
CHAPTER 6

Mapping Tasks onto Distributed
Heterogeneous Computing Systems
Using a Genetic Algorithm Approach

MITCHELL D. THEYS

University of Illinois at Chicago

TRACY D. BRAUN, HOWARD JAY SIEGEL, and ANTHONY A. MACIEJEWSKI,

Purdue University

YU-KWONG KWOK

The University of Hong Kong

6.1 INTRODUCTION

Different portions of an application task often require different types of computation.
In general, it is impossible for a single machine architecture with its associated
compiler, operating system, and programming tools to satisfy all the computational
requirements in such an application equally well. One type of heterogeneous
computing (HC) environment consists of a suite of different types ofmachines, high­
speed interconnections, interfaces, operating systems, communication protocols, and
programming environments that provide a variety of architectural capabilities. Such
an HC environment can be orchestrated to perform an application that has diverse
execution requirements [17, 20, 22, 32, 46, 47, 50]. An application task can be
decomposed into sub tasks, where each subtask is computationally homogeneous
(well-suited to a single machine), and different subtasks may have different machine
architectural requirements. These subtasks may have data dependencies among
them. A group of independent tasks, known as a meta-task, can also be executed in
the HC environment. The tasks in a meta-task have no data dependencies among
them, and may have different architectural requirements.

Solutions to Parallel and Distributed Computing Problems, Edited by A. Zomaya, F.Ercal, and S. Olariu
ISBN 0-471-35352-3 © 2001 John Wiley & Sons, Inc.

135

136 GENETIC ALGORITHM APPROACH 6.2 PROBLEM DESCRIPTIONS 137

Once the set of subtasks or independent tasks to be executed is known, the
following decisions must be made: matching, i.e., assigning subtasks or independent
tasks to machines, and scheduling, i.e., ordering subtask or independent task
execution for each machine and (for subtasks) ordering intermachine data transfers.
The resulting matching and scheduling scheme is called a mapping. In the studies
reported here, the primary goal of HC is to find a mapping that will achieve the
minimal completion time, i.e., the minimal overall execution time of the application
task or meta-task on the machine suite.

It is well known that such a mapping problem is, in general, NP complete [19,
29]. A number ofapproaches to different aspects ofthis problem have been proposed
(e.g., [18, 20, 30, 38, 51, 55]). These approaches include both static and dynamic
heuristics. Static heuristics are executed off-line, in a planning mode, when the
application task or meta-task to map is known in advance. Dynamic heuristics are
executed on-line, in real-time, and can make use of feedback from the HC system
(e.g., [37]). Heuristics developed to perform the mapping function are often difficult
to compare because of different underlying assumptions in the original studies of
each heuristic (e.g., number and types of machines in the HC suite) [5]. Various
researchers have considered the use of genetic-algorithm-based approaches for this
mapping function (e.g., [45, 48, 52, 61]). This chapter summarizes three particular
genetic-algorithm-based approaches, each for a different HC environment.

Two static approaches and one dynamic approach used for solving the mapping
problems for different HC environments are discussed. The first approach decides
the subtask to machine assignments, orders the execution of the subtasks assigned to
each machine, and schedules the data transfers among subtasks [58]. The char­
acteristics of this approach include separation of the matching and the scheduling
representations, independence of the chromosome structure from the details of the
communication subsystem, and consideration of overlap among all computations
and communications that obey subtask precedence constraints. The computation and
communication overlap is limited only by intersubtask data dependencies and
machine/network availability. This genetic-algorithm-based approach can be applied
to performing the mapping in a variety of HC systems. It is applicable to the static
mapping ofproduction jobs and can be readily used to collectively schedule a set of
tasks that are decomposed into subtasks.

The second approach focuses on a particular application domain [iterative
automatic target recognition (ATR) tasks] and an associated specific class of dedi­
cated heterogeneous parallel hardware platforms. For the computational environment
considered, a methodology for real-lime, on-line, input-data-dependent remapping of
the application subtasks to the processors (machines) in the heterogeneous parallel
hardware platform using a previously stored off-line, statically determined, mapping
is presented [8, 34, 35]. The operating system makes a heuristic-based decision
during the execution of the application whether to perform a remapping based on
information generated by the application from its input data. If the decision is to
remap, the operating system selects a previously determined and stored genetic­
algorithm-based mapping that is appropriate for the given state of the application
(e.g., the number of objects it is currently tracking).

The third approach examines the mapping of meta-tasks to machines in an HC
suite. It is assumed in this approach that each machine executes a single task at a
time, in the order in which the tasks arrive, and there are no dependencies among the
tasks. Because of these assumptions, scheduling is simplified and the resulting
solutions of the mapping heuristics focus more on finding an efficient matching of
tasks to machines. Eleven different static mapping heuristics from the literature were
implemented and compared by simulation studies under one set of common
assumptions [6]. One of these heuristics was a genetic algorithm, providing insight
into the relative performance of genetic algorithms to other mapping techniques.

