveness of CP algorithms for the JSP is largely due to the development of very
strong, problem-specific constraint propagation methods. These methods are able to
substantially reduce the range of feasible operation start and end times, which allows
search to quickly identify both forced and infeasible orientations, leading to a potentially
dramatic reduction in the size of the search space. A detailed overview of both constraint
propagation and variable/value ordering heuristics in the JSP is provided in Beck and
Fox [BF00].

The specific CP algorithm we use is also documented in Beck and Fox [BF00], and
possesses the following key features:

• The Sum Height texture-based variable and value ordering heuristics.

• Limited Discrepancy Search (LDS)[HG95] for backtracking.

• Arc-B-consistency [Lho93] constraint propagation for both precedence and dis-
junctive constraints.

• Edge-Finding Exclusion[Nui94] constraint propagation for subsets of operations
on the same machine.

• Edge-Finding Not-First/Not-Last[Nui94] constraint propagation for subsets of op-
erations on the same machine.

To enumerate the set of optimal solutions to a problem instance, we first compute the
optimal makespan using the CP algorithm and then re-initiate search with L = C∗

max.
However, we modify the basic algorithm as follows: whenever a complete solution
s ∈ SΩ with Cmax(s) = C∗

max is identified, the solution is recorded and the algorithm
backtracks as if an infeasible solution was detected. While the modification is slight, the
run-time ramifications are not: enumeration of optimal solutions costs at least as much
as proving optimality. Finally, we also have the requirement (e.g., see Section 7.6.1) to
enumerate the set of all sub-optimal solutions to an instance with a makespan between
C∗

max and C∗
max + X , which is accomplished simply by letting L = C∗

max + X .

35

Chapter 4

Developing and Validating Cost Models
of Local Search: Methodological Issues

Most research on local search focuses on developing newer, better-performing algo-
rithms. The goal in such research is to demonstrate algorithm performance. Paul Cohen
notes in his book Empirical Methods for Artificial Intelligence ([Coh95], p. 249) that “It
is good to demonstrate performance, but it is even better to explain [emphasis added]
performance.” The hard sciences advance via the development of accurate models of the
object or objects of interest, models that are both consistent with existing observations
and suggest new behavioral hypotheses. Currently, models of local search algorithms
for any combinatorial optimization problem are rare to non-existent.

In developing a model of a given object, we generally concentrate on capturing spe-
cific behaviors or small sets of behaviors. In the context of local search algorithms for
combinatorial optimization, the behavior of interest is generally the cost required by an
algorithm to locate an optimal solution to a problem instance. Due to the stochastic
nature of local search, search cost is a random variable with a particular distribution.
Cost models of local search are behavioral models that capture various aspects of the
cost distribution. Most often, we focus on the average or typical search cost, as defined
by either the distribution mean or median. As we show in Chapters 6–10, average cost
can vary by as much as eight orders of magnitude for sets of even relatively small JSPs.
One objective in developing cost models is to account for a significant proportion, and
ideally all, of this variability. A more aggressive, penultimate objective is to develop
cost models that account for the entire distribution of search cost.

In this chapter, we discuss our general approach to developing the cost models of
local search algorithms introduced in Chapters 6 through 9. We investigate three dif-
ferent types of cost models, differing in both the type of information upon which they
are based and the extent to which they attempt to capture algorithm run-time dynam-
ics. Static cost models, described in Section 4.1, are functions of one or more features
of the fitness landscape, and only implicitly consider algorithm dynamics. In contrast,
quasi-dynamic and dynamic cost models are based on analyses of algorithm run-time

36

behavior. Quasi-dynamic cost models, described in Section 4.2, are functions of sim-
ple summary statistics of algorithm behavior. Dynamic cost models, discussed in Sec-
tion 4.3, explicitly model low-level algorithm behavior using Markov chains. In addi-
tion to defining the primary characteristics of each model type, we also discuss what has
been already been achieved for other combinatorial optimization problems, and what
constitutes reasonable expectations. Despite the behavioral insights that cost models
can provide, their power is also fundamentally limited; we investigate this issue in Sec-
tion 4.4. Although our goal is to account for the observed variability in average search
cost, our dynamic cost models can potentially account for the full distribution of search
cost, via the methodology discussed in Section 4.5. We conclude in Section 4.6 by in-
troducing the various test problems that we use to develop, test, and validate our cost
models.

4.1 Static Cost Models

Static cost models are strictly based on fitness landscape features; algorithm dynamics
are completely and explicitly ignored. In a static cost model, the independent variables
are fitness landscapes features, or combinations thereof, and the dependent variable is
the mean or median search cost. To facilitate model evaluation, static cost models are
expressed as linear or multiple regression models. Under this formulation, the accuracy
of a static cost model can be naturally quantified as the r2 value of the corresponding
regression model, i.e., the proportion of the total variability accounted for by the model.
Most of the static cost models we consider are based on a single feature of the fitness
landscape. For purposes of brevity, we often denote a static cost model based on the
feature X as the X static cost model, or simply the X model. Similarly, given the close
relationship between static cost models and regression models, we frequently use the
two terms interchangeably. Finally, regression methods make certain assumptions (e.g.,
model errors are homogeneous across the range of the independent variable) in order to
generate valid statistical inferences concerning model parameters. These assumptions
are generally not satisfied in our research. Our motivation in using regression models
is to (1) quantify overall model accuracy using the associated r2 value and (2) analyze
worst-case deviations from a predicted/expected value. Failure to satisfy regression
assumptions does not impact our ability to achieve either of these objectives.

The quality of a static cost model is tied to the model r2: models with larger r2

values are more accurate. However, there are limits on the absolute level of accuracy
that we can reasonably expect to achieve. As discussed in Chapter 5, the most accurate
static cost models of local search for other NP -hard problems only yield r2 ≈ 0.5 in the
worst case, which is typically observed for the most difficult sets of problem instances.
Although failure to develop more accurate static cost models, despite intense research
effort, is not evidence for their impossibility, there does appear to be a practical limit
on what can be achieved. Because static cost models ignore algorithm dynamics, the

37

existence of models with even r2 ≈ 0.5 is in some sense surprising. In expressing fitness
landscape features as atomic numeric quantities, there is also the obvious potential for
loss of information. Further, there are practical (although not theoretical) limits on the
accuracy with which we can measure various quantities, including search cost.

4.2 Quasi-Dynamic Cost Models

A first-order approach to improving static cost models is to incorporate coarse-grained
information concerning algorithm run-time behavior. For example, we might track sim-
ple summary statistics that capture defining characteristics of the set of solutions gener-
ated by an algorithm. Given such summary statistics, we can then construct regression
models relating these summary statistics to search cost, and quantify model accuracy
as the resulting r2. We refer to such cost models as quasi-dynamic cost models. The
“quasi-dynamic” modifier derives from the fact that the model is based on aggregate
statistics relating to run-time behavior, as opposed to an explicit model of algorithm
run-time dynamics. The sole difference between static and quasi-dynamic cost models
is in the nature of the information captured in the independent variable(s).

Most of the issues relating to possible limitations on the accuracy of static cost mod-
els equally apply to quasi-dynamic cost models. However, because they account for
some aspects of run-time behavior, we would expect in some sense the accuracy of
quasi-dynamic cost models to be higher than that of static cost models, although less
than the fully dynamic cost models considered below. The most accurate cost models
of local search algorithms developed to date are quasi-dynamic [SGS00], and achieve a
worst-case accuracy of r2 ≈ 0.65.

4.3 Dynamic Cost Models

Because they are respectively based on fitness landscape features and summary statis-
tics of run-time behavior, static and quasi-dynamic cost models yield no direct insight
into the dynamical behavior of local search. To gain insight as to why particular land-
scape or run-time features are highly correlated with search cost, we turn to dynamic
cost models. Dynamic cost models are high-resolution models of the run-time behavior
of local search algorithms. Recently, Hoos [Hoo02] used dynamic models similar to
those developed in Chapters 6- 9 to posit an explanation for certain run-time behaviors
observed for Walk-SAT and other local search algorithms in the MAX-SAT phase tran-
sition region. However, the ability of these models to account for variability in problem
difficulty was not considered.

The dynamic cost models we develop are instances of a Markov chain. Each state
of the Markov chain captures the distance i to the nearest target solution, in addition
to other algorithm-specific attributes. Unless otherwise noted, the target solutions are
optimal solutions. Transitions in the Markov chain correspond to iterations of the local

38

search algorithm. A dynamic cost model is constructed by specifying a set of states,
and then estimating the various transition probabilities between the states. The details
of the estimation process are algorithm-dependent, and are discussed in Chapters 6–9.
The search cost predicted by a dynamic cost model is defined as the mean number of
iterations until an absorbing state (i.e., a state with i = 0) is encountered. For some
Markov chains, analytic formulas for the mean time-to-absorption are easily derived.
When analytic formulas are not immediately available, we resort to simulation of the
cost model: search cost is defined as the mean number of iterations (typically out of
10,000 independent trials) required to reach an absorbing state.

To quantify the accuracy of a dynamic cost model, we use straightforward linear re-
gression models, in which the predicted and actual search costs serve as the independent
and dependent variables, respectively; model accuracy is then quantified by the r2 value
of the linear model. Dynamic cost models differ from their static counterparts in that
they explicitly consider the meta-heuristic, and move beyond simple numeric character-
izations of either fitness landscape features or run-time behavior. Consequently, we a
priori anticipate higher levels of accuracy than are possible for static and quasi-dynamic
cost models. This conjecture is verified in our analyses: the worst-case r2 for any of our
dynamic cost models is 0.96. However, the near-perfect accuracy does not come with-
out costs: dynamic cost models are generally more expensive to construct than static or
quasi-dynamic cost models, and are generally far less intuitive.

4.4 Descriptive Versus Predictive Cost Models

For all practical purposes, the cost models we develop are purely descriptive, in that
they provide a posteriori explanations for why one problem instance is more difficult
than another for local search. In principle, our models could be used to compute a
relatively tight confidence interval, via standard regression techniques, for the expected
cost required to locate an optimal solution to a new problem instance. However, because
the most accurate models are functions of the set of all optimal solutions to a problem
instance, the effort required to generate the prediction actually exceeds that of simply
locating an optimal solution. Given an accurate cost model, the problem of run-time
prediction is essentially equivalent to the problem of estimating the value of the model
parameters. The nature of the cost-accuracy trade-off in model parameter estimation is
currently an open research question.

This does not imply that cost models are a scientific curiosity, useless in practice.
Our cost models do make specific predictions regarding the behavior of local search
algorithms (e.g., see Chapter 11), which we confirm using empirical testing. Further,
and perhaps most importantly, our models explicitly identify those features of the fitness
landscape that are overwhelmingly responsible for problem difficulty in local search. By
identifying such features, we are enabling algorithm designers to focus on the areas most
likely to yield performance improvements, and to move beyond the ad-hoc, benchmark-

39

driven design methodology that is current employed [Hoo95].

4.5 Run-Length Distributions

We follow Hoos [Hoo98] in referring to the full distribution of search cost as the run-
length distribution, or RLD. Ideally, we want to account for the full RLD, and not just
variability in the average search cost. Static and quasi-static cost models are structured
specifically to account for variability in average search cost, and cannot be immediately
extended to model the full RLD. In contrast, dynamic cost models, at least in theory,
can account for the full behavioral range of an algorithm. Consequently, it is relatively
straightforward via simulation to generate a predicted RLD from a dynamic cost model.

For a given problem instance, we can sample both the predicted and actual search
costs from a variety of initial solutions, and from this data generate empirical RLDs in
the form of cumulative density functions, or CDFs. We are then interested in testing
two specific hypotheses: (1) What is the distribution underlying a particular RLD? and
(2) Are the predicted and actual RLDs identically distributed? Both hypotheses can be
tested via a goodness-of-fit test. Although empirical RLDs are obviously discrete, we
treat them as continuous random variables, primarily in order to avoid issues related to
specification of the bin size in the standard χ-square goodness-of-fit test for discrete
random variables. Instead, we use a two-sample Kolmogorov-Smirnov (KS) goodness-
of-fit test for both hypotheses. In either case, the null hypothesis is that the distributions
underlying both samples are identically distributed. The KS test statistic then quanti-
fies the maximal distance between the (hypothesized or estimated) CDFs, and the null
hypothesis is rejected if the distance between the two CDFs is sufficiently large [SM90].

Our primary goal in investigating the ability of our cost models to account for the
full RLD is to fully disclose (as opposed to mask) any deficiencies in those cost models.
While accurate prediction of the full RLD is the ideal objective, we note in advance that
we do not achieve this goal. However, the predicted and actual RLDs are generally qual-
itatively (and occasionally quantitatively) identical, providing additional evidence that
our dynamic cost models do accurately reflect algorithm run-time behavior. Further, as
we discuss in Chapters 6–9, we believe the discrepancies are largely due to deficiencies
in our transition probability estimation process.

4.6 Test Problems

Obviously, cost models must be constructed, tested, and validated using one or more sets
of problem instances. It is therefore necessary to define a selection criterion. Research
on algorithms for the JSP is nearly without exception performed using test problems

40

available from either the OR Library 1[Bea90] or Demirkol et al. 2[DMU98]. These two
benchmarks contain an aggregate 242 problem instances, of variable size and difficulty
[Jai98].

The immediate temptation is to select subsets of the most challenging benchmark
problems: high accuracy on such benchmarks would strongly validate any cost model
of local search. However, for a variety of both methodological and technical reasons, it
is instead necessary to use sets of relatively small test instances. Many of the cost models
developed in Chapters 6-9 are functions of all optimal solutions to a problem instance,
which number in the millions even for small problem instances (e.g., see Section 5.3.1).
Additionally, because search cost is a random variable, numerous samples are typically
required to achieve stable estimates of the average search cost, leading to substantial
aggregate run-times. Large sets of problem instances are also necessary to generate reli-
able statistics; for any given problem size, typically fewer than 10 benchmark instances
are available.

The approach to developing cost models taken in this thesis is as follows. First, large
sets of small-dimensional problem instances are used to construct the cost models and to
perform preliminary validation. Second, scalability of the cost models is assessed using
smaller sets of larger-dimensional problem instances. In order to link results to those
previously reported in the literature, the cost models are also validated using benchmark
instances whenever possible. In Chapters 6-9, the primary focus is on developing cost
models of local search algorithms for random JSPs. Later, in Chapter 10, the resulting
models are extended to more structured instances, i.e., workflow and flowshop JSPs.
Below, the sets of problem instances used throughout this thesis, including both random
and structured JSPs, are detailed.

4.6.1 Random JSPs

We construct our cost models and perform a first-order validation using sets of 6×4 and
6 × 6 problems instances, each containing 1,000 problem instances. For each instance,
the τij were uniformly sampled from the interval [1, 99] and the job routing orders πi

were constructed using random permutations of the integers [1..m]. In contrast to Tail-
lard [Tai93] and other researchers, we do not filter for difficult problems. Given that
we are interested in cost models for typical problem instances, and any filtering would
bias the resulting problem sets. While small in comparison to benchmark instances,
these two problem sets respectively represent the largest rectangular and square sizes
for which we can currently develop (due to the limitations of computing technology)

1Available from: http://www.ms.ic.ac.uk/info.html

2Available from: http://palette.ecn.purdue.edu/ uzsoy2/benchmark/problems.html

41

cost models using a large number of samples, i.e., problem instances.
To address scalability concerns, we also evaluate the accuracy of our models on a

set of 100 random 10 × 10 instances (generated using the same procedures and param-
eter settings associated with the smaller problem sets). As indicated in Section 2.3,
10 × 10 instances are no longer viewed as particularly challenging for state-of-the-art
JSP algorithms. However, these are the largest problems for which optimality can be
routinely established by complete (i.e., branch-and-bound or constraint programming)
algorithms, and most algorithms for the JSP still have difficulty in consistently locating
optimal solutions to these problems in reasonable periods of time.

To tie our results to the JSP literature, we also analyze the accuracy of our cost mod-
els on the following well-known 10×10 benchmark problems, all of which are available
from the OR Library: la16-la20, abz, and abz6. Lawrence [Law84] introduced
la16-la20, which were generated by uniformly sampling the τij from the interval
[5, 99]. Adams et al. [ABZ88] introduced abz5 and abz6; here, the τij were uniformly
sampled from the interval [50, 100]. With a single exception (Fisher and Thompson’s
ft06 6 × 6 instance), these instances are the smallest random JSPs in widespread use.

Although the bulk of our research is based on the 6 × 4, 6 × 6, and 10 × 10 prob-
lem sets introduced above, we also consider other sets of random JSPs at various points
throughout this thesis (e.g., in our analysis of the JSP fitness landscape presented in
Chapter 5). For each such problem set, we again generate the instances by uniformly
sampling the τij from the interval [1, 99] and generating the πi from random permuta-
tions of the integers [1..m].

4.6.2 Sub-Optimal Random JSPs

Although we are primarily interested in modeling the cost required to locate optimal
solutions, we do assess, at various points in Chapters 7 and 8, the ability of our models to
account for the variability in the cost required to locate sub-optimal solutions to random
JSPs. To enable such testing, we extend our 6 × 4 and 6 × 6 problem sets as follows:
for each instance π with an optimal makespan C∗

max, we generate 25 new instances with
a ’virtual’ optimal makespan of C∗

max + x by varying x from 1 to 25. Each such sub-
optimal problem set contains 25,000 problem instances. The maximal offset of 25 was
imposed due to the extreme numbers of solutions (e.g., ≥ 5 million) at x > 25.

4.6.3 Workflow and Flowshop JSPs

We analyze the ability of our cost models to generalize beyond the random JSP using
sets of 6× 4, 6× 6, and 10× 10 workflow and flowshop JSPs. The 6× 4 and 6× 6 sets
contain 1,000 instances apiece, while the 10×10 sets contain 100 instances apiece. In all
cases, the τij were uniformly sampled from the interval [1, 99]. The job routing orders
πi for the workflow JSPs were constructed by concatenating random permutations of the
integers [1..m/2] and [m/2 + 1..m]; in flowshop JSPs, the πi are deterministic.

42

As with cost models for the random JSP, we also consider well-known structured
benchmark JSPs in order to link our results with the literature. Although no pure work-
flow or flowshop 10×10 benchmark instances are available, several instances do possess
structured job routing orders that mirror workflow or flowshop partitions. For example,
the job routing orders in Fisher and Thompson’s infamous ft10 instance are very simi-
lar to those found in workflow JSPs. Similarly, Applegate and Cook [AC91] introduced
ten 10 × 10 instances, denoted orb01-orb10, whose job routing orders bear strong
similarity with workflow or flowshop JSPs. All 11 of these instances were generated by
uniformly sampling the dij from the interval [1, 99].

43

Chapter 5

Structural Characteristics of the JSP
Fitness Landscape

The performance of any local search algorithm is dictated by the interaction of the meta-
heuristic with the underlying fitness landscape. Toward understanding this interaction,
researchers have initiated numerous investigations of the structural characteristics of
the fitness landscapes of various combinational optimization problems. As a result,
several fitness landscape features have been identified that have been shown, via abstract
argument or in specific circumstances, to influence problem difficulty for local search.
Examples of such features include1:

• The number and/or distribution of local optima

• The strength and size of local optima attractor basins

• The size and extension of the search space

Although the importance of these features is widely acknowledged, little or no empirical
evidence exists to substantiate the extent to which any of these features, or combination
thereof, is actually correlated with local search cost. Because the strength of the rela-
tionships have not been quantified, it is possible or even likely that the prime factor(s)
dictating problem difficulty for local search have either yet to be identified or remain
largely unexplored.

Structural features of the fitness landscape also have, or at least should have, a ma-
jor influence on the design of local search algorithms. Meta-heuristics differ largely
in their approach to escaping the attractor basins of local optima, and the complexity

1Kauffman (p. 44, [Kau93]) provides a more comprehensive list, developed for adaptive local search
algorithms.

44

of the proposed escape mechanisms - in terms of algorithmic details - is highly vari-
able. Ideally, designers tailor a meta-heuristic to the class of fitness landscapes that
the algorithm is likely to encounter. Yet, very few concrete details are known about
attractor basin strength, i.e., the expected computational effort required to escape local
optima. This is true for nearly all combinatorial optimization problems, including the
JSP. Consequently, it is unclear whether further attention on novel escape mechanisms
is warranted, or if researchers should shift their focus to designing more effective high-
level search strategies, such as those associated with advanced implementations of tabu
search.

In this chapter, we analyze the structure of the fitness landscape of random JSPs;
we defer discussion of the differences between the fitness landscapes of random, work-
flow, and flowshop JSPs to Chapter 10. In particular, we (1) quantify the attractor basin
strength of local optima in the JSP and (2) assess the potential for various features to
serve as a basis for accurate static cost models of local search algorithms for the JSP. A
key result of prior research on fitness landscape structure is that the landscapes of differ-
ent combinatorial optimization problems often exhibit strong structural similarities. As
a result, we are able to both leverage this research and identify new links between the
JSP fitness landscape and that of other combinatorial optimization problems. We only
present results obtained under the N1 move operator; qualitatively similar results hold
for the N5 operator.

The rest of this chapter is organized as follows. First, we provide a high-level
overview of prior research on the JSP fitness landscape in Section 5.1; specific details are
provided as needed throughout the remainder of this chapter. The structure and strength
of attractor basins in the JSP are analyzed in Section 5.2. Those landscape features we
use to develop our static cost models are analyzed in Section 5.3. Much of the prior
research on both problem difficulty and fitness landscapes performed for other com-
binatorial optimization problems are inappropriate for our research; we discuss these
omissions in Section 5.4.

5.1 Prior Research

Prior to 2000, only Dirk Mattfeld and his colleagues had performed detailed analyses of
the JSP fitness landscape. In his book Evolutionary Search and the Job Shop [Mat96],
Mattfeld exhaustively analyzed the fitness landscape of Fisher and Thompson’s ft10
instance. In particular, he showed that (1) local optima in the JSP are distributed uni-
formly throughout the fitness landscape and (2) high-quality local optima share more
features with each other and with globally optimal solutions than do mediocre local op-
tima. In a related article, Mattfeld et al. [MBK99] extend this analysis to develop pos-
sible explanations for differences in the relative difficulty of random versus workflow
JSPs, and why genetic algorithms (and, more generally, adaptive search algorithms)
typically perform poorly on the JSP. Most recently, Nowicki and Smutnicki [NS01]

45

analyzed the fitness-distance relationship between local optima and globally optimal so-
lutions in Taillard’s benchmark problems, confirming Mattfeld’s original observations.
We detail many of Mattfeld’s results in the remainder of this chapter. However, we defer
discussion of Mattfeld’s comparative analysis of the fitness landscapes of random and
workflow JSPs to Chapter 10.

5.2 The Attractor Basin Structure of Local Optima in
the JSP

A key decision in the design of any meta-heuristic for local search is how to escape the
attractor basins of local optima. For example, Glover notes that tabu search overcomes
the deficiencies of descent procedures by allowing local search to “continue exploration
without becoming confounded by an absence of improving moves, and without falling
back into a local optimum from which it previously emerged” ([Glo89], p. 191). Further,
the escape mechanism is often the defining feature of any particular meta-heuristic. With
few exceptions (e.g., some variants of tabu search), little attention is paid to higher-level
search processes. Consequently, the global search strategy is typically implicit – and if
a particular strategy is effective, the performance is necessarily fortuitous. The success
of any escape mechanism (and by inference, meta-heuristic) depends largely on the
strength and/or structure of the attractor basins in a given problem or problem instance.
We now analyze the attractor basin strength of local optima in random JSPs, focusing
on effective strategies for escape and the computational effort required.

5.2.1 Attractor Basin Size

Intuitively, the strength of the attractor basin of a local optimum s can be quantified
by its size. A solution s′ lies within the attractor basin of s if s results with non-zero
probability when a descent procedure is applied to s′; basin membership is generally
stochastic due to the use of randomization in most descent procedures. We denote the
set of solutions in the attractor basin of s by AB(s). The size of the attractor basin of s
is then defined as |AB(s)|. It is theoretically possible to compute |AB(s)| for any local
optimum using reverse-hillclimbing algorithms, such as those introduced by Jones and
Rawlins [JR93] or Jones [Jon95]. However, even for 6 × 6 JSPs, basin sizes can easily
exceed 100 million solutions, making exact computation of |AB(s)| intractable (reverse
hill-climbing requires caching and/or hashing of solutions to identify duplicates). A
related approach to quantifying attractor basin size is via its width or diameter.

Alternatively, we can estimate |AB(s)| by computing the number of iterations k
required by a descent procedure to reach s from a random initial solution; under this
methodology, s is determined post-hoc. We refer to k as the basin depth. The intuition
is that |AB(s)| is proportional to k. Following Mattfeld [Mat96], we apply randomized
descent (next or steepest) to 10,000 random semi-active solutions, and record both the

46

800

900

1000

1100

1200

1300

1400

1500

0 5 10 15 20 25 30 35 40

M
ak

es
pa

n

Number of steepest-descent moves

Figure 5.1: Scatter-plot of the number of iterations k of steepest-descent required to
transform random semi-active solutions into local optimum versus the makespan of the
resulting optimum.

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

M
e
a
n
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 t
o
 r

e
a
c
h
 a

 l
o
c
a
l
o
p
ti
m

u
m

Number of jobs (number of machines fixed at 10)

Steepest-descent
Next-descent

10

20

30

40

50

60

70

80

90

100

110

10 15 20 25 30

M
e
a
n
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 t
o
 r

e
a
c
h
 a

 l
o
c
a
l
o
p
ti
m

u
m

Number of jobs/machines

Next-descent
Steepest-descent

Figure 5.2: The mean basin depths for 100 instances of various rectangular (left figure)
and square (right figure) random JSPs; data points are annotated with 95% confidence
intervals.

number of iterations k required to reach a local optimum s and the makespan Cmax(s).
We show a scatter-plot of k versus Cmax(s) under steepest-descent for a typical 10× 10
instance in Figure 5.1. On average, roughly 15 iterations of steepest-descent are required
to convert a random semi-active solution into a local optimum. Further, k is inversely
correlated (r = 0.2378) with Cmax(s), suggesting that more solutions drain into high-
quality local optima. We observe qualitatively similar results under next-descent, with a
slight (≈ 10%) increase in k.

Next, we analyze the impact of problem dimension on attractor basin size. We define
basin depth for a problem instance as the mean basin depth under next- and steepest-

47

descent, with statistics taken over 1,000 independent trials. The mean basin depths for
a range of rectangular (m fixed at 10, n varied from 10 to 100 in steps of 10) and
square (n = m equal to 10, 15, 20, and 30) are shown in the left and right sides of
Figure 5.2, respectively. Each data point summarizes results for 100 instances, i.e.,
we compute a mean of means. The confidence intervals indicate that variability in the
mean basin depth across different instances of a given problem size is small. With
the exception of next-descent in the square problems, the mean basin depth appears to
be approaching a linear asymptote (although there is a slight jump at n = 100). The
results indicate that attractor basin size increases with problem size, and attractor basins
in the JSP are generally quite large. However, the relationship between attractor basin
size (as estimated by basin depth) and problem difficulty is less clear. Specifically, the
mean basin depth fails to account for the variability in problem difficulty observed for
JSPs with different dimensions. Specifically, if basin size is correlated with problem
difficulty for local search, we would expect basin size to decrease in rectangular JSPs
as n/m → ∞.

5.2.2 Plateaus Versus Local Optima: Plateau Size

Measures such as depth and size only indirectly quantify attractor basin strength. A more
operational or direct approach is to measure the level of computational effort actually
required to escape. In general, a local optimum s in the JSP is a member of a plateau
P of equally fit solutions, i.e., all with makespan equal to a constant C. Consequently,
there exist two straightforward strategies for escaping local optima in the JSP. The first
alternative is to search the containing plateau for an exit, i.e., a solution possessing a
neighbor with an improving makespan; no less-fit neighbors are ever considered. The
success of this strategy depends on two related factors: the size of the plateau and the
proportion of member solutions possessing exits. The second alternative is to accept
a sequence of less-fit neighbors such that when greedy descent is re-initiated, search
terminates at a different local optimum with a non-zero probability. Here, success is
dictated by the number of dis-improving moves that must be accepted before descent
achieves a specified probability of terminating at a different local optimum.

We first analyze the two factors dictating the success of the plateau exit strategy.
Below, we examine the size of plateaus in the JSPs; we consider exit probabilities later
in Section 5.2.3. We investigate the factors dictating the effectiveness second strategy in
Section 5.2.4.

To quantify plateau size, we generated 10,000 random local optima for each of our
10 × 10 random JSPs. For each local optimum s, we enumerated the set of solutions P
such that for all s′ ∈ P the following conditions hold:

1. There exists a path s = s1, s2, ..., sk = s′ such that si ∈ N1 (si−1) for all k ≥ i ≥
2.

2. ∀si on the path from s to s′, Cmax(si) = Cmax(s).

48

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

log−10(Plateau Size)

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12
x 10

4

log−10(Plateau Size)

Fr
eq

ue
nc

y

Figure 5.3: Histograms of plateau sizes for random 10 × 10 JSPs. Left figure: distribu-
tion for a typical problem instance. Right figure: aggregate distribution for 100 problem
instances.

In contrast to many combinatorial optimization problems, the composition of a plateau
P in the JSP is a function of the initial solution s; due to the asymmetry of the N1

operator and other critical-path move operators, a path from s to s′ does not imply the
existence of a path from s′ to s.

We show the distribution of |P | for a typical 10 × 10 JSP in the left side of Fig-
ure 5.3. The smallest plateau contained a single solution, while the largest contained
25,251 solutions. As indicated in the figure, most plateaus are very small: 7,824 plateaus
contained 10 or fewer solutions, while 2,994 contained a single solution. The distribu-
tion of |P | was similar for the other instances in our 10 × 10 problem set; we show the
aggregate distribution in the right side of Figure 5.3. For larger problem instances, we
observed significantly larger plateaus, such that exact computation of |P | is generally
prohibitive. However, the median value of |P | remains relatively small for rectangular
and square problem sizes ranging up to 70× 10 and 30× 30, respectively. We found no
significant correlation between |P | and Cmax. Our initial expectation was that plateaus
under the N1 operator would be large, as many moves fail to yield an improvement in
the makespan. However, empirical results indicate that non-improving moves are often
strictly dis-improving.

Assuming that exits from plateaus exist and are relatively numerous (an issue we ex-
amine next in Section 5.2.3), our results indicate that a plateau-intensive search strategy,
e.g., restricting search to the plateau until an exit is located, could be quite effective, as
most plateaus are very small. However, extremely large plateaus do exist, which would
be costly to search unless the relative frequency of exits from solutions on the plateau is
large.

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Exit Probability

Fr
eq

ue
nc

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Exit Probability

Fr
eq

ue
nc

y

Figure 5.4: Histograms of bench exit probabilities for random 10×10 JSPs. Left figure:
distribution for a typical problem instance. Right figure: aggregation distribution for
100 problem instances.

5.2.3 Plateaus Versus Local Optima: Exit Probabilities

As indicated above, the effectiveness of plateau-based search is predominantly a func-
tion of the relative frequency of exits from a plateau. We define the exit probability
Prext(P) from a plateau P as the proportion of member solutions that possess at least
one neighbor with a lower makespan than that of the plateau. We compute Prext(P)
for each of the plateaus in all of the random 10 × 10 JSPs previously identified in Sec-
tion 5.2.2. The first question is whether exits exist at all, i.e., whether a plateau P is
locally optimal. Of the aggregate one million plateaus, we observed Prext(P) = 0 in
578,239 cases; analogous results hold for individual instances. Consequently, in or-
der to escape local optima in the JSP, it is generally necessary to accept a sequence of
dis-improving moves.

Next, we analyze the distribution of Prext for plateaus that are not locally optimal,
i.e., that are benches (see Section 3.3). We show the distribution of Prext for the 5,476
bench plateaus (the remaining 4,524 plateaus are locally optimal) of a typical 10 × 10
JSP in the left side of Figure 5.4. The distribution is roughly log-normal, such that
Prext ≤ 0.1 for 2,706 of the benches. Similar results hold in our other 10×10 instances;
we show the aggregate distribution in the right side of Figure 5.4. The results indicate
that when a local optimum is a bench, only a few of the member solutions possess exits.
Consequently, unless the bench is small, plateau-based search is unlikely to be effective.
Finally, we find only weak correlation between Prext and |P | (r = 0.1852), and no
statistically significant correlation between Prext and Cmax.

5.2.4 A Perturbation Analysis of Attractor Basin Strength

We have established that, in general, local search algorithms for the JSP must accept
dis-improving moves to escape the attractor basins of local optima. The question is

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Escape Probability

F
re

q
u
e
n
cy

Figure 5.5: Distribution of local optima escape probabilities under next-descent for a
typical random 10 × 10 JSP after accepting a random sequence of 1 (left figure), 3
(center figure), and 5 (right figure) less-fit neighbors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Escape Probability

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Escape Probability

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Escape Probability

F
re

q
u

e
n

cy

Figure 5.6: Distribution of local optima escape probabilities under next-descent for 100
random 10 × 10 JSPs after accepting a random sequence of 1 (left figure), 3 (center
figure), and 5 (right figure) less-fit neighbors.

then: How many dis-improving moves are required? Consider a local optimum s and
suppose that we accept a random sequence S = s1, s2, ..., sx = s′ of monotonically
less-fit neighbors of at most length k, such that the following conditions hold:

1. x ≤ k

2. For 1 ≤ i ≤ x − 1, Cmax(si) < Cmax(si+1)

The ’at most’ qualifier is necessary because local search can encounter a local maximum
before k less-fit moves have been accepted. By applying randomized next-descent to
s′, we generate a local optimum s′′. If s′′ 6= s, then local search has escaped from s.
Otherwise, local search has failed to escape the attractor basin of s. In effect, we are
performing at most k iterations of next-ascent, followed by the maximum number of it-
erations of next-descent, i.e., the number of iterations required to reach a local optimum.
Because the ascent and descent phases are stochastic, we can straightforwardly define
the escape probability from a local optimum s as the fraction of N independent trials
that terminate at a local optimum s′′ 6= s. In all of our experiments, we let N = 100.

51

One complicating factor in estimating the escape probability from a local optimum s
is the fact that s is generally a member of a plateau P of equally fit solutions. Using the
aforementioned procedure, it is possible to escape to a new local optimum s′′, yet s, s′′ ∈
P . In other words, we must consider the problem of escaping both s and the plateau P
containing s. In order to compute escape probabilities for large random JSPs (for which
plateau enumeration is computationally prohibitive), we indicate that local search has
escaped the attractor basin of the plateau P containing s if Cmax(s) 6= Cmax(s

′′). This
definition is conservative, as s′′ may be a member of a different plateau than s, although
two plateaus could have an equivalent makespan; in practice, this situation is rarely
observed. To estimate the escape probability from a local optimum s, we use the next-
ascent/next-descent procedure in conjunction with the makespan-based plateau escape
criterion; we denote the result by Pescp.

We show the distribution of escape probabilities for 10,000 random local optima
of a typical random 10 × 10 JSP in Figure 5.5, using k = 1, k = 3, and k = 5.
Analogous aggregate results for 100 random 10 × 10 JSPs are shown in Figure 5.6.
Surprisingly, it is possible to escape local optima with a non-negligible probability by
accepting a single dis-improving move. Increasing k from 1 to 3 to 5 yields further,
substantial increases in the escape probability. At k = 5, over 90% of the local optima
can be escaped with probability ≥ 0.5; by k = 10, the probability increases to ≥ 0.9.
However, independently of k, there exist local optima for which the escape probability
is 0. Upon closer examination, these local optima often reside on plateaus that are also
locally maximal (or near-maximal), such that it is not possible to accept any (or a large
number of) dis-improving moves. In these situations, the only way to escape is to locate
an exit from the containing plateau – which is guaranteed to exist, as the N1 operator
induces a connected search space. In other cases, the local optimum s resides in the
center of a very large plateau; by increasing k even further, it is then possible to escape.

We also analyzed the escape probabilities for larger square and more rectangular
random JSPs, using 2,000 random local optima for each instance due to the increased
computational requirements. We show the impact of problem size on the escape prob-
ability from local optima of square JSPs in Figure 5.7 with k = 3; we show the results
for typical problem instances, as the aggregate distributions are similar. We observe that
as n is increased, the distribution mass quickly shifts toward 1. For the 30×30 instance,
the escape probability is ≥ .8 for 90% of the local optima. Computational requirements
currently prevent us from analyzing larger problem instances, although it appears that
limn→∞ Pescp = 1. Similar results hold for rectangular JSPs as m/n is increased. For
the 70 × 10 instance, Pescp ≥ 0.8 for over 99% of the local optima. These results
suggest that for large rectangular or square JSPs, problem difficulty for local search is
largely independent of attractor basin strength, in that any meta-heuristic should be able
to consistently escape local optima.

For all of the problem instances we analyzed, we found at best only moderate and
unstructured correlation (e.g., r ≈ 0.35) between Pescp and Cmax. The lack of cor-
relation may in part be due to our sampling methodology. Random local optima are

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

Escape Probability

F
re

q
u
e
n
cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Escape Probability

F
re

q
u
e
n
cy

Figure 5.7: Distribution of local optima escape probabilities under next-descent after
accepting 3 less-fit neighbors for typical 30 × 10 (left figure), 50 × 10 (center figure),
and 70 × 10 (right figure) random JSPs.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

500

Escape Probability

F
re

q
u
e
n
cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Escape Probability

F
re

q
u
e
n
cy

Figure 5.8: Distribution of local optima escape probabilities under next-descent after
accepting 3 less-fit neighbors for typical 15 × 15 (left figure), 20 × 20 (center figure),
and 30 × 30 (right figure) random JSPs.

generally poor-quality, and the probability of generating near-optimal solutions is very
low; further, the probability decreases as problem size is increased. Consequently, a
sampling method capable of consistently generating both ’average’ and near-optimal
solutions may enable identification of a stronger correlation between escape probability
and solution quality. In Chapter 8, we introduce one such sampling methodology and
extend the analysis introduced above.

Based on the analysis presented thus far, it is unclear whether the unexpectedly large
escape probabilities we observed are an inherent property of the fitness landscape, a
function of the next-descent strategy, or some combination thereof. To explore this issue,
we extend our analysis by substituting a steepest-descent procedure for the randomized
next-descent used to convert intermediate solutions (i.e., s′) into local optima (i.e., s′′).
At each iteration, our implementation of steepest-descent simply selects the neighbor
with the lowest makespan, with ties broken randomly; the procedure terminates when a
local optimum is encountered. While steepest-descent is randomized, it is significantly
less so than next-descent.

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 10

4

Escape Probability

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 10

4

Escape Probability

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 10

4

Escape Probability

F
re

q
u

e
n

cy

Figure 5.9: Distribution of local optima escape probabilities under steepest-descent for
random 10 × 10 JSPs after accepting a random sequence of 1 (left figure), 3 (center
figure), and 5 (right figure) less-fit neighbors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Escape Probability

F
re

q
u
e
n
cy

Figure 5.10: Distribution of local optima escape probabilities under steepest-descent
after accepting 3 less-fit neighbors for typical 30 × 10 (left figure), 50 × 10 (center
figure), and 70 × 10 (right figure) random JSPs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Escape Probability

F
re

q
u
e
n
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

Escape Probability

F
re

q
u
e
n
cy

Figure 5.11: Distribution of local optima escape probabilities under steepest-descent
after accepting 3 less-fit neighbors for typical 15 × 15 (left figure), 20 × 20 (center
figure), and 30 × 30 (right figure) random JSPs.

54

We show the aggregate distribution of escape probabilities under steepest-descent
for 100 random 10 × 10 JSPs in Figure 5.9, using k = 1, k = 3, and k = 5; for each
instance, we generated 10,000 random local optima. Although generally lower than
under next-descent, Pescp is still non-negligible for 90% of the local optima: ≥ 0.1 for
k = 3 and ≥ 0.3 for k = 5. With respect to next-descent, the largest differences are
due to the large numbers of local optima at k = 1 for which Pescp = 0. In addition
to cases when a local optima is also a local maximum, the latter occurs for a local
optimum s when the makespan of the best neighbor of any solution s′ ∈ N1 (s) is equal
to Cmax(s). Similar results hold for larger square (see Figure 5.11) and rectangular (see
Figure 5.10) problem instances, although the asymptotic approach toward Pescp = 0
appears significantly more delayed. In conclusion, the weakness of attractor basins
in the JSP is largely a structural feature of the fitness landscape, although it can be
influenced by the choice of descent strategy. It is currently unclear to what extent the
weakness is due to the asymmetry of the N1 move operator, as asymmetry can prevent
search from re-descending to a local optimum.

5.2.5 Implications

Our results concerning attractor basin structure suggest several immediate hypotheses
regarding the design and behavior of local search algorithms for the JSP. First, we ob-
serve no correlation between the size of an attractor basin and its strength. Consequently,
models of problem difficulty based on attractor basin size are of very limited practical
use. Second, we can use the fact that a very small number of moves is required to escape
local optima to guide the design of new meta-heuristics. We introduce one such algo-
rithm in Chapter 8, and demonstrate that elaborate escape mechanisms are not necessary
for effective local search. Third, by comparing the average basin depths with the number
of moves required to escape local optima, it is clear that any meta-heuristic with a strong
bias toward local optima (e.g., tabu search, iterated local search, and moderate-to-low-
temperature simulated annealing) is effectively restricting search to a small fraction of
the search space. This observation forms the basis for our development of cost models
in Chapters 7 through 9, and may account for a substantial proportion of the difference
in performance between well-known local search algorithms and a pure random walk.
Fourth, by expressing attractor basin strength in terms of the number of moves required
for escape, we identify possible deficiencies with fitness-based escape mechanisms. At
low temperatures, even a single dis-improving move may yield a significant increase in
the makespan, providing a possible explanation for the typically inferior performance
of simulated annealing; we explore this issue in Chapter 9. Our results also suggest that
the height of the barriers between local optima (i.e., the decrease in fitness that must
be accepted in order to escape local optima) need not have an impact on local search
[RS01]; it may be possible (as discussed in Chapter 8) to develop escape mechanisms
based strictly on the number of dis-improving moves, and not in terms of changes in
relative fitness.

55

5.2.6 Related Research

Frank et al. [FCS97] perform a comprehensive analysis of attractor basin strength in
MAX-SAT. More so than in the JSP, the MAX-SAT fitness landscape is dominated by
plateaus of equally fit solutions. Our plateau-related terminology and the methodologies
employed in Sections 5.2.2 and 5.2.3 are adapted from their research. The distribution
of plateau sizes in both the JSP and MAX-SAT are very similar. In contrast, exit prob-
abilities from benches in MAX-SAT are significantly higher than in the JSP. Further,
solution quality and exit probability are significantly correlated in MAX-SAT.

5.3 The Global Structure of the JSP Fitness Landscape

Once equipped with an effective escape mechanism, a local search algorithm must de-
cide how to move through the fitness landscape from one local optimum to another. The
effectiveness of this process depends to a large extent on overall global structure of the
fitness landscape.

We now introduce those global structural features of the fitness landscape that have
been proposed to account for the variability in problem difficulty for local search. In
most cases, the features have been explored in the context of other NP -hard problems,
primarily MAX-SAT and the TSP. We present the motivation behind each feature, sum-
marize prior research, identify limitations, and analyze the extent of the feature in ran-
dom JSPs. We generally restrict our attention to those problem sets that we use to
develop our cost models (6 × 4, 6 × 6, and 10 × 10), although when computationally
feasible, we additionally consider larger square and rectangular JSPs. Our goal is to in-
troduce various features and to assess the potential of these features to serve as the basis
of accurate static cost models of local search in the JSP, e.g., as developed in Chapters
6 - 9.

5.3.1 The Number of Optimal Solutions

One of the most intuitive measures of problem difficulty is the number of globally op-
timal solutions to a problem instance. It should be difficult to locate a global optimum
if they are relatively rare. Conversely, if global optima are numerous, then it should be
relatively easy for local search to find one. In the JSP, the makespan C∗

max of any optimal
solution is completely determined by the set of operations on the critical path. However,
it is often possible to re-order one or more sequences of non-critical operations in an op-
timal solution without increasing the makespan, and multiple critical paths can induce
C∗

max. Consequently, the number of optimal solutions is proportional to the flexibility in
sequences of non-critical operations, and is therefore likely to be highly variable.

For a given problem instance, we compute the set of optimal solutions using the
constraint programming algorithm described in Section 3.6; we denote the result by
|optsols|. Histograms of log10(|optsols|) for our 6 × 4 and 6 × 6 problem sets are shown

56

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

log−10(Number of Optimal Solutions)

F
re

qu
en

cy

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

log−10(Number of Optimal Solutions)

F
re

qu
en

cy

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

log−10(Number of Optimal Solutions)

F
re

qu
en

cy

Figure 5.12: Histograms of the number of optimal solutions (|optsols|) for 6 × 4 (left
figure), 6 × 6 (center figure), and 10 × 10 random JSPs.

Instance abz5 abz6 la16 la17 la18 la19 la20
|optsols| 580 2,159 6,753,442 11,787,154 42,158 960 14,106

Table 5.1: The number of optimal solutions (|optsols|) for 10 × 10 benchmark JSPs.

in the left and center portions of Figure 5.12, respectively. In both cases, |optsols| varies
over six orders of magnitude, ranging from 1 to 406,073 for the 6 × 4 instances and
from 1 to 710,627 for the 6 × 6 instances. On average, 6 × 6 instances possess fewer
optimal solutions than 6 × 4 instances, despite a substantial increase in the size of the
search space. Specifically, there are more 6 × 6 instances with 1 ≤ |optsols| ≤ 100, and
the right-tail density is lower than that observed for the 6 × 4 problem instances.

We also computed |optsols| for our 10 × 10 instances, terminating the enumera-
tion process once |optsols| exceeded 250 million; the limit was reached for 3 instances.
We show the resulting distribution of |optsols| in the right side of Figure 5.12. As ex-
pected (due to the relative size of the search spaces), increasing the problem size inflates
|optsols|, which ranges from 40 to over 250 million, or over nearly eight orders of mag-
nitude. For reference, we also computed |optsols| for each of the 10 × 10 random JSPs
found in the OR Library; we report the results in Table 5.1. Both abz5 and la19 are
generally considered the more difficult 10× 10 benchmark instances, and correspond to
the instances with the fewest optimal solutions. However, we do not anticipate perfect
correlation between |optsols| and search cost, as la16 is generally more difficult than
abz6.

5.3.1.1 Related Research

The relationship between the number of globally optimal solutions and problem diffi-
culty for local search was originally analyzed in the context of MAX-SAT and the more
general MAX-CSP [CFG+96]. The motivation behind this research was to develop an
explanation for the easy-hard-easy pattern in problem difficulty observed in the phase
transition regions of these problems [KS94, Pro94]. It was initially conjectured that

57

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

Mean distance between random local optima

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

Mean distance between random local optima

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

9

10

Mean distance between random local optima

F
re

qu
en

cy

Figure 5.13: Histograms of mean distance between random local optima (dlopt-lopt) for
6 × 4 (left figure), 6 × 6 (center figure), and 10 × 10 random JSPs.

the peak in search cost was due to changes in the number of optimal solutions. Yokoo
[Yok97] proved that this was not the case, by showing that the mean number of optimal
solutions varies in no special way near the phase transition region. In contrast, when the
problem size is held constant, Clark et al. [CFG+96] demonstrated a relatively strong
(≈ 0.91) log10 − log10 correlation between the number of optimal solutions and local
search cost.

The distribution of the number of optimal solutions depends in large part on the form
of the objective function, specifically whether all or a fraction of solution attributes
dictate solution fitness. For example, the number of optimal solutions to instances of
the 2-D integer Euclidean Traveling Salesman Problem is generally very small, and is
frequently equal to 1 [SW01]. The reason is straightforward: tour length is a function of
all the cities in the instance, and the likelihood of two tours having identical lengths is
relatively small given randomly sampled inter-city distances. The likelihood of a single
optimal solution is even higher if real-valued city coordinates are allowed. A similar
situation is observed in the Permutation Flow-Shop Problem [Stu01]. In contrast, the
fitness of solutions in the JSP is dictated by a subset of job orderings, i.e., those on the
critical path.

5.3.2 The Mean Distance Between Random Local Optima

The cost of local search is also influenced by the size of the search space. Search in
iterated local search, tabu search, and low-to-moderate temperature simulated annealing
is heavily biased toward local optima. Coupled with the fact that attractor basins in the
JSP are relatively weak, intuition suggests that problem difficulty is in part a function of
the size of the sub-space containing local optima. A straightforward approach to quan-
tifying the size of the local optima sub-space is to simply measure the mean distance
between a sample of random local optima; large distances should be indicative of large
sub-spaces.

For a given problem instance, we generate 5,000 random local optima and compute
the mean disjunctive graph distance between all pairs of optima, normalized by the

58

Prb. Set Mean Mean Min. Mean Max.
drand-rand dlopt-lopt drand-rand − dlopt-lopt drand-rand − dlopt-lopt drand-rand − dlopt-lopt

6 × 4 0.2922 0.2504 0.0070 0.0419 0.0731
6 × 6 0.2442 0.2080 0.0063 0.0362 0.0611
10 × 10 0.1926 0.1780 0.0099 0.0146 0.0190

Table 5.2: Statistics for the difference between (1) the mean distance between random
solutions (drand-rand) and (2) the mean distance between random local optima (dlopt-lopt).

the maximum possible distance m ·
(

n
2

)

. We denote the result by dlopt-lopt, such that
dlopt-lopt ∈ [0, 1]. For problem instances in which local optima are distributed evenly
throughout the fitness landscape, we would expect dlopt-lopt ≈ 0.5.

We show the distribution of dlopt-lopt for our 6 × 4, 6 × 6, and 10 × 10 problem
sets in Figure 5.13. Without exception, the estimated dlopt-lopt is significantly less than
the maximal value of 0.5, indicating that local optima in the random JSP are clustered
in a restricted region of the fitness landscape. Mattfeld et al. [MBK99] indicate such
clustering is due to the constraints imposed by the job routing orders, and show that the
clustering is less significant in workflow JSPs (we demonstrate similar results for both
workflow and flowshop JSPs in Chapter 10).

Although we expected larger dlopt-lopt in the more difficult problem sets, we actually
observe the largest range of dlopt-lopt in rectangular 6 × 4 JSPs. We also found no sig-
nificant differences in dlopt-lopt between 10 × 10 JSPs and larger rectangular (50 × 10)
and square (30 × 30) instances. Further, the variability in dlopt-lopt quickly approaches
0 as the problem size is increased, while the mean remains constant at ≈ 0.19. All of
these results run counter to intuition, raising the strong possibility that dlopt-lopt may fail
to account for any significant proportion of the variability in problem difficulty for local
search.

In both a random walk and high-temperature simulated annealing, search proceeds
in the space of all feasible solutions, as opposed to the local optima sub-space. To model
problem difficulty for these algorithms, we introduce a simple extension of the dlopt-lopt

measure. Based on random semi-active solutions instead of random local optima, the
new measure, which we denote drand-rand, captures the size of the sub-space of feasible
solutions. Analogous to the case for dlopt-lopt, we estimate drand-rand using 5,000 random
semi-active solutions. The distributions of drand-rand are qualitatively identical (they pos-
sess roughly identical means/variances and similar tails) to those shown in Figure 5.13.

