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ABSTRACT 

 

 

TROPICAL RAINFALL REGIMES AND THEIR EVOLUTION ON HOURLY TO 

DAILY TIMESCALES 

  

Data from multiple satellite and in situ sources are used to investigate the 

dominant raining cloud populations in the tropics, with the purpose of documenting how 

diverse the raining cloud populations are at any given time over a scale similar in size to 

the grid-box (~100 – 200 km) of a present-day global climate model (GCM).  For all 

locations in the tropics, three similar rainfall clusters (defined according to their ensemble 

of clouds) are found.  Differences in mean-state rainfall (e.g. East versus West Pacific 

Ocean) are largely the result of similar rainfall clusters occurring at ocean basin-

dependent relative frequencies of occurrence.  

Area-average rainfall rates are substantially different for each cluster.  While each 

rainfall cluster is observed in all tropical basins, differing relative frequencies of 

occurrence imply that rainfall lifecycles (i.e. the time duration for transition from light to 

deep rainfall) vary as a function of basin.  Among the processes influencing this 

transition, both mesoscale cold pools (inferred from QuikSCAT surface wind field 

retrievals) and convective inhibition (CIN, derived from radiosonde-observations) 

emerge as important parameters driving the transition from light rainfall to deep 
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convection at the spatial scale of 100 – 200 km.  Associated with significant increases in 

rainfall are substantial decreases (40%) in convective available potential energy (CAPE). 

The temporal evolution of rainfall clusters is derived for different lifecycle stages 

of a composite Madden-Julian Oscillation (MJO) event.  It is found that the rainfall 

cluster consisting of shallow (<3 km) and congestus raining clouds exhibits little 

temporal variation for all stages of the composite event, while non-raining scenes and 

deeper clouds are modulated as a function of time for all stages.  Instead of a “transition” 

from shallow to deep convection, the results suggest an “addition” of deep convection at 

the expense of non-raining scenes.  Unique to the initiation stage, deep organized 

convective systems are rare until 1 – 5 days before the development of a convective 

anomaly that finally begins propagating eastward.  The lack of deep convection during 

the initiation stage relative to other stages is associated with both decreased values of 

columnar water vapor (TPW) and increased stability in the lower-troposphere.  Both are 

hypothesized to preclude the development of deeper convection, thus allowing for the 

slow (10-30 day) increase in TPW by evaporation to continue, in contrast to later stages 

of the MJO when moisture convergence serves as the largest contributor to moistening.   

The analyses described above are applied to output from a novel multiscale-

modeling framework (MMF) coupled with a slab ocean model.  The extent to which the 

MMF yields results similar to the observational depictions outlined above is discussed in 

great detail.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  Motivation 

Global average precipitation is constrained by the energy budget of the troposphere.  

On a regional scale, however, variations and trends in precipitation are tied directly to 

tendencies in the local atmospheric circulations and water vapor concentration.  Therefore, 

while global mean precipitation may be tending in one direction given perturbations to the 

components of the energy budget (due to both anthropogenic and natural causes), regional 

precipitation may be systematically decreasing or increasing in time (Allen and Ingram, 

2002; Sun et al. 2007).  Thus, as Earth’s climate warms, given the obvious connection 

between water and human society, any trend in regional water (largely provided by rainfall) 

over time has indisputable effects on society.  To this end, it becomes increasingly 

important to understand the potentially changing, regionally dependent rainfall states. 

This is recognized in both the observational and modeling community of the 

atmospheric sciences field.  From the observational perspective, the need for increased 

understanding has motivated the formulation of the upcoming Global Precipitation 

Measurement (GPM) Mission (Hou et al. 2008).  Recognizing that regional rainfall is a 

composite of rapidly evolving precipitation systems, the ultimate goal of GPM is to 
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measure rainfall over all regional domains at a three-hour resolution.  With this comes the 

need to synthesize additional environmental observations in a manner that increases 

understanding of what ultimately influences rainfall on these soon-to-be globally observed 

hourly timescales. 

  From the modeling perspective, in order to accurately simulate regional changes in 

rainfall, the model must first have the ability to simulate the diverse number of raining 

clouds observed over any region, and properly represent their impact on the larger-scale 

thermodynamics and general circulation.  Deficiencies in the representation of rainfall and 

clouds in current global climate models (GCMs) have motivated the development of a new 

state-of-the-art modeling framework that involves embedding a cloud-resolving model 

(CRM) into each large scale grid-box of a GCM (a configuration often referred to as a 

multi-scale modeling framework, or MMF; Grabowski and Smolarkiewicz (1999) and 

Grabowski (2001)).  In designing an MMF, a stated intention is to better represent the 

complex interactions between clouds and the environment, and to improve the 

characteristics of rainfall as a function of the large-scale atmosphere (using currently-

available observational products as a metric).  In the period of time leading up to the 

widespread use of global CRMs in climate simulations, the MMF is arguably one of the 

more promising modeling approaches for conducting longer-term weather and climate 

simulations (Randall et al. 2003; Arakawa 2004; Arakawa et al. 2011). 

In the meantime, before the launch of GPM and maturation of the MMF approach, 

designing rainfall studies that incorporate both GPM objectives (i.e. study of rainfall 

regimes at a higher temporal resolution) and MMF goals (i.e. investigating parameters – 

potentially represented well in a mature MMF – that influence rainfall on short timescales) 
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would be a worthwhile pursuit.  The overarching goal of this dissertation is to perform such 

a study.  Through the use of a combined multi-sensor observational framework and current-

generation MMF configuration (two-dimensional CRM embedded in a GCM), tropical 

rainfall tendencies and ensemble cloud populations evolving on diverse timescales ranging 

from 3-6 hours to intraseasonal periods are studied.  By virtue of presenting MMF results 

next to observations in a side-by-side depiction, an evaluation of the model representation 

against current observations is implicit.  However, beyond a simple evaluation approach, a 

goal of this work is to determine to what extent currently available observational platforms 

and modeling configurations can provide a coherent, consistent picture of rainfall, cloud 

ensembles and processes influencing rainfall tendencies on short time scales.  In essence, 

then, a collaborative approach involving both is pursued, the specific components of which 

are discussed below.   

 

1.2  Outline of Dissertation 

In addition to this introduction (Chapter 1) and final conclusions chapter (Chapter 

6), this dissertation consists of four content chapters (Chapters 2 – 5), written in a manner 

that allows for each chapter to be read as a stand-alone paper with its own introduction and 

conclusions; nonetheless, each chapter does build on the preceding one, as evidenced by 

the consistent references to prior chapters.  

Regarding these content chapters, Chapter 2 in present form was published in the 

Journal of Climate in May 2010.   In this chapter, substantially different tropical rainfall 

regimes (West Pacific versus East Pacific, for example) are investigated with the purpose 

of determining to what extent significantly different mean states are reproduced by favored 
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ensembles of raining clouds (i.e. “building blocks”) recurring at region-dependent relative 

frequencies of occurrence.  A similar question was asked concerning cloud regimes 

recently (e.g. Jakob and Tselioudis 2003; Zhang et al. 2007), and results in those studies 

provided motivation to ask the same question concerning tropical rainfall regimes.  Data 

from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) serve as 

the foundation for defining the state of rainfall.  A particular focus of this study is on 

distributions of raining cloud types and heating, and not simply area-averaged rainfall.  In 

this manner, prevalent rainfall states are characterized according to their constituent raining 

cloud populations. 

The findings of Chapter 2 suggest that to a large extent, different mean rainfall 

regimes can be reproduced by a limited number of rainfall clusters (one consisting of 

predominantly shallow raining clouds, and the others comprising progressively deeper 

clouds) occurring at location-dependent relative frequencies of occurrence.  Furthermore, 

these results also suggest that regions with different temporal-mean rainfall regimes 

transition through similar shallow and deep precipitation states, but do so at varying rates 

leading to significantly different rainfall lifecycles.  Therefore, the material in Chapter 3 

focuses on investigating the mechanisms that influence the transition from shallow rainfall 

to deeper, more organized rainfall, with the purpose of gaining insight (from a purely 

observational perspective) on what may cause the transition from one rainfall cluster to 

another over varying time scales.  Recent modeling studies have highlighted the importance 

of sub-GCM scale fluctuations (i.e. unresolved in current GCMs) in atmospheric fields 

(e.g. Fletcher and Bretherton 2010) in determining the transition from non-raining clouds to 

rainfall.  Along this same vein, but focusing on the transition from light to deeper rainfall, a 
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new observational parameter related to cold pool activity (based on wind vector retrievals 

from the QuikSCAT scatterometer) is developed and its relation to rainfall evolution is 

investigated in this chapter.   

Considered together, Chapters 2 and 3 analyze regional rainfall regimes, their 

constituent cloud populations and the transition from light to deeper rainfall (on both 

hourly and daily timescales) from a multi-sensor observational perspective.  This is directly 

related to the GPM aim of documenting regional rainfall evolution on hourly timescales.  

An equivalent analysis of rainfall regimes and rainfall lifecycles from the perspective of a 

state-of-the-art climate model (an MMF) is performed in Chapter 4.  Select observational 

results from Chapters 2 and 3 are reproduced in this chapter in a side-by-side comparison to 

the MMF results.  As is the case for the observational analysis, rainfall regimes are largely 

interpreted according to cloud populations.  Drawing on the strengths of both the 

observational sources used and the MMF utilized, a concerted effort is made to develop a 

consistent conceptual picture of 1) what the dominant raining cloud populations are in the 

tropics, and 2) what background parameters aid in distinguishing one population from 

another, and more generally, what factors influence the transition from a shallower raining 

state to a deeper one. 

In Chapter 5, the rainfall clusters derived in Chapters 2 and 4 are investigated 

within the context of the Madden – Julian Oscillation (MJO, Madden and Julian 1971, 

1972), a phenomenon known to influence regional rainfall on intraseasonal timescales.  A 

particular focus of this chapter is on the evolution of both the observed and modeled 

rainfall clusters during the initiation period of the MJO in the West Indian Ocean, a 

currently less understood stage in the lifecycle of the MJO (Kim et al. 2009).  While 
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Chapters 2 – 4 focus on rainfall states and rainfall transition over hourly to daily timescales, 

the analysis in this chapter – within the MJO context – involves documenting the evolution 

of rainfall and cloud populations on 30 – 90 day timescales.   

The key findings in the content chapters (Chapters 2 – 5) are summarized in 

Chapter 6, and suggestions for future work are interspersed throughout.     
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CHAPTER 2 

 
 

OBSERVED SIMILARITY OF PRECIPITATION REGIMES OVER THE 

TROPICAL OCEANS 

 

 

2.1  Introduction 

A variety of precipitating clouds, categorized by their vertical extent and rainfall 

characteristics, have been observed over the tropical oceans (e.g., Warren et al. 1985; 

Masunaga and Kummerow 2006).  Even though the distribution of precipitating clouds is 

continuous in nature, a number of studies have consistently shown that dominant ones 

emerge from the spectrum: three convective types consisting of shallow cumuli, congestus 

cumuli and deep precipitating cumulonimbi (Johnson et al. 1999) and a non-convective 

stratiform type considered to be, in large, a by-product of deep convective activity in the 

tropics (Houze 1997).  Given a particular basin, the longer-term temporal mean state of 

precipitating convection can be thought of as comprising the average prevalence of each 

convective and attendant stratiform precipitating cloud type.  Over the past few decades, 

satellite and in situ studies have sought to document both the mean characteristics of 

precipitating convection across the tropics, as well as the differences that exist from one 

basin to another.  Consistently, a number of observational studies have shown that the 

statistical average heating rate, rainfall rate, cloud fraction, cloud type and spatial extent of 
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rainfall systems is not homogeneous across the tropical oceans (e.g., Houze and Betts 1981; 

Berg et al. 2002; Masunaga and Kummerow 2006; Zuidema and Mapes 2008).   

Despite the documented dissimilarities in the mean precipitation states, there 

remains uncertainty regarding the extent to which a particular precipitation regime 

(containing a particular distribution of precipitating clouds) occurring in one geographic 

basin resembles the same regime type occurring in another basin.  Specifically, it remains 

unclear whether or not the proportions of each cloud type (shallow precipitating cumulus, 

congestus and deep convective) are approximately constant given the presence of a 

particular precipitation regime, to what extent precipitation regimes are mixed in terms of 

cloud types, and how similar particular precipitating cloud types are from one basin and 

one precipitation regime to another.   

There is continued motivation, then, to determine whether or not precipitation 

regimes can be described from an instantaneous perspective with universal descriptors 

versus describing precipitation from a longer temporal-mean perspective.  This study 

explores the nature of precipitation regimes through consideration of the ensemble of 

precipitating clouds (beyond the most prevalent cloud type) belonging to a precipitation 

regime, with further investigation into how consistent each regime’s spectral cloud 

ensemble is as a function of tropical ocean basin.  Precipitation regimes are objectively 

identified and characterized using a common clustering framework applied separately and 

independently to adjacent geographic basins spanning the entire tropics, with the intention 

of diagnosing the extent to which regimes are similar.  It is assumed a priori that regimes 

contain a mixture of precipitating cloud types and therefore, individual precipitating clouds 

are not isolated so as to avoid compositing similar precipitating clouds from different 
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regimes.  The role of each cloud type within the precipitation regimes, in terms of their 

contribution to regime diabatic heating, is also investigated using new satellite-based 

products.   

Results are presented that support a stronger idea of precipitation regime self-

similarity by considering a regime comprising an ensemble of precipitating clouds as a 

whole, rather than considering precipitating clouds independently of the precipitation 

regime in which they are developing.  These precipitation regimes in their entirety may 

better serve as repeatable, recurring “building blocks” of the mean-state of tropical 

precipitation instead of considering individual precipitating clouds as the “building blocks” 

themselves. 

 

2.2  Data Sources 

The primary data products used are derived from instruments onboard the TRMM 

satellite.  The period of study consists of 48 months from Jan 2004 – Dec 2007.  Both 

TRMM PR attenuation-corrected radar reflectivity (ZE) profiles (surface to 20 km) and 

surface rainfall rates at the PR native spatial resolution (approximately 5 km) are used and 

are provided in the standard TRMM PR 2A25 product (hereafter, the 2A25 product; Iguchi 

et al. 2000).  For each PR pixel classified as convective, the precipitation top height (PTH) 

corresponding to the observed precipitating cloud is computed.  The PTH is the altitude of 

the highest radar echo above Earth’s surface with a reflectivity of at least 17 dBZ (further 

details in Short and Nakamura 2000).  A new dataset is created, with a 1º horizontal 

resolution centered on nadir PR pixels for all TRMM orbits, where each sample now 

comprises all PTHs associated with the spectrum of precipitating convective clouds present 
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in the 1º grid.  The decision is made to consider the distribution of PTHs within a 1º grid 

for three primary reasons: 1) the root-mean-square (RMS) error variances in the ancillary 

diabatic heating products decrease as the spatial averaging-widths increase; 2) the desire to 

capture the statistical distribution of cloud PTHs present at some instantaneous time in a 

larger-scale regime requires the consideration of larger box-widths; 3) the nature of the PR 

scan geometry leads to an under-sampling of shallow cloud PTHs for pixels significantly 

off-nadir, and therefore, a coarser-than-1º resolution leads to PTH distributions that are 

biased with respect to the number of shallow precipitating clouds present.  The average 

rainfall rate for each type of precipitating convective cloud, the average stratiform rainfall 

rate, diabatic heating and the number of non-convective and non-raining pixels are also 

stored for each 1º sample. 

The apparent heat source (Q1, Yanai et al. 1973) is the diabatic heating associated 

with unresolved cloud processes occurring in a rainfall regime.  Q1 can be written as  

                   

                  

! 

Q1 =
"

"t
s+# $ (sV) +

"

"p
s % = QR +LH -

"

"p
& s & %                                 (2.1) 

 

where the total change in the dry static energy (s = cpT +gz), horizontally averaged over a 

specified domain size (as indicated by the overbar), is given by the sum of three 

horizontally averaged diabatic heating components: the radiative heating rate (QR), the 

latent heating rate due to phase changes of water (LH) and the heating due to vertical eddy 

heat flux (

! 

" s " # ) convergence (the primes indicate departure from a horizontal mean).  A 

term incorporating the effects of horizontal eddy heat fluxes is assumed to be small, and 

has not been derived.  The Spectral Latent Heating algorithm product (SLH product; Shige 
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et al. 2004, 2007) is used for quantification of the latter two components of the right hand 

side of Eq. (2.1).  These components combined are mathematically equivalent to Q1 – QR 

(hereafter, occasionally referred to as Q1-R).  Heating profiles are available for each TRMM 

PR pixel at the PR native resolution.  The SLH algorithm takes into account the vertical 

extent of the convection and is therefore able to differentiate shallower heating structures 

from deeper heating structures corresponding to various vertically extended precipitating 

clouds.  It is important to note that the SLH algorithm estimates heating due to precipitation 

processes only, as discussed in Shige et al. (2007).  Q1-R is averaged to the same 1º grids 

described above, and the heating profile represents the composite effect of the various 

precipitating clouds present in a rainfall regime.  Horizontal averaging also has the effect of 

reducing the RMS error variance associated with the heating estimates (Shige et al. 2007). 

The Hydrologic Cycle and Earth Radiation Budget (HERB) algorithm produces 

radiative heating profiles (QR) at 0.25º horizontal resolution and 1 km vertical resolution 

(L’Ecuyer and Stephens 2003; L’Ecuyer and Stephens 2007; L’Ecuyer and McGarragh 

2009).  The algorithm utilizes cloud and precipitation information in conjunction with 

atmospheric water vapor, temperature profiles and surface variables derived using sensors 

onboard the TRMM satellite, and incorporates a radiative transfer model that simulates 

vertical profiles of longwave (LW) and shortwave (SW) radiative fluxes.  Heating rates are 

then derived using radiative flux divergences, and these estimates are averaged to 1º [these 

represent the first term on the right-hand side of Eq. 1].  The vertical profiles of QR are 

smoothed using a 3 km boxcar-averaging window since the nominal 1 km vertical 

resolution of the product is likely more coarse due to the sole use of passive remote sensing 
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techniques for determining cloud boundaries in the algorithm (L’Ecuyer and McGarragh 

2010).  

  

2.3  Precipitation Regime Identification and Self-Similarity  

 Figure 2.1 shows the temporal mean state of precipitation and associated Q1 for five 

adjacent geographic regions spanning the tropics for the time period under study.  These 

five regions extend meridionally from 15º S to 15º N over the tropical oceans and are 

labeled according to the ocean basin they predominantly encompass (see Fig. 2.4; Indian 

(INDI), west Pacific (WPAC), central Pacific (CPAC), east Pacific (EPAC) and Atlantic 

(ATLA)).  Zonally, INDI extends from 30-100º E, WPAC from 100-170º E, CPAC from 

170-220º E, EPAC from 220-290º E, and ATLA from 290-360º E longitude.  It is from this 

background mean precipitation state that prevalent precipitation clusters or “regimes” are 

extracted.  

 

The left panel of Fig. 2.1 shows the normalized rainfall histograms as a function of 

cloud PTH.  Histograms have been normalized as in Berg et al. (2002, their Fig. 8) such 

 
Figure 2.1. The distribution of rainfall as a function of convective cloud PTH 
for basins spanning the tropical oceans (left panel).  Distributions are 
normalized to account for differences in total rainfall in each basin (see text for 
further description).  The right panel illustrates the average Q1 profile for each 
basin. 
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that the maximum rainfall value is equal to 1 and area under the rainfall curve is the same 

for each basin.  In the average sense, since the total accumulated rainfall is quite different 

for each basin, normalizing in this manner allows for easier comparison of rainfall 

histograms and allows one to determine which cloud types play the largest role in rainfall 

accumulation for each basin.  Upon inspection of Fig. 2.1, it becomes clear that rainfall 

distributions for various tropical basins are not simply scaled by a constant, nor are they 

unimodal.  There is a distinct shift in the types of precipitating clouds that produce most of 

the rainfall as one traverses geographic basins in the tropics.  Because the majority of rain 

falls from deeper clouds in the Indian and west Pacific basins (left panel of Fig. 2.1), one 

would expect that Q1, on average, is larger in magnitude at higher altitudes compared to the 

other basins, a result seen in the right panel of Fig. 2.1.  Like the rainfall histograms, Q1 

profiles are not unimodal either, with peak heating near 2 km and 6-8 km.  These results are 

consistent with the studies summarized in Section 1 noting differences in rainfall and 

heating across the tropics, as well as the differences in the numbers of various precipitating 

cloud types across the tropical oceans.  

