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ABSTRACT 

 

 

 

TRANSCRIPTOME AND ELEMENTAL ANALYSIS OF THE SELENIUM 

HYPERACCUMULATOR STANLEYA PINNATA AND NON-ACCUMULATOR STANLEYA 

ELATA 

 

 

 

The element selenium (Se) naturally occurs in soil and water in various forms. Selenium 

is an essential micronutrient for mammals and many other organisms, who incorporate Se into 

specific selenoproteins. Selenium is not known to be a nutrient for higher plants. It can even be 

damaging as an oxidant, or if it is non-specifically substituted for sulfur (S) in proteins due to the 

chemical similarity of Se to S. It is therefore curious that certain plant species are able to 

accumulate high concentrations of Se without detrimental effects. These plants are known as Se 

hyperaccumulators. Previous studies have implicated that Se hyperaccumulators may take up 

more Se by upregulating the gene expression of sulfate transporters; they may also possess 

transporters with increased specificity for selenate relative to sulfate. Hyperaccumulator species 

are Se hypertolerant as well; several studies have found evidence that their sulfate assimilation 

pathway is upregulated, converting inorganic selenate to organic forms, which can be further 

methylated and thus excluded from nonspecific incorporation into proteins. These methylated 

end products are often sequestered in epidermal tissues as a further possible tolerance 

mechanism, and perhaps also to deter herbivory. As an additional tolerance mechanism, 

hyperaccumulator plants may have an enhanced abilities to scavenge the free radicals generated 

by Se and to recycle misfolded Se-containing proteins. Selenium hyperaccumulators are not only 



iii 

 

intrinsically interesting to study for their Se accumulation and tolerance mechanisms, but also 

because they may harbor applicable Se accumulation and tolerance genes that may be cloned into 

more economically viable species for a variety of applicable uses, ranging from remediating sites 

polluted with Se to fortifying crops in areas where soils are low in Se.  

The goal of this study was to gain better insight into which genes are responsible for the 

transport and metabolism of Se in hyperaccumulators, and which genes are involved in the 

signaling cascade leading to Se hyperaccumulation and hypertolerance in the hyperaccumulator 

Stanleya pinnata. To answer these questions, the transcriptomes of S. pinnata and a non-

accumulating relative, Stanleya elata, both grown with or without selenate, were analyzed for 

root and shoot gene expression differences.  

The introduction chapter of this thesis presents a review of Se hyperaccumulation, 

beginning with a summary of the history and properties of Se, followed by a closer look at the 

uptake and metabolism of Se through sulfate transporters and assimilation pathways. The known 

mechanisms for tolerance and accumulation in hyperaccumulators are reviewed, as well as some 

proposed mechanisms requiring more definitive experimental evidence. 

The second chapter presents the methods and findings of a transcriptome-wide 

comparison between S. pinnata and S. elata. Plants were grown in triplicate on 0 or 20 µM 

selenate, and harvested for elemental analysis and Illumina RNA-seq. The two species did not 

differ in biomass production, regardless of Se treatment, but the Se levels in both species were 

significantly different (S. pinnata accumulated more Se than S. elata), and also significantly 

increased with Se supply. A total of 205,543 reads were assembled, yielding 19,572 annotated 

genes that showed detectable expression levels in both Stanleya species. Statistical comparison 

of the transcriptome libraries showed that gene expression was affected by Se relatively more in 
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the root of S. elata and in the shoot of S. pinnata. Genes involved in sulfate transport 

(particularly sulfate transporter (Sultr)1;2, Sultr2;1, Sultr3;1, Sultr3;4) and assimilation 

(particularly ATP sulfurylase (Atps)2, APS reductase (Apr)3), and in oxidative stress resistance 

(glutathione-related genes, peroxidases) were among the most differentially expressed between 

S. pinnata and S. elata, with many showing constitutively elevated expression in S. pinnata. 

Since earlier studies found that the application of defense hormones to plants affected their 

ability to accumulate or tolerate Se, defense hormone- and other defense-related genes were also 

investigated in this study. It was found that genes involved in defense hormone biosynthesis and 

signaling (Lox, Acx, Pal, Ics, Ein, Jar, Tga) were more expressed in S. pinnata, as were 

hormone-induced defense genes, including Pr and Pdf. Several upstream signaling genes 

reported to upregulate defense hormone genes were also more expressed in S. pinnata than S. 

elata, and might initiate these Se responses. In conclusion, Se hyperaccumulation in S. pinnata 

appears to be mediated by constitutively upregulated hormone-regulated defense systems, which 

may mediate elevated sulfate/selenate uptake and assimilation, as well as elevated antioxidant 

capacity. This concerted action likely contributes to Se hyperaccumulation and hypertolerance.  

Lastly, some preliminary findings are presented on the effects of varying Se and S 

concentrations on Se and S uptake in S. elata, and compared with previous data from S. pinnata 

grown in similar conditions. To determine if either species showed selective uptake, the 

concentrations and enrichment ratios of Se over S were determined for S. elata and S. pinnata. S. 

pinnata was notably more enriched in Se compared to S, relative to its growth substrate and 

relative to S. elata, especially under conditions of increased S supply. The selenate uptake 

system in S. pinnata was much less inhibited by sulfate. These results indicate that the Se 

hyperaccumulator S. pinnata has a transporter with increased specificity for selenate relative to 
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sulfate. The identity and properties of this transporter will be an interesting topic for further 

study. 
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CHAPTER 1: 

INTRODUCTION TO SELENIUM, SELENIUM METABOLISM, AND SELENIUM 

HYPERACCUMULATION IN PLANTS 

 

 

 

Selenium (Se) is the 34th element of the periodic table. It was discovered in 1817 by Jöns 

Jacob Berzelius, who originally mistook it for tellurium (Te) and later named it selenium, after 

the Greek goddess of the moon. Like Te, it is similar to sulfur (S). Selenium has the property of 

converting light energy to electron flow energy, which makes it useful in photocopiers and 

photovoltaic cells (Wilber, 1980; McFarlane & McFarlane, 1987). Selenium is mainly present in 

soils in the most oxidized form of selenate, SeO4
2-. In aquatic environments, Se mainly occurs in 

the more reduced form of selenite, SeO3
2- (Gattow and Heinrich 1964; Geering et al., 1968). The 

elemental form, Se0 also exists, as well as many organic forms (Wilber 1980). Selenium is an 

important trace element required for many animals, bacteria and archaea, and certain algae. Due 

to the chemical similarities of Se to S, Se can be assimilated non-specifically through the S 

pathway to selenocysteine (SeCys) and selenomethionine (SeMet) (Kohrle et al., 2000; Sors et 

al., 2005). In mammals, SeCys is specifically incorporated into the active site of selenoproteins, 

which have various redox functions including reactive oxygen species (ROS) detoxification and 

thyroid hormone signaling (Xu et al., 2007; Shchedrina et al., 2010). In addition, many 

prokaryotes have selenoproteins (Zhang et al., 2005). In some algae, such as Chlamydomonas 

reinhardtii, selenoproteins have been found to function in ROS detoxification (Novoselov et al., 

2002). However, to date no selenoproteins have been found in higher plants or fungi, and it has 

been proposed that these clades may have lost essential Se metabolism (Lobanov et al., 2009). 

Nevertheless, non-specific incorporation of Se into S-containing amino acids (SeCys, SeMet) 
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does occur in plants. The non-specific incorporation of SeCys into proteins may be detrimental: 

the larger atomic radii of Se in amino acids disrupts disulfide bridges and may cause protein 

misfolding with subsequent loss of activity (Hondal et al., 2012).  

Se toxicity and deficiency as a nutrient 

The window between Se toxicity and deficiency is very narrow, and both are problems 

worldwide. In the western United States and parts of northern and southern China, high 

concentrations of Se found in carbonaceous shale have weathered into soil used for agriculture or 

rangelands. In the livestock industry, toxicity is a “hidden” economic factor, causing an 

estimated 5% in mortality and another 9% in indirect losses due to nutritional imbalances 

(Mortimer et al., 1978). Se pollution can also magnify through the food chain; for example, 

contaminated runoff from coal mines are known to cause deformities in char fry (Salvelinus 

malma) (McDonald et al., 2010). Although essential at low levels (recommended daily intake 55-

75 µg for humans), an intake in excess of 4-6 mg Se per day leads to selenosis. The symptoms 

range from hair loss to gastrointestinal disorders, to granulomatous lung disease (Diskin et al 

1979; Yang and Xia 1995). Selenium deficiency can affect individuals with poor nutrient 

absorption or diets inadequate in Se, which may lead to Kashin-beck disease. Insufficient intake 

of less than 20 µg Se per day may lead to Keshan cardiomyopathy, and the risk is much higher in 

patients infected with the Coxsackie virus (Yang and Xia 1995). In HIV+ patients, Se deficiency 

is positively correlated with higher mortality rates (Baum et al., 1997). The health cost of dietary 

Se imbalances are staggering: around a billion people worldwide have been estimated to be Se 

deficient (Lyons et al., 2003). 
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Selenium accumulation in plants 

Although plants do not require Se, certain plant species found on seleniferous soil have 

developed the ability to accumulate high levels of Se in their tissues without significant 

detrimental effects. Selenium hyperaccumulators are defined as species accumulating >1000 mg 

Se/kg-1 dry weight (DW), with some like Astragalus bisulcatus reported to have up to 15,000 mg 

Se/kg-1 DW. Secondary accumulators can accumulate >100 mg Se/kg-1 DW (Galeas et al., 2007; 

Cappa et al., 2014). The majority of plants are non-accumulators, and generally sensitive to Se 

concentrations >100 mg Se/kg-1 DW. Since Se and S are so similar, hyperaccumulators may be 

hypothesized to have greater Se uptake through sulfate transporters (SULTR) as well as a higher 

rate of S/Se assimilation, since hyperaccumulator species contain very high levels of organic Se 

forms (Freeman et al., 2006). Also, hyperaccumulators may possess transporters with enhanced 

specificity for Se over S, since hyperaccumulators tend to enrich themselves with selenate 

relative to sulfate, compared to the growth substrate, and their selenate uptake is less inhibited 

compared to non-hyperaccumulators when increasing amounts of sulfate are supplied (Harris et 

al., 2014). 

Se and S uptake and transport 

In the model species Arabidopsis thaliana, sulfate (and thus, selenate) is imported from 

the rhizosphere into the root symplast by the high-affinity sulfate-H+ symporters SULTR1;2 and 

SULTR1;1 (El Kassis et al., 2007). Among these, SULTR1;2 is the major transporter. 

SULTR1;1 is expressed at much lower levels and only under conditions of S starvation; it may 

have lower specificity for selenate than sulfate (Takahashi et al., 2000). The SULTR transporters 

have 12 transmembrane-spanning domains with the N- and C- termini located in the cytoplasm. 

Helices 1 and 2 are conserved, and may function as the catalytic site, since mutations in the 
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region severely affected transport activity (Leves et al., 2008). The C-terminal STAS domain is 

also essential for SULTR1;2 function, and thought to interact with Se/S assimilation enzymes to 

regulate uptake rates (Rouached et al., 2005; Shibagaki & Grossman, 2006, 2010). 

Sulfate/selenate can be stored in the root vacuoles and made available for translocation by 

vacuolar exporters SULTR4;1 and SULTR4;2; both are also present in shoots (Takahashi et al., 

2011). Sulfate/selenate is transported from the root cortex to xylem parenchyma cells by low-

affinity transporter SULTR2;1, which responds to S deficiency and is considered a major 

transporter for translocation from roots to growing leaves (Zayed et al., 1998; Liang & Yu 2010). 

This transport to xylem parenchyma can also occur through low affinity transporter SULTR2;2, 

which is activated through possible heterodimerization with SULTR3;5 (Kataoka et al., 2004). 

SULTR2;1 and the high-affinity SULTR1;3 may be present in phloem parenchyma and serve to 

remobilize sulfate/selenate from source to sink tissues, such as to developing seeds (Takahashi et 

al, 2011). Uptake of sulfate/selenate into leaf cells may involve SULTR1;2, and is followed by 

transport into the chloroplasts by SULTR3;1 (Cao et al., 2013), where the majority of S 

assimilation is thought to occur.  

As SULTR activity is dependent on S status, it is conceivable that Se hyperaccumulators 

may constantly sense S starvation and therefore continuously transport S and Se into their 

tissues. A study showed that both nonaccumulators and hyperaccumulators in the Astragalus 

genus had high levels of Sultr1, Sultr2, and Sultr4 gene expression, regardless of S deprivation or 

Se supply, and overall expression levels that were similar to those of non-accumulator 

Astragalus and other species under S deprivation (Cabannes et al., 2011). Selenium 

hyperaccumulators may have transporters with higher affinity for selenate over sulfate, in view 

of their high Se/S tissue ratio (White et al., 2004, 2007). In a study by Harris et al. (2014) 
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comparing hyperaccumulator Stanleya pinnata with non-hyperaccumulator Brassica juncea, Se 

accumulation decreased 10-fold in B. juncea with increasing sulfate supply, but only 2-3-fold in 

S. pinnata. Similarly, in a later study S. pinnata was enriched 5-fold with Se relative to S, 

compared to the growth medium, whereas B. juncea was only enriched up to 1.3-fold with Se 

over S (Schiavon et al., 2015). The mechanism by which Se hyperaccumulators discriminate 

between selenate and sulfate is not clear and should be an interesting topic to investigate. 

Se and S assimilation and regulation 

Once in the chloroplast, selenate/sulfate is activated into adenosine 

phosphosulfate/selenate (APS/APSe) by ATP sulfurylase (APS) in the first and rate-limiting step 

of Se/S assimilation (Fig 1.1) (Dilworth & Bandurski, 1977; Pilon-Smits et al., 1999). The 

APS/APSe may be reduced to sulfite/selenite by APS reductase (APR) in the chloroplast; this is 

also a rate-limiting step (Bick & Leustek, 1998). Alternatively, APS can be phosphorylated into 

phosphoadenosine phosphosulfate (PAPS) by adenosine phosphokinase (APK) in the cytosol, 

which is a starting point for producing sulfated metabolites like glucosinolates (Mugford et al., 

2009). PAPS may also be converted to PAP, which is thought to be a signaling molecule that 

induces the expression of oxidative stress response genes (Bohrer et al., 2015, Hideki Takahashi, 

pers. comm.).  

Sulfite/selenite can be reduced into selenide by sulfite reductase, and selenite may also be 

non-enzymatically reduced by glutathione (GSH) (Terry et al., 2000). Sulfide/selenide can then 

be coupled with O-acetylserine (OAS) through cysteine synthase to form (Se)Cys (Ng & 

Anderson 1978). Selenocysteine can be further utilized in various product pathways. For 

example, it may be incorporated into proteins, which is considered toxic. This toxicity may be 

avoided in Se hyperaccumulators by converting SeCys to Se-cystathionine by cystathionine 
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gamma synthase (CGS), or to methylselenocysteine (MeSeCys) through a methylation step 

mediated by SeCys methyltransferase (SMT) (Neuhierl & Bock, 1996; Van Huysen et al., 2003, 

Freeman et al., 2006; Cakir & Ari 2013). It is interesting to note that the hyperaccumulator A. 

bisulcatus had up to 17.5-times higher SMT activity than non-accumulator A. drummondii (Sors 

et al., 2009). Also, when A. bisulcatus SMT was cloned and overexpressed in Arabidopsis and B. 

juncea, this conferred both enhanced tolerance and accumulation of Se (LeDuc et al., 2004). 

Se(Cys) can also be used for glutathione (GSH) synthesis. GSH (Glu-Cys-Gly) is synthesized via 

a two-step process involving gamma-glutamylcysteine synthetase (ECS) and glutathione 

synthetase (GS) in the cytosol and chloroplast, and is an important reducing agent thought to 

alleviate oxidative stress (Pasternak et al., 2008).  

In model species A. thaliana, sulfate assimilation is regulated by microRNA395, which is 

in turn regulated by transcription factor SULFUR LIMITATION 1 (SLIM1); both are strongly 

induced by S starvation (Kawashima et al., 2011). SLIM1 directly upregulates the levels of 

group 1 sulfate transporters (Sultr1;1, Sultr1;2) in roots. MicroRNA395 targets SULTR2;1 and 

three of the four ATP sulfurylase genes (Aps1, Aps3, Aps4). Under conditions of S deficiency, 

these regulatory factors are thought to result in increased transport of S into the plant and 

partitioning to growing leaves (Liang & Yu, 2010; Kawashima et al., 2011).  

 Se tolerance in hyperaccumulators and the role of antioxidants 

Because selenate, and especially selenite, is toxic and inhibit plant growth (Hopper & 

Parker, 1999), hyperaccumulators may have greater rates of conversion from inorganic Se 

(which causes protein and lipid oxidation) to organic forms (Sors et al., 2009; Yatusevich 2010). 

In comparisons of the hyperaccumulator S. pinnata with related non-hyperaccumulators, higher 

expression levels of genes catalyzing the first two steps of S/Se assimilation were detected 
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through quantitative RT-PCR (Aps1, Aps2, and Aps4) and macroarray analysis (Apr1, Apr2, 

Apr3; Aps1, Aps2) (Freeman et al., 2010; Schiavon et al., 2015). This may explain why S. 

pinnata accumulates almost exclusively organic Se, whereas related non-hyperaccumulators 

accumulate relatively more inorganic Se (Freeman et al., 2006; Cappa et al., 2015). 

While studies have found that low concentrations of selenate boosted the expression of 

antioxidant enzymes like glutathione peroxidase, with Se supplementation even being proposed 

as a growth promotant, concentrations >10 mg kg-1 Se caused chlorosis and inhibited growth in 

the non-accumulator Lolium perenne (Hartikainen et al., 2000). Hyperaccumulator S. pinnata, 

however, had much higher levels of leaf Se and yet accumulated less superoxide and hydrogen 

peroxide than non-hyperaccumulator Stanleya albescens (Freeman et al., 2010). This suggests 

that hyperaccumulators are able to avoid cellular damage, potentially by increasing the levels of 

antioxidants and associated enzymes, increasing conjugation of Se to metabolites for transport or 

storage, and increasing turnover of misfolded proteins due to Se incorporation (Neuhierl & Bock, 

1996). When S. pinnata plants were treated with a proteasome inhibitor and challenged with 0, 

40 then 80 µM selenate, a marked increase of ubiquitinated proteins was observed; in contrast, in 

S. pinnata not treated with the inhibitor, there was only a slight increase in ubiquitinated 

proteins. Furthermore, S. pinnata with inhibited proteasome function had a 60% increase of Se 

incorporated into protein, and almost one-fourth of these proteins were ubiquitinated. Together, 

these results indicate that S. pinnata, and possibly other hyperaccumulators, may selectively 

target selenoproteins for ubiquitin-mediated proteasome degradation (Sabbagh & Van Hoewyk, 

2012).  
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Se tolerance, speciation, and localization in hyperaccumulators 

Se hyperaccumulators may also have the ability to avoid the deleterious effects of protein 

incorporation by sequestering Se in the non-proteinaceous forms methylselenocysteine or 

methylselenomethionine (MeSeMet), or by removing Se altogether through volatilization as 

dimethyl selenide (DMSe) and dimethyl didiselenide (DMDSe) (Brown and Shrift 1981; Meija 

et al., 2002). The main form (90%) of Se in S. pinnata leaves was found to be methylSeCys, and 

the highest concentrations of Se were found in the epidermis and leaf margins (Freeman et al., 

2006; Cappa et al., 2014). As mentioned earlier, A. bisulcatus may depend on SMT to convert 

SeCys to MeSeCys (a C-Se-C compound). It was indeed found that A. bisulcatus contained 91% 

of Se in C-Se-C form(s) in leaves, and in the leaf Se was mainly (98%) found in trichomes 

(Freeman et al., 2006; Barillas et al., 2012). S. pinnata also accumulated predominantly C-Se-C 

(shown to be 88% MeSeCys), not only leaves but also in seeds and flowers, suggesting a 

remobilization of this Se compound from leaf tissues to the reproductive organs (Quinn et al., 

2011; Cappa et al., 2014). In contrast, the non-accumulators S. elata and Stanleya albescens had 

higher proportions of inorganic than organic Se forms. In S. elata, almost no Se was detected in 

the leaf when treated with selenate (Cappa et al., 2015). Of the small amount of Se found in the 

comparable non-hyperaccumulator S. albescens, ~70% was detected in the C-Se-C form, and 

consisted entirely of selenocystathionine (Freeman et al., 2010). Interestingly, the legume Se 

hyperaccumulator A. bisulcatus had >30% of Se in the elemental form (Se0) in root nodules, 

which may be influenced by the activity of symbiotic rhizobacteria capable of reducing selenite 

to Se0, and may serve as an additional mechanism of Se tolerance (Oremland et al., 2004; 

Barillas et al., 2012). Finally, Se hyperaccumulators may have greater rates of Se volatilization in 

the roots, given that species like A. bisulcatus have greater SMT activity, and because the non-
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enzymatic production of volatile forms is largely driven by the amount of MeSeCys and 

MeSeMet available. A study by Feist & Parker (2001) found that the apparent amount of Se 

volatilized, calculated from the difference of the Se amount added to solution and lost through 

plants, was higher for S. pinnata than B. juncea regardless of Se and S treatment (Feist & Parker, 

2001). Moreover, the rates of Se volatilization measured directly from S. pinnata (Freeman and 

Banuelos, 2011) were much higher than those reported in earlier studies for B. juncea (De Souza 

et al., 1998). 

Ecological and practical aspects of Se hyperaccumulation 

Selenium accumulation in organs with high fitness value or palatability may function as a 

defense against herbivory. When given a choice, prairie dogs (Cynomys ludovicianus) avoided 

eating B. juncea or S. pinnata plants with concentrations of Se as low as 38 mg kg-1 DW (Quinn 

et al., 2007. Similarly, aphids (Myzus persicae) avoided feeding on high-Se plants, and when 

given only the choice of feeding on leaves containing Se declined in population, already at leaf 

Se levels around 10 mg kg-1 (Hanson et al., 2004). Se hyperaccumulation may also function in 

elemental allelopathy: the high Se soils around hyperaccumulators may exclude non-tolerant 

plant neighbors: they inhibited the germination and growth of A. thaliana (El Mehdawi et al., 

2011). The combined effects of elemental allelopathy and the continued buildup of Se in the soil 

from high-Se tissue likely make Se hyperaccumulation evolutionarily adaptive (El Mehdawi and 

Pilon-Smits, 2012).  

Selenium (hyper)accumulation has several emerging uses. Naturally occurring Se often 

becomes a problem when it gets locally concentrated due to human activities such as mining, 

refining seleniferous fossil fuels or irrigation with Se-rich water. Selenium-accumulating plants 

may be used to clean up excess Se from soil, water and air, a process called phytoremediation. 
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Phytoremediation is 1000-fold less expensive than mechanical soil removal, according to soil 

cost evaluations (Cunningham & Ow 1996; Banuelos et al., 1997). Selenium containing plants 

may also be of nutritive value; for example, prickly pear (Opuntia ficus-indica) can accumulate 

up to 47 mg kg-1 Se and 111 mg kg-1 Se in its edible fruits and pads, respectively (Banuelos et 

al., 2011). Figure 1.2 summarizes the plant processes that affect Se mobility and chemical 

speciation.  