In many combinatorial optimization problems, local optima occupy a significantly
smaller region of the fitness landscape than random solutions. In Table 5.2, we report
statistics for the per-instance difference between drand-rand and dlopt-lopt for each of our
problem sets. The results indicate that for the 6×4 and 6×6 instances, the local optima
sub-space is slightly compressed relative to the space of random solutions. We observe
even less compression in the 10 × 10 problem set and in a limited sampling of larger
square and rectangular problem instances. These results suggest that local optima in
the JSP are distributed uniformly throughout the space of random (feasible) solutions,

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Entropy of Random Local Optima

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Entropy of Random Local Optima

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Entropy of Random Local Optima

F
re

qu
en

cy

Figure 5.14: Histograms of entropy of random local optima (elopt) for 6× 4 (left figure),
6 × 6 (center figure), and 10 × 10 random JSPs.

in contrast to other well-known combinatorial optimization problems such as the TSP
[M9̈0] and the quadratic assignment problem [FF94].

5.3.2.1 Related Research

Mattfeld et al. [MBK99] first introduced the notion of dlopt-lopt as a measure of the size
of the local optima sub-space; we have simply extended their analysis to a broader
range of problem instances. However, Mattfeld et al. did not investigate the ability of
dlopt-lopt to account for variability in the difficulty of fixed-size problem instances. Rather,
they demonstrated mean differences in dlopt-lopt between random and workflow JSPs, and
argued that differences in relative difficulty were due to differences in dlopt-lopt.

5.3.3 Entropy of Random Local Optima

Entropy [Sha48] measures the disorder in a set of solutions. If a set of solutions shares
many attributes, then they are likely to be located in a restricted region of the fitness
landscape. Conversely, if solutions are very disparate, the size of the fitness landscape
is necessarily large. Suppose a particular attribute X of any solution can take on one
of n possible values x1, x2, . . . , xn. Given a set of solutions, let P (X = xi) denote the
fraction of member solutions in which attribute X is assigned value xi. The entropy
E(X) of the attribute X is defined as E(X) = −∑n

i=1 P (X = xi) · log(P (X = xi)).
Minimal entropy occurs when ∃j : P (X = xj) = 1 and ∀i 6= j : P (X = xj) = 0,
in which case E(x) = 0. Maximal entropy occurs when all values xi are equally likely
(P (X = xi) = 1/n), in which case E(X) = log(N). E(X) is typically normalized
by log(N), forcing 0 ≤ E(X) ≤ 1. The entropy of a set of solutions is defined as the
average entropy of individual solution attributes.

In the JSP, we take as individual solution attributes the precedence relations be-
tween pairs of jobs on the same machine. Let the predicate precedesijk(s) indicate
whether job j precedes job k on machine i in a solution s. Let pijk denote the frac-
tion of solutions s in a given set S in which precedesijk(s) is true. The entropy Eijk

of the corresponding precedence relation is then given by Eijk = pijk · log(pijk) +

60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Mean Distance Between Random Local Optima and the Nearest Optimal Solution

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Mean Distance Between Random Local Optima and the Nearest Optimal Solution

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18

20

Mean Distance Between Random Local Optima and the Nearest Optimal Solution

F
re

qu
en

cy

Figure 5.15: Histograms of dlopt-opt for 6 × 4 (left figure), 6 × 6 (center figure), and
10 × 10 random JSPs.

(1 − pijk) · log(1 − pijk). The entropy E(S) of a set of solutions S is then defined as
E(S) = 1

n(n−1)m

∑m
i=1

∑n
j=1

∑n
k=1,k 6=j Eijk(S).

For a given problem instance, we use a set S of 5,000 random local optima to com-
pute an estimate of the mean entropy elopt = E(S). We show the distribution of elopt

for our 6 × 4, 6 × 6, and 10 × 10 problem sets in Figure 5.14. We immediately ob-
serve very strong qualitative similarities in the distributions of elopt and erand (shown in
Figure 5.14), raising the possibility that the two measures are essentially redundant, in
that they both quantify the similarity of a set of solutions, with identical biases and/or
inaccuracies. This hypothesis is easily confirmed by computing the correlation between
the two measures, which respectively yield (Pearson’s) r-values of 0.9955, 0.9945, and
0.9898 for the 6 × 4, 6 × 6, and 10 × 10 problem sets. Consequently, we can safely ig-
nore one of these measures in developing our static cost models; we base all subsequent
analysis on the dlopt-lopt measure.

5.3.4 Mean Distance Between Random Local Optima and the Near-
est Optimal Solution

The number of optimal solutions and the size of the search space S are conceptually (and
statistically - see Sections 6.2 and 7.5.6) independent; it is possible to embed as many
as |S | optimal solutions within a search space S . Undoubtedly, both factors influence
problem difficulty for local search. If we fix |S | and assume that attractor basin strength
and size remain relatively constant, we expect problems to become easier as |optsols| →
|S |. Analogously, if we fix |optsols|, it should be more difficult to locate an optimal
solution as |S | → ∞. It follows that both the |optsols| and dlopt-lopt are, in isolation,
unlikely to account for a significant proportion of the variability in problem difficulty.

To correct for these flaws, we introduce a measure that simultaneously accounts for
the impact of both features on problem difficulty: the mean distance between random
local optima and the nearest optimal solution. We denote the quantity by dlopt-opt. The
intuition is that problem difficulty for local search is proportional to the total distance
that must be traversed – between an initial solution (i.e., a random local optima) and a

61

target solution (i.e., an optimal solution).
To compute an estimate of dlopt-opt for a given problem instance, we generate a set L

of 5,000 random local optima. For each optimum l ∈ L, we then compute the disjunc-
tive graph distance D(l, snearopt) between l and the nearest optimal solution snearopt. We
then take dlopt-opt as the mean D(l, snearopt), subsequently normalized by the maximum
possible distance m ·

(

n
2

)

. The maximal value of dlopt-opt is equal to 0.5, and can only
be achieved under relatively strict conditions: when relatively few optimal solutions are
concentrated in a compact region of the fitness landscape and random local optima are
distributed throughout the fitness landscape (dlopt-lopt = 0.5).

In Figure 5.15, we show histograms of dlopt-opt for our 6×4 (left figure), 6×6 (center
figure), and 10× 10 (right figure) random JSPs. Results for eight 10× 10 instances with
more than 50 million optimal solutions are omitted, due to the intractability of comput-
ing dlopt-opt. The observed dlopt-opt are typically far less than the theoretical maximum of
0.5, which is expected given that (1) feasible solutions in the random JSP are clustered
in sub-space of the fitness landscape and (2) optimal solutions are not always tightly
clustered. For the square problem sets, the distribution of dlopt-opt is qualitatively Gaus-
sian, with mean ≈ 0.15 and a relatively low variance. The variance appears to drop
when moving from 6×6 to 10×10 JSPs, but this may be an artifact of the differences in
the total number of problem instances. We are unable to determine whether the variance
drops to 0 as problem size increases, as occurs for dlopt-lopt, due to astronomical numbers
of optimal solutions.

The relative distribution of dlopt-opt in the square and rectangular problem sets is not
entirely consistent with the differences in relative difficulty. Although there are signifi-
cantly more 6 × 4 instances with dlopt-opt ≤ 0.1 than observed in the 6 × 6 problem set,
there are also more 6 × 4 instances with dlopt-opt ≥ 0.25. Due to the number of optimal
solutions, we are unable to assess the impact of changes in n/m on the distribution of
dlopt-opt for larger problem sets..

To model problem difficulty in both a random walk and high-temperature simulated
annealing, where search proceeds in the space of all feasible solutions, we investigate a
simple extension of the dlopt-opt measure. We denote this measure drand-opt. The estimation
methodology and intuition remain the same; the only difference is that random semi-
active solutions are substituted for random local optima. The distributions of drand-opt are
qualitatively identical to those shown in Figure 5.15.

5.3.4.1 Related Research

Both dlopt-opt and drand-opt are based on an analogous measure proposed to account for
variability in problem difficulty for local search in MAX-SAT [SGS00]. Well-known
local search algorithms for MAX-SAT rapidly descend from poor-quality initial solu-
tions to near-optimal ’quasi-solutions’, and subsequent search is restricted to the space
of such quasi-solutions. Singer et al. [SGS00] hypothesized that the search cost was pro-
portional to the size of the quasi-solution sub-space, which in turn could be estimated

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Backbone size

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Backbone size

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Backbone size

F
re

qu
en

cy

Figure 5.16: Histograms of the backbone size (|backbone|) for 6 × 4 (left figure), 6 × 6
(center figure), and 10 × 10 random JSPs.

Instance abz5 abz6 la16 la17 la18 la19 la20
|backbone| 0.9733 0.9511 0.8956 0.8822 0.9289 0.9689 0.9244

Table 5.3: The backbone size (|backbone|) for 10 × 10 benchmark JSPs.

by the mean distance between the first quasi-solution encountered and the nearest opti-
mal solution, which we denote dquasi-opt. Their experimental results demonstrated a very
strong (r ≈ 0.95) correlation between dquasi-opt and the logarithm of search cost for easy
MAX-SAT instances; for more difficult instances, the accuracy degraded only slightly
to r ≈ 0.75.

The quasi-dynamic model proposed by Singer et al. is a landmark achievement, as it
represents the first reasonably accurate cost model of any local search algorithm, for any
combinatorial optimization problem. Previously proposed models achieved accuracy of
at most r2 ≈ 0.3 in the worst case, in contrast to the r2 ≈ 0.6 achieved by Singer et al.

5.3.5 Backbone Size

Recently, a number of researchers (e.g., [AGKS00] and [SW01]) have hypothesized
that the backbone of a problem instance may be correlated with problem difficulty. In-
formally, the backbone of an instance is the set of solution attributes or variables that
possess identical values in all optimal solutions; as a consequence, the definition of a
backbone depends on the representation scheme used to encode solutions. The intu-
ition behind the backbone measure is that the majority of effort in local search may be
spent assigning correct values to backbone variables. Non-backbone variables appear to
be significantly less constrained, enabling search to quickly locate an optimal solution
once the backbone is located.

We define the backbone of a JSP in terms of a disjunctive graph representation (Sec-
tion 2.4), in which solutions to n×m JSP are encoded using n(n−1)/2 Boolean ‘order’
variables for each of the m machines; each order variable represents a precedence re-
lation between a distinct pair of jobs on a machine. Given a problem instance, we first

63

compute the set of order variables that have the same value in all optimal solutions. We
then define the backbone size as the fraction of the possible mn(n − 1)/2 order vari-
ables that are fixed to the same value in all optimal solutions. We denote the result by
|backbone|; clearly, 0 ≤ |backbone| ≤ 1.

In Figure 5.16, we show histograms of |backbone| for our 6 × 4 (left figure), 6 × 6
(center figure), and 10 × 10 (right figure) problem sets. Data for the three 10 × 10
instances with |optsols| > 200 million are omitted. The majority of instances in both
square problem sets possess very large backbones, while we observe a larger proportion
of small-backboned instances in the rectangular 6 × 4 problem set. The results suggest
that |backbone| may become more skewed toward 0.0 as n/m → ∞.

We show the |backbone| for 10 × 10 OR Library random JSPs in Table 5.3. The
most difficult instances, abz5 and la19, possess the largest backbones, which is again
consistent with the hypothesis that backbone size is correlated with problem difficulty.
However, as with |optsols|, inconsistencies do exist: the backbone of la16 is smaller
than abz6, although the former is the more difficult of the two instances.

5.3.5.1 Related Research

The recent interest in backbones is due in large part to the observation that large-
backboned problem instances begin to appear in large quantities near the critical region
of the Random 3-SAT phase transition [SC96] [Par97] [MZK+98] [SGS00]; the coinci-
dence of the two observations immediately leads to the hypothesis that backbone size is
correlated with problem difficulty. More recently, Achlioptas et al. argue that the shift
from small to large-backboned instances in the phase transition region suggests that the
most difficult instances may in fact have a backbone size of 0.5 [AGKS00], although
this hypothesis has not been verified. Slaney and Walsh [SW01] analyze the correlation
between problem difficulty and backbone size for constructive search algorithms for a
number of NP -hard optimization problems. For the Traveling Salesman and Number
Partitioning Problems, they report a weak-to-moderate correlation (e.g., r between 0.138
and r = 0.388) between backbone size and the cost of locating an optimal solution.

5.4 Other Research on Problem Difficulty and Local
Search

All of the features we discuss in Section 5.3 are either drawn directly from, or based
analogies with, prior research on fitness landscape structure, both for the JSP and other
combinatorial optimization problems. Yet, we have also ignored the majority of re-
search on landscape structure and problem difficulty, comprising the following three ar-
eas: phase transitions in problem difficulty, landscape correlation length, and landscape
fitness-distance correlation. These omissions are intentional: the research is either not
directly applicable to our goal of modeling variability in problem difficulty, or not rel-

64

evant to the behavior of the non-adaptive local search algorithms that we consider. We
now briefly summarize each of these research areas, and discuss the reasons for their
omission.

The majority of research on problem difficulty within the AI community has focused
on the identification of so-called phase transitions in problem difficulty [HHW96]. A
phase transition in a combinatorial optimization problem (or the corresponding decision
problem) identifies an order parameter that partitions the universe of problem instances
into subsets with differing degrees of expected difficulty. For example, the clause-to-
variable ratio m/n in Random 3-SAT induces a clear pattern: as m/n ranges from 0
to ∞, the degree of problem difficulty exhibits a well-known easy-hard-easy pattern
[CKT91]. While successful in identifying inter-partition differences in problem diffi-
culty, phase transitions fail to account for the often considerable variability within a
partition; the latter can vary over many (e.g., 6 or more) orders of magnitude, even for
small problem instances. The failure to explain intra-partition variance in problem dif-
ficulty should not, however, be viewed as a deficiency of phase transition models; phase
transition research was motivated by the desire to generate difficult test problems, and
this goal has been achieved.

A number of researchers have hypothesized that the ’ruggedness’ of a fitness land-
scape is likely to be highly correlated with problem difficulty for adaptive search al-
gorithms such as genetic and other evolutionary algorithms [Wei89, Kau93, Sta96]. A
fitness landscape is said to be rugged if there is a rapid change in the fitness between
nearby solutions in the landscape. If the fitness of nearby solutions is uncorrelated, we
cannot expect adaptive search to outperform a random walk, i.e., there is no structure to
exploit. Ruggedness is frequently quantified as the landscape correlation length, which
captures the maximal distance between two arbitrary solutions for which there still ex-
ists significant correlation between their fitness values [Wei89]. We do not consider
correlation length in our analyses for two reasons. First, the local search algorithms
we examine are not adaptive, such that correlation length is unlikely to have a major
impact on problem difficulty. Second, and more importantly, the extensive research on
landscape correlation lengths indicate that for a wide range of well-known NP -hard op-
timization problems, the correlation length is strictly a function of problem size [RS01].
For example, the correlation length in an n-city TSP is given by n/2, while in an n-
vertex Graph Bi-Partitioning Problem, it is given by (n − 3)/8 [Sta96]. Consequently,
correlation length fails to account for any of the variability in problem difficulty ob-
served in sets of fixed-sized problem instances.

Another factor hypothesized to influence problem difficulty for adaptive local search
algorithms (e.g., genetic algorithms) is the correlation between solution fitness and the
distance to an optimal solution, often simply denoted as FDC [KT85, MP86, Sou86,
MGSK88]. In a problem instance with high FDC, good solutions tend to be tightly
clustered or, equivalently, share many solution attributes in common. Consequently,
an adaptive search algorithm can exploit these similarities during search. For example,
Schneider et al. [SFM+96] introduce an adaptive local search algorithm for the Traveling

65

Salesman Problem that, after identifying the edges common to a set of high-quality local
optima, restricts subsequent search to the sub-space of solutions with only those edges.
Similarly, Sourlas [Sou86] introduced an adaptive simulated annealing algorithm for the
TSP that determines those edges appearing infrequently in high-quality solutions, and
prevents subsequent search from generating tours containing those edges. FDC has also
been used to account for differences in the relative difficulty of problem instances, e.g.,
see [JF95]. As with correlation length, we do not consider FDC in the majority of our
analysis because we have little reason to believe that FDC has any bearing on problem
difficulty for non-adaptive local search algorithms. However, we do show in Chapter 11
that FDC can impact the performance of local search algorithms that employ re-starts –
a basic form of adaptive search.

66

Chapter 6

The Baseline: A Random Walk

We begin our analysis of local search algorithms for the JSP by considering an algorithm
based on perhaps the simplest possible navigation strategy: a pure random walk. In
practice, random walks are a completely ineffective search strategy, either in an absolute
sense or in comparison to local search algorithms such as simulated annealing or tabu
search. The obvious question is then: Why bother analyzing the behavior of a random
walk? At a fundamental level, a random walk serves as a baseline for other, more
complicated navigation strategies1. Our goal is to move beyond simple performance-
based comparisons of local search algorithms by developing a deeper understanding of
the relationship between these algorithms, in terms of both the fitness landscape features
that influence performance and the qualitative nature of their dynamical behavior. The
relevance of the analysis presented in this chapter will become clear in later chapters,
where we demonstrate surprisingly strong similarities between the cost models of a
random walk and those of tabu search (Chapter 7), iterated local search (Chapter 8), and
simulated annealing (Chapter 9).

This chapter is organized as follows. The random walk algorithm and various
methodological issues are discussed in Section 6.1. In Section 6.2, we develop a static
cost model for a random walk. The notion of sampling bias is introduced in Section 6.3,
which leads into the development of a quasi-dynamic cost model. A dynamic cost model
of a random walk for an idealized problem instance is introduced in Section 6.4. Dy-
namic cost models of a random walk on JSPs are developed in Sections 6.5 and 6.6. The
relationship between the various cost models is analyzed in Section 6.7. We conclude
with an analysis of the run-length distributions of a random walk in Section 6.8.

1Technically, a random walk is not classified as a meta-heuristic, as it does not modify the behavior of
some core search strategy such as next-descent.

67

6.1 RW: Algorithm Definition and Methodological Is-
sues

As with all single-solution local search algorithms, a random walk starts from an initial
solution s∗ and proceeds via iterative modifications to s∗. Given a current solution s and
a move operator N , a random walk assigns a uniform acceptance probability 1/|N (s)|
to each neighbor s′ ∈ N (s) and selects a move at random. Because a random walk
ignores solution fitness, the issue of escaping local optima is irrelevant. If N induces a
connected search space, then a random walk is guaranteed to eventually locate a globally
optimal solution, i.e., the algorithm is asymptotically complete.

We consider a random walk under the N1 move operator. Each trial is initiated from
a random semi-active solution and consists of a sequence of iterations. At each iteration,
a neighbor s′ ∈ N1 (s) of the current solution s is selected at random, with s′ serving
as the current solution s for the next iteration. The process is iterated until an optimal
solution is located. We denote the resulting algorithm by RW. The cost of an individual
trial of RW is defined as the total number of iterations required to locate a global opti-
mum, and is well-defined because the N1 operator induces a connected search space.
Because RW is stochastic, we define the overall search cost for a given problem instance
as either the median or mean cost (depending on the context) over 1,000 independent
trials, which we respectively denote c and cQ2. As we show in Section 6.8, search cost
under RW is roughly exponentially distributed. Consequently, large sample sizes are
required to achieve accurate approximations of these statistics. Empirically, both c and
cQ2 are relatively stable when estimated from 1,000 samples, respectively varying by no
more than 5% and 10% under repeated experiments.

We develop cost models of RW using 6 × 4 and 6 × 6 random JSPs. For our 6 × 4
problem set, cQ2 ranges from 28 to 591,774 iterations, with a mean of 4,860 iterations.
For our 6 × 6 problem set, cQ2 ranges from 34 to 846,683 iterations, with a mean of
11,508 iterations. The cost distributions for both problem sets are roughly log-normal,
with cQ2 varying over 4 to 5 orders of magnitude. Due to the relative ineffectiveness of
RW as a search strategy, it is currently computationally intractable to assess the scalabil-
ity of the cost models to larger (e.g., 10× 10) problem instances, as is possible for other
local search algorithms.

6.2 A Static Cost Model of RW

Because the behavior of RW is independent of solution fitness, much of the prior re-
search on fitness landscape structure (which focuses on the structure and distribution of
local optima) is irrelevant to the development of a static cost model of RW. Instead,
we are left with the intuition that the cost required by RW to locate optimal solutions to
problem instances is a function of (1) the size of the search space and (2) the number
and/or distribution of optimal solutions within the search space, which can be codified

68

Fitness Landscape Feature
Problem Set log10(|optsols|) drand-rand drand-opt

6 × 4 0.4981 0.3098 0.8088
6 × 6 0.2179 0.3272 0.6557

Table 6.1: The r2 values for linear regression models relating various landscape features
to search cost (log10(cQ2)) under RW.

via the following three landscape measures:

• The average distance between random (feasible) solutions (drand-rand)

• The number of optimal solutions (|optsols|)

• The mean distance between random solutions and the nearest optimal solution
(drand-opt)

The drand-rand measure provides an estimate of the size of the search space, while |optsols|
captures the relative frequency of target solutions within this space. Although both
factors likely influence search cost in RW, they are completely independent. In contrast,
drand-opt simultaneously accounts for both factors, and is therefore likely to be more
highly correlated with search cost that either of the measures upon which it is based.

In Table 6.1, we report the r2 values for linear regression models of log10(|optsols|),
drand-rand, and drand-opt versus log10(cQ2); we use cQ2 instead of c because it is less sensitive
to the presence of very low or high-cost trials. Both |optsols| and drand-rand account for at
best half of the variability in search cost. In either case, the actual search cost deviates
from the predicted value by as much as 2 orders of magnitude. In contrast, drand-opt ac-
counts for a substantial proportion in the variability in search cost. For the rectangular
6 × 4 problem set, only 20% of the variance remains unaccounted for, with the actual
search costs deviating from the predicted value by no more than 1 order of magnitude.
Accuracy is slightly worse for the square 6 × 6 problem set, where deviations as large
as 1.5 orders of magnitude are observed. We provide scatter-plots of drand-opt versus cQ2

for the 6× 4 and 6× 6 problem sets, respectively, in Figure 6.1. Finally, we observe ev-
idence in both problem sets that the drand-opt model is least accurate for the most difficult
problem instances, i.e., those instances with large drand-opt.

By focusing on only simple linear regression models, we have left open the ques-
tion of whether some combination of the three features we examined could yield a more
accurate static cost model. Using various model selection techniques [Coh95], we an-
alyzed multiple regression models that simultaneously consider both multiple indepen-
dent features and interactions between features. However, the accuracy of the resulting
models (as measured by the model r2) was never more than 2% higher than that of the
simple drand-opt model. In part, this is due to a high level of redundancy (i.e., colinear-
ity) between these three features, as shown in Table 6.2 for our 6 × 4 instances; similar
results hold for our 6 × 6 instances.

69

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25 30

S
ea

rc
h

co
st

Mean distance between random solutions and the nearest optimal solution

10

100

1000

10000

100000

1e+06

5 10 15 20 25 30 35

S
ea

rc
h

co
st

Mean distance between random solutions and the nearest optimal solution

Figure 6.1: Scatter-plots of drand-opt versus cQ2 for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed.

log10(|optsols|) drand-rand drand-opt

log10(|optsols|) 1.0 0.0592 .7852
drand-rand 0.0592 1.0 0.5235
drand-opt 0.7852 0.5235 1.0

Table 6.2: The correlation (Pearson’s) between landscape features for 6 × 4 random
JSPs.

6.3 Sampling Bias and RW

In principle, it may be possible to develop more accurate static cost models of RW
through further analysis of the fitness landscape. At the same time, it appears intuitively
obvious that highly accurate cost models must take into account at least some aspects
of the dynamic behavior of RW. To correct for the deficiencies of the drand-opt static
cost model, we proceed by analyzing the set of solutions visited by RW during search.
Consider the distributions of (1) the distance between random solutions and the nearest
optimal solution and (2) the distance between solutions actually visited by RW and the
nearest optimal solution. Intuitively, we would expect these two distributions to exhibit
strong similarities. This is often the case, as shown for a particular 6 × 6 instance in
the left side of Figure 6.2; here, the two distributions differ only slightly, primarily in
the right-tail density. However, although less common, the two distributions can differ
markedly, as shown for a different 6 × 6 instance in the right side of Figure 6.2. We
observe stronger and more frequent differences in our 6 × 6 problem set than in our
6 × 4 problem set.

Given the often dramatic differences between these two distributions, we propose
the following hypothesis: search cost in RW is dictated by the set of solutions visited
during search, which may be very different from random semi-active solutions. Specif-
ically, we hypothesize that the mean distance between solutions visited by RW and the
nearest optimal solution, which we denote drw-opt, is highly correlated with the cost re-

70

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Distance to the nearest optimal solution

Random solutions
Solutions visited during search

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45

F
re

qu
en

cy

Distance to the nearest optimal solution

Random solutions
Solutions visited during search

Figure 6.2: Histograms of (1) the distance between random semi-active solutions and
the nearest optimal solution and (2) the distance between solutions visited by RW and
the nearest optimal solution, for two different 6 × 6 random JSPs.

quired to locate optimal solutions. To test this hypothesis, we computed estimates of
drw-opt for each 6× 4 and 6× 6 problem instance using a set of 100,000 solutions visited
by RW over a variable number of independent trials. Each trial is initiated from a ran-
dom semi-active solution, and terminated once an optimal solution is located. The hard
re-start mechanism is required because under the N1 move operator, situations where
no moves are possible from optimal solutions can occur (see Section 3.5.2). The process
is iterated, and the current trial terminated, once 100,000 solutions have been generated.
Given such a large walk length, the distribution of the distance between solutions vis-
ited by RW and the nearest optimal solution (and hence drw-opt) is largely insensitive to
the choice of initial solution. Consequently, the drw-opt statistic is, at least empirically,
isotropic.

We show scatter-plots of drw-opt versus cQ2 for our 6×4 and 6×6 problem sets in the
left and right sides of Figure 6.3, respectively. The r2 values for the corresponding linear
regression models are 0.9539 and 0.9074, respectively. The quasi-dynamic drw-opt cost
model is astonishingly accurate, accounting for over 90% of the variability in search
cost. The results are even more surprising given that the model is based on a single
summary statistic. Although it provides a significant improvement in overall accuracy,
the drand-opt cost model retains two drawbacks of the original drand-opt model, albeit to a
lesser degree. First, the model residuals can deviate from the predicted search cost by
as much as an order of magnitude, especially in the 6 × 6 instances. Second, model
accuracy appears to be inversely proportional to drw-opt, i.e., the model is least accurate
for the most difficult problem instances. Third, and perhaps most importantly, the model
provides little indication as to why drw-opt is so highly correlated with search cost.

71

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25

S
ea

rc
h

co
st

Mean distance between random walk solutions and the nearest optimal solution

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25

S
ea

rc
h

co
st

Mean distance between random walk solutions and the nearest optimal solution

Figure 6.3: Scatter-plots of drw-opt versus cQ2 for 6×4 (left figure) and 6×6 (right figure)
random JSPs; the least-squares fit lines are super-imposed.

6.4 A Dynamic Cost Model of RW: Preliminaries

To correct for the deficiencies of both the drand-opt and drw-opt cost models, we now turn
to a more detailed analysis of the dynamical behavior of RW. We begin by developing
a dynamic Markov model of a random walk (not RW) on an idealized binary (non-JSP)
problem instance, and investigate the implications of this model. Later, in Sections 6.5
and 6.6, we apply a straightforward relaxation of this model to our 6 × 4 and 6 × 6 JSP
problem sets.

Consider a problem instance where solutions are encoded using an n-bit represen-
tation, with a single optimal solution s∗. Further assume, in contrast to the JSP, that all
2n solutions are feasible. Without loss of generality, we assume s∗ is located at position
000 · · ·00 on the corresponding binary hypercube. We now consider the dynamics of
a random walk under a Hamming distance-1 neighborhood operator (i.e., for any so-
lution s there are n neighbors, each differing from s in the value of a single bit) for
this idealized problem instance. Clearly, search dynamics are completely dictated by
the probability of moving closer to, equidistant from, or farther away from s∗, given a
current solution s. If s is Hamming distance d from s∗, then there are

(

d
1

)

= d neigh-
boring solutions that are closer to s∗ and

(

n−d
1

)

= n−i
n

neighboring solutions that are
farther from s∗. Under a Hamming distance-1 move operator, there are no equidistant
solutions when there is a single optimal solution. Consequently, for any solution Ham-
ming distance i from s∗, 0 ≤ i ≤ n, the transition probabilities qi and pi of moving
closer or farther away from s∗ are i/n and 1 − i/n, respectively. The probability ri

of remaining equidistant from s∗ is 0, such that ∀i 6= 0, n pi + qi = 12. Given these
transition probabilities, we can model the dynamics of a random walk exactly using a

2The notation qi,ri, and pi is borrowed from Feller’s [Fel68] classic book on probability theory.

72

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

co
st

Distance to the nearest optimal solution

1.04e+06

1.05e+06

1.06e+06

1.07e+06

1.08e+06

1.09e+06

1.1e+06

1.11e+06

1.12e+06

0 2 4 6 8 10 12 14 16 18 20

S
ea

rc
h

co
st

Distance to the nearest optimal solution

Figure 6.4: Mean cost to locate the optimal solution s∗ for an 10-bit (left figure) and
20-bit (right figure) problem instance under a random walk, as a function of the distance
i from the initial solution to s∗.

one-dimensional Markov chain with n + 1 states Si, 0 ≤ i ≤ n, with transition proba-
bilities qi = P (Si−1|Si) = i

n
and pi = P (Si+1|Si) = n−i

n
. For |i − j| > 1 and i = j,

P (Sj|Si) = 0. We impose a reflecting barrier at Sn such that P (Sn−1|Sn) = 1 (solutions
can be no more than Hamming distance n from s∗) and define S0 as an absorbing state
by imposing P (S0|S0) = 1 (search is terminated when s∗ is located).

In the literature on probability theory, one can find a qualitatively similar Markov
chain known as the Ehrenfest model (e.g., see [Fel68], p. 377). One physical interpre-
tation of the Ehrenfest model is as a diffusion process with a central restoring force, as
the probability of moving closer to (farther from) s∗ is a linearly decreasing (increasing)
function of the current Hamming distance from s∗. In other words, a random walk is
driven toward solutions that are Hamming distance n/2 from s∗. In terms of probability
theory, the cost required to locate the optimal solution s∗ is given by the mean first pas-
sage time to S0, or equivalently the mean time to absorption at state S0. We denote the
mean first passage time to state S0 given an initial state Sk by vk. Analytic formulations
for vk can be easily derived by solving a system of difference equations (we solve for
the general case in which ri 6= 0), and are given as follows:

vk = ((

k−1
∑

i=1

θi) + 1)v1 − (

k−1
∑

i=1

Φi) (6.1)

where

v1 =
(rn + 1)Φn + 1

(1 − rn)θn−1
(6.2)

θi =
q1q2 · · · qi

p1p2 · · · pi
(6.3)

and

Φi =
q2 · · · qi

p1 · · · pi
+

q3 · · · qi

p2 · · · pi
+ · · · qi

pi−1pi
+

1

pi
for 1 ≤ i ≤ n − 1 (6.4)

73

In Figure 6.4, we show plots of i versus vi for n = 10 (left figure) and n = 20 (right
figure). These plots clearly demonstrate that as n → ∞, vi becomes roughly constant
for all but the smallest values of i. Consequently, unless the initial solution is very close
to the optimal solution s∗, the choice of initial solution has little impact on search cost.
For large problem instances (e.g., n = 20), search cost is only moderately reduced in
the best case – when initial solutions are adjacent to the optimal solution. Finally, we
unexpectedly observed in our experimentation that for 1 ≤ n ≤ 40, v1 = 2n−1. In
other words, a random walk out-performs enumeration of the search space only when
search is initiated from a solution that is adjacent to the optimal solution s∗; for i ≥ 2,
a random walk is actually more costly than enumeration due to re-sampling, although
not by a significant margin. For example, with n = 19, the mean cost from i = 9 is
557,757, while the size of the search space is 524,288.

6.5 A Dynamic Cost Model of RW: A Failed First At-
tempt

We now attempt to extend the dynamic cost model of a random walk for our idealized
problem instance to RW for the random JSP. Due to the presence of both infeasible
solutions and multiple optimal solutions, the transition probabilities for all solutions
at a given distance i from the nearest optimal solution are in general no longer con-
stant. While we can compute the transition probabilities for any particular solution, the
question is whether or not regularities exist in these probabilities, such that we can still

approximate the behavior of a Markov chain with O(2m·(n

2)) states using a Markov chain
with O(m ·

(

n
2

)

) states.
For each 6 × 4 and 6 × 6 instance, the transition probabilities qi, ri, and pi (respec-

tively the probability of moving closer to, remaining equidistant , and moving farther
from the nearest optimal solution) are estimated using a simple, albeit expensive, itera-
tive sampling procedure. At each iteration, a random semi-active solution s is generated
(using the procedure discussed in Section 3.5.3) and the neighborhood of s under the N1

operator is computed. We then compute the distance i to the nearest optimal solution
for both s and each neighbor s′ ∈ N1 (s). From these distances, we obtain the exact
transition probabilities q′s,i, r′s,i, and p′s,i for the solution s under RW. Let Si denote the
set of solutions s observed at distance i, and let

∑

s∈Si
q′i,

∑

s∈Si
r′i, and

∑

s∈Si
p′i denote

the respective sums of the transition probabilities for solutions observed at distance i.
We execute the iterative procedure until |Si| ≥ 50 for 1 ≤ i ≤ rint(drand-opt), where

the function rint(x) returns the integer closest to x, rounding is upward if the fractional
component of x equals 0.5. This does not prevent |Si| ≥ 50 for some i > rint(drand-opt).
Rather, the condition ensures that solutions at low-to-moderate distances from the near-
est optimal solution are sufficiently sampled. Let D denote an estimate of the maximal
distance between feasible solutions and the nearest optimal solution. Because |Si| ≥ 50
can occur for i > rint(drand-opt), we take D = X − 1 such that |SX | is the smallest

74

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

Figure 6.5: Transition probabilities for two 6 × 6 random JSPs under RW generated via
sample-based estimation.

distance X at which less than 50 solutions were observed. In effect, we take drand-opt

as a lower bound on D, with the actual value of D depending on the frequency of so-
lutions observed at distance i > rint(drand-opt) from the nearest optimal solution. As
we demonstrate below in Section 6.6, more accurate estimation of D is unnecessary.
Upon termination, we compute estimates of the transition probabilities qi, ri, and pi

using the obvious formulas (e.g., qi =
∑

s∈Si
q′i/|Si|). We observe that the estimated

transition probabilities are largely insensitive to the particular set of random semi-active
solutions upon which they are based. We refer to this iterative process as sample-based
estimation.

In Figure 6.5, we show graphs of the transition probabilities resulting from sample-
based estimation for two 6× 6 JSPs. Clearly, there exist qualitative similarities between
the transition probabilities for a random walk in the JSP and our idealized problem in-
stance, in that there is a strong bias that guides search away from both optimal solutions
and solutions that are maximally distant from optimal solutions. However, it is equally
obvious that one or more of the following factors, or combination thereof, impacts the
overall form of the transition probabilities: (1) the estimation process, (2) the presence
of infeasible solutions, and (3) the presence of multiple optimal solutions. Specifically,
the transition probabilities for many instances are highly asymmetric (e.g., see the right
side of Figure 6.5) and typically exhibit slight-to-moderate curvatures in qi and pi for
small and large i.

To quantify the accuracy of our model, we compute the predicted mean search cost c
via repeated simulation of the Markov model defined by (1) the transition probabilities
qi, ri, and pi and (2) the set of states Si, 0 ≤ i ≤ D. We impose the boundary conditions
pD = 0 and r0 = 1 to respectively create an reflecting barrier at distance D and an
absorbing state S0. We use simulation instead of Equations 6.1 - 6.4 in order to control
for the impact of the distribution of the distance between random initial solutions and
the nearest optimal solution. We initiate each simulation trial in a state Sz, where z is
the distance between a random semi-active solution and the nearest optimal solution.

75

10

100

1000

10000

100000

1e+006

10 100 1000 10000 100000 1e+006

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000 1e+06

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

Figure 6.6: Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under a random walk, for 6 × 4 (left figure) and 6 × 6 (right figure) random
JSPs; the least-squares fit lines are super-imposed.

Simulation proceeds until state S0 is encountered, and the total number of iterations is
recorded; the predicted c is then taken as the mean number of iterations over 10,000
independent trials.

We show scatter-plots of the predicted versus actual search cost c for our 6 × 4 and
6× 6 problem sets in Figure 6.6. The r2 values for the corresponding regression models
are 0.8701 and 0.7186, respectively. In either case, model accuracy is worse than that
obtained by the quasi-dynamic drw-opt model and only marginally better than that of the
static drand-opt model, despite the fact that our Markov model is based on much more
comprehensive and detailed information. Further, the predicted c consistently under-
estimates the actual c. Clearly, either the approach to aggregating solutions based on
their distance to the nearest optimal solution or the process for estimating the transi-
tion probabilities fails is responsible for the relative poor accuracy of the dynamic cost
model. Given the fact that random solutions are not necessarily representative of so-
lutions visited by RW during search and the sample-based estimation process relies on
randomly generated solutions, we now focus on the second alternative.

6.6 A Dynamic Cost Model of RW: Accounting for Sam-
pling Bias

As demonstrated in Section 6.3, random semi-active solutions are not necessarily rep-
resentative of the set of solutions actually visited by a random walk. This observation
immediately suggests the hypothesis that transition probabilities estimated from random
semi-active solutions might in fact be quite different from those estimated by solutions
visited during a random walk. It is relatively straightforward to test this hypothesis, as
shown below. However, the process at first appears to be somewhat circular: If we use
those solutions visited during search to estimate the transition probabilities, wouldn’t

76

we expect the corresponding Markov model to accurately predict search cost? This crit-
icism is addressed as follows. First, the runs of RW used to compute the actual c are
different from (i.e, independent of) the runs used to estimate the transition probabil-
ities. Second, there is no a priori guarantee that there are sufficient regularities in the
transition probabilities to enable a linear (one-dimensional) Markov model to accurately
predict search cost. Ideally, the transition probabilities would be estimated via sampling
procedure that generated solutions representative of those visited during search. How-
ever, given the current lack of understanding of this search space, and how it differs
from the space of random semi-active solutions, RW remains the only viable alternative
for generating such solutions.

We refer to the process of computing transition probabilities from the set of solu-
tions visited by a search algorithm as on-line estimation. We observe RW over a number
of independent trials, computing both (1) the set of solutions Si observed at each dis-
tance i from the nearest optimal solution and (2) the aggregate transition probabilities
∑

s∈Si
q′i,

∑

s∈Si
r′i, and

∑

s∈Si
p′i for solutions distance i from the nearest optimal solu-

tion. The method for determining when to terminate the sampling process is identical to
that described above in Section 6.5, as are the formulas for computing both D and the
transition probabilities. As with sample-based estimation, the transition probabilities
generated via on-line sampling are empirically insensitive to the nature of the random
walks performed, i.e., the estimates are statistically isotropic.

In Figure 6.7, we show graphs of the transition probabilities resulting from on-line
estimation for two typical 6×6 random JSPs. In contrast to Figure 6.5, we observe very
strong similarities with the transition probabilities predicted by our idealized problem
instance. If we set ri = 0 and scale qi and pi accordingly, the transition probabilities
shown in the left side of Figure 6.7 are nearly identical to those of our idealized problem
instance. The transition probabilities shown in the right side of Figure 6.7 exhibit both
a slight curvature in qi and pi for small i and negligible ri for all i.

The differences between the transition probabilities resulting from the sample-based
and on-line estimation procedures can be significant, as shown in Figure 6.8. For this
particular 6 × 6 instance, the sample-based transition probabilities predict that search is
biased toward solution roughly distance 10 from the nearest optimal solution, in contrast
to a predicted distance of 25 under on-line estimation. Differences in this crossover point
can be found throughout our 6 × 4 and 6 × 6 problem set, indicating the potential for
divergence in the predicted search cost generated by the Markov models based on the
two sets of probabilities.

Scatter-plots of the predicted versus observed c for 6 × 4 and 6 × 6 random JSPs
are shown in Figure 6.9. The r2 values of the corresponding regression models are
0.9954 and 0.9929, respectively. In either case, model accuracy is exceptionally high;
for all problem instances, the predicted c is within a factor of 4 of the actual c, and is
typically within a factor of 2. These results confirm that the initial attempt to construct
an accurate dynamic model failed due to the fact that the transition probabilities for
random semi-active solutions are not representative of those for solutions visited by RW

77

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

Figure 6.7: Transition probabilities for two 6 × 6 random JSPs under RW generated via
online estimation.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

Figure 6.8: Transition probabilities generated via sample-based estimation (left figure)
and on-line estimation (right figure) for an identical 6 × 6 random JSP.

during search. Finally, although we do not know the exact cause of the curvatures in the
transition probabilities (e.g., that occur for the instance represented in the right side of
Figure 6.7), we do know that they are strictly a function of the distribution of infeasible
solutions: similar curvatures were observed in a set of 100 6×6 random JSPs containing
a single optimal solution apiece.

Finally, we analyze the influence of the initial solution on the cost of locating an op-
timal solution under RW. In Figure 6.10, we show plots of the distance i from the initial
solution to the nearest optimal solution versus the search cost vi for the two 6 × 6 rep-
resented in Figure 6.5. As with our idealized problem, we observe minimal differences
in search cost for nearly all initial solutions, with the exception of those with small i.
Further, the effect is more pronounced in the more difficult instances, e.g., those with
large D.

78

10

100

1000

10000

100000

1e+006

10 100 1000 10000 100000 1e+006

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

10

100

1000

10000

100000

1e+006

1e+007

10 100 1000 10000 100000 1e+006 1e+007

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

Figure 6.9: Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under a random walk, for 6 × 4 (left figure) and 6 × 6 (right figure) random
JSPs; the least-squares fit lines are super-imposed.

1200

1400

1600

1800

2000

2200

2400

0 5 10 15 20 25

S
ea

rc
h

co
st

Distance between the initial solution and the nearest optimal solution

45000

50000

55000

60000

65000

70000

75000

0 5 10 15 20 25 30 35 40

S
ea

rc
h

co
st

Distance between the initial solution and the nearest optimal solution

Figure 6.10: Mean cost for a random walk to locate an optimal solution, given an initial
solution that is distance i from the nearest optimal solution, for two 6× 6 random JSPs.

6.7 Relationship Between the Cost Models of RW

In hindsight, the success of the drand-opt cost model was due to the fact that drand-opt and
drw-opt are highly correlated for small problem instances. What remains is to establish
a link between the drw-opt model and our dynamic Markov model. As previously noted,
the qualitative forms of the estimated transition probabilities (e.g., see Figure 6.7) are
identical for all of the problem instances we examined. Any major differences are due to
variability in D, which (like drw-opt) can be viewed as a measure of the size of the search
space. We also observe that these transition probabilities are roughly symmetric around
D/2, and that search in RW is biased toward solutions that are approximately distance
D/2 from the nearest optimal solution. But D/2 is roughly equivalent to drw-opt, and
consequently drw-opt ≈ D/2. Thus, we believe the success of the drw-opt model is due to
the fact that it estimates a key parameter (D) of the dynamic cost model.

79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

F
re

qu
en

cy

P Value
−3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 6.11: Left Figure: p-values for 1,000 6×6 instances for rejecting the null hypoth-
esis that the actual run-length distributions are exponentially distributed. Right Figure:
The actual and exponential run-length distributions for the 6×6 instance with the small-
est p-value (p=3.6e-16).

6.8 An Analysis of Run-Length Distributions of RW

We now shift our focus from modeling the average cost required to locate optimal solu-
tions to modeling the full run-length distribution (RLD) of search cost. As indicated in
Section 6.1, pilot experiments indicated that search cost under RW is exponentially dis-
tributed. We use a two-sample Kolmogorov-Smirnov (KS) goodness-of-fit test [SM90]
to test this hypothesis for each of our 6 × 4 and 6 × 6 problem instances. We take
the first sample as the distribution of actual search costs c observed for RW over 1,000
independent trials. The second sample consists of 1,000,000 random samples from an
exponential distribution with a mean equal to the c computed from the first sample. We
only report results for the 6 × 6 instances; results for the 6 × 4 problem set are qualita-
tively similar.

We show a histogram of the resulting p-values for our 6 × 6 instances in the left
side of Figure 6.11; the null hypothesis is that the two samples originated from the same
underlying distribution. At p ≤ 0.01, we reject the null hypothesis for 218 of the 1,000
instances: i.e., for roughly 20% of the 6 × 6 instances, search cost under RW is not
exponentially distributed. We show the cumulative density function (CDF) of both the
actual and associated exponential distributions for the 6×6 instances with the smallest p-
value in the right side of Figure 6.11. For this instance, and all other instances with p ≤
0.01, the two distributions differ largely in their left tails. As shown in Figure 6.12, the
value of the KS test statistic is inversely proportional to instance difficulty (the p-value
is proportional to instance difficulty). In other words, the run-length distribution of RW
is exponential for moderate-to-difficult instances, but not for easy instances. Although
statistically significant, our results also indicate that the maximal deviation from the
exponential distribution is not substantial; the run-length distribution under RW can still

80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 100 1000 10000 100000 1e+006 1e+007

K
S

 te
st

 s
ta

tis
tic

Search cost

p=0.05
p=0.01

Figure 6.12: Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov
test statistic for comparing the actual search cost distribution with that of an exponential
distribution. Large values of the test statistic indicate more significant differences. The
horizontal lines indicate null hypothesis rejection thresholds at significance p = 0.01
and p = 0.05.

be approximated by an exponential.
Surprisingly, the results presented above (and in particular those shown in Fig-

ure 6.12), mirror those reported by Hoos [Hoo98] for a well-known local search al-
gorithm, Walk-SAT, for MAX-SAT. Search in Walk-SAT operates in two phases: a hill-
climbing phase and a plateau phase [SGS00]. During the hill-climbing phase, search is
quickly driven from poor initial solutions to near-optimal solutions. Subsequent plateau
search is restricted to the sub-space containing optimal and near-optimal solutions. In
moderate-to-difficult MAX-SAT instances, the plateau phase dominates search cost; in
easy instances, the cost of the two phases is similar. Hoos hypothesized that a costly
hill-climbing phase, relative to the plateau phase, caused Walk-SAT RLDs to deviate
from the exponential ideal. He then introduced a generalized distribution to model the
hill-climbing phase, and showed the distribution more closely approximates the Walk-
SAT RLDs observed for easy problem instances. While our results are consistent with
those reported by Hoos, they also indicate that the deviation from the exponential ideal
may be caused by factors other than initial hill-climbing during local search, which is
clearly absent in RW.

Next, we compare the actual RLDs under RW to those predicted by our dynamic cost
model. We again use a two-sample Kolmogorov-Smirnov goodness-of-fit test to the
hypothesis that the actual and predicted RLDs for a given problem instance originate
from the same underlying distribution. We only report results for our 6 × 6 problem
set; the results for 6 × 4 instances were qualitatively identical. For 647 of the 1,000
instances, the significance (i.e., p-value) of the resulting KS test statistic was ≤ 0.01.
In contrast to Figure 6.12, we observed no significant correlation between the value of
the KS test statistic and problem difficulty. We show CDFs of the predicted and actual
RLDs for two problem instances in Figure 6.13. With very few exceptions, the actual

81

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 6.13: CDFs of the predicted and actual RLDs for two 6 × 6 instances. The
p-values for the KS test statistic are respectively 0.14408 and 7.57e − 8.

and predicted RLDs are qualitatively identical; for instances with p ≤ 0.01, the actual
RLDs are closely approximated by shifting the predicted RLDs along the x-axis by a
constant value. Consequently, we believe such discrepancies are due to inaccuracies in
the process of estimating the transition probabilities, and not to some inherent structural
flaw in our dynamic model. As expected (see Section 4.5), our results indicate that near-
perfect dynamic cost models are necessary to achieve statistically accurate prediction of
the full RLD.

82

Chapter 7

Tabu Search

The job-shop scheduling problem is widely acknowledged as one of the most difficult
NP -hard combinatorial optimization problems encountered in practice. Nearly all well-
known optimization and approximation techniques have been applied to the JSP, includ-
ing linear programming, Lagrangian relaxation, branch-and-bound, constraint satisfac-
tion, local search, and even neural networks and expert systems [JM99]. Recent compar-
ative studies of techniques for the JSP conclude that local search algorithms provide the
best overall performance on the set of widely-available benchmark problems, e.g., see
the recent surveys by Blażewicz et al. [BDP96] or Jain and Meeran [JM99]. Within the
class of local search algorithms, the strongest performers are typically derivatives of tabu
search, an exception being the guided local search algorithm of Balas and Vazacopou-
los [BV98]. The current state-of-the-art algorithm for locating high-quality solutions to
the JSP, outperforming competitors by a significant margin, is a tabu search algorithm
developed by Nowicki and Smutnicki [NS03].

Despite the relative simplicity and excellent performance of tabu search algorithms
for the JSP, very little is known about why these algorithms work so well, and under what
conditions. For example, we currently have no answers to fundamental, related ques-
tions such as “Why is one problem instance more difficult than another?” and “What
features of the fitness landscape influence search cost?” No published research has an-
alyzed models of problem difficulty for tabu search in the JSP, and only one group of
researchers, Mattfeld et al. [MBK99], has analyzed the link between problem difficulty
and local search for the JSP in general.

In this chapter, we develop a variety of cost models of a “representative” tabu search
algorithm for the JSP, introduced by Taillard in 1989. Although no longer state-of-the-
art, Taillard’s algorithm is closely related to modern tabu search algorithms, but for a
variety of reasons is significantly more amenable to analysis (although we do analyze
a more powerful variant of Taillard’s algorithm in Chapter 11). Additionally, we show
that the resulting cost models account for many observations relating to problem diffi-
culty in the JSP, and use the models to clarify some “well-known” facts regarding the
behavior of tabu search algorithms. This rest of this chapter is organized as follows.

83

We begin in Section 7.1 with a general introduction to the tabu search meta-heuristic.
The history of tabu search and the JSP is documented in Section 7.2, and we discuss
the details of Taillard’s tabu search algorithm in Section 7.3. Our hypothesis that tabu
search algorithms for the JSP are effectively performing a random walk over a restricted
sub-space of the fitness landscape is based in part on an analysis of run-time behavior
that we present in Section 7.4. We analyze the accuracy of numerous static cost models
for Taillard’s algorithm in Section 7.5, where we demonstrate that the mean distance be-
tween random local optima and the nearest optimal solution (dlopt-opt) is highly correlated
with problem difficulty. We explore applications and limitations of the dlopt-opt model in
Sections 7.6 and 7.7. We turn from static to quasi-dynamic cost models in Sections 7.8
and 7.9, where we show that random local optima are not necessarily representative of
the set of solutions visited during search, and use this information to construct a more
accurate, scalable quasi-dynamic cost model. We develop our dynamic cost model in
Section 7.9, and discuss several applications of the resulting model in Section 7.10. The
relationship between the static, quasi-dynamic, and dynamic cost models is explored
in Section 7.11. We discussion of the impact of neighbor makespan estimation on our
dynamic cost model (Section 7.12) and the ability of the dynamic cost model to account
for the full run-length distribution (Section 7.13).

7.1 An Overview of Tabu Search

Basic forms of most meta-heuristics for local search, including iterated local search,
simulated annealing, and Markov Chain Monte Carlo, are memoryless: the neighbor
s′ of the current solution s selected at each iteration is independent of the set of solu-
tions encountered in previous iterations. Yet, intuition suggests that memory might be
leveraged in a fundamental way to improve meta-heuristic performance. For example,
long-term memory may be used to prevent search from re-visiting previously explored
regions of the fitness landscape, while short-term memory may be used to escape at-
tractor basins by preventing search from re-visiting recently generated solutions. These
and other memory mechanisms are embodied in the tabu search meta-heuristic, first in-
troduced by Glover in 1986 [Glo86]. Meta-heuristics such as iterated local search and
simulated annealing exhibit relatively little variance across implementations. In con-
trast, tabu search is really a framework for expressing memory-based meta-heuristics:
numerous design decisions are required to produce a realizable implementation of tabu
search for a given combinatorial optimization problem, each with the potential to have
a major impact on performance. Finally, some variants of iterated local search and sim-
ulated annealing do make limited use of memory, e.g., see Yamada et al. [YRN94] or
Ingber and Rosen [IR92]; however, memory is not an integral component of the core
meta-heuristic.