The focus now turns toward determining if dominant precipitation clusters can be 

extracted from the mean state.  Precipitation clusters are identified through use of a simple 

K-means clustering algorithm (Anderberg 1973).  A number of recent studies (Jakob and 

Tselioudis 2003; Boccippio et al. 2004; Jakob et al. 2005; Rossow et al. 2005; Zhang et al. 

2007; Caine et al. 2009) used this same technique to identify cloud and precipitation 

regimes, and the results show the usefulness of the technique.  A cluster is assumed to 

always contain a spectrum of precipitation clouds.  In order to capture the ensemble, the K-

means algorithm is applied to five variables in each 1º grid box: the number of clouds with 



 14 

PTHs less than 5 km, the number of clouds with PTHs from 5-9 km, the number of clouds 

with PTHs greater than 9 km, the convective rainfall rate averaged over all pixels identified 

as convective, and the ratio of the average convective rainfall rate to the average rainfall 

rate (defined as the average over all raining pixels).   

The first three variables are normalized by the number of convective precipitation 

pixels in the grid box.  All five variables are standardized, and the K-means algorithm is 

then applied to all 1º-grid samples for each ocean basin (independently) across the tropics.  

The algorithm seeks to find the centers of natural clusters present in a dataset.  One begins 

by specifying both the number of clusters and initial data centers (termed centroids, and 

they are chosen at random).  The technique involves assigning each 1º-grid (a data point) 

membership to a particular cluster based on a minimum Euclidean distance measure.  The 

distance is defined as the sum of the squared differences between each centroid variable 

and the same variable corresponding to the data point.  After evaluating the entire dataset, 

centroids are re-computed by computing the new mean of each variable for all data points 

belonging to a particular cluster.  The algorithm proceeds in an iterative manner, and when 

the centroid of the current iteration is the same as that of the previous iteration (decided 

based on the sum of the squared differences in the centroid variables from one iteration to 

the next), the specified convergence criterion is met and a solution is found.  
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2.3.1  Regime Cloud Top Distributions and Rainfall 

Three precipitation clusters emerge in each basin; together, they explain 

approximately 60% of the variation in the five clustering variables across the tropical 

oceans, a magnitude that is consistent for each 

geographic basin.  The percent of explained 

variance increases much less rapidly upon the 

consideration of additional clusters; therefore, the 

a priori choice of three clusters is considered 

reasonable.  Over 100 iterations of the clustering 

algorithm were executed for each ocean basin, 

using a random assignment for first-guess 

centroids each time.  The precipitation clusters 

were found to be largely invariant to the initial 

centroid assignment, providing a heuristic 

measure of the robustness of the results.  

Figure 2.2 shows the relative frequency of occurrence 

(RFO) distributions for clouds of given PTHs for the 

three clusters.  While a cluster is classified according 

to the predominant, most vertically extended 

precipitating cloud, each cluster consistently contains a 

spectrum of precipitating clouds.  The shallow (SHAL) 

precipitation cluster in the top panel of Fig. 2.2 is 

largely unimodal, and contains precipitating clouds 

with PTHs peaking in the 2-4 km altitude range, with 

 
Figure 2.2. The distributions 
of PTH for the precipitating 
cloud ensembles that 
characterize the SHAL, 
UNORG and ORG 
precipitation clusters for all 
tropical ocean basins.  The 
RFO is computed by 
dividing the number of 
clouds with a given PTH by 
the number of pixels within 
each grid box. 
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very few clouds having PTHs extending beyond 5 km.  The cluster in the middle panel of Fig. 2.2 is 

consistently bimodal in all basins, with a peak in cloud PTHs near 3 km, and a prevalence of 

precipitating clouds with PTHs extending from 5.5 to 10 km.  This is classified as an unorganized 

deep convection (UNORG) cluster, and is so chosen based on the presence of deeper convective 

towers, but with a less significant stratiform component of heating (discussed later) and less rainfall 

coverage over the 1º grid box.  The final precipitation cluster (classified as ORG) consists of a 

shallow cloud PTH peak near 3 km, a broad second PTH peak extending in height up to 16 km, 

implying the existence of numerous congestus and progressively deeper precipitating clouds, and a 

significant component of atmospheric heating dominated by stratiform precipitation (also discussed 

later), all of which implies that the precipitation regime is representative of organized convection.  It 

should be noted that the distributions of precipitating clouds in Fig. 2.2 are fairly insensitive to the 

current choice of PTH bin limits used for the first three clustering variables described in the 

previous section.  For each cluster, the convective rain fractions can be determined by summing all 

RFO values for each convective cloud type (identified based on the cloud’s PTH) shown in Fig. 2.2.  

These fractions are show in Table 2.1. 

 

 

Table 2.1. Rainfall and heating characteristics of precipitation clusters. 

 SHAL UNORG ORG 
Convective Rain Fraction (%) 2.7 7.1 9.9 
Rain Fraction (%) 4.5 17.8 43.8 
Ave Surface Rainfall (mm day-1) 2.1 14.2 53.9 
% of Surface Rainfall classified as 
Stratiform 

30 40 50 

<Q1 – QR> (K day-1) 0.4 3.1 12.7 
<QR> (K day-1) -1.2 -0.8 -0.3 
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While it has been discussed that the number 

of precipitating clouds stratified by cloud PTH 

varies across the tropics, the distributions of 

precipitating clouds are approximately constant 

within each cluster, independent of the basin under 

study (Fig. 2.2).  Additionally, the UNORG and 

ORG clusters are similar in distribution and 

multimodal for all basins, with one mode consisting 

of prevalent warm-rain clouds topping out below 

the mean freezing level in the tropics, in close 

proximity to deeper precipitating clouds.  The 

average rainfall fractions (defined as the total 

number of raining pixels divided by the total 

number of pixels in a grid box) are shown in Table 

2.1.  The variations of both the convective and total 

rainfall fractions with respect to the cluster-average 

magnitudes are on the order of 5%, further implying 

that the ratio of stratiform to convective rain 

fraction is approximately the same for each cluster as a function of ocean basin as well.   

The distribution of convective rainfall parsed by PTH for each cluster and each 

geographic basin is shown in Fig. 2.3.  The data analysis illustrated here is exactly the same 

as that illustrated in the left panel of Fig. 2.1, except the focus is shifted to comparing 

precipitation clusters separately for each geographic basin, and not the geographic basin in 

 
Figure 2.3. As in the left 
panel of Fig. 2.1, except that 
the rainfall distributions are 
now stratified by 
precipitation cluster 
observed in each geographic 
basin. 
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its entirety (irrespective of precipitation cluster present).  Whereas the rainfall distributions 

are quite different in the mean sense (Fig. 2.1), the distributions track each other quite 

closely within each cluster, and the dominant peaks for convective rainfall production are 

quite similar for each basin given the presence of a particular cluster.  These peaks are 

around 2-4 km for the SHAL cluster, 6-8 km for the UNORG cluster, and 8-10 km for the 

ORG cluster.  The shallower precipitating clouds (associated with PTHs extending from 3-

4 km) that contribute to the bimodality in the PTH distribution in the UNORG and ORG 

clusters also contribute to the bimodal rainfall histograms as well, although the peaks are 

less pronounced.   

 In the time-mean sense, the average surface rainfall rate for 1º grids in each 

geographic basin varies, on average, by approximately 30% with respect to the tropical 

average surface rainfall rate (this average includes all 1º grids, so non-raining grids are 

included as well).  If non-raining grids are neglected, the average difference decreases to 

approximately 16%, so a significant percentage of the average variation arises from notable 

differences in the number of non-raining scenes that exist in each basin.  When stratifying 

by cluster, however, the rainfall rate differences are typically under 5% for all basins with 

respect to the cluster mean.  The cluster-average surface rainfall rates are provided in Table 

2.1. 

For all grid boxes covering the tropical oceans, the various cluster contributions to 

total accumulated rainfall are shown in the top three panels of Fig. 2.4.  The SHAL cluster 

contributes 20 - 25% of the total rainfall in both the INDI and WPAC regions, and as one 

approaches the dateline and continues eastward, the SHAL cluster progressively 

contributes more towards the net accumulated rainfall.  In the EPAC basin, the SHAL 
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cluster contributes almost as much rainfall as the UNORG cluster, and more than the ORG 

cluster.   UNORG and ORG clusters are observed everywhere throughout the tropics, 

including outside of the inter-tropical convergence zone (ITCZ) regions, and not 

surprisingly, contribute significantly to the total rainfall in each geographic basin. 

 

2.3.2  Regime Diabatic Heating  

 The Q1-R profiles for the three clusters are shown in Fig. 2.5.  Qualitatively, the 

profiles are quite similar for each basin, and as the intensity of convection increases, 

 
Figure 2.4.  The percent contribution to the total accumulated rainfall by each 
precipitation cluster as a function of ocean location (top three panels).  Considering 
the five large geographic basins in their entirety, the percent contribution to the 
total rainfall by each cluster is shown in the bottom panel. 
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corresponding to a transition from SHAL to UNORG to ORG clusters, the peak and 

magnitude of Q1-R increases.  The convective (stratiform) Q1-R is the mean of the 

convective (stratiform) Q1-R profiles corresponding to each convective (stratiform) 

precipitating cloud present in the cluster.  As the strength of the convection increases, 

corresponding to stronger and deeper convective clouds, the anvil production of rainfall 

increases, and so does the stratiform signature of Q1-R.  The stratiform signature is an 

order of magnitude smaller in the SHAL cluster compared to the ORG cluster.  The well-

developed stratiform heating profile associated with the ORG cluster along with the 

increased average surface rainfall rate and dominance by stratiform precipitation (Table 

2.1) is an important reason this cluster is considered to be one comprising organized deep 

convection.  

Due to the fact that stratiform rainfall production in the tropics is considered 

primarily to be the result of convective activity (when considering a large enough spatial 

scale), a sole-stratiform rainfall cluster is not observed in this study.  Therefore, the issue 

 
Figure 2.5.  The left (center) panel presents the composite convective (stratiform) Q1 
– QR profiles for each of the precipitation clusters and each geographic basin.  The 
right panel illustrates the residual Q1 – QR profiles that remain unclassified for each 
basin. The SHAL (UNORG, ORG) clusters are denoted by the dashed (dotted, 
solid) lines in the two left panels. 
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could arise where stratiform rainfall is significant outside of our identified clusters, far 

removed from convective towers.  The right panel of Fig. 2.5 shows that the Q1-R profiles 

associated with the residual stratiform rainfall for each geographic basin is quite small.  

The column-average (defined from the ocean surface to approximately 18 km) Q1-R 

magnitudes for the residual (or unclassified) locations are approximately 0.03 K day-1.  

This is more than an order-of-magnitude smaller than the average SHAL cluster column-

average stratiform and convective Q1-R combined.  Considering that these samples make 

up less than 10% of the number of raining samples, the contribution to total rainfall and 

Q1-R is minimal. 

The total Q1-R for each cluster and each basin is shown in Fig. 2.6, and is 

mathematically equivalent to the addition of the convective and stratiform components in 

each precipitation cluster.  The column-average total Q1-R magnitudes for the clusters are 

provided in Table 2.1.  Regarding the profile characteristics, the SHAL cluster Q1-R peaks 

near 2 km (Fig. 2.6, center panel), and the total Q1-R profiles in the UNORG and ORG 

clusters peak much higher in the atmosphere (6 – 8 km for the ORG cluster).  These 

 
Figure 2.6. The QR (Q1 – QR, Q1) profiles for each of the precipitation clusters and 
basins are shown in the left (center, right) panel.  The clusters are indicated 
according to line style as in Fig. 2.5. 
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peaks are both consistent in magnitude and altitude across all tropical ocean basins. 

The radiative heating (QR) profiles for all clusters and basins are shown in the left 

panel of Fig. 2.6.  Since the HERB QR algorithm uses additional, independent satellite 

observations for the cloud-field characteristics and geometry, investigating the QR 

profiles for each cluster and for all basins can provide additional insight into the 

similarity of precipitation clusters.  As the precipitation cluster becomes deeper, the 

cooling below about 11 km decreases in magnitude, likely from the effect of increasing 

cloud cover at all altitudes leading to a decrease in the radiative flux divergences.  Near 

the surface, as the intensity of the cluster increases (SHAL to ORG), QR rapidly 

approaches 0 K day-1, presumably because of an increasing peak in total cloud cover in 

the lowest levels of the atmosphere (typical of more convectively-active regimes) and the 

associated increasing downward directed LW flux.  The opposite trend occurs above 11 

km, where radiative cooling increases as the cluster becomes deeper, likely due to the 

increasing cloud and anvil coverage in the 10-15 km range and the associated LW 

cooling to space that occurs in the vicinity of higher cloud tops.  Increased cooling in the 

ORG cluster aloft could also be due to increased upper-tropospheric water vapor 

associated with detraining deep convection leading to increased LW emission.  The 

column-average QR magnitudes are shown in Table 2.1.  These QR magnitudes are quite 

different from each other, suggesting significant differences in the cloud fields from one 

cluster to another.  However, the average differences of these magnitudes with respect to 

the cluster-stratified QR magnitudes are on the order of 5% for all basins.  This implies 

that given the presence of a particular precipitation cluster, the cloud fields across the 

tropical geographic basins are fairly similar. 
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Given the QR and Q1-R components of 

diabatic heating, the apparent heat source Q1 

can now be quantified for each cluster and 

basin (Fig. 2.6).  Q1-R is much larger in 

magnitude than QR in heavily precipitating 

clusters (due to the effects of latent heating), 

and therefore QR serves to only slightly shift 

(negative direction) the Q1-R profiles for the 

UNORG and ORG clusters, while QR has a 

larger impact in the weakly convecting SHAL 

clusters since Q1-R is comparable in magnitude.  

In these commonly observed SHAL clusters, 

Q1 shows cooling throughout the troposphere 

above 2-3 km, and warming below due to the 

action of precipitating shallow cumulus clouds.  

Provided with the relative frequency of 

occurrence of each cluster as a function of 

geographic basin, one can now assess the 

contribution each cluster makes toward the 

statistical basin-averaged Q1 profiles (bottom 

panel of Fig. 2.1).  The 2 km peak in Q1, evident in all basins, is largely the result of the 

unimodal SHAL clusters present in most tropical oceanic locations.  Specifically, 80% of 

the magnitude of this peak can be attributed to the SHAL clusters (top panel of Fig. 2.7), a 

 
Figure 2.7. The percent 
contribution to the average Q1 
by each precipitation cluster (as 
a function of altitude) for each 
ocean basin. 
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consistent result seen from one basin to the next.  The next peak in Q1, centered near 8 km, 

is contributed to heavily and almost equally by all clusters.  The warming by convection in 

the UNORG and ORG clusters contributes positively to this peak, while radiative cooling 

in the SHAL clusters contribute negatively and decrease the magnitude of this peak.  Since 

deeper clusters are less prevalent in the eastern Pacific and Atlantic Oceans, the Q1 

magnitude at this altitude is closer to 0 K day-1 (Fig. 2.1) since radiative cooling from the 

SHAL clusters overwhelms the heating by the less prevalent deeper convective clusters. 

 

2.3.3  Cloud Type Contributions to Cluster Q1 Profiles 

  While a precipitation cluster is characterized according to the most prominent, 

vertically extended cloud type, other precipitating cloud types consistently coexist in the 

deeper clusters.  There are three prominent peaks in convective cloud PTHs that are clearly 

seen in the bottom two panels of Fig. 2.2: the first peak extends from 0 – 5 km, the second 

from 5 – 9 km, and the third (mostly a ORG feature) encompasses the deeper convective 

clouds with precipitation tops extending from 9 – 20 km.  These three broad peaks are 

likely the result of often-observed precipitating convective clouds and can loosely be 

classified as precipitating shallow, congestus and deep clouds, consistent with the 

definition provided by Johnson et al. (1999) and others.  Since clusters have been shown to 

consist of well-defined cloud ensembles, independent of the basin under study, then it is 

worthwhile to proceed with an investigation of the role each cloud type plays in terms of 

net heating observed in a cluster.   

In the top left panel of Fig. 2.8, the average UNORG cluster Q1 profile is 

reconstructed by sequentially adding in progressively shallower precipitating convective 
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clouds and associated Q1-R profiles to the combined average stratiform Q1-R and QR profiles 

representative of the cluster.  In the top right panel of Fig. 2.8, the relative importance (in 

terms of % contribution) of particular cloud types (stratiform, shallow, congestus and deep 

convective) to the UNORG Q1 profile is shown.  The uppermost part of the Q1 profile in 

the UNORG cluster (above 7 km) is mostly reproduced by the stratiform component of Q1-

R (see 90% contribution by Strat + QR profile in top right panel of Fig. 2.8).  The lower half 

of Q1 (lower than 7 km) is nearly reproduced upon the addition of the congestus cloud Q1-R 

(40-80% of peak is the result of heating by these clouds).  Adding in the shallow 

convective cloud Q1-R allows for a broadening of the lower portion of the profile (1 – 2 K 

day-1) as indicated by comparing the dashed to solid line in the top left panel of Fig. 2.8.  

Heating by shallow convection is responsible for 20% of the Q1 magnitude near the surface 

(solid line in top right panel), with significant cooling resulting from evaporation of 

precipitation and radiative cooling as indicated by the Strat + QR profile.  Shallow, 

congestus and stratiform cloud types all contribute in significant, but varying degrees (as a 

function of height) to the net UNORG cluster Q1, and do so in a consistent manner for each 

ocean basin. 
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Considering now the ORG cluster, and proceeding as before, successively 

shallower Q1-R profiles are added to the ORG cluster combined stratiform Q1-R and QR 

profiles towards reconstruction of the cluster average Q1.  It is evident that the positive 

lower portion of Q1 emerges after the congestus Q1-R is taken into consideration (the 

congestus clouds contribute 40-60% towards the net heating, slightly larger than the 

contribution by deeper (9-20 km PTHs) clouds).  The role of the shallower convective 

clouds (consisting of PTHs from 0 – 5 km) is not as significant in the ORG cluster as in the 

 
Figure 2.8.  The top left panel illustrates the reconstruction of the average 
UNORG Q1 profile, computed by successively adding the average convective Q1 – 
QR profiles (associated with 3 specified subsets of convective cloud ensembles) to 
the combined stratiform Q1 – QR and average QR profile characterizing the cluster.  
The 3 convective ensembles consist of clouds with PTHs ranging from 9-20 km 
(dotted), 5-20 km (dashed) and 1-20 km (solid).  The top right panel illustrates the 
contribution by cloud type ensemble (stratiform, and the three convective 
ensembles) to the average Q1 profile characterizing the UNORG cluster.  The 
bottom two panels are constructed as in the top two panels, but for the ORG 
cluster.    
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UNORG one (seen by comparing dashed to solid line in bottom left panel), contributing 

only slightly to the magnitude of the Q1 profile from 1 – 4 km.  The upper-most portion of 

ORG Q1 (above 7 km) is largely reproduced upon consideration of the deep convective 

precipitating cloud (PTHs from 9-20 km) and stratiform component of heating. 