Since hyperaccumulators are often slow growing and of little economic value (Salt et al., 

1998), they have limited direct applicability for phytoremediation or biofortification. However, 

they could be a valuable tool to identify genes involved in Se accumulation and tolerance, which 

may be expressed in a more productive and economically viable species. Such genes may 

include Se transporters or enzymes involved in Se metabolism. Ideally, if a key signaling gene 

could be identified that triggers the entire hyperaccumulation syndrome, this would be a most 

promising candidate for genetic engineering. So far, very little is known about upstream 

processes that activate the extreme Se uptake and accumulation in hyperaccumulators, and their 

concomitant Se hypertolerance. However, there is evidence that the defense hormones jasmonic 

acid (JA), salicylic acid (SA) and ethylene facilitate Se accumulation and tolerance: their levels 

were higher in S. pinnata compared to non-hyperaccumulator S. albescens, and supplying them 

externally to Se-sensitive Stanleya and Arabidopsis taxa enhanced Se accumulation and 

tolerance (Tamaoki et al., 2008; Freeman et al., 2010). Since these hormones have been reported 

to sense S deficiency and upregulate the S/Se assimilation pathway, this may explain the 

elevated Se levels in the hyperaccumulator (Iqbal et al., 2013). However, upstream processes that 

cause the elevated hormone levels remain obscure. Defense-related genes known to be 
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upregulated by these hormones were also expressed at higher levels in S. pinnata; whether they 

play any role in Se hyperaccumulation remains to be investigated.  

The goal of this project described in this thesis was to determine which genes play a role 

in Se hyperaccumulation in S. pinnata. The approach was to do a full transcriptome comparison 

between this hyperaccumulator and related non-hyperaccumulator S. elata. This non-

accumulator species was found in recent studies to accumulate the least Se of all Stanleya 

species (Cappa et al., 2014, 2015). In addition to genes directly involved in taking up and 

metabolizing the Se, the RNA sequencing approach used allows the identification of novel genes 

that may act upstream in the perception of Se and the signaling cascade that leads to the 

upregulation of Se uptake and assimilation processes. The knowledge gained through this project 

may not only help develop plants with superior phytoremediation or biofortification properties, 

but is also intrinsically valuable as it gives insight into the mechanisms underlying the 

fascinating phenomenon of hyperaccumulation. 
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FIGURES 

 

Figure 1.1 Proposed model for Se assimilation in plants, from Pilon-Smits (2015). Enzymes are 

shown in red, metabolites in black or gray. APSe: adenosine phosphoselenate; PAPSe: phospho-

adenosine phosphoselenate; OAS: O-acetylserine; OPH: O-phosphohomoserine; SeCys: 

selenocysteine; (Se)Met: (seleno)methionine; Ala: alanine; MeSeCys: methyl-SeCys; gGlu-

MeSeCys: g-glutamyl MeSeCys; gECS: g-glutamylcysteine synthetase; GSH: glutathione; 

DMSe: dimethylselenide; DMDSe: dimethyldiselenide. 
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Figure 1.2 Plant effects on Se cycling and transformation, taken from Pilon-Smits (2015). 

Inorganic Se: selenate, selenite; organic Se: methylselenocysteine or selenocystathionine; 

volatile DM(D)Se: dimethyl(di)selenide. Se from accumulators may protect plants from 

pathogens and herbivores. 
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CHAPTER 2: 

DIFFERENTIAL GENE EXPRESSION BETWEEN SELENIUM HYPERACCUMULATOR 

STANLEYA PINNATA AND NONACCUMULATOR STANLEYA ELATA (BRASSICACEAE) IN 

RESPONSE TO SELENIUM: A COMPARATIVE TRANSCRIPTOME ANALYSIS 

 

 

 

SUMMARY 

The goal of this study was to obtain better insight into the molecular mechanisms of selenium 

(Se) hyperaccumulation in Stanleya pinnata. Transcriptome-wide differences in root and shoot 

gene expression levels were investigated between S. pinnata and related nonaccumulator 

Stanleya elata, grown with or without 20 µM selenate. Genes involved in sulfate/selenate 

transport (Sultr1;2, Sultr2;1, Sultr3;1, Sultr3;4) and assimilation (Atps2, Apr3) or in oxidative 

stress resistance (glutathione-related genes, peroxidases) were among the most differentially 

expressed between species; many showed constitutively elevated expression in S. pinnata. Many   

genes involved in synthesis and signaling of defense hormones jasmonic acid (JA), salicylic acid 

(SA) and ethylene were also more highly expressed in S. pinnata (Lox, Acx, Pal, Ics, Ein, Jar, 

Tga), as were related defense genes (Pr, Pdf). JA accumulation has been reported to induce 

sulfur assimilatory and glutathione biosynthesis genes. Several upstream signaling genes 

reported to upregulate defense hormone genes were more expressed in S. pinnata than S. elata
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and might initiate these Se responses. Selenium hyperaccumulation in S. pinnata appears to be 

mediated by constitutively upregulated JA, SA and ethylene-mediated defense systems, resulting 

in elevated sulfate/selenate uptake and assimilation as well as elevated antioxidant capacity. The 

concerted action of increased likely contributes to Se hyperaccumulation and hypertolerance.  

INTRODUCTION 

The element selenium (Se) is chemically similar to sulfur (S) (Wilbur, 1980). Selenium exists 

mainly in inorganic forms in soils where it is present in the oxidized state SeO4
2- (selenate), 

which can be assimilated into living organisms either intentionally or inadvertently through the 

sulfur (S) assimilation pathway (Geering et al., 1968). Selenium is an essential trace element for 

many animals and bacteria as well as certain algae, where it plays a role in antioxidant and 

hormone metabolism (Foster & Sumar, 1997). In higher plants, Se is not known to have any 

essential functions, although it is considered a beneficial element at low levels (Pilon-Smits et 

al., 2009). Most plants that are grown on high concentrations of Se show stunted growth and 

chlorosis due to oxidative damage, usually at tissue levels above 100 mg Se kg-1, or 0.01%, dry 

weight (DW) (Van Hoewyk, 2013). Toxicity may also occur due to nonspecific replacement of S 

with Se in cysteine (Cys), and possibly methionine (Met) (Ng & Anderson, 1978; Van Hoewyk, 

2013).  

Certain members of the Fabaceae (Astralagus spp.), Asteraceae (Symphyotrichum 

ericoides, Xylorhiza spp., Oonopsis spp.,) and Brassicaceae (Stanleya pinnata) have evolved the 

ability to accumulate up to 1% of their DW in Se and are known as Se hyperaccumulators 

(Freeman et al., 2006). Such plant Se concentrations are toxic when ingested by animals and 

therefore appear to be a defense strategy against herbivores and pathogens (Hanson et al., 2004; 

Freeman et al., 2007, 2009). Selenium hyperaccumulators may be a source of genes that can be 
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used for incorporation into crop species for Se phytoremediation or biofortification—if the 

mechanisms by which they tolerate and accumulate Se can be elucidated (Banuelos et al., 1997, 

2010). Based on research so far, Se hyperaccumulators appear to tolerate Se better through Se 

detoxification mechanisms, including reducing selenate to less toxic forms, volatilizing 

methylated selenocompounds, and storing Se in non-protein amino acids such as 

selenocystathionine and methylselenocysteine (MeSeCys), often in peripheral tissues (Brown & 

Shrift, 1981; Zayed et al., 1998; Meija et al., 2002; Freeman et al., 2006; Cakir & Ari, 2013). For 

example, the hyperaccumulator S. pinnata accumulates MeSeCys and selenocystathionine in 

vacuoles of leaf epidermal cells as opposed to the related non-hyperaccumulator Brassica 

juncea, where Se remains as selenate in the vasculature (Freeman et al., 2006, 2010). Studies 

also suggest that increased expression of genes in the glutathione, antioxidant, and proteasome 

pathways may play a role in the extreme Se tolerance of hyperaccumulators, by preventing toxic 

effects of free radicals and recycling malformed proteins (Freeman et al. 2010; Van Hoewyk 

2013).  

In view of the similarity of Se to S, sulfate assimilation genes may be hypothesized to be 

modified in hyperaccumulators. The genes may have higher expression levels and also the gene 

product may have altered kinetic properties. For example, root sulfate transporters may have 

enhanced specificity for Se, since uptake of selenate was much less inhibited by sulfate in S. 

pinnata as compared to B. juncea (Harris et al., 2014). The main portal for selenate and sulfate 

into plant roots is a high-affinity (group 1) sulfate transporter (SULTR). Arabidopsis thaliana 

SULTR1;2 mutants showed enhanced selenate tolerance and lower selenate to sulfate ratios 

compared to wild-type plants (El Kassis, 2007; Ohno et al., 2012). Freeman et al. (2010), using a 

macroarray approach, found constitutively high expression of sulfur metabolism genes, and 
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higher expression of genes involved in GSH synthesis in S. pinnata compared to the non-

hyperaccumulator Stanleya albescens. Despite the higher leaf Se concentrations in S. pinnata, S. 

albescens grown in the same conditions formed more reactive oxygen species (ROS).  

Hyperaccumulators also tend to have constitutively high expression of genes involved in 

defense hormone synthesis and response, including jasmonic acid (JA), salicylic acid (SA) and 

ethylene (Freeman et al., 2010). Further evidence for a positive effect of JA on Se accumulation 

is that applications of 10µM methyl jasmonate to S. pinnata and S. albescens lead to increased 

leaf Se levels (Freeman et al., 2010). Similar results were found for nonaccumulator A. thaliana 

accessions, where selenite tolerance and uptake correlated with increased expression of genes 

involved in the biosynthesis and responses to JA and ethylene (Tamaoki et al. 2008a). Moreover, 

mutants that have impaired expression of those same genes had lower total S levels as well as 

lower levels of the reduced S compound GSH, which scavenges ROS (Tamaoki et al. 2008a). 

The causal connection between the enhanced levels of S/Se assimilation, and defense hormones 

awaits further clarification. The possibility remains that a key regulatory gene is deregulated in S. 

pinnata, leading to constitutively enhanced levels of the defense hormones JA, SA, and/or 

ethylene, which in turn upregulate pathways involved in biotic stress defense, including S 

assimilation.  

In this study we investigated the transcriptome-wide differences in gene expression levels 

between S. pinnata and the Se-sensitive, nonaccumulator S. elata (El Mehdawi et al., 2012; 

Cappa et al., 2014). In a phylogenetic analysis of the Stanleya genus by Cappa et al. (2015), the 

S. pinnata species complex was found to be the most derived clade, with S. elata as a sister 

species. These two species were grown in the presence or absence of Se and compared with 

respect to growth, Se and S accumulation and their root and shoot transcriptome. Our purpose 
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was to determine which genes play a direct role in the Se hyperaccumulator phenotype, as well 

as which genes function upstream of the signaling cascade in response to Se.  

MATERIALS AND METHODS 

Plant growth 

Seeds of S. pinnata (Western Native Seed, Coaldale, CO) and S. elata (collected in NV, 

38°11'36"N 117°59"15"W) were surface-sterilized and cold stratified for 48 hours at 4º C. Seeds 

were germinated on sterile petri dishes and transferred to sealed PhytatraysTM (Sigma-Aldrich, 

St. Louis, MO) on ½ strength MS basal salts medium (Murashige & Skoog, 1962) with 1% 

sucrose and 0 µM or 20 µM sodium selenate. Plants were grown in a growth chamber at a light 

intensity of 150 µmol m−2 s−1 with a 16/8 L/D photoperiod at 23ºC. Three plants were grown per 

container, and three containers per species and treatment. After 30 days, one plant per container 

was harvested and its roots rinsed to remove external Se. The plants were separated into root and 

shoot and frozen in liquid nitrogen for RNA sequencing (n=3 bioreplicates per treatment). The 

remaining two plants from each container were harvested, the roots rinsed and separated from 

shoots and then used to obtain the fresh weights. 

RNA-Sequencing 

Frozen plants were shipped to the University of Missouri where total RNA was extracted 

using an RNA Mini Kit (Invitrogen, Carisbad, CA, USA). The mRNA was purified and used to 

construct Illumina cDNA libraries using the TruSeq RNA Kit, then sequenced on the Illumina 

HiSeq-2000 at the University of Missouri’s DNA Core Facility. Pair-end 100 bp sequencing was 

performed for one biological replicate for each species, organ, Se treatment combination (8 

samples). The sequence was quality filtered using Next GEN version 2.17 (SoftGenetics, State 

College, PA, USA); removing reads with a median quality score of less than 22, trimmed reads 
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at positons that had 3 consecutive bases with a quality score of less than 20, and removed any 

trimmed reads with a total length less than 40bp. The quality filtered data was assembled de novo 

using Trinity (Grabherr et al. 2011) using default parameters. Any contiguous sequence (contig) 

shorter than 300 bp was removed. Next, single-end 50 bp sequencing was performed on the 

remaining two biological replicates for each species, organ, Se treatment combination (16 

samples). Quality filtered reads for all three biological replicates were aligned to the de novo 

assemblies using NextGENe version 2.17. Assembled reads were annotated using BLASTn 

against the A. thaliana cDNA database (TAIR, http://www.arabidopsis.org/) and assigned 

homologs with an e-value threshold of 0.00005. A. thaliana was used as a reference because it 

has a fully annotated genome, and is in the same family (Brassicaceae) as Stanleya. Finally, 

contigs annotated to the same ATID were associated with one gene and their RPKM values were 

summed. Only genes existing in both S. pinnata and S. elata libraries were used for further 

analysis. Following the conventional preliminary screening approach, we set the filter threshold 

to be 2% of sample quantiles across all groups, i.e. genes with negligible expression across all 24 

samples were excluded if � ∈ �� = ��: 	
��
� ∑ ��,�
��/3 < ��
�
��� � where � stands for RPKM 

values and �� is chosen to be the 2% grand quantiles of sample means (Gentleman et al., 2005). 

In addition, genes that essentially do not have any within-sample variations were excluded, i.e. 

gene r was removed if � ∈ �� = ��: 	
��
� ∑ ���,�
�� − ∑ ��,�
��/3�
��� �� < 2��

�
��� ! where 2�� 

was selected to be the 2% grand quantiles of sample variations, as before.  

Statistical analysis 

Raw RPKMs were normalized using the trimmed mean of M-values (TMM) procedure 

(Oshlack et al., 2010). This was done because one of the treatment groups (S. elata roots, 20 µM 

Se) had on average ~3-fold lower RPKM levels than the other treatments, including for 
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commonly used housekeeping genes. The normalized RPKMs were further transformed by 

variance stabilization transformations. The experiment naturally follows a split-plot design and 

the processed libraries were therefore analyzed using the following linear mixed model (Morris 

2010):  

"�,�
�� = #� + %�,� + &�,
 + '%&(�,�
 + )�,�
� + *�,� + '%*(�,�� + '&*(�,
� + '%&*(�,�
� + ��,�
�� 

where Yg,ijkl denotes the processed expression level of the gth gene (g = 1, 2, … 19,129) of the lth 

organ (l = 1, 2 stand for root and shoot, respectively) of the kth biological replicate (k = 1, 2, 3) 

from the ith species (i = 1, 2 stand for S. elata and S. pinnata, respectively) for the jth treatment (j 

= 1, 2 stand for 0 and 20 µM Se, respectively). With the sub-index g suppressed for simplicity, 

we summarize the model parameters as following: αi models the effect of species; βj models the 

treatment effects; (αβ)ij models the interactions between species and treatment; γl models the 

organ effects; (αγ)il models the interactions between species and organ; (βγ)jl models the 

interactions between treatment and organ; (αβγ)ijl models the 3-way interaction between species, 

treatment, and organ; )�
�~ -. -. /. 0'0, 23�( models correlations among samples within the same 

combination of species and treatment; and ��
��~ -. -. /. 0'0, 2�( models measurement errors. 

Data processing, model fitting and subsequent analyses were conducted using SAS ver. 

9.4, R ver. 3.1.1, and bioconductor in R ver. 3.1.1 (Gentleman et al., 2005). Main effects of the 

(Se) treatment and species, as well as the simple effects of treatment for each species, were tested 

and estimated. In addition, the effect of treatment, segregated by organ type for each species; the 

effect of species for each organ type, segregated by treatments; and the interaction effect of 

species on the differences between treatments were tested for a more detailed analysis. Estimated 

model parameters, p-values for the corresponding tests and associated q-values were obtained. 

The Benjamini-Hochberg procedure was employed to control the false discovery rate (FDR) at 
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the 0.005 level (Benjamini & Hotchberg, 1995). Then for each of the above hypotheses of 

biological interest, the effects were estimated from model parameters for genes declared 

significant by the above general linear hypothesis testing procedure with FDR controlled at the 

0.005 level. For example, the gene whose ATID is AT1G01030.1 has a q-value for the effect of 

Se treatment < 0.005 and is therefore considered a differentially expressed (DE) gene for the 

effect of Se treatment, whose 0 and 20 µM Se treatment effects were therefore estimated by the 

model parameters &4� and &4�. 

Mapman visualization 

The estimated effects based on model parameters for significant DE (q < 0.005) genes 

were further visualized using Mapman ver. 3.5.1 (Thimm et al. 2004, Usadel et al. 2005). A total 

of 12 analysis files were generated (link: 

https://www.dropbox.com/sh/5fo1ikp4ca7my4x/AAD0S_lVuggP6I7WkXkx4WA0a?dl=0), and 

will be made available on DataDryad.org repository before publication. The mapping 

ATh_AGI_ISOFORM_MODEL_TAIR10_Aug2012 was used to visualize genes in pathways. 

To statistically compare a particular bin with other bins in a given pathway, numbers of 

significantly DE genes between S. pinnata and S. elata within each bin are treated as responses 

and the Wilcoxon rank-sum test, corrected for with the Benjamini-Hotchberg method, was 

conducted to identify bins significantly different from others (Benjamini & Hotchberg, 1995; 

Usadel et al., 2005). For those identified bins in a pathway (p <0.05), we calculated the 

proportion of genes that were more expressed in S. pinnata than S. elata, as well as the 

proportion that were more expressed in S. elata than S. pinnata. This was investigated for genes 

that were DE between species for all combinations of organ and Se treatment. Using the Grubb's 

test, together with the median absolute deviation (MAD) score, we identified bins within which 
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the genes are more favored by S. pinnata than S. elata, deviated significantly from other bins (p 

<0.05 for the Grubb test, or a MAD score larger than the 0.95 quantile).  

ICP-AES analysis 

A follow-up experiment was done to measure elemental concentrations and dry weight of 

plants grown under the same conditions as the samples used for RNA-seq. Each of the three 

containers per species and treatment housed 5 plants. After 30 days, plants were harvested and 

the shoots separated from the roots. These were dried for 72 hours at 50°C before being weighed 

and nitric-acid digested using Zarcinas et al. (1987) method. Digested material was analyzed for 

elemental concentrations using inductively-coupled plasma atomic emission spectroscopy (ICP-

AES), using Fassel (1978) method. ANOVA followed by pairwise comparisons (Student’s t-test) 

was completed in JMP (version 11) to test for significant differences between treatment groups. 

The roots were not analyzed due to pooling of samples with low root biomass (the final number 

of replicates was lower than 3).  

RESULTS 

Biomass and Se and S concentrations 

We investigated whether Se would affect biomass in the two species.  When Se 

hyperaccumulator S. pinnata and non-hyperaccumulator S. elata were grown on agar medium 

with or without 20 µM selenate, for transcriptome comparison, no significant (p < 0.05) 

differences in shoot fresh weight were observed between treatments (Fig. 2.1a). Similarly, in an 

identical experiment carried out for elemental analysis there were no differences in shoot DW 

between treatments (Fig. 2.1b). S. pinnata had a significantly higher shoot Se concentration than 

S. elata, both when supplied with selenate and without Se, and both species had higher Se levels 

when treated with Se than without (Fig. 2.1c). Because S competes with Se for uptake, the tissue 
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levels of S were also quantified. When treated with Se, S. pinnata had significantly higher shoot 

S concentrations than S. elata; in the absence of Se no significant difference was observed 

between the species (Fig. 2.1d). Within S. elata, Se treatment did not significantly affect S levels, 

while in S. pinnata S levels were higher in the presence of Se (Fig. 2.1d).  

Transcriptome analysis overview 

Illumina sequencing of the 24 cDNA libraries (two species, two organs, two Se 

treatments, and three biological replicates) generated 60,467,644 bp of sequences. A total of 

205,543 contigs were assembled, with an average contig length of 594 bp. Contigs shorter than 

300 bp were removed, leaving 101,675 contigs. Approximately 93% of these contigs were 

successfully annotated to A. thaliana, leaving 6,991 un-annotated contigs with abundant 

expression (>10 RPKM) that were excluded from further analysis. The ATID numbers to which 

the contigs BLASTed were used as IDs for the corresponding Stanleya genes, and the sum of 

RPKMs was used as a measure for gene expression. 19,572 genes found matches in both 

Stanleya species.  After geometric means adjustment, an additional 443 genes were removed due 

to negligible expression and/or within-sample variations. The 19,129 remaining genes were used 

for all statistical analysis thereafter. In addition to expression comparisons within species, the 

expression levels of S. pinnata and S. elata genes associated with the same ATID were 

statistically compared to each other. These analyses included Se effect, species effect, organ 

effect, and their interactions, as described in detail in the Materials and Methods section. The 

19,129 annotated genes with corresponding RPKMs for the 24 samples are listed in table S2.1.  

An overview of gene expression responses to Se treatment is shown in Fig. 2.2. In roots, 

many more genes responded to Se treatment (q < 0.005) in S. elata compared to S. pinnata (Fig. 

2.2a), while in shoots more genes were affected in S. pinnata than in S. elata (Fig. 2.2b). The 
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transcript levels of ~1,000 genes were similarly affected by Se in both plant species for roots, 

versus ~600 for shoots; both were relatively small fractions compared to genes differently 

affected by Se in the two species.  

Gene expression differences between S. pinnata and S. elata were analyzed by comparing 

RPKM values of genes annotated to the same A. thaliana locus (Fig. S2.1). In both roots and 

shoots, the majority of genes were differently expressed between the two plant species, and a 

large proportion of these genes were differently expressed in both –Se and +Se treatments. 

Approximately half of the differently expressed genes were more expressed in S. pinnata than S. 

elata, and the other half more in S. elata than S. pinnata. Among genes that were differently 

expressed between species under only one treatment, the numbers of genes were similar for the 

+Se and –Se treatments; this was true for both organs (Fig. S2.1).  

We were interested in which genes were most abundantly represented among the top 100 

genes most affected by treatment, as they could reveal certain gene families that are involved in 

Se accumulation or tolerance.  These genes can be found in Tables S2 – S4 for each of the 11 

analyses generated from model parameters. Some gene families frequently present in multiple 

analysis include antioxidant-related genes (particularly peroxidases, which were more highly 

expressed in S. pinnata than S. elata), defense-related genes (particularly Mlps, whose expression 

was dependent on both Se and species), sulfate assimilation genes (particularly ATP sulfurylases 

and APS reductases, which were more highly expressed in S. pinnata), transcription factors 

(particularly zinc finger protein genes, which differed for both Se presence and species), as well 

as glutathione-S-transferases (GSTs) and methyltransferases (particularly S-adenosyl 

methionine-dependent methyltransferases).  
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The genes that were DE between the two species were mapped into functional groups 

according to Mapman (see methods), to observe whether certain groups as a whole were more 

expressed in hyperaccumulator or nonaccumulator. Across all functional groups combined (Fig. 

2.3, top bar), equal fractions of genes (50%) were more expressed in S. pinnata and S. elata. 