Like all single-solution meta-heuristics for local search, tabu search proceeds via
a sequence of incremental modifications to some initial solution sinit. We denote the

84

function Tabu Search(MaxIters)
s = sinit

sbest = sinit

clear(M)
i = 0
repeat

update(M ,s)
nall = N (s)
ntabu=tabu(nall,M)
s = argminx∈nall\ntabu

(F (x))
if F (s) < F (sbest) then

sbest = s
end
i = i + 1

until i eq MaxIters

return sbest

end

Figure 7.1: Pseudo-code for the tabu search meta-heuristic. See text for details.

solution at iteration i by Xi, 0 ≤ i ≤ n, where X0 = sinit and n is the total number of
iterations performed; the entire sequence is denoted simply by X . Upon termination,
the best solution in the X is returned. All tabu search algorithms use steepest-descent
as the core meta-heuristic. A short-term memory M(X, k) stores some subset of the
features of solutions in X encountered during the last k iterations. During each iteration
Xi, i < N , the neighbors N (s) of the current solution s are generated in the normal
fashion. However, before selecting a particular neighbor s′ for the next iteration, the
short-term memory M(X, k) is used to identify a subset of tabu solutions T ⊆ N (s)
that share similarities with recently encountered solutions. Tabu search then proceeds by
selecting the best non-tabu solution from N (s)\T ; ties are typically broken at random.
It should be clear that tabu search behaves identically to steepest-descent local search,
with two key exceptions: only non-tabu moves are considered at each iteration, and a
move is always taken, i.e., search does not terminate at a local optimum. While search
is descending toward a local optimum, the short-term memory is largely passive, simply
tracking attributes of the solutions encountered. However, once a local optimum is
encountered and search begins to accept dis-improving moves, the short-term memory
prevents search from “slipping” back down into the attractor basin.

We provide pseudo-code for the basic form of tabu search in Figure 7.1, which as-
sumes the existence of a move operator N and fitness function F . Beyond this, an
algorithm designer must supply definitions for only three functions to yield a complete
implementation of tabu search. The first function, clear, empties the contents of short-

85

term memory and initializes any associated auxiliary data structures. The second func-
tion, update, updates the contents of the short-term memory M to reflect the generation
of a new solution s. The third function, tabu, uses the short-term memory to determine
those solutions in the input set that are forbidden.

Thus far, we have been intentionally vague regarding any details of short-term mem-
ory. In practice, the contents of short-term memory, and how those contents are used to
identify tabu neighbors, is problem-specific and, as a consequence, highly variable. As
indicated above, the purpose of short-term memory is to keep search from re-visiting
solutions encountered in recent iterations by labeling some solutions as tabu, with the
ultimate goal of escaping local optima. For example, the short-term memory of a tabu
search algorithm for MAXSAT might track the set of variables that were inverted over
the last k iterations, and label as tabu any solution obtained from the current solution
by inverting the value of any such variable. This is an example of attribute-based short-
term memory. Alternatively, the short-term memory may simply store the last k solu-
tions, and prevent search from re-visiting one of these solutions. Such a scheme is an
instance of solution-based short-term memory. In practice, attribute-based memory is
more common, although for any given problem there are a wide variety of possible so-
lutions attributes that can be extracted and stored in short-term memory, each with its
own potential impact on performance.

The use of long-term memory is even less standardized. Relatively few long-term
memory mechanisms are found in even a majority of tabu search implementations. Fur-
ther, long-term memory is frequently absent, even in high-performance implementa-
tions. The sole exception is the widespread use of an aspiration level criterion, which
over-rides the tabu status of any neighboring solution with a better fitness that the
best solution encountered during the current run. Numerous tabu search algorithms re-
intensify search around previously encountered high-quality solutions, while frequency-
based memory is often used to penalize solutions in proportion to the frequency with
which their attributes appear in the solutions encountered during prior iterations. Tabu
search can be prone to cyclic behavior that cannot be detected via short-term memory.
Consequently, cycle detection mechanisms can also be viewed as long-term memory,
and are found in many tabu search implementations. Detailed descriptions of these and
other long-term memory mechanisms can be found in [GL97].

Many of the ideas presented above first appeared in a pair of introductory articles
by Glover [Glo89] [Glo90]. Tabu search algorithms have been successfully applied to
a truly impressive range of combinatorial optimization problems, e.g., see the book by
Glover and Laguna [GL97] for a slightly dated survey. However, the popularity of tabu
search is largely concentrated in the operations research community, and only recently
has drawn the attention of researchers in artificial intelligence.

86

7.2 Tabu Search and the JSP: An Historical Perspective

Taillard introduced the first tabu search algorithm for the JSP in 1989 [Tai89], a rela-
tively straightforward implementation of tabu search based on the N1 move operator.
Despite its simplicity, the algorithm out-performed, in terms of both speed and accu-
racy, contemporary state-of-the-art algorithms such as van Laarhoven et al.s simulated
annealing algorithm [vLAL88] and Applegate and Cook’s shifting bottleneck procedure
[AC91]. The strong relative performance of Taillard’s algorithm fueled a subsequent ex-
plosion of interest in tabu search algorithms for the JSP. The results of the “first wave” of
follow-on research yielded the algorithms by Dell’Amico and Trubian [DT93], Barnes
and Chambers [BC95, CB96], Nowicki and Smutnicki [NS96], in addition an enhanced
version of Taillard’s original algorithm [Tai94]. Of these, Nowicki and Smutnicki’s al-
gorithm provides the strongest overall performance, which is capable of locating optimal
solutions to Fisher and Thompson’s infamous ft10 instance in less than 30 seconds on
now-dated hardware based on an Intel 386 processor. At the time, Nowicki and Smut-
nicki’s algorithm outperformed all other algorithms for the JSP, including other local
search algorithms and the best available branch-and-bound algorithms. Although rarely
noted in the literature, the algorithms of Barnes and Chambers are nearly competitive
with Nowicki and Smutnicki’s algorithm.

Taillard’s original algorithm and the aforementioned follow-on algorithms differ pri-
marily in the following three respects: the method used to generate the initial solution,
the move operator, and the use of long-term memory. There is some evidence to suggest
that the quality of the initial solution can have an impact on the performance of tabu
search. Consequently, researchers have hybridized tabu search algorithms with methods
to generate high-quality initial solutions. All of the first-wave tabu search algorithms
for the JSP employ different methods for generating the initial solution; the greedy con-
structive procedure [WW95] used in Nowicki and Smutnicki’s algorithm yields the best
initial solutions. The algorithms of both Barnes/Chambers and Taillard are based on the
N1 move operator, although the latter only estimates the makespan of neighboring so-
lutions (using the procedure documented in Section 3.5.2). Both Dell’Amico/Trubian’s
and Nowicki/Smutnicki’s algorithms are based on novel move operators; the former si-
multaneously inverts pairs of critical operations, while the latter uses a restricted variant
of the N1 operator, N5 . Finally, both Barnes/Chambers and Nowicki/Smutnicki track
the best solutions located during search, periodically re-intensifying search around these
solutions.

Non-systematic variation among these algorithms makes it very difficult to deter-
mine which components, or combinations of components, dictate the success of a given
algorithm, and to what degree. All of the follow-ons to Taillard’s original algorithm
differ in at least two out of the three primary features mentioned earlier. For example,
Nowicki and Smutnicki simultaneously introduce a new initialization method, a new
move operator, and a new re-intensification method. Although high-quality solutions
can improve the effectiveness of search, both Taillard [Tai94] and Nowicki/Smutnicki

87

[NS96] indicate that tabu search can eventually over-come the impact of a poor choice of
initial solution, i.e., the quality of the initial solution appears to only impact short-term
performance. Therefore it seems likely that the variability in performance of differ-
ent tabu search algorithms for the JSP is dictated by the choice of move operator and
whether re-intensification is employed. The two most effective algorithms, those of
Barnes/Chambers and Nowicki/Smutnicki, use similar re-intensification schemes, but
different move operators. Consequently, we hypothesize that re-intensification is largely
responsible for the superior performance of these algorithms, which is impacted to a
lesser extent by the move operator (we test this hypothesis in Chapter 11).

Since the introduction of Nowicki and Smutnicki’s algorithm, researchers have
concentrated on enhancing the use of memory in tabu search algorithms for the JSP.
Jain [Jai98] extends Nowicki and Smutnicki’s original algorithm via a core/shell strat-
egy. The “core” is a simple variant of Nowicki and Smutnicki’s algorithm that does
not re-intensify search around previously encountered high-quality solutions. Re-
intensification is controlled by a series of shell strategies, which apply the core pro-
cedure to both previously visited high-quality solutions and new high-quality solutions
generated by various external procedures, specifically path relinking and scatter search.
Pezzella and Merelli [PM00] describe a tabu search algorithm that uses the shifting
bottleneck procedure [ABZ88] to re-optimize the machine sequences whenever a new
best-so-far solution is located, which in effect intensifies search around high-quality so-
lutions. Most recently, Nowicki and Smutnicki [NS01, NS02, NS03] have extended
their original algorithm by using path relinking between previously encountered high-
quality solutions to generate new solutions to which their core procedure is then applied.
The latter approach represents, by a significant margin, the current state-of-the-art in ap-
proximation algorithms for the JSP.

7.3 Algorithm and Methodological Considerations

In developing cost models of tabu search for the JSP, we necessarily proceed in the
context of a specific algorithm. For our analysis, we selected an algorithm introduced
by Taillard in 1994 [Tai94] (as opposed to an algorithm documented by Taillard in an
earlier technical report [Tai89]). We implemented our own version of the algorithm,
which we denote TSTaillard, and were easily able to replicate the performance results doc-
umented in [Tai94]. We acknowledge up-front that TSTaillard is not a state-of-the-art tabu
search algorithm for the JSP; the algorithms of Nowicki/Smutnicki, Pezzella/Merelli
and Barnes/Chambers provide stronger overall performance. However, state-of-the-art
algorithms still bear strong resemblance to TSTaillard, differing primarily in the choice
of move operator, the method used to generate the initial solution, and the presence of
long-term memory mechanisms such as reintensification. Instead of tackling the most
complex algorithms first, our goal is to develop cost models for a simple “represen-
tative” tabu search implementation for the JSP, and then to systematically assess the

88

influence of more complex algorithmic features on the cost models of the basic algo-
rithm. In particular, we examine the impact of the initial solution in Section 7.10.3 and
re-intensification in Chapter 11; for reasons discussed below, we are currently unable to
assess the impact of move operators found in state-of-the-art algorithms.

TSTaillard is based on the N1 move operator. In contrast to many other algorithms
based on N1 , all pairs of adjacent critical operations are considered – not just those
on a single critical path. At each iteration, the neighborhood of the current solution
s is evaluated, and the non-tabu neighbor s′ ∈ N1 (s) with the smallest makespan is
selected for the next iteration; ties are broken randomly. Let (oi, oj) denote the pair of
adjacent critical operations that are swapped in s to generate s′, such that ecti = estj,
i.e., oi appears before oj in the machine order of s. The short-term memory STM in
TSTaillard is a queue of maximal size L, containing pairs of critical operations (oi, oj).
The current size of the queue is denoted |STM|. At the end of each iteration, the inverse
pair (oj, oi) is added to |STM|; if |STM| > L, then the operation pair at the front of the
queue is removed. The idea, a variant of frequency-based memory, is to prevent recently
swapped pairs of critical operations from being re-established. Clearly, the oldest and
youngest tabu moves reside near the front and back of the queue, respectively. Consider
a neighboring state s′ ∈ N1 of a current solution s, obtained by swapping the order
of a pair of critical operations (oi, oj). The state s′ is tabu with respect to STM if and
only if (oj, oi) ∈ STM. An exception occurs when Cmax(s

′) < Cmax(sbest), i.e., TSTaillard

employs a simple aspiration level criterion. In rare cases, the minimal makespan may be
achieved by both non-tabu and tabu-but-aspired moves, in which case a non-tabu move
is always accepted. Similarly, situations occur when all moves in N1 (s) are tabu, in
which case the oldest tabu moves are removed from the front of STM until at least one
neighbor in N1 (s) in non-tabu or tabu-but-aspired. Taillard did not specify methods for
handling either of the latter two exceptions in his original papers [Tai89, Tai94].

It is well-known that tabu search implementations with fixed-size short-term mem-
ories are prone to cycling behavior [GL97]. To avoid cycling, TSTaillard randomly and
uniformly samples the tabu tenure L (i.e., the maximal size |STM| of the short-term
memory STM) from a fixed-width interval [Lmin, Lmax] every 1.2Lmax iterations. Tabu
tenure can have a major impact on performance. Based on empirical tests, Taillard de-
fines Lmin = 0.8X and Lmax = 1.2X , where X = (n+m/2) · e−n/5m +N/2 · e−5m/n; n
and m are respectively the number of jobs and machines in the problem instance under
consideration, and N = nm.

Our implementation of TSTaillard deviates from Taillard’s original algorithm in several
respects; in all cases, our decision was based on the need to control for the impact of
a particular feature on the form and/or accuracy of our cost models. Taillard’s original
algorithm [Tai94] used the scheme described in Section 3.5.2 to estimate the makespan
of neighboring solutions. There is some evidence (e.g., see Nowicki and Smutnicki
[NS02]) that estimation can impact the performance of tabu search algorithms. We in-
stead compute the makespan of neighboring solutions exactly. We defer analysis of the
impact of estimation on our cost models to Section 7.12. We do not use the frequency-

89

based memory introduced by Taillard in our implementation of TSTaillard. As Taillard
indicates ([Tai94], p. 100), long-term memory is only necessary for problems that re-
quire a very large (> 1 million) number of iterations, which is generally not the case for
the test problems we consider. Finally, in contrast to Taillard, who used a deterministic
scheme to generate initial solutions, we initiate all runs of TSTaillard from random local
optima. We use random local optima in contrast to random solutions to control for the
length of the initial descent in our analysis. The impact of the quality of initial solution
on performance is analyzed in Section 7.10.3.

An important property of N1 is that it induces search spaces that are provably con-
nected, in that it is always possible to move from an arbitrary solution to a global op-
timum. Consequently, it is possible to construct a local search algorithm based on N1

that is asymptotically complete, such that it will eventually locate an optimal solution
given sufficiently large run-times. Empirically, TSTaillard is asymptotically complete given
the aforementioned rules for specifying the tabu tenure and update frequency; all trials
of TSTaillard have eventually located an optimal solution to all of our 6 × 4, 6 × 6, and
10×10 problem instances; the convergence on larger instances was not tested due to the
computational costs. The property of asymptotic completeness allows us to naturally
define the cost required to solve a given problem instance using a single trial of TSTaillard

as the number of iterations required to locate a globally optimal solution. In general,
search cost is a random variable with an approximately exponential distribution - see
Taillard [Tai94] or Section 7.13. Consequently, we define the search cost for a given
problem instance as either the median or mean number of iterations required to locate
an optimal solution; the respective quantities are denoted by cQ2 and c. We estimate
both cQ2 and c using 5,000 independent trials of TSTaillard; due to the exponential nature
of the distribution, a large number of samples is required to achieve stable estimates.
We use the more stable cQ2 measure when possible. Other tabu search algorithms for
the JSP, including Nowicki and Smutnicki’s algorithms, are based on move operators
that induce disconnected search spaces and are therefore not asymptotically complete.
A major impediment to the analysis of these algorithms is the definition of search cost,
as they are not guaranteed to locate optimal solutions. Our selection of TSTaillard as a
“representative” tabu search algorithm for the JSP is driven in part by the desire to avoid
this issue.

In preliminary experimentation, we observed that the tabu tenure heuristic defined
by Taillard was insufficient to prevent cycling or stagnation behavior in instances from
our 6 × 4 and 6 × 6 problem sets; the respective [Lmin, Lmax] tenure intervals are com-
puted as [3, 5] and [4, 6]. To avoid such behavior, we set [Lmin, Lmax] equal to [6, 14] for
all trials involving these instances, and re-sample the tabu tenure every 15 iterations.
We observed similar, albeit less extreme, behavior on 10× 10 instances under Taillard’s
heuristic. Here, we set [Lmin, Lmax] equal to [8, 14] for all trials involving these instances,
and re-sample the tabu tenure every 15 iterations. These values were taken from Taillard,
who also ignored his heuristic for trials involving 10 × 10 instances. For all other prob-
lem sizes, we compute the tabu tenure intervals and update frequency using Taillard’s

90

Depth under
TSTaillard Mean Depth of

Size Instance Median Mean Std. Dev Max. Random Solutions
10 × 10 la16 1 1.84 1.78 20 12.43
10 × 10 la17 1 1.96 1.86 16 13.03
10 × 10 la18 2 2.06 1.94 18 13.42
10 × 10 la19 2 2.15 1.94 18 13.99
10 × 10 la20 2 2.22 1.94 20 13.00
10 × 10 abz5 2 2.16 1.95 16 13.96
10 × 10 abz6 2 2.12 1.89 16 12.95
15 × 15 ta01 1 1.95 1.97 18 24.38
20 × 15 ta11 1 1.51 1.83 21 30.07
20 × 20 ta21 2 2.28 2.24 24 34.10
30 × 15 ta31 1 2.00 2.20 20 39.27
30 × 20 ta41 1 1.68 2.02 36 46.19
50 × 15 ta51 1 1.86 2.35 28 45.11
50 × 20 ta61 2 2.25 2.56 60 55.50
100 × 20 ta71 1 2.50 3.16 40 71.26

Table 7.1: Depth statistics for TSTaillard on select random JSPs from the OR Library.
Statistics are taken over a single run of length 1,000,000 iterations.

heuristic.

7.4 Run-Time Behavior: Some Qualitative Observa-
tions

Given a core strategy of steepest-descent local search, tabu search algorithms exhibit a
strong bias search toward local optima. Coupling this bias with the relative weakness
of attractor basins in the JSP, demonstrated in Section 5.2.4, we hypothesize that tabu
search in general, and TSTaillard in particular, is restricted to the sub-space of the fitness
landscape containing both local optima and solutions that are “nearly” local optima – in
terms of the number of moves, and not the difference in fitness.

To test this hypothesis, we observe the depth of solutions visited by TSTaillard during
search on a range of problem instances. We define the search depth with respect to the
current solution s as the disjunctive graph distance D(s, s′) between the current solution
s and a local optimum s′ generated by applying steepest-descent local search to s. In
reality, the definition of search depth is more complex, due to randomization in the
steepest-descent algorithm. We avoid this issue by computing the mean search depth
over a very large number of samples. For each problem instance, we execute TSTaillard for
1,000,000 iterations. We compute search depth at each iteration, and record the resulting

91

time-series.
In Table 7.1, we present summary statistics for the observed search depth under

TSTaillard for various well-known OR Library benchmark instances. In all cases, search
remains on average only 1–2 moves away from local optima. For smaller problem in-
stances, this is consistent with the fact that local optima can be escaped under steepest-
descent by accepting a short sequence of dis-improving moves. For larger problem
instances, we expected search depth to decrease, given the corresponding decrease in at-
tractor basin strength. However, as shown in Table 7.1, search depth remains relatively
constant over different problem sizes. The lack of a decrease in mean search depth at
larger problem sizes is due to the increase in the tabu tenure under the rules specified in
Section 7.3; if the tabu tenure is decreased, the search depth is inversely correlated with
problem size. The low standard deviation indicates that TSTaillard consistently maintains
a low search depth, although the maximal depth indicates that search is occasionally
driven far from local optima. It is unclear whether such large distances are actually
required to escape certain local optima, or are an artifact of the short-term memory. Ad-
ditionally, we show the mean search depth for a sample of 1,000,000 random semi-active
solutions in Table 7.1. Comparing the search depths of random solutions and solutions
visited by TSTaillard, we again observe that search is, on average, able to remain very deep
in the attractor basins of local optima.

In summary, search under TSTaillard is largely restricted to the sub-space of the fitness
landscape containing local optima and solutions that are close, in terms of distance, to
local optima. Two factors enable this behavior: the strong bias toward local optima
that is induced by the core steepest-descent heuristic and relative weakness of attractor
basins in the JSP. Together, these factors allow TSTaillard to ignore a substantial proportion
of the search space, which may in part account for the superior performance of TSTaillard

and other tabu search algorithms on the JSP.

7.5 A Static Cost Model

Let Slopt+ ⊆ SΩ denote the subset of feasible solutions to a problem instance Ω that
contains both local optima and solutions that are nearby, in terms of distance, to lo-
cal optima. Due to the lack of long-term memory, and assuming that the short-term
memory acts primarily to escape local optima, we would expect a priori the high-level
dynamics of TSTaillard to be nothing more than a random walk over the Slopt+ sub-space
of the fitness landscape. Although undoubtedly controversial to promoters of the tabu
search meta-heuristic, the random walk hypothesis is the most reasonable hypothesis,
as alternative hypotheses depend on currently non-existent evidence for some emergent
high-level search dynamic that is more effective than a random walk. Of course, our
null hypothesis is only applicable to TSTaillard and other tabu search algorithms that lack
long-term memory mechanisms; we investigate the impact of such mechanisms on tabu
search dynamics in Chapter 11.

92

If search under TSTaillard is really a random walk over Slopt+, then we would expect
problem difficulty to be a function of both the size of Slopt+ and the number and/or
distribution of optimal solutions (i.e., targets) within Slopt+. To test this hypothesis,
we analyze the accuracy of static cost models based on the following three measures,
each previously described in Section 5.3: the number of optimal solutions (|optsols|), the
mean distance between random local optima (dlopt-lopt), and the mean distance between
random local optima and the nearest optimal solution (dlopt-opt). The mean distance be-
tween random local optima indirectly estimates |Slopt+|, while the mean distance be-
tween random local optima and the nearest optimal solution simultaneously accounts
for the number/distribution of optimal solutions and |Slopt+|. Taken together, these allow
us to analyze both the independent and aggregate impact of the set of optimal solutions
and the size of |Slopt+| on search cost in TSTaillard.

As indicated in Section 5.3, most research on cost models of local search, static
or otherwise, has proceeded in the context of either MAXSAT or the more general
MAXCSP. Indeed, three of the four measures we consider are either drawn from, or in-
spired by, prior research on MAXSAT. Because our research represents the first attempt
to develop static cost models for NP -hard problems other than MAXSAT/MAXCSP,
we also take the opportunity to investigate the potential for “universals” in static cost
models for local search algorithms. Given the potential for cross-comparison, we also
analyze the accuracy of a static cost model based on the backbone size (Section 5.3.5),
a factor widely thought to influence local search cost in MAXSAT.

In this subsection, we analyze the ability of static cost models to account for the
observed variability in the cost required by TSTaillard to locate optimal solutions to 6 × 4
and 6 × 6 random JSPs. In doing so, we make the following contributions:

1. We show that analogs of fitness landscape features known to influence local search
cost in MAXSAT, specifically the number of optimal solutions (|optsols|) and the
mean distance between random local optima and the nearest optimal solution
(dlopt-opt), also influence the cost of locating optimal solutions under TSTaillard. Fur-
ther, the strength of the influence of these two features is nearly identical in both
problems. As in MAXSAT, we find that dlopt-opt has a much stronger influence on
search cost than |optsols|, and ultimately accounts for a significant proportion of
the variability in the cost of finding optimal solutions to random JSPs.

2. Our experiments indicate that for random JSPs with moderate to large backbones,
the correlation between backbone size and the number of optimal solutions is ex-
tremely high. As a direct consequence, for these problems backbone size provides
no more information than the number of optimal solutions, and vice versa: one
of the two features is necessarily redundant. Given the recent surge of interest
in the link between backbone size and problem difficulty, the nearly one-to-one
correspondence between these two features was completely unanticipated.

3. In contrast to Singer et al. [SGS00], we find no interaction effect between the
backbone size and dlopt-opt. Further, we find that more complex static cost models

93

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

S
ea

rc
h

co
st

The number of optimal solutions

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

S
ea

rc
h

co
st

The number of optimal solutions

Figure 7.2: Scatter-plots of the number of optimal solutions |optsols|) versus search cost
(cQ2) for 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs; the least-squares fit
lines are super-imposed.

based on multiple search space features, or those that consider interaction effects
between search space features, are no more accurate than the simple model based
solely on dlopt-opt.

Although tabu search algorithms have been successfully applied to a number of NP -
hard optimization problems, very little is known in general about which search space
features influence problem difficulty, and to what degree. Our research provides a pre-
liminary answer to this question for one particular problem, the JSP, and only for a
relatively simple form of tabu search. Consequently, our results may be useful to re-
searchers developing problem difficulty models of tabu search in NP -hard problems
other than the JSP, or for models of more advanced tabu search algorithms for the JSP.

7.5.1 The Number of Optimal Solutions

The first static cost model we consider is based only on the number of optimal solutions
to a problem instance, which we denote |optsols|. As discussed in Section 5.3.1, we
would expect the number of optimal solutions to be inversely correlated with search
cost; fewer “targets” should decrease the likelihood of a local search algorithm locating
one. This observation formed the basis of the first static cost model of local search in
both MAXSAT and MAX CSP, introduced by Clark et al. [CFG+96] and later refined
by Singer et al. [SGS00]. Clark et al. demonstrated a relatively strong negative log10-
log10 correlation between the number of optimal solutions and search cost for three local
search algorithms, with r-values ranging anywhere from −0.77 to −0.91. However, the
model failed to account for the large cost variance observed for problems with small
numbers of optimal solutions, where model residuals varied over three or more orders
of magnitude.

We show scatter-plots of |optsols| versus cQ2 for our 6 × 4 and 6 × 6 problem sets
in Figure 7.2. The r2 values of the corresponding log10 − log10 regression models are

94

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

lo
g1

0(
co

st
m

ed
)

| backbone |

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

| backbone |

lo
g1

0(
co

st
m

ed
)

2

Figure 7.3: Scatter-plots of |backbone|2 versus cQ2 for 6 × 4 (left figure) and 6 × 6 (right
figure) random JSPs; the least-squares fit lines are super-imposed.

0.5365 (r = 0.7325) and 0.2223 (r = 0.4715), respectively. The strength of the cor-
relation is corroborated by the computed non-parametric rank correlation coefficients
(−0.7277 and −0.4661, respectively). In comparing the results for the 6 × 4 and 6 × 6
problem sets, it is important to note the large difference in the size of the search spaces:
260 versus 290, respectively. Thus, although the range of |optsols| is nearly identical in
the two problem sets, the relative number of optimal solutions is, on average, much
smaller for 6× 6 instances. In both cases, search cost varies over 3 orders of magnitude
for instances with small (i.e., ≤ 100) numbers of optimal solutions and model accuracy
appears to increase slightly as |optsols| → ∞, e.g., observe the decreased variability for
the 6 × 4 problem set for |optsols| ≥ 1,000. In Watson et al. [WBHW01], we further
demonstrate the relationship between model accuracy and |optsols| by controlling for the
number of optimal solutions in sets of problem instances. The discrepancy between the
r2 values observed for the 6 × 4 and 6 × 6 sets can be explained by the fact that the
frequency of instances with relatively small numbers of optimal solutions is larger in
square random JSPs.

Our results indicate that for typical random JSPs, a static cost model based on |optsols|
is relatively inaccurate, accounting for roughly 50% of the variance in search cost in the
best case. As indicated in Section 5.3.1, as n/m → ∞ the frequency of random JSPs
with a large number of optimal solutions, relative to the size of the search space, appears
to increase. By extrapolation, we would then expect the accuracy of the |optsols| model
to increase as n/m → ∞. In contrast, the accuracy of the model appears worst for the
most difficult class of random JSP (i.e., those with n/m ≈ 1.0), with model residuals
varying over 2 to 3 orders of magnitude. Our results also indicate that, both qualitatively
and quantitatively, the accuracy of the static cost models based on |optsols| is similar in
both MAXSAT, MAXCSP, and the JSP.

95

7.5.2 Backbone Size

Recently, researchers have introduced several problem difficulty models based on the
concept of a backbone. Informally, the backbone of a problem instance is the set of
solution attributes that have identical values in all optimal solutions to the instance. For
example, in MAXSAT the backbone is the set of Boolean variables whose value is iden-
tical in all satisfying assignments; in the TSP, the backbone consists of the set of edges
common to all optimal tours. The recent interest in backbones stems largely from the
discovery that backbone size (as measured by the fraction of solution attributes appear-
ing in the backbone) is correlated with search cost in SAT (e.g., see Monasson et al.
[MZK+98]). Specifically, Parkes [Par97] showed that large-backboned SAT instances
begin to appear in large quantities in the critical region of the phase transition (for a more
detailed investigation into the relationship between backbone size and the MAXSAT
phase transition, see Singer et al. [SGS00] or Singer [Sin00]). Similarly, Achlioptas et
al. [AGKS00] demonstrated a rapid transition from small to large-backboned instances
in the phase transition region. While researchers have demonstrated a correlation be-
tween backbone size and problem difficulty in SAT, the degree to which backbone size
accounts for the variability in problem difficulty remains largely unknown.

Only Slaney and Walsh [SW01] have studied the influence of backbone size on
search cost in problems other than MAXSAT. Focusing on constructive search algo-
rithms, they analyzed the cost of both finding optimal solutions and proving optimality
for a number of NP -complete problems, including the TSP and the number partitioning
problem. For these two problems, Slaney and Walsh report a weak-to-moderate correla-
tion between backbone size and the cost of finding an optimal solution (0.138 to 0.388).
No studies to date have directly quantified the correlation between backbone size and
problem difficulty for local search algorithms.

We now consider a static cost model based on backbone size, which we denote
|backbone|. Our motivation is pragmatic, given the apparent success of the measure to ac-
count for problem difficulty in other NP -hard problem; we see no obvious link between
the backbone size and either |Slopt+| or the number of optimal solutions. In preliminary
analysis, we observed a significant non-linear components in the relationship between
|backbone| and log10(cQ2. We show scatter-plots of |backbone|x versus cQ2 for 6×4 (x = 3)
and 6 × 6 (x = 5) random JSPs in Figure 7.3. The r2 values of the corresponding
regression models are 0.5307 and 0.2331, respectively. As with the |optsols|, the model
errors are heterogeneous, although the results are consistent with the computed rank cor-
relation coefficients (0.7275 and 0.4701, respectively). In both instances, the r-values
(0.7285 and 0.4828, respectively) are significantly larger than that reported by Slaney
and Walsh for constructive search algorithms. Further, we found absolutely no evidence
that the most difficult instances possess medium-sized backbones, as conjectured by
Achlioptas et al. [AGKS00] for SAT.

96

1

10

100

1000

10000

100000

1e+006

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g1

0(
|o

pt
so

ls
|)

Backbone^3

1

10

100

1000

10000

100000

1e+006

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g1

0(
|o

pt
so

ls
|)

Backbone^5

Figure 7.4: Scatter-plots of |backbone|x (where x varies depending on the problem di-
mensions - see text) versus |optsols| for 6 × 4 and 6 × 6 random JSPs; the least-squares
fit lines are super-imposed.

7.5.3 The Relationship Between Backbone Size and the Number of
Optimal Solutions

In contrast to |optsols|, the backbone size captures some information regarding the distri-
bution of the optimal solutions in the fitness landscape. Consequently, we would expect
a priori the accuracy of a static cost model based on |backbone| to at least be different
than that of the |optsols| model. However, we observe almost identical r2 values; the
absolute difference in r2 for the two models is respectively 0.0058 and 0.0008 for the
6 × 4 and 6 × 6 problem sets. Upon closer examination, the minimal discrepancy is
due to the fact that |backbone| and |optsols| are highly correlated. To illustrate this point,
we show scatter-plots of |backbone|x versus |optsols| for our 6 × 4 (x = 3) and 6 × 6
(x = 5) problem sets; the r2 values of the corresponding regression models are 0.8654
and 0.8403, respectively. Within each problem set, the correlation is significantly higher
for instances with large backbones, and gradually decays as |backbone| → 0.0.

Our results indicate that for problem instances with large-to-moderate backbones,
the backbone size is essentially a proxy for the number of optimal solutions, and vice-
versa. From the standpoint of static cost models for reasonably difficult random JSPs
(i.e., those with moderate-to-large backbones), the two features are largely redundant. In
retrospect, this observation is not surprising given what is implied by a large backbone
– as more order variables are fixed, fewer solutions can satisfy the constraints of the
backbone. It is unclear to what degree, if any, this correlation is due to randomness
in the operation durations, job routing orders, or both. However, it is surprising that
the link between the number of optimal solutions and backbone size has not previously
been explored for MAXSAT and related problems, where most research on the role of
backbones in problem difficulty originates. We note that in preliminary experiments,
we have observed similar results for MAXSAT in a range of problem instances near the
phase transition region of Random 3-SAT, indicating the link between backbone size

97

1

10

100

1000

10000

100000

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

S
ea

rc
h

co
st

Mean distance between random local optima

1

10

100

1000

10000

100000

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

S
ea

rc
h

co
st

Mean distance between random local optima

Figure 7.5: Scatter-plots of the mean distance between random local optima (dlopt-lopt)
versus search cost (cQ2) for 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs; the
least-squares fit lines are super-imposed.

and the number of optimal solutions may in fact be a more general phenomenon.

7.5.4 The Mean Distance Between Random Local Optima

If search under TSTaillard behaves as a random walk in the sub-space Slopt+, we would
expect search cost to be correlated with the size of this sub-space. Using local optima as
representative members of Slopt+, we can indirectly estimate the size of Slopt+ by com-
puting the mean distance between random local optima, a landscape measure introduced
in Section 5.3.2. Although this measure, denoted dlopt-lopt, ignores the number and distri-
bution of optimal solutions within Slopt+, it allows us to independently assess the impact
of |Slopt+| on problem difficulty. The dlopt-lopt was originally introduced by Mattfeld et al.
[MBK99] to account for differences in the relative difficulty for random versus work-
flow JSPs. Although Mattfeld et al. did demonstrate significant mean differences in
dlopt-lopt between random and workflow JSPs, they did not analyze the ability of dlopt-lopt

to account for the variability in problem difficulty observed within a given set of random
or workflow JSPs.

We show scatter-plots of dlopt-lopt versus cQ2 for 6× 4 and 6× 6 random JSPs in Fig-
ure 7.5. The r2 values of the corresponding regression models are 0.2415 and 0.2744,
respectively. These results confirm the intuition that the size of the Slopt+ sub-space is
correlated with problem difficulty under TSTaillard, albeit more weakly than either |optsols|
or |backbone| in 6×4 random JSPs (r2 values of 0.2415 versus 0.5365 and 0.5307, respec-
tively). In 6×6 JSPs, the correlation is roughly identical to that observed for |optsols| and
|backbone| (r2 values of 0.2744 versus 0.2223 and 0.2331, respectively). In contrast to
both |optsols| and |backbone|, the strength of the dlopt-lopt model appears largely insensitive
to relatively small changes in problem size.

Our results indicate that either dlopt-lopt is not an accurate measure of the size of the
Slopt+ sub-space, or the size of Slopt+ is only weakly correlated with problem difficulty

98

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest optimal solution

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest optimal solution

Figure 7.6: Scatter-plots of dlopt-opt versus versus search cost (log10(cQ2) for 6 × 4 (left
figure) and 6×6 (right figure) random JSPs; the least-squares fit lines are super-imposed.

under TSTaillard. Further, the |optsols| and |backbone| models are at least as accurate as
the dlopt-lopt model. Using analogous observations for workflow JSPs, we re-visit and
ultimately refute Mattfeld et al.’s original claim regarding the ability of differences in
dlopt-lopt to account for the relative difficulty of random and workflow JSPs.

7.5.5 Mean Distance Between Random Local Optima and the Near-
est Optimal Solution

Our results indicate that the number of optimal solutions has a stronger influence on
problem difficulty than the size of the Slopt+ sub-space in 6 × 4 random JSPs (with re-
spective r2 values of 0.5365 and 0.2415), while in 6 × 6 random JSPs, their influence
is roughly equal (with respective r2 values of 0.2223 and 0.2744). In any case, when
taken independently, |optsols| and dlopt-lopt only account for a small-to-moderate propor-
tion of the observed variability in problem difficulty. This result was expected – and we
performed the prior analyses to assess the impact of each factor independently.

We now simultaneously consider the influence of the number of optimal solutions
and the size of the Slopt+ sub-space on problem difficulty. In particular, we consider a
landscape measure that accounts for both features: the mean distance between random
local optima and the nearest optimal solution, denoted dlopt-opt, which we introduced in
Section 5.3.4. The intuition behind this measure is that search cost is proportional to
the distance that must be traversed, i.e., the distance between the initial solution and the
nearest optimal solution. Alternatively, we view dlopt-opt as a measure of the effective
size of Slopt+, accounting for the distribution of optimal solutions within Slopt+. An
alternative to introducing a new measure is to develop static cost models based on the
two existing measures, via multiple regression methods; we discuss such an approach in
Section 7.5.6.

We show scatter-plots of dlopt-opt versus cQ2 for our 6 × 4 and 6 × 6 random JSPs
in Figure 7.6. The r2 values of the corresponding regression models are 0.8044 and

99

0.6424. As we discuss in detail below and in Section 7.7.1, the model errors are hetero-
geneous; however, the results are consistent with the computed rank correlation coeffi-
cients (0.9162 and 0.8072, respectively). In both figures, we observe a slight curvature
for instances with small dlopt-opt, the presence of which we cannot currently explain. The
curvature can be compensated for by applying a square-root transformation to the inde-
pendent variable, although this only slightly inflates the resulting r2 values, respectively
to 0.826 and 0.6541.

The dlopt-opt model is significantly more accurate than any of the |optsols|, |backbone|,
or dlopt-lopt models, and roughly accounts for a remarkable 2/3 to 3/4 of the variability
in problem difficulty. With few exceptions, the model residuals vary over roughly 1 to
1.5 orders of magnitude in the 6× 4 and 6× 6 problems, respectively; the improvement
is substantial in comparison to the residuals for the models based on either |optsols|,
|backbone|, or dlopt-lopt. Interestingly, our r2 values are very similar to those reported by
Singer et al. [SGS00] for an analogous cost model in MAXSAT, where the r2 values
ranged between roughly 0.6 and 0.9.

In both problem sets, there is strong evidence that model residuals are heteroge-
neous, growing larger with increases in dlopt-opt. Consequently, the dlopt-opt model is on
average less accurate for problem instances with large dlopt-opt, or equivalently, with large
cQ2. Singer et al. report a similar phenomenon for the analogous MAXSAT cost model.
The discrepancy between the r2 values of the 6 × 4 and 6 × 6 problem sets is due to
two factors. First, there are more very high-cost 6 × 6 instances (i.e., those with cQ2 ≥
5,000), and large model residuals are typically associated with these instances. Second,
although the range of dlopt-opt is nearly identical in the two problem sets, the number of
instances for which dlopt-opt ≤ 0.1x, where x is the maximum possible distance, is much
larger in 6 × 4 random JSPs (161 versus 67). We further analyze the relationship be-
tween the dlopt-opt model and very high-cost random JSPs in Section 7.7.1 and consider
the influence of the ratio of jobs to machines (n/m) on the accuracy of the dlopt-opt model
in Section 7.6.2.

In conclusion, we have shown that a simple function of both the number/distribution
of optimal solutions and the size of the Slopt+ sub-space accounts for a significant pro-
portion of the variability in problem difficulty under TSTaillard. The high correlation also
provides strong evidence to support our hypothesis that search under TSTaillard behaves
largely as a random walk over the effective size of the Slopt+ sub-space. Finally, we note
that the dlopt-opt model is consistent with the observation that hard (easy) problem in-
stances tend to be hard (easy) for all local search algorithms, as discussed in Section 2.3.
Intuitively, if the distance between random local optima and the nearest optimal solu-
tion for a particular problem instance is very large, we would expect the instance to be
difficult for any algorithm based on local search, as search in such algorithms clearly
progresses in small increments.

100

log10(|optsols|) |backbone| dlopt-lopt dlopt-opt
log10(|optsols|) 1.0 -0.921 -0.039 -0.751
|backbone| -0.921 1.0 0.006 0.722
dlopt-lopt -0.039 0.006 1.0 0.571

dlopt-opt -0.751 0.722 0.571 1.0

Table 7.2: The correlation (Pearson’s r) between fitness landscape features for 6 × 4
random JSPs.

log10(|optsols|) |backbone| dlopt-lopt dlopt-opt
log10(|optsols|) 1.0 -0.8967 0.0905 -0.514
|backbone| -0.8967 1.0 -0.0797 0.4987
dlopt-lopt 0.0905 -0.0797 1.0 0.6507

dlopt-opt -0.514 0.4987 0.6507 1.0

Table 7.3: The correlation (Pearson’s r) between fitness landscape features for 6 × 6
random JSPs.

7.5.6 Models Based on Multiple Landscape Features

Thus far, we have only analyzed static cost models based on individual fitness landscape
features. We now consider static models based on multiple features, with two primary
goals. First, we test whether we can improve the accuracy of the dlopt-opt model by
simultaneously considering dlopt-opt in conjunction with |optsols|, |backbone|, and dlopt-lopt.
Second, we investigate whether the dlopt-opt can be approximated via some combination
of other features, specifically |optsols| and dlopt-lopt.

We proceed via well-known multiple regression methods. Ideally, the independent
variables in a multiple regression model are highly correlated with the dependent vari-
able, but not with each other; if the independent variables are highly correlated, they are
said to be collinear. Collinearity is known to cause difficulties for multiple regression
model selection techniques (which identify the relevant subset of features and/or com-
bination of features), in part because the regression coefficients are not unique, making
interpretation very difficult [Ott93]. In Tables 7.2 and 7.3, we show the pair-wise cor-
relation between the various landscape features for 6 × 4 and 6 × 6 random JSPs, re-
spectively. In both problem sets, there exists a high degree of collinearity between many
of the four features that serve as the independent variables in our multiple regression
models, suggesting that we may encounter problems in developing multiple regression
models. Further, we note that when the sample size is large (recall n = 1000 for these
two problem sets), model terms may be statistically significant due to high power (β),
but in reality have little effect on model accuracy: i.e., dropping such terms yields a
negligible reduction in the model r2.

To improve the accuracy of the basic dlopt-opt model, we first consider multiple regres-
sion models with additive terms, i.e., we do not account for interaction effects among
the independent variables. In both the 6 × 4 and 6 × 6 problem sets, the multiple re-
gression models resulting from forward selection, backward elimination, and step-wise
model selection methods [Ott93] [Coh95] are very different, as expected given collinear
independent variables and a large sample size. However, the dlopt-opt term was present in

101

all of the resulting models, and was consistently the most statistically significant term.
For 6 × 4 and 6 × 6 random JSPs, the best additive multiple regression models we
obtained yielded r2 values of 0.8296 and 0.6589, respectively. Although these models
contained terms other than dlopt-opt (due to the artificial significance caused by the large
sample size), these terms have minimal impact on overall model accuracy (compare the
respective r2 values of 0.8044 and 0.6424 for the basic dlopt-opt model). Further, when
we considered both additive and interaction effects, we found no statistically significant
interaction terms.

Interestingly, although Singer et al. control for backbone size in their experiments,
they do not explicitly indicate whether an interaction effect between the backbone size
and the mean distance between random quasi-solutions and the nearest optimal solution
(dquasi-opt) was observed. However, their results do suggest a lack of interaction effect,
in that the regression slopes observed for their dquasi-opt model are largely homogeneous
across a wide range of backbone sizes and clause-to-variable ratios (e.g., see Singer et
al. (2000), Table 2, p. 249); the intercepts are slightly more variable, which is likely due
in part to the presence of high-residual problem instances.

7.5.7 A note on Backbone Robustness

In addition to introducing the dquasi-opt static cost model for MAXSAT (see Sec-
tion 5.3.4), Singer et al. also posited a causal model to account for the variability in
dquasi-opt observed for different problem instances. Their model is based on the notion
of backbone robustness. A MAXSAT instance is said to have a robust backbone if a
substantial number of clauses can be deleted before the backbone size is reduced by at
least half. Conversely, an instance is said to have a fragile backbone if the deletion of
just a few clauses reduces the backbone size by half or more. Singer et al. argue that
“backbone fragility approximately corresponds to how extensive the quasi-solution area
is” ([SGS00], p. 251), by noting that a fragile backbone allows for large dquasi-opt because
of the sudden drop in backbone size, while dquasi-opt is necessarily small in problem in-
stances with robust backbones.

As evidence of this hypothesis, Singer et al. measured a moderate (≈ −0.5) nega-
tive correlation between backbone robustness and the log of local search cost for large-
backboned MAXSAT instances. Surprisingly, this correlation degraded as the backbone
size was decreased, leading to the conjecture that “finding the backbone is less of an
issue and so backbone fragility, which hinders this, has less of an effect” ([SGS00], p.
254); this conjecture was never explicitly tested. We have previously reported very simi-
lar results for random JSPs [WBHW01]. As indicated in Section 7.5.5 and more fully in
Section 7.7, we have since discovered relatively serious deficiencies in the dlopt-opt model
(and by analogy, likely deficiencies in the dquasi-opt), and feel it is somewhat premature
to posit causal hypotheses before the source of these deficiencies is completely under-
stood. As a consequence, we have not pursued further analyses of backbone robustness
in the JSP.

102

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25

21.7-22.3

19.9-20

16.6-17.1

14.4-15
13.3-13.9

Offset from the optimal makespan

Se
ar

ch
 c

os
t

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25

23.5

17.6-17.9

17.1

16.3

13.3

11.6-12.3
10.7-11.4

12.8-12.9

8.8-8.9

Offset from the optimal makespan

Se
ar

ch
 c

os
t

Figure 7.7: The offset x from the optimal makespan C∗
max, 0 ≤ x ≤ 25, versus the

cost cQ2(x) required to locate a solution with Cmax ≤ C∗
max + x for two 6 × 6 random

JSPs. The numeric annotations indicate either dlopt−T (x) for a specific x, or the range of
dlopt−T (x) over a contiguous sub-interval of x.

7.6 Applications of the dlopt-opt Static Cost Model

We now move from the development of static cost models of TSTaillard to their applica-
tion, i.e., their ability to account for observations regarding problem difficulty and local
search for random JSPs. We begin in Section 7.6.1 by demonstrating that a simple ex-
tension of the dlopt-opt static cost model accounts for most of the variability in the cost of
locating sub-optimal solutions to our 6× 4 and 6 × 6 random JSPs. This extension rep-
resents the first quantitative model of the cost of locating sub-optimal solutions to any
NP -hard optimization problem, and explains the frequently large differences in the cost
of locating sub-optimal solutions of similar quality (e.g., see [Stu99]). It is well-known
that square JSPs are generally more difficult than rectangular JSPs. In Section 7.6.2, we
provide evidence that this phenomenon is likely due to differences in the distribution of
dlopt-opt for the two problem types. For square JSPs, the proportion of problem instances
with large values of dlopt-opt is substantial, while most rectangular JSPs have very small
values of dlopt-opt.

7.6.1 Modeling the Cost of Locating Sub-Optimal Solutions

With the exception of some widely used benchmarks, the optimal makespan of any given
problem instance is unknown. Local search algorithms are at best guaranteed to locate
an optimal solution with probability approaching 1 as the run-time approaches ∞, i.e., if
the algorithm is asymptotically complete. Given these circumstances, practitioners use
a pragmatic termination criterion: allocate as much CPU time as possible for a given
run, and return the best solution found.

Although larger run-times generally yield higher-quality solutions, the relationship
is typically discontinuous, non-linear, or both. Often, small or moderate increases in run-

103

time fail, on average, to improve solution quality. For example, Stützle ([Stu99], p. 47)
notes that in the Traveling Salesman Problem “...instances appear to have ‘hard cliffs’
for the local search algorithm, corresponding to deep local minima, which are difficult
to pass.” Similar observations have been reported for a variety of NP -hard problems,
including the JSP. Another manifestation of this phenomenon has been observed by
several researchers, including ourselves. Here, multiple independent trials of a particular
local search algorithm typically yield equally fit sub-optimal solutions, or small sets of
equally fit sub-optimal solutions.

A simple way to visualize this phenomenon is to plot the search cost required to
achieve a solution with a fitness of at least C∗

max + x over a wide range of x ≥ 0. In
Figure 7.7, we provide examples of such plots for two moderately difficult 6×6 random
JSPs. In both plots, the offset from the optimal makespan x is varied from 0 to 25.
For each offset x, we show the median search cost cQ2 required by TSTaillard to locate a
solution s with Cmax(s) ≤ C∗

max + x; we denote this quantity by cQ2(x). In the left side
of Figure 7.7, we show a typical example of a problem instance with discrete jumps in
search cost at specific sub-optimal makespans, with plateaus in search cost in between
the jump points. In the right side of Figure 7.7, we show a problem instance for which
the decay in search cost as x → 25 is more gradual; a large, discontinuous jump in
search cost occurs only between x = 0 and x = 1.

As shown in Section 7.5, the cost required by TSTaillard to locate optimal solutions
to random JSPs is strongly correlated with dlopt-opt. Intuitively, a problem is difficult if
TSTaillard is, on average, initiated from solutions that are very distant from the nearest
optimal solution. We now consider a generalization of this intuition: problem difficulty
is correlated with the distance between the initial solution and the nearest solution in
the set of target solutions, i.e., optimal or sub-optimal solutions. As evidence of this
hypothesis, we consider a set T (x) containing all solutions with a makespan between
C∗

max and C∗
max +x, x ≥ 0, and denote the mean distance between random local optima

and the nearest solution in the set T (x) by dlopt−T (x). As with the computation of dlopt-opt,
statistics are taken over 5,000 independent samples. We have annotated the plots in
Figure 7.7 with the computed dlopt−T (x) for 0 ≤ x ≤ 25. In both figures, we observe
that (1) large jumps in search cost coincide with large jumps in dlopt−T (x), (2) intervals
of roughly constant search cost correspond to contiguous sub-intervals of x with nearly
identical values of dlopt−T (x), and (3) gradual drops in search cost coincide with gradual
drops in dlopt−T (x). Consequently, it seems reasonable to conclude that dlopt−T (x) may
account for much of the variability in the cost of locating both optimal and sub-optimal
solutions to random JSPs.

To test this hypothesis, we computed cQ2(x) and dlopt−T (x) for our 6 × 4 and 6 × 6
random JSPs, varying x from 1 to 25. For random 6 × 4 and 6 × 6 JSPs, TSTaillard can
easily locate solutions with Cmax > C∗

max +25, such that cQ2(25) ≤ 100 in all but a few
instances. In effect, we are creating 25 derivatives of each problem instance (one for
each value of x), resulting in new “sub-optimal” 6×4 and 6×6 problem sets, each with
25,000 instances. For many of the derivative instances, especially those corresponding

104

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest target solution

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest target solution

Figure 7.8: Scatter-plots of the mean distance between random local optima and the
nearest target solution (dlopt-T(x)) versus search cost (cQ2(x)) for sub-optimal 6 × 4 (left
figure) and 6 × 6 (right figure) random JSPs; the regression lines are super-imposed.

to large x, cQ2(x) = 0: equivalently, dlopt−T (x) ≈ 0.0. We observed 1,293 6 × 4 zero-
cost instances, and 60 6 × 6 zero-cost instances; such instances are excluded from the
following analysis.