The organization of this chapter is as follows. The details of the problem and
assumptions made for each of the approaches are presented in Section 6.2. Section
6.3 briefly describes the basic steps of any genetic algorithm. In Section 6.4, a
summary of the results from the static subtask mapping approach is presented [58].
Section 6.5 discusses results obtained from the on-line use of off-line-derived
mappings approach [8, 34]. Finally, Section 6.6 details experiences from imple­
menting the static meta-task mapping approach [6].

The research reported in this chapter was supported in part by the DARPA/ITO
Quorum Program project called MSHN (Management System for Heterogeneous
Networks) [26.]. MSHN is a collaborative research effort among the Naval Post­
graduate School, NOEMIX, Purdue University, and the University of Southern
California. The technical objective ofthe MSHN project is to design, prototype, and
refine a distributed resource management system that leverages the heterogeneity of
resources and tasks to deliver the requested quality of service. The heuristics
developed in this chapter or their derivatives may be included in the MSHN

prototype.

6.2 PROBLEM DESCRIPTIONS

6.2.1 Static Matching and Scheduling of Subtasks

There are many open research problems in the HC field [36, 46]. To isolate and focus
on the mapping problem, researchers typically make assumptions about other
components of an overall HC system (e.g., [45, 48]). This subsection considers the
assumptions made in [58] for the static mapping of subtasks.

It is assumed that the application task is written in some machine-independent
language (e.g., [59]). It is also assumed that an application task is decomposed into
multiple subtasks and the data dependencies among them are known and are
represented by a directed acyclic graph (DAG). If intermachine data transfers are
data dependent, then some set of expected data transfers must be assumed. The
estimated expected execution time for each subtask on each machine is assumed to
be known a priori. Finding the estimated expected execution times for subtasks is
another research problem, which is beyond the scope of this chapter. Approaches
based on task profiling and analytical benchmarking are surveyed in [32, 46, 47].
The HC system is assumed to have operating system support for executing each

138 GENETIC ALGORITHM APPROACH
6.2 PROBLEM DESCRIPTIONS 139

subtask on the machine it is assigned and for performing intermachine data transfers
as scheduled by this genetic-algorithm-based approach.

In the type ofHC system considered here, an application task is decomposed into
a set of subtasks S. Define lSI to be the number of subtasks in the set, and s, to be the
ith subtask 0 ~ i < lSI. An HC environment consists of a set ofmachines M. Define
IMI to be the number of machines and mj to be thejth machine, 0 ~j < IMI. The
global data items (gdis), i.e., data items that need to be transferred between subtasks,
form a set G. Define IGI to be the number of items and gdi, to be the kth global data
item, 0 ~ k < IGI.

lt is assumed that for each global data item there is a single subtask that produces
it (producer), and there are some subtasks that need this data item (consumers).
Hence, the task is represented by a single-producer directed acyclic graph (SPDAG).
Each edge goes from a producer to a consumer and is labeled by the gdi that is
transferred over it. Figure 6.1 shows an example SPDAG.

The following further assumptions are made for the static subtask mapping
problem. One is the exclusive use of the HC environment for the application; and
that the genetic-algorithm-based mapper is in control of the HC machine suite.
Another is nonpreemptive subtask execution. Also, all input data items of a subtask
must be received before its execution can begin, and none of its output data items are
available until the execution of this subtask is finished. If a data conditional is based
on input data, it is assumed to be contained inside a subtask. A loop that uses an
input data item to determine one or both of its bounds is also assumed to be
contained inside a subtask. These restrictions help make the mapping problem more
manageable, and solving this problem under these assumptions is a significant step
toward solving the general mapping problem.

For any static heuristic, it is assumed that an accurate estimate of the expected
execution time for each subtask on each machine is known prior to execution and
contained within an IMI x lSI ETC (expected time to compute) matrix. ETC(i,j) is
the estimated execution time for subtask s, on machine mj'

These times are assumed to include the time to move the executables and initial
data (not gdis) associated with subtask Sj to machine mj when necessary.] The

Figure 6.1 An example SPDAG.

assumption that these estimated expected execution times are known is commonly
made when studying mapping heuristics for HC systems (e.g., [23, 31, 48]).

6.2.2 Semistatic Matching and Scheduling of Subtasks

In [7, 8], a detailed design of an intelligent operating system (IDS) is proposed for a
particular application domain in which (1) an iterative application is to be mapped
onto an associated specific type of dedicated heterogeneous parallel hardware
platform; and (2) the execution of each iteration can be ~epre~ented b~ a .DA<:J of
subtasks. To minimize the execution time of such an iterative application m a
heterogeneous parallel computing environment,an appropriate mapping scheme is
needed. However, when some of the characteristics of the application subtasks are
unknown a priori and will change from iteration to iteration during execution-time, it
may not be feasible or desirable to use the same off-line-derived mapping throughout
the whole execution of the application.