Among the functional groups, the percentage where S. pinnata > S. elata varied between 30% 

and 90%. Notable functional groups that were overall more expressed in the Se 

hyperaccumulator, regardless of organ and Se treatment, included gluconeogenesis/glyoxylate 

cycle genes, xenobiotic biodegradation, nitrogen assimilation and polyamine synthesis, metal 

handling and S assimilation. We did not identify any functional groups that were consistently 

(across treatments) more expressed in S. elata.  

To gain insight into which functional groups of genes were most differentially expressed 

between the two plant species, the large-enzyme-family pathway was analyzed in Mapman for 

+Se and –Se, in both roots and shoots. Genes that were associated with peroxidases had 

significantly deviated expression (p < 0.05) compared with other gene groups displayed in the 

pathway for +Se and –Se in roots. The peroxidase group also had a significantly higher 

proportion of genes with greater expression in S. pinnata relative to other gene groups, as the p-

value was < 0.05 (Grubb’s test) or the MAD score was larger than 95th quantile for the majority 

of treatments. Additionally, in roots with Se treatment, glutathione S-transferase genes had 

significantly different expression (p < 0.05) compared with other gene groups as well as a higher 

proportion (p < 0.05, Grubb’s test) of genes with greater expression in S. pinnata compared to 

other gene groups. No gene groups were found to deviate in expression from other gene groups 

in shoots for +Se or –Se treatments.  

Transcript analysis of sulfate/selenate transporter genes 
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We analyzed the gene expressions of sulfate transporters (Sultr), as they are thought to be 

responsible for greater S (and thus Se) uptake in hyperaccumulators.  Figure 2.4a,b shows the 

transcript levels of Sultr genes DE between the plant species. In addition to these, high-affinity 

transporter Sultr1;3, thought to be involved in phloem loading, was more expressed in S. pinnata 

(~15 RPKM) than S. elata (not detected), and high-affinity transporter Sultr1;1, which is 

involved in root uptake (Rouached et al., 2008), was expressed at similar, very low levels in both 

species. Figure 2.4c shows the fold differences of Sultr expression levels between S. pinnata and 

S. elata, both in the presence and absence of Se, as part of cellular sulfate/selenate transport and 

root-to-shoot translocation. The high-affinity root transporter Sultr1;2 (Takahashi et al., 2011) 

had extremely high levels of expression in S. pinnata roots, both for +Se and -Se treatments (Fig. 

2.4b). Sultr1;2 expression in S. elata roots showed a positive response to Se treatment (2-fold), 

while S. pinnata roots showed high constitutive expression. In shoots, Sultr1;2 levels were 

overall much lower than in roots, and 2-fold lower in S. pinnata than S. elata (Fig. 2.4a, c).  

Low-affinity transporter SULTR2;1, thought to mediate root-to-shoot translocation of 

sulfate/selenate into xylem parenchyma cells was somewhat more expressed in roots of S. 

pinnata than S. elata. In shoots, where SULTR2;1 may be involved in vascular unloading or 

loading (Kataoka et al., 2004), the expression was 5-fold higher in S. pinnata than S. elata in the 

absence of Se and only marginally higher in the presence of Se (Fig. 2.4). SULTR3;5, thought to 

co-facilitate transport with SULTR2;1 (Kataoka et al., 2004), was more expressed in roots of S. 

pinnata than S. elata, particularly in the presence of Se (~6 fold); in the shoot it was also 

somewhat more expressed in the hyperaccumulator (~2 fold, Fig. 2.4). For low-affinity 

transporter SULTR2;2, the expression level for either species in roots was at most ~100 RPKM, 

and the difference in expression between S. pinnata and S. elata was large: ~11- and 17-fold 
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higher for S. pinnata under –Se and +Se conditions, respectively. In shoots the ratio of S. pinnata 

to S. elata for Sultr2;2 was ~2-fold, regardless of Se treatment. This transporter may control the 

amounts of sulfate/selenate in the phloem (Takahashi et al., 2011).  

 Sultr3;1, which is likely responsible for sulfate/selenate transport to the plastids (Cao et 

al., 2013), was expressed at somewhat lower levels in S. pinnata than S. elata roots, and 

somewhat higher levels in S. pinnata than S. elata shoots. In general, its expression was higher in 

shoots than roots, and its expression was somewhat lower in +Se than –Se (Fig. 2.4). Sultr3;3 

and Sultr3;4 transcripts were present at 2 – 5 fold and 8 – 11 higher levels, respectively, in S. 

pinnata compared to S. elata, both in roots and shoots. The functions of these transporters are not 

well known; Sultr3;3 was generally more expressed in shoots than roots, while Sultr3;4 was 

more expressed in the roots than shoots of S. pinnata (Fig. 2.4). 

Sultr4;1 and Sultr4;2, which are likely involved in vacuolar efflux (Takahashi et al., 

2011), were both more expressed in roots than shoots, and Sultr4;1 was more expressed than 

Sultr4;2 (Fig. 2.4). The root Sultr4;1 transcript levels were somewhat higher in S. pinnata than S. 

elata in –Se conditions, but lower in +Se conditions, because in the roots of S. elata but not S. 

pinnata, Sultr4;1 expression was elevated under +Se conditions. In shoots, Sultr4;1 levels were 

somewhat lower in S. pinnata than S. elata, regardless of Se treatment (Fig. 2.4). Lastly, the root 

and shoot transcript levels of Sultr4;2 were over 10-fold higher in S. pinnata than S. elata 

without Se, while in the presence of Se they were only marginally higher (~2-fold). This was 

because there was a ~10-fold positive response to Se treatment for Sultr4;2 in roots and shoots of 

S. elata, but not S. pinnata (Fig. 2.4).  

Transcript analysis of genes involved in sulfate/selenate assimilation 
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As previous studies have shown that hyperaccumulators accumulate a higher fraction of 

organic Se than non-accumulators, as well as contain methylated Se forms not found in non-

accumulators, we reasoned that they may have different expression levels of genes involved in 

S/Se assimilation. The flow diagram in figure 2.5 summarizes the RPKM levels of sulfate 

assimilation genes for comparison of species in different organs and Se treatments. In cases 

where different isozymes catalyze the same reaction, all corresponding genes are shown; often 

the expression levels within one species were quite different for these genes. Also, different 

isozyme genes often show expression differences in opposite directions between S. pinnata and 

S. elata (Fig. 2.5). 

ATP sulfurylase (APS) and APS reductase (APR) have both been reported to be rate-

limiting enzymes for S/Se assimilation (Bick & Leustek, 1998; Pilon-Smits et al., 1999). ATP 

sulfurylase 2 (Aps2), involved in the first step of S assimilation, had extremely high expression 

(>20,000 RPKM) in S. pinnata roots, >120-fold higher compared to S. elata roots, both for –Se 

and +Se treatments. In shoots, Aps2 expression was 2-4 fold higher in S. pinnata than S. elata, 

dependent on Se presence. For –Se and +Se treatments, Aps3 and Aps4 transcript levels were 1.5 

– 2 fold higher in S. pinnata than S. elata in roots. In shoots, Aps3 expression was ~3-fold higher 

in S. pinnata than S. elata, but Aps4 had similar, low expression in both species. In contrast to 

the other Aps genes, Aps1 showed higher expression in S. elata compared to S. pinnata in roots 

(~5 fold) and shoots (~3-4 fold) for both –Se and +Se conditions.  

Apr1, encoding APS reductase in the second step of S assimilation, was expressed in S. 

elata roots at ~1.5-2 fold higher levels compared to S. pinnata roots. In shoots, Apr1 expression 

levels were similar in S. pinnata and S. elata regardless of Se treatment. Interestingly, Apr3 was 

expressed at ~100 fold greater level in S. pinnata than S. elata, both in roots and shoots and for 
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both Se treatments. No Apr2 homologue was detected in either species. All isoforms are 

chloroplastic in A. thaliana (TAIR).  

In the cytosol, APS may also be phosphorylated to PAPS by APS kinase (APK), which is 

a starting point for the synthesis of a variety of sulfated metabolites including glucosinolates as 

well as PAP, a signal molecule that upregulates abiotic stress resistance genes (Bohrer et al., 

2015). The expression of APK1 was 2-3 fold higher in S. pinnata than S. elata in both roots and 

shoots.  

Sulfite reductase (Sir), involved in sulfite to sulfide reduction and perhaps also selenite to 

selenide reduction, was constitutively expressed at high levels across species, organs, and 

treatments (Fig. 2.5). Among genes encoding serine acetyltransferases (Serat), which provide O-

acetylserine (OAS) to be combined with sulfide for Cys production (Kawashima et al., 2005), 

Serat1;1 showed greater gene expression in S. elata compared to S. pinnata in both +Se and –Se 

treatments. However, Serat3;1 showed much higher expression in S. pinnata than S. elata, with 

~10 fold and 5 fold in roots and shoots, respectively. Oas-tl A1 and Oas-tl A2, which encode 

OAS thiol-lyases, were expressed at higher levels in S. pinnata than S. elata for both organs and 

treatments (Fig. 2.5). Cysteine synthase genes Cs D1 and Cs D2, which mediate the same step as 

Oas-tl, showed comparable expression levels for +Se and –Se treatments but opposite expression 

between species. S. elata had 20-30 fold higher expression of Cs D1 compared with S. pinnata in 

both organs, whereas S. pinnata had ~10 fold higher expression of Cs D2 than S. elata in roots 

and ~4 fold higher in shoots. Cystathionine gamma synthase (Cgs), a key enzyme in the 

conversion of Cys to Met, showed similar high levels of gene expression across species, organs, 

and treatments; with the exception of S. elata and S. pinnata shoots grown with Se, where S. 

elata had ~5 fold greater Cgs expression than S. pinnata (Fig. 2.5). Cystathionine beta lyase 
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(Cbl) showed much higher gene expression (up to ~100 fold) in S. pinnata relative to S. elata, for 

both organs and Se treatments. Methionine synthase (Ms2), was expressed in S. elata roots and 

shoots at extremely high levels (23,000 RPKM), 5-10 fold greater than in S. pinnata roots and 

shoots. Although Ms2 showed lower expression for both species with Se treatment, gene 

expression was relatively consistent between roots and shoots within each species (Fig 2.5).  

Transcript analysis of genes involved in glutathione metabolism and other antioxidant systems 

 A key enzyme for biosynthesis of the important antioxidant glutathione (GSH) from Cys 

and Glu is gamma-glutamylcysteine ligase (also called synthetase), which is encoded by Gsh1. 

In both roots and shoots of S. pinnata, Gsh1 had extremely high expression (~10,000 RPKM), 

regardless of Se treatment; this was ~4 fold higher than Gsh1 transcript levels in S. elata (Fig. 

2.6a, b). Gsh2, encoding GSH synthetase, the second enzyme for GSH synthesis, was only 

marginally more expressed in S. pinnata, and only in roots (Fig. 2.6a, b).  

Among the GSH reductases (GR), Gr1 was more expressed in S. elata while Gr2 was 

more expressed in S. pinnata, regardless of organ or Se treatment (Fig. 2.6a, b). Among the 

glutathione S-transferase family, which conjugate GSH to various substrates (Marrs, 1996), 

Gstf7 was 30-40 fold more expressed in the roots of S. pinnata than S. elata (Fig. 2.6a). Among 

the peroxidases, the GSH peroxidase genes Gpx2, Gpx6 and Gpx7 were more expressed in S. 

pinnata (up to 5 fold), while Gpx5 was more expressed in S. elata; in general, Gpx expression 

was similar in root and shoot and not much affected by presence of Se (Fig. 2.6a, b). Ascorbate 

peroxidase (Apx) 1 expression was extremely high in S. pinnata (~5000 RPKM), up to ~5000 

fold higher than in S. elata (Fig. 2.6a, b). Similarly, thioredoxin peroxidase (Tpx) was ~100-fold 

more expressed in S. pinnata, and thioredoxin reductase (Trx) 2 was ~10 fold more expressed in 

S. pinnata (Fig. 2.6a, b). 
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Transcript analysis of genes involved in JA, SA and ethylene signaling 

The defense-related hormones JA, SA and ethylene were hypothesized in an earlier 

macroarray study to be involved in Se tolerance and accumulation in S. pinnata (Freeman et al., 

2010), and were therefore also explored. Figure 2.7a and b show the expression of genes 

involved in JA synthesis. Genes that stood out because they were more expressed (at least 5 fold) 

in S. pinnata than S. elata, regardless of organ or Se presence include Lox2 and Lox6 

(lipoxygenase, the first enzyme in JA synthesis), Acx5 and Aim1 (both acyl-CoA oxidases), 

Opcl1 (At1g20480) and Opcl3 (At1g20500). Genes more highly expressed (up to 6-fold) in S. 

elata than S. pinnata include Acx1 (acyl-CoA oxidase) and Opcl6.  

Figure 2.7c and d show the expression of genes involved in SA and ethylene biosynthesis 

as well as in JA, SA and ethylene signaling and defense responses. The overall trend was that 

these genes had constitutive higher expression in the Se hyperaccumulator, S. pinnata. Two 

genes with higher expression in S. pinnata than S. elata were Pal1 and Pal2, encoding 

phenylalanine ammonia lyases, responsible for SA production via the shikimate pathway (Chen 

et al., 2009). Pal expression was lower for +Se than –Se treatment in roots of S. elata but not S. 

pinnata; in shoots Se had no marked effects on Pal expression. Isochorismate synthase (Ics2), 

also involved in SA biosynthesis, was more expressed in S. pinnata than S. elata for both organs 

and Se treatments. Genes encoding ethylene biosynthesis enzymes (SAM synthetase, ACC 

synthase, ACC oxidase) were expressed at similar levels in both species (not shown). However, 

the gene encoding EIN3, which responds to ethylene and functions as a transcription factor for 

downstream processes (Chao et al., 1997), was 10-20 fold more expressed in the Se 

hyperaccumulator. 
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 Jar1, a response gene involved in JA activation and signaling (Laurie-Berry et al., 2006), 

was expressed at 10-20 fold higher levels in S. pinnata than S. elata, both in roots and shoots 

regardless of Se presence. Genes involved in SA signal transduction that were more expressed in 

S. pinnata than S. elata include the DNA-binding Tga3, 9 and 10, which activate the expression 

of pathogenesis related (PR) proteins (Johnson et al., 2003). Indeed, Pr4 was 4 – 20 times more 

expressed in the Se hyperaccumulator (Fig. 2.7c, d). There was only a marginal difference 

between the species in Npr expression; Npr encodes a receptor for SA. Transcription factor 

Wrky70, which is thought to activate SA-induced genes (Li et al., 2004), was more expressed in 

S. pinnata. The plant defensin factors Pdf1.1 and (to a lesser extent) Pdf1.2c were more 

expressed in S. pinnata than S. elata (Fig. 2.7c, d). Since there appears to be a trend for plant 

defense mechanisms to be constitutively and highly expressed in the Se hyperaccumulator, we 

looked for a potential upstream initiating factor. In this context there were three notable genes 

that were more expressed in S. pinnata than S. elata, particularly in roots and in the presence of 

Se. The first one is Mlo12 (mildew resistance locus), a plasma membrane protein involved in 

fungal resistance (Buschges et al., 1997), which was barely detectable in S. elata but present at 

up to 70-fold higher levels in S. pinnata (Fig. 2.7c). The other two (At5g36930 and At5g22690) 

are nucleotide-binding site–leucine-rich repeat encoding genes involved in pathogen sensing, 

although their exact functions are unknown. 

DISCUSSION 

The main question addressed in this study was: which genes play a direct role in the Se 

hyperaccumulator phenotype of Stanleya pinnata, and which other genes are involved in their 

regulation? Based on transcriptome comparison of S. pinnata with S. elata, the Se 

hyperaccumulator appears to use multiple mechanisms to accumulate and tolerate Se. These 
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include increased uptake and translocation of selenate through sulfate/selenate transporters, 

increased assimilation of selenate into organic forms, and increased antioxidant capacity. These 

processes may be regulated via the hormones JA, ethylene and SA in response to elevated levels 

of certain receptors and transcription factors. Defense pathways also appear to be upregulated in 

the hyperaccumulator, likely triggered by these same hormones.  

 We found that shoot biomass was not significantly different between S. pinnata and S. 

elata treated with 0 or 20 µM Se, indicating that the selenate concentration was not high enough 

to cause toxicity. The finding that Se levels were higher in shoots of S. pinnata than S. elata 

indicates that S. pinnata has a greater rate of uptake and/or root-to-shoot translocation. S levels 

in shoots were also higher in S. pinnata compared to S. elata when treated with Se. These results 

may be explained by elevated transcript levels of several sulfate/selenate transporters, as 

discussed below. S. pinnata also had higher Se levels than S. elata when not treated with external 

Se, probably because S. pinnata seeds contained higher levels of pre-existing Se. 

 Although toxicity was not observed in the shoots, Se significantly affected the 

transcriptome in both plant species. Se affected expression of more genes in the shoots of S. 

pinnata but more genes in the roots of S. elata, and only a small proportion of genes was 

similarly affected by Se in both species (Fig. 2.1). This indicates that the Se hyperaccumulator 

and non-accumulator respond differently to Se on an organ-specific level, and that the greater 

distribution of Se into the shoots of S. pinnata may trigger this response.  A large fraction of 

genes were found to be differentially expressed between species, although they are closely 

related; S. elata is in the sister group to the S. pinnata species complex (Cappa et al., 2014). 

Differential gene expression between related species is not uncommon: a transcriptome study 

with maize and rice, both in the Poaceae family, showed large fractions of genes differentially 
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expressed between the species, even under the same growth conditions (Prasad et al., 2010; 

Wang et al., 2014). Interspecies transcriptome studies are inherently complicated because it is 

not known whether genes are orthologous. However, the overall differences in gene expression 

patterns that we observed agree well with earlier macroarray findings (Freeman et al., 2010).  

When treated with Se, only S. elata showed increased expression of Sultr1;2 and the 

Sultr4 vacuolar exporter group, which indicates that the non-accumulator sensed sulfur starvation 

in the presence of Se. A similar response was reported for another non-accumulator, A. thaliana 

(Van Hoewyk et al., 2008). In comparison, S. pinnata roots had overall higher levels of Sultr1;2 

expression regardless of Se supply. It is possible that S. pinnata permanently senses S starvation. 

However, Sultr1;1 which commonly responds to S starvation in other species (Rouached et al., 

2008), was not constitutively upregulated. In any case, the elevated Sultr1;2 expression levels 

may explain the hyperaccumulator’s ability to uptake adequate S despite increased Se 

competition. Our finding of constitutively high expression of Sultr1;2 in S. pinnata supports the 

general hypothesis that enhanced SULTR1;2 transport is the first and major step in the 

hyperaccumulation of Se. In A. thaliana, SULTR1;2 is also the main portal for selenate into the 

plant, and appears to have a higher Se/S specificity compared to the other root plasma membrane 

transporter, SULTR1;1, since null mutants were selenate-resistant and had a higher sulfate to 

selenate ratio in roots (El Kassis et al., 2007). The expression of Sultr2;1, Sultr2;2 and Sultr3;5, 

which are thought to mediate the flux of sulfate through phloem and xylem parenchyma cells 

(Kataoka et al., 2004), was also higher in S. pinnata than S. elata, for the same organ and 

treatment. This higher expression indicates that S. pinnata has a greater rate of S/Se root-to-shoot 

translocation and source-to-sink remobilization than S. elata, which was indeed found in an 

earlier study (Cappa et al., 2014). Other Sultr genes more highly expressed in the 
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hyperaccumulator were Sultr3;4 and Sultr3;5. Lotus japonicus SST1, which is a homolog of 

Arabidopsis SULTR3;5, is expressed in symbiosome membranes in root nodules and is required 

for nodule development (Krusell et al., 2005). Therefore, enhanced root expression of S. pinnata 

Sultr3;5 (perhaps also Sultr3;4) may have implications for plant-microbe interactions; S. pinnata 

was shown recently to harbor a variety of highly Se-resistant bacterial endophytes (Sura-de Jong 

et al., 2015).  

Based on transcript abundance of genes involved in S assimilation, S. pinnata appears to 

have an overall higher flux from inorganic to organic Se compared to S. elata. Higher levels of S 

assimilation would agree with an earlier finding that S. pinnata accumulated no detectable 

inorganic Se, while S. elata contained 20-25% inorganic Se (Cappa et al., 2015). The two plant 

species also differed in their apparent predominant isoforms APS, APR, SERAT and cysteine 

synthase, which may have different kinetic and substrate affinity properties, as well as cellular 

localization. In A. thaliana, APS2 is dual-localized to the cytosol and plastids, and constitutes the 

only cytosolic APS activity (Bohrer et al., 2015). The S. pinnata APS2 likely has similar dual 

localization. In earlier studies, APS was shown to be a rate-limiting enzyme for selenate 

assimilation to organic forms (Pilon-Smits et al., 1999). The extremely high expression of Aps2 

in the roots of S. pinnata, may suggest that selenate is assimilated in part in the roots, and that 

part of the Se may be transported in organic form in the xylem. Indeed, substantial quantities of 

organic Se, present as seleno-amino acids, have been detected in the roots of S. pinnata 

(Lindblom et al., 2013) as well as in guttation fluid (Freeman et al., 2006). It is not clear how 

these compounds are transported; we did not find high expression levels in either species for 

genes known in A. thaliana to encode amino acid transporters. Apr3 expression levels were 100-

fold higher in S. pinnata, but this may not have a physiological effect, since Apr1 expression was 
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even two-fold higher than those of Apr3 in S. pinnata, and two fold lower than the Apr1 levels in 

S. elata (Fig. 2.5). Both Stanleya species had similarly high expression levels of Sir, which 

converts sulfite to sulfide. Selenite may also be reduced by GSH, either with or without the 

involvement of GR (Hsieh & Ganther, 1975; Sors et al., 2005). In the context of a GSH-mediated 

reduction, it is interesting that genes involved in GSH synthesis (gsh1) and reduction (gr2) were 

both much more highly expressed in S. pinnata than S. elata (Fig. 2.6). Serine acetyltransferases 

are known to be regulated by feedback inhibition from Cys, whose synthesis depends on 

combined SERAT and OASTL activity (Kawashima et al., 2005). S. pinnata roots had higher 

expression levels of Serat3;1 than S. elata roots, which was reported to be insensitive to Cys 

levels (Kawashima et al., 2005), while S. elata had higher expression of Serat1;1, which was 

reported to be sensitive to Cys (Krueger et al., 2009). The DE of Serat between species suggest 

that S. pinnata bypasses feedback inhibition of (Se)Cys synthesis due to increasing levels of 

(Se)Cys, whereas S. elata SeCys synthesis could be inhibited with increasing Cys levels. It is 

worth noting that overexpression of a Thlaspi goesingense SERAT isoform in A. thaliana only 

produced modest increases in SeCys formation (Sors et al., 2005). Among the two CS isoforms 

with OAS-TL activity, CS D2 (mitochondrial and cytosolic) was much more highly expressed in 

S. pinnata and the CS D1 (cytosolic) was much more expressed in S. elata. The DE of CS 

between species could affect the rate of selenate uptake in S. pinnata versus S. elata: cytosolic 

CS was reported to negatively regulate root SULTR1;2 activity by binding its C-terminal STAS 

domain (Shibagaki & Grossman, 2010); it is possible that the Stanleya isoforms differ in this 

respect. Also interesting to note is that mitochondrial CS activity (for example, CS D2) was 

shown to be the most important CS for Cys synthesis in A. thaliana (Birke et al., 2012).  
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Transcript levels of genes mediating the three-step enzymatic conversion of (Se)Cys to 

(Se)Met also showed different flux between S. pinnata and S. elata, which may further affect the 

fate and accumulation of organic Se. Both species showed lower RPKM levels for Cbl than for 

Cgs and, especially, Ms. Furthermore, Cgs was more expressed in S. elata, Cbl was more 

expressed in S. pinnata, and Ms2 levels were much higher in S. elata. The finding that Cgs 

expression was higher than Cbl expression in S. pinnata may explain why S. pinnata was reported 

to accumulate around 12% of its Se as selenocystathionine (Freeman et al., 2006). , The difference 

between Cgs and Cbl RPKM levels was even higher in S. elata, which suggests it may accumulate 

a larger fraction of its organic Se as selenocystathionine. Cappa et al. (2005) found 75% organic Se 

in S. elata. The related non-hyperaccumulator Stanleya albescens was shown to accumulate all of 

its organic Se (which was 75% of total Se) as selenocystathionine (Freeman et al., 2010). The 

finding that S. elata had higher Ms2 expression than S. pinnata suggests that it more readily 

converts homoselenocysteine to SeMet. If so, it may have higher rates of non-specific 

incorporation of SeMet into protein, which could cause toxicity. S. elata was found in an earlier 

study to be much more Se sensitive than S. pinnata (El Mehdawi et al., 2012).  