In Figure 7.8, we show scatter-plots of dlopt-T(x) versus cQ2(x) for our sub-optimal
6 × 4 and 6 × 6 problem sets; the r2 values for the corresponding regression models
are 0.8866 and 0.8252, respectively. Clearly, dlopt-T(x) accounts for most of variability
in the cost required by TSTaillard to locate sub-optimal solutions to typical random JSPs.
Accuracy is slightly larger in both the 6× 4 and 6× 6 suboptimal problem sets, relative
to the cost of locating optimal solutions; 0.8594 versus 0.8073 for the 6 × 4 problems
and 0.8252 versus 0.6424 for the 6 × 6 problems. We explain the increase in accuracy
by noting that the proportion of instances with small values of dlopt-opt is larger in the
sub-optimal problem groups, corresponding to the types of problem instance for which
the dlopt-opt cost model is most accurate.

The dlopt-opt cost model provides the first quantitative explanation for the “cliffs” in
local search cost observed at particular sub-optimal fitness’: abrupt changes in local
search cost occur where there are abrupt changes in dlopt-opt. Similarly, the plateaus
observed in Figure 7.7 occur because solutions on the plateau are equi-distant from
random local optima; TSTaillard is equally likely to encounter any of the solutions on the
plateau, given a fixed run-time. Similarly, gradual increases in search cost occur when
slightly better solutions are only marginally farther from random local optima.

7.6.2 Accounting for the Relative Difficulty of Square Versus Rect-
angular JSPs

Given the observed accuracy of the dlopt-opt static cost model, it is natural to consider
whether differences in the distribution of dlopt-opt for problems with different ratios of
n/m might account for the empirical observation that square JSPs are generally more

105

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

450

500

The mean distance between random local optima and the nearest optimal solution

Fr
eq

ue
nc

y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

500

600

700

800

The mean distance between random local optima and the nearest optimal solution

Fr
eq

ue
nc

y

Figure 7.9: Histograms of dlopt-opt for 10,000 4 × 3 (left figure) and 7 × 3 (right figure)
random JSPs.

difficult than rectangular JSPs. Unfortunately, we cannot directly test this hypothesis; as
we discussed in Section 5.3.4, the astronomical number of optimal solutions to square
and rectangular JSPs larger than 6 × 4 and 6 × 6, respectively, makes computation of
dlopt-opt intractable for these instances. However, we can obtain indirect evidence for this
hypothesis by analyzing changes in the distribution of dlopt-opt for smaller problems.

Fixing m = 3, we generated 10,000 random JSPs for each value of n between 3
and 7. Although small by any standard (the JSP is NP -hard only for m ≥ 2 and
n ≥ 3), these are the largest problem instances for which we can currently compute the
distribution of dlopt-opt for m/n ≈ 2, e.g., many 8 × 4 instances possess in excess of one
billion optimal solutions. We show histograms of dlopt-opt for 4 × 3 and 7 × 3 random
JSPs in Figure 7.9. For the 4 × 3 instances, the right-tail mass of the distribution is
substantial, e.g., for dlopt-opt ≥ 0.3). In contrast, we observe minimal right-tail density in
the 7×3 problem set, such that instances with dlopt-opt ≥ 0.3 are relatively rare. We have
also analyzed the distribution of random JSPs with n/3 < 1, and observe a continued
shift of the distribution mass toward 0.5.

Our results provide relatively strong evidence that the right-tail mass of the dlopt-opt

distribution vanishes as n/m → ∞, suggesting a cause for the observation that square
JSPs are generally more difficult than rectangular JSPs. Further, we conjecture that the
shift from exponential to polynomial growth in search cost at n/m ≈ 6 [Tai94] is due
to the disappearance of any significant mass in the right tail of the dlopt-opt distribution.
However, we are currently unable to test this hypothesis. Finally, we expect the accuracy
of the dlopt-opt static cost model to further improve as n/m → ∞, due to the increasing
frequency of instances with small values of dlopt-opt. Consequently, from the standpoint
of static cost models, random JSPs with n/m ≈ 1.0 warrant the most attention in the
future.

In a previous paper [WBHW01], we argued that a shift in the distribution of
|backbone|, and not dlopt-opt, was responsible for differences in the relative difficulty of

106

1

10

100

1000

10000

100000

1e+006

0 5 10 15 20 25 30

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest optimal solution

Easy
Medium

Hard
Very Hard

1

10

100

1000

10000

100000

1e+006

0 5 10 15 20 25 30 35 40

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest optimal solution

Easy
Medium

Hard
Very Hard

Figure 7.10: Scatter-plots of dlopt-opt versus search cost (cQ2) for easy (cQ2 ∈ [1, 49]),
medium (cQ2 ∈ [50, 499]), hard (cQ2 ∈ [500, 4999]), and very hard (cQ2 ∈ [5000,∞])
6 × 4 (left figure) and 6 × 6 (right figure) random JSPs; the least-squares fit lines are
super-imposed.

square versus rectangular JSPs. While our original observation still holds (i.e., the pro-
portion of instances with small backbones grows as n/m → ∞), we can re-cast our
original results in terms of the more accurate static cost model based on dlopt-opt.

7.7 Limitations of the dlopt-opt Static Cost Model

One deficiency of the dlopt-opt static cost model, as indicated in Section 7.5.5, is the fact
that accuracy appears to be inversely proportional to dlopt-opt, and fails to account for
roughly a third of the cost variance in 6 × 6 random JSPs. In this section, we expose
two additional limitations of the dlopt-opt model. First, in Section 7.7.1, we conclusively
demonstrate that accuracy is exceptionally poor for the most difficult, albeit rare, random
6 × 4 and 6 × 6 JSPs. Second, we analyze the scalability of the dlopt-opt to a small set of
10× 10 random JSPs. As we show in Section 7.7.2, the accuracy of the dlopt-opt model is
significantly poorer on these larger instances, indicating the failure of the dlopt-opt model
to scale to realistically sized problem instances.

7.7.1 Modeling search cost in exceptionally hard random JSPs

In Section 7.5.5, we provided evidence that the dlopt-opt model is less accurate for problem
instances with large values of dlopt-opt, or equivalently, large cQ2. Of particular concern
are the difficult (cQ2 ≥ 10,000) albeit rare instances appearing in both sides of Figure 7.6;
in all but one case, these instances possess the largest residuals under the corresponding
regression model. To determine whether large model residuals are typically associated
with high-cost random JSPs, we created sets of 6× 4 and 6× 6 random JSPs with equal
proportions of problem instances over the range of cQ2. Specifically, we sub-divided

107

the possible range of cQ2 into the following four contiguous intervals: [1, 49], [50, 499],
[500, 4999], and [5000,∞]; these intervals qualitatively correspond to easy, medium,
hard, and very hard problem instances, respectively. We then used a simple generate-
and-test procedure to construct 500 instances of each sub-class.

In Figure 7.10, we show scatter-plots of dlopt-opt versus cQ2 for 6 × 4 and 6 × 6
random JSPs. The r2 values for the corresponding regression model are 0.7599 and
0.6624, respectively. Because the hard and very hard instances reside in the right-tail
of the cQ2 distribution, the large relative frequencies of problem instances with values
of cQ2 near the lower bounds of the corresponding intervals was expected. Although
the r2 values are similar to those obtained for our unfiltered problem sets (0.8044 and
0.6424 for the 6 × 4 and 6 × 6 problem sets, respectively), the worst-case residuals are
significantly larger, and there exist more instances with large residuals. In both problem
sets, we observe a substantial reduction in the accuracy of the dlopt-opt model for hard
instances, and an extreme degradation for very hard instances; in the latter case, dlopt-opt

is essentially uncorrelated with cQ2. These results more clearly demonstrate the fact that
the accuracy of the dlopt-opt static cost model is inversely proportional to both dlopt-opt

and cQ2. As a direct consequence, although we are now able to account for much of
the variability in search cost for typical random JSPs, an understanding of the fitness
landscape features that make certain problems exceptionally difficult for for TSTaillard

remains elusive.
Several researchers have reported situations in which problems that are exception-

ally difficult for one algorithm are much easier for other algorithms [SG95] [GW94].
To date, this phenomenon has only been observed in constructive search algorithms,
and occurs when one algorithm makes a particular sequence of decisions that yields a
very difficult sub-problem [SG95]. Although not yet observed in the context of local
search, this phenomenon raises an obvious question: “Is the exceptional difficulty of
our very hard random JSPs algorithm-independent?”. To informally answer this ques-
tion, we solved both our very hard and typical (i.e., unfiltered) 6 × 6 instances using
two local search algorithms other than TSTaillard, and a constructive heuristic search algo-
rithm. Specifically, we considered the following local search algorithms: (1) Nowicki
and Smutnicki’s state-of-the-art tabu search algorithm [NS96] and (2) van Laarhoven et
al.’s simulated annealing algorithm [vLAL92]. We selected Nowicki and Smutnicki’s
algorithm because it uses a more powerful move operator than TSTaillard, and employs an
re-intensification mechanism (see Chapter 11); van Laarhoven et al.’s algorithm provides
a well-known alternative local search paradigm to tabu search. The constructive algo-
rithm we consider is Beck and Fox’s constraint-directed scheduling algorithm [BF00],
which was selected because it shares little in common with local search algorithms for
the JSP. In all three cases, the search cost (as measured by the median search cost over
1,000 independent trials of the two local search algorithms, and the number of nodes vis-
ited by the constructive algorithm) was generally larger in the very high-cost instances.
However, we did find some exceptional instances that were easily solved by the other
algorithms. Upon closer examination, we found that these instances are extremely sen-

108

1000

10000

100000

1e+06

1e+07

1e+08

40 45 50 55 60 65 70 75 80 85 90 95
S

ea
rc

h
co

st
Mean distance to nearest optimal solution

Figure 7.11: Scatter-plot of dlopt-opt versus cQ2 for random 10×10 JSPs; the least-squares
fit line is super-imposed.

sitive to the length of the tabu list of TSTaillard. We conclude that, with a few exceptions,
the difficulty of our very high-cost random JSPs is algorithm-independent.

Finally, we conjecture that the failure of the dlopt-opt model to account for local search
cost in very difficult problem instances is likely to extend to MAXSAT. Although Singer
et al. do not provide scatter-plots of dquasi-opt versus cQ2 for high-cost problem instances
(i.e., those with large backbones), their analysis does indicate that the accuracy of their
dquasi-opt model is inversely proportional to backbone size (e.g., see Singer et al. (2000),
Table 2, p. 249), and as a consequence, to cQ2 (as in the random JSP, local search cost
and backbone size are positively correlated in MAXSAT). Further, very high-cost SAT
instances possess the largest residuals under Singer et al.’s model of backbone robustness
(e.g., see Singer et al. (2000), Figure 11, p. 255), which in turn is correlated with dquasi-opt.

7.7.2 Assessing Scalability of the dlopt-opt Model

A key unexplored research area in the development of cost models, static or otherwise,
is scalability. Reasonably accurate models are functions of all optimal solutions to a
problem instance, which in many cases grows exponentially with problem size. Larger
problems are typically more difficult, requiring multiple high-cost trials to obtain es-
timates of either cQ2/c or the full run-length distribution. To date, these factors have
conspired to prevent researchers from assess model accuracy on larger, more realisti-
cally sized, problem instances. Consequently, the question of whether we can expect
the accuracy of cost models to scale is current open.

When we initiated our research, available computing power limited our analysis of
static cost models to 6×4 and 6×6 instances. Using more recent hardware, we are now
able to assess model accuracy on a set of larger 10 × 10 random JSPs. The number of
optimal solutions to these instances is frequently tractable, i.e., less than a few hundred

109

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
lo

g1
0(

|o
pt

so
ls

|)
Backbone^18

Figure 7.12: Scatter-plot of |backbone|15 versus |optsols| for 10 × 10 random JSPs; the
least-square fit line is super-imposed.

log10(|optsols|) |backbone|15 dlopt-lopt dlopt-opt
log10(|optsols|) 1.0 -0.8672 -0.1327 -0.5314
|backbone|15 -0.8672 1.0 0.1398 0.5596
dlopt-lopt -0.1327 0.1398 1.0 0.6543

dlopt-opt -0.5314 0.5596 0.6543 1.0

Table 7.4: The correlation (Pearson’s) between search space features for 10×10 random
JSPs.

million, in contrast to larger rectangular instances, which are still inaccessible.
We computed dlopt-opt for those 92 instances of our 10 × 10 problem set with ≤ 50

million optimal solutions; the computation is intractable for the remaining 8 instances.
Estimates are computed using 5,000 random local optima. We show a scatter-plot of
dlopt-opt versus cQ2 for these problem instances in Figure 7.11. The r2 value for the
corresponding regression model is 0.4598, which represents a 33% decrease in model
accuracy relative to the 6× 6 problem set. Clearly, some additional factor is influencing
problem difficulty in larger JSPs.

We observe less drastic reductions in accuracy for the |optsols| (r2 = 0.184 versus
0.2231 for 6×6 JSPs) and dlopt-lopt (r2 = 0.2171 versus 0.2744 for 6×6 JSPs) static cost
models. However, in either case, the dlopt-opt model is still significantly more accurate.
The strong correlation between the backbone size and the number of optimal solutions
persists, as shown in Figure 7.12. However, the relationship is approximately linear in
|backbone|15 with increasing variance as |backbone| → 0 (the value ’15’ minimized resid-
ual non-linearities in the corresponding regression model), as opposed to |backbone|2 for
the smaller problem sets. Clearly, the relationship between backbone size and the num-
ber of optimal solutions is not quadratic, but appears to be an exponential function of
problem size. Finally, in Table 7.4 we report the correlation between each of the land-
scape features analyzed in Section 7.5. Contrasting the results with those in Tables 7.2

110

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

F
re

q
u
e
n
cy

Distance to nearest optimal solution

Random Local Optima
Solutions Visited During Search

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

F
re

q
u
e
n
cy

Distance to nearest optimal solution

Random Local Optima
Solutions Visited During Search

Figure 7.13: Histograms of the distance to the nearest optimal solution (dopt) for (a)
100,000 random local optima and (b) 100,000 solutions visited by TSTaillard for two 10×
10 random JSPs.

and 7.3, we find no fundamental changes in the relationships between the features as
problem size is increased. Similarly, we found that models based on multiple and/or
interacting features failed to improve the accuracy of the basic dlopt-opt model.

7.8 Accounting for Search Bias: A Quasi-Dynamic Cost
Model

The deficiencies of the dlopt-opt static cost model raise the possibility that either (1) dlopt-opt

is not an entirely accurate indicator of the size of the Slopt+ sub-space or (2) the size of
the Slopt+ sub-space is not completely indicative of search cost, disproving our original
hypothesis that TSTaillard behaves as a random walk over Slopt+. We now focus on the first
alternative.

In Chapter 6, we demonstrated that random solutions were not representative, in
terms of the distribution of their distance to the nearest optimal solution, of the solutions
actually visited by a random walk. This result raises the question of whether random
local optima are representative of the solutions visited by TSTaillard during search, i.e., in
the Slopt+ sub-space, and whether we can also improve the accuracy of the dlopt-opt by
considering instead the set of “on-line” solutions.

Consider the distribution of the distance to the nearest optimal solution, which we
denote dopt, for both random local optima and solutions visited by TSTaillard during a
lengthy search. Both distributions are typically Gaussian-like, although we have ob-
served skewed distributions both with and without heavy tails. We provide examples
of these distributions for two 10 × 10 random JSPs in Figure 7.13. Although the two
distributions are often identical, they can possess very different means and variances, as
occurs for the instance shown in the right side of Figure 7.13. Such differences are rela-

111

1

10

100

1000

10000

100000

0 5 10 15 20 25

S
e
a
rc

h
 c

o
st

Mean distance to nearest optimal solution

1

10

100

1000

10000

100000

4 6 8 10 12 14 16 18 20 22 24

S
e
a
rc

h
 c

o
st

Mean distance to nearest optimal solution

1000

10000

100000

1e+06

1e+07

25 30 35 40 45 50 55 60 65

S
e
a
rc

h
 c

o
st

Mean distance to nearest optimal solution

LA19

LA18

LA20

ABZ5

ABZ6

Figure 7.14: Scatter-plots of dtabu-opt versus search cost (cQ2) for 6×4 (upper left figure),
6 × 6 (upper right figure), and 10 × 10 (lower figure) random JSPs; the least-squares fit
lines are super-imposed.

tively rare in our 6×4 problem set, but occur with increasing frequency in our 6×6 and
10× 10 problem sets – the same problems for which the dlopt-opt model is least accurate.

Mirroring the case for RW in Section 6.3, these observations led us to conjecture
that the mean dopt for solutions visited during search, which we denote dtabu-opt, may
be a more accurate indicator of the size of Slopt+ than dlopt-opt. For a given problem
instance, we estimate dtabu-opt using a set of 100,000 solutions visited by TSTaillard over
a variable number of independent trials. Each trial is initiated from a random local
optimum and terminated once an optimal solution is located; we impose the termination
criterion (as opposed to continuing search from an optimal solution) because there exist
optimal solutions from which no moves are possible under the N1 operator [NS96]. We
terminate the entire process, including the current trial, once we obtain 100,000 samples.

We show scatter-plots of dtabu-opt versus cQ2 for our 6 × 4 and 6 × 6 JSPs in the
upper portion of Figure 7.14. The respective r2 values for the corresponding regression
models are 0.8441 and 0.7808, representing 5% and 21% increases in accuracy over the
dlopt-opt model. In both cases, the absolute accuracy is remarkably high. The variable

112

impact on the accuracy is due to the frequency of instances in which the distributions of
dopt for random local optima and solutions visited during search are dissimilar. Model
residuals are typically no larger than 1/2 an order of magnitude, and we observe fewer
and less extreme high-residual instances than under the dlopt-opt model. There is a slight
correlation between the magnitude of model errors and dtabu-opt. Finally, although not
shown, the dtabu-opt model provides similar improvements in the ability to predict the
cost of locating sub-optimal solutions to these same problem instances.

We next assess the accuracy of the dtabu-opt model on those 42 of our 10×10 instances
with ≤ 100, 000 optimal solutions; the computation of dtabu-opt is intractable for the re-
maining instances. Given the relatively poor correlation between the number of optimal
solutions and search cost, our selection criterion does not lead to a clean distinction
between “easy” and “hard” problem instances; the hardest instance has approximately
1.5 million optimal solutions. However, on average, instances with ≤ 100, 000 optimal
solutions are generally more difficult, with a median cQ2 of 65, 710, versus 13, 291 for
instances with more than 100, 000 optimal solutions.

A regression model of dtabu-opt versus log10(cQ2) for these instances yielded an r2

value of 0.6641; we show the corresponding scatter-plot in the lower portion of Fig-
ure 7.14. The resulting r2 represents an approximately 41% increase in accuracy over
the dlopt-opt model. However, the model residuals typically vary from between 1/2 and 1
order of magnitude, leaving a moderate proportion of the variability in search cost unex-
plained. As with the smaller problem sets, the model errors are proportional to dtabu-opt,
although to a less significant degree than under the dlopt-opt model.

The difference in model r2 between the 6×6 and 10×10 problem sets is only ≈ 0.14.
We have also annotated the scatter-plot with data for five of the seven 10 × 10 random
JSPs found in the OR Library; both la16 and la17 have approximately 6.8 and 11.8
million optimal solutions, respectively, making computation of dtabu-opt intractable. The
abz5 and la19 instances are known to be significantly more difficult than their respec-
tive counterparts (i.e., abz6, la18, and la20) for numerous local search algorithms,
which is consistent given the observed differences in dtabu-opt [JM99].

Our results clearly demonstrate that the mean distance between solutions visited
during search and the nearest optimal solution (dtabu-opt) is largely responsible for the cost
required by Taillard’s algorithm to locate optimal solutions to random JSPs. However,
two key issues remain. First, as shown by the difference in r2 obtained for the 6× 6 and
10× 10 instances, there is still some evidence that the dtabu-opt model may fail to scale to
even larger problem instances. Second, as was the case with dlopt-opt, it is unclear why,
in terms of search dynamics, dtabu-opt is so highly correlated with search cost. To address
these issues, we now examine the dynamic behavior of TSTaillard in more detail.

113

30

40

50

60

70

80

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

D
is

ta
n
ce

 t
o
 t
h
e
 n

e
a
re

st
 o

p
tim

a
l s

o
lu

tio
n

Iteration #

30

40

50

60

70

80

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

D
is

ta
n
ce

 t
o
 t
h
e
 n

e
a
re

st
 o

p
tim

a
l s

o
lu

tio
n

Iteration #

Figure 7.15: Time-series of the distance to the nearest optimal solution for the solutions
visited by a random walk (left figure) and TSTaillard (right figure) for a 10 × 10 random
JSP.

7.9 A Dynamic Cost Model

In addition to the indicated technical deficiencies, both the dlopt-opt and dtabu-opt cost mod-
els have a fundamental conceptual short-coming: neither model provides any direct
insight into the dynamic run-time behavior of the global search process. In other words,
although these models provide strong evidence that TSTaillard is effectively a biased ran-
dom walk over the Slopt+ sub-space, we have yet to propose any specific details, e.g., the
set of states in the random walk, the transition probabilities between states, and how the
bias differs from that of the baseline random walk algorithm RW. We now address the
issues by explicitly modeling the behavior TSTaillard as a biased random walk.

The dynamic behavior of memoryless local search algorithms, e.g., iterated local
search or simulated annealing, can, at least in principle, be modeled using Markov
chains: the set of feasible solutions is known, the transition probabilities between neigh-
boring solutions can be computed, and the Markov property is preserved. Although
exact, such models require an exponential number of states for NP-hard problems and
therefore provide little insight into the qualitative nature of the search process. The chal-
lenge is to develop condensed models, in which large numbers of solutions are grouped
into individual states, yielding more tractable and consequently understandable Markov
chains. We developed such a model for the RW algorithm in Chapter 6. A similar ap-
proach is also possible when modeling the dynamic behavior of TSTaillard and other tabu
search algorithms, although to preserve the Markov property the contents of short-term
memory must additionally be embedded into the state definition.

As in Chapter 6, we aggregate solutions based on their distance to the nearest ob-
jective, i.e., optimal solution. To model the impact of short-term memory on the search
process, we analyze how search progresses in terms of trends either toward or away
from the nearest optimal solution. In Figure 7.15, we show a time-series of the distance
to the nearest optimal solution for RW and TSTaillard for a typical 10 × 10 random JSP;

114

similar results are obtained in a limited sampling of our 6 × 4, 6 × 6, and 10 × 10 in-
stances. As expected, the random walk exhibits minimal short-term trending behavior.
Due to the limited time horizon displayed, the bias toward solutions that are an average
distance from the nearest optimal solution is not evident. In contrast, TSTaillard exhibits
distinct short-term trending behavior. We define the (instantaneous) search gradient as
the difference in the distance to the nearest optimal solution for the current solution and
that encountered in the previous iteration. Clearly, TSTaillard is able to maintain a consis-
tent search gradient for extended periods of time, leading to the following hypothesis:
TSTaillard’s short-term memory mechanism, in conjunction with the core steepest descent
heuristic, influences the search process by consistently biasing search either toward or
away from the nearest optimal solution.

We define a state Si,x in our Markov model of TSTaillard as a pair representing (1) the
set of solutions distance i from the nearest optimal solution and (2) the current search
gradient x. Let dopt(s) denote the disjunctive graph distance between between s and the
nearest optimal solution. We define x = grad(s, s−1) as the difference dopt(s)−dopt(s−1)
between the current solution s and the solution s−1 from the previous iteration. Although
grad(s, s−1) ∈ [−1, 0, 1], for clarity we denote these numeric values symbolically by
closer, equal, and farther, respectively. In effect, we are modeling the impact of short-term
memory as a simple scalar and embedding this scalar into the state definition. Given
a maximum possible distance of D from an arbitrary solution to the nearest optimal
solution, our Markov model consists of exactly 3·(D+1) states (the extra state represents
the set of optimal solutions).

Next, let the conditional probability P (Si,x′|Sj,x) represent the probability of si-
multaneously altering the search gradient from x to x′ and moving from a solution at
distance j from the nearest optimal solution to a solution at distance i away from the
nearest optimal solution. The majority of these probabilities obviously equal 0, specifi-
cally for any pair of states Si,x′ and Sj,x with |i − j| > 1 or when simultaneous changes
in both gradient and distance to the nearest optimal solution are logically impossible,
such as from state Si,closer to state Si+1,closer. For each i such that 1 ≤ i ≤ D, there are
exactly 9 possible non-zero transition probabilities:

• P (Si−1,closer|Si,closer), P (Si,equal|Si,closer), and P (Si+1,farther|Si,closer)

• P (Si−1,closer|Si,equal), P (Si,equal|Si,equal), and P (Si+1,farther|Si,equal)

• P (Si−1,closer|Si,farther), P (Si,equal|Si,farther), and P (Si+1,farther|Si,farther)

The set of transition probabilities is also subject to the total-probability constraints:

• P (Si−1,closer|Si,closer) + P (Si,equal|Si,closer) + P (Si+1,farther|Si,closer) = 1.0

• P (Si−1,closer|Si,equal) + P (Si,equal|Si,equal) + P (Si+1,farther|Si,equal) = 1.0

• P (Si−1,closer|Si,farther) + P (Si,equal|Si,farther) + P (Si+1,farther|Si,farther) = 1.0

115

To complete our Markov model, we impose a reflective barrier at i = D and
an absorbing state at i = 0 by imposing the constraints P (SD−1,closer|SD,farther) +
P (SD,equal|SD,farther) = 1 and P (S0,equal|S0,equal) = 1, respectively.

For a given problem instance, we estimate the set of transition probabilities by ana-
lyzing the set of solutions visited by TSTaillard over a large number of independent trials.
After each iteration k ≥ 1 of each trial (k = 0 represents the initial solution), we
compute (1) the distance j = dopt(s) from the current solution s to the nearest optimal
solution and (2) the search gradient x = grad(s, s−1) relative to the current solution,
such that s−1 is the solution obtained at the end of the previous ((k − 1)th) iteration.
Given the neighboring solution s+1 of s selected for the next ((k + 1)th) iteration, we
then compute (3) the distance i = dopt(s+1) from s+1 to the nearest optimal solution and
(4) the search gradient x′ = grad(s+1, s) relative to the new solution s+1. We denote
the total number of samples observed in state Sj,x by #(Sj,x), and the total number of
observed transitions from a state Sj,x to a state Si,x′ by #(Si,x′|Sj,x); both quantities
are tracked over all iterations of all trials. We execute TSTaillard until #(Si,closer) ≥ 50
for 1 ≤ i ≤ rint(dlopt-opt), where the function rint(x) returns the integer closest to x,
rounding is upward if the fractional component of x equals 0.5. Individual trials are
initiated from random local optima and terminated once an optimal solution is located.
Because TSTaillard is (at least empirically) asymptotically complete, and because there is
a non-zero probability of initiating a trial from a random local optimum that is distance
i ≥ dlopt-opt from the nearest optimal solution, the termination criterion will eventually
be satisfied as the number of trials approaches ∞.

We compute estimates of the transition probabilities using formulas such as
P (Si−1,closer|Si,closer) = #(Si−1,closer|Si,closer)/#(Si,closer). Empirically, #(Si,closer) ≥ 50
frequently occurs for i > rint(dlopt-opt). To estimate D, the maximal distance between
an arbitrary solution and the nearest optimal solution, we first determine the minimal X
satisfying #(SX,closer) < 50, i.e., the smallest distance at which samples are not consis-
tently observed. We then define D = X − 1. Omitting states Si,x with i > X has little
impact on model accuracy, as we show below. Finally, we observe that our estimates
of both the P (Si,x′|Sj,x) and D are largely insensitive to both the initial solution and
the sequence of solutions visited during the various trials, i.e., the statistics appear to be
isotropic.

In Figure 7.16, we show the estimated probabilities of moving closer to (left figure)
or farther from (right figure) the nearest optimal solution for a 10× 10 random JSP. The
probability of maintaining an equal search gradient is negligible (p < 0.1) at any dis-
tance i. We observe qualitatively similar results for all of our 6 × 4, 6 × 6, and 10 × 10
problem instances. As with RW, the probability of continuing to move closer to (farther
from) the nearest optimal solution is proportional (inversely proportional) to the current
distance from the nearest optimum; the probabilities of moving closer to/farther from
the nearest optimal solution are roughly symmetric around D/2. The result is a bias in
TSTaillard toward solutions that are an “average” distance form the nearest optimal solu-
tion, and this bias accounts for the Gaussian-like distribution of dopt for solutions visited

116

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

P
ro

b
a
b
ili

ty

Distance to the nearest optimal solution

Probability of moving closer given grad=closer
Probability of moving closer given grad=equal

Probability of moving closer given grad=farther

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

P
ro

b
a
b
ili

ty

Distance to the nearest optimal solution

Probability of moving farther given grad=closer
Probability of moving farther given grad=equal

Probability of moving farther given grad=farther

Figure 7.16: The transition probabilities for moving closer to (left figure) or farther from
(right figure) the nearest optimal solution under TSTaillard for a 10 × 10 random JSP.

by TSTaillard during search (e.g., as shown in Figure 7.13). The impact of short-term mem-
ory, absent in RW, is also evident. Independently of i, the probability of maintaining the
current search gradient is high and exceeds 0.5 in nearly all of the problem instances we
analyzed. The bias, different from the bias away from optimal solutions, accounts for
the strong trending behavior observed in the time-series of dopt shown in the right side
of Figure 7.15. The probability of inverting the current gradient is also a function of
the distance to the nearest optimal solution and the degree of change. For example, the
probability of switching from equal to closer is higher than the probability of switching
from farther to closer. Finally, in contrast to the transition probabilities under RW, the
probability of continuing to move closer to an optimal solution actually rises as i → 0,
typically approaching 1 after i ≥ 3.

To validate our Markov model, we first compare the predicted versus actual mean
search cost c for our 6 × 4 and 6 × 6 problem sets. For each problem instance, we
compute the predicted c by repeatedly simulating the Markov chain defined by the es-
timated D, the set of states Si,x, and the estimated transition probabilities P (Si,x′|Sj,x).
We initiate each simulation from a state Sm,n, where m = dopt(s) for a random local op-
timum (independently generated for each simulation trial) and n = closer or n = farther

with equal probability; recall that the probability of maintaining an equi-distant search
gradient is negligible. We compute m exactly in order to control for the possible ef-
fect of the distribution of random local optima, which tend to be more irregular (i.e.,
non-Gaussian) for small problem instances. By setting n = rint(dlopt-opt), we obtain a
slight (< 5%) decrease in model accuracy. We then define the mean predicted cost c as
the mean number of simulated iterations required to achieve the state absorbing S0,closer;
statistics are taken over 10,000 simulations.

We show scatter-plots of the predicted versus actual c for our 6 × 4 and 6 × 6 in-
stances in the top portion of Figure 7.17. The r2 values of the corresponding log10-log10

regression models are 0.9956 and 0.9966, respectively. For all instances the actual c is

117

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

1000

10000

100000

1e+006

1e+007

1000 10000 100000 1e+006 1e+007
Predicted search cost

A
ct

u
al

 s
ea

rc
h

 c
os

t

LA18

LA19

LA20

ABZ5

ABZ6

Figure 7.17: Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6× 4 (upper left figure), 6× 6 (upper right figure),
and 10 × 10 (lower figure) random JSPs; the least-squares fit lines are super-imposed.

within a factor of 2 (i.e., no more than 2 times and no less than 1/2) of the actual c.
To assess the scalability of our Markov model, we consider those 42 instances in our
10 × 10 problem set with ≤ 100,000 optimal solutions. Due to the large number of
iterations required to solve these instances, we terminate our on-line estimation process
once #(Si,closer) > 30 (as opposed to 50) for 1 ≤ i ≤ rint(dlopt-opt). A scatter-plot of
the predicted versus actual c for these 10 × 10 instances is shown in the lower portion
of Figure 7.17; the r2 value of the corresponding log10-log10 regression model is 0.9877.
For reference, we also annotate the plot with the results for those 10 × 10 benchmark
instances with ≤ 100,000 optimal solutions (i.e., la18-la20 and abz5-abz6). As in
the smaller problem sets, the predicted c is always within a factor of 2 of the actual c.
The slight decrease in accuracy is likely due to the less strict termination criterion for
the on-line sampling procedure.

The accuracy of our dynamic model demonstrates that the high-level search process
in TSTaillard is essentially a biased random walk over the Slopt+ sub-space. As with RW, the
run-time dynamics can be viewed as a diffusion process with a central restoring force to-
ward solutions that are an average distance from the nearest optimal solution. However,

118

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

Figure 7.18: Scatter-plots of the predicted versus actual search cost (c) for sub-optimal
6 × 4 (left figure) and 6 × 6 random JSPs; the regression lines are super-imposed.

the short-term memory induces an additional bias such that the current direction of the
search gradient is significantly more likely to be maintained than under RW, i.e., there
are two biases in TSTaillard, as opposed to a single bias in RW. Interestingly, the impact of
short-term memory is akin to a double-edged sword. If search is progressing toward an
optimal solution, then short-term memory is beneficial. Conversely, if search is moving
away from an optimal solution, the short-term memory is likely to move search even far-
ther away from an optimal solution. Finally, in contrast to both the dlopt-opt and dtabu-opt

models, our dynamic model appears to be scalable.

7.10 Explanatory Power and Applications of the Dy-
namic Cost Model

As with the static dlopt-opt model, the power of our dynamic cost model is ultimately
measured by its ability to both account for a wide range of observations regarding prob-
lem difficulty for TSTaillard and to predict the outcome of new experiments. Toward this
goal, we now demonstrate the ability of our dynamic cost model to account for the cost
of locating both sub-optimal solutions to typical random JSPs (in Section 7.10.1) and
optimal solutions to rare-but-exceptionally-difficult random JSPs (in Section 7.10.2).
Additionally, our model predicts a set of conditions under which heuristic initialization
can improve the performance of TSTaillard. We describe this prediction and its empirical
verification in Section 7.10.3.

7.10.1 Modeling the Cost of Locating Sub-Optimal Solutions

Mirroring our analysis in Section 7.6.1, we first consider whether the exceptional accu-
racy of our dynamic cost model extends to the cost of locating sub-optimal solutions to

119

100

1000

10000

100000

1e+006

100 1000 10000 100000 1e+006

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

Hard
Very Hard

100

1000

10000

100000

1e+006

100 1000 10000 100000 1e+006

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

Hard
Very Hard

Figure 7.19: Scatter-plots of the predicted versus actual search cost c for hard and very
hard 6 × 4 (left figure) and 6 × 6 (right figure) random JSPs.

problem instances. Using on-line sampling, we estimate both D and the set of transition
probabilities P (Si,x′|Sj,x) for all of the 6×4 and 6×6 sub-optimal random JSPs with ≤
100,000 solutions; recall that the set of solutions to a sub-optimal instance offset X from
the optimal makespan Cmax consists of any solution with a makespan on the interval
[Cmax, Cmax + X]. We perform filtering to ensure computational tractability, although
we do retain the termination criterion of #(Si,closer) > 50 for 1 ≤ i ≤ rint(dlopt-opt).
Filtering eliminates 1,400 and 832 (on average easy) of the 25,000 total instances from
the 6 × 4 and 6 × 6 problem sets, respectively. We then compute the predicted c via the
simulation procedure described in Section 7.9.

We show scatter-plots of the predicted versus actual c in Figure 7.18. The r2 values
of the corresponding regression models are 0.9916 and 0.9971, respectively. The worst-
case deviation is slightly higher in the 6×4 problem set, but occurs for very few instances
relative to the total of 24,000. Conversely, for the 6×6 problem set the actual c is always
within a factor of 2 of the predicted c, as was the case for optimal solutions. In either
case, the results conclusively demonstrate that search under TSTaillard for both optimal and
sub-optimal solutions is a biased random walk of the form described in Section 7.9. The
variability in the cost of locating sub-optimal solutions is primarily due to differences in
D. Further, the fact that D is highly correlated with dlopt-opt accounts for the ability of the
dlopt-opt static cost model to account for a large proportion of the variability in problem
difficulty in the same problem sets.

7.10.2 Accounting for Variability in High-Cost Random JSPs

One key deficiency of the dlopt-opt static cost model is that accuracy is inversely correlated
with problem difficulty. As shown in Section 7.7.1, the actual c frequently deviates
between 2 and 3 orders of magnitude from the predicted c for specially sets of hard and
very hard 6 × 4 and 6 × 6 random JSPs. Given the previous described successes of

120

the dynamic cost model of TSTaillard, it is natural to consider whether the same model
can consistently account for the variability in problem difficulty observed for the most
difficult random JSPs of a given fixed size. In doing so, the goal is to determine whether
there is any evidence for variability in the accuracy of the dynamic cost model as a
function of problem difficulty.

To test this hypothesis, the predicted c are computed for the hard and very hard
sets of 6 × 4 and 6 × 6 random JSPs, using the methodology described in Section 7.9.
Scatter-plots of the predicted versus actual c are shown in Figure 7.19. The r2 values of
the corresponding log10 − log10 regression models are 0.9981 and 0.9985, respectively.
The decrease in accuracy over the unfiltered 6 × 4 and 6 × 6 problem sets is minimal,
although still evident (e.g., compare Figure 7.17). In all cases, the actual c is within
a factor of 3 of the predicted c. The absolute accuracy of the dynamic cost model
remains remarkably high, and provides a dramatic improvement over the dlopt-opt static
cost model on the same problem sets, e.g., compare Figure 7.10. In summary, the results
indicate that the accuracy of the dynamic cost model is only slightly sensitive to problem
difficulty; the model still accounts for nearly all of the variability in problem difficulty.

7.10.3 The Impact of Initialization Method on Performance

Our models of TSTaillard are based on the assumption that search is initiated from a ran-
dom local optimum. But can our models yield any insight into the impact of heuris-
tic initialization on algorithm performance? Although researchers generally agree that
high-quality initial solutions can improve the performance of tabu search algorithms
(e.g., see [JRM00]), the exact conditions under which improvements can be achieved,
and the expected degree of improvement, are poorly understood. In this section, we
explore a particular aspect of this broader issue: What impact do different initializa-
tion methods, both heuristic and random, have on the cost required by TSTaillard to locate
optimal solutions to problem instances?

To validate our Markov model, we only computed vδ: the mean number of iterations
required to locate an optimal solution, given a starting point that is (modulo rounding)
distance dlopt-opt from the nearest optimal solution. But what does our model predict
if search is initiated from a solution that is either closer to or farther from the nearest
optimal solution than δ? In Figure 7.20, we show plots of the predicted costs vi over the
full range of i for a 6 × 6 (left figure) and 10 × 10 (right figure) random JSP. For the
6 × 6 instance, search cost rises rapidly between i = 3 and i = 10, but only gradually
increases once i > 10. In contrast, search cost for the 10 × 10 instance rises rapidly
between i = 2 and i ≈ 15, but is roughly constant (modulo the sampling noise) once
i > 15. Even when i = 2, our model predicts that search cost is still significant: if the
initial search gradient is not closer, search is driven toward solutions that are an “average”
distance from the nearest optimal solution and any benefit of a favorable initial position
is lost. We observed qualitatively identical behavior in a large sampling of our problem
instances: for easy (hard) instances, the approach toward an asymptotic value as i → D

121

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

0 5 10 15 20 25 30 35 40 45
Distance to the nearest optimal solution

P
re

di
ct

ed
 s

ea
rc

h
co

st

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

0 10 20 30 40 50 60 70 80 90 100
Distance to the nearest optimal solution

P
re

di
ct

ed
 s

ea
rc

h
co

st

Figure 7.20: Predicted cost required by TSTaillard to locate an optimal solution, given an
initial solution that is distance i from the nearest optimal solution, for two 6 × 6 (left
figure) and 10 × 10 (right figure) random JSPs.

is gradual (rapid).
Our Markov model predicts that the distance to the nearest optimal solution, and

not the fitness, dictates the benefit of a particular initialization method. The distinction
is especially key in the random JSP, where fitness-distance correlation is known to be
comparatively weak (see Chapter 11. In particular, our model predicts that an initial-
ization method will at best have a minimal impact on search cost unless the resulting
solutions are very close to the nearest optimal solution. To test this hypothesis, we ana-
lyzed the performance of TSTaillard using a variety of heuristic and random initialization
methods. Following Jain et al. [JRM00], we consider the following set of high-quality
priority dispatch rules (PDRs), used in conjunction with Giffler and Thompson’s pro-
cedure for generating active schedules[GT60]: FCFS (First-Come, First-Serve), LRM
(Longest ReMaining work), MWKR (Most WorK Remaining), and SPT (Shortest Pro-
cessing Time). We additionally considered both active and non-delay solutions [GT60]
generated using random PDRs, which we respectively denote RNDactive and RNDnondelay.
We denote our baseline random semi-active solutions by RNDsemiactive. Finally, we ex-
amined Taillard’s original lexicographic solution method, denoted LEXICO, and the
insertion procedure introduced by Werner and Winkler [WW95], which we denote by
WW; the latter is one of the best constructive heuristics available for the random JSP
[JRM00]. As with RNDsemiactive , we post-process the resulting solutions by applying a
steepest-descent procedure to generate a local optimum.

For each initialization method, we computed dlopt-opt (by substituting the optima gen-
erated by a particular initialization method for random local optima) for the forty-two
10 × 10 instances with ≤ 100, 000 optimal solutions. With the exception of LEXICO,
all of the methods we consider are stochastic. Consequently, we define dlopt-opt as the
mean distance between 5, 000 random solutions and the nearest optimal solution. We
show the resulting dlopt-opt for each initialization method in Table 7.5. We also provide
the p-values for the statistical significance of the mean difference in dlopt-opt between

122

Initialization Method
FCFS LRM MWKR SPT RNDsemiactive

dlopt-opt
58.49 97.41 97.94 64.97 70.92

Significance of Mean Difference in dlopt-opt relative to RNDsemiactive
p < 0.0001 p < 0.0001 p < 0.0001 p = 0.1256 p = 1.0

Percent Mean Difference in cQ2 relative to RNDsemiactive
1.76 2.32 2.94 1.55 0.0
Significance of Mean Difference in log

10
(cQ2) relative to RNDsemiactive

p = 0.0594 p = 0.0836 p = 0.0727 p = 0.0769 p = 1.0

Initialization Method
LEXICO RNDactive RNDnondelay WW RNDsemiactive

dlopt-opt
49.25 64.68 58.55 53.10 70.92

Significance of Mean Difference in dlopt-opt relative to RNDsemiactive
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p = 1.0

Percent Mean Difference in cQ2 relative to RNDsemiactive
1.44 1.07 0.06 -2.79 0.0
Significance of Mean Difference in log

10
(cQ2) relative to RNDsemiactive

p = 0.5129 p = 0.5730 p = 0.5555 p = 0.3090 p = 1.0

Table 7.5: The differences in both the mean distance to the nearest optimal solution
(dlopt-opt) and search cost (Q2) for various initialization methods, measured relative to
random semi-active solutions (RNDsemiactive).

the various methods and RNDsemiactive , which we obtained using a Wilcoxon signed rank
test. With the exception of SPT, we observe significant differences in dlopt-opt between
our baseline method (RNDsemiactive) and the other initialization methods. Initially, this
data appears to suggest that it may be possible to improve the performance of TSTaillard

using initialization methods with low dlopt-opt. However, the lowest absolute values of
dlopt-opt (obtained using the LEXICO and WW methods) are still large. For our 10 × 10
instances, our Markov model predicts that these solutions are typically too far from the
nearest optimal solution to have any impact on search cost (see the right side of Fig-
ure 7.20).

To test this hypothesis, we computed cQ2 using each initialization method (using
1, 000 independent trials of TSTaillard) for each of the forty-two 10 × 10 instances with
≤ 100, 000 optimal solutions. We then computed the percent difference in cQ2 for each
method relative to our baseline initialization method RNDsemiactive; the results are shown
in Table 7.5. We observe a worst-case deviation of less than 3%, and the best improve-
ment (obtained under WW) is only 2.70%. Further, all observed discrepancies can be
attributed to sampling error in the estimates of cQ2, and in no case was the difference in
search cost statistically significant (we provide the p-values resulting from a Wilcoxon
signed-rank test in Table 7.5). The data clearly support the hypothesis predicted by

123

our dynamic model: for difficult problems, the choice of initialization method has no
significant impact on the performance of TSTaillard.

The results presented in this section concern the impact of initialization method on
the cost required by TSTaillard to locate optimal solutions to difficult problem instances.
Although beyond the scope of this paper, our Markov model also predicts that initial-
ization methods can significantly impact the cost of locating both optimal solutions to
easy or moderate problem instances and good sub-optimal solutions to a wide range of
problem instances. We have confirmed these predictions experimentally. Finally, we
note that our model says nothing about the impact of initialization method on the per-
formance of tabu search algorithms that employ re-intensification, such as Nowicki and
Smutnicki’s algorithm [NS96]; we are currently investigating this issue.

7.11 The Relationship Between the Models

In hindsight, the initial success of the dlopt-opt cost model was due to the fact that dlopt-opt

and dtabu-opt are highly correlated for small problem instances. The two measures diverge
as problem size increases, ultimately leading to a lack of scalability in the dlopt-opt model.
The degree of divergence also appears to be related to problem difficulty, providing a
likely explanation for the inverse relationship between accuracy and problem difficulty
in the dlopt-opt model.

What remains is to establish a link between the dtabu-opt model and the dynamic
model. Recall that the general qualitative form of the estimated transition probabili-
ties, as shown in Figure 7.16, is identical in all of the problem instances we analyzed.
Any major differences are due to variability in D, a more direct measure of the size
of the Slopt+ than either dlopt-opt or dtabu-opt. Viewed another way, D defines the over-
all “ideal” form of the transition probabilities, with smaller-scale deviations due to the
details of a particular problem instance. The transition probabilities are also roughly
symmetric around D/2 such that search in TSTaillard is biased toward solutions that are,
on average, approximately distance D/2 from the nearest optimal solution. But D/2
is approximately equal to dtabu-opt; any discrepancies in the accuracies of the two mod-
els are likely due to small deviations in the transition probabilities from the ideal form.
Thus, we believe the success of the dtabu-opt model is due to the fact that it estimates the
parameter D of the dynamic model. To conclude, the relationship between the three
models can summarized by the following equation, analogous to an equation linking the
static, quasi-dynamic, and dynamic cost models of RW: dlopt-opt ≈ dtabu-opt ≈ D/2.

7.12 The Impact of Makespan Estimation

Computing the makespans of neighboring solutions typically consumes over 95% of
the overall run-time of any local search algorithm for the JSP. Consequently, several
researchers have attempted to reduce the overall run-time by estimating the makespans

124

100

1000

10000

100000

1e+006

1e+007

1e+008

100 1000 10000 100000 1e+006 1e+007 1e+008

S
e
a
rc

h
 c

o
st

 w
ith

 e
st

im
a
te

d
 e

va
lu

a
tio

n

Search cost with full evaluation

X

1000

10000

100000

1e+006

1e+007

1000 10000 100000 1e+006 1e+007

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

Figure 7.21: Left Figure: Scatter-plot of the search cost c for 10 × 10 random JSPs
using exact versus estimated makespans of neighboring solutions; the line y = x is
super-imposed. Right Figure: Scatter-plot of the predicted versus actual search cost (c)
for 10×10 random JSPs when using estimated makespans of neighboring solutions; the
least-squares fit line is super-imposed.

of neighboring solutions. Taillard introduced a method for estimating the makespans of
neighboring solutions under the N1 operator (see Section 3.5.2), and used such a scheme
in his tabu search algorithm for the JSP. In contrast, we have in all prior experiments used
a version of TSTaillard that computes the makespans of neighboring solutions exactly. Our
motivation was to control for the possible impact of makespan estimation on our static
cost models, which we now analyze.

In the “estimated” version of TSTaillard, we use the equations described in Section 3.5.2
to compute a lower bound on the makespan of each neighboring solution s′ ∈ N1 of
the current solution s, which can be done in time O(|N1 (s)|). After selection of a
neighbor s′ for the next iteration, the heads (estij) and tails (tailij) of s′ are updated using
the procedures documented in Section 3.5.2 (at which point the exact makespan of s is
known).

First, we analyze the impact of estimation on the cost c required to locate optimal
solutions to our 10× 10 random JSPs; statistics are taken over 1,000 independent trials.
For these instances, the cost-per-iteration ratio of actual versus estimated computations
in our implementation of TSTaillard is roughly 7:1. We show a scatter-plot of c under actual
versus estimated neighbor makespan computation in the left side of Figure 7.21. On av-
erage, approximately 33% fewer iterations are required when using TSTaillard with neigh-
bor makespan estimation. Coupled with the cost-per-iteration ratio, estimation clearly
provides a significant improvement in performance. Few comparable results have been
reported in the literature. Nowicki and Smutnicki [NS01] indicate that for their TSAB
tabu search algorithm, estimation actually resulted in a net decrease in performance,
relative to the number of iterations performed. However, overall performance relative to
run-times was not reported, although they indicate the cost-per-iteration ratio was more

125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

P Value

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 7.22: Left Figure: p-values for 100 10 × 10 instances for rejecting the null
hypothesis that the actual run-length distributions are exponentially distributed. Right
Figure: The actual and exponential run-length distributions for the 10×10 instance with
the smallest p-value.

than 10:1.
Next, we consider the impact of estimation on the accuracy and structure of our cost

models. We developed a dynamic cost model of the estimated version of TSTaillard for
those 42 instances from our 10 × 10 problem set with ≤ 100,000 optimal solutions,
computing the conditional transition probabilities P (Si,x′|Sj,x) and the maximal dis-
tance Dmax using the methodology described in Section 7.9. We show a scatter-plot of
the resulting predicted versus actual search cost c in the right side of Figure 7.21; the
r2 value of the corresponding regression model is 0.9899, unexpectedly indicating that
estimation of neighbor makespans has no impact on the overall accuracy of our dynamic
cost model. Rather, makespan estimation has the effect of reducing the run-time costs
required per iteration, with little impact on the run-time dynamics.

7.13 Run-Length Distributions

We conclude our analysis of TSTaillard with an investigation of the full run-length dis-
tribution of search costs. As we noted in Section 7.3, Taillard ([Tai94], p. 116) indi-
cated that the number of iterations required to locate optimal solutions using his algo-
rithm was approximately exponentially distributed. However, he only reported results
for a single problem instance. We now rigorously test whether the actual RLDs under
TSTaillard are exponentially distributed for our 10 × 10 instances. Mirroring the approach
in Section 6.8, we test this hypothesis using a two-sample Kolmogorov-Smirnov (KS)
goodness-of-fit test. The first sample consists of the actual search costs c obtained over
1,000 independent trials. We generate the second sample by drawing 1,000,000 random
samples from an exponential distribution with a mean c computed from the first sample.

126

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100 1000 10000 100000 1e+006 1e+007 1e+008

K
S

 T
es

t S
ta

tis
tic

Search cost

p=0.05
p=0.01

Figure 7.23: Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov
test statistic for comparing the actual search cost distribution with that of an exponential
distribution. Large values of the test statistic indicate more significant differences. The
horizontal lines indicate null hypothesis rejection thresholds at significant p = 0.01 and
p = 0.05.

We show the distribution of the p-values associated with the resulting KS test statis-
tics in the left side of Figure 7.22. At p ≤ 0.01, we reject the hypothesis that the RLD is
exponentially distributed for 11 of the 100 instances, a lower proportion than observed
for RW. We show the CDF of both the actual and “mean” exponential distribution for
the instance with the smallest (i.e., worst-case) p-value in the right side of Figure 7.22.
Mirroring the results for RW, most differences are concentrated in the left-tail mass of
the two distributions. Further, the largest differences are associated with the easiest
problem instances, as shown in Figure 7.23.