 

2.4  Dissimilarity in Precipitating Cloud Types  

 An attempt has been made to show that precipitation clusters are similar in 

appearance, with nearly indistinguishable cloud ensembles, rainfall distributions and 

heating profiles.  It is worth discussing whether or not the idea of self-similarity can be 

extended to specific precipitating cloud types.  For instance, does a precipitating congestus 

cloud observed in one precipitation cluster look similar to that in another cluster in terms of 

surface rainfall rate and vertical profile of radar reflectivity?  While deep convective clouds 

produce a significant amount of rainfall and latent heating, shallow and congestus cloud 

types (defined as earlier according to their PTH distributions), due to their significant RFO 

over the tropical oceans, contribute roughly 38% and 47% of the observed total convective 

rainfall, respectively.  Because these clouds are particularly important in terms of rainfall in 

the tropics, the idea of cloud type similarity is discussed through consideration of particular 

precipitating clouds within the broad shallow and congestus classifications. 
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 Consider two particular precipitating cloud types within these categories that have 

PTHs of 3 and 6 km.  The cloud with a 3 km PTH can be considered a shallow, warm-

raining cloud, while the 6 km precipitating cloud most likely extends beyond the tropical 

freezing level and may contain ice near the cloud top.  Stratified by precipitation cluster, 

the average surface rainfall rate for a cloud with a 3 km PTH (at TRMM PR instantaneous 

resolution) is 2.1, 1.5, and 1.4 mm hr-1 for SHAL, UNORG and ORG clusters, respectively.  

As the cluster becomes deeper, the strength of the 3 km precipitating clouds decrease in 

terms of surface rainfall rate, which is somewhat surprising, but nonetheless consistent for 

all basins.  Figure 2.9 depicts the Q1-R and radar reflectivity profiles for the 3 km clouds in 

 
Figure 2.9. The top left panel illustrates the average convective Q1 – QR profiles for 
convective clouds having PTHs of 3 km for each precipitation cluster (dashed 
denote SHAL, dotted denote UNORG and solid denote ORG clusters).  The top 
middle panel is constructed as in the top left panel, but for the PR ZE profiles.  The 
top right panel illustrates, for each precipitation cluster (line-style denotes the 
cluster), the percent difference in ZE as a function of height given a convective cloud 
with a 3 km PTH and the same surface rainfall rate (averaged over all basins).  The 
bottom two panels are constructed as in the top two panels, but for the precipitating 
clouds having PTHs of 6 km. 
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the top three panels.  One would expect that the Q1-R from these 3 km cloud types should 

decrease, consistent with the surface rainfall rate trends, which is indeed what is observed.  

It must be noted that Q1-R can be considered a larger-scale variable dependent on the 

precipitating cloud system as a whole, so further interpretation of the Q1-R profiles would be 

more speculative.  The top middle panel of Fig. 2.9 shows the corresponding 2A25 product 

radar reflectivity profiles for the 3 km precipitating clouds.  Consistent with the rainfall 

rates, as the precipitation regime grows deeper, the radar reflectivity profiles weaken for 

these cloud types.  The Q1-R and radar reflectivity profiles for the clouds with 6 km PTHs 

are shown in the bottom three panels of Fig. 2.9.  For a precipitating cloud with a 6 km 

PTH, the average surface rainfall rate is 7.5, 8.2, and 10.7 mm hr-1 for SHAL, UNORG and 

ORG clusters, respectively.  Unlike the trend for clouds with 3 km PTHs, the rainfall rate, 

Q1-R and radar reflectivity values increase as the clusters transition from SHAL to ORG 

(bottom left and bottom center panel of Fig. 2.9).  This is also qualitatively consistent from 

one geographic basin to the next.   

 If one becomes more stringent in the definition of a precipitating cloud type such 

that it is now defined by both a particular vertical thickness and surface rainfall rate, then 

further investigation into the differences in the profiles of radar reflectivity as a function of 

height for the three clusters can be made. The results are averaged over all basins, and the 

average percent difference in radar reflectivity relative to the mean radar reflectivity profile 

is shown for precipitating clouds defined according to PTH and surface rainfall rate.  The 

results can be seen in the far right two panels of Fig. 2.9.  Robust differences emerge, and 

for the 3 km clouds, given the same surface rainfall rate, there is 14% difference in radar 

reflectivity at 2 km between precipitating clouds developing in the SHAL cluster versus the 
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ORG cluster.  For the 6 km clouds, given the same surface rainfall rates once again, there is 

an 18% difference in radar reflectivity at 3.5 km between precipitating clouds developing in 

the SHAL cluster compared to those developing in the UNORG cluster.          

It is evident that the differences between these average surface rainfall rates, Q1-R 

and radar reflectivity are large and highly dependent on the precipitation regime in which 

the cloud is developing.  However, the rainfall rates are similar with respect to the tropical 

average surface rainfall rate for these clouds when one stratifies by precipitation cluster 

(less than a 7% difference from the cluster average).  These results provide motivation for 

the study of precipitating clouds within the context of the precipitation regime in which 

they are developing, as opposed to considering precipitating clouds with the same vertical 

extent and/or rainfall characteristics as self-similar entities, independent of the precipitation 

regime.  

  

2.5  Conclusions  

 A wealth of knowledge exists on the nature of tropical precipitation, both in the 

temporal-mean sense and also with respect to the prevalence of precipitating clouds as one 

traverses the various ocean basins in the tropics.  In this study, an analysis geared towards 

extracting precipitation regimes from the mean tropical state is performed, but is done so 

independently for adjacent ocean regions with the purpose of determining how similar 

various precipitation regimes are across the tropics.  The framework has the advantage of 

not requiring, for example, the specification of how many deep precipitating clouds must 

exist in a regime for it to be declared “deep” or what percentage of stratiform/convective 

cloud types must exist in a given area for a particular type of regime to be defined.  Three 
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similar precipitation clusters emerge such that a particular cluster occurring in one basin is 

nearly indistinguishable from the same cluster identified in another basin.  Clusters are 

quantitatively similar in terms of the ensembles of cloud types, the distributions of rainfall, 

and the distributions of heating resulting from the spectrum of precipitating clouds present.  

Precipitating shallow and congestus clouds are in close proximity to each other, as well as 

in close proximity to deep convective clouds in deeper precipitation clusters.  Because a 

cluster contains a distribution of cloud entities that are not self-similar (despite having the 

same vertical extent and rainfall), studies that focus on a particular cloud type and its 

associated ambient thermodynamic characteristics may inadvertently mix regimes by, for 

example, extracting shallow clouds from a deeper convection regime and shallow clouds 

from a weakly-convecting regime and compositing the profiles and their corresponding 

environmental characteristics together.    

Within the deeper precipitation clusters, the distributions of PTHs are consistently 

bimodal.  It is shown that particular ensembles of cloud types play significant roles in the 

composite structure of the heating profiles.  These results are robust, and consistent from 

one tropical ocean basin to the next.  Additionally, these results indicate that it may be 

necessary to consider the entire spectrum of precipitating clouds present in a particular 

regime in order to capture the heating profile (largely driven by the latent heating term), 

beyond a rainfall scaling of a generalized latent heating function that depends largely on the 

amount of stratiform and convective rainfall present. 

It is an important result that similar precipitation clusters emerge, particularly since 

equatorial atmospheric wave activity frequency and large-scale dynamics vary as a function 

of tropical oceanic basin.  Considering that convectively coupled equatorial waves are more 
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prevalent in some basins than others and that the Madden-Julian Oscillation (MJO) 

primarily influences the Indian and west Pacific Ocean basins, the result of cluster 

similarity in terms of the distributions of PTH, rainfall and heating is a significant one, 

implying that precipitation clusters do not change regardless of the type of equatorial 

disturbance, and instead, are simply modulated in terms of frequency of occurrence by the 

disturbance. 

Continued interpretation of these clusters, as well as their placement within the 

“Extended Building Block” hypothesis recently proposed by Mapes et al. (2006) that 

describes a self-similar progression of precipitating convection from shallow to deeper 

structures despite being modulated by different large-scale tropical waves, requires the 

incorporation of additional data sets describing the thermodynamic and dynamical states of 

the atmosphere.  Furthermore, reconciling the remaining cluster differences that exist from 

one basin to another may require consideration of the idea that some precipitation regimes 

may be either terminal (i.e. they have reached their peak intensity) or transient (i.e. 

intensifying and growing towards a deep convective state), as discussed in Luo et al. 

(2009).  It is possible that the same distribution of precipitating clouds could exist in either 

case, but there is good reason to expect that the heating and rainfall may be different 

between the two cases, which could provide some insight into why precipitating clouds 

have similar characteristics with respect to the cluster in which they are developing, but not 

with respect to the same cloud-types developing in another cluster. 
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CHAPTER 3 

 
 
AN OBSERVATIONAL DEPICTION OF THE TRANSITION FROM LIGHT TO 

HEAVY RAINFALL OVER SHORT TIMESCALES 

 

 

3.1  Introduction 

 Over the last decade, considerable progress has been made in quantifying the 

spectrum of precipitation systems that exist in the tropics and subtropics, particularly over 

the oceans.  This is in large part due to the diverse collection of low-Earth orbit satellites 

that employ payloads designed for observing upwelling radiation from clouds and water 

vapor at a resolution sufficiently high for inferring the distribution of raining clouds over 

any desired tropical or subtropical oceanic region.  Observations have shown that roughly 

2/3rds of the global rainfall falls equator-ward of 40°, and of this rainfall, 3/4ths of the 

volumetric accumulation is attributed to mesoscale convective systems (MCSs) that 

comprise only 10-20% of all raining systems (Mohr et al. 1999), while the frequently-

occurring “warm-rain systems” containing ensembles of clouds with tops terminating 

below the freezing level account for the remaining accumulation (Liu and Zipser 2009).  

The contribution to the temporal mean rainfall by both shallower collections of raining 

clouds and deeper, more organized systems is location dependent, and is a function of the 

mean atmospheric background state. 
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 Despite the fact that the mean precipitation states vary across the tropical oceans, a 

few recent studies have found that various statistical distributions of raining clouds at an 

approximate 1-2° spatial scale exhibit notable similarity (e.g. Liu and Zipser (2009), 

Chapter 2 of this dissertation) to the extent that when they occur, they are almost 

indistinguishable from one tropical ocean basin to another.  With respect to shallower 

raining regimes, Liu and Zipser (2009) found no substantial regional differences in the 

spatial extents and rainfall intensities of warm-rain precipitation systems in the tropics.  In 

Chapter 2, precipitation regimes were investigated independently at a 1° spatial scale for 

adjacent tropical ocean basins through use of a KMEANS clustering technique.  It was 

shown that collections of raining clouds at the 100 km spatial scale resemble each other in a 

statistical sense in terms of raining cloud populations, precipitation top height distributions, 

ensemble vertical heating profiles and distributions of surface rainfall.  This was found 

regardless of whether the regime as a whole could be classified as shallow or deep.   

Studies such as these imply that significantly different mean rainfall states (such as 

the west Pacific basin versus the east Pacific basin) are composites of similar precipitation 

regimes recurring at varying, basin-dependent relative frequencies of occurrence (RFOs).  

An alternative interpretation is that regions with different temporal-mean atmospheric 

states transition through similar shallow and deep precipitation regimes, but do so at 

varying rates leading to significantly different rainfall lifecycles.  These rainfall lifecycles 

would likely reflect a diurnal timescale signature along with multi-day variations in rainfall 

due to propagating convectively coupled waves.  Continued progress in understanding 

these cycles and the evolution from one regime to another is clearly related to the more 

general problem of resolving what processes dictate the transition from shallow to deep 
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convection over varying timescales.  This line of inquiry has enjoyed much investigation 

recently, mostly from a modeling (e.g. Derbyshire et al. 2004; Khairoutdinov and Randall 

2006; Kuang and Bretherton 2006; Wu et al. 2009) or field campaign perspective (e.g. 

Kingsmill 1995; Pereira and Rutledge 2006; Lima and Wilson 2008).  While large-scale 

(i.e. current spatial scales of present-day general circulation model (GCM) grid boxes) 

parameters related to buoyancy, water vapor and shear are clearly important in regulating 

shallow and deep precipitation states and their transitions, unresolved fluctuations in 

atmospheric water vapor, buoyancy and wind velocity and the role this may play in 

convection evolution on the scale of a GCM grid-box is now receiving significant attention.  

Analyses of inhomogeneity existing in large-eddy simulation and cloud resolving model 

(CRM) fields relative to the convection state have proven useful in this regard. 

 In regards to a GCM representation of convection, there are a number of missing 

processes (unresolved in current coarse-grid, parameterized GCMs) in these models that 

have been identified as important for capturing the evolution of convection.  These include 

cold pools and the role they play in deep convective cloud development through 

thermodynamic effects (Tompkins 2001) or forced lifting of surface parcels above their 

inhibition barrier (e.g. Mapes 2000; Lima and Wilson 2008; Khairoutdinov et al. 2009; 

Hohenegger and Bretherton 2011), environmental shear and its interaction with convection 

regimes (Moncrieff and Liu 2006), water vapor variations at small scales and the effect 

they may have on subsequent cloud development and organization (Mapes 2000; 

Chaboureau et al. 2004; Fletcher and Bretherton 2010; Mapes and Neale 2011), and 

processes allowing for shallow clouds to become buoyant relative to the mean environment 

promoting the rapid development of deep cloud (Wu et al. 2009).       
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Of the processes mentioned, consider for the moment that some studies (Tompkins 

2001; Ross et al. 2004; Moeng et al. 2009) have shown that cold pool activity can 

significantly impact horizontal wind velocity at a 10-30 km scale.  In light of these spatial 

scales, the opportunity exists to exploit higher-resolution satellite products in pursuit of a 

signal related to cold pool activity and evolving larger-scale state of convection.  

Fortunately, the QuikSCAT satellite orbital and viewing characteristics are such that wind 

velocity can be retrieved at a scale of ~25km, roughly equivalent to the scales discussed 

above.  Therefore, a key element of this study is the focus on variability in surface wind 

fields estimated by the QuikSCAT satellite over the tropical oceans.   

A new observational parameter related to cold pool activity is developed in this 

paper that captures the variability in surface wind fields hypothesized to be largely 

associated with cold pools.  The overarching goals of this study include determining to 

what extent existing space-borne platforms can detect cold pools and furthermore, shed 

light on existing ideas related to cold pools and their influence on the transition from 

shallow to deep convection.  It should be noted that while most prior modeling studies have 

discussed transition in the sense of progression from shallow (i.e. non-precipitating) clouds 

to rainfall, transition defined here specifically focuses on progression from shallow rainfall 

(i.e. warm-rain dominated; cloud tops well below freezing level) to heavier rainfall 

associated with organized aggregates of deep convective clouds.   

In this analysis, temporal composites of rainfall, cold pool activity, convective 

available potential energy (CAPE), convective inhibition (CIN) and relative humidity, 

centered on local rainfall maxima, are constructed.  In documenting the evolution from 

shallow to deeper rainfall, high temporal resolution is desired through the sole use of 
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observational platforms.  This is accomplished through use of multi-sensor satellite 

products and radiosonde data, merged in such a manner that 3-6 hour resolution can be 

achieved. 

 

3.2  Observational Datasets 

 All data and derived parameters used in this study span the time frame extending 

from 2004 to 2007.  The CPC MORPHing (CMORPH) product (Joyce et al. 2004) serves 

as the basis for rainfall observations.  This technique relies on rainfall estimates derived 

exclusively from a number of orbiting passive microwave sensors.  These estimates are 

propagated in time/space through use of geostationary infrared (IR) data such that global 

estimates of rainfall rates are produced at an approximate spatial and temporal resolution of 

10 km and 30 minutes, respectively. 

 Twice-daily surface wind velocity information, available over all oceanic regions, 

is derived from the SeaWinds scatterometer on the QuikSCAT satellite.  Details on 

scatterometry, applications and instrument specifications can be found in Freilich et al. 

(1994), Liu (2002) and Chelton and Freilich (2005).  Through the use of a geophysical 

model relating wind stress, ocean emissivity and backscattered radiation at multiple 

azimuth angles, surface wind velocity can be retrieved.  As mentioned, retrievals are 

available at the 25 km spatial scale and are calibrated to a 10-m reference height.  The wind 

vector retrievals serve as the basis for defining cold pool activity.   

Rain probability from the scatterometer is determined using the Multidimensional 

Histogram (MUDH) rain flag algorithm (Huddleston and Stiles 2000).  Because wind 

vector retrievals may be degraded when rainfall is present, rainfall probabilities provided 
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by this algorithm are used to remove pixels potentially contaminated by rainfall.  Given 

that there is no stated rainfall rate or rainfall probability beyond which the wind retrieval 

becomes invalid (Liu 2002), a rainfall probability of ≥ 50% is used as the threshold for 

filtering pixels potentially contaminated by rainfall.  As there often is some finite 

probability of rainfall over the tropical oceans, this choice strikes a balance between 

discarding a substantial percentage of useful retrievals by either over-flagging (> 0% 

threshold) or under-flagging pixels likely contaminated by rainfall.  Additionally, if the 

MUDH rain flag is not usable for any cell, the retrieval is immediately discarded.   

     Buoyancy and relative humidity characterizing the environment are derived from 

radiosonde observed (RAOB) water vapor and temperature profiles.  These profiles are 

available from the Integrated Global Radiosonde Archive (IGRA; Durre et al. 2006), and 

are produced by the National Climatic Data Center (NCDC).  For any given reporting time, 

a RAOB is used if 1) there is a valid surface report for pressure, temperature and dew point 

depression and 2) data are available for at least 8 standard pressure levels (1000, 925, 850, 

700, 500, 400, 300, 250 hPa).  There are 25 RAOB stations used in this study (geographic 

locations are shown in Fig. 3.1).  Since analyses here involve spatial co-location of multiple 

 
Figure 3.1.  Solid circles indicate locations of radiosonde stations. 
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datasets, some of which are available for ocean only (e.g. QuikSCAT), only stations 

located on remote islands are considered.   

   

3.3  Analysis Method 

 Rainfall data are averaged to 2° and geographically centered on the RAOB launch 

sites.  Given that this spatial scale is representative of the current size of grid-boxes in 

conventional GCMs or host GCMs in multi-scale modeling frameworks (MMFs), it is a 

pertinent scale for studying the time evolution of precipitation for convective 

parameterization purposes. 

Cold pool activity is characterized by computing root mean square horizontal 

velocity fluctuations over the 2° spatial scale.  The parameter is referred to as cold pool 

kinetic energy (CPKE) and is defined as  
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where the primes denote departures from the spatially averaged 2x2° zonal (u) and 

meridional (v) wind components, and the over-bar indicates an average over the entire 

grid box.  This mathematical formulation is the same as that for turbulent kinetic energy 

(TKE).  However, the horizontal scale of turbulent eddies is typically considered to be 

approximately related to the depth of the planetary boundary layer [O(1km)].  The 

horizontal scales being investigated here are on the order of 10-30 km, and therefore, a 

new interpretation is warranted.  Since frontal activity is typically non-existent over the 

deep tropical oceans, boundaries over open-ocean that would influence the variance in 
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surface wind are likely related to cold pool outflow from nearby regions of convection.  

This interpretation is also based on the observation that CPKE tends toward zero as 

rainfall does, as will be shown in later sections.       

 In order to visualize the variations of CPKE alongside surface rainfall rates, a 

snapshot of QuikSCAT surface wind, CPKE and CMORPH rainfall is shown in Fig. 3.2.  

The regions where QuikSCAT orbital geometry did not allow for wind sampling are 

shaded grey in the rainfall panel for easier comparison.  In a qualitative sense, a 

relationship between CPKE and rainfall is evident over oceanic regions. 

 
Figure 3.2.  Sample snapshots from 01 Jan 2004 of QuikSCAT orbital and 
CMORPH products. 
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   Saturation fraction, CAPE and CIN are calculated using RAOB data.  The 

saturation fraction, defined as  

                                         

! 