In such situations, a semistatic methodology [7,8,35] can be employed that starts
with an initial mapping, but dynamically decides whether to remap the application
with a mapping previously determined off-line. This is done by observing, from one
iteration to another, the effects of the changing characteristics of the application's
input data, called dynamic parameters, on the application's execution time. That.is,
the lOS will be able to make a heuristically determined decision during the executIon
of the application whether to perform a remapping based on information generated
by the application from its input data. Ifthe decision is to remap, the lOS will be able
to select a precomputed and stored mapping that is appropriate for the given state of
the application (e.g., the number of objects the ATR system is currently tracking).
This remapping process will, in general, require a certain system reconfiguration
time for relocating the data and program modules.

The semistatic method differs considerably from other real-time HC mapping
techniques in that it involves the on-line, real-time use of off-line, precomputed
mappings. This is significant because it is possible for off-line heuristics to have
much longer execution times to search for a good solution than what is practical for
an on-line heuristic. Thus, with the semistatic method, the mapping quality of an off­
line, time-consuming heuristic can be approached at real-time speeds. As detaile~ in
Section 6.5.6, the GA described in Section 6.4 is enhanced to be used as an off-line
heuristic for determining high-quality mappings for on-line use. In an extensive
simulation study, it was found that the semistatic method is much more effective than

a purely dynamic approach.

6.2.3 Static Matching and Scheduling for Meta-Tasks

This subsection considers the assumptions made in [6] for the static mapping of
meta-tasks. Recall from Section 6.1 that a meta-task is defined as a collection of
independent tasks with no data dependencies (a given task, however, may have
subtasks and dependencies among the subtasks). For this case study, it is assumed
that static (i.e., off-line or predictive) mapping of meta-tasks is being performed. (In

140 GENETIC ALGORITHM APPROACH
6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 141

some systems, all tasks and subtasks in a meta-task, as defined earlier, are referred to
as just tasks.)

It is also assumed that each machine executes a single task at a time in the order
in which the tasks arrived. Because there are no dependencies among the tasks,
scheduling is simplified, and thus the resulting solutions of the mapping heuristics
focus more on finding an efficient matching of tasks to machines. It is also assumed
that the size ofthe meta-task T (number oftasks to execute) is ITI, and the number of
machines in the HC environment is IMI, and both are static and known a priori.
Expected task execution times are specified in an IMI x ITI ETC matrix, analogous
to the one defined in Section 6.2.1 for subtasks. It is assumed that the HC system is
dedicated for the meta-task, and controlled by the mapper.

6.3 GENETIC ALGORITHM OVERVIEW

Genetic algorithms (GAs) are a useful heuristic approach to finding near-optimal
solutions in large search spaces [14,25,27]. There is a large variety ofapproaches to
GAs; many are surveyed in [40, 49]. The following is a brief overview of GAs to
provide background for the description of the proposed approaches.

The first step necessary to employ a GA is to encode some of the possible
solutions to the optimization problem as a set of strings (chromosomes). Each
chromosome represents one solution to the problem, and a set of chromosomes is
referred to as a population. The next step is to derive an initial population. A random
set of chromosomes is often used as the initial population. Some specified chro­
mosomes can also be included as seeds. This initial population is the first generation
from which the evolution begins.

The third step is to evaluate the quality of each chromosome. Each chromosome
is associated with a fitness value, which in this case is the completion time of the
solution (mapping) represented by this chromosome (i.e., the expected execution
time of the application task or meta-task if the mapping specified by this chromo­
some were used). The objective of the GA search is to find a chromosome that has
the optimal fitness value. The selection process is the next step. In this step, each
chromosome is eliminated or duplicated (one or more times) based on its relative
quality. The population size is typically kept constant.

Selection is followed by the crossover step. With some probability, pairs of
chromosomes are selected from the current population and some of their corre­
sponding components are exchanged to form two valid chromosomes, which mayor
may not already be in the current population. After crossover, each string in
population can be mutated with some probability. The mutation process transforms a
chromosome into another valid chromosome that mayor may not already be in the
current population. The new population is then evaluated. If none of the stopping
criteria has been met, the new population goes through another cycle (iteration) of
selection, crossover, mutation, and evaluation. These cycles continue until one of the
stopping criteria is met.

GA...matching...scbeduling {
initial population generation;
evaluation;
while (stopping criteria not met) {

selection;
crossover;
mutation;
evaluation;

} .
output the best solution found;

}

Figure 6.2 General procedure for a genetic algorithm, based on [49].