Next, we analyze whether our dynamic cost model can effectively predict the full
RLD under TSTaillard, and not just the mean search cost c. Again, we use a two-sample
Kolmogorov-Smirnov test to test the hypothesis that the actual and predicted RLDs orig-
inate from the same underlying distribution. As with our test for exponential fit, the first
sample consists of the actual c observed over 1,000 independent trials. Analogously,
the second sample consists of those 10,000 c values used to generate the predicted c (as
discussed in Section 7.9). We only report results for those 42 instances for which transi-
tion probability estimation was tractable. For all but 6 of the 42 instances, we reject the
null hypothesis that the two distributions are identical at p ≤ 0.01; despite the accuracy
of the dynamic cost model, it generally fails to account for the full cost distribution.
However, the predicted and actual RLDs are, with a few exceptions, qualitatively iden-
tical: the actual RLD can be closely approximated by shifting the predicted RLD along
the x-axis. Consequently, as was the case for RW, such discrepancies are likely due

127

2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 7.24: CDFs of the predicted and actual RLDs for two 10 × 10 instances. The
p-values for the KS test statistic are respectively 0.4506 and 4.2062 × 10−8.

to inaccuracies introduced in our on-line estimation process, and not to some inherent
structural flaw in our dynamic model – as expected (Section 4.5), near-perfect dynamic
cost models are necessary to achieve statistically accurate prediction of the full RLD.

128

Chapter 8

Iterated Local Search

Computational studies of the JSP indicate that local search algorithms in general, and
tabu search algorithms in particular, provide the best overall performance on the range
of available benchmark instances [BDP96] [JM99]. We now turn to the question of
whether other meta-heuristics can in fact compete with tabu search on the JSP, or if
other meta-heuristics somehow induce biases that are inherently more detrimental to
search effectiveness. The success of tabu search may be due in part to historical contin-
gency. The first effective local search algorithms for the JSP were based on tabu search.
These initial algorithms fueled a wave of follow-on research, often to the exclusion of
other meta-heuristics. The intense focus on tabu search has also led to numerous highly
efficient implementations, which may mask the true potential of other meta-heuristics
with less efficient implementations.

In this chapter and in Chapter 9, we develop new local search algorithms for the
JSP that are competitive with tabu search. To explain their effectiveness, we develop
accurate cost models of these algorithms and contrast them with cost models of tabu
search. The models indicate that the search biases associated with these algorithms
are no less detrimental, and possibly more advantageous, than those observed for tabu
search. Specifically, we consider the development and analysis of a new iterated local
search (ILS) algorithm for the JSP, which we denote I-JAR. We begin in Section 8.1
with an overview of the iterated local search meta-heuristic, and review prior research
on iterated local search and the JSP in Section 8.2. We motivate, define, and analyze
the performance of a version of I-JAR based on the N1 operator in Section 8.3. Cost
models of I-JAR are developed in Section 8.4. In Section 8.6, we assess scalability by
introducing a version of I-JAR based on the high-performance N5 move operator.

8.1 An Overview of Iterated Local Search

One promising alternative to tabu search is iterated local search, or ILS. The origins
of ILS date to Baum [Bau86]. Widespread interest in the ILS meta-heuristic is largely
due to Martin et al. [MOF91], who introduced an effective implementation of ILS for

129

function Iterated Local Search (MaxIters)
s′ = sinit

s′′ = LocalSearch(s′,Nsmall)
s = s′′

sbest = s
i = 0
repeat

s′ = GenPerturbation(s,Nlarge)
s′′ = LocalSearch(s′,Nsmall)
if F (s′′) < F (sbest) then

sbest = s′′

s = ChooseNext(s, s′′)
i = i + 1

until i eq MaxIters

return sbest

Figure 8.1: Pseudo-code for the iterated local search meta-heuristic.

the TSP; variations of Martin et al.’s algorithm have also been developed and analyzed
by Johnson and McGeoch [JM97]. Since the introduction of Martin et al.’s algorithm,
researchers have developed ILS implementations for a number of combinatorial op-
timization problems, often achieving competitive if not state-of-the-art performance.
Lourenco et al. [LMS03] provide an excellent overview of the motivation, history, and
recent literature on ILS.

In contrast to tabu search and simulated annealing, ILS employs two move operators:
Nsmall and Nlarge. As in iterated descent, ILS uses the Nsmall move operator in conjunc-
tion with greedy descent to convert solutions into local optima. However, instead of
re-initiating greedy descent from a new random solution, ILS relies on the Nlarge move
operator to generate perturbations to the current local optimum s. Ideally, the pertur-
bations are large enough to escape the attractor basin of s, such that if greedy descent
(under Nsmall) is applied to a neighbor s′ ∈ Nlarge(s), the resulting local optimum s′′ will
differ from s. An acceptance criterion is then applied to determine whether the next
iteration will begin from s′′ or s.

We provide pseudo-code for the ILS meta-heuristic in Figure 8.1. As in all single-
solution meta-heuristics for local search, ILS proceeds via a sequence of incremental
modifications to some initial solution sinit. ILS is executed for MaxIters iterations, where
MaxIters is a user-specified parameter. The best local optimum encountered during
search (sbest) is tracked and returned upon termination. To generate an instantiation of
ILS for a particular problem, an algorithm designer must define three functions. The first
function, LocalSearch, transforms the input solution into a local optimum using Nsmall.

130

The second function, GenPerturbation, selects a neighbor Nlarge(s) of the input solution
s. The third function, ChooseNext, selects one of the two input solutions to serve as the
starting point for the next iteration.

In practice, the LocalSearch function is typically a variant of greedy descent, al-
though more complex strategies have been used. The complexity of the GenPerturbation
function varies considerably; the most straightforward method simply selects a random
neighbor s′ ∈ Nlarge. Finally, three common implementations of the ChooseNext func-
tion are found in the literature on ILS:

• always, in which s′′ is always accepted.

• better-than, in which s′′ is accepted only if F (s′′) ≤ F (s).

• Metropolis, in which s′′ is always accepted if F (s′′) ≤ F (s), and otherwise with
probability e(F (s)−F (s′′))/T ; T is a user-supplied constant known as the tempera-
ture.

8.2 Iterated Local Search and the JSP: Prior Research

The few reported implementations of ILS for the JSP do appear to exhibit good overall
performance, suggesting that ILS may in fact be a viable alternative to tabu search. How-
ever, several factors conspire to prevent an accurate assessment of performance, such
that ILS is now generally accepted as inferior to tabu search [BDP96] [JM99]. First,
one of the two implementations of ILS for the JSP is a hybridization with tabu search,
and the impact of ILS on the performance of the aggregate algorithm was not analyzed
[LZ96]. Second, experimental methodologies used to evaluate existing ILS algorithms
are very weak, e.g., limited to single or a few short trials on each problem instance
[Lou93]. Third, direct performance comparisons of ILS with other meta-heuristics have
been limited to relatively short runs of simulated annealing [Lou95].

Lourenço [Lou93] [Lou95] introduced a series of ILS algorithms for the JSP, differ-
ing in the type of large-step move operator, local search algorithm, acceptance criterion,
and initialization method. In all variants N1 served as the small-step move operator,
and the initial solution was generated via the well-known shifting bottleneck procedure
[ABZ88]. Two methods were used to post-process solutions resulting from large-step
moves: next-descent and limited-time simulated annealing. Each of the acceptance cri-
teria discussed in Section 8.1 was considered. Using a factorial experiment design,
Lourenço analyzed the impact of the various components on ILS performance and con-
cluded that (1) simulated annealing out-performed next-descent as the local search com-
ponent and (2) the acceptance criterion had no discernible impact on performance. How-
ever, it is difficult to make general conclusions from these experiments, as the run-times
were limited such that at most a few thousand iterations of ILS were executed, often for
a single trial, and for a limited number of problem instances.

131

In terms of algorithm design, Lourenço’s research was notable because it introduced
the first large-step move operators for the JSP. Two of Lourenço’s large-step opera-
tors generate neighboring solutions by re-sequencing the jobs on a pair of random ma-
chines by solving single-machine scheduling problems to optimality, using either the
well-known algorithm defined by Carlier [Car82] or a novel approach introduced by
Lourenço. Both large-step operators yield reasonable performance in experimental stud-
ies. Lourenço also introduced two less effective large-step move operators, one that
takes a different approach to re-sequencing the jobs on a single random machine and
another that inverts adjacent pairs of critical and non-critical operations.

Lourenço and Zwijnenburg [LZ96] report results for an implementation of ILS that
uses tabu search to post-process the solutions resulting from the large-step move op-
erator, indicating that the hybrid was able to outperform the stand-alone tabu search
algorithm, in addition to ILS in conjunction with simulated annealing. Jain [Jai98] also
uses a version of the Carlier-based large-step operator to explore the immediate neigh-
borhood around high-quality solutions, but does not use the operator in conjunction with
ILS.

8.3 I-JAR: Iterated Jump-And-Redescend

The analysis presented in Section 5.2 indicates that the attractor basins of local optima
in the JSP can be escaped with high probability by accepting a short sequence of mono-
tonically dis-improving moves. This fact has an immediate implication for the design
of large-step move operators for ILS: strong “kick-moves” are simply not required to
escape local optima. This observation raises two hypotheses regarding the behavior of
ILS in particular, and local search algorithms in general. First, it seems unlikely that
complex large-step moves operator based on problem-specific knowledge, e.g., those
introduced by Lourenço [Lou93][Lou95], are necessary to achieve high-performance
implementations of ILS for the JSP. Second, because meta-heuristics differ primarily in
their approach to escaping local optima, it seems unlikely that complex meta-heuristics
are required to achieve high-performance local search in general. In other words, we
are hypothesizing that many meta-heuristics are currently over-engineered for their in-
tended purpose: to escape local optima. We now exploit the relative weakness of attrac-
tor basins in the JSP by introducing a new iterated local search algorithm for the JSP
and evaluating its performance relative to both optimal solutions of benchmark problems
and a well-known tabu search algorithm introduced by Taillard [Tai94]. By analyzing
the resulting performance, we obtain evidence for the two hypotheses proposed above.
We begin with a description of the algorithm.

132

function I-JAR(MaxIters, k, OWLnom, OWLinc)

s′ = sinit
s′′ = nextDescent(s′,N1)
s = s′′

sbest = s
i = 1
oem=false
repeat

if (i mod OCI) eq 0 then
if Cmax(s) eq Cmax(s−x) then

oem=true
OWL = OWLnom

if oem eq true then
s′=genRandMove(s,OWL,N1)

else
s′=genEscapeMove(s,k,N1)

s′′=nextDescent(s′,N1)
if oem eq true then

if Cmax(s
′′) eq Cmax(s) then

OWL = OWL + OWLinc
else

oem=false
if Cmax(s

′′) < Cmax(sbest) then
sbest = s

s = s′′

i = i + 1
until i eq MaxIters;
return sbest;

Figure 8.2: Pseudo-code for the I-JAR iterated local search algorithm.

8.3.1 I-JAR: Algorithm Definition

I-JAR stands for Iterated Jump And Redescend. Although potential applications for
I-JAR extend beyond the JSP, we refer to the general concept and the specific im-
plementation for the JSP interchangeably. The small-step operator is N1 , while the
large-step operator simply accepts a random sequence of at most k monotonically dis-
improving neighbors of the current local optimum s. I-JAR is initiated from a random
local optimum, and continues until a user-specified termination criterion is satisfied. All

133

large-step moves are accepted. The novelty of I-JAR stems from the fact that the large-
step move operator is (1) based on search space properties rather than problem-specific
knowledge and (2) is expressed directly in terms of the small-step

To enable escape from local minima that are also either local maxima or near lo-
cal maxima, or on large plateaus (see Section 5.2.4), I-JAR continually monitors the
progress of search. After every OCI iterations of search, I-JAR compares the makespan
of the current solution s with that of the solution s−OCI encountered OCI iterations prior.
If Cmax(s) = Cmax(s−OCI), then search is likely either trapped on a large plateau or
in a difficult-to-escape local optimum; the criterion is conservative, as the solutions
s and s−OCI may be members of different plateaus, potentially in distant regions of
the search space. If the condition is satisfied, I-JAR enters a random walk mode. Let
OWL and OWLnom denote the current and nominal walk length, respectively. Initially,
OWL = OWLnom. In each iteration of the random walk mode, I-JAR accepts a random
sequence of at most OWL moves from the current solution s, yielding a new solution s′;
the qualifier is necessary because it is possible, albeit unlikely, to encounter an optimal
solution from which no further moves are possible. As during normal operation (i.e.,
iterations when I-JAR is not performing a random walk), s′ is transformed into a local
optimum s′′ via randomized next-descent. If Cmax(s) = Cmax(s

′′), then OWL is incre-
mented by a factor OWLinc; otherwise, the normal application of the large-step operator
is resumed in the next iteration.

Pseudo-code for I-JAR is shown in Figure 8.2. The behavior of the functions
escapeMove, randomMove, and nextDescent is self-explanatory. The variable oem (an
acronym for optima escape mode) tracks whether the large-step move in the current iter-
ation is a sequence of random solutions or strictly dis-improving solutions. Most of the
complexity of I-JAR is dedicated to handling the most infrequently encountered cases,
when search becomes trapped.

I-JAR also is related to variants of simulated annealing that have been reported in the
literature. In “basin-hopping” [WS99], a variable-strength perturbation is applied to the
current local optimum to generate an intermediate solution s′, which is then transformed
via greedy descent into a local minimum s′′. The new local minimum s′′ is accepted
with a probability dictated by the Metropolis rule. The strength of the perturbation is
increased when s′′ = s, and decreased when s′′ 6= s. Search in I-JAR is also related to
implementations of simulated annealing in which the temperature oscillates between 0
and ∞, e.g., see [BK94]. The random walk mechanism also bears some similarity to
the adaptive short-term memory mechanisms found in reactive tabu search algorithms
[BT94].

8.3.2 Escape Probabilities Under I-JAR

I-JAR is based on the assumption that with very few exceptions, local optima can be es-
caped by accepting a short sequence of monotonically dis-improving moves; the random
walk mechanism serves to handle the remaining cases. Although we have established

134

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Escape Probability

Fr
eq

ue
nc

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Escape Probability

Fr
eq

ue
nc

y

Figure 8.3: Left figure: Histogram of the escape probabilities (next-descent, k = 3) for
local optima visited by I-JAR during search; results are for a typical 10 × 10 JSP. Right
figure: Histograms of the escape probabilities (next-descent, k = 3) for random local
optima; aggregate data for 100 10 × 10 JSPs are displayed.

this fact for unbiased samples of random local optima, it remains unclear whether the
same observation holds for high-quality local optima, local optima close to the nearest
optimal solution, or even local optima visited by I-JAR during search.

We consider the escape probabilities for local optima visited by I-JAR on our 10×10
random JSPs. For each problem instance, we execute a variable number of independent
trials of I-JAR, tracking the total number of local optima Xi generated at distance i
from the nearest optimal solution, for 2 ≤ i ≤ rint(dlopt-opt). We terminate each trial
once an optimal solution is located (again, because no moves may exist under N1 from
an optimal solution) and terminate all trials once Xi > 50 for 2 ≤ i ≤ rint(dlopt-opt).
Using the methodology described in Section 5.2.4, we compute estimates of the escape
probabilities for the first 50 local optima resulting from successful escape iterations at
each distance i; the latter condition is imposed to prevent over-representation of strong
local optima. This methodology yields a uniform sample of local optima visited by
I-JAR, ranging from both small-to-medium distances from the nearest optimal solution
and high-to-moderate quality.

In the left side of Figure 8.3, we show the distribution of escape probabilities from
the resulting local optima for a typical 10× 10 random JSP; data for 7,096 local optima
are shown, generated using k = 3 under randomized next-descent. We compare this
distribution with the corresponding distribution for random local optima, as shown in the
right side of Figure 8.3 (the latter is identical to the figure appearing in the center portion
of Figure 5.6 in Chapter 5). The presence of a left-skew indicates that local optima
visited by I-JAR are somewhat more difficult to escape than random local optima, given
a fixed k. Similar results hold for k ranging from 1 to 5, and for escape probabilities
under steepest-descent.

Next, we consider the correlation between both the distance to the nearest optimal
solution dopt and the makespan Cmax, and Pescp. Scatter-plots for the 10 × 10 instance

135

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

E
sc

ap
e

pr
ob

ab
ili

ty
 (

K
=3

)

Distance to the nearest optimal solution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

900 1000 1100 1200 1300 1400 1500 1600 1700

E
sc

ap
e

pr
ob

ab
ili

ty
 (

K
=3

)

Makespan

Figure 8.4: Scatter-plots of the distance to the nearest optimal solution (left figure) and
makespan (right figure) versus the escape probability under next-descent for a typical
10 × 10 random JSP; the least-squares fit lines are super-imposed. The corresponding
(Pearson’s) r-values are 0.3271 and 0.4269, respectively.

analyzed above are shown in Figure 8.4; the data were obtained using k = 3 under
randomized next-descent. The respective (Pearson’s) r-values are 0.3271 and 0.4269.
Clearly, the correlation is not significant enough to exploit by dynamically adjusting k
in response to the makespan Cmax(s) of the current optimum s. Finally, we observe that
the correlation is proportional to k, achieving r ≈ 0.5 once k = 5, and falling to r ≈ 0.1
when k = 1.

Our experimental results provide no a priori evidence to suggest that I-JAR might
fail to escape local optima in random JSPs, or otherwise become trapped in any particu-
lar region of the fitness landscape. Consequently, we would expect the behavior of I-JAR
to be asymptotically complete. Our results necessarily limit this conjecture to 10 × 10
random JSPs; we provide indirect evidence (via a demonstration of performance) of the
escapability of local optima in larger JSPs below in Sections 8.3.3 and 8.6.

8.3.3 Assessing the Potential of I-JAR

The performance of I-JAR is dictated primarily by k, the maximal length of the jump
taken before next-descent is re-initiated. The escape probability is proportional to k: as k
increases, the proportion of iterations that yield escapes from the current local optimum
increases. But the CPU time required per iteration also increases, due to increases in
both k and the length of the re-descent. Thus, any increase in k must be balanced by
a decrease in the total number of iterations c required to achieve a particular objective.
Consider the mean number of iterations c required to locate optimal solutions to our
10×10 random JSPs using I-JAR, computed using the results of 1,000 independent trials.
Increasing k from 2 to 3 and 4 yield 17.26% and 16.31% reductions in c, respectively,
while the mean CPU time per iteration (using the computing environment described
below) increases approximately 40% and 60%. The result is a net increase in run-

136

I-JAR TSTaillard

Instance Optimal Min. Mean Max. Min. Mean Max.
Makespan

ta01 1231 1233 1242 1246 1231 1237.4 1244
ta02 1244 1244 1244.7 1247 1244 1250.6 1256
ta03 1218 1218 1221.5 1224 1218 1222.3 1223
ta04 1175 1175 1180.4 1181 1175 1180.8 1182
ta05 1224 1229 1232.4 1233 1228 1232.8 1236
ta06 1238 1239 1243.2 1246 1240 1243.3 1246
ta07 1227 1228 1228 1228 1228 1228 1228
ta08 1217 1217 1218.1 1222 1217 1220.1 1227
ta09 1274 1274 1281.6 1287 1274 1282.3 1289
ta10 1241 1241 1243.6 1244 1244 1250.2 1256

Table 8.1: Statistics for the makespans of the best solutions obtained by I-JAR and
TSTaillard on Taillard’s 15 × 15 benchmark instances. Statistics are taken over 30 inde-
pendent trials. Bold-faced entries in a “Min” column indicate equality with the optimal
makespan. Italicized entries in a “Min” Column indicate the best makespan achieved by
either algorithm. Bold-faced entries in a “Mean” column indicate the mean makespan
was less than or equal to that of the competing algorithm.

time for k > 2. Similar results hold for the 15 × 15 instances analyzed below. With
k = 2, roughly 60% of all iterations yield an escape from the current local optimum
in 10 × 10 and 15 × 15 JSPs. The fraction of iterations in which a random walk is
performed is less than 0.1%. The impact of k on larger problem instances is considered
in Section 8.6. In all of our experiments, OCI = 50, OWLnom = 3, and OWLinc = 1.
These particular values were arrived at via testing, although the performance of I-JAR is
largely insensitive to any particular reasonable (i.e., not exceedingly large) selection of
values.

To demonstrate the effectiveness of I-JAR, we measure performance relative to our
own implementation of the TSTaillard tabu search algorithm analyzed in Chapter 7. Our
implementations of I-JAR and TSTaillard are based on identical code for computing the
makespans of neighboring solutions under the N1 operator, which for both algorithms
consume over 98% of the total run-time of any given trial. By using a common imple-
mentation of the move operator, we are able to mitigate the impact of implementation
efficiency on our results. All algorithmic trials are executed on 1.5 GHz Pentium IV
hardware with 512 Mb of memory, running the Linux 2.4.18-5 operating system; all
code was compiled using gcc 3.2 with level 3 optimization. For both 10×10 and 15×15
random JSPs, iterations of I-JAR are roughly 3.1 times more expensive than iterations
of TSTaillard. Iterations in I-JAR are more costly because they consist of an ascent/descent
phase, in addition to a full neighborhood evaluation of at least once solution – the local
optimum s′′. In contrast, an iteration in TSTaillard consists of a full neighborhood evalua-

137

tion of a single solution.
We first consider the mean number of iterations c required to locate optimal solu-

tions to Fisher and Thompson’s infamous ft10 instance; statistics are taken over 30
independent trials. Although ft10 is not a random JSP (it is approximately workflow),
the effectiveness of a new algorithm for the JSP is historically first measured relative
to this instance. For TSTaillard, we let Lmin = 8, Lmax = 14, and update the tabu tenure
every 15 iterations; these parameter settings are identical to those used by Taillard in
his analysis of ft10 [Tai94]. For I-JAR and TSTaillard, c respectively equaled 3.5 and
16.7 million iterations. As with random 10 × 10 JSPs, iterations of I-JAR on ft10
are approximately 3 times more expensive than iterations TSTaillard, indicating that I-JAR
actually outperforms TSTaillard on this particular instance.

Next, we consider a set of ten 15× 15 instances from the OR Library, introduced by
Taillard [Tai93]. Although these instances are closed, in that the optimal makespans are
known, they are by no means easy: even state-of-the-art algorithms can have difficulty
consistently locating optimal solutions. For each instance, we ran 30 independent of
trials of I-JAR and TSTaillard for 10 million and 30.1 million iterations, respectively. The
tabu tenure parameters of TSTaillard are set via the heuristic described in Section 7.3. The
CPU run-times for all trials are roughly equal, each requiring approximately 2 hours.
We use a large number of iterations in order to assess the best possible performance of
each meta-heuristic. We express performance in terms of the number of iterations (as
opposed to raw CPU time) to enable replicability. Undoubtedly, the efficiency of our
N1 evaluation code can be improved, but our objective is algorithm analysis.

We report statistics for the makespans of the best solutions obtained for the various
trials in Table 8.1. Both algorithms achieve excellent performance in an absolute sense,
each locating optimal solutions to (a different set of) 6 of the 10 instances. No one
algorithm dominates in terms of consistently locating the best overall solution. In terms
of mean solution quality, I-JAR out-performs TSTaillard on 8 of the 10 instances, although
in no case is the difference statistically significant. The performance of I-JAR is slightly
less variable than that of TSTaillard, e.g., for instances ta02 and ta10. In any case, we
conclude that, given equal run-times, I-JAR performs no worse than TSTaillard. In other
words, given identical move operators and under controlled experimental conditions,
iterated local search can be competitive with tabu search on the JSP.

8.4 Cost Models of I-JAR

The performance of I-JAR suggests that a simple mechanism for escaping the attractor
basins of local optima is sufficient to yield a high-quality implementation of a local
search algorithm for the JSP. However, we have yet to provide insight into why this
should be the case. By definition, search in I-JAR is restricted to the sub-space Sopt ⊆ S
of local optima. As with TSTaillard, any high-level or global search strategy is emergent
or implicit. Consequently, the logical null hypothesis is that I-JAR is simply performing

138

I-JAR TSTaillard
Problem Set |optsols| dlopt-lopt dlopt-opt dijar-opt |optsols| dlopt-lopt dlopt-opt dtabu-opt
6 × 4 0.4826 0.2146 0.8059 0.7874 0.5365 0.2415 0.8044 0.8441
6 × 6 0.1647 0.2511 0.6591 0.6552 0.2223 0.2715 0.6424 0.7808
10 × 10 0.1740 0.1667 0.3934 0.6859 0.184 0.2744 0.4598 0.6641

Table 8.2: r2 values of static and quasi-dynamic cost models for I-JAR and TSTaillard.

a random walk over the sub-space Sopt. As with RW and TSTaillard, we expect search cost
in I-JAR to be proportional to the effective size of the search space, taking into account
the number and/or distribution of optimal solutions. The primary unknown in modeling
I-JAR as a random walk is whether biases exist in the transition probabilities that explain
its effectiveness, and how the transition probabilities are related to those observed for
other meta-heuristics. We specifically examine whether there exists pressure toward
solutions that are an average distance from the nearest optimal solution and if I-JAR
somehow induces additional search biases.

We test the random walk hypothesis by developing a series of cost models of I-JAR,
mirroring our prior analysis of RW and TSTaillard. We develop these models using our
6 × 4, 6 × 6, and 10 × 10 sets of random JSPs. The number of iterations c required by
I-JAR to locate optimal solutions is a random variable with an approximately exponential
distribution, as shown below in Section 8.5. Thus, we run 1,000 independent trials of
I-JAR on each instance to achieve stable estimates of the mean (c) or median (cQ2) search
cost. I-JAR is, at least empirically, asymptotically complete; in no case has I-JAR failed
to eventually locate an optimal solution to these problem instances.

8.4.1 Static and Quasi-Dynamic Cost Models

We first consider static cost models of I-JAR based on three fitness landscape features
related to the effective size of the Sopt sub-space: the number of optimal solutions
(|optsols|), the mean distance between random local optima (dlopt-lopt), and the mean dis-
tance between random local optima and the nearest optimal solution (dlopt-opt). All mea-
sures are computed for each of the 6×4 and 6×6 instances. As indicated in Chapter 5.3,
we are only able to compute |optsols| for those 97 of the 100 10×10 instances with ≤ 250
million optimal solutions, and dlopt-opt for those 92 10 × 10 instances with ≤ 50 million
optimal solutions; we computed dlopt-lopt for all 10× 10 instances, as it is independent of
the number of optimal solutions.

We show the r2 values for the corresponding regression models in Table 8.2; for
reference, we also include results obtained for TSTaillard, as reported in Chapter 7. In all
cases, the dependent variable is the base-10 logarithm of the median search cost cQ2;
given an exponential distribution, the median is a more stable estimate of “average”
search cost than c. For all three measures, we observe the same qualitative trends in
accuracy for both I-JAR and TSTaillard. All models fail to scale with increases in problem
size. Independently, neither |optsols| (which measures the number of “targets” in Sopt)

139

100

1000

10000

100000

1e+06

45 50 55 60 65 70 75 80 85 90 95

S
ea

rc
h

co
st

Mean distance between random local optima and the nearest optimal solution

100

1000

10000

100000

1e+06

10 20 30 40 50 60 70 80

S
ea

rc
h

co
st

Mean distance to the nearest optimal solution

LA18

LA19

LA20

ABZ5

ABZ6

Figure 8.5: Scatter-plots of dlopt-opt (left figure) and dijar-opt (right figure) versus search
cost (cQ2) for 10 × 10 random JSPs; the least-squares fit lines are super-imposed.

nor dlopt-lopt (which measures the absolute size of Sopt) account for any significant pro-
portion of the variability in search cost. The most accurate model is based on dlopt-opt,
which accounts for roughly 40% of the variability in search cost for 10 × 10 instances.
For reference, we show a linear-log scatter-plot of dlopt-opt versus cQ2 in the left side of
Figure 8.5. Mirroring the results obtained for TSTaillard, the actual cQ2 typically deviates
from the predicted cQ2 by as much as one order of magnitude, exceeding 1.5 orders of
magnitude in the worst case. Overall, the results provide only relatively weak support
of our random walk hypothesis, as the dlopt-opt cost model, which measures the effective
size of the Sopt, fails to scale to larger problem instances.

Analogous to the situation for both RW (in Section 6.3) and TSTaillard (in Section 7.8),
random local optima are not representative of the set of local optima visited by I-JAR
during search. In particular, the distribution dopt of the distance to the nearest optimal
solution for random local optima and those generated by I-JAR diverges as problem size
increases, possibly accounting for the failure of the dlopt-opt model to scale. Let dijar-opt

denote the mean dopt for local optima visited by I-JAR. For each problem instance,
dijar-opt is estimated from 100,000 local optima. The optima are generated by executing
I-JAR for a variable number of independent trials. Trials are initiated from random
local optima and terminated once an optimal solution is located; the latter condition is
required for situations in which no moves are possible from an optimal solution. The
entire process, including the current trial, is terminated once 100,000 iterations have
been performed; samples consist of the local optimum generated at each iteration of
each trial.

The r2 values for the quasi-dynamic dijar-opt model are also shown in Table 8.2; the
values for the analogous dtabu-opt model of TSTaillard are included for purposes of com-
parison. For the 6 × 4 and 6 × 6 problem sets, the difference in accuracy between the
dlopt-opt and dijar-opt models is insignificant, which is consistent with minimal observed
differences in the distribution of dopt for random local optima and local optima gener-
ated by I-JAR. However, in contrast to the results for TSTaillard (and for RW, as discussed

140

in Section 6.3), we observe no increase in model accuracy when considering dijar-opt

over dlopt-opt; in fact, the dlopt-opt model is actually slightly more accurate than the dijar-opt

model. We currently have no explanation for this discrepancy.
For the 10 × 10 instances, computation of dijar-opt is only tractable for those 42 in-

stances with ≤ 10 million optimal solutions. Here, in contrast to the smaller problem
sets, we obtain roughly a 250% increase in accuracy over the static dlopt-opt cost model.
This is consistent with the often significant differences between the distributions of dopt

for random local optima and local optima generated by I-JAR. A linear-log scatter-plot
of dijar-opt versus cQ2 for these instances is shown in the right side of Figure 8.5. The r2

value indicates that dijar-opt model accounts for roughly 2/3 of the variability in search
cost, with the actual search cost deviating from the predicted value by no more than
an order of magnitude, and in most cases far less. Further, there is little evidence of
increasing variability as dijar-opt → ∞.

As in RW and TSTaillard, search in I-JAR is driven toward solutions that are, on av-
erage, quite distant from the nearest optimal solution. Post-hoc intuition suggests that
search cost is therefore proportional to the amount of bias or pressure away from opti-
mal solutions that must be overcome. This would appear to contradict the random walk
hypothesis, which posits that search cost is proportional to the effective size of the Sopt

sub-space. However, as we indicate below, dijar-opt is really nothing more than a mea-
sure of the effective size of the Sopt sub-space; the interpretation of the measure as the
amount of bias that search must overcome is due to the qualitative form of the transition
probabilities, which we discuss next in Section 8.4.2.

8.4.2 A Dynamic Cost Model

The static and quasi-dynamic cost models only provide indirect and approximate evi-
dence for the hypothesis that search in I-JAR is simply a random walk over the sub-space
Sopt of local optima. We now support this hypothesis directly by constructing a dynamic
cost model, which enables us to identify the presence and relative magnitudes of any
search biases and to account for precisely why dijar-opt (and to a lesser extent dlopt-opt)
is so highly correlated with search cost. The model also enables a more fundamental
analysis of the dynamical run-time behavior of RW, I-JAR, and TSTaillard.

Because it is memoryless, a dynamic run-time behavior of I-JAR can be modeled
as a simple Markov chain. Solutions (i.e., local optima) are aggregated based on their
distance i from the nearest optimal solution. Let Si, 2 ≤ i ≤ D, denote a state repre-
senting the set of all local optima that are distance i from the nearest optimal solution.
The parameter D represents the maximal possible distance between a local optimum
and the nearest optimal solution. Let P (Si|Sj) denote the condition probability of a
transition from a state Sj to a state Si. The set of conditional probabilities is subject to
the total-probability constraints

∑D
x=0 P (Sx|Sj) = 1 for 1 ≤ j ≤ D. To complete the

Markov model, we introduce a reflective barrier at i = D and an absorbing state at i = 0
by imposing the constraints P (Sx|Si) = 0 for all i such that x > D and P (S0|S0) = 1,

141

−15 −10 −5 0 5 10 15

20

40

60

80

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Change in distance to the nearest optimal solution

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y
C

ur
re

nt
 d

is
ta

nc
e

Figure 8.6: Left figure: Transition probabilities -full. Right figure: Aggregate transition
probabilities for the same problem instance.

respectively.
In RW and TSTaillard, random local optima are not representative of solutions visited

during search – in terms of both the distribution of their distance to the nearest opti-
mal solution and their transition probabilities. Consequently, sample-based estimation
of transition probabilities yields inaccurate dynamic cost models. In preliminary exper-
imentation, we found the same holds in I-JAR. To correct for this deficiency, we again
turn to on-line estimation. As indicated in Chapters 6 and 7, this process is not circular.
First, transition probabilities are estimated using a different set of trials than those used
to compute either the mean search cost c or the full run-length distribution. Second,
there is no guarantee that dynamic models based on analyses of mean run-time behavior
will reflect the actual search process.

For a given problem instance, the set of transition probabilities is estimated via an
analysis of the local optima generated by I-JAR over a variable number of independent
trials. At each iteration of a trial, the distance i between the current local optimum s and
the nearest optimal solution is determined. Given the local optimum s′′ generated from
s, we then compute the distance j from s′′ to the nearest optimal solution. Let #(Si)
denote the number of occurrences of state Si, and let #(Si|Sj) denote the number of
occurrences of a successor state Si given a current state Sj . We execute I-JAR until
#(Si) ≥ 50 for 2 ≤ i ≤ rint(dlopt-opt); individual trials are initiated from random
local optima, and terminated once an optimal solution is located. The function rint
returns the integer nearest to the input value, rounding up when the fractional component
equals 0.5. The significance of the rint(dlopt-opt) term is discussed below. Although
not theoretically guaranteed, e.g., the state S2 need never be visited, the termination
criterion is empirically satisfied for all of our test instances. Estimates of the transition
probabilities are computed using the formula P (Si|Sj) = #(Si|Sj)/#(Sj). Because
#(Si) ≥ 50 is possible, if not likely, for i > rint(dlopt-opt), we take D = X − 1, where
X is the minimal value satisfying #(SX) < 50. To yield a consistent model (necessary
due to the conservative estimation of D), for all i > D we add #(Si|Sj) to #(SD|Sj)

142

before estimating the transition probabilities.
Empirically, omitting states Si with i > rint(dlopt-opt) has negligible impact on model

accuracy. As discussed below, the qualitative form of the transition probabilities indi-
cates that I-JAR rarely encounters such states, and there is no evidence that search is
likely to become trapped in these states. Further, due to their rarity, accurate estima-
tion of transition probabilities is problematic. Finally, we observe that our estimates of
the transition probabilities are largely insensitive to both the initial local optima and the
sequence of local optima visited during individual trials; i.e., the statistics appear to be
isotropic.

The estimated transition probabilities for a typical 10 × 10 random JSP are shown
in the left side of Figure 8.6. Given a state Sj, P (Si|Sj) ≈ 0 for |j − i| > 5, subject
to the obvious boundary conditions; for |j − i| ≤ 5, the probabilities are approximately
Gaussian with mean Si. Similar observations hold in a limited sampling of our 6 × 4,
6× 6, and 10× 10 problem sets. Although not immediately apparent, there also exists a
significant bias in the relative values of

∑j−1
i=0 P (Si|Sj) and

∑D
i=j+1 P (Si|Sj), in that the

probability of moving either closer to or farther from the nearest optimal solution varies
with i. The aggregate transition probabilities for the same 10 × 10 instance indicated
above are shown in the right side of Figure 8.6. Although the overall escape probability
is roughly constant at ≈ 0.5, the probability of moving closer to (farther from) the
nearest optimal solution is proportional (inversely proportional) to the current distance
i. In other words, there is a restoring force that biases search toward local optima that
are an “average” distance from the nearest optimal solutions. This is the same bias –
due to the structure of the binary hypercube – that exists in both RW and TSTaillard.

To validate our dynamic cost model, we simply compare the predicted versus ac-
tual mean search costs c. The predicted c for each instance is computed by repeatedly
simulating the Markov chain defined by D, the set of states Si, and the estimated tran-
sition probabilities P (Si|Sj). Each simulation is initiated from a state Si, where i is
the distance between a random local optima s (specific to the individual simulation) and
the nearest optimal solution, and terminated once the state S0 is entered. The cost of
an individual simulation is defined as the total number of iterations c. The aggregate c
is then computed using 10,000 independent simulations. We use the distance between
actual random local optima and the nearest optimal solution to control for any possible
impact of the distribution of dopt for random local optima. Slightly less accurate results,
particularly on the smaller problem sets, are obtained via repeated simulation from state
Sx, where x = rint(dlopt-opt), i.e., when search is initiated from solutions that are, on
average, approximately distance dlopt-opt from the nearest optimal solution.

We first consider the results for our 6 × 4 and 6 × 6 problem sets. Scatter-plots of
the predicted versus actual c are shown in the top portion of Figure 8.7. The r2 values
of the corresponding log10-log10 regression models are 0.9673 and 0.9854, respectively.
Although the actual c is typically within a factor of two of the predicted c, there exist
instances for which the actual c is off by factors of 4 and 3 in the 6 × 4 and 6 × 6 prob-
lem sets, respectively. Somewhat unexpectedly, model accuracy is actually higher in

143

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

LA18

LA19

LA20

ABZ5
ABZ6

Figure 8.7: Scatter-plots of the observed versus predicted mean cost to locate an optimal
solution under IJAR 6 × 4 (upper left figure), 6 × 6 (upper right figure), and 10 × 10
(lower figure) random JSPs; the least-squares fit lines are super-imposed.

the more difficult 6 × 6 problem set. In both cases, absolute accuracy is high, although
slightly lower than that observed for the dynamic cost models of both RW and TSTaillard.
We currently have no explanation for unexpectedly high inaccuracies on particular prob-
lem instances.

Next, we analyze the results for our restricted 10×10 problem set (i.e., only contain-
ing instances with ≤ 100,000 optimal solutions). A scatter-plot of the predicted versus
actual c is shown in the bottom portion of Figure 8.7; the r2 value of the correspond-
ing log10-log10 regression model is 0.9935. For reference, we also include results for
those 10 × 10 random JSP benchmark instances with ≤ 100,000 optimal solutions. In
all cases, the actual c is within a factor of two of the predicted c. There is no evidence
of high-residual instances such as those observed in the 6 × 4 and 6 × 6 problem sets,
although there is a slight chance that this may be due to the decrease in the sample size
(from 1,000 to 42). The absolute accuracy is equivalent to the dynamic cost models
developed for both RW and TSTaillard on the same 10 × 10 instances.

These results provide strong evidence for the hypothesis that search in I-JAR is noth-
ing more than a random walk over the space of local optima. More surprisingly, the run-
time dynamics are qualitatively identical to those of RW. In both RW and I-JAR, search

144

is biased toward solutions that are roughly equi-distant between optimal solutions and
solutions that are maximally distant from optimal solutions. This bias is largely due to
the structure of the binary hypercube. The key difference between the two algorithms is
the search space: search I-JAR is constrained to Sopt, while search in RW is unrestricted
within S, the space of feasible solutions. Even though I-JAR is theoretically capable of
large-distance jumps, in practice they do not occur, further minimizing the differences
between the two algorithms. Similarly, the fundamental difference between TSTaillard and
I-JAR is the presence (in the former) of a secondary bias that acts to move search either
consistently toward or away from the nearest optimal solution.

Finally, the relationship between the static, quasi-dynamic, and dynamic cost models
that was identified in Sections 6.7 and 7.11.

8.5 Run-Length Distributions under I-JAR

As with RW and TSTaillard, we found strong evidence that search cost, as measured by the
number of iterations required to locate an optimal solution, is approximately exponen-
tially distributed for I-JAR. As in Sections 7.13 and 6.8, we test this hypothesis using a
two-sample Kolmogorov-Smirnov (KS) goodness-of-fit-test. The first sample consists
of the actual search costs c obtained over 1,000 independent trials. We generate the
second sample by drawing 1,000,000 random samples from an exponential distribution
with a mean c computed from the first sample.

The distribution of resulting p-values for our 100 10×10 random JSPs is shown in the
left side of Figure 8.8. At p ≤ 0.01, the null hypothesis that the run-length distribution
(RLD) is exponentially distributed is rejected for 36 of the 100 instances, higher than
the numbers rejected for TSTaillard (11 of 100 on the same problem set) and RW (22% of
our 6 × 6 instances). Where differences do exist, they are concentrated in the left-tail
mass of the two distributions, and are not extremely large. For illustrative purposes, we
show the CDF of the actual and “mean” exponential distribution for the 10×10 instance
with the smallest p-value in the right side of Figure 8.8. Finally, the largest differences
are associated with the easiest problem instances, as shown in Figure 8.9.

Next, we analyze the ability of our dynamic cost model to account for the full RLD
under I-JAR, as opposed to just the mean cost c. We use a two-sample Kolmogorov-
Smirnov test to test the null hypothesis that the actual and predicted RLDs originate
from the same underlying distribution. The first sample consists of the actual c observed
over 1,000 independent trials, while the second sample consists of those 10,000 c values
used to generate the predicted c. For 25 of the 42 10×10 instances (in contrast to 6 of 42
instances under TSTaillard), the KS test statistic was significant at p ≤ 0.01, indicating that
our dynamic cost model cannot in general account for the full distribution of search cost.
However, as with RW and TSTaillard, the worst-case deviations are minimal, and the two
distributions are often nearly identical; we show CDFs of the predicted and actual RLDs
for the instances with the smallest and largest p-value in Figure 8.10. Where differences

145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

P Value

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 8.8: Left Figure: p-values for 100 10×10 instances for rejecting the null hypoth-
esis that the actual run-length distributions are exponentially distributed. Right Figure:
The actual and exponential RLDs for the 10 × 10 instance with the smallest p-value
(1.92x10-22).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100 1000 10000 100000 1e+006 1e+007

K
S

 T
es

t S
ta

tis
tic

Search cost

p=0.01
p=0.05

Figure 8.9: Scatter-plot of search cost versus the value of the Kolmogorov-Smirnov test
statistic for comparing the actual search cost distribution with that of an exponential
distribution. Large values of the test statistic indicate more significant differences. The
horizontal lines indicate null hypothesis rejection thresholds at significant p = 0.01 and
p = 0.05.

do exist, they can be minimized by simply shifting one of the two distributions by a
constant offset, indicating that any discrepancies are likely due to deficiencies in our
estimation process, and not to structural flaws in our dynamic cost model.

146

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Figure 8.10: CDFs of the predicted and actual RLDs for two 10 × 10 instances. The
p-values for the KS test statistic are respectively 0.861 and 2.3649 × 10−12.

8.6 An Analysis of the Scalability of I-JAR Performance

The experiments reported in Section 8.3.3 indicate that the performance of I-JAR is com-
petitive with that of TSTaillard on Taillard’s 15 × 15 benchmark instances. We view these
results as a demonstration of the potential effectiveness of iterated local search for the
JSP. Key open questions relate to scalability and extensibility: Do similar results hold
for larger, more difficult square problem instances, or for a range of rectangular problem
instances? We address these questions by comparing the performance of iterated local
search and tabu search on the full range of Taillard’s benchmark instances. Because the
N1 operator yields many moves that are provably non-improving, state-of-the-art tabu
search algorithms are based on the significantly more restrictive N5 operator. However,
the search space induced by the N5 operator is disconnected, with certain implications
for the design of local search algorithms based on N5 ; these implications are discussed
in Section 8.6.1. An extension of I-JAR based on N5 is introduced in Section 8.6.2,
while an N5 -based analog of TSTaillard is described in Section 8.6.3. The comparative
methodology is discussed in Section 8.6.4, and the relative performance of the two al-
gorithms is reported in Section 8.6.5.

8.6.1 The Implications of N5 for Local Search Algorithm Design

While it is known that the N5 operator induces a disconnected search space, such that
there does not always exist a path from an arbitrary solution to an optimal solution, the
implications of this fact for the design of local search algorithms based on N5 have
not been fully explored. In experimentation with preliminary versions of the algorithms
described in Section 8.6.2 and 8.6.3, we observed that search periodically encountered
situations in which a small number (≤ 10) of solutions were repeatedly visited, with the
algorithms unable to break the cycle. Upon closer examination, this behavior is due to

147

the existence of small, fully connected sub-components that are isolated from the rest
of the fitness landscape. For example, consider a solution s with a single critical block
of size ≥ 2 on machine 1, such that |N5 (s)| = 1; the sole neighbor s′ is constructed by
inverting the order of the last pair of operations (oi, oj) on the critical block. But s′ also
contains a single critical block on machine 1, with oj and oi as the last two operations
in the block. Further, Cmax(s) = Cmax(s

′). Clearly, once any local search algorithm
based strictly on N5 encounters either s or s′, search will forever cycle between the two
solutions. We refer to these sub-components of the fitness landscape as traps.

Although this example may appear contrived, it and related generalizations were fre-
quently observed in Taillard’s benchmark instances, particularly in the 30×20 problems.
Once entered, it is clearly impossible for local search based strictly on N5 to escape a
trap; recall that N5 induces asymmetric neighborhoods. Because we have found no em-
pirical evidence of large, e.g., > 10 solution, sub-components in random JSPs, the two
key requirements of local search algorithms based on N5 is that they (1) detect when
search is in a trap and (2) initiate some form of escape mechanism.

Nowicki and Smutnicki developed local search algorithms based on the N5 move
operator [NS96] [NS03]; one of the algorithms was introduced simultaneously with the
N5 operator. Their algorithms, both based on tabu search, identify traps by checking
for cycles in the makespans of recently visited solutions. If a cycle is detected, search
from the current solution is terminated and re-started from a previously encountered
high-quality solution. The two algorithms also perform re-starts if the makespan of
the best-so-far solution is not improved over some number of iterations. Consequently,
search will eventually escape a trap, even if a cycle is not detected.

The algorithms described in Sections 8.6.2 and 8.6.3 take a different, less drastic ap-
proach to escaping traps. To detect a trap, both algorithms monitor the mobility of search
over time. Mobility [BT94] is defined as the distance between two solutions visited
some k number of iterations apart. Both iterated local search and tabu search generally
maintain high search mobility for a wide range of parameter settings. Consequently, if
the mobility falls below some relatively small threshold, then search is likely contained
in a trap, and an escape sequence can be initiated. Instead of re-starting search from
some previously encountered high-quality solution, we perform a small modification to
the current solution using the canonical N1 operator. Because the N1 operator induces a
connected landscape, the algorithm is able to remain close to the current solution while
simultaneously moving search out of the trap.

8.6.2 I-JARN5: Algorithm Definition

Conceptually, traps can be detected by analyzing the makespans of recently visited solu-
tions. In practice, the detection criterion is complex, specifically because of the stochas-
tic components of a local search algorithm. Specifically, an algorithm is not guaranteed
to exhibit cycling behavior, but may instead repeatedly visit a small set of solutions in
a random order. To avoid traps when I-JAR is used in conjunction with the N5 move

148

function I-JARN5(k, MaxIters, TCI, Mthrs, MWLnom, MWLinc, OCI, OWLnom, OWLinc)
sbest = s = nextDescent(sinit,N5)
i = 1, oem=false, vte=false
repeat

gte=false
if i mod TCI then

M = D(s, s−TCI)
if (vte eq true) and (M > Mthrs) then

vte = false

else if (vte eq false) and (M ≤ Mthrs) then
wl = MWLnom, gte = true

else if (vte eq true) and (M ≤ Mthrs) then
wl = wl + MWLinc, gte = true

if (i mod OCI) eq 0 then
if (Cmax(s) eq Cmax(s−OCI)) and (oem eq false) then

oem=true, OWL = OWLnom
if gte eq true then

s′=genRandMove(s,MWL,N1)
else if oem eq true then

s′=genRandMove(s,OWL,N5)
else

s′=genEscapeMove(s,k,N5)
s′′=nextDescent(s′,N1)
if oem eq true then

if Cmax(s
′′) eq Cmax(s) then

OWL = OWL + OWLinc
else

oem=false
if Cmax(s

′′) < Cmax(sbest) then
sbest = s

s = s′′, i = i + 1
until i eq MaxIters;
return sbest;

Figure 8.11: Pseudo-code for the I-JARN5 iterated local search algorithm.

operator, we use a straightforward approach that detects whether search is restricted to
a small sub-component of the fitness landscape. Let Xi denote the solution at iteration
i. Every TCI (Trap Check Interval) iterations, the mobility M (i.e., disjunctive graph
distance) between the current solution Xi and the solution at iteration Xi−TCI is com-

149

puted. If the M reaches or falls below some threshold Mthrs, then a random walk from
the current solution is initiated. However, the walk is with respect to the N1 operator,
which does not induce landscapes with traps. If the mobility remains low after another
TCI iterations, the length of the random walk is increased; the procedure is iterated until
super-threshold mobility is achieved.

We denote the resulting algorithm by I-JARN5. Pseudo-code for I-JARN5 is shown in
Figure 8.11. The algorithm is a simple derivative of I-JAR, with logic added to detect and
escape from traps. The function D returns the disjunctive graph between the two input
solutions; the notation s−TCI indicates the solution TCI iterations prior. The variable
vte indicates that search should verify escape from a trap after TCI additional iterations,
while the variable gte indicates whether a random walk should be performed in the
current iteration. Finally, the function walk(s, x) performs a random walk of length x
from solution s, using the N1 move operator.

8.6.3 TSNS-A: Algorithm Definition

Mirroring the approach taken in Section 8.3.3, we compare the performance of I-JARN5

relative to a tabu search algorithm based on the N5 move operator. Two such algorithms
have been developed by Nowicki and Smutnicki; both algorithms, known as TSAB and
i − TSAB, use a straightforward implementation of tabu search in conjunction with pe-
riodic re-intensification around previously encountered high-quality solutions. Given
strong qualitative similarities in the dynamics of tabu search and iterated local search
algorithms for the JSP (as detailed in Sections 7.9 and 8.4.2), it seems likely that re-
intensification can significantly improve the performance of both meta-heuristics. Con-
sequently, we control for the impact of re-intensification on performance by comparing
I-JARN5 with a version of TSAB (or equivalently i − TSAB) lacking re-intensification.

In contrast to TSTaillard, TSAB uses a fixed-duration tabu tenure, set to 8 in both Now-
icki and Smutnicki’s original and more recent experiments [NS96] [NS03]. As indicated
previously, TSAB is augmented with code for heuristically detecting cycles. When a cy-
cle is identified, search from the current solution is terminated and the re-intensification
process is initiated. By detecting and breaking cycles, TSAB rectifies two potential
problems: (1) cycling due to the use of a fixed-duration tabu tenure (which can occur
even if the move operator induces a connected fitness landscape) and (2) cycling due to
the existence of traps in the fitness landscape. The tight link between cycle prevention
and re-intensification significantly complicates the development of a version of TSAB
without re-intensification: if re-intensification is not employed, it is unclear how search
should proceed when either type of cycle is detected.