SeCys and SeMet may be further metabolized into volatile compounds by 

methyltransferases (James et al., 1995; Tagmount et al., 2002). One might expect one of these to 

be highly expressed in S. pinnata, since it accumulates 88% of its Se in the form of methyl-SeCys 

(Shrift & Virupaksha, 1965; Freeman et al., 2006). SeCys methyltransferase (SMT) was shown to 

be a major enzyme responsible for hyperaccumulation in Se hyperaccumulator Astragalus 

bisulcatus (Neuhierl and Bock, 1996; Sors et al., 2005, 2009). However, no SMT activity was 

found for the A. thaliana homologue, HMT (Sors et al., 2009). The expression levels of Hmt2 and 

Hmt3 were fairly low in both Stanleya species, and actually lower in S. pinnata (~20 RPKM) than 
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S. elata. However, a gene encoding an O-methyltransferase (At4g35160) was much more highly 

expressed in S. pinnata (~2500 RPKM) than S. elata (~15 RPKM). More research is needed to 

characterize the main methyltransferase(s) in S. pinnata responsible for the production of methyl-

SeCys. 

Although we hypothesized that SLIM1, a transcription factor regulating S assimilation 

(Kawashima et al., 2011), may be differentially expressed between the Stanleya species, we did 

not observe differences. Transcripts levels for microRNA395, also reported to regulate S 

assimilation (Kawashima et al., 2009), could not be compared because of the way the samples 

were processed. 

Selenium is reactive and likely causes oxidative stress (Van Hoewyk, 2013). It has been 

found to induce the expression of genes coding for peroxidases and GSH-related enzymes (Rios 

et al., 2009; Freeman et al., 2010). Therefore, we hypothesized that free radical scavenging 

capacity may play a role in Se tolerance in S. pinnata. Indeed, Freeman et al. (2010) found that 

when supplied with Se, lower levels of reactive oxygen species accumulated in S. pinnata 

compared with the non-hyperaccumulator S. albescens, and higher transcript levels of 

antioxidant and redox-related genes were present in S. pinnata compared with S. albescens. 

Here, we report that several genes involved in GSH synthesis (Gsh1) and conjugation (Gstf7), 

and in free radical scavenging via peroxidase activity (Gpx6, Apx1, and Tpx1) were much more 

highly expressed in S. pinnata than S. elata. The peroxidase family category (Mapman) had the 

highest proportion of genes with greater expression in S. pinnata than S. elata for almost all 

treatments analyzed (Marrs, 1996). These results indicate that the Se hyperaccumulator has 

elevated GSH levels and antioxidant scavenging capacity, which may contribute to its Se 

tolerance. Higher GSH levels were indeed found in S. pinnata than in S. albescens by Freeman et 
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al. (2010). The constitutively elevated levels of GSH and peroxidase expression may “prime” S. 

pinnata for oxidative stress; this may be an advantage, given that it is chronically exposed to 

high levels of Se in its native soils (Cappa et al., 2014). The hyperaccumulators appear to be 

similarly “primed” for biotic stress, judged from their elevated expression levels of defense-

related genes including PR proteins, PDF, and chitinases. Some of these responses may be 

triggered by shared upstream signaling pathways. 

Three defense-related plant hormones that have been implicated to play a role in Se 

tolerance are JA, SA and ethylene. Transcriptome analysis by Tamaoki et al. (2008a) and 

Freeman et al. (2010) found that the expression levels of defense-related genes were 

constitutively higher in S. pinnata compared to S. albescens, and were also more induced by Se 

in Se-resistant than Se-sensitive A. thaliana accessions. Furthermore, treating Se-sensitive A. 

thaliana accessions with ethylene and JA restored Se tolerance (Tamaoki et al., 2008a), and 

application of 10 µM JA to S. pinnata increased leaf Se levels (Freeman et al., 2010). Moreover, 

tissue levels of JA and SA were higher in S. pinnata than S. albescens (Freeman et al., 2010). 

Our analysis of the expression of JA biosynthesis genes may explain the previously found 

elevated JA levels, since several Lox genes were more highly expressed in S. pinnata than S. 

elata, especially Lox2 in S. pinnata roots. Lox2 was reported by Tamaoki et al. (2008a) to be 

induced by Se in Se-resistant A. thaliana accessions. Lox6 was also more highly expressed in 

both organs of S. pinnata compared to S. elata; interestingly, Lox6 is currently the only 

lipoxygenase thought to positively regulate JA levels in roots as well as shoots (Grebner et al., 

2013). A possible explanation for the higher expression levels of GSH biosynthesis genes in the 

Se tolerant species is that JA induces the expression of these genes. In A. thaliana (Xiang & 

Oliver, 1998) it was shown that JA, but not SA or ROS, was primarily responsible for increasing 
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the transcript levels of Gsh1, Gsh2, and Gr1. Gsh1 responded with the greatest increase in 

transcript levels in dose-dependent JA tests, and we found that Gsh1 had the highest expression 

in S. pinnata compared to S. elata among the GSH genes analyzed. JA, as well as ethylene, has 

also been reported to induce S assimilation (Tamaoki et al., 2008a), and thus may be responsible 

for the observed elevated levels of sulfate transporter and S assimilatory genes.  

The greater expression of SA biosynthesis genes such as Ics2 and Pal, as well as the SA-

responsive genes such as Wrky, Tga, Eps and Pr in the Se hyperaccumulator indicates that these 

genes affect Se assimilation and, therefore, tolerance. The extremely high expression levels of 

Pal in S. pinnata may indicate that more SA is produced through the phenylpropanoid pathway. 

Tamaoki et al. (2008a) found increased SA levels in A. thaliana following Se treatment, although 

SA was thought to enhance Se sensitivity. Our findings of increased expression of Pr4 in the Se 

hyperaccumulator is consistent with results from Freeman et al. (2010), where Pr4 expression 

was greater in S. pinnata than S. albescens; and Tamaoki et al. (2008a), where Pr4 was more 

induced in Se-tolerant A. thaliana accessions by Se treatment than in non-tolerant accessions. A 

potential upstream signaling gene for the SA-mediated responses may be Mlo12, which was ~65-

fold more highly expressed in S. pinnata than S. elata, and had an RPKM level of >7000 in S. 

pinnata. MLO interacts with calmodulin (Kim et al., 2002 the expression of which was found by 

Tamaoki et al. (2008a) to be induced by Se in A. thaliana, along with many other genes encoding 

similar signaling proteins. Incidentally, calmodulin 3 was also 10-fold more highly expressed in 

S. pinnata than S. elata (~2500 vs ~250 RPKM).  

Ethylene levels have been reported to induce PAL activity (Chalutz 1973), and here we 

found higher expression in the Se hyperaccumulator of ethylene-responsive gene Ein3 and as 

well as the gene encoding MAPK6, a key protein in ethylene. Ethylene and JA may 
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cooperatively induce the expression of PDF (Penninckx et al., 1998; Leon-Reyes et al., 2010), 

which was found to be more expressed in S. pinnata compared to S. albescens (Freeman et al., 

2010). In A. thaliana (Tamaoki et al., 2008b), PDF was more induced in tolerant accessions by 

Se treatment; furthermore, plants that overexpressed Arabidopsis halleri PDF1.1 showed a 

significant increase in tolerance to Se compared to wild-type. Here, we also report higher 

expression levels of Pdf 1.1 and Pdf 1.2C in the Se hyperaccumulator, which could indicate that 

by the collective increase in ethylene and JA biosynthesis gene expression, SA-mediated 

expression and the associated increase in Se sensitivity may be inhibited, and plants may 

increase in tolerance to Se through the induction of PDF.  

In conclusion, the analysis of the transcriptomes of S. pinnata, a Se hyperaccumulator, 

with S. elata, a closely related non-accumulator, yielded some new insights into Se 

hyperaccumulation and tolerance. At the level of large enzyme families as well as of individual 

analyses of GSH, ascorbate, and thioredoxin related genes, those genes involved in free-radical 

scavenging were some of the most abundant and differentially expressed between species, and 

may be involved in enzymatic or non-enzymatic (through their product, GSH) reduction of Se. In 

the Sultr family, the high expression levels of Sultr1;2 in S. pinnata may be primarily 

responsible for Se uptake at the root level, and the elevated expression of several group 2, 3 and 

4 Sultr genes in S. pinnata may contribute to increased root-to-shoot and source-to-sink transport 

of Se. The first and rate-limiting enzyme in S/Se assimilation, Aps2, was extremely highly 

expressed in S. pinnata but not S. elata, and may be localized in the cytosol in addition to the 

chloroplast (Bohrer et al., 2015). Other genes involved in S assimilation, particularly Apr3, were 

also expressed at higher levels in the hyperaccumulator, and may contribute to the accumulation 

of organic selenocompounds. The higher expression levels of several JA biosynthesis genes in S. 
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pinnata compared with S. elata implies greater amounts of certain JA precursors produced in the 

hyperaccumulator; JA has been previously shown to induce S assimilatory and GSH biosynthesis 

genes, and therefore may enhance Se tolerance. The potential Se sensing and downstream 

signaling mechanisms leading to the induction of these defense hormone genes provide a 

working model (Fig. 2.8), and will be an interesting area for further study. We propose several 

genes as possible candidates, MLO12 and two TIR-NB-LRR class genes (AT5G22690, 

AT5G36930), as they are known to trigger defense responses and were much more highly 

expressed in S. pinnata than S. elata. If a “key gene” could be identified that triggers the cascade 

of events that leads to the Se hyperaccumulation syndrome, such a gene would be very promising 

for the genetic engineering of plants with superior capacity for Se accumulation and tolerance, 

which would have applications in phytoremediation and biofortification. 
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FIGURES

Figure 2.1 Biomass production and Se and S accumulation of Se hyperaccumulator S. pinnata 

and nonaccumulator S. elata grown on agar medium with 0 or 20 µM sodium selenate. (a) Shoot 

fresh weight of plants used for transcriptome analysis. (b) Dry weight of plants grown for 

elemental analysis. (c) Shoot Se concentration. (d) Shoot S concentration. Shown values 
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represent the mean of five replicates + SEM. Letters above bars indicate significant differences 

between treatments using ANOVA with post-hoc pairwise comparison (Student’s t-test). 

 

Figure 2.2 Venn diagrams showing the number of genes in S. pinnata or S. elata that are 

significantly increased (↑) or decreased (↓) in expression by 20 µM Se in roots (a) and shoots 

(b). Overlapping areas represent genes with shared regulation patterns between species. 
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Figure 2.3 Differential expression patterns between S. pinnata and S. elata for major functional 

categories, as sorted by Mapman. The bracketed numbers to the right of the category names 

depict the range in the number of genes identified for that category for all 4 treatments: roots or 

shoots, 0 or 20 µM Se. For each treatment, red bars signify the percentage of genes with higher 

expression in S. elata than S. pinnata for a category, while blue bars signify the percentage of 

genes with higher expression in S. pinnata than S. elata (q < 0.005).  
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Figure 2.4 Expression levels of sulfate transporter (Sultr) genes in shoots and roots of S. pinnata 

and S. elata grown on 0 or 20 µM sodium selenate. (a) Schematic representation of the 

differences in expression levels between S. pinnata and S. elata for SULTRs with known 

transport functions in different cellular compartments and tissues. Width of arrows represents the 

fold difference between species (ratio of S. pinnata RPKM/S. elata RPKM) for a given treatment 

and organ. Blue arrows are for plants grown without Se and red arrows for plants grown with 20 

µM Se. (b) Shoot and (c) root expression levels of Sultr genes (n=3, mean RPKM + SD). 

Significant differences between treatments are presented in the text. 
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Figure 2.5 Expression levels of genes involved in Se/S assimilation in roots (a) and shoots (b) of 

S. pinnata and S. elata grown on 0 or 20 µM sodium selenate. Values displayed are the mean 

normalized RPKMs of 3 bioreplicates per treatment. Enzymes whose genes were significantly 

DE in S. pinnata and S. elata include APS (ATP sulfurylase), APR (APS reductase), SIR (sulfite 

reductase), SERAT (serine acetyl transferase), OAS-TL/CS (O-acetylserine thiol lyase / cysteine 

synthase), CGS (cystathionine gamma synthase), CBL (cystathionine beta lyase), MS 

(methionine synthase). Blue shaded cells represent plants treated with no Se, and red cells 

represent plants treated with 20 µM Se. The pathway metabolites (displayed in white cells) are 

APSe (adenosine-5-phosphoselenate), OAS (O-acetylserine), SeCys (seleno-cysteine), SeMet 

(selenomethionine). 
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Figure 2.6 Expression levels of genes involved in antioxidant functions in roots (a) and shoots 

(b) of S. pinnata and S. elata grown on 0 or 20 µM sodium selenate. Shown values shown 

represent the mean RPKM (n=3 bioreplicates) + SD. GSH1: gamma-glutamylcysteine 

synthetase; GSH2: glutathione synthetase; GR: glutathione reductase; GSTF: glutathione-S-

transferase; GPX: glutathione peroxidase; APX: ascorbate peroxidase; TPX: thioredoxin 

peroxidase; TRX: thioredoxin reductase. 
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Figure 2.7 Expression levels of genes involved in synthesis and signaling of the defense-related 

plant hormones JA, ethylene and SA that were DE in roots (a, c) and shoots (b, d) of S. pinnata 

and S. elata grown on 0 or 20 µM sodium selenate. Shown values represent the mean RPKM 

(n=3 bioreplicates) + SD. (a, b) Genes involved in JA biosynthesis. LOX: lipoxygenase; AOS: 

allene oxide synthase; AOC: allene oxide cyclase; ACX: acyl-CoA oxidase; AIM: acyl-CoA 

oxidase like protein; KCR: hydroxyacyl-CoA dehydrogenase; KAT: OPC4-3ketoacyl-CoA 

thiolase. (c, d) Genes involved in ethylene and SA biosynthesis, in JA/SA/ethylene signaling, 
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and defense. MLO: mildew resistance locus O; PAL: phenylalanine ammonia lyase; ICS: 

isochorismate synthase; EPS: enhanced Pseudomonas susceptibility; NPR: non-expressed 

pathogen resistance genes; WRKY: transcription factor; TGA: TGACG-binding protein; PR: 

pathogen resistant; EIN: ethylene insensitive; PDF: pathogen defensin factor; JAR: jasmonate 

responsive. 



59 

 

 

Figure 2.8 Schematic model of genes proposed to mediate Se sensing and response in Se 

hyperaccumulator Stanleya pinnata.  Increased selenium supply may trigger the defense 

signaling pathways, leading to increased hormone synthesis and an increase in overall ROS 

scavenging ability and S/Se accumulation.  Genes highlighted in red were found in this study to 
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be more highly expressed in S. pinnata than S. elata for all Se treatments.  Solid arrows 

connecting gene groups represent well-known interactions from previous literature; dashed 

arrows represent tentative connections based on few studies; dashed arrows with question marks 

represent relationships proposed in this study requiring further analysis.  
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CHAPTER 2:  

SUPPLEMENTARY MATERIAL 

 

Fig. S2.1 Venn diagrams showing the number of genes in 0 µm Se (-Se) or 20 µm Se (+Se) 

conditions where expression in S. pinnata > S. elata (↑) and S. elata > S. pinnata (↓) in roots (a) 

and shoots (b). Overlapping areas show genes with shared regulation patterns regardless of 

treatment condition. 

 

Table S2.1. Table of significantly differentially expressed (q<0.005) genes for all analyses based 

on model parameters. This file contains 19,000 rows and will be made available on 

DataDryad.org repository before publication. 

link: (‘gene_report.csv’, 

https://www.dropbox.com/s/ubso1zbb57dn89j/All%20Annotated%20Genes%20with%20RPKM

s.xlsx?dl=0) 
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Table S2.2. Top 100 significant (q-value < 0.005) differentially expressed genes in response to 

Se treatment in (a) S. elata, (b) S. pinnata. Fold difference is calculated as the RPKM ratio of 0 

µM/20 µM Se.  Effect measures the extent by which the treatment affects (increases or 

decreases) gene expression, and is a more statistically reliable measure of gene response.  The 

effect is on the transformed normalized scale (see methods section for model).  (+) or (-) values 

indicate increased or decreased gene expression with Se treatment, respectively. The larger the 

absolute value of the effect is, the greater the treatment effect. Effect values were used to 

separate genes based on expression direction in descending order, with the most differentially 

expressed on top. 

 

a. S. elata  

ATID fold change effect annotation 

Increased expression 

AT3G41768.1 7.26 1.56 18SrRNA 

AT2G07709.1 11.39 1.10 pseudogene, similar to NADH dehydrogenase 

AT2G07717.1 15.84 1.01 pseudogene, similar to NADH-ubiquinone oxidoreductase chain 4  

AT2G47230.2 14.60 0.95 DOMAIN OF UNKNOWN FUNCTION 724 6 (DUF6) 

AT2G07711.1 18.05 0.85 pseudogene, similar to NADH dehydrogenase subunit 5 

AT2G17430.1 43.38 0.77 MILDEW RESISTANCE LOCUS O 7 (MLO7) 

AT2G07727.1 17.04 0.77 Di-haem cytochrome, transmembrane 

AT2G07733.1 16.45 0.76 pseudogene, similar to NADH dehydrogenase subunit 2 

AT1G16460.4 3.73 0.76 rhodanese homologue 2 (RDH2) 

AT4G07668.1 2.70 0.71 gypsy-like retrotransposon family 

AT2G19110.1 2.21 0.63 heavy metal atpase 4 (HMA4) 

AT3G54010.2 3.57 0.62 PASTICCINO 1 (PAS1) 

AT1G16440.1 28.64 0.61 root hair specific 3 (RSH3) 

AT3G57120.1 7.39 0.61 Protein kinase superfamily protein 

AT5G48320.1 25.04 0.55 Cysteine/Histidine-rich C1 domain family protein 

AT1G10890.1 2.26 0.55 unknown protein 

AT2G36420.1 1.90 0.53 unknown protein 

AT5G40170.1 3.33 0.53 receptor like protein 54 (RLP54) 

AT5G25310.1 5.24 0.52 Exostosin family protein 

AT5G23110.1 1.78 0.51 Zinc finger, C3HC4 type (RING finger) family protein 

AT2G06830.1 229.23 0.50 copia-like retrotransposon family 
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AT2G23000.1 1.73 0.49 serine carboxypeptidase-like 10 (scpl10) 

AT5G49930.1 1.87 0.48 embryo defective 1441 (emb1441) 

AT4G37330.1 2.19 0.47 cytochrome P450, family 81, subfamily D, polypeptide 4 (CYP81D4) 

AT3G23790.1 2.74 0.47 acyl activating enzyme 16 (AAE16) 

AT2G32415.2 

2.48 0.45 

Polynucleotidyl transferase, ribonuclease H fold protein with HRDC 

domain 

AT1G72390.1 2.22 0.45 CONTAINS InterPro DOMAIN/s: Spt20 family  

AT3G01770.1 1.84 0.45 bromodomain and extraterminal domain protein 10 (BET10) 

AT2G07734.1 16.96 0.44 Alpha-L RNA-binding motif/Ribosomal protein S4 family protein 

AT5G38383.1 4.53 0.44 gypsy-like retrotransposon family (Athila) 

AT2G07783.1 13.38 0.44 pseudogene, similar to Ccl1 

AT1G48090.1 1.64 0.44 calcium-dependent lipid-binding family protein 

AT3G05820.1 375.23 0.44 invertase H (INVH) 

AT1G10320.1 1.84 0.42 Zinc finger C-x8-C-x5-C-x3-H type family protein 

AT2G07712.1 18.83 0.42 pseudogene, similar to maturase-related protein 

Decreased expression 

AT3G20370.1 0.39 -1.05 TRAF-like family protein 

AT5G25980.3 0.59 -0.84 glucoside glucohydrolase 2 (TGG2) 

AT3G63200.1 0.39 -0.82 PATATIN-like protein 9 (PLP9) 

AT3G03040.1 0.14 -0.80 F-box/RNI-like superfamily protein 

AT3G16470.3 0.55 -0.78 JASMONATE RESPONSIVE 1 (JR1) 

AT1G50010.1 0.52 -0.76 tubulin alpha-2 chain (TUA2) 

AT1G48760.2 0.46 -0.76 delta-adaptin (delta-ADR) 

AT2G22240.2 0.49 -0.72 myo-inositol-1-phosphate synthase 2 (MIPS2) 

AT1G67870.1 0.57 -0.68 glycine-rich protein 

AT1G48110.2 0.49 -0.66 evolutionarily conserved C-terminal region 7 (ECT7) 

AT1G28400.1 0.55 -0.66 unknown protein 

AT5G23020.1 0.62 -0.65 2-isopropylmalate synthase 2 (IMS2) 

AT2G14247.1 0.22 -0.65 Expressed protein 

AT2G33070.2 0.28 -0.62 nitrile specifier protein 2 (NSP2) 

AT2G30860.2 0.52 -0.61 glutathione S-transferase PHI 9 (GSTF9) 

AT3G16240.1 0.53 -0.61 delta tonoplast integral protein (DELTA-TIP) 

AT2G01520.1 0.57 -0.60 MLP-like protein 328 (MLP328) 

AT1G52000.1 0.59 -0.58 Mannose-binding lectin superfamily protein 

AT4G23680.1 0.45 -0.58 Polyketide cyclase/dehydrase and lipid transport superfamily protein 

AT4G11320.1 0.37 -0.57 Papain family cysteine protease 

AT3G21180.1 0.33 -0.57 autoinhibited Ca(2+)-ATPase 9 (ACA9) 

AT1G58270.1 0.49 -0.57 ZW9 

AT5G07030.1 0.53 -0.56 Eukaryotic aspartyl protease family protein 

AT5G56030.2 0.63 -0.55 heat shock protein 81-2 (HSP81-2) 

AT2G38080.1 0.45 -0.53 IRREGULAR XYLEM 12 (IRX12) 

AT1G52400.3 0.45 -0.52 beta glucosidase 18 (BGLU18) 
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AT4G32410.1 0.70 -0.52 cellulose synthase 1 (CESA1) 

AT1G70850.3 0.64 -0.52 MLP-like protein 34 (MLP34) 

AT3G17390.1 0.58 -0.52 METHIONINE OVER-ACCUMULATOR 3 (MTO3) 

AT5G17920.2 0.65 -0.52 COBALAMIN-INDEPENDENT METHIONINE SYNTHASE (ATCIMS) 