SatFraction =

"1

g
qvdp

psfc

ptop

#

"1

g
qv,satdp

psfc

ptop

#
 ,                                                          (3.2) 

 

is equal to the column integrated mixing ratio (TPW) divided by the column-integrated 

saturation mixing ratio, calculated by determining the saturation water vapor mixing ratios 

given the RAOB temperature profiles.  It is therefore a measure of the column-integrated 

relative humidity.  Bretherton et al. (2004) has shown that this parameter is highly 

correlated with rainfall, although the direction of causality is still not completely 

established.  CAPE and CIN are calculated using the method developed by Emanuel 

(1994).  The traditional definition for CAPE as a measure of the energy available for 

convection is used here, such that it is computed by vertically integrating the local 

buoyancy of a parcel from its level of free convection to its equilibrium level.  CIN 

represents a potential barrier to convection, and is defined as the vertical integral of the 

virtual temperature difference between the environment and the parcel below the level of 

free convection.   

Local maxima in geo-located rainfall are defined through consideration of a 6-hr 

smoothed rainfall time series at each station.  The original time series of rainfall, CPKE, 

saturation fraction, CAPE and CIN are composited about all local rainfall maxima from 0 - 

4 mm hr -1, which encompasses virtually all rainfall variation at the 200 km spatial scale, so 

that temporal histories of all parameters relative to varying-magnitude rainfall cycles can be 
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constructed, yielding convenient two dimensional portrayals of rainfall time tendencies and 

environmental parameter history versus the maximum amplitude of the rainfall cycle.  

Because the satellite and RAOB data, even if available at the same GMT time daily, are 

lagged with respect to local times of rainfall maxima, one can derive the sub-daily time 

composites given that the CMORPH rainfall product consists of fixed 3-hr sampling.   

Two caveats must be mentioned pertaining to the use of the chosen radiosonde sites 

depicted in Fig. 3.1.  While rainfall and CPKE is representative of the 200 km scale, 

soundings are most likely representative of local environmental conditions, and therefore, 

noise in saturation fraction, CAPE and CIN will inevitably be introduced.  However, given 

a sufficient number of samples through use of all stations over a 4-yr period, one can 

largely circumvent this issue.  Additionally, despite the fact that launch sites are located 

mostly over smaller, remote islands such that a 2° rainfall average consists of 

predominantly oceanic pixels, there will be some influence by land.  The extent to which 

land would have an influence depends on proximity to larger land areas, as well as the size 

of the individual islands.  However, the majority of islands chosen contain land mass 

coverage less than 200-300 km2.  Recent studies (Robinson et al. 2011; Sobel et al. 2011) 

have found that islands of this size have a limited influence on average rainfall from the 

perspective of land versus ocean; therefore, near-vicinity rainfall structures are expected to 

mostly resemble those characteristic of maritime convection.  
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3.4  Temporal Evolution 

3.4.1  Rainfall  

 The life cycle of rainfall relative to grid-averaged hour 0 rainfall maxima is 

depicted in the top panel of Fig. 3.3.  In order to facilitate interpretation of this image, 

consider a rainfall cycle that has an hour 0 maximum of 1.6 mm hr -1.  The composite of the 

time-lagged (± 3 days) rainfall can then be found by viewing the horizontal transect 

anchored to the 1.6 mm hr -1 rainfall rate shown on the ordinate.  In this case, rainfall 

quickly intensifies 6 hours prior to the maximum and exhibits a rapid decrease over the 

following 6-hour period.  For all hour 0 maxima up to 4 mm hr -1, the composite time series 

over multi-day periods are displayed.  Regarding timescales for rainfall, the diurnal cycle in 

rainfall is clearly visible, particularly for rainfall histories that correspond to lower-

amplitude hour 0 rainfall rates (see the 0.8 to 1.6 mm hr -1 transect, for instance), where 

clear minima in rainfall rate exist 12 hours prior to and after local maxima.  The composite 

rainfall histories corresponding to these lower amplitude hour 0 rainfall rates are the ones 

most frequently observed, and thus contribute most heavily toward an average history that 

would be representative of the tropical mean diurnal cycle found in a number of satellite 

studies.   

From the perspective of volumetric accumulation, a significant amount of rainfall is 

associated with rainfall cycles that correspond to hour 0 rainfall rates greater than 1.6 mm 

hr -1.  One can see that the diurnal cycle, while evident, is less visible in these higher-

amplitude rainfall states.  An envelope of elevated rainfall extending over an approximate 

2-day period (± 24 hrs) is clearly visible, with the most substantial increase in rainfall 

beginning 12 hrs prior to the maximum amplitude.  These envelopes of higher-amplitude  
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Figure 3.3.  Composite temporal evolution of rainfall and radiosonde parameters 
as a function of local rainfall maximum.  Vertical lines at ± 12 hrs are shown for 
visual reference only. 
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rainfall cycles are possibly associated with 2-day waves and attendant mesoscale 

convective systems (MCSs), and likely contribute toward a series of enhanced diurnal 

cycles.  As discussed in section 3.3, despite the interpretation that the rainfall depicted here 

is largely maritime in nature, it is possible that land exerts some influence on the timing 

and development of convection, which therefore complicates attempts made to establish 

local solar times to the times of maximum rainfall.  

 

3.4.2  RAOB Saturation Fraction, CAPE and CIN  

The evolution of saturation fraction, CAPE and CIN are also illustrated in Fig. 3.3.  

The non-raining regime (bottom-most transect along the abscissa in all panels) is 

characterized by a dry atmosphere and less than 1000 J kg-1 of CAPE, with little variability 

over the 6-day period.  Saturation fraction exhibits a general increase over time prior to the 

rainfall maximum for all cycles, with a tendency for maxima in saturation fraction and 

rainfall to be co-located in time, consistent with results found for integrated water vapor 

and rainfall tendencies in Zelinka and Hartmann (2009).   

Interesting sequences for CAPE and CIN emerge with respect to varying-intensity 

rainfall cycles.  Regardless of the amplitude of the rainfall maximum, CAPE magnitudes 

preceding the deepest convection in all cycles appear to be quite similar, thwarting attempts 

to relate CAPE at any prior time to the rainfall maximum and suggestive of an often-

present reservoir of potential energy.  More generally though, rainfall maximum aside, a 

visual comparison of the dissimilar rainfall and CAPE patterns highlight the difficulty one 

encounters in relating CAPE to rainfall over these sub-daily timescales.  While CAPE is 

considered necessary for convection, its presence doesn’t guarantee upcoming rainfall nor 
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dictate its intensity.  This result is not completely unexpected, since CAPE sufficient for 

convection has been found to exist 90% of the time in another observational study 

(Sherwood 1999) of the tropics, despite deep rainfall occurring at a frequency far less than 

this.  Depletion of CAPE begins once the appropriate triggering mechanisms are in place 

for deep precipitation development.  In the composite, CAPE reaches a minimum 3 – 6 

hours after local rainfall maxima, but is never completely consumed and instead, 

approaches a magnitude that is comparable to that of non-raining scenes, nicely visualized 

when one compares the non-raining horizontal transect near the bottom of the panel to a 

transect oriented vertically and displaced a 3 – 6 hours after the maximum-rainfall axis.  

The significant decreases in CAPE (40% reduction) likely suggest that, on average, 

convection is not in equilibrium with the environment.   

CIN increases over the entire period of enhanced rainfall, and reaches a maximum 5 

– 10 hours after peak rainfall.  The increase in CIN is likely due to the combined effects of 

subsidence warming surrounding deep rainfall and cooling of the lower troposphere by 

cold pools associated with convective and mesoscale downdrafts.  Large values of CIN are 

found both in non-raining regions and immediately after the time of heaviest rainfall for all 

rainfall cycles, as can be seen in the bottom panel of Fig. 3.3, confounding attempts to 

relate near-instantaneous rainfall rate and CIN.  Nonetheless, from an evolution 

perspective, over these timescales, similar trends in CAPE and CIN with respect to rainfall 

can be gleaned from images presented in the modeling studies of Charboureau et al. (2004) 

and Khairoutdinov et al. (2009) as well. 
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For the highest amplitude rainfall cycles, the transition from light to heavier rainfall 

appears to occur several hours before CIN reaches a minimum.  In fact, at a time lag of -24 

and -12 hours, similar saturation fractions and CAPE exist, but less CIN exists at -24 hours.  

Despite this, the increase in rainfall commences at -12 hours, leaving the question open 

regarding what processes should be considered when developing a conceptual picture of 

 
Figure 3.4.  As in Fig. 3.3, but with rainfall, QuikSCAT CPKE and the ratio of 
CIN / CPKE. 
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the hourly-timescale development of deep rainfall, given that a reservoir of CAPE and 

moisture are present coincident with periods of low CIN well before the increase in rainfall. 

 

3.4.3  QuikSCAT CPKE and Discussion of the Transition from Light to Heavy Rainfall  

The rainfall composites are reproduced in the top panel of Fig. 3.4 for qualitative 

comparison purposes to CPKE, which is shown in the middle panel of Fig. 3.4.  It is highly 

correlated with rainfall, and peak values are coincident with the hour 0 rainfall axis.  In the 

absence of rainfall, there is a tendency to approach negligible magnitudes.  Due to similar 

CAPE, moisture and decreased CIN, the investigation of the transition proceeds along 

another avenue involving cold pools.  Guided by modeling studies, and strictly based on 

observations here, a working hypothesis for the influence of cold pools on transition from 

shallow to deep rainfall is twofold: 1) cold pools act to increase the kinetic energy in the 

boundary layer such that near-surface parcels can acquire enough vertical kinetic energy to 

overcome the barrier (i.e. CIN) and therefore, this process can result in a positive rainfall 

time tendency; 2) cold pool activity increases CIN by cooling and drying the boundary 

layer in the vicinity of convection, thereby acting as a limiting factor on further increases in 

rainfall.  In light of these contrasting effects, efforts to understand the observed transition to 

deeper rainfall are pursued through consideration of both CPKE and CIN and their ratio.  

Despite the lack of consensus, a number of recent modeling results suggest that the 

transition from shallow, non-raining cumulus convection to precipitating cumulus clouds 

can be described from the perspective of boundary layer mean vertical turbulent kinetic 

energy overwhelming grid-mean CIN.  A vertical velocity scale can be empirically derived 

from boundary layer total TKE and compared to a minimum vertical velocity that is 
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necessary for a parcel to overcome any layer of inhibition that may be capping the 

boundary layer.  When the vertical kinetic energy is sufficient so that this minimum 

threshold is met, the development of raining clouds commences.  This idea, then, is 

encapsulated by consideration of the ratio of CIN / TKE, and as it approaches unity (or 

below), the time tendency for cloud growth becomes positive.  The idea extends back to 

Mapes (2000), where the ratio of CIN to “triggering energy” was deemed important for 

deep convection occurrence.  In that study, triggering energy was thought to encompass 

sub-grid scale fluctuations in equivalent potential temperature, vertical kinetic energy, and 

gravity wave effects on local variations in CIN.  Incorporating the same concept, the 

modeling studies of Bretherton et al. (2004) and Kuang and Bretherton (2006) investigated 

the transition from non-raining shallow convection to deeper, lightly raining clouds and Rio 

et al. (2009), Fletcher and Bretherton (2010), and Hohenegger and Bretherton (2011) have 

now extended the idea to study transitions over larger rainfall ranges.   

From an observational perspective, all smaller scale fluctuations that would 

contribute to “triggering energy” cannot be determined.  In this analysis, with transition 

defined as progression from shallow rain to deep rain, it is hypothesized that precipitation 

processes and cold pool effects are even more important than during the transition from 

non-raining to rainfall onset, and therefore, CPKE can be thought of as a significant 

triggering mechanism for parcels to overcome CIN.  The two parameters are evaluated as a 

ratio with the intention of casting this observational study within the context of prior 

modeling results that also considered a ratio.    

In Fig. 3.4, as grid-box mean CPKE approaches CIN, the ratio of CIN / CPKE 

tends toward unity and shallower precipitation begins to rapidly transition to deeper 
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rainfall.  This occurs at time lags closer to -9 to -12 hrs for the deepest rainfall cycles, and -

6 hrs for weaker hour 0 rainfall maximum cycles.  Observed CPKE magnitudes of ~5 J kg-1 

are derived and associated with grid-mean rainfall rates less than 1 mm hr -1.  This implies 

that either cold pools have to be in close proximity due to nearby deeper convection, or that 

shallower precipitating convection itself can produce enough CPKE to start the 

progression.  The initial increase in CPKE by shallow convection is plausible, particularly 

when one considers that mesoscale organization of shallow raining cumulus convection (<5 

km cloud top heights) in association with cold-pool outflows has been recently observed 

during the Rain in Cumulus over the Ocean (RICO) field campaign (Snodgrass et al. 2009).  

In the transition, then, shallow raining cumulus may not serve the sole role of 

preconditioning the atmosphere for deep convection from a moistening perspective, but 

may also serve the important role of increasing CPKE. 

Summarizing results depicted in Figs. 3.3 and 3.4, it is hypothesized that given a 

sufficient reservoir of CAPE and moisture, as CIN / CPKE decreases such that the two are 

of comparable magnitude, rainfall increases.  In this view, CAPE is seen as a necessary but 

not determining factor, with high values of CAPE observed for a number of days before the 

heavier rainfall.  Given sufficient CPKE relative to CIN, the depletion of CAPE 

commences as parcels can acquire sufficient energy to overcome the capping inversion 

present. 

 Another view of the timescale for depletion of CAPE and the ratio of CIN / CPKE 

for three different rainfall cycles is shown in Fig. 3.5.  The rapid drop in CAPE takes place 

roughly during the time interval that CIN ≤ CPKE.  It can be seen that for the two more 

intense rainfall cycles, the increase in rainfall begins before the minimum in CIN is realized  
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Figure 3.5.  Evolution of the background for 3 horizontal slices extracted from 
Figs. 3.3 and 3.4 representing differing-magnitude composite rainfall cycles. 
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and continues through the time of rapid increase in CIN.  However, the ratio of CIN / 

CPKE approaches unity before the minimum in CIN and is low throughout, and therefore, 

rainfall increases several hours before a minimum in CIN is observed and continues 

increasing after the minimum.  For the lightest rainfall cycle (RR Cycle 1), CIN 

overwhelms CPKE and the time tendency of rainfall is not observed to increase to the 

extent that it does in the other cases.   

The maximum in rainfall occurs near the minimum in CIN / CPKE, shortly after 

which a minimum in CAPE is observed as well.  In the midst of widespread rainfall, CIN 

experiences a rapid increase for reasons discussed above, and thus CIN / CPKE increases 

and the convection begins to weaken and CAPE is no longer consumed.  When the ratio is 

sufficiently larger than unity, rainfall tends toward the background average over the cycle.  

The view presented is one in which the interplay of CIN and CPKE drive the evolution of 

light to heavier rainfall, with CAPE serving more of a passive role and rarely being 

completely depleted, since CAPE depletion largely occurs during the period of time that 

CPKE ≥ CIN.  Importantly, CIN and CPKE are out of phase with CPKE peaking during 

maximum rainfall and CIN peaking hours later.  This essentially shuts down deep 

convection, before CAPE is entirely consumed.   

The temporal composites are summarized in Fig. 3.6 with the interpretation that 

non-raining or lightly raining scenes are characterized by CIN exceeding CPKE (right 

panel of Fig. 3.5), while heavier rainfall is associated with CPKE ≥ CIN with the 

hypothesis being that CPKE approaching and surpassing CIN is a dominant factor in 

transitioning from light to deeper rainfall. 
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3.5  Conclusions 

Through the exclusive use of observations, an analysis of the lifecycle of rainfall as 

a function of varying maximum-amplitude rainfall rate was performed.  The two-

dimensional perspective allows for easy comparison of rainfall and environmental 

evolution with respect to rainfall cycles that are identified according to progressively more 

intense hour 0 rainfall rates.  Key parameters such as saturation fraction, CAPE and CIN 

have been discussed and interpreted with respect to prior studies.  Generally, CAPE and 

periods of decreased CIN are observed without the development of heavier rainfall.  It is 

 
Figure 3.6.  Instantaneous CIN and CPKE as a function of rainfall rate. 
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observed that for more intense rainfall cycles, significant reductions (~ 40%) in CAPE 

occur, suggesting that on average, periods of heavy rainfall and associated CAPE 

consumption are not in equilibrium with large-scale CAPE forcing.  Heavy rainfall, on 

average, may occur in the absence of strong forcing as inferred by the significant 

reductions in CAPE that occur in the presence of elevated rainfall.   

Recent modeling studies have begun to focus on sub-GCM scale processes as they 

relate to strengthening convection.  Of these, one line of pursuit has involved investigating 

TKE and CIN.  Provided with enough TKE, it is thought that boundary-layer parcels may 

acquire a minimum vertical momentum to overcome CIN present in the environment.  

These same studies have largely focused on the transition from non-raining shallow clouds 

to deeper ones, whereas the analysis here extends the idea to rainfall regimes at the 2° scale 

and focuses on the transition from light to heavily raining regimes through consideration of 

cold pool activity.  Cold pool activity is summarized in a parameter with energy units 

(CPKE) and averaged over the same 2° scale.  In this analysis, CPKE takes the place of 

TKE in the side-by-side comparison with CIN as it is now considered the significant lifting 

mechanism for situations such as these.  The motivation to detect cold pool activity from 

space arises from previous modeling results that suggest signals may exist at the 25 km 

scale.  It is argued that the envelope of increased rainfall is marked by the period over 

which CPKE approaches the magnitude of CIN.  This period also outlines the time during 

which rapid depletion of CAPE occurs.  CIN itself is a function of cold pool activity.  

Therefore, as rainfall progresses, cold pool activity may have the effect of increasing CIN 

to such an extent that it eventually overwhelms CPKE thus leading to a quick decrease in 

rainfall.  
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Because the transition is discussed here in terms of cold pool activity, cold pools 

either need to be generated by nearby deeper convection or by shallow raining clouds.  The 

association with shallower raining clouds is supported by recent data collected during the 

RICO campaign, as discussed.  This suggests that shallow raining clouds may serve as 

agents for increasing CPKE in addition to their role of moistening the lower atmosphere.  

CPKE, or “triggering energy” in general, should really be representative of the entire 

boundary layer, and ideally should be converted to a vertical kinetic energy since vertical 

motions impinging on a stable lower atmosphere and contributing to cloud base mass flux 

is the true process that should be investigated as it pertains to the transition process.  

However, this is where the observational approach is limited, given that retrievals are 

surface-based and attempts to convert to vertical kinetic energy values representative of the 

boundary layer would require additional assumptions and empiricism beyond observations.  

This also implies that CPKE approaching the magnitude of CIN should be thought of as an 

outline for determining the envelope of heavier rainfall.  Specific magnitudes for CPKE 

and the ratio of CIN / CPKE should be reserved to the time when the vertical component of 

kinetic energy is derived since that is what is most desired, although it is expected to be 

strongly related to CPKE.  

This work represents the first attempt to use satellites in the investigation of one 

aspect of variability unresolved by a GCM and considered to be important in rainfall 

transition as revealed by high-resolution modeling studies.  In conjunction with model-

based investigations, it is hoped that existing observational platforms and techniques can be 

utilized further to gain additional insight regarding the role horizontal variability on sub-

GCM scales play in the transition from shallow rainfall to deeper convection.   
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CHAPTER 4 

 
 

A COMBINED MULTI-SENSOR OBSERVATIONAL AND MULTI-SCALE 

MODELING FRAMEWORK VIEW OF RAINFALL AND ENVIRONMENT 

EVOLUTION 

 

4.1  Introduction 

Since the advent of the Tropical Rainfall Measuring Mission (TRMM, Kummerow 

et al. 1998), a more complete observational depiction of the vertical structure of rainfall and 

implied diabatic heating has been derived for geographic locations equator-ward of 40 

degrees latitude.  The high-resolution vertical and horizontal information provided by the 

TRMM Precipitation Radar (PR) has been instrumental in this pursuit.  Recently, TRMM-

based analyses of precipitation systems from a regional perspective have been performed.  