To avoid the first type of cycling, we simply borrow the dynamic tabu tenure scheme
present in TSTaillard; the effectiveness of this approach for tabu search algorithms in gen-
eral is well-known. To avoid cycling due to traps, we use a similar approach to that
defined for I-JARN5. Let Xi denote the solution at iteration i. Every TCI iterations, the
mobility M (i.e., disjunctive graph distance) between the current solution Xi and the

150

solution at iteration Xi−TCI is computed. If the M reaches or falls below some thresh-
old Mthrs, then a random walk from the current solution is initiated. However, the walk
is with respect to the N1 operator, which does not induce landscapes with traps. If
the mobility remains low after another TCI iterations, the length of the random walk is
increased; the procedure is iterated until super-threshold mobility is achieved.

function TSNS-A(MaxIters, TCI, Mthrs, MWLnom, MWLinc)
s = sinit

sbest = sinit

clear(M)
i = 1
vte = false

wl = 0
while i ≤ MaxIters do

gte = false

if i mod TCI then
M = D(s, s−TCI)
if (vte eq true) and (M > Mthrs) then

vte = false

else if (vte eq false) and (M ≤ Mthrs) then
wl = MWLnom
gte = true

else if (vte eq true) and (M ≤ Mthrs) then
wl = wl + MWLinc
gte = true

if gte eq true then
s=walk(wl,s)

else
nall = N (s)
ntabu=tabu(nall,M)
s = argminx∈nall\ntabu

(Cmax(x))
if Cmax(s) < Cmax(sbest) then

sbest = s
update(M ,s)
i = i + 1

return sbest

Figure 8.12: Pseudo-code for the TSNS-A tabu search algorithm.

We denote the resulting algorithm by TSNS-A. Pseudo-code for TSNS-A is shown
in Figure 8.12. With the exception of the logic dedicated to escaping traps and the

151

N5 move operator, the algorithm is identical to TSTaillard. The function D returns the
disjunctive graph distance between the two input solutions; the notation s−TCI indicates
the solution TCI iterations prior. The variable vte indicates that search should verify
escape from a trap after TCI additional iterations, while the variable gte indicates whether
a random walk should be performed in the current iteration. The function walk(s, x)
performs a random walk of length x from solution s, using the N1 move operator.

Jain et al. [JRM00] also investigate the performance of a variant of TSAB without
re-intensification, which continues to search until 2,500 iterations have passed without
an improvement in the best-so-far solution. Their algorithm does not check for cycles
and maintains a fixed tabu tenure. Consequently, although Jain et al. fail to address the
issue, search is likely to exhibit cyclic behavior due to either the fixed tabu tenure or the
presence of traps.

8.6.4 Comparative Methodology

In all trials involving I-JARN5, we let OCI = 20, OWLnom = 5, and OWLinc = 1.
The parameter settings related to trap detection and escape mechanisms are as follows:
TCI = 50, Mthrs = 10, MWLnom = 5, and MWLinc = 1. Variants of I-JARN5 with
k = 1 and k = 2 are analyzed. Empirically, performance is largely insensitive to the
choice of MWLnom and MWLinc. In contrast, performance is impacted by the ratio of
TCI to Mthrs; the selected values were arrived at via testing on Taillard’s benchmark
instances.

When executing TSN5, we let TCI = 50, Mthrs = 10, MWLnom = 5, and
MWLinc = 1. These settings enable TSNS-A to consistently escape traps, as evidenced by
the resulting performance reported below in Section 8.6.4. To maintain consistency with
Nowicki and Smutnicki’s settings for TSAB (who use a fixed tabu tenure of duration 8,
which was arrived at via extensive experimentation), we let Lmin = 6, Lmax = 10, and
re-sample the tabu tenure from the interval [Lmin, Lmax] every 15 iterations.

We compare the relative performance of I-JARN5 and TSNS-A on Taillard’s [Tai93]
80 random JSP benchmark instances. The instances, which are denoted ta01 through
ta80 and range in size from 15×15 to 100×20, can be partitioned into two categories.
The first category contains instances ta01 through ta50, 10 instances apiece of size
15× 15, 20× 15, 20× 20, 30× 15, and 30× 30. The optimal makespan is only known
for 17 of these 50 instances. Further, even state-of-the-art algorithms have difficulty
consistently locating optimal solutions to these closed instances (e.g., see [NS03]). The
remaining instances, in particular the 20×20 and 30×20 instances, are widely regarded
as the most difficult random JSP benchmarks available. The second category contains
instances ta51 through ta80, 10 instances apiece of size 50× 15, 50× 20, and 100×
20. In sharp contrast to those in the first category, the optimal makespans to all of
these instances are known. Further, with only one exception (ta62), all instances can
be consistently solved to optimality by the more effective JSP algorithms, including
I-JARN5 and TSNS-A.

152

Problem Size
15 × 15 20 × 15 20 × 20 30 × 15 30 × 20 50 × 15 50 × 20 100 × 20

I-JARN5(k = 1) 1.48 1.42 1.38 1.62 1.61 1.32 1.47 1.51

TSNS-A 3.67 3.2 3.11 2.95 2.98 2.78 2.26 2.38

Table 8.3: CPU cost-per-iteration multipliers between the baseline I-JARN5(k = 2) and
both I-JARN5(k = 1) and TSNS-A for Taillard’s random JSP benchmark instances.

As is the case for state-of-the-art algorithms, nearly all of the instances in the first
category elude consistent solution by both I-JARN5 and TSNS-A. Consequently, because
there exists sufficient “headroom” to demonstrate the superiority of one algorithm over
the other, we compare performance on these instances by analyzing the makespan statis-
tics (minimum and mean) of the best solution encountered over 10 independent fixed-
duration runs. In contrast, due to their relative simplicity, we compare performance on
instances in the second category based on the mean number of iterations required to
locate an optimal solution; statistics are also taken over 10 runs. For the exceptional
ta62 instance, we revert to analyzing makespan statistics.

Extensive run-time profiling of I-JARN5 (under either k = 1 or k = 2) and TSNS-A
indicates that approximately 99% of the run-time is devoted to computing the makespan
of neighboring solutions (as described in Section 3.5.2). Consequently, by limiting trials
of each algorithm to a fixed CPU time or an CPU-equivalent number of iterations, a rel-
atively fair comparison can be achieved. Most algorithmic or implementation enhance-
ments to the routines for computing neighboring solution makespans, such as those
described in [NS02] or [NS03], benefit all local search algorithms for the JSP, albeit not
necessarily to the same extent. Of course, it is always possible to perform algorithm-
specific “tweaks”, such that it is very difficult to demonstrate the inherent superiority of
one meta-heuristic over another. To minimize such criticism, we use straightforward im-
plementations of the meta-heuristic and move operator components of both algorithms.
In particular, we resist the temptation to perform enhancements to I-JARN5, placing it
at a disadvantage; as indicated in Section 8.3.3, caching can be used to improve perfor-
mance – significantly more so than in tabu search.

All trials and supporting experiments are executed on 1.5 GHz Pentium IV hardware
with 512 Mb of memory, running the Linux 2.4.18-5 operating system; all code was
compiled using gcc 3.2 with level 3 optimization. Our baseline algorithm is I-JARN5
with k = 2, which we run for 10 million iterations. Via extensive empirical tests on
Taillard’s instances, we have computed estimates of the cost-per-iteration multiplier for
both I-JARN5(k = 1) and TSNS-A relative to I-JARN5(k = 2). The multipliers, shown
in Table 8.3, are used to determine the number of iterations allocated to each trial of
I-JARN5(k = 1) and TSNS-A. For example, the results in Table 8.3 indicate that for
Taillard’s 20 × 20 instances, 3.11 iterations TSNS-A can be completed, on average, in
the time it takes to complete a single iteration of I-JARN5(k = 2). To yield accurate
comparison, 31.1 million iterations of each trial of TSNS-A are performed for the 20×20
instances. Although we have not analyzed the underlying cause for multiplier variabil-

153

ity on different-sized problem instances in any detail, the results are consistent with
intuition. Considering I-JARN5, the ascent phase is necessarily cheaper under k = 1
than k = 2. Similarly, I-JARN5 is performing significantly more work per iteration (on
average several moves are accepted) than TSNS-A.

By using multipliers we are trying to allocate equivalent amounts of CPU time to
each trial. By indirectly achieving time-limited trials, the goal is to enable replicability,
as the number of iterations is a platform and implementation-independent measure. With
the exception of [NS02] and [NS03], the number of trials (and equivalently, the CPU
time) is large relative to experimental results previously reported in the literature. In
part, this is possible due to advances in computing power. However, we allocate a
large number of iterations primarily in order to assess the long-run potential of each
algorithm. Finally, we note that our implementations are not nearly as efficient as those
reported by Nowicki and Smutnicki. For example, using the data reported by Nowicki
and Smutnicki [NS02] [NS03], their i−TSAB algorithm executes 31.1 million iterations
on Taillard’s 20 × 20 instances in roughly 787 seconds on a 900MHz Pentium III. In
contrast, our implementation of TSNS-A (which uses the same move operator as i −
TSAB) requires roughly 9,134 seconds on a 1.5GHz Pentium IV. The differences are
due to a number of implementation and algorithmic enhancements in the computation
of neighboring solution makespans. Our primary goal is analysis, and not to develop
high-performance implementations of local search algorithms for the JSP. That said, the
same enhancements can also be used to significantly improve the performance of our
algorithms.

8.6.5 Quantifying the Scalability of I-JAR

We first consider the results for Taillard’s 15 × 15 and 20 × 15 instances, shown in Ta-
ble 8.4. The optimal makespan is known for all of the 15 × 15 instances, but for only
two of the 20 × 15 instances. Collectively, these are the easiest of Taillard’s benchmark
instances. However, as previously noted, even state-of-the-art algorithms fail to consis-
tently locate optimal or best-known solutions to these instances. We first compare the
results of I-JARN5 under k = 1 and k = 2. In absolute terms, the k = 1 variant provides
better mean solution quality, although performance is statistically indistinguishable un-
der either paired two-sample t-tests or non-parametric Wilcoxon signed-rank tests. Fur-
ther, no one variant consistently yields the overall best solution found in their respec-
tive 10 trials. Similarly, mirroring the results presented Section 8.3.3, the performance
of either variant was indistinguishable from that of TSNS-A, although I-JARN5(k = 1)
obtained lower absolute mean solution quality. All three algorithms locate optimal so-
lutions to at least six of the ten 15 × 15 instances, and solutions within 20 time units of
the best-known upper bound for the 20 × 15 instances.

Next, we analyze the results for Taillard’s 20 × 20, 30 × 15, and 30 × 20 instances,
shown in Table 8.5. These instances are among the most difficult random JSP bench-
marks in existence. For example, few algorithms can consistently locate solutions within

154

I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A
Instance Opt. Min. Mean Max. Min. Mean Max. Min. Mean Max.
ta01 1231 1231 1238.2 1242 1231 1237.1 1243 1231 1231 1231
ta02 1244 1244 1244 1244 1244 1244.1 1245 1244 1244.4 1246
ta03 1218 1219 1220.8 1222 1219 1221 1222 1219 1221.8 1223
ta04 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175
ta05 1224 1229 1230.9 1233 1233 1233 1233 1228 1229.8 1232
ta06 1238 1238 1238.8 1240 1238 1241.7 1244 1238 1240.7 1244
ta07 1227 1228 1228 1228 1228 1228 1228 1228 1228 1228
ta08 1217 1217 1217 1217 1217 1217.3 1219 1217 1217 1217
ta09 1274 1281 1282.2 1283 1281 1282.6 1286 1279 1281.8 1283
ta10 1241 1241 1242.9 1244 1241 1243.4 1244 1241 1244.3 1247

I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A
Instance Bounds/ Min. Mean Max. Min. Mean Max. Min. Mean Max.

Opt.
ta11 1323-1361 1373 1377.5 1380 1375 1378 1383 1368 1374.4 1379
ta12 1351-1367 1377 1379.1 1382 1377 1380.6 1383 1377 1377.1 1378
ta13 1282-1342 1352 1354.7 1356 1355 1356 1357 1350 1355.4 1359
ta14 1345 1345 1345 1345 1345 1345.1 1346 1345 1345 1345
ta15 1304-1340 1346 1355.2 1361 1356 1359.7 1361 1353 1356 1358
ta16 1302-1360 1362 1367.1 1370 1368 1371.6 1375 1368 1371.4 1376
ta17 1462 1474 1476.2 1479 1473 1477.4 1481 1469 1475 1479
ta18 1369-1396 1409 1411.9 1415 1413 1416.4 1422 1414 1416.4 1420
ta19 1297-1335 1341 1344.9 1348 1346 1348.7 1352 1343 1346.5 1351
ta20 1318-1351 1358 1361.8 1366 1361 1365.2 1369 1357 1361.8 1364

Table 8.4: Statistics for the makespans of the best solutions obtained by I-JARN5 and
TSNS-A to Taillard’s small (15×15 – upper portion, 20×15 – lower portion) benchmark
instances. Statistics are taken over 10 independent trials. The second column indi-
cates either the optimal makespan, or lower and upper bounds on the optimal makespan.
Bold-faced entries in the ’Min’ columns indicate equality with the optimal makespan.
Italicized entries in the ’Min’ columns indicate the best makespan achieved by any al-
gorithm. Bold-faced entries in a ’Mean’ column indicates the mean makespan was less
than or equal to that of any competing algorithm.

155

I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A
Instance Bounds Min. Mean Max. Min. Mean Max. Min. Mean Max.
ta21 1539-1644 1658 1661.1 1664 1654 1663.7 1668 1648 1654.6 1658
ta22 1511-1600 1602 1612.1 1619 1613 1617.7 1621 1613 1620.3 1624
ta23 1472-1557 1558 1568.9 1575 1568 1574.9 1579 1563 1565.9 1568
ta24 1602-1647 1654 1654.2 1656 1654 1655.6 1659 1654 1656.2 1659
ta25 1504-1595 1599 1603.6 1609 1603 1608 1613 1599 1601.2 1611
ta26 1539-1645 1655 1661.6 1666 1659 1662.6 1668 1655 1661 1664
ta27 1616-1680 1697 1703 1709 1697 1706.1 1710 1691 1694.8 1698
ta28 1591-1614 1617 1620.6 1625 1620 1625.2 1630 1618 1621.4 1623
ta29 1514-1625 1629 1631.1 1634 1629 1633.2 1637 1628 1629.2 1632
ta30 1473-1584 1592 1600.8 1607 1593 1604.3 1610 1590 1591.7 1596

I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A
Instance Bounds / Min. Mean Max. Min. Mean Max. Min. Mean Max.

Opt.
ta31 1764 1764 1764 1764 1764 1765.3 1766 1764 1764.3 1766
ta32 1774-1796 1811 1819.7 1825 1821 1827 1830 1811 1816.8 1824
ta33 1778-1793 1809 1812.5 1817 1816 1818.9 1822 1806 1811.6 1814
ta34 1828-1829 1833 1834.1 1836 1835 1835.9 1837 1833 1833.7 1834
ta35 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007
ta36 1819 1819 1822 1825 1821 1825 1828 1819 1819.6 1823
ta37 1771-1778 1793 1794.2 1796 1795 1797.1 1800 1793 1794.6 1796
ta38 1673 1683 1684.9 1687 1684 1690.3 1693 1675 1681.5 1684
ta39 1795 1797 1798.7 1802 1797 1799.3 1801 1795 1797.7 1799
ta40 1631-1674 1695 1696.2 1698 1698 1701.5 1704 1691 1692.5 1697

I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A
Instance Bounds Min. Mean Max. Min. Mean Max. Min. Mean Max.
ta41 1859-2018 2042 2045.5 2050 2047 2052.9 2057 2034 2039.1 2044
ta42 1867-1956 1974 1976 1979 1974 1980.8 1989 1966 1968.6 1972
ta43 1809-1859 1889 1890.3 1896 1889 1895.5 1899 1876 1882 1889
ta44 1927-1984 2006 2009.2 2011 2009 2013.5 2016 2002 2005.7 2009
ta45 1997-2000 2007 2012.4 2014 2009 2014.6 2016 2005 2009.4 2013
ta46 1940-2021 2035 2038.9 2044 2038 2045.7 2050 2035 2039.3 2042
ta47 1789-1903 1925 1931.3 1937 1933 1942.4 1950 1926 1929.6 1936
ta48 1912-1952 1975 1980.2 1982 1983 1986.6 1992 1968 1971.9 1975
ta49 1915-1968 1991 1992.8 1996 1994 2001.1 2005 1980 1985.1 1989
ta50 1807-1926 1941 1943.9 1950 1948 1953.2 1956 1940 1945.6 1951

Table 8.5: Statistics for the makespans of the best solutions obtained by I-JARN5 and
TSNS-A to Taillard’s medium-sized (20 × 20 – upper portion, 30 × 15 – middle por-
tion, and 30 × 20 – lower portion) benchmark instances. Statistics are taken over 10
independent trials. The second column indicates either the optimal makespan, or lower
and upper bounds on the optimal makespan. Bold-faced entries in the ’Min’ columns
indicate equality with the optimal makespan. Italicized entries in the ’Min’ columns
indicate the best makespan achieved by any algorithm. Bold-faced entries in a ’Mean’
column indicates the mean makespan was less than or equal to that of any competing
algorithm. 156

Instance I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A I-JARN5(k = 1) TSNS-A
Mean Evals Mean Evals Mean Evals Multiplier Multiplier

ta51 15002 5498 38070 2.73 6.92
ta52 16552 6090 15061 2.72 2.47
ta53 9919 3659 9538 2.71 2.61
ta54 83702 5593 155321 14.97 27.77
ta55 26502 11570 37611 2.29 3.25
ta56 19678 8494 29906 2.32 3.52
ta57 7840 3545 10461 2.21 2.95
ta58 10576 3280 8456 3.22 2.58
ta59 26050 9415 28486 2.77 3.03
ta60 12925 5623 11948 2.36 2.12
Instance I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A I-JARN5(k = 1) TSNS-A

Mean Evals Mean Evals Mean Evals Multiplier Multiplier
ta61 153302 47946 102127 3.20 2.13
ta62 N/A N/A N/A N/A N/A
ta63 29135 14633 39235 1.99 2.68
ta64 114027 23131 185517 4.93 8.02
ta65 92800 34188 135599 2.71 3.97
ta66 48036 20179 96025 2.38 4.76
ta67 180378 133451 409617 1.35 3.07
ta68 30742 13637 46043 2.25 3.38
ta69 13911 7080 23093 1.96 3.26
ta70 185266 105528 321459 1.76 3.05

Instance I-JARN5(k = 1) I-JARN5(k = 2) TSNS-A I-JARN5(k = 1) TSNS-A
Mean Evals Mean Evals Mean Evals Multiplier Multiplier

ta71 17030 6799 20871 2.50 3.07
ta72 10184 4348 23421 2.34 5.39
ta73 33060 8181 64574 4.04 7.90
ta74 14761 4197 9539 3.52 2.27
ta75 22400 8743 27376 2.56 3.13
ta76 11314 4691 12836 2.41 2.74
ta77 5546 2181 7888 2.54 3.62
ta78 11007 4608 11768 2.39 2.55
ta79 11817 3554 15908 3.32 4.48
ta80 18408 7827 25133 2.35 3.21

Table 8.6: Statistics for the mean number of evaluations required by I-JARN5 and TSNS-A
to locate optimal solutions to Taillard’s large benchmark instances. Statistics are taken
over 10 independent trials. The baseline algorithm is I-JARN5 with k = 2. The final two
columns respectively indicate the ratio of the mean number of evaluations required by
the respective algorithm to the mean number of evaluations required by I-JARN5(k =
2). Bold-faced entries indicate the ratio is lower than the corresponding CPU time-
per-iteration ratio (as shown in Table 8.3), i.e., the respective algorithm outperforms
I-JARN5(k = 2) on that particular instance.

157

40 time units of the best-known makespans to the 30×20 instances; Nowicki and Smut-
nicki’s i − TSAB algorithm is one exception [NS03]. The optimal makespan is known
for only 5 of the 30 × 15 instances. As with Taillard’s smaller instances, we observed
no statistically significant difference in the mean solution quality obtained by the k = 1
and k = 2 variants of I-JARN5. However, in no case does the k = 2 variant yield
lower mean solution quality than the k = 1 variant, or a lower minimum solution qual-
ity. This result is consistent with the observed decreases in attractor basin strength as
problem size is increased. Similarly, the difference in mean solution quality obtained
under I-JARN5(k = 1) and TSNS-A is statistically insignificant. However, the results for
the 30 × 20 instances provide some (although by no means conclusive) evidence that
TSNS-A outperforms I-JARN5(k = 1) by a slim margin: for all but one of the instances
(ta50), TSNS-A locates the best solution obtained by any of the three algorithms. Dis-
counting the 30 × 15 instances for which the optimal makespan is known, none of the
three algorithms locates a solution with a makespan equivalent to the best-known upper
bound.

We now examine the results for Taillard’s large rectangular 50 × 15, 50 × 20,and
100×20 instances, shown in Table 8.6. For all but one of the instances (ta62), all three
algorithms consistently located the optimal solution within the allocated number of it-
erations. This result is consistent with the observation that random JSPs become easier
as m/n approaches ∞. Despite its relative underperformance on Taillard’s smaller in-
stances, the k = 2 variant of I-JARN5 typically requires statistically fewer evaluations
to locate optimal solutions than the k = 1 variant, as confirmed by a paired-sample
Wilcoxon test. Further, the ratio of k = 1 to k = 2 evaluations exceeds the correspond-
ing CPU cost-per-iteration (shown in Table 8.3) in all but one case. We would expect
the converse to hold, given that (1) the k = 1 variant either outperforms or equals the
k = 2 variant on Taillard’s smaller benchmarks and (2) attractor basin strength decays
with increases in problem size. We currently have no explanation for this apparent con-
tradiction. The k = 2 variant of I-JARN5 always requires statistically fewer iterations
than TSNS-A. When adjusting for the cost-per-iteration multiplier, I-JARN5 outperforms
TSNS-A in an absolute sense on 24 of the 30 instances.

The results presented in Tables 8.4 through 8.6 clearly indicate that the relative per-
formance of I-JAR with respect to tabu search scales with increases in problem size.
The surprisingly competitive performance of I-JARN5 under k = 1 also reinforces the
hypothesis that for moderate to large random JSPs, a single dis-improving move is suf-
ficient to escape the attractor basins of most local optima. Strong performance also
provides evidence for the success of the walk mechanisms for escaping both very strong
local optima (see Section 8.3) and traps in the fitness landscape (see Section 8.6.2), i.e.,
there is no evidence that search in I-JARN5 ever becomes trapped in a restricted region
of the fitness landscape.

Finally, we compare the aggregate performance of both I-JARN5 and TSNS-A with
that of other local search algorithms for the JSP. To do so, we compare the mean relative
error MRE on sets of Taillard’s instances of equal size (e.g., ta01-ta10). Let s denote

158

Group I-JARb

N5 I-JARm

N5 TSb

NS-A TSm

NS-A i − TSAB i − TSAB PEZ BAL BALb

(20M) (50M)
ta01-10 0.11 0.22 0.08 0.26 0.11 0.11 0.45 0.25 0.16
ta11-20 2.92 3.20 3.13 3.40 2.81 2.81 3.47 3.34 2.81
ta21-30 6.03 6.27 5.93 6.27 5.69 5.68 6.52 6.57 6.10
ta31-40 1.02 1.28 1.04 1.28 0.85 0.78 1.92 1.13 0.80
ta41-50 5.18 5.37 4.97 5.24 4.97 4.7 6.04 5.71 5.20

Table 8.7: Mean relative error (MRE) of various algorithms on Taillard’s difficult bench-
mark instances. See text for details.

a solution obtained by an algorithm on a given problem instance. Define the relative
error RE of s as

Cmax(s)−C∗

max
C∗

max
, where C∗

max is the optimal makespan of the problem
instance or the largest known lower bound. The MRE is simply the average RE taken
over a set of 10 problem instances.

Based on a comparative analysis of published performance results, Nowicki and
Smutnicki (2003)[NS03] indicate that the best available approximation algorithms for
the JSP are as follows: (1) i − TSAB, (2) a tabu search algorithm based on the shifting
bottleneck heuristic [PM00], which they denote PEZ, and (3) a guided local search
algorithm based on the shifting bottleneck heuristic [BV98], which they denote BAL.
Ignoring CPU time, these algorithms yield lower MREs on Taillard’s benchmark suite
than all competitors.

The MRE for the 5 sets of Taillard’s difficult benchmark instances are shown in
Table 8.7. The columns labeled I-JARb

N5 and I-JARm
N5 respectively report the MRE for

the best and mean solution quality obtained over 10 trials; analogous notations are used
for TSNS-A. The columns labeled i−TSAB(20M) and i−TSAB(50M) contain results for
single runs of i−TSAB limited to 20 and 50 million iterations, respectively, as reported in
[NS03]. The PEZ and BAL results are from a single trial of each algorithm (taken from
[PM00] and [NS03], respectively), while the BALb results are the best solution obtained
by numerous trials over a variety of parameter settings (also taken from [NS03]. Twenty
million iterations of i − TSAB is sufficient to beat all known competitors; 50 million
iterations yields even stronger relative performance.

Both I-JARN5 and TSNS-A yield solutions that are competitive with those generated
by BAL, and better than those generated by PEZ. This is surprising, given the fact that
both BAL and PEZ use significant amounts of problem-specific knowledge, above and
beyond that embodied in the N5 operator. Further, due in part to the extensive use
of problem-specific knowledge, the complexity of both BAL and PEZ is significantly
higher than that of I-JARN5 and TSNS-A. Analogous results hold when we consider the
best solutions obtained over numerous independent trials, e.g., compare the columns
labeled I-JARb

N5, TSb
NS-A, and BALb.

159

Chapter 9

Metropolis Sampling and Simulated
Annealing

Tabu search and iterated local search are both predated by simulated annealing, a local
search meta-heuristic independently introduced by Kirkpatrick et al. in 1983 [KGV83]
and Cěrny in 1985 [C8̌5]. Soon after its introduction, researchers proved that under cer-
tain theoretical (albeit practically unattainable) conditions, simulated annealing would
converge to a globally optimal solution. The existence of a convergence proof led to sig-
nificant interest in simulated annealing, which was applied to a wide range of NP -hard
problems between 1985 and the early 1990s. The general conclusion of this research
was that simulated annealing could indeed locate high-quality and even optimal solu-
tions, but at the expense of very large run-times – which are required to approximate the
theoretical conditions for convergence. The introduction of faster, more effective meta-
heuristics in the late 1980s (tabu search and genetic algorithms in particular), caused
a significant decline in the level of research devoted to simulated annealing, such that
new publications involving the application or analysis of simulated annealing are now
relatively rare.

Although generally regarded as ineffective relative to more recent meta-heuristics,
the reasons for the inferior performance are less clear. Further complicating the situation
is the fact that simulated annealing is closely related to more modern meta-heuristics –
often to the point that one would not expect significant differences in performance. For
example, I-JAR is equivalent to a certain parameterization of simulated annealing, and
the former is capable of locating high-quality solutions to difficult problems.

This chapter is largely devoted to identifying and understanding some of the causal
factors contributing to the inferior performance of simulated annealing algorithms for
the JSP. We begin in Section 9.1 with a general overview of simulated annealing, and
survey prior research specific to the JSP in Section 9.2. The algorithms and methodolo-
gies used in our analysis are discussed in Section 9.3. In Sections 9.4 and 9.5, we investi-
gate the impact of local optima on the behavior of simulated annealing. One unexplored
question related to simulated annealing is whether fixed-temperature Metropolis sam-

160

pling can achieve competitive performance with simulated annealing. Experimental re-
sults presented in Section 9.6 indicate that in fact annealing is not necessary; Metropolis
sampling alone can yield performance that is competitive with both I-JAR and TSTaillard.
A causal explanation for the success of Metropolis sampling is introduced in Section 9.4.
A dynamic cost model of Metropolis sampling is developed in Section 9.7, which in-
dicates that the underlying search dynamics are not significantly different from either
I-JAR or TSTaillard. The dynamic cost model can account for some of the full run-length
distribution, as analyzed in Section 9.8. We conclude in Section 9.6 with an analysis of
the scalability of Metropolis sampling to the most difficult random JSPs, solved using a
variant based on the N5 move operator.

9.1 An Overview of Metropolis Sampling and Simulated
Annealing

In iterated local search, and to a slightly lesser extent tabu search, the descent and escape
phases are distinct: greedy descent guides search toward local optima, while an escape
mechanism enables search to accept short sequences of dis-improving moves. However,
such a clean separation is not characteristic of all meta-heuristics for local search. In
the Markov-Chain Monte-Carlo (MCMC) meta-heuristic, dis-improving moves can be
accepted at any point in search, such that there are no identifiable descent or escape
phases. MCMC is also known as the Metropolis algorithm [MRR+53], which was orig-
inally introduced to simulate complex systems in statistical mechanics (a specialized
field of physics). The terms MCMC, Metropolis algorithm, and Metropolis sampling
are used interchangeably. MCMC is a variant of next-descent search in which a neigh-
bor s′ ∈ N (s) of the current solution s is accepted with probability

1 if F (s′) − F (s) ≤ 0
e−(F (s′)−F (s))/T if F (s′) − F (s) > 0

(9.1)

where T is a user-specified parameter known as the temperature. At each iteration of
MCMC, a neighbor s′ ∈ N (s) of the current solution s is selected at random, and
Equation 9.1 is applied to determine whether s′ is accepted as the current solution in the
next iteration. When T = 0, MCMC is identical to next-descent; when T = ∞, MCMC
is identical to a random walk. At intermediate temperatures, the probability of accepting
dis-improving neighbors is inversely proportional to T .

One drawback to MCMC is that performance is clearly sensitive to the specific value
of T . If T is sufficiently large, MCMC may fail to descend deep enough into attractor
basins to detect the associated local optima. Similarly, low values of T can prevent
MCMC from escaping attractor basins with any significant non-zero probability. The
simulated annealing meta-heuristic [KGV83] [C8̌5] corrects this deficiency. Simulated
annealing can be viewed as an iterative series of MCMC searches, each performed at
a different temperature. In MCMC, the probability of escaping an attractor basin is

161

function Simulated Annealing
s = sinit

sbest = sinit

T=initTemp()
repeat

numIters=itersAtTemp(T)
(siterbest, s)=MCMC(s,T ,numIters)
if F (siterbest) < F (sbest) then

sbest = siterbest

T=nextTemp(T)
until T < finalTemp()
return sbest

Figure 9.1: Pseudo-code for the simulated annealing meta-heuristic. See text for details.

inversely proportional to T , and as T → 0, the escape probability approaches 0. In
simulated annealing, T is initially set very high, such that there is little bias toward
improving solutions. As time progresses, the temperature is gradually lowered toward
0, eventually driving search toward local, and ideally global, optima. The intent of the
initial exploration is to identify regions of the search space with high-quality solutions.
Subsequent lower-temperature exploration then searches this region for good local, and
ideally global, optima.

Pseudo-code for the simulated annealing meta-heuristic is shown in Figure 9.1.
Simulated annealing operates using a single move operator N and proceeds via itera-
tive modifications to some initial solution sinit. The current solution is denoted by s.
Together, the functions initTemp, nextTemp, and finalTemp define the cooling sched-
ule, i.e., the sequence of temperatures through which search progresses. The function
MCMC executes Metropolis sampling from the input solution at the specified tempera-
ture for a given number of iterations, returning both the best solution encountered and
the terminating solution. The function itersAtTemp specifies how long MCMC is to be
executed at each temperature. As with the meta-heuristics considered in previous chap-
ters, simulated annealing tracks and returns the best solution located during search, i.e.,
any invocation of MCMC.

In practice, simulated annealing generally proceeds from random initial solutions,
although heuristically constructed solutions do appear to improve performance in some
circumstances, e.g., see [JAMS89]. Details of the cooling schedules can vary signifi-
cantly between implementations, although simple geometric cooling schedules are most
prevalent. In a geometric schedule, T is initialized to a relatively high value and is de-
creased by a constant factor until the value falls below some threshold Tfinal. Cooling
schedules typically define a monotonically non-increasing sequence of temperatures, al-

162

though adaptive cooling schedules have been analyzed by a number of researchers, e.g.,
see [YRN94]. The number of iterations of MCMC executed at each temperature is gen-
erally defined as a multiple of the maximal neighborhood size |N |; however, prior to the
1990s, the number of iterations executed at each temperature was frequently variable.

Simulated annealing is widely regarded as the first significant meta-heuristic for lo-
cal search; prior to its introduction in 1983, the dominant meta-heuristic was iterated
descent. Subsequently, researchers introduced implementations of simulated annealing
for numerous well-known NP -hard optimization problems. Interest in simulated an-
nealing was largely due to the following result: under certain theoretical conditions,
simulated annealing is guaranteed to converge to a global optimum from an arbitrary
initial solution [AK89] [vLA88]. The conditions for convergence, which include an
infinitely slow cooling schedule and an infinite number of iterations at each tempera-
ture, are unattainable in practice. With large enough run-times, such that the theoretical
conditions for convergence are approximated, simulated annealing is able to produce
high-quality solutions to a number of difficult problems. However, other meta-heuristics
such as tabu search and iterated local search generally produce equally good solutions
with substantially shorter run-times. For further details regarding the empirical behavior
of simulated annealing on a number of well-known NP -hard problems, we defer to a
series of excellent landmark studies performed by Johnson et al. [JAMS89, JAMS91].
Overviews of the theoretical foundations of simulated annealing are provided by Aarts
and Korst [AK89], van Laarhoven and Aarts [vLA88], and Salamon et al. [SSF02].

9.2 Simulated Annealing and the JSP

Although it is the last meta-heuristic analyzed in this thesis1, algorithms based on sim-
ulated annealing represent the first successful application of local search to the JSP. van
Laarhoven et al. introduced the first simulated annealing algorithm for the JSP in 1988
[vLAL88], later refined in [vLAL92]; an algorithm based on a variant of simulated an-
nealing called controlled-temperature simulated annealing, in which all dis-improving
moves are accepted with equal probability, was introduced in 1988 by Matsuo et al.
[MSS88]. van Laarhoven et al’s algorithm is based on the N1 move operator, and
executes MCMC for |N1 | iterations at each temperature, where |N1 | is the maximal
neighborhood size under the N1 operator. The initial temperature is determined via a
reverse annealing procedure: starting from a small non-zero positive initial value, the
temperature is increased until the ratio of accepted-to-generated moves exceeds some
pre-specified threshold (e.g., 0.95). The exact details of the cooling schedule, including

1This decision was based on numerous reports in the literature that the performance of simulated
annealing was inferior to that of tabu search and iterated local search.

163

the rules for decrement and termination, are documented in [AvL85].
In the context of local search and the JSP, van Laarhoven et al’s algorithm is note-

worthy for several reasons. First, the algorithm represents the first use of the N1 op-
erator in conjunction with local search algorithms for the JSP. Consequently, the 1992
article documenting both the algorithm and the N1 operator [vLAL92] is among the
most widely cited in the JSP literature. Second, van Laarhoven et al. demonstrated that
their algorithm could outperform iterated greedy descent (given equivalent CPU times),
which indicated that more complex meta-heuristics could yield effective local search
algorithms for the JS. This result is non-trivial, as simulated annealing does not always
outperform simple iterated greedy descent, e.g., see [JAMS91]. Third, van Laarhoven et
al’s empirical results indicate that simulated annealing can be at least as effective as more
tailored heuristics for the JSP (specifically the shifting bottleneck procedure [ABZ88]
and Matsuo et al’s [MSS88] controlled-search simulated annealing algorithm). How-
ever, the increased effectiveness does come at the expense of larger run-times, which
van Laarhoven et al. justify as follows: “We consider the disadvantage of large running
times to be compensated for by the simplicity of the algorithm, by its ease of implemen-
tation, by the fact that it requires no deep insight into the combinatorial structure of the
problem, and, of course, by the high quality of the solutions it returns” ([vLAL92], p.
124).

Since the introduction of van Laarhoven et al’s algorithm, a number of researchers
have introduced implementations of simulated annealing for the JSP. The most note-
worthy algorithms are described below; see the survey of Jain and Meeran [JM99] for
a more comprehensive survey. Yamada et al. [YRN94] describe a simulated anneal-
ing algorithm based on a powerful critical-block-based move operator. Borrowing from
Nowicki and Smutnicki’s [NS96] TSAB tabu search algorithm for the JSP, Yamada et
al. also reintensify search when one of the following two conditions is met: (1) the ratio
of uphill-to-generated moves over the last X iterations falls below some threshold, indi-
cating that search is trapped in a local optimum, or (2) Y iterations have passed without
locating a solution that improves upon the best-so-far makespan. When either condition
is satisfied, search is re-initiated from the best-so-far solution. Yamada et al. provide
empirical evidence that their algorithm outperforms van Laarhoven et al’s original algo-
rithm.

Yamada and Nakano [YN95] later extended Yamada et al’s simulated annealing al-
gorithm by introducing a new critical path move operator that hybridized the N1 oper-
ator with the shifting bottleneck procedure. Additionally, once a move to each neigh-
bor has been attempted (but not accepted), their algorithm accepts a single move with
a probability proportional to the corresponding weight under the Metropolis criterion
(i.e., Equation 9.1). This enhancement, similar to a mechanism found in rejectionless
Markov-Chain Monte-Carlo algorithms [LB00], reduces the chance that search will be-
come trapped in a local optimum for extended periods of time. Most recently, Kolonko
[Kol99] proved that because the N1 move operator is asymmetric, van Laarhoven et al’s
algorithm in fact is not guaranteed to converge to a global optimum under theoretical

164

(let alone practical) conditions; this detail was overlooked in van Laarhoven et al’s orig-
inal analysis. Additionally, Kolonko introduced a variant of simulated annealing that
periodically increases the temperature in order to escape local optima, and investigated
the performance of the resulting algorithm when used in conjunction with a genetic al-
gorithm. Yamada and Nakano have also developed local search algorithm hybrids that
incorporate simulated annealing, e.g., see [YN95].

Comparative studies of local search algorithms for the JSP support the general con-
clusion that simulated annealing is capable of locating high-quality solutions given suf-
ficiently large run-times [AvLLU94] [VAL96] [BDP96] [JM99]. However, other local
search algorithms, e.g., tabu search, can locate equally good solutions in substantially
smaller run-times. Consequently, simulated annealing is currently not viewed as a com-
petitive approach for the JSP, although there is evidence that hybridized variants [Kol99]
can provide state-of-the-art performance.

9.3 The MCMC Algorithm: Definition and Methodolog-
ical Issues

The analysis presented below in Sections 9.4 through 9.9 is largely based on the core
Metropolis algorithm that forms the foundation of simulated annealing. The motivation
for such an indirect analysis of simulated annealing is two-fold. First, because search
in simulated annealing proceeds via short runs of the Metropolis algorithm over a se-
ries of different temperatures, it should be possible to gain insight into the behavior of
simulated annealing by analyzing the behavior of Metropolis sampling at various tem-
peratures. Second, experimental results described in Section 9.6 indicate that Metropolis
sampling, when executed at a suitable temperature, can outperform simulated annealing.

All experimental results reported in this chapter involve a variant of the basic
Metropolis algorithm, denoted MCMC for Markov-Chain Monte-Carlo. MCMC dif-
fers from the standard Metropolis algorithm in two respects. First, neighbors s′ ∈ N (s)
of the current solution s are visited sequentially in a random order, such that no neighbor
is considered more than once. Experimental results, e.g., see [JAMS89] indicate that a
random, non-repeating visitation sequence can improve the performance of simulated
annealing, and such a scheme has been employed in several local search algorithms
that incorporate Metropolis sampling, e.g., see [RY98]. Second, once all neighbors in
N (s) have been tested (and necessarily rejected) once, MCMC uses a scheme found
in rejectionless Monte-Carlo algorithms to accept a single neighbor s′ ∈ N (s). Let
PM(s′, s, T) denote the probability of the Metropolis algorithm accepting a neighbor
s′ ∈ N (s) from s at temperature T , as given by Equation 9.1. Under the rejectionless
scheme, a neighbor s′ ∈ N of s is accepted with a probability distribution according to:

P (s′|s) =
PM(s′, s, T)

Σx∈N (s)PM(x, s, T)
(9.2)

165

The rejectionless scheme prevents MCMC from repeated test/rejects of the neighbors
of s, which occurs frequently at low T ; further, the accept probabilities are in the limit
identical to those under the basic Metropolis algorithm. Although rejectionless Monte-
Carlo could be used at each iteration, the algorithm also requires computation of the
makespan of each neighbor in N (s), which at all but very low T is generally not required
before a neighbor is accepted.

Pseudo-code for the MCMC meta-heuristic is provided in Figure 9.2. MCMC is
based on the N1 move operator; sinit is assumed to be a random semi-active solution.
Search proceeds via iterative modifications to a single solution; the current solution is
denoted s, while the best-so-far solution is denoted sbest. The number of iterations is
expressed in terms of the number of accepted moves. The function genPermutation(x,y)
returns a permutation of the integers on the interval [x, y]. The function selectRejection-
less applies Equation 9.2 to select a neighbor of the current solution s, while the function
acceptMetropolis uses Equation 9.1 to determine if a particular neighbor s′ ∈ N1 of s
should be accepted. Finally, the generate function is responsible for computing the
makespan of solution corresponding to the input index i; the pseudo-code assumes a
well-defined ordering of the neighbors N1 (s).

As in previous chapters, problem difficulty under MCMC is characterized in terms of
the number of iterations c required to locate an optimal solution. Mirroring RW, TSTaillard,
and I-JAR, search cost under MCMC is approximately exponentially distributed. Con-
sequently, we define search cost as either the mean c or median cQ2 number of iterations
required to locate an optimal solution, depending on the context. Due to the sensitivity
of both measures to extremal values of c, statistics are taken over 1,000 independent
trials. Due to the use of the N1 move operator, MCMC is asymptotically complete for
T > 0.

In all experiments involving MCMC, the temperature T is computed using a reverse-
annealing procedure similar to that described by Yamada et al. [YRN94]. In a given
fixed-length run of Metropolis sampling (not MCMC) at temperature T , let X ∈ [0, 1]
denote the ratio of (1) the total number of moves that are both accepted and yield a neigh-
bor with a makespan strictly worse than the current solution and (2) the total number of
moves that are tested, but not necessarily accepted. In the reverse-annealing procedure,
T is initially set to 1.0, Metropolis sampling is executed for N iterations, and the ratio X
for the sampling period is computed. If X is greater than some user-specified threshold
UAG (Uphill-Accepted to Generated), then the current temperature T is returned. Oth-
erwise, T is inflated by a constant factor α > 1, and the procedure is repeated. In our
experiments, we let N =1,000 and α = 1.1. The notation UAG and the first temperature
T yielding X > UAG are used interchangeably.

166

function MCMC(T , MaxIters)
s = sinit

sbest = sinit

numAccepted = 0
moveAccepted = true

declare numNeighbors

declare nextIndex

declare array neighbors

while numAccepted ≤ MaxIters do
if moveAccepted eq true then

neighbors.clear()
numNeighbors = #N1 (s)
visitSequence = genPermutation(1, numNeighbors)
nextIndex = 1

if nextIndex eq numNeighbors + 1 then
s = selectRejectionless(s, neighbors)
moveAccepted = true

else
neighbors[visitSequence[nextIndex]] = generate(visitSequence[nextIndex])
∆V = F (neighbors[visitSequence[nextIndex]]) − F (s)
if ∆V ≤ 0 then

s = neighbors[visitSequence[nextIndex]]
moveAccepted = true

else if acceptMetropolis(s, T, neighbors[visitSequence[nextIndex]] then
s = neighbors[visitSequence[nextIndex]]
moveAccepted = true

else
moveAccepted = false

nextIndex = nextIndex + 1
if moveAccepted eq true then

numAccepted = numAccepted + 1
if F (s) < F (sbest) then

sbest = s
return sbest

end

Figure 9.2: Pseudo-code for the MCMC meta-heuristic. See text for details.

167

UAG
Instance 0.30 0.25 0.20 0.15 0.10 0.05

T ≈ 130 T ≈ 55 T ≈ 35 T ≈ 22 T ≈ 15 T ≈ 8
la16 5.3/24.5 4.2/19.8 3.1/15.3 1.9/9.9 1.0/5.7 0.4/2.4
la17 5.1/23.6 4.1/18.8 3.1/14.1 2.1/8.5 1.3/4.3 0.6/1.1
la18 5.6/24.1 4.4/19.3 3.3/14.3 2.2/8.7 1.1/3.7 0.3/0.4
la19 5.0/21.9 4.0/17.6 3.0/12.7 2/0/7.5 1.2/3.5 0.4/0.7
la20 5.3/23.2 4.2/18.4 3.0/12.8 2.1/8.2 1.1/3.3 0.1/0.2
abz5 5.0/22.0 4.2/18.1 3.2/13.2 2.2/8.3 1.3/4.2 0.4/0.4
abz6 4.4/20.1 3.5/15.8 2.6/11.1 1.8/6.8 1.0/3.1 0.5/0.1
ft10 7.7/30.8 6.1/25.4 4.5/19.4 3.0/12.2 1.6/6.0 0.4/0.7

Table 9.1: Search depth and mobility statistics for MCMC at various temperatures on
well-known 10× 10 JSP benchmark instances. An X/Y entry in a cell indicates a search
depth of X and a mobility of Y. Statistics are computed for individual trials, each con-
suming 1,000,000 iterations.

9.4 Local Optima and MCMC: A Qualitative Analysis
of Run-Time Behavior

The intent of allowing simulated annealing to periodically accept dis-improving moves
is, at least ostensibly, to escape the attractor basins of local optima. However, it is un-
clear to what extent local optima are even relevant to the run-time dynamics of simulated
annealing. Specifically, due to the weakness of attractor basins in the JSP, at all but the
lowest temperatures the possibility of simulated annealing becoming slowed or trapped
in local optima seems relatively remote.

To investigate the relevance of local optima to the behavior of simulated annealing
on the JSP, we analyze both the depth and mobility of MCMC as a function of search
temperature (expressed as UAG) on a set of 10 × 10 benchmark instances. For each
instance, 1,000,000 iterations of MCMC are executed for temperatures ranging from
UAG = 0.05 to UAG = 0.30 in increments of 0.05. The search depth relative to an
individual solution s is defined as the number of iterations of randomized next-descent
required to transform s into a local optimum. The search depth over a given trial of
MCMC is simply the mean search depth averaged over all solutions (i.e., the search
depth is computed each time a move is accepted). As indicated in Chapter 7, the actual
depth relative to a given solution is stochastic; we ignore this detail because we are
averaging over a very large number of samples. Mobility is defined as the disjunctive
graph distance between two solutions s and s−X encountered X iterations apart. We
sample the mobility every 100 iterations, and compute the mean mobility over the entire
trial.

The search depth and mobility results for the set of available 10 × 10 benchmark
instances are shown in Table 9.1. As a point of reference, the mean depth of random

168

UAG Mean Depth
Size Instance 0.30 0.25 0.20 0.15 0.10 0.05 Rnd. Solutions
15 × 15 ta01 9.3/37.4 7.3/31.1 5.5/24.1 4.0/17.2 2.1/8.3 0.6/1.9 24.4
20 × 15 ta11 13.2/47.8 11.8/44.6 9.4/38.8 6.7/29.6 3.8/19.3 1.2/6.3 30.1
20 × 20 ta21 13.7/47.8 11.6/42.2 9.0/34.7 6.5/25.3 3.6/14.0 1.0/3.4 34.1
30 × 15 ta31 17.3/59.3 15.0/55.4 11.8/49.4 8.8/41.7 5.9/31.3 2.3/13.8 39.3
30 × 20 ta41 18.1/60.2 15.9/55.8 12.7/49.4 9.5/41.2 6.1/29.1 2.5/13.2 46.2
50 × 15 ta51 19.7/65.9 18.3/60.3 15.7/62.5 13.5/57.0 9.3/53.4 4.9/39.9 45.1
50 × 20 ta61 21.3/72.4 18.1/71.5 15.9/64.7 13.3/59.5 8.9/48.5 4.6/31.8 55.5
100 × 10 ta71 23.9/80.4 20.1/73.8 20.4/67.6 15.9/62.0 10.1/55.2 5.3/38.5 71.3

Table 9.2: Search depth and mobility statistics for MCMC at various temperatures on a
subset of Taillard’s benchmark instances. An X/Y entry in a cell indicates a search depth
of X and a mobility of Y. Statistics are computed for individual trials, each consuming
1,000,000 iterations.

semi-active solutions on these same instances is ≈ 13, significantly higher than the
results for MCMC at UAG = 0.30, i.e., even at UAG = 0.30 search is biased, albeit not
strongly, toward local optima. Both the depth and mobility monotonically decrease as
UAG → 0. Recall that the mobility is defined in terms of the distance between the last
100 accepted, as opposed to tested, solutions. Consequently, a drop in mobility indicates
that MCMC is expending more effort re-visiting solutions as the temperature is lowered,
as is consistent with intuition. Given that local optima in 10 × 10 random JSPs can be
escaped with high probability by accepting only two dis-improving moves, the results
suggest that MCMC is highly unlikely to become trapped in local optima at moderate-
to-high temperatures (i.e., UAG = 0.15 through UAG = 0.30). Even at UAG = 0.10,
MCMC is consistently 1 to 1.5 moves away from local optima, indicating that search
is likely to both encounter and escape from local optima. The only evidence of any
significant problem occurs at UAG = 0.05. Here, search is typically no more than 1.5
moves away from a local optimum (the standard deviation of depth for these instances
is ≈ 0.6), and the very low mobility indicates that search is repeatedly re-descending to
local optima after accepting a dis-improving move.

We also extend the analysis reported in Table 9.1 to one instance of each size repre-
sented in Taillard’s benchmark suite. The results are reported in Table 9.2, in addition
to the mean depth of random semi-active solutions for each instance, as estimated from
1,000,000 independent samples. The qualitative trends are identical to those observed
for the 10 × 10 instances; both depth and mobility are inversely proportional to UAG.
Additionally, for a given UAG, both depth and mobility are proportional to problem size.
Given the fact that attractor basin strength is inversely correlated with problem size, this
result suggests that MCMC should be able to escape attractor basins at temperatures
even lower than UAG = 0.05 on Taillard’s larger problem instances.

The ideal value of UAG should enable MCMC to remain deep enough in the search
space to detect local optima, but not too deep as to prevent search from easily escaping
the attractor basins of local optima. At moderate-to-high temperatures, search remains
relatively distant from local optima, such that it is unlikely to descend deep enough

169

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

5

Accept probability (UAG=0.05)

Fr
eq

ue
nc

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

5

Accept probability (UAG=0.10)

Fr
eq

ue
nc

y

Figure 9.3: Distribution of the probability of accepting two monotonically dis-
improving moves under MCMC for 10× 10 random JSPs, for temperatures correspond-
ing to UAG = 0.05 (left figure) and UAG = 0.10 (right figure).

into attractor basins to detect the corresponding local optima. Such search is loosely
analogous to attempting to locate the deepest valley in a terrain while traveling in a
passenger jet at 30,000 feet; fine details simply cannot be ascertained. At very low
temperatures, MCMC quickly detects local optima, but can only escape their attractor
basins with a significant level of effort. The results presented in Tables 9.1 and 9.2 lead
us to hypothesize that MCMC is likely to perform best at moderately low temperatures,
i.e., UAG ≤ 0.10.

9.5 Fitness-Based Escape Probability of Local Optima
in the JSP

Local optima are clearly relevant to the dynamics of MCMC at relatively low tempera-
tures, raising the question: How hard it is to escape local optima using MCMC at low
temperatures? Experimental results described in Chapter 5 indicate that the local op-
tima of random JSPs can be escaped with high probability by first accepting a very short
random sequence X of monotonically dis-improving neighbors, and subsequently initi-
ating greedy descent. Because the escape mechanism in MCMC and its derivatives (i.e.,
simulated annealing) are fitness-based, these results are not immediately applicable in
the context of MCMC. Consequently, it is necessary to extend the escapability analysis
presented in Chapter 5 to additionally account for the change in fitness involved at each
step in the sequence X .