AT5G05170.1 0.79 -0.51 CONSTITUTIVE EXPRESSION OF VSP 1 (CEV1) 

AT1G56070.1 0.73 -0.51 LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (LOS1) 

AT2G45470.1 0.54 -0.51 FASCICLIN-like arabinogalactan protein 8 (FLA8) 

AT5G67360.1 0.70 -0.51 ARA12 

AT3G09260.1 0.43 -0.50 PYK10 

AT5G12250.1 0.67 -0.50 beta-6 tubulin (TUB6) 

AT1G02500.2 0.61 -0.48 S-adenosylmethionine synthetase 1 (SAM1) 

AT4G18780.1 0.48 -0.48 IRREGULAR XYLEM 1 (IRX1) 

AT4G13930.1 0.61 -0.48 serine hydroxymethyltransferase 4 (SHM4) 

AT4G13940.3 0.65 -0.48 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT5G26000.1 0.58 -0.48 thioglucoside glucohydrolase 1 (TGG1) 

AT2G37180.1 0.64 -0.47 RESPONSIVE TO DESICCATION 28 (RD28) 

AT3G03780.3 0.72 -0.47 methionine synthase 2 (MS2) 

AT3G53260.1 0.50 -0.47 phenylalanine ammonia-lyase 2 (PAL2) 

AT1G15690.2 0.78 -0.46 AVP1 

AT2G38120.1 0.65 -0.46 AUXIN RESISTANT 1 (AUX1) 

AT5G59870.1 0.62 -0.46 histone H2A 6 (HTA6) 

AT1G51680.3 0.48 -0.46 4-coumarate:CoA ligase 1 (4CL1) 

AT1G14900.1 0.52 -0.45 high mobility group A (HMGA) 

AT5G10630.2 0.52 -0.45 Translation elongation factor EF1A/initiation factor IF2gamma family  

AT1G54040.2 0.78 -0.45 epithiospecifier protein (ESP) 

AT2G37040.1 0.58 -0.45 PHE ammonia lyase 1 (PAL1) 

AT5G54160.1 0.64 -0.44 O-methyltransferase 1 (OMT1) 

AT5G44340.1 0.68 -0.44 tubulin beta chain 4 (TUB4) 

AT3G60750.2 0.90 -0.43 Transketolase 

AT3G23800.1 0.56 -0.43 selenium-binding protein 3 (SBP3) 

AT3G51070.1 

0.10 -0.43 

S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT4G13770.1 0.77 -0.43 cytochrome P450, family 83, subfamily A, polypeptide 1 (CYP83A1) 

AT4G00780.1 0.61 -0.43 TRAF-like family protein 

AT1G15950.2 0.58 -0.43 cinnamoyl coa reductase 1 (CCR1) 

AT5G04820.1 0.34 -0.42 ovate family protein 13 (OFP13) 

AT1G19850.1 0.62 -0.42 MONOPTEROS (MP) 

AT1G31280.1 0.55 -0.42 argonaute 2 (AGO2) 

AT3G23255.2 0.32 -0.42 unknown protein 

AT5G59320.1 0.40 -0.42 lipid transfer protein 3 (LTP3) 
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b. S. pinnata 

ATID fold change effect annotation 

Increased expression 

AT4G32500.1 30.64 1.12 K+ transporter 5 (KT5) 

AT1G17690.1 2.56 0.79 FUNCTIONS IN: molecular_function unknown 

AT1G20440.1 2.03 0.77 cold-regulated 47 (COR47) 

AT4G21060.2 2.62 0.77 Galactosyltransferase family protein 

AT4G11320.1 44.85 0.76 Papain family cysteine protease 

AT5G67310.1 3.17 0.72 cytochrome P450, family 81, subfamily G, polypeptide 1 (CYP81G1) 

AT4G35160.1 1.87 0.70 O-methyltransferase family protein 

AT5G53010.1 2.73 0.70 calcium-transporting ATPase, putative 

AT5G66250.4 3.31 0.65 kinectin-related 

AT5G12270.1 4.36 0.63 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily  

AT5G53450.2 2.04 0.62 OBP3-responsive gene 1 (ORG1) 

AT3G01420.1 3.86 0.60 DOX1 

AT5G65220.1 2.08 0.55 Ribosomal L29 family protein  

AT1G22360.2 2.25 0.54 UDP-glucosyl transferase 85A2 (UGT85A2) 

AT1G13930.2 1.73 0.53 FUNCTIONS IN: molecular_function unknown 

AT2G30670.1 1.51 0.51 NAD(P)-binding Rossmann-fold superfamily protein 

AT5G38100.2 

5.00 

0.51 S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT1G44542.1 1.70 0.51 Cyclase family protein 

AT4G26630.2 1.71 0.50 DEK domain-containing chromatin associated protein 

AT1G78860.1 

1.56 

0.50 D-mannose binding lectin protein with Apple-like carbohydrate-

binding domain 

AT5G40450.1 1.61 0.50 unknown protein 

AT3G51920.1 2.34 0.50 calmodulin 9 (CAM9) 

AT5G53460.3 1.27 0.49 NADH-dependent glutamate synthase 1 (GLT1) 

AT2G42690.1 1.74 0.49 alpha/beta-Hydrolases superfamily protein 

AT5G40340.1 1.98 0.48 Tudor/PWWP/MBT superfamily protein 

AT5G41670.2 1.60 0.48 6-phosphogluconate dehydrogenase family protein 

AT2G46572.1 33.97 0.47 Potential natural antisense gene 

AT5G22690.1 1.76 0.47 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G79040.1 1.94 0.46 photosystem II subunit R (PSBR) 

AT2G05380.2 1.61 0.46 glycine-rich protein 3 short isoform (GRP3S) 

AT4G15530.6 1.63 0.46 pyruvate orthophosphate dikinase (PPDK) 

AT4G33110.2 

4.88 

0.46 S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT1G27950.1 

2.59 

0.44 glycosylphosphatidylinositol-anchored lipid protein transfer 1 

(LTPG1) 

AT2G21660.2 1.54 0.44 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT2G16060.1 2.40 0.44 hemoglobin 1 (HB1) 
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AT2G05100.1 1.41 0.44 photosystem II light harvesting complex gene 2.1 (LHCB2.1) 

AT1G74470.1 1.81 0.43 Pyridine nucleotide-disulphide oxidoreductase family protein 

AT5G24660.1 1.90 0.43 RESPONSE TO LOW SULFUR 2 (LSU2) 

AT1G77760.1 2.54 0.43 nitrate reductase 1 (NIA1) 

AT1G64960.1 2.15 0.43 ARM repeat superfamily protein 

AT5G64120.1 2.12 0.43 Peroxidase superfamily protein 

AT2G15620.1 1.45 0.43 nitrite reductase 1 (NIR1) 

AT5G64470.3 3.32 0.43 INVOLVED IN: biological_process unknown 

AT5G66570.1 1.54 0.43 PS II oxygen-evolving complex 1 (PSBO1) 

AT3G19930.1 1.60 0.43 sugar transporter 4 (STP4) 

AT4G19810.1 1.46 0.42 Glycosyl hydrolase family protein with chitinase insertion domain 

AT5G48180.1 1.90 0.42 nitrile specifier protein 5 (NSP5) 

AT2G26560.1 4.07 0.42 phospholipase A 2A (PLA2A) 

AT3G05900.1 2.01 0.42 neurofilament protein-related 

AT1G22400.1 3.50 0.42 UGT85A1 

AT2G43910.2 2.15 0.41 HARMLESS TO OZONE LAYER 1 (HOL1) 

AT4G12550.1 2.26 0.41 Auxin-Induced in Root cultures 1 (AIR1) 

AT3G54890.4 1.65 0.41 photosystem I light harvesting complex gene 1 (LHCA1) 

AT4G32950.1 4.16 0.41 Protein phosphatase 2C family protein 

AT1G13080.2 1.58 0.40 cytochrome P450, family 71, subfamily B, polypeptide 2 (CYP71B2) 

Decreased expression 

AT1G07890.8 0.04 -2.61 ascorbate peroxidase 1 (APX1) 

AT2G33770.1 0.30 -1.20 phosphate 2 (PHO2) 

AT5G14200.3 0.11 -1.04 isopropylmalate dehydrogenase 1 

AT3G16340.2 0.47 -0.83 pleiotropic drug resistance 1 (PDR1) 

AT1G21140.1 0.41 -0.80 Vacuolar iron transporter (VIT) family protein 

AT2G43150.1 0.50 -0.73 Proline-rich extensin-like family protein 

AT5G48930.1 

0.25 

-0.68 hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl 

transferase (HCT) 

AT3G48770.1 0.00 -0.66 DNA binding 

AT2G37040.1 0.35 -0.60 PHE ammonia lyase 1 (PAL1) 

AT3G44300.1 0.39 -0.58 nitrilase 2 (NIT2) 

AT4G25030.2 0.20 -0.58 unknown protein 

AT5G64341.1 0.38 -0.58 conserved peptide upstream open reading frame 40 (CPuORF40) 

AT2G30860.1 0.43 -0.58 glutathione S-transferase PHI 9 (GSTF9) 

AT5G01595.1 0.01 -0.57 Potential natural antisense gene 

AT2G47180.1 0.42 -0.57 galactinol synthase 1 (GolS1) 

AT4G36648.1 0.35 -0.55 Unknown gene 

AT5G66170.3 0.14 -0.54 sulfurtransferase 18 (STR18) 

AT3G07390.1 0.12 -0.54 Auxin-Induced in Root cultures 12 (AIR12) 

AT5G42530.1 0.53 -0.53 unknown protein 

AT1G22410.1 0.75 -0.52 Class-II DAHP synthetase family protein 
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AT3G53260.1 0.23 -0.51 phenylalanine ammonia-lyase 2 (PAL2) 

AT4G03050.1 0.64 -0.51 AOP3 

AT5G05340.1 0.42 -0.50 Peroxidase superfamily protein 

AT2G37180.1 0.17 -0.50 RESPONSIVE TO DESICCATION 28 (RD28) 

AT5G17890.1 0.65 -0.50 DA1-related protein 4 (DAR4) 

AT1G52400.3 0.59 -0.49 beta glucosidase 18 (BGLU18) 

AT3G54600.1 0.38 -0.49 Class I glutamine amidotransferase-like superfamily protein 

AT4G21510.1 0.54 -0.49 F-box family protein 

AT1G72290.1 0.35 -0.48 Kunitz family trypsin and protease inhibitor protein 

AT5G18370.1 0.67 -0.48 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G78360.1 0.34 -0.48 glutathione S-transferase TAU 21 (GSTU21) 

AT5G37770.1 0.44 -0.48 TOUCH 2 (TCH2) 

AT4G19690.2 0.65 -0.47 iron-regulated transporter 1 (IRT1) 

AT5G06730.1 0.14 -0.47 Peroxidase superfamily protein 

AT3G21240.1 0.45 -0.47 4-coumarate:CoA ligase 2 (4CL2) 

AT3G19710.1 0.59 -0.46 branched-chain aminotransferase4 (BCAT4) 

AT1G77520.1 0.80 -0.42 O-methyltransferase family protein 

AT2G34210.1 0.59 -0.42 Transcription elongation factor Spt5 

AT4G33720.1 

0.55 

-0.41 CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-

related 1 protein) superfamily protein 

AT3G03780.3 0.69 -0.41 methionine synthase 2 (MS2) 

AT5G54090.1 0.33 -0.41 DNA mismatch repair protein MutS, type 2 

AT1G73260.1 0.56 -0.41 kunitz trypsin inhibitor 1 (KTI1) 

AT5G18360.1 0.41 -0.41 Disease resistance protein (TIR-NBS-LRR class) family 

AT2G25450.1 

0.81 

-0.41 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT4G36150.1 0.72 -0.40 Disease resistance protein (TIR-NBS-LRR class) family 
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Table S2.3 Top 100 significant (q-value < 0.005) differentially expressed genes in response to 

Se treatment in (a) S. elata roots, (b) S. pinnata roots, (c) S. elata shoots, (d) S. pinnata shoots. 

Fold difference is calculated as the RPKM ratio of 0 µM/20 µM Se.  Effect measures the extent 

by which the treatment affects (increases or decreases) gene expression, and is a more 

statistically reliable measure of gene response.  The effect is on the transformed normalized scale 

(see methods section for model). (+) or (-) values indicate increased or decreased gene 

expression with Se treatment, respectively. The larger the absolute value of the effect is, the 

greater the treatment effect. Effect values were used to separate genes based on expression 

direction in descending order, with the most differentially expressed on top. 

 

a. S. elata roots 

ATID fold change effect Annotation 

Increased expression 

AT3G41768.1 9.89 3.28 18SrRNA 

AT2G07709.1 13.08 2.24 pseudogene, similar to NADH dehydrogenase,  

AT2G07717.1 18.32 2.04 pseudogene, similar to NADH-ubiquinone  

AT2G07711.1 20.23 1.69 pseudogene, similar to NADH dehydrogenase subunit 5 

AT2G07727.1 18.96 1.53 Di-haem cytochrome, transmembrane; Cytochrome b/b6, C-terminal 

AT2G07733.1 18.44 1.51 pseudogene, similar to NADH dehydrogenase subunit 2 

AT2G47230.2 21.67 1.15 DOMAIN OF UNKNOWN FUNCTION 724 6 (DUF6) 

AT1G10890.1 3.15 1.13 unknown protein 

AT2G19110.1 2.48 1.00 heavy metal atpase 4 (HMA4) 

AT5G40170.1 3.92 0.98 receptor like protein 54 (RLP54) 

AT2G36420.1 2.23 0.94 unknown protein 

AT5G49930.1 2.42 0.90 embryo defective 1441 (emb1441) 

AT3G54010.2 4.42 0.90 PASTICCINO 1 (PAS1) 

AT1G65860.1 2.06 0.89 flavin-monooxygenase glucosinolate S-oxygenase 1 (FMO GS-OX1) 

AT3G14460.1 3.83 0.89 LRR and NB-ARC domains-containing disease resistance protein 

AT2G07734.1 18.89 0.88 Alpha-L RNA-binding motif/Ribosomal protein S4 family protein 

AT2G07783.1 15.61 0.86 pseudogene, similar to Ccl1 

AT2G17430.1 33.59 0.85 MILDEW RESISTANCE LOCUS O 7 (MLO7) 

AT2G07712.1 22.90 0.82 pseudogene, similar to maturase-related protein 
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AT5G25310.1 6.98 0.82 Exostosin family protein 

AT1G10320.1 2.54 0.82 Zinc finger C-x8-C-x5-C-x3-H type family protein 

AT4G07668.1 2.80 0.81 gypsy-like retrotransposon family 

AT1G16440.1 33.05 0.78 root hair specific 3 (RSH3)  

AT3G19670.1 1.94 0.77 pre-mRNA-processing protein 40B (PRP40b) 

AT3G57120.1 10.60 0.76 Protein kinase superfamily protein  

AT5G23110.1 2.01 0.76 Zinc finger, C3HC4 type (RING finger) family protein 

AT3G19190.1 2.19 0.75 AUTOPHAGY 2 (ATG2) 

AT3G01770.1 2.34 0.75 bromodomain and extraterminal domain protein 10 (BET10) 

AT5G38383.1 8.52 0.75 gypsy-like retrotransposon family (Athila) 

AT1G19485.2 3.21 0.74 Transducin/WD40 repeat-like superfamily protein  

AT1G79950.1 2.70 0.73 RAD3-like DNA-binding helicase protein 

AT1G06490.1 2.78 0.73 glucan synthase-like 7 (GSL07) 

AT2G07715.1 26.63 0.73 Nucleic acid-binding, OB-fold-like protein 

AT3G13790.2 2.22 0.72 ATBFRUCT1 

AT1G16460.4 3.88 0.72 rhodanese homologue 2 (RDH2) 

AT1G54490.1 2.99 0.72 exoribonuclease 4 (XRN4) 

AT2G07687.1 15.51 0.72 Cytochrome c oxidase, subunit III 

AT4G02660.1 2.18 0.72 Beige/BEACH domain ;WD domain, G-beta repeat protein 

AT1G48090.1 1.99 0.72 calcium-dependent lipid-binding family protein 

AT3G02070.1 2.26 0.71 Cysteine proteinases superfamily protein 

AT3G20475.1 2.69 0.70 MUTS-homologue 5 (MSH5) 

Decreased expression 

AT2G22240.2 0.16 -1.28 myo-inositol-1-phosphate synthase 2 (MIPS2) 

AT4G23680.1 0.33 -1.28 Polyketide cyclase/dehydrase and lipid transport superfamily protein 

AT1G50010.1 0.35 -1.25 tubulin alpha-2 chain (TUA2) 

AT5G05170.1 0.36 -1.23 CONSTITUTIVE EXPRESSION OF VSP 1 (CEV1) 

AT5G25980.3 0.33 -1.18 glucoside glucohydrolase 2 (TGG2) 

AT1G52000.1 0.39 -1.17 Mannose-binding lectin superfamily protein 

AT3G20370.1 0.35 -1.15 TRAF-like family protein 

AT4G11320.1 0.36 -1.10 Papain family cysteine protease 

AT2G33070.2 0.27 -1.09 nitrile specifier protein 2 (NSP2) 

AT5G23020.1 0.42 -1.08 2-isopropylmalate synthase 2 (IMS2) 

AT3G63200.1 0.36 -1.07 PATATIN-like protein 9 (PLP9) 

AT1G56070.1 0.44 -1.06 LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (LOS1) 

AT3G09260.1 0.42 -1.06 PYK10 

AT5G56030.2 0.35 -1.05 heat shock protein 81-2 (HSP81-2) 

AT2G30860.2 0.31 -1.05 glutathione S-transferase PHI 9 (GSTF9) 

AT2G37040.1 0.37 -1.03 PHE ammonia lyase 1 (PAL1) 

AT4G32410.1 0.46 -1.01 cellulose synthase 1 (CESA1) 
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AT2G38080.1 0.19 -0.99 IRREGULAR XYLEM 12 (IRX12) 

AT1G48760.2 0.38 -0.98 delta-adaptin (delta-ADR) 

AT5G12250.1 0.41 -0.98 beta-6 tubulin (TUB6) 

AT4G05050.1 0.43 -0.97 ubiquitin 11 (UBQ11) 

AT1G02500.2 0.41 -0.96 S-adenosylmethionine synthetase 1 (SAM1) 

AT1G15690.2 0.35 -0.91 AVP1 

AT1G28400.1 0.47 -0.90 unknown protein 

AT3G53260.1 0.38 -0.89 phenylalanine ammonia-lyase 2 (PAL2) 

AT4G13940.3 0.47 -0.87 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT2G01520.1 0.54 -0.86 MLP-like protein 328 (MLP328) 

AT3G60750.2 0.43 -0.86 Transketolase 

AT3G03040.1 0.11 -0.85 F-box/RNI-like superfamily protein 

AT1G52400.3 0.32 -0.84 beta glucosidase 18 (BGLU18) 

AT1G54040.2 0.46 -0.84 epithiospecifier protein (ESP) 

AT5G44340.1 0.41 -0.82 tubulin beta chain 4 (TUB4) 

AT3G16470.3 0.55 -0.81 JASMONATE RESPONSIVE 1 (JR1) 

AT1G51680.3 0.38 -0.81 4-coumarate:CoA ligase 1 (4CL1) 

AT1G78120.1 0.46 -0.81 Tetratricopeptide repeat (TPR)-like superfamily protein 

AT4G38770.1 0.46 -0.80 proline-rich protein 4 (PRP4) 

AT5G67360.1 0.53 -0.80 ARA12; FUNCTIONS IN: serine-type endopeptidase activity 

AT3G47470.1 0.52 -0.80 light-harvesting chlorophyll-protein complex I subunit A4 (LHCA4) 

AT4G13930.1 0.41 -0.80 serine hydroxymethyltransferase 4 (SHM4) 

AT1G07890.6 0.39 -0.79 ascorbate peroxidase 1 (APX1) 

AT4G18780.1 0.29 -0.79 IRREGULAR XYLEM 1 (IRX1) 

AT1G48110.2 0.48 -0.78 evolutionarily conserved C-terminal region 7 (ECT7) 

AT1G44575.2 0.49 -0.78 NONPHOTOCHEMICAL QUENCHING 4 (NPQ4) 

AT5G38480.2 0.46 -0.77 general regulatory factor 3 (GRF3_ 

AT5G17920.2 0.53 -0.77 COBALAMIN-INDEPENDENT METHIONINE SYNTHASE (ATCIMS) 

AT5G44790.1 0.47 -0.77 RESPONSIVE-TO-ANTAGONIST 1 (RAN1) 

AT3G15950.1 0.24 -0.75 NAI2 

AT5G07030.1 0.49 -0.75 Eukaryotic aspartyl protease family protein 

AT2G38120.1 0.51 -0.75 AUXIN RESISTANT 1 (AUX1) 

AT2G41840.1 0.53 -0.74 Ribosomal protein S5 family protein 

AT4G21960.1 0.57 -0.74 PRXR1 

AT3G16240.1 0.32 -0.74 delta tonoplast integral protein (DELTA-TIP) 

AT3G16410.1 0.20 -0.74 nitrile specifier protein 4 (NSP4) 

AT4G33090.1 0.45 -0.74 aminopeptidase M1 (APM1) 

AT4G03050.1 0.42 -0.73 AOP3 

AT1G73330.1 0.19 -0.71 drought-repressed 4 (DR4) 

AT5G17420.1 0.23 -0.71 IRREGULAR XYLEM 3 (IRX3) 

AT3G03780.3 0.60 -0.71 methionine synthase 2 (MS2) 
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AT2G36880.2 0.44 -0.71 methionine adenosyltransferase 3 (MAT3) 

 

b. S. elata shoots 

ATID fold change effect Annotation 

Increased expression 

AT1G16460.4 3.63 0.79 rhodanese homologue 2 (RDH2) 

AT2G47230.2 9.19 0.75 DOMAIN OF UNKNOWN FUNCTION 724 6 (DUF6) 

AT2G17430.1 93.25 0.69 MILDEW RESISTANCE LOCUS O 7 (MLO7) 

AT2G23000.1 1.94 0.65 serine carboxypeptidase-like 10 (scpl10) 

AT4G07668.1 2.54 0.60 gypsy-like retrotransposon family 

AT4G37330.1 2.97 0.59 cytochrome P450, family 81, subfamily D, polypeptide 4 (CYP81D4) 

AT5G01595.1 3.69 0.59 Potential natural antisense gene 

AT2G38230.1 35.45 0.53 pyridoxine biosynthesis 1.1 (PDX1.1) 

AT4G24120.1 1.81 0.51 YELLOW STRIPE like 1 (YSL1) 

AT4G25100.5 1.63 0.47 Fe superoxide dismutase 1 (FSD1) 

AT5G56870.1 1.48 0.47 beta-galactosidase 4 (BGAL4) 

AT3G23790.1 2.57 0.46 acyl activating enzyme 16 (AAE16) 

AT3G57120.1 4.85 0.46 Protein kinase superfamily protein 

AT1G69990.1 2.19 0.45 Leucine-rich repeat protein kinase family protein 

AT5G43530.1 50.85 0.44 Helicase protein with RING/U-box domain 

AT1G16440.1 20.55 0.44 root hair specific 3 (RSH3) 

AT5G48320.1 12.54 0.43 Cysteine/Histidine-rich C1 domain family protein 

AT1G27110.3 2.03 0.43 Tetratricopeptide repeat (TPR)-like superfamily protein 

AT5G13630.2 1.36 0.42 GENOMES UNCOUPLED 5 (GUN5) 