Among these, Berg et al. (2002) found rainfall distributions to differ regionally while the 

results of Chapter 2 suggest that these regional differences can be described in terms of 

different mixtures of reasonably similar (i.e. cloud distributions, ensemble heating) 

“building blocks”.  In Liu and Zipser (2009), similarity in precipitation systems was also 

shown for the case of warm-rainfall in various tropical locations.  Latter results pointing 

toward similarity add a level of simplicity to the problem given that one may reconstruct 

the average state through consideration of a limited number of precipitating cloud 

ensembles recurring at basin-dependent relative frequencies of occurrences. 
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One limitation of a TRMM-based analysis is that the temporal evolution of regional 

precipitation systems cannot be studied on short (i.e. sub-daily) timescales.  This limitation 

was addressed in Chapter 3 by incorporation of the three-hourly resolution CMORPH 

rainfall product.  In Chapter 3, a mechanism for determining the temporal evolution of 

rainfall at a 2° spatial scale was proposed.  The physical process outlined involved the 

consideration of satellite-derived cold pool kinetic energy (CPKE) and radiosonde-

observed (RAOB) convective inhibition (CIN).  When CPKE approached the magnitude of 

CIN, rainfall was shown to increase. 

In this chapter, the analysis frameworks of Chapters 2 and 3 are applied to output 

from a novel multi-scale modeling framework (MMF).  An MMF is configured in a 

manner that entails embedding a two-dimensional cloud-resolving model (CRM) into each 

large-scale grid box of a host general circulation model (GCM).  The idea extends back to 

the work of Grabowski and Smolarkiewicz (1999) and Grabowski (2001).  In the MMF 

configuration, “curtains” of CRMs simulate sub-GCM grid scale processes formerly 

accounted for through use of boundary layer, cloud and convection parameterizations.  The 

MMF (occasionally referred to as superparameterization) approach is one suggested way 

forward (Randall et al. 2003; Arakawa 2004; Arakawa et al. 2011) in terms of modeling 

cloud processes during the period of time between the sole use of traditional convective 

parameterization and the sole use of global CRMs for climate simulations, and so far, 

simulations have yielded much improved representations for many phenomena (e.g. 

Benedict and Randall 2009; Pritchard and Somerville, 2009a,b; Benedict and Randall 2011 

Demott et al. 2011; Pritchard et al. 2011).   
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The specific tasks undertaken in this study first involve quantifying recurring 

precipitating cloud ensembles depicted by the CRM “curtains” spanning the tropics and 

comparing results to the TRMM-derived rainfall clusters of Chapter 2.  The second task of 

a two-fold analysis involves documenting the evolution of the environment on hourly time 

scales relative to varying-magnitude rainfall cycles and comparing results to the multi-

sensor observational depiction developed and discussed in Chapter 3.  The evaluation of 

model-simulated precipitation systems and short timescale rainfall evolution with respect to 

multi-sensor observations is, of course, an overarching goal of this work.  However, in 

addition to this compare-and-contrast perspective, a particular aim of this study pertains to 

determining the extent to which a consistent conceptual framework for the evolution of 

different precipitation states on sub-daily timescales can be developed, utilizing a 

collaborative approach involving both observations and the model. 

 

4.2  Observational Sources and Model Description  

4.2.1  Observational Datasets  

 Several sources serve as observational benchmarks against which MMF rainfall and 

background characteristics are evaluated.  All are discussed at length in Chapters 2 and 3 of 

this dissertation.  The TRMM 2A25 and CMORPH three-hourly rainfall products serve as 

the basis for observed rainfall.  RAOB-based parameters (saturation fraction, CAPE, CIN), 

and QuikSCAT CPKE are used for the large-scale environment state depiction with respect 

to rainfall evolution.  Aspects of the analysis entail describing the evolution of parameters 

on sub-daily timescales.  For instance, in order to document the temporal evolution of the 

environment relative to TRMM rainfall clusters, the differences in local observing times for 
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each observational platform and TRMM satellite overpass times must be tallied.  This 

concept is extended as needed, since for any geographic location, storing the time 

differences between one observational platform and another collecting data at slightly 

lagged times allows for the investigation of short-term (i.e. sub-daily) convection evolution, 

as proposed in the Introduction. 

 

4.2.2  Superparameterized Community Atmosphere Model (SP-CAM). 

 Model output from a five-year (September 1999 – August 2004) MMF tropical 

atmosphere simulation are used in this analysis.  This particular MMF is a version of the 

superparameterized National Center for Atmospheric Research (NCAR) Community 

Atmosphere Model (CAM Version 3.0, or CAM3; Collins et al. 2006) coupled with a 

simple mixed-layer ocean model (hereafter referred to as SP-CAM).  CAM3 has a 

horizontal resolution of ~ 2.8°, 30 vertical levels, and a time step of 30 minutes.  A two-

dimensional version of the System for Atmospheric Modeling (SAM; Khairoutdinov and 

Randall 2003) CRM is embedded in each grid box of CAM3.  The CRM has a 128 km 

domain (32 columns at 4 km resolution) with periodic boundary conditions, a north-south 

orientation, and shares the same lowest 28 levels of CAM3.  Further details on this 

particular SP-CAM configuration are provided in Khairoutdinov et al. (2008), while a 

schematic of the coupling between the host GCM grid and embedded CRM is illustrated in 

Benedict and Randall (2009).   

The coupling of the atmospheric model to the slab-ocean model is described in 

Benedict and Randall (2011), and is formulated in such a way that SSTs can respond to 

anomalous surface fluxes, thereby affecting lower-troposphere buoyancy, evaporation and 
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ultimately, the evolution of convection on a wide range of time and spatial scales.  Care is 

also taken to ensure that the model constrains SST deviations in such a manner that the 

observed SST climatology over the 5-yr period is still maintained.  In effect, the 

incorporation of a simplistic slab ocean model represents an attempt towards realistically 

simulating the interaction between sea surface temperatures (SSTs) and the lower 

atmosphere.  This has led to an even more realistic depiction of intraseasonal variability 

including the Madden-Julian Oscillation (Benedict and Randall 2011) relative to other 

MMF simulations that use prescribed SST fields. 

CAPE, CIN and saturation fraction are all derived from CRM domain-average 

temperature and water vapor profiles, using the methods described in Chapter 3.  The CRM 

domain-average profiles are equivalent to what would be provided on the GCM scale at the 

beginning and end of each GCM time step.  In Chapter 3, CPKE was defined to be the 

average of the root mean square surface velocity fluctuations over an approximate 2x2° 

grid box.  This satellite-based parameter is available over ocean only.  Formulated similarly 

to the observed parameter (although at a different spatial scale), CPKE in the MMF, 

available for all GCM grid boxes, is equal to the CRM domain-average root mean square 

velocity fluctuation over the lowest model level of the CRM, although the model analysis is 

not limited to oceanic regions only. 

  

4.3  Two-Part Analysis Methodology 

4.3.1  Rainfall Regimes 

In Chapter 2, observed rainfall clusters were largely classified and interpreted 

according to their raining cloud distributions and ensemble heating profiles.  Therefore, the 
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development of a method for delineating MMF precipitation states should include an 

emphasis on these same characteristics.  In this work, the chosen methodology centers on 

comparing MMF diabatic heating profiles to TRMM cluster heating profiles.   

A particularly simple way to do this involves defining a Euclidean distance metric 

(d) to represent the average discrepancy between any given model heating profile and each 

of the TRMM cluster profiles.  The metric is formulated as a two-dimensional array of 

(number of TRMM clusters) x (npoints), where npoints is computed as the total number of 

tropical grid-boxes in the MMF multiplied by the total length (in hours) of the simulation.  

For each grid-box and simulation hour (ipoint), the rows of d contain distance measures 

equal to the sum of the absolute value differences between each of the three TRMM cluster 

Q1 – QR profiles (illustrated in Chapter 2, interpolated to the MMF vertical levels, and often 

referred to as Q1-R), and the CRM domain-average Q1-R, calculated as  

 

        

! 

d (ipoint,icluster) = (Q1-R,TRMM(icluster,z) "Q1-R,MMF(z))
2

z=1

nlev

#  .                (4.1) 

 

There are conditions that must be met for a CRM heating profile to be classified, all 

of which allow for greater consistency with the observational method described in Chapter 

2.  If Q1-R is 0 for all model levels, the profile is classified as non-raining and is not 

compared to the TRMM clusters.  If all precipitating hydrometeor contents are negligible to 

the extent that TRMM PR would be incapable of observing the scene or if all rainfall is 

determined to be of non-convective origin (computation of a radar reflectivity and 

convective/stratiform partitioning are discussed in greater detail below), the profile is 

grouped into a “residual” category.  The residual category, while occurring fairly often, 
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consists of such light rain that it contributes little to the total rainfall accumulation in the 

tropics.  For all remaining scenes, the Euclidean distance formulation forces model heating 

profiles to belong to one of the TRMM observed clusters.  MMF clusters now represent the 

composite average of all profiles belonging to each of the three TRMM cluster centroids.  

This allows for a straightforward comparison of the observed and MMF clusters.  The 

extent to which model Q1-R profiles deviate significantly from each of the three observed 

clusters will clearly be reflected in the final MMF composite heating clusters.  

Precipitation top height (PTH) distributions can now be derived for each MMF 

cluster and compared to the observed ones discussed in Chapter 2.  As for determining the 

distributions, the MMF configuration is ideal given that hydrometeor profiles are available 

for every grid cell of each embedded CRM.  The comparison proceeds by adopting a 

“model-to-satellite” approach.  First, PR attenuation-corrected radar reflectivity profiles are 

computed given model hydrometeor, water vapor and temperature profiles.  Provided with 

hydrometeor contents and CRM assumed drop size distributions (values originally set in 

Kharoutdinov and Randall (2003), although later modified (M. Branson and M. 

Khairoutdinov, personal communication)), PR reflectivities are simulated with relative ease 

through use of a radar simulator.  Each precipitating column of the CRM is then diagnosed 

to be convective or stratiform based on an algorithm (Steiner et al. 1995) heavily relied 

upon in current PR product rain-type classifications, whereby convective and stratiform 

regions are separated according to peaks in radar reflectivity relative to a background 

average.  The convective/stratiform classification is used in the derivation of the MMF 

PTH distributions.  These distributions are derived by storing the maximum altitudes of 

detectable radar echoes (surpassing a threshold of 17 dBZ, the minimum detectable signal 
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for TRMM PR) above the surface for all convective-only cells of each CRM domain.  

Additionally, in order for a cell to be considered in the distribution, it must have a non-zero 

surface rainfall rate, consistent with the methodology of Chapter 2. 

 MMF precipitation clusters, objectively determined according to Q1-R profiles, are 

compared to TRMM cluster heating and associated raining cloud distributions for the same 

tropical ocean basins outlined in Chapter 2.  RAOB saturation fraction, CAPE, CIN and 

QuikSCAT CPKE are temporally and spatially co-located with the TRMM clusters, and 

compared to the equivalent background parameters derived from the model fields and 

associated with the MMF precipitation clusters. 

 

4.3.2  Sub-Daily Temporal Compositing 

The first component of this analysis uses the TRMM satellite as the reference for 

precipitation system description.  Precipitation systems are characterized by TRMM-

inferred heating profiles and cloud populations.  Simulating TRMM observables using 

MMF output, developing a method for identifying predominant precipitation states, and 

comparing model clusters to the observed clusters of Chapter 2 concisely summarizes the 

first focus.  TRMM, however, provides only an instantaneous snapshot of precipitation 

systems with a relative disparate revisit time for any given location.  Thus, a documentation 

of the rainfall lifecycle of any observed precipitation cluster from this sole-satellite 

perspective is immediately precluded.  This is, however, just one complication.  When one 

considers the combined effects of dissimilar orbital characteristics for TRMM and 

QuikSCAT along with relatively few radiosonde sites (with sparse temporal sampling), it 

becomes nearly impossible to gather a meaningful sample of various rainfall regimes.  To 
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partly mitigate the sampling issues that arise with the use of the multi-sensor platform 

described above, a high temporal and spatial resolution multi-satellite product for rainfall 

(CMORPH) is used in substitution for TRMM.  The loss of TRMM implies that the 

investigation of rainfall and environment evolution must proceed in a manner independent 

of precipitation clusters. 

This component of the analysis, then, mimics the procedure detailed in Chapter 3.  

Briefly, this involves compositing saturation fraction, CAPE, CIN and CPKE about local 

rainfall maxima, defined through consideration of a 6-hr smoothed rainfall rate time series.  

For both observations and the MMF, then, temporal histories of these parameters relative to 

varying-magnitude rainfall cycles are constructed.  Satellite and RAOB depictions of 

rainfall and environment evolution on sub-daily timescales are then compared to the MMF 

equivalent portrayals.     
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4.4  Results 

4.4.1  Rainfall Clusters and comparison to TRMM 

4.4.1.1  DIABATIC HEATING, PRECIPITATION TOP HEIGHTS AND RAINFALL DISTRIBUTIONS 

The observed and MMF Q1-R profiles are illustrated in Fig. 4.1.  The SHAL, 

UNORG and ORG terminology is retained in accordance with discussion in Chapter 2.  

Briefly, these clusters are interpreted as comprising fields of predominantly low-topped 

(i.e. echo tops below the freezing level), precipitating convective clouds (SHAL); 

generally unorganized fields of precipitating congestus and deep convective clouds 

(UNORG); and, organized systems of cumulonimbus clouds and well-developed 

stratiform components with numerous embedded shallow clouds (ORG).  Substantial 

similarity in the heating profiles exists at most altitudes above the freezing level (~ 5 km).  

In the MMF, in all clusters and in all ocean basins, significant differences in the 

 
Figure 4.1. TRMM and MMF derived diabatic heating profiles for each rainfall 
cluster and ocean basin (boundaries shown in Fig. 2.4).  The dashed, dotted and 
solid lines denote the SHAL, UNORG and ORG clusters, respectively. 
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composite heating (up to 5 K day-1) exist below 5 km.  This implies an increased 

production of shallow raining clouds relative to TRMM observations.  Additional 

evidence for this interpretation can be found in Fig. 4.2.  In the far-left column, the PR 

PTH distributions are shown.  Bimodal distributions of raining convective clouds are 

evident, consistent with the images presented in Chapter 2.  In the far-right column, 

despite the fact that distributions of raining clouds are largely unimodal, the RFOs in both 

the observations and the MMF are in general agreement with each other above the 

freezing level.  The largest divergences in RFO magnitudes occur for the component of 

the distributions below the freezing level, in which case the MMF indicates significant 

numbers of raining clouds having PTHs below 5 km.  Thus, the characteristics of the 

heating profiles and the PTH distributions are consistent in the interpretation of a larger 

population of shallow raining clouds in the MMF.   



 67 

Physics of cloud production aside, there are two “mechanical” reasons to expect 

discrepancies in the PTH distributions.  The first requires the consideration of the vertical 

resolution differences between TRMM PR and the MMF embedded CRM.  PR radar 

reflectivity measurements are available at 0.25 km resolution up to 20 km.   The CRM 

vertical resolution ranges from less than 0.20 km below 1 km to over 2 km at an altitude 

of 20 km.  The rapid change in distribution RFO that exists in the UNORG and ORG 

clusters is observed near 5 km and occurs over a vertical distance of less than 1.5 km.  

However, the vertical resolution of the CRM near this altitude is roughly 1.25 km.  

Therefore, such a sharp structure would not be resolved given the current vertical 

resolution of the CRM near the freezing level. 

 
Figure 4.2.  TRMM PR and MMF convective precipitation top height (PTH) 
distributions.  For a given height bin, the relative frequencies of occurrence are 
computed by normalizing each cloud count by the total number of raining 
convective clouds.  PR resampled distributions are described in detail in the text.   
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To visualize the impact that this coarse resolution has on the PTH distributions, 

the PR PTH observations are interpolated to the MMF vertical levels and new 

distributions are computed.  These re-sampled distributions are depicted in the middle 

column of Fig. 4.2.  The observed UNORG cluster now exhibits no bimodality, 

consistent with the MMF, and both yield a peak in PTH occurrence just above 3 km.  

Bimodality is still somewhat evident in the observed ORG cluster.  In fact, some 

evidence of this is illustrated in the MMF ORG cluster as well.  The observed ORG 

cluster has a peak near 8 km, while the MMF cluster exhibits some “flattening” near this 

same altitude.  The other, lower-altitude peak can be seen just above 3 km, albeit much 

more pronounced in the MMF.   

In addition to considering vertical resolution issues, one needs to consider rainfall 

detection issues that exist in PR rainfall products.  In an analysis of light rainfall from 

both TRMM PR and CloudSat, Berg et al. (2010) noted that shallow clouds with surface 

rainfall rates less than 1 – 2 mm hr -1 are often missed in PR studies, likely due to 

instrument sensitivity, algorithm assumptions, and smaller cloud-size-to-PR-footprint 

ratios.  Recall that PTH distributions consist of convective clouds that have both a non-

zero surface rainfall rate and a simulated echo top radar reflectivity of at least 17 dBZ.  If 

all raining clouds with surface rainfall rates less than 1 mm hr -1 are manually removed 

from the MMF distribution composites, the peak in PTHs near 3 km decreases in all 

clusters, and therefore, approaches the magnitudes portrayed in the PR re-sampled 

distributions.  Furthermore, in the MMF ORG cluster, the decrease in the 3 km peak 

immediately leads to an increase in the prominence of the peak at 8 km (since 
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distributions are normalized by the total number of clouds), a tendency that is in 

agreement with observations also. 

While this manual removal of shallow raining clouds from the CRM and the 

effect on the PTH distributions is not published here, given the subjective nature of 

determining which lightly raining ones should be extracted, the act of doing so leads to 

better agreement with PR re-sampled PTH distributions.  Thus, the two-component 

process of reconciling PTH distributions (independent of model moist convection 

representation) requires considering limitations in both the observations (i.e. rainfall 

detection issues) and the model (i.e. vertical resolution insufficient for resolving 

distribution structure near the freezing level).  Based on this discussion, it cannot be 

claimed that the MMF produces the correct (additional) accumulation of light rain.  It is 

 
Figure 4.3.  As in Fig. 2.4, but for the MMF precipitation clusters. 
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reasonable to state that PR underestimates the amount of light rain, and taking this into 

account may explain a notable percentage of the discrepancy in PTH distributions for 

shallow raining clouds. 

The contribution to the average rainfall by each MMF rainfall cluster is shown in 

Fig. 4.3.  Relative to observations (Chapter 2, Fig. 2.4), the deepest clusters (ORG, and to 

a lesser extent, UNORG) seem to serve as the largest contributors to the mean rainfall 

state, whereas in the observations, the SHAL cluster serves a greater role in volumetric 

rainfall accumulation.  Prior studies have shown that the MMF produces more rainfall 

relative to observations in a climate-average sense (Tao et al. 2009).  Specifically, it may 

not solely be the result of increased light rainfall which the MMF shows relative to 

TRMM, as discussed above, but may be reflective of an increase in deep precipitation 

regimes.  Particularly noticeable is the enhanced contribution by the organized deep 

convection clusters in the west Pacific warm pool.  Away from the warm pool, a number 

of regions exhibit agreement between TRMM and the MMF.  For instance, the detailed, 

finger-structured extension (5-10°S latitude, 220-280°E longitude) of increased rainfall 

contribution by the UNORG and ORG clusters is depicted by the observations and the 

MMF in a remarkably consistent manner. 
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Figure 4.4.  Temporal evolution of background parameters as a function of 
precipitation cluster observed at Day-0.  In each panel, vertical lines are 
drawn for visual reference only. 
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4.4.1.2  EVOLUTION OF THE ENVIRONMENT AS A FUNCTION OF RAINFALL CLUSTER 

The evolutions of rainfall and background parameters for a ±5 day period with 

respect to rainfall clusters are shown in Fig. 4.4.  Before discussing detailed evolution, 

note that the absolute magnitude of some parameters relative to the same cluster varies 

when comparing the observations to the MMF (e.g. saturation fraction, CAPE).  The 

MMF results are for all oceanic locations, while the observed results are for RAOB 

locations only (Fig. 3.1).  Therefore, differing mean cluster background states are 

expected, given that equal sampling of all spatial locations is not achieved.  From this 

point on, the focus is on the variation of parameters with respect to their background 

mean or a baseline representative of spatial locations sampled.  From this perspective, 

much commonality is shared in cluster evolutions for both the observations and model.   