Given a local optimum s, let X = {x0, x1, ..., xm} denote a particular random se-
quence of at most k monotonically dis-improving moves from a local optimum x0, such
that m ≤ k. The probability P (X, T) of accepting the sequence X under MCMC at a
fixed temperature T is given by P (X, T) =

∏m
i=1 e−(F (xi)−F (xi−1))/T . Let Pacpt(x0, k, T)

denote the probability of MCMC accepting an arbitrary random sequence of at most k

170

monotonically dis-improving neighbors of x0 at a fixed temperature T . Pacpt(s, k, T)
is straightforwardly estimated by sampling Y random sequences, and computing the
mean P (X, T) of the resulting sequences; in what follows Y = 100. Note that in the
computation of Pescp (defined in Section 5.2.4), it is assumed that Pacpt(x0, k, T) = 1,
independent of T . Consequently, Pescp represents an upper bound on the probability of
escaping a local optimum under MCMC; in contrast to I-JAR, the dependence of the
escape mechanism on fitness can only reduce the escape probability.

The distribution of the estimated Pacpt(x0, k, T) for 10,000 random local optima for
each of our 100 10 × 10 random JSPs is shown in Figure 9.3; k is fixed at 2, with T
corresponding to UAG = 0.05 (left figure) and UAG = 0.10 (right figure). In either case,
the probability of actually accepting one or two dis-improving neighbors – which is typ-
ically required to escape local optima – is surprisingly low, most often below 0.1. Thus,
we conjecture that the fitness-based escape mechanism employed by MCMC actually
causes, by reducing search mobility, poor performance at very low temperatures.

9.6 Is Annealing Necessary to Achieve Competitive Per-
formance?

For both the JSP and other NP -hard problems, very low and very high temperature
search is present in most implementations of simulated annealing. Yet, intuition sug-
gests that such search is likely to be ineffective: at very high temperatures, simulated
annealing is equivalent to a random walk, while at very low temperatures the probability
of escaping local optima is likely to be negligible. Several researchers have confirmed
this intuition through detailed experimentation. For example, in their analysis of sim-
ulated annealing for the graph partitioning problem, Johnson et al. ([JAMS89], p. 882)
conclude that “Although much of the time spent by annealing at very high and very low
temperatures seems unproductive ... the amount of time spent at temperatures between
these limits [has] a large effect on the quality of the solution obtained.” However, be-
fore attempting to characterize the range of productive temperatures, there is a more
fundamental question that can be asked: Is annealing even necessary? In other words,
are there specific temperatures at which MCMC alone can achieve performance that is
competitive with, or exceeds that, of simulated annealing.

Generally, it is presumed that simulated annealing is more effective than the MCMC
algorithm upon which it is based. Instead, performance is assessed relative to other
baselines, or radically different search algorithms. For example, van Laarhoven et al.
[vLAL92] only compare the performance of simulated annealing to that of iterative
greedy descent and the shifting bottleneck procedure [ABZ88].

To obtain evidence for (or against) the hypothesis that annealing may not be required
to achieve effective local search, we execute MCMC on a variety of random JSPs at
various temperatures, and compare the makespans of the best solutions located during
each trial. The resulting performance statistics for well-known 10 × 10 benchmark

171

UAG
Instance Optimal 0.30 0.25 0.20 0.15 0.10 0.05

Makespan T ≈ 130 T ≈ 55 T ≈ 35 T ≈ 22 T ≈ 15 T ≈ 8
la16 945 975.7 958.9 949.9 945.1 945.1 955.3
la17 784 785.1 784.1 784 784 784 785.3
la18 848 859.2 852.3 848 848 848 855.3
la19 842 854.4 848.6 842.2 842 842 842.7
la20 902 910.5 905.7 902.1 902 902 921.6
abz5 1234 1247.9 1240.4 1237.1 1234.9 1234.7 1240.1
abz6 943 944.6 943 943 943 943 958.7
ft10 930 1001.4 970.4 946.6 936.9 932.2 950

Table 9.3: The performance of MCMC at various temperatures on benchmark 10 × 10
random JSPs; results for ft10 are also shown. Entries represent the mean makespan of
the best solutions found in 30 independent trials.

instances are shown in Table 9.3. With the exception of ft10, all of the instances
are random JSPs; ft10 bears strong resemblance to a workflow JSP. The sampling
temperature is varied between UAG = 0.05 and UAG = 0.30 in increments of 0.05.
Each trial of MCMC is executed for 10 million iterations (corresponding to no more than
one minute of CPU time on a 1.5 Ghz Pentium IV). The entries in Table 9.3 represent
the mean makespan of the best solutions found in 30 independent trials.

Analysis of the data in Table 9.3 yields several general observations. First, even
relatively long runs of MCMC at very high (i.e., UAG = 0.30 or UAG = 0.25) and
very low (i.e., UAG = 0.05) temperatures are, with few exceptions, unable to locate
optimal or even near-optimal solutions to any of the benchmark instances. Second, at
moderately low temperatures (i.e., UAG = 0.10 and UAG = 0.15), MCMC is able to
consistently locate optimal or very near-optimal solutions to all of the benchmark in-
stances, including ft10 (25 of the 30 runs located the optimal solution to the latter
instance). Third, with the exception of UAG = 0.05, performance is inversely propor-
tional to the sampling temperature. Relating the performance of MCMC to the results
presented in Table 9.1, we observe that MCMC performs best at UAG = 0.10, when
the search depth is slightly above 1, as hypothesized above in Section 9.4. Higher tem-
peratures reduce the likelihood of search descending deep enough into attractor basins
to detect the corresponding local optima, while lower temperatures prevent search from
accepting even 1 or 2 dis-improving moves with any significant probability.

Together, these results demonstrate that MCMC, when used in isolation, is capable
of locating optimal and near-optimal solutions to a number of well-known benchmark
instances. Further, the absolute performance of MCMC on these instances is compet-
itive with that of various implementations of simulated annealing reported for the JSP
[vLAL88] [YRN94] [YN95] [Kol99] [AvLLU94]. Even taking into consideration rela-
tive hardware speed, the performance is still competitive. For example, van Laarhoven

172

UAG
Instance Optimal 0.20 0.15 0.10 0.05 I-JAR(k = 2) TSTaillard

Makespan T ≈ 38 T ≈ 24 T ≈ 15 T ≈ 10

ta01 1231 1268.2 1247.7 1231 1231 1242 1237.4
ta02 1244 1278.3 1257.7 1246.6 1244.9 1244.7 1250.6
ta03 1218 1247.5 1223.6 1221.2 1220.8 1221.5 1222.3
ta04 1175 1207.1 1184 1179.5 1175 1180.4 1180.8
ta05 1224 1265.4 1246.3 1232.7 1228.6 1232.4 1232.8
ta06 1238 1273.2 1250.7 1243.4 1240.3 1243.2 1243.3
ta07 1227 1251.4 1228.7 1228 1228 1228 1228
ta08 1217 1248.2 1229.1 1217.8 1217.1 1218.1 1220.1
ta09 1274 1322.1 1292 1280.6 1280.3 1281.6 1282.3
ta10 1241 1293.8 1267.6 1244.5 1244 1243.6 1250.2

Table 9.4: The mean makespans of the best solutions obtained by MCMC, I-JAR(k = 2),
and TSTaillard to Taillard’s 15 × 15 benchmark instances. Statistics are taken over 10
independent trials. Bold-faced entries indicate the mean makespan was less than or
equal to that of any competing algorithm. Italicized entries indicate the mean makespan
was equal to the optimal makespan.

et al. [vLAL92] obtain a mean best makespan of 933.4 on ft10 for trials consuming
57,772 seconds of CPU time on a VAX-785; an independent implementation of their
algorithm (based on our implementation of MCMC) consumes significantly more CPU
time than 10 million iterations of MCMC.

To assess the performance of MCMC relative to the other meta-heuristics analyzed
in this thesis, the methodology introduced above is applied to Taillard’s 15 × 15 ran-
dom JSP benchmark instances. Both I-JAR(k = 2) and TSTaillard fail to consistently
locate optimal solutions to most of these instances, providing at least the potential for
MCMC to exhibit superior performance. MCMC is executed for temperatures ranging
from UAG = 0.05 to UAG = 0.20 in increments of 0.05; analogous to the results for the
10× 10 instances, higher temperatures always yielded lower-quality solutions. Relative
to I-JAR(k = 2), the CPU time-per-iteration multipliers for UAG = 0.05, 0.10, 0.15, and
0.20 are respectively 3.0, 3.4, 3.9, and 5. As expected, each iteration of MCMC is signif-
icantly cheaper than those of I-JAR(k = 2), which at a minimum evaluates the complete
neighborhood of at least one solution, in addition to the cost of the ascent and descent.
To facilitate comparison with the performance of I-JAR(k = 2) and TSTaillard (origi-
nally reported in Section 8.3.3), individual trials of MCMC are executed for 10,000,000
· X iterations, where X is the multiplier for a given temperature. Ten independent trials
of MCMC are executed on each instance at each temperature.

The mean makespans of the best solution obtained by all three meta-heuristics are
shown in Table 9.4; statistics are taken over 10 independent trials. Mirroring the results
presented in Table 9.3, solution quality is inversely proportional to UAG, and at low
temperatures, MCMC is capable of locating optimal or near-optimal solutions to all of

173

the problem instances. However, we do not observe a sudden decrease in performance
at UAG = 0.05. Upon closer examination, this is due to the decrease in attractor basin
strength as problem size is increased beyond 10 × 10 (as reported in Chapter 5), such
that the temperature at UAG = 0.05 is not low enough to prevent search from consis-
tently escaping local optima. Comparing the performance of the three meta-heuristics,
MCMC at UAG = 0.05 equals or out-performs TSTaillard on all but one instance and
I-JAR(k = 2) on all but 3 instances. Recall that there were no statistically significant
differences between the performance of TSTaillard and I-JAR(k = 2). However, MCMC
(at UAG = 0.05) yields statistically significant improvements in performance over the
two competitors (as measured by a Wilcoxon sign-rank test at p < 0.01) on ta01 and
ta04. In summary, the results presented in this section indicate that the performance of
MCMC is at least competitive with TSTaillard and I-JAR(k = 2), given roughly equiva-
lent CPU run-times. The latter is ensured through the use of multipliers and a common
implementation of the code for evaluating neighboring solution makespans under the
N1 move operator, which consumes over 95% of the run-time in all three algorithms.

9.7 A Dynamic Cost Model of MCMC

We now develop a dynamic cost model of the behavior of MCMC, and contrast the re-
sulting model with those developed for I-JAR and TSTaillard. The results presented in
Section 9.6 indicate that MCMC is at least competitive with I-JAR and TSTaillard on
10× 10 and 15× 15 benchmark instances; there is less conclusive evidence that MCMC
can actually outperform I-JAR and TSTaillard. Given sufficiently accurately dynamic
models, a comparative analysis should yield a causal explanation for these observations.
The structure of the dynamic cost model of MCMC and the associated methodology
for computing the transition probabilities is identical to that introduced in Chapter 6 for
the random walk meta-heuristic RW. Specifically, states represent sets of solutions at a
given fixed distance from the nearest optimal solution, and transition probabilities are
estimated via on-line sampling. Static and quasi-dynamic cost models are not consid-
ered in this chapter, as they are only approximations of the full dynamic cost model, as
demonstrated in Chapters 6 through 8.

We limit our analysis to 10 × 10 random JSPs with UAG = 0.10, 0.15, and 0.20.
Both the computation of c and estimation of the transition probabilities is prohibitive at
lower and higher temperatures, where search under MCMC is largely ineffective. As in
previous chapters, we only consider those 42 10× 10 instances with ≤ 100,000 optimal
solutions. The transition probabilities for two typical 10 × 10 instances are shown in
Figure 9.4; here, UAG = 0.15. As with RW, MCMC induces a bias toward solutions that
are roughly equi-distant from the nearest optimal solution and solutions that are max-
imally distant from the nearest optimal solution. However, the bias is generally much
weaker than that observed for either RW or I-JAR, and is comparable to that observed
for TSTaillard. Often, this bias is neutral for a wide range of distances to the nearest

174

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

Figure 9.4: Transition probabilities for two 10 × 10 random JSPs under MCMC at
UAG = 0.15 generated via online estimation.

optimal solution, as occurs for the instance shown in the right side of Figure 9.4. Tran-
sition probabilities of 10 × 10 random JSPs are generally more similar to those shown
in the left side of Figure 9.4 than to those shown in the right side of Figure 9.4. MCMC
also appears to induce significantly noisier transition probabilities than any of the other
meta-heuristics we have analyzed; upon closer examination, the noise appears to be
due to infrequently encountered local optima from which MCMC has great difficulty
escaping.

Scatter-plots of the c predicted by the dynamic cost model versus the actual c
are shown in Figure 9.5; the predicted c are computed using the methodology de-
scribed in Chapter 6. The r2 values for the corresponding regression models are 0.9662
(UAG = 0.20), 0.9833 (UAG = 0.15), and 0.9682 (UAG = 0.10), respectively. Results
for those 10 × 10 benchmark instances with ≤ 100,000 optimal solutions are included
for reference. In all but one case, the actual c is within a factor of 3 of the predicted c;
the exceptional case occurs when UAG = 0.20, with the actual c exceeding the predicted
c by a factor of ≈ 4.8. The dynamic cost model of MCMC is roughly 3% to 5% less
accurate than the analogous models developed for RW, I-JAR, and TSTaillard. The drop
in accuracy is likely due to the existence of noticeable levels of noise in the estimated
transition probabilities, which, as indicated above, appears to be due to infrequently
encountered local optima with exceptionally strong attractor basins. However, the abso-
lute accuracy of the dynamic cost model indicates that search in MCMC can, as with the
other meta-heuristics we have analyzed, be viewed as a simple one-dimensional random
walk with a bias toward solutions that are roughly equi-distant from the nearest optimal
solution and solutions that are maximally distant from the nearest optimal solution.

We explain the roughly equivalent performance of MCMC, I-JAR, and TSTaillard as
follows. First, search in all three meta-heuristics exhibit identical biases, i.e., they are
biased toward solutions that are roughly equidistant from the nearest optimal solution
and solutions that are maximally distant from the nearest optimal solution. Second,
statistical analysis indicates that the maximal distance to the nearest optimal solution in

175

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1000 10000 100000 1e+06 1e+07 1e+08

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

LA18

LA19

LA20

ABZ5

ABZ6

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

LA18

LA19

LA20

ABZ5

ABZ6

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

LA18

LA19

LA20

ABZ5

ABZ6

Figure 9.5: Scatter-plots of the observed versus predicted mean cost c required to lo-
cate an optimal solution under MCMC for 10 × 10 random JSPs at temperatures cor-
responding to UAG = 0.20 (upper left figure), UAG = 0.15 (upper right figure), and
UAG = 0.10 (lower figure); the least-squares fit lines are super-imposed.

all three meta-heuristics is highly correlated. Third, problem difficulty for all three meta-
heuristics is a function of both (1) the strength of the search bias and (2) the maximal
distance to the nearest optimal solution. Thus, given equivalently strong biases, we
would expect no one meta-heuristic to outperform another. Empirically, the bias strength
in MCMC is typically less than that observed for both I-JAR and TSTaillard, which is
consistent with the slightly inferior performance of I-JAR and TSTaillard.

9.8 Run-Length Distributions

Mirroring the structure of RLDs for other meta-heuristics (e.g., see Section 6.8), the
RLDs for MCMC at temperatures corresponding to UAG ≥ 0.10 are approximately
exponential. For example, at UAG = 0.10, a two-sample KS test failed to reject the null
hypothesis at p ≤ 0.01 that the RLD is exponentially distributed for 25 of the 42 10×10
random JSPs with ≤ 100,000 optimal solutions. For those instances where differences
exist, the deviation from the exponential is primarily due to differences in the left tail.
As observed in Chapters 6 through 8, easier problem instances are more likely to exhibit

176

2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

Empirical CDF

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

Empirical CDF

Figure 9.6: CDFs of the predicted and actual RLDs for two 10 × 10 instances. The
p-values for the KS test statistic are respectively 6.34e − 6 and 8.134e − 8.

deviations from an exponential distribution.
As expected given the decreased accuracy of the dynamic cost models, the predicted

RLDs often differ substantially from the actual RLDs; using a two-sample KS test, we
could reject the null hypothesis that the two distributions were identical at p ≤ 0.01 for
29 of the 42 random 10 × 10 JSPs. For the meta-heuristics analyzed in prior chapters,
the predicted and actual RLDs were qualitatively identical, such that any differences
could be minimized by simply shifting (e.g., through the addition of a constant) one of
the two distributions. However, the predicted and actual RLDs under MCMC are often
qualitatively very different. Examples of two instances for which the two RLDs are
dissimilar are shown in Figure 9.6. The source of such differences is currently unclear,
although a likely candidate is the presence of infrequently encountered but difficult-
to-escape local optima, the same factor that causes significant levels of noise in the
estimated transition probabilities.

9.9 Analyzing the Scalability of MCMC

As with the prior analyses of tabu search (Chapter 7) and iterated local search (Chap-
ter 8), a key open issue regarding the performance of MCMC is scalability. We now
consider the scalability of MCMC, focusing specifically on the following three aspects:

1. Can MCMC locate optimal or near-optimal solutions to larger and more difficult
benchmark instances? In other words, is the absolute performance of MCMC
scalable?

2. Can MCMC compete with comparable tabu search and iterated local search algo-
rithms on larger and more difficult benchmark instances, as is the case for 15×15
instances. In other words, is the relative performance of MCMC scalable?

177

Problem Size
15 × 15 20 × 15 20 × 20 30 × 15 30 × 20 50 × 15 50 × 20 100 × 20

UAG = 0.05 7.26 6.48 7.14 7.76 9.58 9.83 10.1 10.15
UAG = 0.10 8.14 8.14 8.9 8.9 11.2 11.5 12.2 12.18

Table 9.5: CPU cost-per-iteration multipliers between the baseline I-JARN5(k = 2) and
MCMCN5 at both UAG = 0.10 and UAG = 0.05 for Taillard’s random JSP benchmark
instances.

3. How does the performance of MCMC compare against state-of-the-art local search
algorithms for the JSP? In doing so, our goal is to assess the potential of more
complex variations of the Metropolis algorithm for the JSP.

9.9.1 Algorithm and Methodology

Due to both the neighborhood size and the large proportion of neighbors that fail to
yield an immediate improvement in the makespan of the current solution, implementa-
tions of MCMC based on the N1 move operator perform poorly on large random JSPs.
Significantly stronger performance is obtained using a variant of MCMC based on the
N5 move operator, which we denote MCMCN5. Other than the difference in the move
operator, MCMCN5 is identical to MCMC with the following exception. To avoid be-
coming trapped in connected sub-components of the fitness landscape, which are due to
the fact that the N5 operator induces a disconnected search space, MCMCN5 borrows
the monitor-and-escape mechanism employed in both TSNS-A (see Section 8.6.3) and
I-JARN5 (see Section 8.6.2). Specifically, the mobility M of MCMCN5 is checked af-
ter TCI (Trap Check Interval) iterations. If M falls below some threshold Mthrs, then
a random walk from the current solution is initiated. In order to escape the trap, the
walk is with respect to the N1 operator. If the mobility remains low after another TCI
iterations, the length of the random walk is increased; the procedure is iterated until
super-threshold mobility is achieved. Pseudo-code for the monitor-and-escape mecha-
nism, not repeated here, is shown in Figures 8.11 and 8.12. In the experiments described
below, TCI = 1000, Mthrs = 10, MWLnom = 5, and MWLinc = 1.

As in Chapter 8, the performance of MCMCN5 is assessed using Taillard’s bench-
mark suite of 80 random JSPs. To achieve approximate equality in the run-times of
individual trials, we again turn to cost-per-iteration multipliers relative to the baseline
algorithm I-JAR(k = 2); the estimated multipliers for MCMCN5 at UAG = 0.05 and
UAG = 0.10 are shown in Table 9.5. Ten trials of MCMCN5 are executed on each
instance, for the temperatures corresponding to UAG = 0.05 and UAG = 0.10. For
ta01-ta50, the best solution located during each trial is recorded. For the large rect-
angular instances (ta51-verb+ta80+), the number of iterations required to locate an
optimal solutions is recorded.

178

9.9.2 Assessing the Relative and Absolute Performance of MCMCN5

We first consider the results for Taillard’s 15 × 15 and 20 × 15 instances, shown in
Table 9.6. On the 15 × 15 instances, the performance of MCMCN5 at UAG=0.05 and
UAG=0.10 is essentially indistinguishable; both variants consistently locate optimal or
very near-optimal solutions to all of these instances. In contrast, both absolute (for all
10 instances) and statistically significant (for 2 of the 10 instances) differences in mean
performance are observed in the 20×15 instances, with the UAG = 0.10 variant provid-
ing superior performance. More unexpected is the difference in performance between
MCMCN5 at UAG = 0.10 and the two comparative baselines, I-JARN5(k = 1) and
TSNS-A. Although indistinguishable for the smaller 15×15 instances, MCMCN5 actually
outperforms TSNS-A, in terms of mean solution quality, on the 20× 20 instances; statisti-
cally significant differences were detected for 4 of the 10 instances; absolute differences
exist for 9 of the 10 instances. Similar results hold when comparing the performance of
MCMCN5 and I-JARN5(k = 1). MCMCN5 also consistently locates the best solutions
found by any of the algorithms.

The results for Taillard’s medium-sized instances, among the most difficult bench-
marks available for the JSP, are shown in Table 9.7. As with the smaller instances, the
minimum and mean performance of MCMCN5 is generally superior at UAG = 0.10,
although for the 30 × 20 instances, MCMCN5 at UAG = 0.05 yields solutions equal to
the best located by any of the algorithms tested for 7 of the 10 instances, in contrast to
only 4 of the 10 instances under UAG = 0.10. Relative to both I-JARN5(k = 1) and
TSNS-A, MCMCN5 at UAG = 0.10 yields superior mean solution quality for 23 of the
30 instances. Relative to TSNS-A, the difference is statistically significant for only 5 of
the 30 instances. In terms of the the best solution found during any trial, MCMCN5 at
UAG = 0.10 outperforms TSNS-A on 23 of the 30 instances.

Finally, we contrast the aggregate behavior of MCMCN5, I-JARN5, and TSNS-A with
other state-of-the-art local search algorithms for the JSP. As in Chapter 8, the analysis
is based on the mean relative error (MRE) of each algorithm on Taillard’s problem in-
stances. The MRE for the 5 sets of Taillard’s difficult benchmark instances are shown
in Table 9.8. The columns labeled ’MCMC∗

N5’ and ’MCMCN5’ respectively report the
MRE for the best and mean solution quality obtained over 10 trials of MCMCN5 at
UAG = 0.10. The MRE of the best-known makespans is reported in the column labeled
’Best Known’. The remaining column labels are identical to those found in Table 8.7,
described in Chapter 8.

As reported in Tables 9.6 and 9.7, it is clear that MCMCN5 dominates (albeit not
necessarily in a statistical sense) both I-JARN5 and TSNS-A in terms of mean solution
quality. The mean makespans of solutions obtained by MCMCN5 are less than those of
both PEZ and BAL, although run-times are not directly comparable. As indicated in
Chapter 8, BAL∗ represents the best solution found in different trials of different varia-
tions of Balas and Vazacopoulos’ guided local search algorithm [BV98]; consequently,
the appropriate comparative baseline is MCMC∗

N5. Mirroring the relative performance

179

MCMCN5(UAG=0.05) MCMCN5(UAG=0.10) I-JARN5(k = 1) TSNS-A
Instance Optimal Min. Mean Max. Min. Mean Max. Min. Mean Min. Mean

Makespan
ta01 1231 1231 1233.3 1243 1231 1231 1231 1231 1238.2 1231 1231
ta02 1244 1244 1244.1 1245 1244 1244 1244 1244 1244 1244 1244.4
ta03 1218 1219 1220.8 1222 1220 1220.8 1223 1219 1220.8 1221 1221.8
ta04 1175 1175 1175 1174 1175 1175 1175 1175 1175 1175 1175
ta05 1224 1230 1230.7 1231 1229 1229.9 1231 1229 1230.9 1229 1229.8
ta06 1238 1240 1242.7 1244 1238 1240.7 1243 1238 1238.8 1239 1240.7
ta07 1227 1228 1228 1228 1228 1228 1228 1228 1228 1228 1228
ta08 1217 1217 1217.4 1218 1217 1217.1 1718 1217 1217 1217 1217
ta09 1274 1274 1281.3 1283 1274 1277.8 1282 1281 1282.2 1274 1281.8
ta10 1241 1241 1243.6 1244 1241 1243.6 1244 1241 1242.9 1241 1244.3

MCMCN5(UAG=0.05) MCMCN5(UAG=0.10) I-JARN5(k = 1) TSNS-A
Ins. Bounds/ Min. Mean Max. Min. Mean Max. Min. Mean Min. Mean

Opt.
ta11 1321-1361 1367 1374.2 1382 1362 1371.8 1377 1373 1377.5 1368 1374.4
ta12 1351-1367 1374 1377.4 1382 1374 1376.1 1377 1377 1379.1 1377 1377.1
ta13 1282-1342 1351 1355 1360 1352 1353.3 1354 1352 1354.7 1350 1355.4
ta14 1345 1345 1346.8 1350 1345 1345 1345 1345 1345 1345 1345
ta15 1304-1340 1347 1354.1 1360 1342 1346.1 1353 1346 1355.2 1353 1356
ta16 1302-1360 1365 1368.5 1372 1362 1364 1367 1362 1367.1 1368 1371.4
ta17 1462 1471 1479.3 1494 1470 1475.9 1479 1474 1476.2 1469 1475
ta18 1369-1396 1408 1411 1415 1405 1409.8 1412 1409 1411.9 1414 1416.4
ta19 1297-1335 1337 1345.6 1361 1335 1338.8 1340 1341 1344.9 1343 1346.5
ta20 1318-1351 1351 1361.8 1367 1354 1359.4 1364 1358 1361.8 1357 1361.8

Table 9.6: Statistics for the makespans of the best solutions obtained by MCMCN5,
I-JARN5(k = 1), and TSNS-A to Taillard’s small (15 × 15 – upper portion, 20 × 15 –
lower portion) benchmark instances. Statistics are taken over 10 independent trials. The
second column indicates either the optimal makespan, or lower and upper bounds on the
optimal makespan. Bold-faced entries in the ’Min’ columns indicate equality with the
optimal makespan. Italicized entries in the ’Min’ columns indicate the best makespan
achieved by any algorithm. Bold-faced entries in a ’Mean’ column indicates the mean
makespan was less than or equal to that of any competing algorithm.

180

MCMCN5(UAG=0.05) MCMCN5(UAG=0.10) I-JARN5(k = 1) TSNS-A
Instance Min. Mean Max. Min. Mean Max. Min. Mean Min. Mean

Bounds
ta21 1539-1644 1647 1654.7 1662 1647 1649.5 1655 1658 1661.1 1648 1654.6
ta22 1511-1600 1607 1616.7 1620 1602 1615.9 1620 1602 1612.1 1613 1620.3
ta23 1472-1557 1561 1565.2 1575 1561 1562.7 1566 1558 1568.9 1563 1565.9
ta24 1602-1647 1658 1666.2 1674 1650 1654 1656 1654 1654.2 1654 1656.2
ta25 1504-1595 1597 1600.8 1608 1597 1598.6 1599 1599 1603.6 1599 1601.2
ta26 1539-1645 1650 1655.8 1660 1651 1655 1656 1655 1661.6 1655 1661
ta27 1616-1680 1691 1695.2 1700 1689 1692.7 1697 1697 1703 1691 1694.8
ta28 1591-1614 1617 1619.5 1622 1617 1618.4 1621 1617 1620.6 1618 1621.4
ta29 1514-1625 1627 1628.4 1630 1627 1628.5 1629 1629 1631.1 1628 1629.2
ta30 1473-1584 1584 1595.7 1609 1588 1590.3 1595 1592 1600.8 1590 1591.7

MCMCN5(UAG=0.05) MCMCN5(UAG=0.10) I-JARN5(k = 1) TSNS-A
Instance Bounds / Min. Mean Max. Min. Mean Max. Min. Mean Min. Mean

Opt.
ta31 1764 1764 1764.2 1766 1764 1764 1764 1764 1764 1764 1764.3
ta32 1774-1796 1815 1821.6 1827 1808 1813.9 1817 1811 1819.7 1811 1816.8
ta33 1778-1793 1803 1814.9 1826 1802 1807.6 1812 1809 1812.5 1806 1811.6
ta34 1828-1829 1832 1837.2 1872 1831 1832.2 1837 1833 1834.1 1833 1833.7
ta35 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007
ta36 1819 1819 1821.3 1831 1819 1819 1819 1819 1822 1819 1819.6
ta37 1771-1778 1795 1798.2 1804 1787 1792.5 1795 1793 1794.2 1793 1794.6
ta38 1673 1676 1682.8 1691 1676 1679.3 1684 1683 1684.9 1675 1681.5
ta39 1795 1796 1803 1807 1796 1800.6 1806 1797 1798.7 1795 1797.7
ta40 1631-1674 1686 1691 1697 1685 1689.7 1693 1695 1696.2 1691 1692.5

MCMCN5(UAG=0.05) MCMCN5(UAG=0.10) I-JARN5(k = 1) TSNS-A
Instance Min. Mean Max. Min. Mean Max. Min. Mean Min. Mean

Bounds
ta41 1859-2018 2030 2039.5 2056 2032 2037.2 2044 2042 2045.5 2034 2039.1
ta42 1867-1956 1966 1968.9 1974 1967 1972.4 1986 1974 1976 1966 1968.6
ta43 1809-1859 1879 1887.4 1893 1875 1883.3 1889 1889 1890.3 1876 1882
ta44 1927-1984 2001 2004.2 2012 1993 2001.5 2004 2006 2009.2 2002 2005.7
ta45 1997-2000 2000 2010.3 2014 2000 2009.6 2013 2007 2012.4 2005 2009.4
ta46 1940-2021 2033 2041.6 2053 2031 2039 2049 2035 2038.9 2035 2039.3
ta47 1789-1903 1920 1926.6 1938 1922 1925.7 1934 1925 1931.3 1926 1929.6
ta48 1912-1952 1963 1972.4 1980 1964 1970.1 1975 1975 1980.2 1968 1971.9
ta49 1915-1968 1977 1986.1 2000 1980 1983.8 1989 1991 1992.8 1980 1985.1
ta50 1807-1926 1939 1943.5 1954 1939 1943 1946 1941 1943.9 1940 1945.6

Table 9.7: Statistics for the makespans of the best solutions obtained by MCMCN5,
I-JARN5, TSNS-A to Taillard’s medium-sized (20× 20 – upper portion, 30× 15 – middle
portion, and 30 × 20 – lower portion) benchmark instances. Statistics are taken over 10
independent trials. The second column indicates either the optimal makespan, or lower
and upper bounds on the optimal makespan. Bold-faced entries in the ’Min’ columns
indicate equality with the optimal makespan. Italicized entries in the ’Min’ columns
indicate the best makespan achieved by any algorithm. Bold-faced entries in a ’Mean’
column indicates the mean makespan was less than or equal to that of any competing
algorithm.

181

Instance Best MCMC∗

N5 MCMCN5 I-JARN5 TSNS-A i-TSAB i-TSAB PEZ BAL BAL∗

Group Known 20M 50M
ta01-10 0.00 0.07 0.15 0.22 0.26 0.11 0.11 0.45 0.25 0.16
ta11-20 2.33 2.66 2.96 3.20 3.40 2.81 2.81 3.47 3.34 2.81
ta21-30 5.45 5.70 5.94 6.27 6.27 5.69 5.68 6.52 6.57 6.10
ta31-40 0.52 0.79 0.96 1.28 1.28 0.85 0.78 1.92 1.13 0.80
ta41-50 4.12 4.74 5.08 5.37 5.24 4.97 4.7 6.04 5.71 5.20

Table 9.8: Mean relative error (MRE) of various algorithms on Taillard’s difficult bench-
mark instances. See text for details.

of MCMCN5 and BAL, we observe that MCMC∗
N5 dominates BAL∗.

By design, the run-times allocated to each trial of MCMCN5 are approximately
equivalent to the run-times consumed by 50 million iterations of i-TSAB. Given the
fact that MCMCN5 does not employ re-intensification, it is unsurprising that its per-
formance in terms of mean solution quality is inferior to i-TSAB. However, the best
solutions obtained by MCMCN5 are nearly equivalent to those obtained by individual
runs of i-TSAB on ta31-ta50, and are actually lower than i-TSAB on ta01-ta20.

182

Chapter 10

The Impact of Problem Structure on
Landscapes and Cost Models

Mirroring the majority of prior research on the JSP, the analyses presented in previous
chapters are devoted to modeling the behavior of local search algorithms on random
JSPs. However, the ultimate goal of research on approximation algorithms for the JSP,
or for any other optimization problem, is success in solving difficult, real-world prob-
lem instances. In contrast to their random counterparts, real-world problem instances
often exhibit significant structure. This structure can have a significant impact on search
algorithm performance [WBWH99] [WBWH02], raising the question of generalization:
Do cost models and related insights obtained from the analysis of local search algorithm
behavior on random JSPs extend to more structured JSPs? If so, it should be possible
to leverage existing models to explain differences in the difficulty of random and struc-
tured JSPs. If not, it is important to identify the boundaries of existing models, and to
understand the broader issue of how problem structure impacts algorithm performance.

In the context of the JSP, the term structure can refer to two aspects of a problem
instance: the job routing orders πi and the operation durations τij . Although the τij in
real-world scheduling problems are typically non-random [PDS73], the τij in all avail-
able benchmark instances for the JSP are random, uniformly sampled from a fixed-width
interval such as [1, 99]. In contrast, workflow and flowshop JSPs possess non-random
πi. In this chapter, structure refers to structure in the job routing orders, and not the
operation durations. Although not considered here, it is relatively straightforward to
extend previously reported methods for generating permutation flowshop problem in-
stances with non-random operation durations to the JSP [WBWH02].

The analysis presented below contrasts the fitness landscapes and cost models de-
veloped for random JSPs with those of workflow and flowshop JSPs. The order-of-
magnitude increase in the difficulty of workflow and flowshop JSPs over random JSPs
necessitates restricting much of the analysis to sets of 6×4 and 6×6 problem instances.
However, it is possible to analyze the impact of structure on the cost models of some
local search algorithms using small sets of 10 × 10 instances. All problem instances

183

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

Mean distance between random local optima

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

Mean distance between random local optima

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

Mean distance between random local optima

F
re

qu
en

cy

Figure 10.1: Histograms of the mean distance between random local optima (dlopt-lopt)
for 6×6 random (left figure), workflow (center figure), and flowshop (right figure) JSPs.

considered in this chapter are fully described in Section 4.6.3.
The rest of this chapter is organized as follows. The fitness landscapes of random

and structured JSPs are contrasted in Section 10.1, with a particular focus on measures
for quantifying the absolute and effective size of the space of feasible solutions (S) and
the sub-space of local optima and near-local optima (Slopt and Slopt+, respectively). The
impact of structure on cost models of RW and TSTaillard is analyzed in Sections 10.2 and
10.3, respectively. Qualitatively identical results hold for I-JAR and MCMC, and are not
discussed. The chapter concludes in Section 10.4 with a summary of key results and a
discussion of their implications.

10.1 Contrasting the Fitness Landscapes of Random
Versus Structured JSPs

Mattfeld et al. [MBK99] argue that differences in the relative difficulty of random versus
workflow JSPs are largely due to differences in the size of the search space. Consider
the sub-space Slopt of local optima. The absolute size of the sub-space Slopt (as well as
Slopt+) can be estimated by the mean distance between random local optima, denoted
dlopt-lopt. The distributions of dlopt-lopt for 6 × 6 random, workflow, and flowshop JSPs
are shown in Figure 10.1; each histogram represents data for the 1,000 instances in the
corresponding problem set. The distributions indicate that Slopt is roughly 75% larger
on average in workflow JSPs than in random JSPs. The size of Slopt in flowshop JSPs is,
ignoring statistical fluctuations, equal to the theoretical maximum of 0.5, and is signif-
icantly larger than the values observed in workflow JSPs. Thus, differences in the size
of Slopt (as measured by dlopt-lopt) are at least consistent with the observation that JSPs
become more difficult as the number of workflow partitions is varied from 1 to m (see
Section 2.3). Similar shifts in the distribution of dlopt-lopt are observed in 6 × 4 problem
sets. Qualitatively identical results also hold when considering the absolute size of the
space of feasible solutions S, as measured by drand-rand.

A key deficiency of the dlopt-lopt measure is that it fails to account for the number

184

0 1 2 3 4 5 6
0

50

100

150

log−10(Number of optimal solutions)

F
re

qu
en

cy

0 1 2 3 4 5 6
0

50

100

150

log−10(Number of optimal solutions)

F
re

qu
en

cy

0 1 2 3 4 5 6
0

50

100

150

log−10(Number of optimal solutions)

F
re

qu
en

cy

Figure 10.2: log10 histograms of the number of optimal solutions (|optsols|) for 6 × 6
random (left figure), workflow (center figure), and flowshop (right figure) JSPs.

and/or distribution of optimal solutions within the Slopt sub-space. In order for differ-
ences in dlopt-lopt to account for the relative difficulty of random, workflow, and flowshop
JSPs, we would expect the number of optimal solutions |optsols| to either remain con-
stant or drop as the number of workflow partitions wf increases; any increase in |optsols|
would likely decrease the effective size of the search space, yielding an overall reduction
in problem difficulty. This intuition is confirmed in Figure 10.2, which shows the log10

distribution of |optsols| for 6 × 6 random, workflow, and flowshop JSPs. Although the
extreme right-tail mass (with log10(|optsols|) > 4) of the problem sets is essentially in-
distinguishable, there are more workflow and flowshop instances with small (e.g., ≤ 10)
numbers of optimal solutions than in the random problem set. Similar differences are
also found in the mean |optsols| for the various problem sets, computed as 2,374, 2,061,
and 894 for the random, workflow, and flowshop JSPs, respectively. Thus, the absolute
size of the Slopt sub-space is proportional to the number of workflow partitions wf, while
at the same time the number of optimal solutions drops as wf is increased. This suggests
that the effective size of Slopt increases with increases in wf. Qualitatively identical re-
sults hold for 6 × 4 JSPs. Finally, there is a slight decrease in the overall correlation
between |optsols| and the backbone size in workflow and flowshop JSPs (from ≈ 0.92
to ≈ 0.8), primarily due to poor correlation in instances with very large numbers of
optimal solutions.

To test the hypothesis that increases in wf are correlated with increases in the effec-
tive size of Slopt, we analyze changes in the distribution of the dlopt-opt, the mean distance
between random local optima and the nearest optimal solution. Recall that the dlopt-opt

measure directly quantifies the effective size of the Slopt sub-space. The distribution
of dlopt-opt for 6 × 6 random, workflow, and flowshop JSPs are shown in Figure 10.3.
The results clearly confirm the prediction that the effective size of the Slopt sub-space
increases, on average, with increases in wf. The mean dlopt-opt for random and work-
flow JSPs is respectively 0.157 and 0.3248. The mean dlopt-opt for flowshop JSPs grows
to 0.4467, frequently nearing the theoretical maximum of 0.5. Qualitatively identical
results hold for 6 × 4 JSPs, and for the analogous drand-opt measure for quantifying the
effective size of the space S of feasible solutions.

185

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

Mean distance between random local optima and the nearest optimal solution

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

Mean distance between random local optima and the nearest optimal solution

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

Mean distance between random local optima and the nearest optimal solution

F
re

qu
en

cy

Figure 10.3: Histograms of the mean distance between random local optima and the
nearest optimal solution (dlopt-opt) for 6×6 random (left figure), workflow (center figure),
and flowshop (right figure) JSPs.

10.2 The Impact of Structure on Cost Models of RW

In Chapters 6 through 9, we showed that static and quasi-dynamic cost models based on
the effective size of the search space (dlopt-opt and dX-opt, respectively, where X denotes
a particular meta-heuristic) accounted for much of the variability in problem difficulty
for local search on small random JSPs. In contrast to dlopt-opt, the accuracy of the dX-opt

model scaled to larger problem instances. Further, dX-opt estimates a key parameter of
the dynamic cost model, which in turn accounts for nearly all of the variability in the
difficulty of random JSPs for local search. We now investigate whether similar results
hold for cost models of local search on structured JSPs. The subsequent analysis con-
siders cost models of the random walk algorithm RW; qualitatively identical results hold
for the two other memoryless local search algorithms (I-JAR and MCMC) investigated
in prior chapters. RW was selected due to its unique status as a baseline. A similar
analysis for TSTaillard is described below in Section 10.3.

Before analyzing the impact of structure on cost models of RW, it is illustrative to
quantify the relative difficulty of random versus structured JSPs. Under RW, the mean
cQ2 for 6 × 4 random and workflow JSPs is 4,860 and 215,708 iterations, respectively,
indicating that the workflow instances are nearly 2 orders of magnitude more difficult
than random instances. The increase is less dramatic when moving from workflow to
flowshop instances. The mean cQ2 for the latter is 461,512, such that flowshop JSPs are
roughly twice as difficult as workflow JSPs. Statistics for larger (e.g., 6 × 6) structured
JSPs are unavailable due to the excessive computational requirements. Consequently,
the following analysis is restricted to 6×4 random, workflow, and flowshop JSPs. How-
ever, qualitatively identical results hold for I-JAR and MCMC on both 6 × 4 and 6 × 6
problem sets.

The accuracy of static cost models is impacted by problem structure. Table 10.1
reports the r2 values for various static cost models of RW for 6 × 4 random, workflow,
and flowshop JSPs. The models are based on various measures related to the size (both
absolute and effective) of the space S of feasible solutions, i.e., log10(|optsols|), drand-rand,

186

Fitness Landscape Feature
Problem Set log10(|optsols|) drand-rand drand-opt

6 × 4 wf=1 0.4981 0.3098 0.8088
6 × 4 wf=2 0.7177 0.0000 0.6636
6 × 4 wf=m 0.8236 0.0005 0.8780

Table 10.1: The r2 values of static cost models of the cost required by RW to locate
optimal solutions to 6 × 4 random, workflow, and flowshop JSPs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Current distance from the nearest optimal solution

Probability of moving closer
Probability of remaining equi-distant

Probability of moving farther

Figure 10.4: Transition probabilities under RW for typical 6 × 4 workflow (left figure)
and flowshop (right figure) JSPs.

and drand-opt. The results clearly demonstrate the variable impact of structure on the
accuracy of static cost models. For example, the number of optimal solutions accounts
for more of the variability in search cost as wf is increased, while the mean distance
between random solutions accounts for none of the variability in search cost observed
in workflow and flowshop instances. In retrospect, these two observations are consistent
with intuition: as the variability in drand-rand is decreased (approaching 0 in the case
of flowshop JSPs), difficulty is dictated entirely by the number and/or distribution of
optimal solutions. The drop in the accuracy of the drand-opt cost model when wf = 2 raises
the possibility that the dynamics of RW may be qualitatively different on workflow JSPs.
However, the accuracy of quasi-dynamic cost models based on drw-opt indicate that such
differences, if they exist, are likely to be minimal; the corresponding r2 values for 6× 4
random, workflow, and flowshop JSPs are 0.9539, 0.8595, and 0.9124, respectively.

As in random JSPs, random solutions to structured JSPs are not necessarily repre-
sentative of solutions visited by RW during search. Consequently, we use the on-line
estimation methodology introduced in Section 6.6 to compute the set of transition prob-
abilities under RW for the 6× 4 workflow and flowshop JSPs. Figure 10.4 shows the re-
sulting probabilities for typical 6×4 workflow and flowshop instances. In contrast to the
probabilities observed for random JSPs (e.g., see Figure 6.7), there typically exists more
curvature in the probabilities near the minimal and maximal distance from the nearest
optimal solution. However, the bias toward solutions that are roughly equi-distant from

187

1000

10000

100000

1e+006

1e+007

1e+008

1000 10000 100000 1e+006 1e+007 1e+008

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

1000

10000

100000

1e+006

1e+007

1000 10000 100000 1e+006 1e+007

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

Figure 10.5: Scatter-plots of the observed versus predicted mean cost c to locate an
optimal solution under RW for 6 × 4 workflow (left figure) and flowshop (right figure)
JSPs; the least-squares fit lines are super-imposed.

the nearest optimal solution and solutions maximally distant from the nearest optimal
solution persists. Ignoring the curvature at extreme values of dopt, the key difference be-
tween the transition probabilities for random and structured JSPs is D, which estimates
the maximal distance to the nearest optimal solution; as indicated in Section 6.7, D is
another measure of the effective size of the search space S.

To assess the impact of the accentuated curvature on the accuracy of the dynamic
cost model of RW, we compare the predicted versus actual mean search cost c; the
predicted cost is computed using the methodology described in Section 6.6. log10-log10

scatter-plots of the predicted versus actual c for 6 × 4 workflow and flowshop JSPs are
shown in Figure 10.5. The r2 values of the corresponding regression models are 0.9931
and 0.9951, respectively. In all cases, the actual c is within a factor of 2 of the predicted
c. For I-JAR and MCMC, r2 ≥ 0.95 for the analogous dynamic cost models on 6 × 4
and 6 × 6 workflow and flowshop JSPs.

Clearly, structure in the job routing orders has no impact on the accuracy of the
dynamic cost models of RW, and at best negligible impact on the dynamic cost models of
I-JAR and MCMC. When executing on random and structured JSPs, the search dynamics
of all three algorithms are accurately modeled as a one-dimensional random walk with a
bias toward solutions that are roughly equi-distant from the nearest optimal solution and
solutions that are maximally distant from the nearest optimal solution. This distance,
as measured by dX-opt, accounts for over 80% of the variability in the cost of locating
optimal solutions to both random and structured JSPs. The remaining variability is due
to instance-specific fluctuations in the transition probabilities, which a simple summary
statistic is unlikely to capture.

188

Fitness Landscape Feature
Problem Set log10(|optsols|) dlopt-lopt dlopt-opt

6 × 4 wf=1 0.5365 0.2415 0.8044
6 × 4 wf=2 0.6504 0.0024 0.6241
6 × 4 wf=m 0.6075 0.0000 0.7022
6 × 6 wf=1 0.2223 0.2744 0.6424
6 × 6 wf=2 0.3345 0.0030 0.3004
6 × 6 wf=m 0.3268 0.0007 0.4104

Table 10.2: The r2 values of static cost models of the cost required by TSTaillard to locate
optimal solutions to 6 × 4 and 6 × 6 random, workflow, and flowshop JSPs.

10.3 The Impact of Structure On Cost Models of TSTaillard

Due to its effectiveness, it is feasible to assess the impact of structure on cost models
of TSTaillard using larger JSPs than was possible in the case of RW. Specifically, the
analysis presented below proceeds primarily in the context of both 6 × 4 and 6 × 6
problem sets. As expected, the relative difficulty of the instances increases as wf is
varied from 1 to m. For 6 × 6 random, workflow, and flowshop JSPs, TSTaillard yields
respective mean cQ2 values of 280, 3,137, and 12,127; for these computations, Lmin = 6
and Lmax = 12, with the tabu tenure re-sampled every 15 iterations. The differences
represent nearly an order-of-magnitude increase in average difficulty as wf is varied
from 1 to m/2 and again from m/2 to m; similar results hold for 6 × 4 JSPs. For
10 × 10 random, workflow, and flowshop JSPs, the mean cQ2 are respectively 315,413,
4.35 × 107, and 2.62 × 108; for these computations, Lmin = 8 and Lmax = 14, with the
tabu tenure re-sampled every 15 iterations. Again, we observe an order-of-magnitude
increase in problem difficulty as wf is varied from both 1 to m/2 and from m/2 to m. To
further illustrate the extreme difficulty of these instances, we note that the most difficult
flowshop instance required more than 900 million iterations on average to locate an
optimal solution.

We first assess the impact of structure on the accuracy of static cost models of
TSTaillard. As indicated in Chapter 7, search in TSTaillard is largely restricted to the
sub-space Slopt+ ⊆ S containing local optima and solutions that are near, in terms of dis-
tance, to local optima. Three measures related to the absolute and effective size of Slopt+

are log10(|optsols|), dlopt-lopt, and dlopt-opt. The r2 values of static cost models of TSTaillard
based on these features are shown in Table 10.2 for 6 × 4 and 6 × 6 random, workflow,
and flowshop JSPs. As expected given decreased variability, the accuracy of the dlopt-lopt

model drops to ≈ 0 when wf = 2 and wf = m; in response, the accuracy of the |optsols|
model increases. The drop in the accuracy of the dlopt-opt model at wf = 2 observed for
RW also persists. Analogous to the case for random JSPs, static cost models of TSTaillard
are somewhat less accurate than those of RW on identical problem sets.

The inaccuracies of the dlopt-opt model on 6 × 6 workflow and flowshop JSPs again

189

raises the possibility that structured JSPs induce fundamentally different search dynam-
ics in TSTaillard. This conjecture is further supported by the absolute accuracy of quasi-
dynamic models based on dtabu-opt. For 6× 6 workflow and flowshop JSPs, the r2 values
of the dtabu-opt model are 0.5519 and 0.5524, respectively, in contrast to r2 = 0.7808 for
6 × 6 random JSPs. In other words, the effective size of the search space, as quanti-
fied by dtabu-opt, only accounts for slightly over half the variability in problem difficulty
observed for structured JSPs.

To analyze the potential for qualitative changes in the run-time dynamics of
TSTaillard on structured JSPs, we compute sets of estimated transition probabilities for
6 × 4 and 6 × 6 workflow and flowshop JSPs using the on-line sampling methodology
described in Section 7.9. The probabilities of TSTaillard continuing to move closer to
the nearest optimal solution for two 6 × 6 flowshop JSPs are shown in Figure 10.6. For
the instance corresponding to the left-hand figure, the probability of continuing to move
closer to the nearest optimal solution decreases as search moves closer to the nearest
optimal solution, which is consistent with the results observed for random JSPs (e.g.,
see Figure 7.16). However, in contrast to the results for random JSPs, the probability
of moving closer to the nearest optimal solution frequently drops well below 0.5 when
search is very near an optimal solution. For the instance corresponding to the right-hand
figure, the probability of continuing to move closer to the nearest optimal solution is
nearly constant at ≈ 0.6. In contrast, the probability of inverting the gradient when
search is moving away from the nearest optimal solution is proportional to the current
distance from the nearest optimal solution, and is generally quite small. The exam-
ples shown in Figure 10.6 illustrate a key point regarding the behavior of TSTaillard on
workflow and flowshop JSPs: the transition probabilities are significantly more hetero-
geneous than those observed for random JSPs, often deviating significantly from the
prototypical form in both qualitative and quantitative aspects. Given such large de-
viations, it is unsurprising that cost models based on simple summary statistics (e.g.,
dtabu-opt) are unable to account for a significant proportion of the variability in problem
difficulty.

To assess the impact of large instance-specific irregularities in the transition prob-
abilities on the accuracy of the dynamic cost model of TSTaillard, we again compare
the predicted versus actual c; the predicted c are computed using the methodology in-
troduced in Section 7.9. The results for 6 × 4 and 6 × 6 workflow JSPs are shown
in Figure 10.7; the r2 values of the corresponding log10 − log10 regression models are
0.9973 and 0.9806, respectively. The absolute accuracy is only slightly worse for 6 × 4
and 6 × 6 flowshop JSPs, with respective r2 values of 0.9760 and 0.9777; the corre-
sponding scatter-plots are shown Figure 10.8. In all but a few exceptional cases, the
actual c is within a factor of 3 of the predicted c.