AT1G29720.1 2.05 0.42 Leucine-rich repeat transmembrane protein kinase 

AT5G04460.2 1.93 0.42 RING/U-box superfamily protein 

AT4G14370.1 59.09 0.41 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G07110.1 1.55 0.41 fructose-2,6-bisphosphatase (F2KP) 

AT3G56090.1 3.12 0.41 ferritin 3 (FER3) 

AT5G61820.1 1.63 0.41 FUNCTIONS IN: molecular_function unknown 

AT2G31660.1 1.56 0.39 SUPER SENSITIVE TO ABA AND DROUGHT2 (SAD2) 

AT5G43060.1 1.43 0.39 Granulin repeat cysteine protease family protein 

AT5G10180.1 2.36 0.39 slufate transporter 2 

AT1G79460.1 3.07 0.39 GA REQUIRING 2 (GA2) 

AT1G53510.1 2.85 0.39 mitogen-activated protein kinase 18 (MPK18) 

AT5G02100.1 3E+11 0.39 UNFERTILIZED EMBRYO SAC 18 (UNE18) 

AT3G19170.2 1.40 0.39 presequence protease 1 (PREP1) 

AT1G36160.2 1.47 0.39 acetyl-CoA carboxylase 1 (ACC1) 

AT1G58290.1 2.04 0.38 HEMA1 

AT3G26770.1 2.73 0.38 NAD(P)-binding Rossmann-fold superfamily protein 
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AT1G02640.1 1.52 0.38 beta-xylosidase 2 (BXL2) 

AT4G03050.1 1.42 0.37 AOP3 

AT3G11930.4 1.53 0.37 Adenine nucleotide alpha hydrolases-like superfamily protein 

AT5G45650.1 1.46 0.37 subtilase family protein 

Decreased expression 

AT2G14247.1 0.15 -1.55 Expressed protein 

AT3G20370.1 0.43 -0.95 TRAF-like family protein 

AT5G26000.1 0.52 -0.79 thioglucoside glucohydrolase 1 (TGG1) 

AT3G03040.1 0.16 -0.76 F-box/RNI-like superfamily protein 

AT3G16470.3 0.51 -0.75 JASMONATE RESPONSIVE 1 (JR1) 

AT1G67870.1 0.57 -0.70 glycine-rich protein 

AT5G67370.1 0.46 -0.65 Protein of unknown function (DUF1230) 

AT5G59320.1 0.40 -0.63 lipid transfer protein 3 (LTP3) 

AT3G23800.1 0.56 -0.62 selenium-binding protein 3 (SBP3) 

AT5G53450.2 0.36 -0.61 OBP3-responsive gene 1 (ORG1) 

AT1G17990.2 0.27 -0.61 FMN-linked oxidoreductases superfamily protein 

AT4G14365.1 0.32 -0.61 XB3 ortholog 4 in Arabidopsis thaliana (XBAT34) 

AT2G37180.1 0.61 -0.61 RESPONSIVE TO DESICCATION 28 (RD28) 

AT1G31580.1 0.11 -0.60 ECS1 

AT5G63520.1 0.50 -0.60 CONTAINS InterPro DOMAIN/s: F-box domain, Skp2-like  

AT5G05250.1 0.40 -0.59 unknown protein 

AT3G63200.1 0.47 -0.57 PATATIN-like protein 9 (PLP9) 

AT3G27060.1 0.46 -0.54 TSO MEANING 'UGLY' IN CHINESE 2 (TSO2) 

AT3G21180.1 0.28 -0.54 autoinhibited Ca(2+)-ATPase 9 (ACA9) 

AT1G48110.2 0.52 -0.53 evolutionarily conserved C-terminal region 7 (ECT7) 

AT1G48760.2 0.58 -0.53 delta-adaptin (delta-ADR) 

AT1G22690.3 0.44 -0.53 Gibberellin-regulated family protein 

AT4G00780.1 0.61 -0.52 TRAF-like family protein 

AT5G25980.3 0.68 -0.51 glucoside glucohydrolase 2 (TGG2) 

AT4G04610.1 0.66 -0.50 APS reductase 1 (APR1) 

AT1G62420.1 0.22 -0.50 Protein of unknown function (DUF506)  

AT1G58270.1 0.34 -0.49 ZW9 

AT5G24660.1 0.27 -0.48 RESPONSE TO LOW SULFUR 2 (LSU2) 

AT3G17390.1 0.62 -0.48 METHIONINE OVER-ACCUMULATOR 3 (MTO3) 

AT1G68890.1 0.69 -0.48 magnesium ion binding 

AT3G16240.1 0.61 -0.48 delta tonoplast integral protein (DELTA-TIP) 

AT5G19120.1 0.60 -0.47 Eukaryotic aspartyl protease family protein 

AT3G56360.1 0.50 -0.47 unknown protein 

AT5G44190.1 0.52 -0.47 GOLDEN2-like 2 (GLK2) 

AT3G18290.1 0.67 -0.46 BRUTUS (BTS) 

AT2G46660.1 0.29 -0.46 cytochrome P450, family 78, subfamily A, polypeptide 6 (CYP78A6) 
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AT1G12080.2 0.51 -0.46 Vacuolar calcium-binding protein-related 

AT3G51070.1 

0.09 -0.44 

S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT4G16000.1 0.34 -0.44 unknown protein 

AT5G04150.1 0.37 -0.43 BHLH101 

AT1G61120.1 0.17 -0.43 terpene synthase 04 (TPS04) 

AT1G73602.1 0.64 -0.43 conserved peptide upstream open reading frame 32 (CPuORF32) 

AT5G64770.1 0.62 -0.43 root meristem growth factor 9 (RGF9) 

AT3G23255.2 0.31 -0.43 unknown protein 

AT4G09150.2 0.63 -0.42 T-complex protein 11 

AT1G70850.3 0.66 -0.42 MLP-like protein 34 (MLP34) 

AT1G28400.1 0.69 -0.41 unknown protein 

AT3G22060.1 0.43 -0.41 Receptor-like protein kinase-related family protein 

AT2G31880.1 0.57 -0.41 SUPPRESSOR OF BIR1 1 (SOBIR1) 

AT1G20693.3 0.63 -0.41 high mobility group B2 (HMGB2) 

AT1G09530.2 0.60 -0.40 phytochrome interacting factor 3 (PIF3) 

AT4G21990.2 0.53 -0.40 APS reductase 3 (APR3) 

AT5G13740.1 0.69 -0.39 zinc induced facilitator 1 (ZIF1) 

AT4G35110.4 0.59 -0.39 Arabidopsis phospholipase-like protein (PEARLI 4) family 

AT3G17510.1 0.59 -0.39 CBL-interacting protein kinase 1 (CIPK1) 

AT5G52300.2 0.53 -0.38 LOW-TEMPERATURE-INDUCED 65 (LTI65) 

AT2G36830.1 0.68 -0.38 gamma tonoplast intrinsic protein (GAMMA-TIP) 

AT3G16230.3 0.57 -0.38 Predicted eukaryotic LigT 

AT1G64510.1 

0.70 -0.37 

Translation elongation factor EF1B/ribosomal protein S6 family 

protein 

AT3G63160.1 0.68 -0.37 FUNCTIONS IN: molecular_function unknown 

AT2G37170.1 0.62 -0.37 plasma membrane intrinsic protein 2 (PIP2b) 

 

c. S. pinnata roots 

ATID fold change effect Annotation 

Increased expression 

AT4G11310.1 37.12 1.52 Papain family cysteine protease 

AT4G32500.1 132.20 1.31 K+ transporter 5 (KT5) 

AT4G21060.2 3.08 0.97 Galactosyltransferase family protein 

AT5G38100.2 

5.18 0.97 

S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT5G53010.1 3.60 0.95 calcium-transporting ATPase, putative 

AT4G11320.1 43.27 0.90 Papain family cysteine protease 

AT4G12550.1 2.27 0.89 Auxin-Induced in Root cultures 1 (AIR1) 

AT1G17690.1 2.79 0.88 FUNCTIONS IN: molecular_function unknown 

AT5G48570.1 3.11 0.87 FKBP-type peptidyl-prolyl cis-trans isomerase family protein 
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AT2G16060.1 2.45 0.86 hemoglobin 1 (HB1) 

AT1G74590.1 2.67 0.85 glutathione S-transferase TAU 10 (GSTU10) 

AT4G35160.1 2.90 0.85 O-methyltransferase family protein 

AT5G12270.1 

4.22 0.84 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT3G12500.1 2.12 0.81 basic chitinase (HCHIb) 

AT2G36120.1 2.07 0.80 DEFECTIVELY ORGANIZED TRIBUTARIES 1 (DOT1) 

AT2G30670.1 3.05 0.74 NAD(P)-binding Rossmann-fold superfamily protein 

AT1G17745.2 2.07 0.74 D-3-phosphoglycerate dehydrogenase 

AT1G78340.1 2.37 0.68 glutathione S-transferase TAU 22 (GSTU22) 

AT4G33110.2 

4.97 0.67 

S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT3G47730.1 1.72 0.63 ATP-binding cassette A2 (ABCA2) 

AT2G26560.1 4.53 0.62 phospholipase A 2A (PLA2A) 

AT5G43360.1 5.77 0.61 phosphate transporter 1 

AT4G32950.1 4.06 0.61 Protein phosphatase 2C family protein 

AT1G02920.1 1.91 0.61 glutathione S-transferase 7 (GSTF7) 

AT1G21310.1 1.56 0.60 extensin 3 (EXT3) 

AT5G08260.1 3.13 0.60 serine carboxypeptidase-like 35 (scpl35) 

AT5G22690.1 1.75 0.59 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G52050.1 2.64 0.59 Mannose-binding lectin superfamily protein 

AT1G56430.1 2.30 0.57 nicotianamine synthase 4 (NAS4) 

AT2G43840.1 3.05 0.57 UDP-glycosyltransferase 74 F1 (UGT74F1) 

AT5G36930.2 1.81 0.57 Disease resistance protein (TIR-NBS-LRR class) family 

AT4G19810.1 1.67 0.57 Glycosyl hydrolase family protein with chitinase insertion domain 

AT1G70830.4 2.59 0.57 MLP-like protein 28 (MLP28) 

AT3G47780.1 1.80 0.56 ABC2 homolog 6 (ATH6) 

AT3G61390.2 2.38 0.56 RING/U-box superfamily protein 

AT2G18960.1 1.49 0.56 H(+)-ATPase 1 (HA1) 

AT1G44542.1 1.87 0.55 Cyclase family protein 

AT5G38100.1 

4.69 0.55 

S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT2G44220.1 2.61 0.53 Protein of Unknown Function (DUF239) 

AT4G13770.1 1.57 0.52 cytochrome P450, family 83, subfamily A, polypeptide 1 (CYP83A1) 

AT2G43100.1 1.89 0.51 isopropylmalate isomerase 2 (IPMI2) 

AT5G23010.1 1.59 0.51 methylthioalkylmalate synthase 1 (MAM1) 

AT5G17330.1 1.94 0.50 glutamate decarboxylase (GAD) 

AT3G51920.1 2.14 0.50 calmodulin 9 (CAM9) 

AT4G23010.3 2.11 0.50 UDP-galactose transporter 2 (UTR2) 

AT3G53280.1 7.80 0.50 cytochrome p450 71b5 (CYP71B5) 

AT2G39200.1 1.80 0.49 MILDEW RESISTANCE LOCUS O 12 (MLO12) 

AT2G46572.1 39.72 0.49 Potential natural antisense gene 

AT4G10340.1 1.50 0.49 light harvesting complex of photosystem II 5 (LHCB5) 
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AT3G19930.1 1.62 0.48 sugar transporter 4 (STP4) 

AT1G19715.3 1.53 0.48 Mannose-binding lectin superfamily protein 

AT5G40820.1 1.79 0.48 Ataxia telangiectasia-mutated and RAD3-related (ATR) 

AT5G67310.1 2.13 0.47 cytochrome P450, family 81, subfamily G, polypeptide 1 (CYP81G1) 

AT5G66690.1 1.72 0.47 UGT72E2 

AT2G42690.1 2.28 0.47 alpha/beta-Hydrolases superfamily protein 

AT5G08640.2 4.09 0.47 flavonol synthase 1 (FLS1) 

AT5G64470.3 3.64 0.47 INVOLVED IN: biological_process unknown 

AT1G12110.1 1.57 0.46 nitrate transporter 1.1 (NRT1.1) 

AT1G48760.2 1.51 0.46 delta-adaptin (delta-ADR) 

AT1G21110.1 2.11 0.46 O-methyltransferase family protein 

Decreased expression 

AT4G36150.1 0.03 -3.22 Disease resistance protein (TIR-NBS-LRR class) family 

AT4G33720.1 

0.25 -1.28 

CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-

related 1 protein) superfamily protein 

AT1G73260.1 0.43 -1.15 kunitz trypsin inhibitor 1 (KTI1) 

AT5G18360.1 0.12 -1.07 Disease resistance protein (TIR-NBS-LRR class) family 

AT3G47340.2 0.18 -1.05 glutamine-dependent asparagine synthase 1 (ASN1) 

AT1G77520.1 0.34 -1.04 O-methyltransferase family protein 

AT4G19690.2 0.43 -0.96 iron-regulated transporter 1 (IRT1) 

AT5G54090.1 0.39 -0.94 DNA mismatch repair protein MutS, type 2 

AT2G25450.1 

0.45 -0.81 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT1G21140.1 0.32 -0.80 Vacuolar iron transporter (VIT) family protein 

AT4G21510.1 0.08 -0.78 F-box family protein 

AT1G63220.1 0.11 -0.76 Calcium-dependent lipid-binding (CaLB domain) family protein 

AT5G06730.1 0.38 -0.74 Peroxidase superfamily protein 

AT4G01870.1 0.41 -0.74 tolB protein-related 

AT3G21240.1 0.19 -0.71 4-coumarate:CoA ligase 2 (4CL2) 

AT1G78360.1 0.44 -0.70 glutathione S-transferase TAU 21 (GSTU21) 

AT2G34210.1 0.00 -0.70 Transcription elongation factor Spt5 

AT5G05340.1 0.26 -0.67 Peroxidase superfamily protein 

AT5G66170.3 0.32 -0.61 sulfurtransferase 18 (STR18) 

AT2G37180.1 0.58 -0.61 RESPONSIVE TO DESICCATION 28 (RD28) 

AT1G01580.1 0.42 -0.59 ferric reduction oxidase 2 (FRO2) 

AT1G52810.1 

0.21 -0.58 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT5G19440.1 0.58 -0.58 NAD(P)-binding Rossmann-fold superfamily protein 

AT3G53260.1 0.65 -0.54 phenylalanine ammonia-lyase 2 (PAL2) 

AT4G17030.1 0.28 -0.54 expansin-like B1 (EXLB1) 

AT5G01595.1 0.36 -0.51 Potential natural antisense gene 

AT1G50060.1 

0.28 -0.51 

CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-

related 1 protein) superfamily protein 



76 

 

AT1G15040.2 0.33 -0.50 Class I glutamine amidotransferase-like superfamily protein 

AT1G22410.1 0.61 -0.50 Class-II DAHP synthetase family protein 

AT5G20620.1 0.60 -0.50 ubiquitin 4 (UBQ4) 

AT1G75830.1 0.45 -0.49 low-molecular-weight cysteine-rich 67 (LCR67) 

AT5G18370.1 0.40 -0.49 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G09780.1 0.62 -0.48 Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent 

AT3G25510.1 0.38 -0.48 disease resistance protein (TIR-NBS-LRR class), putative 

AT5G04950.1 0.48 -0.47 nicotianamine synthase 1 (NAS1) 

AT3G21690.1 0.60 -0.47 MATE efflux family protein 

AT2G41705.2 0.55 -0.46 camphor resistance CrcB family protein 

AT3G61430.2 0.60 -0.46 plasma membrane intrinsic protein 1A (PIP1A) 

AT4G12290.1 0.49 -0.46 Copper amine oxidase family protein 

AT5G48930.1 

0.55 -0.46 

hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl 

transferase (HCT) 

 

d. S. pinnata shoots 

ATID fold change effect Annotation 

Increased expression 

AT1G59900.1 2.58 1.18 cold-regulated 47 (COR47) 

AT1G68890.1 3.97 1.13 UDP-glucosyl transferase 85A2 (UGT85A2) 

AT5G54390.1 26.99 1.08 DOX1 

AT4G15530.6 2.56 1.05 unknown protein 

AT1G18590.1 4.50 1.02 glutamine-dependent asparagine synthase 1 (ASN1) 

AT4G01800.2 2.26 1.01 glycine-rich protein 3 short isoform (GRP3S) 

AT5G65220.1 4.87 0.97 cytochrome P450, family 81, subfamily G, polypeptide 1 (CYP81G1) 

AT5G64040.1 6.26 0.96 kinectin-related 

AT2G38120.1 15.14 0.92 K+ transporter 5 (KT5) 

AT1G78860.1 2.14 0.92 Hyaluronan / mRNA binding family 

AT5G61290.1 2.16 0.90 Ribosomal L29 family protein  

AT1G78630.1 2.69 0.90 glycosylphosphatidylinositol-anchored lipid protein transfer 1 (LTPG1) 

AT5G17890.1 1.96 0.88 NADH-dependent glutamate synthase 1 (GLT1) 

AT1G08830.2 2.01 0.85 FUNCTIONS IN: molecular_function unknown 

AT4G11310.1 2.06 0.84 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT4G13430.1 2.82 0.84 Tudor/PWWP/MBT superfamily protein 

AT5G09220.1 2.14 0.83 OBP3-responsive gene 1 (ORG1) 

AT1G70890.1 3.52 0.82 UGT85A1 

AT2G21660.2 2.08 0.80 DEK domain-containing chromatin associated protein 

AT2G28950.1 1.95 0.78 CP5 

AT2G38540.1 2.06 0.78 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT3G52930.1 1.98 0.77 photosystem II subunit R (PSBR) 
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AT4G32500.1 2.03 0.77 beta-xylosidase 1 (BXL1) 

AT1G75750.2 1.91 0.76 pyruvate orthophosphate dikinase (PPDK) 

AT1G22400.1 15.48 0.75 UDP-Glycosyltransferase superfamily protein 

AT1G15810.1 1.79 0.75 S15/NS1, RNA-binding protein 

AT4G26630.2 2.24 0.74 nitrile specifier protein 5 (NSP5) 

AT1G27950.1 2.42 0.71 Tropomyosin-related 

AT4G37800.1 1.87 0.70 LOW-TEMPERATURE-INDUCED 65 (LTI65) 

AT1G35720.1 2.33 0.70 FUNCTIONS IN: molecular_function unknown 

AT4G03050.1 1.71 0.69 aldehyde oxidase 1 (AAO1) 

AT5G55660.1 1.85 0.68 PSAN 

AT3G12780.1 1.84 0.68 GAST1 protein homolog 1 (GASA1) 

AT3G02020.1 1.84 0.67 Pyridine nucleotide-disulphide oxidoreductase family protein 

AT5G37770.1 1.80 0.66 myosin 2 (ATM2) 

AT3G16470.3 3.42 0.66 nitrate reductase 1 (NIA1) 

AT4G13615.1 2.08 0.64 unknown protein 

AT1G03630.2 2.31 0.64 cytochrome P450, family 71, subfamily B, polypeptide 2 (CYP71B2) 

AT2G31790.1 3.23 0.63 FUNCTIONS IN: molecular_function unknown 

AT1G64720.1 1.67 0.62 eukaryotic translation initiation factor 3A (EIF3A) 

AT5G46110.4 2.24 0.62 HARMLESS TO OZONE LAYER 1 (HOL1) 

AT3G51950.2 

2.78 

0.62 D-mannose binding lectin protein with Apple-like carbohydrate-binding 

domain 

AT5G48180.1 2.19 0.62 DEK domain-containing chromatin associated protein 

AT1G58270.1 48.85 0.62 Papain family cysteine protease 

AT2G43100.1 3.60 0.62 unknown protein 

AT5G13630.2 1.89 0.61 ortholog of sugar beet HS1 PRO-1 2 (HSPRO2) 

AT5G61790.1 

2.30 

0.61 pseudogene, similar to pathogen- and wound-inducible antifungal 

protein CBP20 precursor, similar to pathogen- and wound-inducible 

antifungal protein 

Decreased expression 

AT2G47180.1 0.06 -2.00 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G52190.1 0.28 -1.64 Papain family cysteine protease 

AT4G13940.4 

0.21 

-1.59 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT1G61520.1 0.28 -1.36 extensin 3 (EXT3) 

AT2G34210.1 0.31 -1.23 methylthioalkylmalate synthase 1 (MAM1) 

AT1G13080.2 0.18 -1.22 branched-chain aminotransferase4 (BCAT4) 

AT1G72290.1 0.41 -1.22 cytochrome P450, family 83, subfamily A, polypeptide 1 (CYP83A1) 

AT5G56000.1 0.38 -1.10 methionine synthase 2 (MS2) 

AT5G26000.1 0.33 -1.08 isopropylmalate isomerase 2 (IPMI2) 

AT1G21440.1 0.46 -1.05 Class I glutamine amidotransferase-like superfamily protein 

AT3G55700.1 0.08 -1.01 Disease resistance protein (TIR-NBS-LRR class) family 

AT3G47340.2 0.25 -1.00 isopropylmalate dehydrogenase 1 

AT2G45960.3 0.09 -0.99 Kunitz family trypsin and protease inhibitor protein 
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AT2G21660.2 0.45 -0.98 beta glucosidase 18 (BGLU18) 

AT2G26890.1 0.38 -0.96 O-methyltransferase family protein 

AT1G17745.2 0.18 -0.95 cytochrome p450 79f1 (CYP79F1) 

AT4G32260.1 0.45 -0.92 phosphate 2 (PHO2) 

AT3G03780.3 0.50 -0.92 xyloglucan endotransglucosylase/hydrolase 7 (XTH7) 

AT4G17520.1 0.36 -0.89 unknown protein 

AT5G53300.4 0.23 -0.84 galactinol synthase 1 (GolS1) 

AT4G26690.1 0.41 -0.82 UDP-Glycosyltransferase superfamily protein 

AT1G52000.1 0.08 -0.82 AOP3 

AT5G64040.1 0.31 -0.82 Auxin-Induced in Root cultures 12 (AIR12) 

AT2G05380.2 0.36 -0.80 Mannose-binding lectin superfamily protein 

AT2G05520.6 0.45 -0.79 Major facilitator superfamily protein 

AT3G54600.1 0.07 -0.78 DA1-related protein 4 (DAR4) 

AT1G74090.1 0.17 -0.76 ZW9 

AT4G05050.1 0.36 -0.76 APS kinase (APK) 

AT3G07390.1 0.16 -0.75 polygalacturonase inhibiting protein 2 (PGIP2) 

AT3G58610.3 0.23 -0.73 NOD26-like intrinsic protein 6 

AT1G65980.2 0.33 -0.71 Phosphoenolpyruvate carboxylase family protein 

AT4G11320.1 0.01 -0.70 TOUCH 2 (TCH2) 

AT4G37800.1 0.54 -0.70 PHE ammonia lyase 1 (PAL1) 

AT2G32870.1 0.36 -0.69 flavin-monooxygenase glucosinolate S-oxygenase 1 (FMO GS-OX1) 

AT5G01220.1 0.49 -0.69 AUXIN RESISTANT 1 (AUX1) 

AT3G19710.1 0.43 -0.68 amino acid permease 2 (AAP2) 

AT1G51400.1 0.46 -0.68 sulfotransferase 17 (SOT17) 

AT1G77760.1 0.24 -0.67 cellulose synthase-like A01 (CSLA01) 

AT4G21990.1 0.57 -0.67 glutathione S-transferase PHI 9 (GSTF9) 

AT5G20960.2 0.45 -0.66 DNA mismatch repair protein MutS, type 2 

AT5G53460.3 0.48 -0.66 Flavin-binding monooxygenase family protein 

AT5G52300.2 0.49 -0.66 COBRA (COb) 

AT5G54280.2 0.47 -0.66 myb domain protein 28 (MYB28) 

AT3G44300.1 0.46 -0.65 glutathione S-transferase TAU 20 (GSTU20) 

AT1G19920.1 0.52 -0.64 Plant invertase/pectin methylesterase inhibitor superfamily 

AT1G52400.3 0.48 -0.63 APS2 

AT5G42530.1 0.57 -0.63 HAL2-like (HL) 

AT1G80760.1 0.63 -0.63 PRXR1 

AT4G35160.1 0.00 -0.62 Transcription elongation factor Spt5 

AT1G65860.1 0.61 -0.62 isopropyl malate isomerase large subunit 1 (IIL1) 

AT2G01140.1 0.64 -0.62 glyceraldehyde-3-phosphate dehydrogenase B subunit (GAPb) 

AT5G65220.1 0.24 -0.62 pleiotropic drug resistance 1 (PDR1) 

AT1G16410.1 0.50 -0.61 Transmembrane amino acid transporter family protein 
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Table S2.4. Top 100 significant (q-value < 0.005) differentially expressed genes between species 

in (a) roots with 0 µM Se, (b) roots with 20 µM Se, (c) shoots with 0 µM Se, and (d) shoots with 

20 µM Se. Fold difference is calculated as the RPKM ratio of S. pinnata/S. elata.  Effect 

measures the extent by which the treatment affects (increases or decreases) gene expression, and 

is a more statistically reliable measure of gene response.  The effect is on the transformed 

normalized scale (see methods section for model). (+) or (-) values indicate more or less gene 

expression in S. pinnata relative to S. elata, respectively. The larger the absolute value of the 

effect is, the greater the treatment effect. Effect values were used to separate genes based on 

expression direction in descending order, with the most differentially expressed on top. 