Beginning with rainfall, significant differences exist over a 2-day period for each 

rainfall cluster in both the model and observations.  For the ORG clusters, the rainfall 

tendency exhibits a strong resemblance to that of organized convection associated with 2-

day waves (Haertel and Kiladis 2004), consistent with the interpretation that this cluster 

represents organized convective systems.  Despite the large differences in rainfall 

between the UNORG and ORG clusters, similar evolutions of saturation fraction exist.  

The peak in saturation fraction occurs near the rainfall maximum in the observations, and 

3-6 hours after the maximum in the MMF.  Higher saturation fractions are both a cause 

(i.e. a more moist atmosphere prevents the deleterious effects of dry air entrainment on 

cloud growth) and effect (i.e. deeper clouds penetrating the atmosphere detrain moisture 

at various levels) of increased rainfall.  For the ORG cluster, a significant decrease in 

CAPE on the order of 1000 J kg -1 occurs over the day prior to maximum rainfall, with a 
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quick recovery taking place over the next 1 – 2 days.  This evolution is consistent in the 

MMF, and is likely the result of cooling in the lower troposphere due to evaporation of 

rainfall and cold pool activity, along with subsidence warming in the environment 

 
Figure 4.5.  Temporal evolution of relative humidity for non-raining scenes and 
each TRMM and MMF precipitation cluster. 
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surrounding deep convection.  Cold pools associated with widespread convection 

increase both CIN (again, due to cooling of the lower troposphere) and CPKE (due to 

kinetic energy generation by convective and mesoscale downdrafts, possibly strengthened 

by rainfall evaporation).  These parameters are expected to increase with rainfall, which 

is indeed observed to occur in association with the UNORG and ORG clusters.  In the 

MMF, the variations are in phase; in the observations, the peak in CIN appears to be 

slightly lagged roughly 6 hours after the rainfall maximum.   

The relative humidity variations, depicted from a column-integrated point of view 

(saturation fraction) in Fig. 4.4, can also be investigated from a height-dependent 

perspective.  The variations in relative humidity are illustrated in Fig. 4.5 for the non-

precipitating scenes (NORAIN) and three rainfall clusters.  The differences in saturation 

fraction from the SHAL to UNORG and ORG clusters is largely the result of significant 

relative humidity differences at altitudes above 850 mb (60% versus 25% near 550 mb 

when comparing the ORG to SHAL clusters, for instance), with less significant 

differences in lower-troposphere relative humidity (differences on the order of 5-10% for 

the same clusters).  This is consistent with the conclusions of Brown and Zhang (1997) 

and many others, for instance, noting that variations in mid-tropospheric humidity play a 

large role in the distribution of cloud tops. 

 

4.4.1.3  RAINFALL CLUSTER PROBABILITIES 

The atmospheric environments at a 0-day lag in the composites of Fig. 4.4 

represent conditions taking place at the time a particular cluster is observed.  Rainfall at 

any given time is the result of its ambient environment in addition to the characteristics of 
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the environment evolving over a period of hours prior to the rainfall observation.  

Therefore, one cannot expect the occurrence of one cluster versus another is statically 

related to the current state of the atmosphere.  Nonetheless, what can be gleaned from 

Fig. 4.4, however, are strong relations between the cluster, saturation fraction and CPKE.  

Equally clear from Fig. 4.4 is that non-raining scenes and ORG clusters have similar 

CAPE and CIN at day-0.  As discussed, in the presence of heavy rainfall, CAPE 

substantially decreases and CIN increases.  The changes in these parameters are 

significant to the extent that the magnitudes approach those characteristic of suppressed, 

non-raining conditions, thereby limiting their utility in distinguishing one cluster from 

another from the perspective of background conditions.   

Saturation fraction and CPKE are then considered important parameters 

delineating one cluster from another.  The probabilities of the non-raining scenes and 

rainfall clusters are quantified in Fig. 4.6.  Minimal CPKE and saturation fractions are 

associated with non-raining scenes, while the ORG clusters lie in the state space 

associated with higher saturation fractions and CPKE.  Interestingly, there is a noticeable 

slope in the probabilities of cluster occurrences, such that the deeper clusters are found in 

locations with higher saturation fractions and CPKE, but in the event that saturation 

fractions are lower, CPKE can compensate in such a way as to increase the occurrence 

probability of a particular cluster.  The relations are quite tight in the MMF, with more 

variability depicted in the observations column.  This is anticipated given the presence of 

retrieval noise and error associated with QuikSCAT surface wind retrievals.  Fortunately, 

this is not a limitation in the model analysis. 
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Figure 4.6.  Occurrence frequency of non-raining scenes and precipitation 
clusters as a function of saturation fraction and CPKE. 
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There is a physical explanation offered for these slopes in cluster probabilities.  

Consider for the moment that there are larger, more coherent cloud structures or larger 

areas of upward mass flux associated with the leading edges of stronger cold pools.  

Therefore, as grid-average CPKE increases, indicative of additional or stronger cold pool 

activity, the spatial-extent of upward mass flux (related to the horizontal extent of the 

cloud bases) would increase in size.  The effects of dry air entrainment are less severe as 

cloud parcels increase in size.  Therefore, in a drier atmosphere, if parcels, on average, 

could be made larger, as could occur in the case of increased CPKE, then they could be 

less resistant to the negative effects of dry-air entrainment associated with lower 

saturation fraction environments, and thus, the growth of deep clouds commences.  A 

high-resolution (100 m grid-size) modeling study by Khairoutdinov and Randall (2006) 

provided evidence of such a physical relation, and in this study, a much coarser 

observational and modeling framework may even be reflecting this behavior. 

 

4.4.1.4  SYNTHESIS OF TRMM AND MMF RAINFALL CLUSTER RESULTS 

  As discussed in section 4.3.2, there are limitations in deriving lagged temporal 

evolutions using a co-located multi-satellite and RAOB database that incorporates 

TRMM.  The compilation of composites relying on platforms with varying temporal and 

spatial sampling characteristics leads to noisy results, clearly depicted in the temporal 

evolution panels of the observations column of Fig. 4.4.  Therefore, it becomes difficult 

to establish with certainty when particular variables maximize with respect to rainfall in 

observations versus the MMF, thus complicating an attempt to establish differences in 

time lags that may be on the order of a couple hours.  Nonetheless, specific comments 
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about the clusters can be made through use of both the model and observations, thus 

warranting a useful summary of general results for the first part of this tropical rainfall 

analysis.  For the SHAL cluster and non-raining scenes, little variation in saturation 

fraction, CAPE, CIN and CPKE occur over the multi-day period.  As the clusters 

becomes progressively deeper, both the observations and MMF depict an evolution of 

rainfall that is accompanied by significant decreases in CAPE, and increases in saturation 

fraction, CIN and CPKE that are roughly in phase with rainfall.  The ORG clusters 

contribute roughly 30-40% to the accumulated rainfall in the tropics, as shown in Figs. 

2.4 (TRMM) and 4.3 (MMF).  Associated with these clusters is a 40-50% decrease in 

CAPE, occurring over an approximate 12-hour period.  One interpretation consistent with 

these results is that a substantial proportion of rainfall occurs in association with non-

equilibrium convection, consistent with the results of Chapter 3.  Rainfall such as this 

would likely not be represented well in many conventional convective parameterizations 

where assumed decreases in CAPE in the presence of deep convection are small 

compared to the increase in CAPE that would be realized if convection were artificially 

suppressed and large scale advection and surface fluxes were acting alone.  Despite the 

fact that there is an overproduction of the heaviest rainfall, particularly in the west Pacific 

warm pool, the MMF does quite well in simulating this non-equilibrium convection 

regime relative to TRMM and RAOB depictions, both in terms of significant 

contributions to tropical rainfall accumulation and CAPE tendencies.   
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4.4.2 Investigation of Rainfall and Environment Evolution on Sub-Daily Timescales 

 The two-dimensional temporal composites of rainfall, saturation fraction, CAPE, 

CIN and CPKE with respect to varying amplitude rainfall cycles are illustrated in Figs. 

4.7 and 4.8.  The results are partly anticipated given the analysis of section 4.4.1.  These 

 
Figure 4.7.  Composite temporal evolution of rainfall and background parameters 
as a function of local rainfall maximum.  Vertical lines at ± 12 hrs are shown for 
visual reference only. 
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include peaks in saturation fraction at the time of maximum rainfall in the observations 

(although 3-6 hours later in the MMF), a maximum of CPKE in phase with the peak in 

rainfall rate, and a rapid consumption of CAPE associated with more intense rainfall 

cycles.  A glaring difference hinted at, but not portrayed as clearly in the prior analysis, 

pertains to the rainfall and CIN variations depicted in Fig. 4.8.  For all precipitation 

cycles in the MMF composite, rainfall remains elevated over a period of time much 

longer than that depicted by CMORPH.  Furthermore, in the MMF, CIN is in phase with 

the maximum rainfall axis for the higher amplitude rainfall cycles, while in the RAOB 

composites, it peaks 6 or more hours after rainfall maxima, particularly evident for cycles 

with peak amplitude less than 3 mm hr -1.  The in-phase relationship between CPKE, CIN 

and rainfall and possible implications are discussed in greater detail below.       

An attempt was made in Chapter 3 to understand the increase in rainfall through 

consideration of CIN and CPKE.  Increases in CIN provide a negative feedback on 

rainfall, whereas increases in CPKE provide a positive feedback.  Both parameters are 

related to cold pool activity, as discussed, but represent opposite, competing influences 

on the short timescale rainfall tendency.  In this view, CAPE and saturation fraction were 

viewed as necessary for increased rainfall, but not as parameters strictly dictating the 

period of time over which rainfall remains elevated.  It was argued that rainfall remains 

increased relative to the background during the time that CIN and CPKE are of 

comparable magnitude, such that when the ratio of CIN / CPKE approaches unity (i.e. 

ratio decreases with time), rainfall can increase, provided a reservoir of CAPE and 

moisture exists.  Associating a specific ratio magnitude to the rainfall tendency was not a 
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goal of Chapter 3, for reasons discussed in section 3.5.  Nonetheless, it was shown that 

increased rainfall was associated with decreased CIN / CPKE magnitudes.   

 This concept is applied now in the investigation of MMF rainfall time-tendencies.  

The ratio of CIN / CPKE is reproduced for the observations in the bottom left panel of 

Fig. 4.8, and for the MMF in the bottom right panel.  Immediately evident are decreased 

 
Figure 4.8.  As in Fig. 4.7, but for CIN, CPKE and the ratio of CIN to CPKE. 
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ratios coincident with increasing rainfall in the MMF, along with a minimum in CIN / 

CPKE before the rainfall maximum, as seen in the observations.  A notable difference is 

the “reddening” of the image, indicating that CIN and CPKE are perhaps more closely 

coupled than suggested in observations.  This divergence from observations, however, is 

anticipated given that MMF CIN and CPKE are both in phase with rainfall, as discussed.   

Regarding the phasing between these parameters, consider first the CIN 

relationship with rainfall.  There are two possible reasons why it would be maximized 

during the time of peak rainfall in the current MMF design.  Recall that for the deeper 

convection clusters (UNORG and ORG), similar raining cloud distributions exist for the 

deepest convective clouds in conjunction with comparable or greater diabatic heating 

relative to observations.  Associated with these intense convective cells are significant 

columns of upward vertical mass flux.  In accordance with mass continuity, 

compensating mass flux occurs in the columns surrounding the convection.  However, in 

the CRM, given that there are only 32 columns comprising the 128 km periodic domain, 

compensating motion can only take place in a limited number of columns.  In the case of 

3D convection (i.e. observations), the area over which subsidence takes place relative to 

convection is much larger.  It is possible, then, that compensating subsidence is much 

stronger in the current MMF configuration for a given domain average rainfall rate, and 

the warming associated with the subsidence may contribute toward increasing CIN much 

more quickly than would otherwise be the case, thus leading to a tighter coupling 

between rainfall and CIN.  The other possibility relates to an exaggerated cooling effect 

in the lowest levels of the model due to cold pool activity.  This also amounts to a spatial 

scaling argument, in that the limited, periodic domain of the CRM doesn’t permit 
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propagation of cold pools beyond the extent of the grid box, and thus the cooling effects 

of cold pools are proportioned among the limited number of cells existing in the domain.  

This also could result in CIN being in phase with rainfall.  The same argument pertaining 

to the inability for cold pools to exit the restricted 2D domain of the CRM may lead to an 

exaggeration of CPKE for all rainfall rates as well.  This hypothesis would be consistent 

with the strong spike in CPKE at less intense rainfall rates in Fig. 4.8, relative to that 

which is depicted in the observations panel.    

CIN and CPKE are shown as a function of rainfall rate in Fig. 4.9.  The rapid 

increase of CIN with respect to rainfall rate and elevated CPKE (particularly for low 

rainfall rates) in the MMF is illustrated in the top right panel, reflective of the tight 

coupling between rainfall, CPKE and CIN. Visually averaging out the noise (evident at 

 
Figure 4.9.  Observed and MMF average instantaneous relations between CIN, 
CPKE and rainfall. 
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higher rainfall rates) in the QuikSCAT CPKE curve leads to a functional relationship 

between rainfall and CPKE that is similar to that which is portrayed in the MMF panel.  

The weaker coupling between CIN and rainfall is gathered from the observational (top 

left panel) perspective.  The conceptual summary between the observations and MMF is 

the same, however – that is, non-raining scenes are characterized by CIN overwhelming 

CPKE, while significant rainfall occurs in conditions where CPKE approaches the 

magnitude of CIN.      

Regardless of the mechanism that may contribute most significantly to a tightly 

coupled relationship between rainfall, CIN and CPKE, the smaller MMF CIN / CPKE 

ratio, evident throughout the entire bottom right panel of Fig. 4.8, implies that rainfall 

should be more widespread than in the observations.  In other words, rainfall may both 

develop more easily in the MMF, and decay at a slower rate.  This is indeed the case in 

the MMF rainfall panel of Fig. 4.8, and consistent with prior results discussed above 

noting that the MMF generally produces more rainfall than satellite observations show.  

 

4.5  Conclusions 

 TRMM observations of tropical precipitation and raining cloud distributions are 

compared to collections of clouds derived from two-dimensional, periodic CRMs 

embedded in the large-scale grid boxes of the CAM.  The MMF simulation used in this 

study is unique in that the atmospheric model is coupled to a simple mixed-layer ocean 

model permitting interaction between SSTs and lower-atmosphere energy fluxes.  A more 

realistic treatment of the coupling between the ocean surface and lower atmosphere, and 

the use of a CRM in substitution of traditional convective and cloud parameterizations, 
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provides for a simulation of tropical convection superior to that of most parameterized 

GCMs, thus motivating the development of a new test-bed for comparing state-of-the-art 

GCM precipitating convection to multi-sensor observations of rainfall. 

 It is found that observed precipitation clusters, defined and interpreted according to 

TRMM PR distributions of echo-top heights and diabatic heating over a spatial scale 

similar to that of the GCM, are largely reproduced in the current SP-CAM after accounting 

for vertical resolution effects on cloud distribution derivations, and limitations in the PR 

product pertaining to capturing the correct distribution of shallow, lightly raining clouds.  

The three precipitation clusters that emerge are representative of shallow precipitation 

regimes (ensemble of clouds whose tops peak below the freezing level), unorganized deep 

convection regimes (deep clouds exist in the distributions, but less extensive upper level 

heating may indicate a lack of organization associated with the regime) and organized 

regimes (numerous deep and shallow clouds, and extensive heating above the freezing 

level).  The overall contribution to the mean state of rainfall in the MMF by each cluster 

includes increased (decreased) volumetric accumulation by organized convective (shallow) 

regimes, relative to the PR depiction.  These regimes may be responsible for the high-

biased mean rainfall state that exists in the MMF.  Surprisingly, despite the 4 km horizontal 

resolution of the CRM, within the shallow regime itself, raining cloud distributions and 

rainfall rates are comparable to PR results.   

Bimodality in raining cloud distributions is a characteristic result of the two deepest 

TRMM clusters.  While the MMF representation of the deepest regime hints at the 

existence of a bimodal distribution of raining clouds, despite the decreased amplitude of the 

peaks relative to TRMM, the cloud distributions are largely unimodal.  It is argued that this 
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representation may be the result of the coarse CRM vertical resolution.  The ability to 

simulate these distributions would require increased resolution, particularly near the 

freezing level. 

Precipitation clusters are reasonably well separated in a state space defined by 

saturation fraction and CPKE.  A deeper rainfall cluster can occur at a lower saturation 

fraction given sufficient cold pool activity.  Physically, it is suggested that this occurs 

because larger areas of rising motion constituting ensembles of clouds occur in association 

with increased cold pool activity.  This may be equated to an increase in size of convective 

plumes; thus, clouds may be more resistant to the detrimental effects of dry air entrainment.  

Even in the coarse-resolution CRM used here, similar behavior seems to be occurring.   

A significant percentage of observed rainfall accumulation (roughly 30-40%) takes 

place during time intervals characterized by substantial decreases in CAPE.  The MMF 

simulates this characteristic of non-equilibrium convection behavior quite well, likely in 

contrast to GCMs utilizing traditional convective parameterizations that assume quasi-

equilibrium behavior between consumption of CAPE by convection and increases due to 

all non-convective processes. 

In Chapter 3, rapid increases in rainfall were posited to occur when the kinetic 

energy associated with cold pools (CPKE) approached the magnitude of inhibition energy 

(CIN).  In that component of this dissertation, rainfall, CPKE and CIN were all derived 

through use of satellites and radiosondes.  The same conceptual framework was used to 

understand the pick-up of tropical rainfall that occurs in the MMF.  In observations, CIN 

peaked after the period of maximum rainfall and was out of phase with CPKE (which 

peaks during rainfall).  The lag allows for CIN to overwhelm CPKE in a more dramatic 
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manner, serving to cap the time period during which rainfall remains elevated.  In the 

MMF, rainfall, CPKE and CIN are all tightly coupled and in phase, hypothesized to be the 

result of the two-dimensionality and limited domain of the currently embedded CRM.  The 

enhanced coupling of CPKE and CIN, even in light rainfall, means that heavier rainfall 

may be more quick to develop and slower to end than would otherwise be the case in a 

larger-domain CRM or three-dimensional CRM configuration.  It was proposed that this 

contributes to a lengthening of the time scale during which rainfall remains elevated, and 

may assist in explaining why heavier rainfall seems to last longer in the MMF relative to 

the satellite depiction, and may play some role in why the mean rainfall state in the MMF is 

biased high relative to observations.    
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CHAPTER 5 

 
 

RAINING CLOUD POPULATIONS AND THEIR EVOLUTION DURING 

MADDEN-JULIAN OSCILLATION CONVECTIVE INITIATION IN THE WEST 

INDIAN OCEAN 

 

 

5.1  Introduction 

The initial discovery and findings of Madden and Julian (1971; 1972) have paved 

the way for almost four decades of research into the characteristics of the slow, eastward-

propagating tropical disturbance commonly referred to as the Madden-Julian Oscillation 

(MJO).  The MJO, while recognized as the foremost low-frequency mode of tropical 

intraseasonal variability influencing a wide range of global climate phenomena (e.g. Lau 

et al. 1989; Webster et al. 1998; Maloney and Hartmann 2000; Lawrence and Webster 

2001; Maloney and Hartmann 2001; Zhang 2005), continues to be poorly simulated in 

contemporary global climate models (Lin et al. 2006; Kim et al. 2009).  Thus, in tailoring 

a coherent picture of the MJO from deep convective initiation in the western Indian 

Ocean to termination near the dateline, continued extensive studies pertaining to the 

governing physics of the MJO (e.g. Majda and Stechmann 2009; Majda and Stechmann 

2011), depiction in observations (e.g. Masunaga et al. 2006; Benedict and Randall 2007; 

Masunaga 2007; Tromeur and Rossow 2010) and representation in advanced climate 
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models (Benedict and Randall 2009; Thayer-Calder and Randall 2009; Benedict and 

Randall 2011) are warranted. 