We also analyze the scalability of the dynamic cost model to structured 10 × 10
instances. Due to their difficulty, it is computationally prohibitive to estimate transition
probabilities for any of our 10× 10 flowshop JSPs. For our 10× 10 workflow JSPs, it is
possible to estimate transition probabilities for those 8 instances with ≤ 10,000 optimal

190

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Distance to the nearest optimal solution

Probability of moving closer given grad=closer
Probability of moving closer given grad=equal

Probability of moving closer given grad=farther

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

Distance to the nearest optimal solution

Probability of moving closer given grad=closer
Probability of moving closer given grad=equal

Probability of moving closer given grad=farther

Figure 10.6: The transition probabilities for moving closer to the nearest optimal solu-
tion under TSTaillard for two different 6 × 6 flowshop JSPs.

10

100

1000

10000

100000

10 100 1000 10000 100000

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

100

1000

10000

100000

1e+006

100 1000 10000 100000 1e+006

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

Figure 10.7: Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6× 4 (left figure) and 6× 6 (right figure) workflow
JSPs; the least-squares fit lines are super-imposed.

solutions with reasonable computational effort. As indicated in Section 4.6.3, the only
structured 10 × 10 benchmark instances are orb01-orb10; the job routing orders of
these instances are similar to those found in workflow and flowshop JSPs (which sub-
class depends on the particular instance). Of these, transition probability estimation was
feasible for orb01-orb07, each of which possess fewer than 10,000 optimal solutions.
A log10 − log10 scatter-plot of the predicted versus actual c for these instances is shown
in Figure 10.9. The r2 value of the corresponding regression model is 0.9863, and in no
case did the actual c exceed the predicted c by more than a factor of 2.

The results presented above clearly indicate that simple aggregate Markov mod-
els can accurately capture the fundamental dynamics of TSTaillard on both random and
structured JSPs. The effective size of the Slopt+ sub-space is less of a factor in prob-
lem difficulty in structured JSPs, due primarily to the more heterogeneous nature of the
transition probabilities. At the same time, the decreased accuracy of the dynamic cost
model on structured JSPs raises the possibility for further and potentially more signifi-

191

10

100

1000

10000

100000

10 100 1000 10000 100000

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

100

1000

10000

100000

1e+006

1e+007

100 1000 10000 100000 1e+006 1e+007

A
ct

ua
l s

ea
rc

h
co

st

Predicted search cost

Figure 10.8: Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 6× 4 (left figure) and 6× 6 (right figure) flowshop
JSPs; the least-squares fit lines are super-imposed.

 10000

 100000

 1e+06

 1e+07

 1e+08

 10000 100000 1e+06 1e+07 1e+08

A
ct

u
a
l s

e
a
rc

h
 c

o
st

Predicted search cost

ORB01

ORB02

ORB03

ORB04

ORB05

ORB06
ORB07

Figure 10.9: Scatter-plots of the predicted versus actual mean cost (c) required to locate
an optimal solution under TSTaillard to 10× 10 workflow and structured benchmark JSPs;
the least-squares fit lines are super-imposed.

cant degradation on problem instances with fundamentally different types of structure –
for example, strong correlation between sub-sets of the operation durations τij.

192

10.4 Re-Assessing the Causal Factor for Differences in
the Relative Difficulty of Random and Structured
JSPs

The analyses presented in this chapter extends the results of Mattfeld et al., confirming
their original hypothesis in spirit, although not detail: differences in the relative diffi-
culty of random, workflow, and flowshop JSPs are primarily due to differences in the
size of the search spaces. Mattfeld et al. focused on differences in the absolute size
of the Slopt+ sub-space, as measured by dlopt-lopt. However, as shown throughout this
thesis, the effective size of the search space, as quantified to varying degrees of accu-
racy by dlopt-opt, dX-opt, and D, is significantly more correlated with problem difficulty
than dlopt-lopt. In fact, dlopt-lopt is at best weakly correlated with problem difficulty, and
frequently un-correlated. Consequently, the results presented in this chapter serve to
clarify Mattfeld et al.’s original assertion, by identifying a search space measure that
is both highly correlated with problem difficulty for fixed-sized problem sets and and
exhibits significant differences between fixed-sized problem sets with different wf. The
dlopt-lopt only succeeds at the latter.

It is also clear that the variability in problem difficulty observed for structured JSPs is
unlikely to be fully captured by simple summary statistics, i.e., static or quasi-dynamic
cost models. The transition probabilities induced by structured JSPs can be significantly
more heterogeneous than those induced by random JSPs; large instance-specific irreg-
ularities are not uncommon. However, these irregularities have little impact on the dy-
namic cost models developed in Chapters 6 through 9; local search can still be modeled
with high fidelity as relatively simple Markov chains.

193

Chapter 11

Analyzing the State-of-the-Art: Does
the Core Meta-Heuristic Really
Matter?

Although MCMCN5, IJARN5, and TSNS-A all provide excellent performance on a wide
range of benchmark instances, they fall just slightly short of the state-of-the-art, as cur-
rently represented by Nowicki and Smutnicki’s iTSAB algorithm [NS03]. i-TSAB is
a tabu search algorithm based directly on Nowicki and Smutnicki’s own well-known
TSAB algorithm [NS96]. TSAB is largely a straightforward implementation of tabu
search based on the N5 move operator, albeit with two key differences. First, TSAB
maintains a pool of elite solutions consisting of high-quality solutions previously en-
countered during search. Second, TSAB periodically re-initiates search from an elite
solution when the core tabu search algorithm fails to improve on the best-so-far solution
after a pre-specified number of iterations; the core tabu search algorithm is equivalent to
TSNS-A, with the exception of code devoted to cycle detection and recovery. The strategy
of periodically restarting search from previously encountered high-quality solutions is
known as reintensification [GL97].

The notation i-TSAB stands for iterated TSAB, in which TSAB is treated as the core
meta-heuristic. Search in i-TSAB proceeds in two phases. In the first phase, multiple
runs of TSAB are used to generate a pool of elite, high-quality solutions. In the second
phase, pairs of elite solutions are selected and path relinking [GL97] is used to con-
struct a new solution that is approximately equidistant from each elite solution; TSAB
is then initiated from the intermediate solution. If the best solution located by TSAB
improves upon either of the parent elite solutions, it replaces one of the parents in the
elite solution pool. The strategy of restarting search from solutions distant from pre-
viously encountered high-quality solutions is an example of diversification [GL97]. In
summary, TSAB improves upon straightforward implementations of tabu search, e.g.,
TSNS-A, through the use of reintensification, while i-TSAB improves upon TSAB through
the use of diversification.

194

Given the strong similarity between TSNS-A and TSAB, the state-of-the-art status of i-
TSAB can likely be attributed to the use of re-intensification and diversification. Further,
it is also well-known that both strategies can significantly improve the performance of
tabu search algorithms for a wide variety of other NP -hard problems. What is less clear
is the degree to which the performance of i-TSAB depends on tabu search. A reason-
able hypothesis states that re-intensification and diversification can equally improve the
performance of other meta-heuristics, specifically iterated local search and Metropolis
sampling. This hypothesis is driven by two factors: (1) the relative equity in the per-
formance of MCMCN5, I-JARN5, and TSNS-A observed in Chapters 8 and 9 and (2) the
strong similarities in the dynamic cost models of these meta-heuristics. In other words,
given minimal differences between these core meta-heuristics, it seems unlikely that the
performance of i-TSAB depends on tabu search.

The remainder of this chapter is devoted to testing this hypothesis. In Section 11.1,
through the introduction of a common framework, we define variations of our three
meta-heuristics (MCMCN5, I-JARN5, and TSNS-A) that employ both re-intensification
and diversification. The framework is significantly more straightforward than i-TSAB
and allows us to test hypotheses related to whether the full complexity of the i-TSAB
algorithm is integral to its superior performance. The comparative methodology is de-
scribed in Section 11.2, and the experimental results are documented and analyzed in
Section 11.3. The key results of the chapter, along with implications of the experimental
results, are discussed in Section 11.4.

11.1 A Generic Framework for Re-Intensification and
Diversification

We now introduce a general framework that enhances a given core meta-heuristic (e.g.,
tabu search or metropolis sampling) with re-intensification and diversification. We de-
note this framework by i-RDLS, for iterated Reintensification and Diversification for
Local Search. Much of the terminology and algorithmic details underlying i-RDLS are
borrowed from Nowicki and Smutnicki [NS03] and are not reproduced here. i-RDLS
is a simplified version of Nowicki and Smutnicki’s i-TSAB algorithm. The primary
difference is that search in i-RDLS is not hierarchical, in that diversification and re-
intensification are applied at the same level. As with i-TSAB, search in i-RDLS pro-
ceeds in two phases. In the first phase, a procedure denoted RDLS, which is analogous
to TSAB, is initiated from random local optima to generate the initial pool of elite so-
lutions E. Search in the second phase proceeds through a series of iterations in which
diversification and re-intensification procedures are applied to solutions in E, with equal
probability in any given iteration. When re-intensification is performed, RDLS is initi-
ated using a random solution e ∈ E; if a solution e′ with a lower makespan than e is
located, then e′ replaces e in E. When diversification is performed, two distinct solu-
tions a, b ∈ E are selected at random. A path relinking procedure described in [NS03] is

195

Algorithm Problem Size Total Iterations Xa Xb

i-MCMCN5 15 × 15 111M 44.4K 11.1K
i-MCMCN5 20 × 15 127M 101.6K 17.8K
i-MCMCN5 20 × 20 143M 114.4K 20.02K
i-MCMCN5 30 × 15 151M 120.8K 21.14K
i-MCMCN5 30 × 20 188M 150.4K 26.32K
i-I-JARN5 15 × 15 20M 8K 1.6K
i-I-JARN5 20 × 15 22M 17.6K 3.1K
i-I-JARN5 20 × 20 22M 17.6K 3.1K
i-I-JARN5 30 × 15 27.5M 22K 3.9K
i-I-JARN5 30 × 20 27M 21.6K 3.8K

Table 11.1: Parameter settings for trials involving i-MCMCN5 and i-I-JARN5.

applied to a and b to generate a new solution c that is roughly equidistant from both a and
b. RDLS is then initiated from c; if the best solution located c′ has a lower makespan than
either a or b, then c′ replaces that solution in E. Search proceeds until a user-specified
number of iterations of the core RDLS algorithm have been performed.

The RDLS algorithm initially executes a core meta-heuristic M from a given initial
solution sinit. At least Xb iterations of M are performed from sinit. If a solution s′ with
Cmax(s

′) < Cmax(sbest) is located, then at least Xa additional iterations are performed
from s′. The idea is to continue to execute M as long as improving solutions are be-
ing located. Using i-RDLS, we instantiate extensions to the N5-based meta-heuristics
introduced in Chapters 7 through 9. The resulting algorithms are denoted i-MCMCN5,
i-I-JARN5, and i-TSNS-A. We only investigate i-I-JARN5 with k = 1 and i-MCMCN5 with
UAG = 0.10.

11.2 Comparing the Performance of the Enhanced
Meta-Heuristics: Methodology

The performance of all four algorithms is compared using a subset of Taillard’s random
JSP benchmark instances: ta01 through ta50. Ten trials of each algorithm are exe-
cuted on each instance. All of the larger rectangular instances (ta51 through 80) can
be quickly solved to optimality by the core variants of these algorithms (i.e., those not
employing re-intensification and diversification) and are therefore not considered in this
analysis. Performance is quantified in terms of both (1) the best solution found during
any of the 10 trials and (2) the median solution quality obtained over the 10 trials. In
both cases, we measure the instance MRE (see Section 8.6.5) relative to either the opti-
mal makespan, if known, or the largest known lower bound. The MRE of the makespan
of the best solution found in any trial by algorithm X is denoted X b, while the MRE of
the median makespan over the 10 trials is denoted Xm.

Given the similarities between i-RDLS and i-TSAB, we use the following parameter
settings, borrowed directly from Nowicki and Smutnicki [NS03]. We made no attempt

196

Instance Best i-MCMCb

N5 i-MCMCm

N5 i-I-JARb

N5 i-I-JARm

N5 i-TSb

NS-A i-TSm

NS-A i-TSAB
Group Known
ta01-10 0.00 0.03 0.11 0.05 0.07 0.04 0.14 0.11
ta11-20 2.33 2.52 2.55 2.57 2.80 2.58 2.78 2.81
ta21-30 5.45 5.66 5.70 5.64 5.81 5.58 5.82 5.68
ta31-40 0.52 0.69 0.73 0.74 0.85 0.66 0.84 0.78
ta41-50 4.12 4.38 4.6 4.43 4.89 4.35 4.74 4.7

Table 11.2: Mean relative error (MRE) of various algorithms on Taillard’s difficult
benchmark instances.

to further modify or optimize these values, primarily due to the computational cost of
performing additional experiments. In all of our experiments, we let |E| = 8. To
enable direct comparison with Nowicki and Smutnicki’s reported results for i-TSAB, we
execute each trial for an equivalent of 50 million iterations of TSNS-A. The values Xa and
Xb are also specified relative to TSNS-A, given as follows. For 15×15 problem instances,
we let Xa=20,000 and Xb=4,000. In trials involving other instances, Xa=40,000 and
Xb=7,000. Although computable from the multipliers presented in Tables 8.3 and 9.5,
for completeness, we show the resulting CPU per-iteration multipliers in Table 11.1.

11.3 Comparing the Performance of the Enhanced
Meta-Heuristics: Results

To simplify the presentation, only the mean MRE on each set of identically-sized in-
stances are described. The performance results for each of our algorithms are shown
in Table 11.2, in addition to results for two baselines: i-TSAB and the MRE for the
best-known (or optimal, if available) solutions, i.e., the makespan of the best solution
located to date by any of the myriad algorithms developed for the JSP. Because the re-
sults are derived from a single trial (as reported by Nowicki and Smutnicki [NS03]), the
performance of i-TSAB is comparable only to the median performance of each of our
three algorithms, i.e., Xm where X denotes one of our three algorithms. Comparing the
performance of i-TSAB with of i-TSNS-A, we observe minimal differences: the median
solution quality obtained by i-TSNS-A is slightly better than that of the single trial of
i-TSAB on the 20 × 20 instances and slightly worse on the remaining instances. In par-
ticular, the difference in the MRE is only 0.04% and 0.06% for 30×20 and 30×15 prob-
lem sets, respectively – which contain some of the most difficult benchmark instances
available. The largest difference is only 0.14%, which occurs for the 20 × 20 problem
set. Unfortunately, it is impossible to assess whether the differences are statistically sig-
nificant, given the results of a single trial of i-TSAB. At worst, we can conclude that
i-TSNS-A only slightly underperforms i-TSAB. A more realistic assessment attributes the
differences to the use of a single trial of i-TSAB, such that the performance of i-TSAB
and i-TSNS-A are likely indistinguishable. In support of this view, we note that, in initial
experimentation, individual trials of i-TSNS-A yielded smaller differences in MRE than

197

that observed for the median of multiple trials.
Next, we compare the performance of the remaining two algorithms with that of i-

TSAB, again using the median solution quality of the former as the basis of comparison.
The solutions obtained by i-TSAB are slightly better than the median solution quality
obtained by i-I-JARN5. For all but the largest problem set, the maximum difference
is 0.13%. The underperformance grows to 0.19% on the 30 × 20 problem set, which
is consistent with the fact that I-JARN5 on average slightly underperforms TSNS-A. In
contrast, the median solution quality obtained by MCMCm

N5 is generally superior to that
of i-TSAB; the sole exception occurs for the 20 × 20 instances, where the difference
is only 0.02%. As with i-TSNS-A, i-I-JARN5, at worst, only slightly underperforms i-
TSAB. Although it is tempting to conclude that MCMCN5 outperforms i-TSAB, the lack
of statistics associated with i-TSAB prevents this conclusion; however, we can conclude
that MCMCN5 is competitive with i-TSAB.

Finally, we analyze the MRE of the best solutions located by any of our algorithms.
As indicated above, the comparison is not strictly fair: for any given fixed algorithm,
the best solution obtained by multiple trials will always be no more than the median
solution quality. For all problem sets, MRE of the best solutions obtained by all of our
algorithms is lower than that of i-TSAB. While not surprising, this result is important, as
it is consistent with the hypothesis that the median performance of all four algorithms
is effectively indistinguishable. Interestingly, although the median performance of i-
TSNS-A was slightly inferior to that of i-MCMCN5, the former locates the best overall
solutions. Although our goal was not to establish a new baseline for the state-of-the-art,
we do observe that the MRE of the best solutions obtained by i-TSNS-A is the lowest
reported to date. Finally, we observe that the MRE of the best solutions located by
any of our algorithms is still as much as 0.23% higher than the that of the best-known
solutions; this is despite the fact that four new best-known solutions (which are not
included in the computation of the MRE reported in the second column of Table 11.2)
were located. Clearly, a status of state-of-the-art does not guarantee that the algorithm
cannot be occasionally outperformed on individual instances by algorithms that are, on
average, judged inferior.

11.4 What Makes the State-of-the-Art the State-of-the-
Art?

The results presented above provide strong evidence for two general conclusions regard-
ing the behavior of state-of-the-art local search algorithms for the JSP. First, it does not
appear that a core tabu search meta-heuristic is required to achieve state-of-the-art per-
formance on the JSP. Under controlled experimental conditions, we showed that variants
of iterated local search and Metropolis sampling can achieve equivalently strong perfor-
mance. However, two components do appear to be required to achieve state-of-the-art
performance: the combination of re-intensification with diversification and a restricted

198

move operator, i.e., N5 . Since the introduction of Taillard’s algorithm in the mid-1990s,
the most effective algorithms for the JSP have consistently, with few exceptions, been
based on variants of tabu search. The results presented above indicate that the promi-
nent status of tabu search is largely unjustified. In contrast, our results reinforce, via
direct experimentation, the idea that the analysis and improvement of long-term mem-
ory mechanisms should be emphasized in future research on meta-heuristics.

Second, although of less significance, our results also suggest that Nowicki and
Smutnicki’s i-TSAB algorithm may be simplified somewhat without sacrificing per-
formance. In particular, the algorithmic framework described in Section 11.1 elimi-
nates both the multi-level search employed by i-TSAB and various less significant fea-
tures. Although not pursued here, the modifications simplify the analysis of i-TSAB-
like algorithms and support comparison of the effect of different relative levels of re-
intensification and diversification on performance.

199

Chapter 12

Summary, Implications, and Future
Research Directions

The majority of research on local search algorithms is devoted to the development of
newer, better-performing variants. In terms of research priorities, scientific modeling
and analysis of existing algorithms runs a distant second. This disparity has had a
significant adverse impact on the local search community. In particular, the lack of
fundamental models and theories has led to rampant speculation regarding the benefits
and/or behavior of particular local search algorithms and has allowed ad-hoc develop-
ment paradigms to persist, likely impeding advances in the field. The research presented
in this thesis serves as an important first step toward rectifying the current situation.

Using the JSP as a test-bed, we developed empirical models of several well-
known and widely-studied algorithms, specifically tabu search, iterated local search, and
Metropolis sampling. The resulting models explicitly capture the key behavioral char-
acteristics of these algorithms and additionally enable us to disprove many conjectures
reported in the literature on local search. Ultimately, scientific models are judged on
their ability to both account for observations beyond their original scope and to generate
new behavioral hypotheses. The models we develop satisfy both criteria. Our models are
both consistent with and provide explanations for a number of previously unexplained
observations regarding problem difficulty for local search in the JSP. Additionally, in-
dividual models and comparison of different models suggest many novel hypotheses
regarding the behavior of local search algorithms, which are confirmed through subse-
quent experimentation. The broad explanatory and predictive (in the sense of identifying
new behavioral characteristics) power of our models reinforces their potential to serve
as the basis for a broader theory of local search.

In the remainder of this chapter, we summarize our key contributions and discuss
future research directions. Our discussion is intentionally high-level, with a goal of
placing the results in a broader context. Various results concerning specific algorithms –
despite their importance and relevance – are not recounted and are detailed in Chapters 6
through 9.

200

12.1 Cost Models of Local Search

For any local search algorithm, the primary behavior of interest is the cost required to
locate optimal solutions to problem instances, i.e., problem difficulty. Consequently, our
objective in modeling local search algorithms for the JSP is to account for the variability
in problem difficulty observed within ensembles of problem instances. The core contri-
bution of this thesis is a set of cost models of local search, which account for nearly all of
the variability in problem difficulty over a range of different types of problem instance.

With relatively few exceptions, local search algorithms are designed to achieve a
single over-riding objective: to either escape or altogether avoid local optima. Little at-
tention is generally paid to the higher-level search strategy. In the absence of an explicit
global search strategy, a reasonable assumption is that local search algorithms simply
perform variations of random walks, e.g., over the sub-space of local optima. Under the
random walk assumption, problem difficulty is essentially a function of the size of the
search space. However, the number of optimal solutions also plays a role; the presence
of multiple optimal solutions increases the probability that local search need not search
the entire space before encountering one. Consequently, we hypothesize that problem
difficulty for local search is a function of the effective size of the search space, i.e., after
taking into account the number and density of optimal solutions.

We confirm this hypothesis by developing a series of cost models, which explicitly
capture the run-time dynamics of local search. Our models indicate that the global
strategies underlying the local search algorithms we consider are simple variations of
a one-dimensional random walk, e.g., of the type commonly associated with the well-
known Gambler’s Ruin problem. Further, local search is biased toward solutions that are
roughly equi-distant from the nearest optimal solution and solutions that are maximally
distant from the nearest optimal solution. An analysis of the structural characteristics of
the resulting cost models indicates that problem difficulty for local search is a function
of (1) the effective size of the search space, as originally hypothesized, and (2) the
strength of the search bias toward solutions that are distant from optimal solutions. This
inference is supported by the near-perfect accuracy of the cost models, which account
for over 96% of the variability in problem difficulty in the worst case.

The availability of accurate cost models also enables us to dispel many conjectures
regarding the behavior and/or benefits of particular local search algorithms. The results
may be viewed as disappointing, in that a number of well-known local search algorithms
are effectively behaving as simple random walks. However, this result is also intriguing,
as these strategies or simple variations of these strategies are able to yield excellent and
state-of-the-art performance – even in comparison to a broad range of other algorithmic
paradigms.

201

12.2 The Explanatory Power of Cost Models

The explanatory power of the cost models we developed extends beyond the primary
behavior of interest: variability in the cost required to locate optimal solutions. The lit-
erature on the JSP documents a wide range of observations relating to problem difficulty
and algorithm behavior for local search. To date, few scientific explanations for these
phenomena have been put forth. In contrast, our cost models are both entirely consistent
with and provide concrete explanations for these phenomena. The ability to account for
behaviors beyond their original intent strongly reinforces the correctness and utility of
the proposed cost models. The specific observations and the corresponding explanations
are as follows:

• The relative difficulty of square versus rectangular JSPs. Empirical evidence in-
dicates that ’square’ JSPs (i.e., n/m ≈ 1) are generally harder than ’rectangular’
JSPs (i.e., n/m � 1). Further, JSPs generally become easier with increases in
n/m, despite the corresponding explosion in the size of the search space. We
observe that as n/m → ∞, the number of optimal solutions rapidly increases.
The increase in the number of optimal solutions offsets the increase in the size of
the search space, such that the net result is a decrease in the size of the effective
search space. Consequently, differences in the relative difficulty of square versus
rectangular JSPs are simply due to differences in the effective sizes of the search
spaces.

• The relative difficulty of random versus structured JSPs. The presence of particu-
lar types of structure in the job routing orders of problem instances has a dramatic
influence on problem difficulty in the JSP. Specifically, workflow JSPs are known
to be significantly more difficult than random JSPs, while flowshop JSPs are gen-
erally more difficult than workflow JSPs. As is the case with square versus rectan-
gular JSPs, the differences in difficulty are due to differences in the effective size
of the search space; flowshop and workflow JSPs typically possess fewer optimal
solutions than random JSPs, while the search spaces are significantly larger.

• The algorithm-independent nature of problem difficulty. The relative difficulty of
different JSPs benchmark instances tends to be somewhat stable. In other words,
instances that are difficult (easy) for a particular local search algorithm tend to
be difficult (easy) for most local search algorithms. This observation can be ex-
plained by noting that (1) the effective size of the search space is largely indepen-
dent of the meta-heuristic employed by a local search algorithm (assuming a fixed
move operator) and (2) problem difficulty is a function of the effective size of the
search space for a wide range of local search algorithms.

• Dramatic changes in the difficulty of locating sub-optimal solutions with nearly
identical fitness. Consider sub-optimal solutions with makespans X − 1 and X

202

greater than the optimal makespan. Several researchers have noted that the dif-
ficulty of locating the respective solutions can differ dramatically, often by an
order of magnitude or more, despite nearly identical fitness. Simple extensions
of our cost models fully account for the variability in the cost required to locate
sub-optimal solutions to problem instances. Our analysis indicates that large dif-
ferences in the difficulty of locating sub-optimal solutions with makespans X − 1
and X greater than the optimal makespan are simply due to differences in the
effective size of the search spaces containing the sub-optimal solutions.

Our cost models demonstrate that many local search algorithms are simple variations
of straightforward random walks and, as a consequence, the cost of locating optimal
solutions is simply a function of the effective size of the search space. The results
presented above strongly reinforce this view: changes in the effective search space size
account for a wide range of phenomena relating to both problem difficulty and local
algorithm behavior in the JSP.

12.3 The Predictive Power of Cost Models

Accounting for existing behavioral observations is only the first step in developing and
validating powerful models (i.e., a theory) of local search. The ultimate test of a model
lies in its ability to predict the existence of new, previously unobserved behavioral phe-
nomena. Such predictions are key as they expose potential deficiencies, whose cor-
rection leads to more accurate models, by subjecting the model to falsifiability testing.
Analyses of our cost models raise several novel hypotheses regarding the behavior of
local search algorithms for the JSP. Subsequent empirical testing confirms each of these
hypotheses, providing exceptionally strong evidence as to the validity and generality of
our cost models. The specific hypotheses and their implications are as follows:

• Heuristic initialization is unlikely to reduce the cost required by local search
to locate optimal solutions. Several researchers have argued that heuristically
constructed initial solutions can significantly improve the performance of local
search. However, our cost models indicate that unless the initial solution is ex-
tremely close to the nearest optimal solution, the difficulty of locating optimal
solutions is largely invariant. In practice, methods for constructing high-quality
initial solutions yield solutions that are distant from optimal solutions, and, con-
sequently, have at best negligible impact on the cost of locating optimal solutions.

• The performance of different local search algorithms is largely indistinguishable.
The cost models of different local search algorithms exhibit very strong similari-
ties. Specifically, all of the algorithms we considered can be modeled as straight-
forward variations of a random walk, with qualitatively identical biases and quan-
titatively similar dimensions. Given such strong similarities, we would a priori

203

expect no algorithm to significantly outperform another. Experimental evidence
verifies this prediction, demonstrating minimal to non-existent differences in the
performance of tabu search, iterated local search, and Metropolis sampling. This
result is extremely surprising given the recent dominance of tabu search in the
JSP literature, in particular, in comparative studies of local search algorithm per-
formance.

• State-of-the-art performance in local search algorithms for the JSP requires in-
tensification and diversification, but not tabu search. For the last 10 years, tabu
search algorithms have consistently provided state-of-the-art performance on the
JSP. Specifically, Nowicki and Smutnicki have introduced a series of tabu search
algorithms that make extensive use of long-term memory mechanisms in addition
to the core tabu search meta-heuristic. The underlying similarity of tabu search,
iterated local search, and Metropolis sampling suggest that tabu search is not an
integral feature of these algorithms. This hypothesis is confirmed through exper-
imentation, which further indicates that long-term memory mechanisms equally
improve the performance of all three meta-heuristics.

12.4 Implications and Future Research Directions

Although the research presented in this thesis represents an important first step toward a
theory of local search, significant work remains.

We have yet to fully explore the implications of our cost models for the design of
new local search algorithms. Specifically, our results provide a clear design objective: to
minimize the bias that guides search away from optimal solutions. Without fundamental
changes in the move operator and/or the fitness function, the effective size of the search
space - and consequently problem difficulty - is unlikely to be changed. However, it may
still be possible to reduce this bias and, therefore, improve search efficacy through novel
uses of short-term and long-term memory. Further, it now appears feasible to delineate
local search algorithms based on the strength and qualitative nature of their search bias,
rather than on superficial algorithmic characteristics.

Our analysis of random walk behavior indicates that the bias away from optimal so-
lutions is due in large part to the representation used to encode solutions, i.e., the binary
hypercube. The relationship between representation and search efficiency is, in general,
poorly understood. However, our results suggest that the most effective representations
are those that minimize the bias away from optimal solutions, leading to two key open
research questions: (1) Do different representations induce either qualitatively or quan-
titatively different biases? and (2) How do we design representations to minimize search
bias? The identification of the unexpectedly strong relationship between representation
and problem difficulty also provides a metric by which different representations can be
judged and should ultimately lead to the design of more efficient representations.

204

From the standpoint of accounting for variability in problem difficulty, the cost mod-
els developed in this thesis are clearly descriptive. The reason is straightforward: the
information upon which the models are based, e.g., the set of optimal solutions to a
problem instance, is intractable to obtain in practice. However, by clearly identifying
those factors responsible for problem difficulty, our models provide a basis from which
researchers can begin to address the question of whether it is possible to predict problem
difficulty, and if so, to characterize the trade-off in accuracy and computational effort.

Moving beyond the JSP, there is the obvious issue of generalization: Do similar
cost models and the associated insights hold for other local search algorithms and other
combinatorial optimization problems? The mechanics of testing the generalizability of
our models is clearly straightforward, if not tedious. However, such experimentation
should provide key insights into the behavior of local search algorithms for other well-
known NP -hard problems and lay the groundwork for a more general theory of local
search. Further, because local search algorithms for other NP -hard problems often em-
ploy substantially different representations than those found in local search algorithms
for the JSP, such studies should also provide insight into the relationship between repre-
sentation and search efficiency.

Finally, significant questions remain as to the potential impact of problem struc-
ture on the qualitative nature and overall accuracy of our cost models. Initially devel-
oped using random JSPs, our models do generalize to specific types of structured JSPs.
Even these relatively minor structural changes induced qualitatively different transition
probabilities than those observed for random JSPs, although the overall model structure
and accuracy were not significantly impacted. However, real-world problems exhibit a
much richer range of structural characteristics than the problems we considered. Con-
sequently, it seems at least possible, if not likely, that some real-world problems may
induce radically different run-time dynamics for local search and, by inference, qualita-
tively different cost models.

12.5 Final Thoughts

Despite the high level of research activity in local search over the last decade, compar-
atively little progress has been made in the theoretical foundations of the field. Most
research focuses either on the application of existing algorithms to new problems or the
development of new algorithms. Ideas and techniques are routinely re-introduced and
re-invented, and it is often difficult to assess the novelty and/or contribution of new re-
search. Recently, particularly within the Artificial Intelligence community, the roots of
a theory of local search have begun to emerge. The models developed in this thesis build
on this initial research, culminating in a major advance toward a more general theory of
local search. Specifically, we now better understand the mechanisms underlying these
algorithms and how these mechanisms give rise to various observed phenomena. Model
generalization to both other problems and a wider range of local search algorithms is

205

a significant outstanding challenge. Similarly, the implications of these models for al-
gorithm design are largely unknown. Even with inefficient and ad-hoc development
methodologies, researchers have continued to make significant advances in the effec-
tiveness of local search algorithms. By developing a generalized theory of local search,
it should be possible to more precisely focus future algorithmic research and, as a con-
sequence, significantly accelerate the rate of advances in the field.

206

REFERENCES

[ABZ88] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for
job-shop scheduling. Management Science, 34(3):391–401, 1988.

[AC91] D. Applegate and W. Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 3(2):149–156, 1991.

[AGKS00] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating satisfi-
able problem instances. In Kenneth Ford, editor, Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence (AAAI-00), pages
256–261. AAAI/MIT Press, 2000.

[AK89] E.H.L. Aarts and J.H.M. Korst. Simulated Annealing and Boltzmann Ma-
chines. Wiley, 1989.

[AvL85] E.H.L. Aarts and P.J.M. van Laarhoven. A new polynomial-time cool-
ing schedule. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 206–208, 1985.

[AvLLU94] E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra, and N.L.J. Ulder. A
computational study of local search algorithms for job shop scheduling.
ORSA Journal on Computing, 6(2):118–125, 1994.

[Bau86] E. B. Baum. Iterated descent: A better algorithm for local search in com-
binatorial optimization problems. Unpublished Manuscript, 1986.

[BC95] J.W. Barnes and J.B. Chambers. Solving the job shop scheduling problem
with tabu search. IIE Transactions, 27:257–263, 1995.

[BDP96] J. Blażewicz, W. Domschke, and E. Pesch. The job shop scheduling prob-
lem: Conventional and new solution techniques. European Journal of
Operational Research, 93:1–33, 1996.

[Bea90] J.E. Beasley. OR-library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, 1990.

207

[BF00] J.C. Beck and M.S. Fox. Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artificial Intelligence, 117:31–
81, 2000.

[BGS97] J.R. Beveridge, C.R. Graves, and J. Steinborn. Comparing random starts
local search with key feature matching. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI-97), 1997.

[BK94] K.D. Boese and A.B. Kahng. Best-so-far vs. where-you-are: Implications
for optimal finite-time annealing. Systems and Control Letters, 22(1):71–
80, January 1994.

[Bru01] P. Brucker. Scheduling Algorithms. Springer Verlag, 3rd edition, 2001.

[BSE+96] J. Blazewicz, G. Schmidt, K.H. Ecker, E. Pesch, and J. Weglarz. Schedul-
ing Computer and Manufacturing Processes. Springer Verlag, 1996.

[BT94] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on
Computing, 6(2):128–140, 1994.

[BV95] E. Balas and A. Vazacopoulos. Guided local search with shifting bottle-
neck for job-shop scheduling. Technical Report MSRR-609, Department
of Management Science, Carnegie Mellon University, 1995.

[BV98] E. Balas and A. Vazacopoulos. Guided local search with shifting bot-
tleneck for job-shop scheduling. Management Science, 44(2):262–275,
1998.

[Car82] J. Carlier. The one-machine sequencing problem. European Journal of
Operational Research, 26:42–47, 1982.

[CB96] J.B. Chambers and J.W. Barnes. New tabu search results for the job shop
scheduling problem. Technical Report ORP96-10, Graduate Program in
Operations Research and Industrial Engineering, The University of Texas
at Austin, 1996.

[CFG+96] D.A. Clark, J. Frank, I.P. Gent, E. MacIntyre, N. Tomov, and T. Walsh.
Local search and the number of solutions. In Eugene C. Freuder, editor,
Proceedings of the Second International Conference on Principles and
Practices of Constraint Programming (CP-96), pages 119–133. Springer-
Verlag, 1996.

[CKT91] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the Really hard
problems are. In Proceedings of the Twelfth International Joint Confer-
ence on Artificial Intelligence (IJCAI-91), pages 331–337, 1991.

208

[Coh95] P.R. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press,
1995.

[C8̌5] V. Cěrny. A thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory
and Applications, 45:41–51, 1985.

[DMU98] E. Demirkol, S.V. Mehta, and R. Uzsoy. Benchmarks for shop schedul-
ing problems. European Journal of Operational Research, 109:137–141,
1998.

[DPS92] R.A. Dudek, S.S. Panwalker, and M.L. Smith. The lessons of flowshop
scheduling research. Operations Research, 40(1):7–13, 1992.

[DT93] M. Dell’Amico and M. Trubian. Applying tabu-search to the job-shop
scheduling problem. Annals of Operations Research, 41:231–252, 1993.

[Fan94] H. Fang. Genetic Algorithms in Timetabling and Scheduling. PhD thesis,
Department of Artificial Intelligence, University of Edinburgh, 1994.

[FCS97] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: Local search
topology. Journal of Artificial Intelligence Research, 7:249–281, 1997.

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications,
volume 1. John Wiley and Sons, third edition, 1968.

[FF94] C. Fleurent and J.A. Ferland. Genetic hybrids for the quadratic assignment
problem. DIMACS Series in Mathematics and Theoretical Computer Sci-
ence, 16:173–187, 1994.

[Fre82] S. French. Sequencing and Scheduling – An Introduction to the Mathe-
matics of the Job-Shop. Ellis Horwood, John-Wiley & Sons, 1982.

[FT63] H. Fisher and G.L. Thompson. Probabilistic Learning Combinations of
Local Job-Shop Scheduling Rules, chapter 15, pages 225–251. Prentice-
Hall, Englewood Cliffs, New Jersey, 1963.

[FT88] S. Y. Foo and Y. Takefuji. Stochastic neural networks for solving job-shop
scheduling: Part 1. problem representation. In Bart Kosko, editor, IEEE
International Conference on Neural Networks, volume 2, pages 275–282,
1988.

[Gan19] H. L. Gantt. Efficiency and democracy. In Transactions of the American
Society of Mechanical Engineers, volume 40, pages 799–808, 1919.

209

[GJ79] M.S. Garey and D.S. Johnson. Computers And Intractability: A Guide
To The Theory Of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[GJS76] M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117–129,
1976.

[GL97] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, MA, 1997.

[Glo86] F. Glover. Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 5:533–549, 1986.

[Glo89] F. Glover. Tabu search – Part I. ORSA Journal on Computing, 1(3):190–
206, 1989.

[Glo90] F. Glover. Tabu search – Part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[GSK98] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search
through randomization. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-98), pages 431–437, 1998.

[GT60] B. Giffler and G. L. Thompson. Algorithms for solving production
scheduling problems. Operations Research, 8:487–503, 1960.

[GW94] I.P. Gent and T. Walsh. Easy problems are sometimes hard. Artificial
Intelligence, 70(1–2):335–345, 1994.

[HG95] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI-95), 1995.

[HHW96] T. Hogg, B.A. Huberman, and C.P. Williams. Special issue on frontiers in
problem soling: Phase transitions and complexity. Artificial Intelligence,
81(1–2), 1996.

[Hoo94] J.N. Hooker. Needed: An empirical science of algorithms. Operations
Research, 42:201–212, 1994.

[Hoo95] J.N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuris-
tics, 1:33–42, 1995.

[Hoo98] H.H. Hoos. Stochastic Local Search - Methods, Models, Applications.
PhD thesis, Darmstadt University of Technology, 1998.

210

[Hoo02] H.H. Hoos. A mixture-model for the behaviour of sls algorithms for SAT.
In Proceedings of the Eighteenth National Conference on Artificial Intel-
ligence (AAAI-02), pages 661–667. AAAI Press/The MIT Press, 2002.

[IR92] L. Ingber and B. E. Rosen. Genetic algorithms and very fast simu-
lated reannealing: A comparison. Mathematical and Computer Modeling,
16(11):87–100, 1992.

[Jai98] A.S. Jain. A Multi-Level Hybrid Framework for the Deterministic Job-
Shop Scheduling Problem. PhD thesis, University of Dundee, 1998.

[JAMS89] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: An experimental evaluation; Part 1, graph
partitioning. Operations Research, 37(6):865–891, 1989.

[JAMS91] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: An experimental evaluation; Part 2, graph
coloring and number partitioning. Operations Research, 39(3):378–406,
1991.

[JF95] T. Jones and S. Forrest. Fitness distance correlation as a measure of prob-
lem difficulty. In L.J. Eschelman, editor, Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages 184–192. Morgan Kauf-
mann, 1995.

[JM97] D.S. Johnson and L. A. McGeoch. The traveling salesman problem: A
case study in local optimization. In Local Search in Optimization, pages
215–310. John Wiley and Sons, 1997.

[JM99] A.S. Jain and S. Meeran. Deterministic job-shop scheduling: Past,
present, and future. European Journal of Operational Research, 113:390–
434, 1999.

[Jon95] T. Jones. Evolutionary Algorithms, Fitness Landscapes, and Search. PhD
thesis, Department of Computer Science, University of New Mexico,
1995.

[JR93] T. Jones and G. Rawlins. Reverse hillclimbing, genetic algorithms and
the busy beaver problem. In Stephanie Forrest, editor, Proceedings of
the Fifth International Conference on Genetic Algorithms, pages 70–75.
Morgan Kaufmann, 1993.

[JRM00] A.S. Jain, B. Rangaswamy, and S. Meeran. New and ”stronger” job-shop
neighborhoods: A focus on the method of Nowicki and Smutnicki(1996).
Journal of Heuristics, 6:457–480, 2000.

211

[Kau93] S.A. Kauffman. The Origins of Order. Oxford University Press, 1993.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[Kol99] M. Kolonko. Some new results on simulated annealing applied to the job
shop scheduling problem. European Journal of Operational Research,
113:123–136, 1999.

[KS94] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of
random boolean expressions. Science, 264:1297–1301, 1994.

[KT85] S. Kirkpatrick and G. Toulouse. Configuration space analysis of traveling
salesman problems. Journal de Physique, 46:1277–1292, 1985.

[Law84] S.R. Lawrence. Resource-constrained project scheduling: An experimen-
tal investigation of heuristic scheduling techniques. Technical report,
Graduate School of Industrial Administration, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, 1984.

[LB00] D.P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Sta-
tistical Physics. Cambridge University Press, 2000.

[Lho93] O. Lhomme. Consistency techniques for numeric CSPs. In Proceedings of
Thirteen International Joint Conference on Artificial Intelligence (IJCAI-
93), volume 1, pages 232–238, 1993.

[LK73] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the trav-
eling salesman problem. Operations Research, 21:498–516, 1973.

[LMS03] H.R. Lourenço, O. Martin, and T. Stuützle. Iterated local search. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics.
Kluwer Academic, 2003.

[Lou93] H.R. Lourenço. A Computational Study of the Job-Shop and the Flow-
Shop Scheduling Problems. PhD thesis, School of Operations Research
and Industrial Engineering, Cornell University, 1993.

[Lou95] H.R. Lourenço. Job-shop scheduling: Computational study of local search
and large-step optimization methods. European Journal of Operational
Research, 83:347–364, 1995.

[LZ96] H. R. Lourenço and M. Zwijnenburg. Combining the large-step optimiza-
tion with tabu search: Application to the job-shop scheduling problem. In
I. H. Osman and J. P. Kelley, editors, Meta-Heuristics: Theory and Appli-
cations, pages 219–236. Kluwer Academic Publishers, 1996.

212

[M9̈0] H. Mühlenbein. Evolution in time and space - the parallel genetic algo-
rithm. In Foundations of Genetic Algorithms - 1, pages 316–337. Morgan
Kaufmann, 1990.

[Mat96] D.C. Mattfeld. Evolutionary Search and the Job Shop. Physica-Verlag,
Heidelberg, 1996.

[MBK99] D.C. Mattfeld, C. Bierwirth, and H. Kopfer. A search space analysis of the
job shop scheduling problem. Annals of Operations Research, 86:441–
453, 199.

[MGSK88] H. Mühlenbein, M. Georges-Schleuter, and O. Krämer. Evolution algo-
rithms in combinatorial optimization. Parallel Computing, 7:65–85, 1988.

[Mit98] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[MOF91] O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the
traveling salesman problem. Complex Systems, 5(3):299–326, 1991.

[MP86] M. Mezard and G. Parisi. A replica analysis of the traveling salesman
problem. Journal de Physique, 47:1285–1296, 1986.

[MRR+53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equations of state calculations by fast computing machines.
Journal of Chemical Physics, 21:1087–1091, 1953.

[MSB88] K.N. McKay, F.R. Safayeni, and J.A. Buzacott. Job-shop scheduling the-
ory: What is relevant? Interfaces, 18(4):84–90, 1988.

[MSS88] H. Matsuo, C.J. Suh, and R.S. Sullivan. A controlled search simulated
annealing method for the general job-shop scheduling problem. Working
Paper 03-04-88, Graduate School of Business, The University of Texas at
Austin, Austin, Texas, USA, 1988.

[MZK+98] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyan-
sky. Determining computational complexity for characteristic ‘phase tran-
sitions’. Nature, 400:133–137, 1998.

[NS96] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job
shop problem. Management Science, 42(6):797–813, 1996.

[NS01] E. Nowicki and C. Smutnicki. Some new ideas in TS for job-shop schedul-
ing. Technical Report 50/01, Institute of Engineering Cybernetics, Wro-
claw University of Technology, Poland, 2001.

213

[NS02] E. Nowicki and C. Smutnicki. Some new tools to solve the job shop prob-
lem. Technical Report 60/02, Institute of Engineering Cybernetics, Wro-
claw University of Technology, Poland, 2002.

[NS03] E. Nowicki and C. Smutnicki. New algorithm for the job shop problem.
Technical report, Institute of Engineering Cybernetics, Wroclaw Univer-
sity of Technology, Poland, 2003.

[Nui94] W.P.M. Nuijten. Time and Resource Constrained Scheduling: A Con-
straint Satisfaction Approach. PhD thesis, Department of Mathematics
and Computing Science, Eindhoven University of Technology, 1994.

[Ott93] R.L. Ott. An Introduction to Statistical Methods and Data Analysis.
Duxbury Press, Belmont, California, 1993.

[Par97] A.J. Parkes. Clustering at the phase transition. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI-97), pages
340–345. AAAI/MIT Press, 1997.

[PDS73] S.S. Panwalker, R.A. Dudek, and M.L. Smith. Sequencing research and
the industrial scheduling problem. In Proceedings of Symposium on The-
ory of Scheduling and its Applications, pages 29–38. Springer-Verlag,
New York, 1973.

[Pin01] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall,
2nd edition, 2001.

[PM00] F. Pezzella and E. Merelli. A tabu search method guided by shifting bot-
tleneck for the job shop scheduling problem. European Journal of Opera-
tional Research, 120:297–310, 2000.

[Pro94] P. Prosser. Binary constraint satisfaction problems: Some are harder than
others. In Proceedings of the 11th European Conference on Artificial In-
telligence (ECAI-94), pages 95–99, 1994.

[PSW91] C.N. Potts, D.B. Shmoys, and D.P. Williamson. Permutation vs. non-
permutation flow shop schedules. Operations Research Letters, 10:281–
284, 1991.

[Ree98] C.R. Reeves. Landscapes, operators and heuristic search. Annals of Op-
erations Research, 86:473–490, 1998.

[RS01] C.M. Riedys and P.F. Stadler. Combinatorial landscapes. Technical Re-
port 01-03-014, The Santa Fe Institute, 2001.

214

[RW97] S. Rana and L.D. Whitley. Representation, search, and genetic algorithms.
In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97). AAAI Press/MIT Press, 1997.

[RY98] C.R. Reeves and T. Yamada. Genetic algorithms, path relinking, and
the flowshop sequencing problem. Evolutionary Computation, 6:45–60,
1998.

[SC96] R. Schrag and J. M. Crawford. Implicates and prime implications in ran-
dom 3SAT. Artificial Intelligence, 88:199–222, 1996.

[SFM+96] J. Schneider, C. Froschhammer, I. Morgernstern, T. Husslein, and J.M.
Singer. Searching for backbones - an efficient parallel algorithms for
the traveling salesman problem. Computational Physics Communications,
96:173–188, 1996.

[SG95] B. Smith and S. Grant. Sparse constraint graphs and exceptionally hard
problems. In Chris Mellish, editor, Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

[SGS00] J. Singer, I.P. Gent, and A. Smaill. Backbone fragility and the local search
cost peak. Journal of Artificial Intelligence Research, 12:235–270, 2000.

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell Systems
Tech. Journal, 27:379–423,623–656, 1948.

[Sin00] J. Singer. Why solutions can be hard to find: A featural theory of cost for
a local search algorithm on random satisfiability. PhD thesis, University
of Edinburgh, 2000.

[SM90] R.L. Scheaffer and J.T. McClave. Probability and Statistics for Engineers.
PWS-Kent Publishing Company, Boston, 3rd edition, 1990.

[Sou86] N. Sourlas. Statistical mechanics and the traveling salesman problem. Eu-
rophysics Letters, 2:919–923, 1986.

[SSF02] P. Salamon, P. Sibani, and R. Frost. Facts, Conjectures, and Improve-
ments for Simulated Annealing. Society for Industrial and Application
Mathematics, 2002.

[Sta96] P.F. Stadler. Landscapes and their correlation functions. Journal of Math-
ematical Chemistry, 20:1–45, 1996.

[Stu99] T. Stutzle. Local Search Algorithms for Combinatorial Problems – Analy-
sis, Improvements, and New Applications. PhD thesis, Darmstadt Univer-
sity of Technology, 1999.

215

[Stu01] T. Stuützle. Personal communication, 2001.

[SW01] J. Slaney and T. Walsh. Backbones in optimization and approximation. In
Bernhard Nebel, editor, Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-01), pages 254–259. Morgan
Kaufmann, 2001.

[SWV92] R. H. Storer, S. D. Wu, and R. Vaccari. New search spaces for sequencing
problems with application to job shop scheduling. Management Science,
38:1495–1509, 1992.

[Tai89] E.D. Taillard. Parallel taboo search technique for the jobshop schedul-
ing problem. Technical Report ORWP 89/11, DMA, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, 1989.

[Tai93] E.D. Taillard. Benchmarks for basic scheduling problems. European
Journal of Operational Research, 64:278–285, 1993.

[Tai94] E.D. Taillard. Parallel taboo search techniques for the job shop scheduling
problem. ORSA Journal on Computing, 6(2):108–117, 1994.

[Vae95] R.J.M. Vaessens. Generalized Job Shop Scheduling: Complexity and Lo-
cal Search. PhD thesis, Eindhoven University of Technology, 1995.

[VAL96] R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by
local search. INFORMS Journal on Computing, 8(3):302–317, 1996.

[vLA88] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory
and Applications. Kluwer, 1988.

[vLAL88] P.J.M van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job shop schedul-
ing by simulated annealing. Technical Report OS-R8809, Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands, 1988.

[vLAL92] P.J.M van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling
by simulated annealing. Operations Research, 40(1):113–125, 1992.

[WBHW01] J.P. Watson, J.C. Beck, A.E. Howe, and L.D. Whitley. Toward an under-
standing of local search cost in job-shop scheduling. In Amadeo Cesta, ed-
itor, Proceedings of the Sixth European Conference on Planning. Springer-
Verlag, 2001.

[WBWH99] J.P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Algorithm per-
formance and problem structure for flow-shop scheduling. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence (AAAI-99),
1999.

216

[WBWH02] J.P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Contrast-
ing structured and random permutation flow-shop scheduling problems:
Search space topology and algorithm performance. INFORMS Journal on
Computing, 14(2):98–123, 2002.

[Wei89] E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how
to tell the differences. Biological Cybernetics, 63:325–336, 1989.

[WHH+97] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra,
S.V. Sevast’yanov, and D.B. Shmoys. Short shop schedules. Operations
Research, 45:288–294, 1997.

[Wri32] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection
in evolution. In D.F. Jones, editor, International Proceedings of the Sixth
International Congress on Genetics, volume 1, pages 356–366, 1932.

[WS99] D.J. Wales and H.A. Scheraga. Global optimization of clusters, crystals,
and biomolecules. Science, 285:1368–1372, 1999.

[WW95] F. Werner and A. Winkler. Insertion techniques for the heuristic solution of
the job shop problem. Discrete Applied Mathematics, 58:191–211, 1995.

[YN95] T. Yamada and R. Nakano. Job-shop scheduling by simulated anneal-
ing combined with deterministic local search. In Proceedings of the
First Meta-Heuristics International Conference (MIC’95), pages 344–
349, 1995. Breckenridge, Colorado, USA.

[Yok97] M. Yokoo. Why adding more constraints makes a problem easier for hill-
climbing algorithms: Analyzing landscapes of CSPs. In Proceedings of
the Third International Conference on the Principles and Practice of Con-
straint Programming (CP-97), pages 356–370. Springer-Verlag, 1997.

[YRN94] T. Yamada, B.E. Rosen, and R. Nakano. A simulated annealing approach
to job-shop scheduling using critical block transition operators. In IEEE
International Conference on Neural Networks (ICNN ’94), pages 4687–
4692, 1994. Orlando, Florida, USA.

217