 

a. Root -Se 

ATID fold change effect Annotation 

More expressed 

AT3G52930.1 212.56 4.95 Aldolase superfamily protein 

AT1G19920.1 111.72 4.68 APS2 

AT3G16460.2 221.44 4.44 Mannose-binding lectin superfamily protein 

AT2G45960.3 61.89 4.23 plasma membrane intrinsic protein 1B (PIP1b) 

AT1G73260.1 31.34 3.97 kunitz trypsin inhibitor 1 (KTI1) 

AT1G07890.8 6E+13 3.95 ascorbate peroxidase 1 (APX1) 

AT4G36150.1 225.37 3.84 Disease resistance protein (TIR-NBS-LRR class) family 

AT2G21045.1 119.45 3.62 Rhodanese/Cell cycle control phosphatase superfamily protein 

AT2G01140.1 41.77 3.58 Aldolase superfamily protein 

AT4G13940.4 557.14 3.58 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT5G62700.1 2772.81 3.56 tubulin beta chain 3 (TUB3) 

AT5G40780.2 507.39 3.37 lysine histidine transporter 1 

AT4G13615.1 460.08 3.31 Uncharacterised protein family SERF 

AT5G09810.1 77.26 3.28 actin 7 (ACT7) 

AT3G23640.2 74.07 3.28 heteroglycan glucosidase 1 (HGL1) 

AT4G16260.1 158.57 3.26 Glycosyl hydrolase superfamily protein 

AT4G26690.1 157.74 3.25 SHAVEN 3 (SHV3) 

AT2G05380.2 6558.44 3.14 glycine-rich protein 3 short isoform (GRP3S) 

AT3G13330.1 120.56 3.12 proteasome activating protein 200 (PA200) 

AT2G44790.1 150.33 2.96 uclacyanin 2 (UCC2) 
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AT4G33720.1 

1020.03 

2.79 CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-

related 1 protein) superfamily protein 

AT4G19690.2 28.54 2.75 iron-regulated transporter 1 (IRT1) 

AT2G25490.1 36.05 2.66 EIN3-binding F box protein 1 (EBF1) 

AT3G51950.2 

188.20 

2.63 Zinc finger (CCCH-type) family protein / RNA recognition motif (RRM)-

containing protein 

AT2G43610.1 26.38 2.60 Chitinase family protein 

AT2G28780.1 34.75 2.57 unknown protein 

AT3G28510.1 

228.65 

2.56 P-loop containing nucleoside triphosphate hydrolases superfamily 

protein 

AT2G25450.1 

72.44 

2.52 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT3G52590.1 18.94 2.52 ubiquitin extension protein 1 (UBQ1) 

AT4G38920.1 73.31 2.50 vacuolar-type H(+)-ATPase C3 (VHA-C3) 

AT5G54090.1 49.56 2.48 DNA mismatch repair protein MutS, type 2 

AT1G52400.3 8.56 2.46 beta glucosidase 18 (BGLU18) 

AT1G32450.1 9.51 2.42 nitrate transporter 1.5 (NRT1.5) 

AT4G10340.1 27.17 2.42 light harvesting complex of photosystem II 5 (LHCB5) 

AT3G26200.1 58.23 2.40 cytochrome P450, family 71, subfamily B, polypeptide 22 (CYP71B22) 

AT2G46750.1 16.58 2.38 D-arabinono-1,4-lactone oxidase family protein 

AT1G08830.2 12.78 2.37 copper/zinc superoxide dismutase 1 (CSD1) 

AT5G54770.1 3214.15 2.37 THI1 

AT5G13490.2 6.77 2.37 ADP/ATP carrier 2 (AAC2) 

AT5G37600.1 15.73 2.35 glutamine synthase clone R1 (GSR 1) 

AT2G21660.2 36.39 2.33 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT5G53300.4 7.08 2.32 ubiquitin-conjugating enzyme 10 (UBC10) 

AT5G56630.1 22.22 2.31 phosphofructokinase 7 (PFK7) 

AT4G21990.1 95.84 2.30 APS reductase 3 (APR3) 

AT2G18960.1 5.52 2.29 H(+)-ATPase 1 (HA1) 

AT1G19715.3 41.31 2.28 Mannose-binding lectin superfamily protein 

AT4G15310.1 5639.31 2.26 cytochrome P450, family 702, subfamily A, polypeptide 3 (CYP702A3) 

AT1G32790.2 52.58 2.25 CTC-interacting domain 11 (CID11) 

AT1G15690.2 6.51 2.25 AVP1 

AT3G62830.2 64.32 2.22 UDP-GLUCURONIC ACID DECARBOXYLASE 2 (UXS2) 

AT4G29040.1 59.89 2.22 regulatory particle AAA-ATPase 2A (RPT2a) 

AT4G01290.2 36.51 2.19 unknown protein 

AT3G02090.2 66.24 2.16 MPPBETA 

AT5G64100.1 31.59 2.16 Peroxidase superfamily protein 

AT4G33420.1 28.72 2.16 Peroxidase superfamily protein 

AT5G19440.1 16.44 2.15 NAD(P)-binding Rossmann-fold superfamily protein 

Less expressed 

AT5G23020.1 0.00 -4.07 2-isopropylmalate synthase 2 (IMS2) 

AT3G47470.1 0.00 -4.06 light-harvesting chlorophyll-protein complex I subunit A4 (LHCA4) 
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AT3G16470.3 0.04 -3.86 JASMONATE RESPONSIVE 1 (JR1) 

AT5G13630.2 0.00 -3.71 GENOMES UNCOUPLED 5 (GUN5) 

AT1G70850.3 0.06 -3.45 MLP-like protein 34 (MLP34) 

AT1G68890.1 0.01 -3.19 magnesium ion binding 

AT4G11320.1 0.00 -3.18 Papain family cysteine protease 

AT2G26890.1 0.01 -2.98 GRAVITROPISM DEFECTIVE 2 (GRV2) 

AT1G45201.1 0.02 -2.91 triacylglycerol lipase-like 1 (TLL1) 

AT3G02020.1 0.03 -2.84 aspartate kinase 3 (AK3) 

AT5G52040.4 0.02 -2.82 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT4G22100.1 0.08 -2.80 beta glucosidase 2 (BGLU3) 

AT1G78080.1 0.00 -2.74 related to AP2 4 (RAP2.4) 

AT3G03780.3 0.12 -2.69 methionine synthase 2 (MS2) 

AT3G26460.1 0.00 -2.68 Polyketide cyclase/dehydrase and lipid transport superfamily protein 

AT2G40130.2 

0.02 

-2.61 Double Clp-N motif-containing P-loop nucleoside triphosphate 

hydrolases superfamily protein 

AT1G52000.1 0.09 -2.60 Mannose-binding lectin superfamily protein 

AT3G63200.1 0.03 -2.59 PATATIN-like protein 9 (PLP9) 

AT2G38040.2 

0.05 

-2.57 acetyl Co-enzyme a carboxylase carboxyltransferase alpha subunit 

(CAC3) 

AT4G05050.1 0.05 -2.56 ubiquitin 11 (UBQ11) 

AT4G27640.1 0.01 -2.55 ARM repeat superfamily protein 

AT1G67090.2 0.02 -2.54 ribulose bisphosphate carboxylase small chain 1A (RBCS1A) 

AT1G65860.1 0.04 -2.51 flavin-monooxygenase glucosinolate S-oxygenase 1 (FMO GS-OX1) 

AT3G16640.1 0.06 -2.50 translationally controlled tumor protein (TCTP) 

AT3G02360.1 0.04 -2.46 6-phosphogluconate dehydrogenase family protein 

AT1G09000.1 0.02 -2.43 NPK1-related protein kinase 1 (NP1) 

AT1G62770.1 0.03 -2.42 Plant invertase/pectin methylesterase inhibitor superfamily protein 

AT5G61790.1 0.04 -2.39 calnexin 1 (CNX1) 

AT4G39420.2 0.04 -2.35 unknown protein 

AT1G68750.1 0.06 -2.30 phosphoenolpyruvate carboxylase 4 (PPC4) 

AT3G19710.1 0.09 -2.30 branched-chain aminotransferase4 (BCAT4) 

AT3G54890.4 0.05 -2.30 photosystem I light harvesting complex gene 1 (LHCA1) 

AT1G48110.2 0.05 -2.29 evolutionarily conserved C-terminal region 7 (ECT7) 

AT1G15820.1 0.03 -2.28 light harvesting complex photosystem II subunit 6 (LHCB6) 

AT2G41840.1 0.10 -2.27 Ribosomal protein S5 family protein 

AT2G48130.1 

0.03 

-2.25 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin 

superfamily protein 

AT4G08150.1 0.06 -2.24 KNOTTED-like from Arabidopsis thaliana (KNAT1) 

AT5G44790.1 0.05 -2.23 RESPONSIVE-TO-ANTAGONIST 1 (RAN1) 

AT5G23010.1 0.16 -2.23 methylthioalkylmalate synthase 1 (MAM1) 

AT1G48920.1 0.09 -2.23 nucleolin like 1 (NUC-L1) 

AT3G04940.1 0.03 -2.22 cysteine synthase D1 (CYSD1) 

AT1G36160.2 0.02 -2.20 acetyl-CoA carboxylase 1 (ACC1) 



82 

 

AT5G59950.5 0.00 -2.18 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT5G23110.1 0.01 -2.16 Zinc finger, C3HC4 type (RING finger) family protein 

 

a. Root +Se 

ATID fold change effect annotation 

 More expressed  

AT1G19920.1 160.55 4.80 APS2 

AT3G52930.1 125.43 4.56 Aldolase superfamily protein 

AT3G16460.2 702.61 4.36 Mannose-binding lectin superfamily protein 

AT2G45960.3 73.74 4.08 plasma membrane intrinsic protein 1B (PIP1B) 

AT2G21045.1 76.44 3.80 Rhodanese/Cell cycle control phosphatase superfamily protein 

AT2G01140.1 82.18 3.70 Aldolase superfamily protein 

AT5G62700.1 5E+13 3.61 tubulin beta chain 3 (TUB3) 

AT5G40780.2 665.57 3.59 lysine histidine transporter 1 

AT2G18960.1 14.56 3.54 H(+)-ATPase 1 (HA1) 

AT1G07890.8 5680.91 3.54 ascorbate peroxidase 1 (APX1) 

AT3G23640.2 92.39 3.42 heteroglycan glucosidase 1 (HGL1) 

AT4G13940.4 442.87 3.39 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT3G13330.1 191.27 3.30 proteasome activating protein 200 (PA200) 

AT4G26690.1 87.77 3.30 SHAVEN 3 (SHV3) 

AT4G13615.1 336.52 3.29 Uncharacterised protein family SERF 

AT5G09810.1 54.24 3.26 actin 7 (ACT7) 

AT4G16260.1 100.14 3.25 Glycosyl hydrolase superfamily protein 

AT1G52400.3 25.56 3.25 beta glucosidase 18 (BGLU18) 

AT1G73260.1 23.02 3.20 kunitz trypsin inhibitor 1 (KTI1) 

AT5G54160.1 12.12 3.13 O-methyltransferase 1 (OMT1) 

AT2G43610.1 84.04 3.11 Chitinase family protein 

AT2G05380.2 1906.50 3.03 glycine-rich protein 3 short isoform (GRP3S) 

AT1G15690.2 15.73 2.94 AVP1 

AT1G35720.1 11.14 2.86 annexin 1 (ANNAT1) 

AT4G10340.1 33.41 2.83 light harvesting complex of photosystem II 5 (LHCB5) 

AT2G44790.1 174.19 2.79 uclacyanin 2 (UCC2) 

AT3G09260.1 8.43 2.78 PYK10 

AT1G21310.1 9.99 2.78 extensin 3 (EXT3) 

AT2G25490.1 50.85 2.74 EIN3-binding F box protein 1 (EBF1) 

AT5G54770.1 2E+13 2.73 THI1 

AT5G13490.2 10.29 2.71 ADP/ATP carrier 2 (AAC2) 

AT3G51950.2 294.60 2.64 Zinc finger (CCCH-type) family protein / RNA recognition motif (RRM)-

containing protein 

AT1G19715.3 36.94 2.61 Mannose-binding lectin superfamily protein 
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AT5G37600.1 17.88 2.59 glutamine synthase clone R1 (GSR 1) 

AT2G37040.1 8.65 2.49 PHE ammonia lyase 1 (PAL1) 

AT3G12500.1 27.49 2.49 basic chitinase (HCHIB) 

AT3G26200.1 35.26 2.41 cytochrome P450, family 71, subfamily B, polypeptide 22 (CYP71B22) 

AT4G21990.1 120.75 2.40 APS reductase 3 (APR3) 

AT4G38920.1 44.43 2.39 vacuolar-type H(+)-ATPase C3 (VHA-C3) 

AT2G46750.1 11.64 2.38 D-arabinono-1,4-lactone oxidase family protein 

AT1G32790.2 111.59 2.35 CTC-interacting domain 11 (CID11) 

AT1G75220.1 182.66 2.31 Major facilitator superfamily protein 

AT3G62830.2 62.93 2.30 UDP-GLUCURONIC ACID DECARBOXYLASE 2 (UXS2) 

AT5G41670.2 26.51 2.29 6-phosphogluconate dehydrogenase family protein 

AT3G47730.1 12.53 2.29 ATP-binding cassette A2 (ABCA2) 

AT1G59900.1 51.81 2.28 pyruvate dehydrogenase complex E1 alpha subunit (E1 ALPHA) 

AT2G21660.2 26.29 2.27 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT1G66580.1 9.12 2.25 senescence associated gene 24 (SAG24) 

AT1G50010.1 6.08 2.23 tubulin alpha-2 chain (TUA2) 

AT5G40510.1 28.39 2.23 Sucrase/ferredoxin-like family protein 

AT4G15530.6 61.16 2.23 pyruvate orthophosphate dikinase (PPDK) 

AT2G28780.1 23.28 2.23 unknown protein 

AT1G32450.1 8.24 2.22 nitrate transporter 1.5 (NRT1.5) 

AT2G15620.1 12.72 2.21 nitrite reductase 1 (NIR1) 

AT3G28510.1 76.53 2.20 P-loop containing nucleoside triphosphate hydrolases superfamily 

protein 

AT5G53300.4 6.18 2.20 ubiquitin-conjugating enzyme 10 (UBC10) 

AT5G64100.1 20.75 2.17 Peroxidase superfamily protein 

AT4G29010.1 47.35 2.13 ABNORMAL INFLORESCENCE MERISTEM (AIM1) 

AT3G58610.3 8.89 2.13 ketol-acid reductoisomerase 

AT1G20440.1 10.51 2.12 cold-regulated 47 (COR47) 

Less expressed 

AT3G41768.1 0.08 -3.67 18SrRNA 

AT1G65860.1 0.02 -3.42 flavin-monooxygenase glucosinolate S-oxygenase 1 (FMO GS-OX1) 

AT5G13630.2 0.00 -3.35 GENOMES UNCOUPLED 5 (GUN5) 

AT1G68890.1 0.01 -3.21 magnesium ion binding 

AT3G47470.1 0.00 -3.21 light-harvesting chlorophyll-protein complex I subunit A4 (LHCA4) 

AT2G26890.1 0.01 -3.14 GRAVITROPISM DEFECTIVE 2 (GRV2) 

AT1G09000.1 0.01 -3.13 NPK1-related protein kinase 1 (NP1) 

AT1G78080.1 0.00 -3.11 related to AP2 4 (RAP2.4) 

AT1G45201.1 0.02 -3.04 triacylglycerol lipase-like 1 (TLL1) 

AT5G23110.1 0.01 -2.92 Zinc finger, C3HC4 type (RING finger) family protein 

AT4G22100.1 0.09 -2.91 beta glucosidase 2 (BGLU3) 

AT5G23020.1 0.01 -2.90 2-isopropylmalate synthase 2 (IMS2) 

AT3G16640.1 0.05 -2.84 translationally controlled tumor protein (TCTP) 
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AT5G52040.4 0.01 -2.82 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT4G39420.2 0.03 -2.82 unknown protein 

AT3G16470.3 0.09 -2.80 JASMONATE RESPONSIVE 1 (JR1) 

AT3G02020.1 0.05 -2.78 aspartate kinase 3 (AK3) 

AT2G36420.1 0.04 -2.78 unknown protein 

AT1G70850.3 0.11 -2.76 MLP-like protein 34 (MLP34) 

AT5G49660.1 0.07 -2.59 Leucine-rich repeat transmembrane protein kinase family protein 

AT2G46950.1 0.04 -2.54 cytochrome P450, family 709, subfamily B, polypeptide 2 (CYP709B2) 

AT2G07709.1 0.04 -2.53 pseudogene, similar to NADH dehydrogenase 

AT4G02660.1 0.00 -2.45 Beige/BEACH domain 

AT3G63520.1 0.09 -2.44 carotenoid cleavage dioxygenase 1 (CCD1) 

AT5G02770.1 0.01 -2.36 unknown protein 

AT3G03780.3 0.15 -2.35 methionine synthase 2 (MS2) 

AT5G04380.1 0.03 -2.35 S-adenosyl-L-methionine-dependent methyltransferases superfamily 

protein 

AT4G01120.1 0.01 -2.34 G-box binding factor 2 (GBF2) 

AT3G28730.1 0.03 -2.28 high mobility group (HMG) 

AT3G22968.1 0.10 -2.25 conserved peptide upstream open reading frame 59 (CPuORF59) 

AT1G67090.2 0.04 -2.23 ribulose bisphosphate carboxylase small chain 1A (RBCS1A) 

AT1G15820.1 0.04 -2.23 light harvesting complex photosystem II subunit 6 (LHCB6) 

AT2G48130.1 0.03 -2.21 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin 

superfamily protein 

AT1G68750.1 0.07 -2.21 phosphoenolpyruvate carboxylase 4 (PPC4) 

AT5G49930.1 0.05 -2.20 embryo defective 1441 (emb1441) 

AT2G40130.2 0.04 -2.18 Double Clp-N motif-containing P-loop nucleoside triphosphate 

hydrolases superfamily protein 

AT1G36160.2 0.03 -2.18 acetyl-CoA carboxylase 1 (ACC1) 

AT4G08150.1 0.08 -2.16 KNOTTED-like from Arabidopsis thaliana (KNAT1) 

AT3G55460.1 0.06 -2.16 SC35-like splicing factor 30 (SCL30) 

AT3G56990.1 0.01 -2.16 embryo sac development arrest 7 (EDA7) 

 

c. Shoot –Se 

ATID fold change effect annotation 

More expressed 

AT5G54770.1 2.44E+14 5.73 THI1 

AT4G10340.1 84.26 5.68 light harvesting complex of photosystem II 5 (LHCB5) 

AT2G05100.1 10199.15 5.44 photosystem II light harvesting complex gene 2.1 (LHCB2.1) 

AT4G11310.1 78.24 4.22 Papain family cysteine protease 

AT2G45960.3 73.51 4.13 plasma membrane intrinsic protein 1B (PIP1b) 

AT1G60950.1 25.12 3.75 FED A 

AT1G07890.8 5E+13 3.67 ascorbate peroxidase 1 (APX1) 
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AT5G62700.1 2288.39 3.63 tubulin beta chain 3 (TUB3) 

AT2G34410.2 149.25 3.50 O-acetyltransferase family protein 

AT5G09810.1 122.16 3.48 actin 7 (ACT7) 

AT1G73260.1 918.65 3.45 kunitz trypsin inhibitor 1 (KTI1) 

AT1G03630.2 107.21 3.43 protochlorophyllide oxidoreductase C (POR C) 

AT2G25450.1 

660.28 

3.28 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein 

AT4G03280.2 18.76 3.25 photosynthetic electron transfer C (PETC) 

AT1G15810.1 74.17 3.19 S15/NS1, RNA-binding protein 

AT3G52930.1 99.82 3.10 Aldolase superfamily protein 

AT4G13615.1 314.24 3.05 Uncharacterised protein family SERF 

AT3G54600.1 11.04 3.04 Class I glutamine amidotransferase-like superfamily protein 

AT1G72600.2 13.09 3.00 hydroxyproline-rich glycoprotein family protein 

AT4G37800.1 14.28 2.99 xyloglucan endotransglucosylase/hydrolase 7 (XTH7) 

AT1G78630.1 24.98 2.98 embryo defective 1473 (emb1473) 

AT2G38540.1 15.02 2.96 lipid transfer protein 1 (LP1) 

AT1G74090.1 23.70 2.95 desulfo-glucosinolate sulfotransferase 18 (SOT18) 

AT3G51950.2 

450.85 

2.93 Zinc finger (CCCH-type) family protein / RNA recognition motif (RRM)-

containing protein 

AT4G13940.4 532.49 2.92 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT3G12780.1 31.37 2.89 phosphoglycerate kinase 1 (PGK1) 

AT4G21960.1 9.70 2.86 PRXR1 

AT2G01140.1 43.74 2.86 Aldolase superfamily protein 

AT2G05380.2 108.12 2.84 glycine-rich protein 3 short isoform (GRP3S) 

AT4G38920.1 78.55 2.72 vacuolar-type H(+)-ATPase C3 (VHA-C3) 

AT4G26690.1 43.00 2.72 SHAVEN 3 (SHV3) 

AT2G46820.2 80.46 2.72 photosystem I P subunit (PSI-P) 