General deficiencies in MJO simulation aside, specific studies have shown that 

many models demonstrate the least amount of skill in forecasting the MJO during its 

initiation in the western Indian Ocean (Kim et al. 2009).  This implies certain physical 

processes may be more relevant during the development of deep convection in the initial 

stages of the MJO than during convective development over more eastern longitudes in 

association with an already developed, propagating MJO event.  While fundamentally 

related, two general components of the MJO problem thus arise: one aspect pertaining to 

propagation of large-scale, well defined convective envelopes, and another related to the 

first appearance of deep convection on MJO spatial scales.  

The latter component of this problem is now attracting significant interest, 

corroborated by a recent international proposal (CINDY2011/DYNAMO1) to observe 

detailed cloud populations and environmental evolution during the initiation stages of an 

MJO event in the Indian Ocean.  This expansive field campaign will consist of numerous 

in situ observations and high-resolution modeling studies to gain an increased 

understanding of the nature of convection at this stage in the MJO lifecycle.  The Indian 

Ocean has long suffered from a lack of observations, hindering the development of a 

conceptual picture of convection and relation to the MJO in this remote ocean basin; 

hence, the motivation for a comprehensive campaign such as CINDY2011/DYNAMO.      

                                                
1 Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 
(CINDY2011); Dynamics of the Madden-Julian Oscillation (DYNAMO) is the U.S. 
counterpart. 
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The characteristics of convection up to and through the initiation of the MJO will 

be intimately tied to the environment in which cloud development is taking place.  The 

time tendency of environmental parameters favoring the development of deeper 

convection (increased moisture, for instance) can be influenced by processes deemed 

either local to the environment (e.g. evaporation) or external to the basin (e.g. wind shear 

or moisture transport in association with traveling waves originating outside of the ocean 

basin).  Examples of various internal and external processes can be found in Jones and 

Weare (1996), Blade and Hartmann (1993), Stephens et al. (2004), Matthews (2008), Ray 

et al. (2009), and Ray et al. (2011).  There is no a priori reason to expect that local 

processes have a monopoly on MJO convection initiation relative to external ones (or 

vice versa).  Given the numerous initiation mechanisms explored in the literature, both 

internal and external factors are expected to play a role.  Irrespective of the convective 

initiation process, the desire to document cloud populations and their evolution at this 

stage of the MJO remains. 

 The current lack of quantified cloud populations at this stage motivates the crux 

of this work, which aims to determine specific raining cloud populations and their 

evolution during Indian Ocean MJO initiation.  The depiction that emerges is a product of 

a combined analysis of TRMM PR observations and output from a state-of-the-art 

climate model (SP-CAM coupled with a slab-ocean model, described in Benedict and 

Randall (2011); hereafter, often referred to as the MMF) that has been shown to simulate 

MJO variability with a realism typically unachieved from a climate model perspective.  

This cooperative effort will consist of detailing the evolution (during MJO initiation) of 

recently derived, often-occurring TRMM PR and MMF precipitation clusters (Chapters 2 
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and 4 of this dissertation), largely interpreted according to their constituent raining cloud 

populations.  In this way, cloud population evolutions are implicitly described.  The 

evolution of environmental parameters will be discussed as well, in order to 1) 

understand the background conditions fostering particular cluster occurrences, and 2) to 

document the prominent moistening processes responsible for the long-term increase in 

column water vapor prior to final convective initiation in the Indian Ocean.   

Each precipitation cluster is robustly described by a unique heating profile that is 

observed to be similar in the tropics regardless of where the cluster is observed (Chapters 

2 and 4 of this dissertation); therefore, the relative frequency of occurrence (RFO) of 

each cluster during MJO initiation strongly relates to the diabatic heating as a function of 

height, providing more useful information beyond that which would be available from a 

rainfall-only analysis.  The analysis, while geared toward the MJO initiation problem, 

will also consist of quantifying raining cloud populations for locations experiencing 

growth of convection due to an already eastward-propagating MJO-event convective 

envelope.  This additional analysis is performed so that the evolution of convection 

within the context of MJO initiation can be easily contrasted with the evolution that 

occurs in association with an already present large-scale convection anomaly (i.e. the 

propagation problem). 

 

5.2  Data and Methodology 

 The CMORPH product and measurements from TRMM PR serve as the basis for 

rainfall and precipitation cluster characterization.  Model precipitation clusters and all 

background parameters are derived from fields produced by an MMF simulation discussed 
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in Chapter 4.  CMORPH, TRMM PR and the particular MMF configuration employed are 

all discussed at length in Chapters 2 and 4. 

 The environment in which TRMM precipitation clusters are evolving is entirely 

characterized by output from the Modern-Era Retrospective Analysis for Research and 

Applications (MERRA; Rienecker et al. 2011), available online through the NASA 

Goddard Earth Sciences Data and Information Services Center (GES DISC).  The grid 

resolution for MERRA consists of a 0.50° latitude x 0.67° longitude horizontal mesh with 

72 vertical levels of varying pressure thicknesses extending from the surface to 0.01 mb.  

Like other reanalysis products, the MERRA project involves assimilating multi-satellite 

retrievals of water and energy parameters, thus retaining a strong connection to Earth-

atmosphere satellite observations that now comprise time series extending beyond 30 years.  

However, a unique aspect of this reanalysis project involves quantifying (and making 

available as an output parameter) the effect observations have on the temporal evolution of 

the atmosphere.  This time tendency term is referred to as an “analysis increment” and 

because it is always quantified and provided, all budget equations for water and energy are 

exactly satisfied.  The magnitude of the analysis increment does, to a large extent, relate to 

deficiencies in the physics of the model.  Since the model state is forced to follow (at least 

reasonably so) the observed state in time, the analysis increment magnitude indicates the 

extent to which the physical terms of the prognostic equations are not providing the forcing 

necessary to evolve the state in a manner consistent with the observations.  To this end, the 

analysis increment term can be used to quantify particular model shortcomings.  Further 

details on MERRA alongside general mean-state depictions can be found in Rienecker et 

al. (2008), Bosilovich et al. (2011) and Rienecker et al. (2011).  
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 In both the observations (CMORPH) and MMF, MJO events are isolated by 

spectrally analyzing rainfall fields (averaged to ~2.5° spatial and 1-day temporal 

resolution).  First, for each location, the first three harmonics of the annual cycle (periods 

of a quarter, one-half and one year) are removed from the rainfall time series (Jan 2003 – 

Jan 2008 for observations; Sept 1999 – Sept 2004 for the MMF).  The mean and linear 

components in time are then subtracted from each sequence, and the beginning and ends of 

each series are tapered to zero.  Two-dimensional Fast Fourier Transform (FFT) is then 

applied to each latitudinal band (an array of time versus longitude) from 15°S – 15°N to 

obtain a frequency-wavenumber representation of the domain.  MJO filtering proceeds by 

retaining frequencies and wavenumbers bounded by a rectangular domain comprising 

periods of 30 – 96 days and 1 – 5 in zonal wavenumber, as in Wheeler and Kiladis (1999).  

The filtered field is finally transformed back to a space defined by time and longitude.   

Following a methodology similar to that of Masunaga (2007), all latitudinal bands 

are re-assembled to construct a three-dimensional (time, latitude and longitude) portrayal of 

MJO filtered rainfall anomalies.  Propagating rainfall anomalies now have both a 

meridional and latitudinal structure.  In this manner, convective anomalies are traced in 

time and all future composites of any variable are derived with respect to the latitude and 

longitude location of the MJO anomaly as opposed to indiscriminately computing an 

average over all latitudes from 15°S – 15°N (and essentially, neglecting the latitudinal 

location of the maximum in MJO filtered rainfall).  The decision to track MJO events in 

this manner seems particularly useful for the initiation problem.  Whereas anomalies in 

convection may extend over 10-20° in latitudinal extent as a well developed MJO event 

propagates eastward, convective development at MJO initiation in the West Indian Ocean 
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may only occur over limited latitudinal spatial extents.  Therefore, it seems most reasonable 

to composite parameters with respect to those same limited locations, as opposed to 

computing a 15°S – 15°N meridionally-averaged parameter and investigating that temporal 

composite during MJO initiation. 

Regarding MJO event diagnosis, a rectangular domain for MJO initiation is now 

defined for the West Indian Ocean.  Meridionally, it extends from 15°S – 15°N latitude and 

zonally, from 40° – 90° E longitude.  Considering this domain only, the latitude and 

longitude of MJO initiation is defined according to the innermost location of the first 

appearance of a spatial envelope consisting of filtered rainfall anomalies exceeding a 

threshold of 1.5σ.  The area of anomalies surpassing this threshold is often small during 

initiation.  As time proceeds and an event propagates eastward, the spatial extent of 

anomalies exceeding this magnitude often increases.  Event termination occurs when any 

rainfall anomaly fails to exceed the 1.5σ threshold; the time, latitude and longitude are then 

stored to mark the termination location.  The same technique is applied to the MMF for 

MJO event identification.   

A schematic of this identification procedure is shown in Fig. 5.1.  As discussed, the 

actual methodology isolates events in a latitude/longitude domain.  Here, to facilitate 

visualization, identification is shown in a meridional/time domain.  In the bottom left 

Hovmöller diagram, MJO events are enclosed by black oval-shaped contours; event 

initiations (terminations) are denoted by the western-most (eastern-most) locations of the 

contours.  As expected, most events appear to initiate near 60° E longitude.  An event is 

then projected onto a two-dimensional panel as illustrated in the figure (where, again, it is 

understood that the initiation, midpoint and termination represent latitude locations in  
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addition to longitude/time).  All MJO events having a longitudinal separation between 

initiation and termination exceeding 20° are averaged to form a composite depiction of the 

MJO cycle (amounting to a total of 23 and 17 events in the observations and MMF, 

respectively).  Elaborating on the bottom right panel in Fig. 5.1, the x-axis represents the 

life-cycle stage of the composite event as a whole.  For each stage, pentad-smoothed 

composites of unfiltered rainfall, precipitation clusters (SHAL, UNORG and ORG), 

integrated water vapor (TPW), integrated moisture convergence (TPWTRANS), 

evaporation minus precipitation (E-P) and lower-troposphere temperature lapse rates are 

 
Figure 5.1.  A schematic of MJO event identification and compositing methodology.  
In this example, a composite event, denoted by the oval in the bottom right panel, 
would represent an average of all events outlined (and meeting certain criteria, as 
detailed in the text) in the bottom left panel.  
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constructed for a ± 20-day period temporally-lagged with respect to the centered (in time) 

location of a propagating, MJO-filtered rainfall anomaly exceeding 1.5σ.   

 

5.3  Composite Results  

5.3.1  Rainfall and Raining Cloud Populations  

 Composites of rainfall are shown in 

Fig. 5.2.  The top three panels portray three 

different observations-based rainfall 

composites.  CMORPH rainfall is considered 

the primary benchmark from the observational 

perspective.  This characterization stems from 

the sole reliance on multi-satellite 

observations.  Moreover, because of how 

constituent satellite measurements are 

synthesized in CMORPH, a three-hourly 

temporal resolution is achieved.  Therefore, 

observed composites of CMORPH rainfall are 

expected to be most representative of the 

mean rainfall state in this portrayal, given that 

each MJO event is consistently and equally 

sampled. 

 TRMM PR rainfall is shown in the top panel of Fig. 5.2.  Owing to the non-sun-

synchronous orbit of TRMM, any given location experiences a sparse revisit time.  To this 

 
Figure 5.2.  Temporal evolution 
of rainfall as a function of the 
MJO lifecycle stage.  
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end, the mean state of TRMM PR rainfall for each day lag and lifecycle stage of the MJO 

could appear drastically different from the view provided by CMORPH.  However, a visual 

inspection of the TRMM PR and CMORPH rainfall panels highlights at least reasonable 

pattern agreement between the two depictions (e.g. less rainfall for all time lags during the 

initiation stage, increasing rainfall for all stages at -15 days, etc.).  Hence, while sampling 

issues play some role, it is expected that the precipitation clusters extracted from the mean 

PR rainfall state are reasonably representative of those that occur for any given lifecycle 

stage and day lag.  MERRA depicts elevated rainfall with respect to both TRMM and 

CMORPH (discussed in a bit more detail later), particularly for all day lags during 

initiation and at ± 20 days for all other stages.  Qualitatively, quite a bit of agreement can 

be seen when comparing the MMF panel to CMORPH.   

 In general, the maximum rainfall occurs near the midpoint (denoted as Midpt) of 

the MJO event, consistent for all observational and model depictions.  While a particular 

longitude cannot be associated with the midpoint, it often occurs eastward of the central 

Indian Ocean.  In order to cast these results within the context of a few prior studies, 

consider now a vertical transect extending from -35 to +35 days anchored to the midpoint 

in each panel.  The composites of rainfall (or any parameter) along this vertical slice are 

expected to be most comparable to temporal evolutions shown in studies that calculate 

composites with respect to minimum OLR or MJO maximum rainfall (e.g. Benedict and 

Randall 2007).   
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By definition, precipitation clusters are characterized by raining cloud populations 

and vertical heating profiles; as such, quantifying the evolution of precipitation clusters 

amounts to tracing the evolution of raining cloud populations as a function of time.  The 

evolving relative frequencies of occurrence (RFO) for each precipitation cluster (and a non-

raining scene) are shown in Fig. 5.3.  For all MJO lifecycle stages, the RFO of non-raining 

scenes decreases to a minimum near day 0.  As discussed in Chapters 2 and 4, the SHAL 

cluster consists of numerous raining clouds with tops below the freezing level.  

 
Figure 5.3.  Temporal evolution of TRMM PR and MMF nonraining scenes 
and precipitation clusters as a function of the MJO lifecycle stage.   
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Interestingly, there is a near constant background of shallow raining clouds, irrespective of 

the temporal lag.  There are variations with respect to lifecycle stage – likely reflective of 

mean state differences one would experience in traveling from the West Indian to Pacific 

Ocean basins – but, the pattern of the SHAL cluster RFOs does not reflect that of rainfall in 

Fig. 5.2.  The UNORG clusters, mostly consisting of congestus and numerous deep clouds 

(likely not organized into mesoscale convective systems (MCSs), however), peaks at day 0.  

The ORG cluster (likely reflective of MCSs) is rare during the initiation stage until about 

±5 days of day 0.   

 The interpretation of these results is as follows.  There are always similar 

populations of shallow raining clouds around, independent of the day lag.  This is 

particularly evident in the observations.  Considering an alternate point of view, it would 

appear that there are greater numbers of shallow raining clouds present at ± 20 days only if 

one would compute the RFO without consideration of non-raining scenes.  In considering 

them, however, as time progresses toward day 0, the “empty” non-raining space becomes 

filled with deeper clouds and eventually, organized rainfall systems.  Thus, it could be said 

that there is not necessarily a transition from shallow raining clouds to deeper systems since 

SHAL clusters are prevalent at all day lags.  Instead there is an addition of deeper clouds 

and organized systems (i.e. UNORG and ORG clusters), taking up the space formerly 

occupied by non-raining scenes.  In effect, there is a modulation of non-raining and deeper 

precipitation clusters, and less variation in the SHAL cluster.  This is the case for initiation 

and most other stages of the composite MJO event. 

In comparing initiation to other stages of the MJO lifecycle, note that if one were to 

compute RFO anomalies for each cluster, similar evolutions would be portrayed.  The 



 100 

differences are really in the mean state depictions of the cluster occurrences.  For instance, 

during the initiation stage in both the observations and MMF, it is not uncommon for 

several weeks to pass before the ORG cluster is observed.  In other stages, it is observed 

more frequently as one approaches day 0, but nonetheless, it is observed at all time lags.  In 

summary, during initiation, the SHAL cluster and non-raining scene characterize most of 

the variation.  Over time, populations of congestus and unorganized deeper raining clouds 

increase, with a few organized deep convective systems occurring within ~5 days of day 0 

(slightly more frequently in the MMF).  Possible reasons for the lack of deeper clusters 

during initiation are highlighted below as variations in the background parameters are 

incorporated into the discussion. 

 

5.3.2  Column-Integrated Water Vapor and Time Tendency     

 The evolution of TPW is shown in Fig. 5.4.  MERRA and the MMF are in good 

 
Figure 5.4.  MERRA and MMF TPW temporal evolution as a function of 
MJO lifecycle stage. 
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agreement.  The TPW anomaly is shown in the bottom two panels of the figure.  While the 

mean states are different between initiation and other stages (significantly less TPW at all 

time lags during initiation), the anomalies in TPW are similar.  This result is not unique to 

TPW only; anomalies in parameters are often similar during initiation and other stages of 

the composite MJO lifecycle.  The slow increase in TPW commences at -20 days and 

continues until day 0.  The budget equation for TPW can be written as  
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Temporal changes in TPW are driven by integrated moisture convergence (hereafter, 

referred to as TPWTRANS), evaporation (E) and rainfall (P).  As discussed earlier, the 

analysis increment term in MERRA – a tendency term representing the influence of 

observations on the state evolution – is added to the prognostic equations and in this case, 

ensures that TPW follows a series of states closer to observations than may otherwise 

occur.  The addition of this term, unique to MERRA, ensures that Eq. 5.1 is exactly 

satisfied for the reanalysis product. 



 102 

 TPWTRANS is shown in the top panels of Fig. 5.5.  Of significance is the stage-

dependent role that moisture convergence serves in the time tendency of TPW.  During 

initiation, TPWTRANS is mostly negative (particularly in the MMF) or weakly positive.  

During later stages of the composite MJO event, TPWTRANS serves as a major 

contributor for increasing TPW (consistent with studies such as Maloney and Hartmann 

1998).  Assessing the height dependent components of TPWTRANS, horizontal moisture 

convergence vertical profiles (MCONV) are shown in the bottom panels.  This portrayal 

represents the lifecycle stage and height variation along the horizontal slice (black line 

anchored to day 0) overlain in the top two panels of Fig. 5.5.  When TPWTRANS is 

positive during initiation, the area of positive MCONV is quite shallow, as highlighted by 

the black boxes centered on initiation in the bottom panels.  Recall the increased population 

 
Figure 5.5.  Temporal evolution of column-integrated moisture convergence in 
the top two panels as a function of MJO lifecycle stage.  Moisture convergence as 
a function of altitude for each stage is illustrated in the bottom two panels.   
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of congestus (and a few deep) clouds shown in Fig. 5.3 at day 0 during the initiation stage.  

Given this shallow MCONV, it is reasonable to think that congestus and shallower clouds 

are responsible for the moisture convergence, a process unique to initiation.  Deep 

MCONV (extending up to 600 mb) is shown for all other stages at day 0.  Interestingly 

though, it is particularly strong in the lowest levels of the atmosphere (below 850-900 mb), 

perhaps indicative of the continued role often-present shallow raining clouds play in 

moistening the environment from a convergence perspective.   

 E – P is illustrated in Fig. 5.6.  The results for MERRA are markedly different from 

that which is portrayed in the MMF.  Prior to the development of the most intense rainfall 

observed during the initiation period (day 0), the MMF shows positive E – P for virtually 

all day lags  (-35 to -5 days, for example) while in MERRA, net evaporation is only 

depicted from approximately -25 to -15 days.  In a global sense, both MERRA rainfall and 

ocean evaporation have been shown to more closely resemble available observational data 

sets than a number of other reanalysis products, although positive biases in tropical rainfall 

 
Figure 5.6.  Temporal evolution of evaporation minus rainfall (E – P) for each MJO 
lifecycle stage.  MERRA-only terms are depicted in the far left panel, while 
CMORPH rainfall is used in substitution of MERRA rainfall in the center panel.   
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continue to be documented (Bosilovich et al. 2011).  That MERRA yields enhanced rainfall 

relative to CMORPH (Fig. 5.2) and thus, decreased E – P, is not particularly surprising 

considering the prior study cited.   