AT1G08830.2 18.67 2.70 copper/zinc superoxide dismutase 1 (CSD1) 

AT1G51400.1 88.96 2.69 Photosystem II 5 kD protein 

AT1G21310.1 30.12 2.68 extensin 3 (EXT3) 

AT1G42970.1 8.03 2.67 glyceraldehyde-3-phosphate dehydrogenase B subunit (GAPb) 

AT3G44300.1 2E+13 2.64 nitrilase 2 (NIT2) 

AT5G46110.4 7.90 2.64 ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 2 (APE2) 

AT1G35720.1 9.13 2.63 annexin 1 (ANNAT1) 

AT2G25490.1 33.73 2.61 EIN3-binding F box protein 1 (EBF1) 

AT1G52400.3 12.78 2.60 beta glucosidase 18 (BGLU18) 

AT1G70830.4 32.31 2.60 MLP-like protein 28 (MLP28) 

AT4G28750.1 9.41 2.59 PSA E1 KNOCKOUT (PSAE-1) 

AT5G56000.1 9.28 2.57 HEAT SHOCK PROTEIN 81.4 (Hsp81.4) 

AT1G65980.2 102.19 2.55 thioredoxin-dependent peroxidase 1 (TPX1) 

AT1G20440.1 31.28 2.52 cold-regulated 47 (COR47) 

AT3G52590.1 23.43 2.52 ubiquitin extension protein 1 (UBQ1) 
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AT1G70890.1 25.40 2.48 MLP-like protein 43 (MLP43) 

AT4G35160.1 115.74 2.43 O-methyltransferase family protein 

AT2G21660.2 63.30 2.42 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT4G21990.1 128.86 2.42 APS reductase 3 (APR3) 

AT2G30670.1 158.83 2.41 NAD(P)-binding Rossmann-fold superfamily protein 

AT2G05520.6 9.29 2.39 glycine-rich protein 3 (GRP-3) 

AT3G13330.1 43.92 2.38 proteasome activating protein 200 (PA200) 

AT2G28950.1 17.56 2.35 expansin A6 (EXPA6) 

AT2G26900.1 11.69 2.34 Sodium Bile acid symporter family 

AT4G36150.1 54.21 2.34 Disease resistance protein (TIR-NBS-LRR class) family 

AT1G17745.2 29.55 2.33 D-3-phosphoglycerate dehydrogenase 

AT2G13360.1 332.27 2.31 alanine:glyoxylate aminotransferase (AGT) 

AT3G58610.3 7.55 2.31 ketol-acid reductoisomerase 

AT1G59900.1 20.70 2.30 pyruvate dehydrogenase complex E1 alpha subunit (E1 ALPHA) 

AT5G54390.1 17.46 2.30 HAL2-like (HL) 

AT2G40100.1 117.81 2.30 light harvesting complex photosystem II (LHCB4.3) 

AT5G53300.4 7.11 2.28 ubiquitin-conjugating enzyme 10 (UBC10) 

Less expressed   

AT3G47470.1 0.00 -6.69 light-harvesting chlorophyll-protein complex I subunit A4 (LHCA4) 

AT5G13630.2 0.00 -5.25 GENOMES UNCOUPLED 5 (GUN5) 

AT4G35090.2 0.00 -4.21 catalase 2 (CAT2) 

AT2G46950.1 0.01 -4.02 cytochrome P450, family 709, subfamily B, polypeptide 2 (CYP709B2) 

AT4G32260.1 0.00 -3.86 ATPase, F0 complex, subunit B/B', bacterial/chloroplast 

AT5G23020.1 0.01 -3.75 2-isopropylmalate synthase 2 (IMS2) 

AT1G67090.2 0.07 -3.57 ribulose bisphosphate carboxylase small chain 1A (RBCS1A) 

AT1G68890.1 0.01 -3.57 magnesium ion binding 

AT5G54270.1 0.00 -3.53 light-harvesting chlorophyll B-binding protein 3 (LHCB3) 

AT1G15820.1 0.04 -3.53 light harvesting complex photosystem II subunit 6 (LHCB6) 

AT1G61520.3 0.00 -3.44 photosystem I light harvesting complex gene 3 (LHCA3) 

AT5G26000.1 0.01 -3.40 thioglucoside glucohydrolase 1 (TGG1) 

AT4G11960.2 0.00 -3.01 PGR5-like B (PGRL1b) 

AT3G23800.1 0.00 -2.90 selenium-binding protein 3 (SBP3) 

AT5G52040.4 0.01 -2.90 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT3G04940.1 0.01 -2.87 cysteine synthase D1 (CYSD1) 

AT1G61520.1 0.08 -2.83 photosystem I light harvesting complex gene 3 (LHCA3) 

AT2G26890.1 0.01 -2.80 GRAVITROPISM DEFECTIVE 2 (GRV2) 

AT1G52340.1 0.02 -2.75 ABA DEFICIENT 2 (ABA2) 

AT2G32870.1 0.04 -2.74 TRAF-like family protein 

AT3G59780.1 0.05 -2.63 Rhodanese/Cell cycle control phosphatase superfamily protein 

AT4G22100.1 0.10 -2.63 beta glucosidase 2 (BGLU3) 

AT3G54890.4 0.14 -2.61 photosystem I light harvesting complex gene 1 (LHCA1) 



87 

 

AT3G02020.1 0.04 -2.59 aspartate kinase 3 (AK3) 

AT1G79040.1 0.13 -2.56 photosystem II subunit R (PSBR) 

AT5G02020.2 0.02 -2.52 unknown protein 

AT4G05050.1 0.07 -2.50 ubiquitin 11 (UBQ11) 

AT5G58070.1 0.05 -2.50 temperature-induced lipocalin (TIL) 

AT5G01220.1 0.08 -2.46 sulfoquinovosyldiacylglycerol 2 (SQD2) 

AT5G40450.1 0.13 -2.45 unknown protein 

AT3G16470.3 0.05 -2.42 JASMONATE RESPONSIVE 1 (JR1) 

AT1G09000.1 0.02 -2.39 NPK1-related protein kinase 1 (NP1) 

AT2G38040.2 

0.08 

-2.37 acetyl Co-enzyme a carboxylase carboxyltransferase alpha subunit 

(CAC3) 

AT1G55480.1 

0.02 

-2.35 protein containing PDZ domain, a K-box domain, and a TPR region 

(ZKT) 

AT5G61790.1 0.04 -2.35 calnexin 1 (CNX1) 

AT4G01800.2 0.00 -2.30 Albino or Glassy Yellow 1 (AGY1) 

 

d. Shoot +Se 

ATID fold change effect annotation 

More expressed 

AT2G05100.1 51346.62 5.96 photosystem II light harvesting complex gene 2.1 (LHCB2.1) 

AT5G54770.1 3E+14 5.90 THI1 

AT4G10340.1 98.55 5.88 light harvesting complex of photosystem II 5 (LHCB5) 

AT2G45960.3 74.83 4.02 plasma membrane intrinsic protein 1B (PIP1b) 

AT1G15810.1 118.46 3.90 S15/NS1, RNA-binding protein 

AT2G05380.2 260.92 3.86 glycine-rich protein 3 short isoform (GRP3S) 

AT1G03630.2 169.98 3.80 protochlorophyllide oxidoreductase C (POR C) 

AT5G62700.1 5161.80 3.79 tubulin beta chain 3 (TUB3) 

AT2G38540.1 35.04 3.76 lipid transfer protein 1 (LP1) 

AT1G20440.1 75.89 3.68 cold-regulated 47 (COR47) 

AT2G34410.2 160.14 3.68 O-acetyltransferase family protein 

AT1G60950.1 21.81 3.60 FED A 

AT4G13615.1 522.75 3.59 Uncharacterised protein family SERF 

AT5G09810.1 137.20 3.55 actin 7 (ACT7) 

AT1G78630.1 34.33 3.39 embryo defective 1473 (emb1473) 

AT4G03280.2 20.33 3.33 photosynthetic electron transfer C (PETC) 

AT2G21660.2 148.40 3.29 GLYCINE RICH PROTEIN 7 (ATGRP7) 

AT1G07890.8 4E+14 3.24 ascorbate peroxidase 1 (APX1) 

AT2G05520.6 20.64 3.21 glycine-rich protein 3 (GRP-3) 

AT1G74090.1 24.36 3.10 desulfo-glucosinolate sulfotransferase 18 (SOT18) 

AT4G35160.1 242.86 3.02 O-methyltransferase family protein 

AT3G12780.1 34.00 2.98 phosphoglycerate kinase 1 (PGK1) 
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AT1G51400.1 71.56 2.97 Photosystem II 5 kD protein 

AT4G28750.1 11.29 2.89 PSA E1 KNOCKOUT (PSAE-1) 

AT5G56000.1 12.25 2.87 HEAT SHOCK PROTEIN 81.4 (Hsp81.4) 

AT3G52590.1 35.57 2.87 ubiquitin extension protein 1 (UBQ1) 

AT3G52930.1 89.02 2.86 Aldolase superfamily protein 

AT1G75750.2 79.58 2.80 GAST1 protein homolog 1 (GASA1) 

AT1G72600.2 12.19 2.80 hydroxyproline-rich glycoprotein family protein 

AT4G11310.1 38.14 2.80 Papain family cysteine protease 

AT4G13940.4 502.80 2.79 HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1) 

AT4G21990.1 207.58 2.78 APS reductase 3 (APR3) 

AT1G73260.1 93.49 2.72 kunitz trypsin inhibitor 1 (KTI1) 

AT2G30670.1 221.07 2.70 NAD(P)-binding Rossmann-fold superfamily protein 

AT3G51950.2 

238.95 

2.64 Zinc finger (CCCH-type) family protein / RNA recognition motif 

(RRM)-containing protein 

AT2G01140.1 34.30 2.63 Aldolase superfamily protein 

AT1G75350.1 388.13 2.56 embryo defective 2184 (emb2184) 

AT1G35720.1 8.15 2.56 annexin 1 (ANNAT1) 

AT5G53300.4 8.85 2.51 ubiquitin-conjugating enzyme 10 (UBC10) 

AT1G70890.1 38.34 2.49 MLP-like protein 43 (MLP43) 

AT1G08830.2 19.14 2.48 copper/zinc superoxide dismutase 1 (CSD1) 

AT4G34350.1 9.32 2.46 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) 

AT1G15340.2 278.76 2.46 methyl-CPG-binding domain 10 (MBD10) 

AT2G13360.1 268.41 2.42 alanine:glyoxylate aminotransferase (AGT) 

AT1G20693.3 9.24 2.42 high mobility group B2 (HMGB2) 

AT1G59900.1 21.70 2.40 pyruvate dehydrogenase complex E1 alpha subunit (E1 ALPHA) 

AT1G70830.4 28.20 2.39 MLP-like protein 28 (MLP28) 

AT1G17745.2 28.21 2.35 D-3-phosphoglycerate dehydrogenase 

AT5G46110.4 6.22 2.31 ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 2 (APE2) 

AT2G26900.1 12.49 2.30 Sodium Bile acid symporter family 

AT3G58610.3 7.19 2.30 ketol-acid reductoisomerase 

AT5G53450.2 15.59 2.29 OBP3-responsive gene 1 (ORG1) 

AT4G38920.1 66.02 2.29 vacuolar-type H(+)-ATPase C3 (VHA-C3) 

AT4G37800.1 9.14 2.27 xyloglucan endotransglucosylase/hydrolase 7 (XTH7) 

AT5G52300.2 13.41 2.23 LOW-TEMPERATURE-INDUCED 65 (LTI65) 

Less expressed 

AT3G47470.1 0.00 -7.05 light-harvesting chlorophyll-protein complex I subunit A4 (LHCA4) 

AT5G13630.2 0.00 -5.84 GENOMES UNCOUPLED 5 (GUN5) 

AT4G35090.2 0.00 -4.34 catalase 2 (CAT2) 

AT2G46950.1 0.01 -4.20 cytochrome P450, family 709, subfamily B, polypeptide 2 (CYP709B2) 

AT4G32260.1 0.00 -3.76 ATPase, F0 complex, subunit B/B', bacterial/chloroplast 

AT5G54270.1 0.00 -3.76 light-harvesting chlorophyll B-binding protein 3 (LHCB3) 

AT1G67090.2 0.06 -3.75 ribulose bisphosphate carboxylase small chain 1A (RBCS1A) 
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AT5G23020.1 0.00 -3.74 2-isopropylmalate synthase 2 (IMS2) 

AT1G61520.3 0.00 -3.56 photosystem I light harvesting complex gene 3 (LHCA3) 

AT1G15820.1 0.06 -3.34 light harvesting complex photosystem II subunit 6 (LHCB6) 

AT1G68890.1 0.02 -3.13 magnesium ion binding 

AT1G61520.1 0.06 -3.06 photosystem I light harvesting complex gene 3 (LHCA3) 

AT4G11960.2 0.00 -3.04 PGR5-like B (PGRL1b) 

AT2G26890.1 0.01 -2.99 GRAVITROPISM DEFECTIVE 2 (GRV2) 

AT1G62380.1 0.08 -2.89 ACC oxidase 2 (ACO2) 

AT3G02020.1 0.01 -2.89 aspartate kinase 3 (AK3) 

AT3G03780.3 0.10 -2.85 methionine synthase 2 (MS2) 

AT4G05050.1 0.04 -2.83 ubiquitin 11 (UBQ11) 

AT1G52340.1 0.02 -2.82 ABA DEFICIENT 2 (ABA2) 

AT3G59780.1 0.03 -2.72 Rhodanese/Cell cycle control phosphatase superfamily protein 

AT5G52040.4 0.02 -2.66 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT3G04940.1 0.01 -2.65 cysteine synthase D1 (CYSD1) 

AT5G26000.1 0.02 -2.61 thioglucoside glucohydrolase 1 (TGG1) 

AT1G54780.1 0.00 -2.56 TLP18.3 

AT4G03050.1 0.01 -2.55 AOP3 

AT1G01790.1 0.02 -2.53 K+ efflux antiporter 1 (KEA1) 

AT2G32870.1 0.06 -2.49 TRAF-like family protein 

AT4G19840.1 0.08 -2.47 phloem protein 2-A1 (PP2-A1) 

AT3G19710.1 0.06 -2.39 branched-chain aminotransferase4 (BCAT4) 

AT1G55480.1 

0.02 

-2.36 protein containing PDZ domain, a K-box domain, and a TPR region 

(ZKT) 

AT1G09000.1 0.02 -2.35 NPK1-related protein kinase 1 (NP1) 

AT1G16410.1 0.04 -2.34 cytochrome p450 79f1 (CYP79F1) 

AT5G02020.2 0.03 -2.32 unknown protein 

AT4G22100.1 0.13 -2.32 beta glucosidase 2 (BGLU3) 

AT5G58070.1 0.07 -2.32 temperature-induced lipocalin (TIL) 

AT3G23800.1 0.00 -2.31 selenium-binding protein 3 (SBP3) 

AT5G23010.1 0.13 -2.30 methylthioalkylmalate synthase 1 (MAM1) 

AT3G25920.1 0.05 -2.30 ribosomal protein L15 (RPL15) 

AT5G49660.1 0.05 -2.28 Leucine-rich repeat transmembrane protein kinase family protein 

AT4G01800.2 0.00 -2.26 Albino or Glassy Yellow 1 (AGY1) 

AT5G01220.1 0.11 -2.26 sulfoquinovosyldiacylglycerol 2 (SQD2) 

AT3G63520.1 0.13 -2.26 carotenoid cleavage dioxygenase 1 (CCD1) 

AT4G39420.2 0.04 -2.26 unknown protein 

AT2G38040.2 

0.11 

-2.25 acetyl Co-enzyme a carboxylase carboxyltransferase alpha subunit 

(CAC3) 

AT5G61790.1 0.05 -2.25 calnexin 1 (CNX1) 
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APPENDIX:  

ADDITIONAL OBSERVATIONS 

 

 

 

INTRODUCTION 

While the exact mechanism of plant selenate uptake is unknown, it likely is mediated by sulfate 

transporters, such as the high-affinity Sultr1;2 in Arabidopsis thaliana. A study has shown that 

A. thaliana wildtype plants had a higher Se to S ratio when provided with sulfate and selenate 

compared to A. thaliana mutants unable to express Sultr1;2; the mutants also had enhanced 

selenate tolerance (El Kassis et al., 2007). Another study found that increased sulfate supply 

severely inhibited Se accumulation from selenate in tissues of Brassica juncea, a secondary Se 

accumulator. In contrast, increasing the sulfate supply to two ecotypes of the hyperaccumulator 

Stanleya pinnata did not significantly inhibit Se accumulation (Harris et al., 2014). This indicates 

that this hyperaccumulator has a transporter with enhanced specificity for selenate relative to 

sulfate, perhaps even a selenate-specific transporter. This finding is interesting, since no 

selenate-specific transporter has been reported for any organism. If indeed a selenate-specific 

transporter exists, this could be applicable for phytoremediation and biofortification, since Se 

accumulation is often inhibited by high S levels. B. juncea, currently one of the most popular 

plants for these phytotechnologies, obviously suffers from this limitation (Banuelos et al., 2005; 

Prins et al., 2011).  

These sulfate-selenate interaction experiments using S. pinnata and B. juncea have given 

valuable new insight into the mechanism of Se accumulation. However, no studies so far have 

determined S-dependent Se uptake in non-hyperaccumulator Stanleya species. The experiment 



98 

 

described in the following pages analyzed the elemental concentrations of Se and S S. elata, a 

non-accumulator species, when supplied with various concentrations of Se and S, and compares 

the results to those obtained earlier for S. pinnata. S. elata was chosen because among the 

Stanleya species it accumulates the least Se. S. elata and S. pinnata were also compared using 

RNAseq, as described in Chapter 2 of this thesis. The physiological data shown here complement 

the transcript analyses of the Sultr gene family in the previous chapter, where many Sultr genes, 

notably Sultr1;2, had higher expression levels in S. pinnata than S. elata.  

METHODS 

ICP-AES analysis 

Seeds of S. elata (NV, 36°16'36"N 115°30'12"W) were germinated on MS-agar in sterile 

petri dishes and transferred to pots with pre-washed Turface MVP (Profile Products LLC, 

Buffalo Grove, IL, USA), a clay-based substrate. After three weeks, the seedling were 

transferred to an aerated hydroponic setup. Three bio-replicates were housed per hydroponic 

container, with one container for each of the three treatments. Plants were grown on ½ strength 

Hoagland’s Solution (Murashige & Skoog, 1962) under halogen lamps with a 16/8hr light period 

at room temperature. Plants were then pretreated with either 0.5 or 5 mM S five days prior to 

harvest, and treated with 0 or 20 µM Se three days prior to harvest (all treatment groups: 0 µM 

Se with 0.5 mM S; 20 µM Se with 0.5 mM S; and 20 µM Se with 5 mM S). After 3 days, plants 

were harvested and the roots rinsed and separated from the shoots. Plant tissues were dried for 72 

hours at 50 °C before being weighed and nitric-acid digested following method in Zarcinas et al. 

(1987). The roots were excluded from further analysis due to pooling of low biomass samples 

from bioreplicates. The shoots were used to obtain elemental concentrations using inductively-

coupled plasma atomic emission spectroscopy (ICP-AES), following method in Fassel (1978). 



99 

 

The elemental concentrations for S. pinnata, grown under similar conditions, were obtained from 

a previous study by Schiavon et al. (2015). Statistical significance between treatments were 

calculated using ANOVA with Tukey-Kramer multiple comparisons test in JMP (version 11). 

RESULTS & DISCUSSION 

Almost no Se was detected in the shoots of S. elata grown in 0.5 mM S and no Se supplied 

(Appendix Fig 1.1a); therefore, S. elata did not contain pre-existing Se in seed. While S. elata 

accumulated over 600 mg kg-1 Se in shoots when supplied with the same S levels but 20 µM Se, 

Se concentrations significantly diminished when S supply increased to 5 mM. The severe 

reduction in Se accumulation (>41 fold) by 10-fold increasing the S supply from 0.5 to 5 mM 

suggests that in the non-accumulator, Se accumulation is largely dependent on the activity of S 

transporters, and that these may have a higher specificity for sulfate relative to selenate. S. elata 

also accumulated more S in shoots when supplied with 0.5 mM S and 0 µΜ Se, relative to plants 

supplied with 0.5 mM S and 20 µM Se; the level of S in shoots also decreased when plants were 

supplied 20 µM Se with an excess of 5 mM S (Appendix Fig 1.1b). The observation that S 

amounts supplied affect Se accumulation, and vice versa, supports the idea that Se competes with 

S for transport by the same protein(s). The finding that S concentration went up in S. elata 

treated with Se may suggest that 20 µM Se induces S starvation in non-accumulators, resulting in 

the increased uptake and/or translocation of S and Se; the addition of excess (5 mM) S may have 

restored S homeostasis in the non-accumulator, resulting in similar levels of S as found for the 

0.5S 0Se treatment (Appendix Fig 1.1b).  

 When supplied with 0.5 mM S and 20 µM Se, S. elata had proportionally more Se 

relative to S in the shoots than plants supplied with 5 mM S and 20 µM Se (Appendix Fig 1.1c). 

In a recent study by Schiavon et al. (2015), hyperaccumulator S. pinnata showed a similar trend: 
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a decrease in Se concentration relative to S when supplied with ten-fold higher sulfate levels (5 

mM S and 20 µM Se, as compared to 0.5 mM S and 20 µM Se). However, S. pinnata had greater 

ratios of Se relative to S for all treatments when compared to S. elata (Appendix Fig 1.1d). 

Indeed, when Se supply was held constant but S supply increased by 10-fold, S. pinnata showed 

only a 2.6-fold decrease in Se levels relative to S, whereas S. elata showed a 22-fold decrease in 

Se levels relative to S. When the amount of Se relative to S supplied was taken into account, S. 

elata had a Se enrichment factor (Se:S ratio in the plant divided by the Se:S ratio supplied) that 

was less than 1 for all treatments, indicating it preferentially takes up sulfate over selenate. It had 

a lower Se enrichment factor when supplied with excess (5 mM) S and 20 µM Se, compared to 

normal (0.5 mM) S and 20 µM Se (Appendix Fig 1.1e). In S. pinnata, the Se enrichment factor 

was >1 for all treatments, indicating it preferentially takes up selenate over sulfate. Its Se 

enrichment ratio actually increased when excess (5 mM) S was supplied (Appendix Fig 1.1f). In 

conclusion, these findings indicate that while S. elata has transporters that do not have a higher 

affinity for Se and may even prefer sulfate over selenate as a substrate, based on enrichment 

factor, in the hyperaccumulator S. pinnata a Se-specific transporter may exist, or a 

sulfate/selenate transporter with increased specificity for selenate over sulfate.  
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Appendix Fig. 1.1 Selenium and sulfur concentrations and enrichment ratios in plants grown in 

liquid medium with 0 or 20 µM sodium selenate, and 0.5 or 5 mM sulfate. (a) Shoot Se 

concentration in S. elata. (b) Shoot S concentration.in S. elata. (c) Shoot ratio of Se relative to S 

in S. elata. (d) Shoot ratio of Se relative to S in S. pinnata. (e) The enrichment ratio of Se relative 

to S, accounting for the amounts of Se to S supplied, in S. elata. (f) The enrichment ratio of Se 

relative to S, accounting for the amounts of Se to S supplied, in S. elata. Shown values represent 

the mean of three replicates + SEM. Letters above bars indicate significant differences between 

treatments using ANOVA with post-hoc Tukey-Kramer multiple comparisons test.  
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