Retaining MERRA evaporation 

but using CMORPH in substitution of 

MERRA rainfall instead, the new E – P 

calculations are shown in the middle panel 

of Fig. 5.6.  While not implying that MMF 

E – P is the final benchmark to strive for, 

the portrayals are now much more 

consistent.  During initiation, evaporation 

is most important for virtually all day lags, 

and contributes largely to the positive time 

tendency in TPW.  The difference in 

rainfall (MERRA – CMORPH) is, for 

most stages and lags, positive as shown in 

Fig. 5.7.  The MERRA analysis increment 

term for TPW (Eq. 5.1) is shown in the 

middle panel of Fig. 5.7.  Moreover, in 

addition to the extensive positive 

differences in rainfall, the tendency in 

water vapor due to the analysis increment is positive.  In other words, an additional 

moistening (independent of physics) is almost always necessary in the MMF, in part 

 
Figure 5.7.  MERRA minus 
CMORPH rainfall is illustrated in 
the top panel.  The MERRA column-
integrated analysis increment term 
for water vapor is shown in the 
middle panel.  A scatterplot of 
MERRA rainfall versus CMORPH 
rainfall is shown in the bottom panel 
(black), while the red dots denote the 
comparison for MERRA rainfall 
“corrected” with the analysis 
increment term. 
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because there is too much depletion due to rainfall (as evidenced in the top panel of Fig. 

5.7).  In an approximate sense then, 
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where P is MERRA rainfall as in Eq. 5.1.  In effect, modifying MERRA rainfall by 

subtracting the analysis increment term brings the new estimate of MERRA rainfall closer 

to that of CMORPH, as shown in the bottom-most scatter plot panel of Fig. 5.7.  There is 

reason to suspect then that the E – P composite (using MERRA for E, and CMORPH for P 

in the center panel of Fig. 5.6) may be more realistic than the E – P composite obtained 

through use of MERRA terms only.    

 Synthesizing all components of the integrated water budget, there is a fairly 

consistent picture between observations-based reanalysis and MMF output regarding the 

processes that increase TPW from days -20 to 0 during initiation and other lifecycle stages 

of the MJO.  During initiation, the process of evaporation moistens the environment (Fig. 

5.6) in the presence of raining congestus (and shallower) clouds.  There is a contribution by 

moisture convergence near a day lag of 0, but it appears to be shallow (Fig. 5.5) and 

therefore, it is reasonable to assume that these same shallower (SHAL, UNORG) clusters 

are largely responsible for this increase.  Once the MJO event has developed, there is a 

role-reversal in moistening processes.  Comparable increases in TPW now occur largely 

due to deep moisture convergence (Fig. 5.5), while depletion of TPW by precipitation now 

overwhelms the increase by evaporation (i.e. more expansive areas of negative E – P in 

Fig. 5.6). 

 The view presented highlights the MJO lifecycle-dependent role in moistening 

processes.  The extended period (over 20 days) of SHAL clusters unaccompanied by 
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organized deep convection allows for a slow, consistent buildup of TPW during initiation.  

If additional organized systems were present, then further increases in TPW might be 

limited due to the increase in area-average rainfall.   

 

5.3.3  Lower-Troposphere Temperature Lapse Rates  

The lack of deep convection during most day lags of the initiation stage is an 

interesting problem.  In Chapters 3 and 4, it was posited that deep rainfall (associated with 

the UNORG and ORG clusters) was very dependent on moisture as well as convective 

inhibition (CIN) in relation to cold pool activity.  Conceptually, cold pools may assist in the 

development of deeper rainfall by a dynamic mechanism that involves lifting of surface air 

beyond a slightly more stable lower-troposphere (characterized by increased temperature 

lapse rates).  Increased lapse rates would be proportional to the magnitude of CIN in those 

chapters.   

 The lower-troposphere lapse rates (750 – 900 mb) are shown for MERRA and the 

MMF in Fig. 5.8.  Relative to all stages in the lifecycle of the MJO, the permanent presence 

of increased lapse rates is a noteworthy signature of the initiation period.  Decreased 

magnitudes of TPW (Fig. 5.4) in association with increased lapse rates (i.e. increased CIN) 

may both be responsible for the continued presence of the SHAL clusters as shown in Fig. 

5.3, and may prevent the widespread development of UNORG and ORG clusters in the 

observations and MMF during the initiation period.  In return, this allows for a continued 

increase in TPW over a long time scale.  If the stable layer was weaker during the initiation 

stage, then perhaps UNORG and ORG clusters would develop more quickly and rainfall 

would be enhanced sooner than otherwise would occur, thus shortening the time-scale of 
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moistening as E – P would go negative.  The vertical extent of the moisture convergence 

couplet (positive moisture convergence below 900 mb; negative up to 750 mb) highlighted 

by the black boxes in Fig. 5.5 is consistent with the location of the stronger stable layer, 

such that much of the moisture transport occurs beneath the layer in association with 

shallow and congestus raining clouds.  

 

5.4  Conclusions  

Temporal evolutions of rainfall, raining cloud populations, TPW, moisture 

convergence, E – P and lower-troposphere temperature lapse rates are derived for each 

stage of a composite MJO event.  The composite event typically initiates in the West Indian 

Ocean and terminates near the dateline.  For each stage of the MJO (defined according to 

the centered position of the convective envelope traveling from the Indian to Pacific Ocean 

basin), the derived temporal composites are illustrated and compared with the purpose of 

determining to what extent the atmosphere evolves in a similar manner independent of the 

MJO event stage.   

 
Figure 5.8.  Temporal evolution of lower-troposphere temperature lapse rates as a 
function of MJO lifecycle stage. 
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To a large extent, the composite event is indicative of a situation in which non-

raining scenes, congestus (> 5 km) clouds and collections of both unorganized deep and 

organized deep convective cloud ensembles are modulated in frequency for all stages of the 

composite event.  In contrast, populations of shallow raining clouds (2 – 4 km in depth) are 

often prevalent, independent of the lifecycle stage and time lag considered.  Therefore, 

instead of considering a conceptual view that entails a transition from shallow rain to 

deeper systems as the convectively active phase of the MJO approaches, the results suggest 

that the numbers of deep clouds and organized systems increase at the expense of non-

raining scenes.  Instead of a transition from shallow to deep, results suggest an addition of 

deep clouds.  This finding is consistent for all stages of the MJO.  Because there is not 

necessarily a transition from shallow raining systems to deeper ones, the low-level cooling 

and drying that is often associated with deeper systems – thus stabilizing the environment – 

could be offset by a constant presence of shallow raining clouds serving to moisten and 

heat the lowest levels of the atmosphere.  In this way, deep convection may not shut off as 

quickly.  In a conceptual view that involves a transition from shallow to deep, this would 

not be feasible.    

With respect to the initiation stage of the MJO event relative to others, the shallow 

raining cloud populations remain constant and as time proceeds, progressively-deeper 

congestus are observed along with an addition of a few organized deep systems.  However, 

most of the initiation stage passes without the occurrence of the deepest precipitation 

cluster.  A similar view is presented in the MMF, although there is some indication that the 

deepest organized precipitation cluster occurs a bit more frequently.  With respect to the 

other stages of the composite event, similar transitions in raining cloud populations occur; 
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however, organized systems are much more prevalent at all times, even during the 

“suppressed” phase of the MJO.   

For all stages of lifecycle, while the absolute mean-state magnitudes of TPW are 

different, similar increases in TPW occur as time tends toward the period of stage-

dependent maximum rainfall (Day Lag 0).  However, during initiation, the multi-week 

increase in TPW is mostly the result of evaporation exceeding precipitation.  Eventually, as 

Day 0 is approached, positive moisture convergence is observed; however, it takes place 

over a shallow layer depth (observed mostly below 850 – 900 mb).  Evaporation and 

moisture convergence switch roles during the more developed stages of the MJO event.  As 

the MJO event propagates eastward, evaporation exceeds precipitation only at lags of -15 

to -25 days.  During this same period, moisture convergence deepens and grows 

increasingly positive and serves to continue increasing TPW up to Day 0. 

The lack of deep systems during initiation, from the TRMM perspective 

particularly, is striking.  In addition to decreased TPW, a particularly strong stable layer is 

observed from 750 – 900 mb, perhaps limiting the extent to which heavy rainfall can 

develop.  Both factors could plausibly limit the development of deep precipitation clusters.  

The delay in the development of deep clusters and associated heavy rainfall during 

initiation is important as it allows for the unfettered growth in TPW, largely through the 

slow process of evaporation and later, shallow moisture convergence.  In addition to this 

satellite and MMF perspective, in situ data collected during the CINDY2011/DYNAMO 

campaign is expected to significantly contribute to the quantification of the raining cloud 

populations most prevalent during the initiation period, and will further assist in the 
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development of a conceptual description of the intraseasonal timescale moistening 

processing operating during this period in the West Indian Ocean. 
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CHAPTER 6 

 
 

CONCLUSIONS 

 

 

The research topics of Chapters 2 – 5 can be broadly grouped into three themes, all 

of which involve incorporating data from multi-sensor observations and output from an 

MMF simulation.   These themes concern: 1) an investigation of the regionally-varying 

mean-state of rainfall in the tropics by extracting and characterizing “building blocks” (i.e. 

collections of raining clouds) of the mean state independently for adjacent ocean basins in 

the tropics; 2) an investigation of the transition from light to heavier rainfall on hourly 

timescales considering all ocean basins as a whole; and 3) an investigation of the evolution 

of rainfall regimes and associated raining cloud populations during the initiation stage of 

the MJO in the West Indian Ocean.  All three themes relate to the goal of understanding 

what types of precipitation systems contribute to regional rainfall characteristics, and what 

parameters (able to be both derived utilizing currently-existing observational platforms and 

simulated through use of an MMF configuration) serve to influence the transition from 

light rainfall systems to deeper ones over varying timescales. 

Specifically, in Chapter 2, radar data from TRMM PR are used in a clustering 

algorithm that classifies precipitation regimes based on the ensemble of precipitating 

clouds present at a given time over a specified grid-size similar to that of a GCM grid cell.  
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Three similar precipitation clusters emerge consistently within each ocean basin, the 

characteristics of which are largely independent of the basin under investigation.  The three 

precipitation clusters consist of shallower raining clouds (ensemble of clouds whose tops 

peak below the freezing level), unorganized deep convection (deep clouds exist in the 

distributions, but less extensive upper level heating may indicate a lack of organization 

associated with the regime) and organized convection (numerous deep and shallow clouds, 

and extensive heating above the freezing level).  The distributions of raining cloud top 

heights at a 1 – 2° spatial scale are bimodal in the deepest clusters, signifying a population 

of shallow and congestus clouds in close proximity to deeper convective clouds.  This is 

consistent for all basins; therefore, it can be used as a benchmark for convective 

parameterizations that strive to first represent appropriate ensembles of convective clouds 

and then to accurately represent their interaction with the environment.   

Future work should include an investigation into the mechanisms responsible for bi-

modality in the raining cloud populations at the 1 – 2° spatial scale, as well as 

quantification of transport and source terms affecting global water and energy budgets that 

are likely influenced by the presence of a particular precipitation cluster. 

Each cluster discussed in Chapter 2 is associated with substantially different surface 

rainfall rates.  This motivates an investigation of what (observable) mechanisms delineate 

weaker rainfall states from heavier ones, and over what timescales lightly raining cloud 

populations transition to heavier ones.  This is the subject of Chapter 3.  The incorporation 

of the CMORPH rainfall product allows for rainfall evolution to be studied on hourly 

timescales.  Key radiosonde-based parameters such as saturation fraction, CAPE and CIN 

are discussed.  Generally, CAPE and periods of decreased CIN are observed without the 
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development of heavier rainfall.  For more intense rainfall cycles, significant reductions 

(~40%) in CAPE occur, suggesting that on average, periods of heavy rainfall (constituting 

30 – 40% of the total precipitation in the tropics) and associated CAPE consumption are 

not in equilibrium with large-scale CAPE forcing.  These composite results imply that 

heavy rainfall (from a 2° spatial scale perspective) occurs frequently in the absence of 

strong forcing.   

Recent modeling studies have begun to focus on sub-GCM scale processes as they 

relate to strengthening convection.  With this in mind, the role that unresolved cold pool 

activity plays in the transition from light to heavy rainfall (averaged to 2°) is investigated.  

Cold pool activity, for the first time derived from a satellite perspective, is summarized in a 

parameter with energy units (CPKE) and averaged over the same 2° scale.  It is argued that 

the envelope of increased rainfall is marked by the period over which CPKE approaches 

the magnitude of CIN.  Physically, once rainfall has commenced, CPKE increases and is 

considered to be a significant lifting mechanism allowing for boundary layer parcels to 

break through lower troposphere stable layers, thereby promoting the development of 

additional, deeper clouds.  It is hypothesized that even lightly raining clouds can generate 

CPKE; thus, in addition to the moisture preconditioning role shallow raining clouds serve, 

they may also serve as agents for generating CPKE.  The time period over which CPKE is 

of comparable magnitude to CIN also outlines the time during which rapid depletion of 

CAPE occurs.  CIN itself is a function of cold pool activity.  Therefore, as rainfall 

progresses, cold pool activity may have the effect of increasing CIN to such an extent that 

it eventually overwhelms CPKE, thereby leading to a substantial decrease in area-averaged 

rainfall.   
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The extent to which CPKE is influenced by phenomena other than cold pools (e.g. 

strong, organized updrafts influencing surface winds), the relationship between CPKE and 

cloud-base mass flux (for the purposes of convective parameterization) and the degree to 

which shallow raining clouds can influence CPKE are subjects of future modeling and 

observational work.     

In Chapter 4, TRMM precipitation clusters are compared to collections of raining 

clouds derived from an MMF simulation.  The simulation used in this study is unique in 

that the atmospheric model is coupled to a simple mixed-layer ocean model, thus 

allowing for a more realistic interaction between SSTs and lower-atmosphere energy 

fluxes.  It is found that observed precipitation clusters are largely reproduced in the MMF 

after accounting for vertical resolution effects on cloud distribution derivations, and 

limitations in the PR product pertaining to capturing the correct distribution of shallow, 

lightly raining clouds.  In both the observations and especially the MMF, precipitation 

clusters are reasonably well separated in a state space defined by saturation fraction and 

CPKE.  A deeper rainfall cluster can occur at a lower saturation fraction given sufficient 

cold pool activity.  Physically, it is suggested that this occurs because larger areas of rising 

motion constituting ensembles of clouds occur in association with increased cold pool 

activity.  This may be equated to an increase in size of convective plumes; thus, clouds may 

be more resistant to the detrimental effects of dry air entrainment.  Even in the coarse-

resolution CRM used here, similar behavior seems to be occurring.   

The same conceptual framework for understanding the increase in area-averaged 

tropical rainfall, developed in Chapter 3, is applied to the MMF.  Significant increases in 

rainfall are accompanied by substantial decreases in CAPE, consistent with the 
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observations.  The MMF simulates this characteristic of non-equilibrium convection 

behavior quite well, likely in contrast to GCMs utilizing traditional convective 

parameterizations that assume quasi-equilibrium behavior between consumption of CAPE 

by convection and increases due to all non-convective processes.  In observations, CIN 

peaked after the period of maximum rainfall and was out of phase with CPKE (which 

peaks during rainfall).  The lag allows for CIN to overwhelm CPKE in a more dramatic 

manner, serving to cap the time period during which rainfall remains elevated.  In the 

MMF, rainfall, CPKE and CIN are all tightly coupled and in phase, hypothesized to be the 

result of the two-dimensionality and limited domain of the currently embedded CRM.  The 

enhanced coupling of CPKE and CIN, even in light rainfall, means that heavier rainfall 

may be quicker to develop and slower to end than would be the case in a larger-domain 

CRM or three-dimensional CRM configuration.  It was proposed that this contributes to a 

lengthening of the time scale during which rainfall remains elevated in the MMF relative to 

that which is depicted in the observational study.   

Comparing the evolution of rainfall on hourly timescales from observations and the 

MMF to a coarser-resolution, parameterized model is a subject of future research.  

Additionally, the CPKE and CIN relation to 1 – 2° rainfall time tendency will be explored 

in higher-resolution model studies to further assess the mechanism’s ability to explain 

rainfall in a model that sufficiently reproduces the full spectrum of shallow and deep 

raining clouds. 

In Chapter 5, temporal evolutions of rainfall, raining cloud populations, TPW, 

moisture convergence, E – P and lower-troposphere temperature lapse rates are derived for 

each stage of a composite MJO event.  Non-raining scenes, populations of congestus ( > 5 
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km) clouds and collections of both unorganized deep and organized deep convective cloud 

ensembles are modulated in frequency for all stages of the composite event; in contrast, 

populations of shallow raining clouds (2 – 4 km in depth) are often prevalent, independent 

of the lifecycle stage and time lag considered.  Therefore, instead of considering a 

conceptual view that entails a transition from shallow rain to deeper systems as the 

convectively active phase of the MJO approaches, the results indicate that the numbers of 

deep clouds and organized systems increase at the expense of non-raining scenes.  Instead 

of a transition from shallow to deep, there is an addition of deep clouds.  This finding is 

consistent for all stages of the MJO.  Because there is not necessarily a transition from 

shallow raining systems to deeper ones, the low-level cooling and drying that often is 

associated with deeper systems – thus stabilizing the environment – could be offset by a 

constant presence of shallow raining clouds serving to moisten and heat the lowest levels of 

the atmosphere.  In this way, deep convection may not shut off as quickly.  In a conceptual 

view that involves a transition from shallow to deep, this would not be feasible.    

Moistening processes are discussed for the MJO initiation stage.  The ~20 day 

increase in TPW is mostly the result of evaporation exceeding precipitation.  Eventually, as 

Day 0 is approached, positive moisture convergence is observed; however, it takes place 

over a shallow layer depth (observed mostly below 850 – 900 mb).  Evaporation and 

moisture convergence switch roles during the more developed stages of the MJO event.  As 

the MJO event propagates eastward, evaporation exceeds precipitation only at lags of -15 

to -25 days.  During this same period, moisture convergence deepens and grows 

increasingly positive.  During these later stages, moisture convergence serves as the 

dominant mechanism for increasing TPW up to Day 0. 
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The initiation period is characterized by a lack of deep systems.  Along with 

decreased TPW, a particularly strong stable layer (i.e. CIN) is observed from 750 – 900 

mb.  In Chapters 3 and 4, the development of deeper rainfall was related to CIN and CPKE.  

For all time lags during the initiation stage, the joint effects of decreased TPW and 

increased CIN likely place a strong restraint on the development of deep precipitation 

clusters.  The delay in the development of deep clusters and associated heavy rainfall 

during initiation could allow for the continued growth in TPW, largely through the slow 

process of evaporation and later, shallow moisture convergence.  In contrast, if heavy 

rainfall were to develop more quickly, E – P would likely decrease, and the timescale for 

moistening may be shortened. 

A continued investigation of shallow raining clouds, their properties and their 

hypothesized nearly-constant occurrence frequency, independent of MJO lifecycle stage, 

will be performed using multi-year compilations of CloudSat data in conjunction with 

TRMM PR depictions.  The role that CPKE may play in the initial development of the 

deeper precipitation clusters in the drier and more stable atmosphere characteristic of the 

West Indian MJO initiation period, along with a more in-depth investigation of the 

transport and evaporation terms of the moisture budget equation (using other datasets) are 

expected aspects of future work as well.     
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