In summary, the following items must be determined to implement a GA for a
given optimization problem: (l) an encoding, (2) an initial population, (3) an
evaluation using a particular fitness function, (4) a selection mechanism, (5) a
crossover mechanism, (6) a mutation mechanism, and (7) a set of stopping criteria.
The outline of the GA-based approach is shown in Fig. 6.2. Details of three GA­
based approaches will be discussed in the following sections.

6.4 STATIC MATCHING AND SCHEDULING" OF SUBTASKS

6.4.1 Introduction

This section discusses the GA-based approach found in [58] for the static mapping
of subtasks. This section presents the details about the chromosome representation
used, how population generation was performed, the mutation and crossover
operators used, and comparisons with nonevolutionary approaches.

6.4.2 Chromosome Representation

Each chromosome consists of two parts: the matching string and the scheduling
string. Let mat be the matching string, which is a vector of length lSI, such that
mat(i) = m

j
, where os i < lSI and 0 :Sj < IMI, i.e., subtask s, is assigned to

machine mj' .
The scheduling string (ss) is a topological sort [12] ofthe SPDAG, l.e., a total

ordering of the nodes (subtasks) in the SPDAG that obeys the precedence
constraints. Define ss to be the scheduling string, which is a vector of length lSI,
such that ss(k) = s., where 0 :s i, k < lSI, and each s, appears only once in the
vector, i.e., subtask Si is the kth subtask in the scheduling string. Because it is a
topological sort, if ss(k) is a consumer of a global data item produced by ss(j), then
j < k. The scheduling string gives an ordering of the subtasks that is used by the

evaluation step.

142 GENETIC ALGORITHM APPROACH
6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 143

Then in this GA-based approach, a chromosome is represented by a two-tuple
[mat,ss]. Thus, a chromosome represents the subtask-to-machine assignments
(matching) and the execution ordering ofthe subtasks assigned to the same machine.
The scheduling of the global data item transfers and the relative ordering of subtasks
assigned to different machines are determined by the evaluation step. Figure 6.3
illustrates two different chromosomes for the SPDAG in Fig. 6.1, for lSI = 6,
IMj = 3, andlo'] = 5.

representing randomly generated solutions, the initial population also includes a seed
chromosome that represents the solution from a nonevolutionary baseline heuristic
(see Section 6.4.8).

Each newly generated chromosome is checked against those previously gener­
ated. If a new chromosome is identical to any of the existing ones, it is discarded and
the process ofchromosome generation is repeated until a unique new chromosome is
obtained.

Figure 6.3 Two chromosomes from the SPDAG in Fig. 6.1.

6.4.4 Selection

In this step, the chromosomes in the population are first ordered (ranked) by their
fitness values from the best to the worst. Those having the same fitness value are
ranked arbitrarily among themselves. Then a rank-based roulette wheel selection
scheme is used to implement the selection step [27, 49]. In the rank-based selection
scheme each chromosome is allocated a sector on a roulette wheel. Let P denote the
population size. and Ai denote the angle of the sector allocated to the ith-ranked
chromosome. The zeroth-ranked chromosome is the fittest and has the sector with
the largest angle Ao, whereas the (P - 1)-th-ranked chromosome is the least fit and
has the sector with the smallest angle Ap _ l . The ratio of the sector angles between
two adjacently ranked chromosomes is a constant R = AjA i+1, where 0::::
i < P - 1. If the 360 degrees of the wheel are normalized to one, then
Ai = RP- i- l x (1 - R)/(l - RP) , where R > 1,0:::: i < P, and 0 < Ai < 1.

The selection step generates P random numbers, ranging from zero to one. Each
number falls in a sector on the roulette wheel and a copy of the owner chromosome
ofthis sector is included in the next generation. Because a better solution has a larger
sector angle than that of a worse solution, there is a higher probability that one or
more copies of this better solution will be included in the next generation. In this
way, the population for the next generation is determined. Thus, the population size
is always P, and it is possible to have multiple copies of the same chromosome.

This GA-based approach also incorporates elitism [41]. At the end of each
iteration, the best chromosome is always compared with the previous best (elite)
chromosome, a copy of which is stored separately from the population. If the best
chromosome is better than the elite chromosome, a copy of it becomes the elite
chromosome. Ifthe best chromosome is not as good as the elite chromosome, a copy
of the elite chromosome replaces the worst chromosome in the population. Elitism is
important because it guarantees that the quality of the best solutions found over
generations is monotonically nondecreasing.

6.4.5 Crossover Operators

The crossover operator selects a random number of pairs of scheduling strings,
where every string has an equal probability of being selected. For each pair, it
randomly generates a cutoff point, which divides the scheduling strings of the pair
into top and bottom parts. Then, the subtasks in each bottom part are reordered. The
new ordering of the subtasks in one bottom part is the relative positions of these

mat1 55 1 mat 2 552

5 0: 0 5 0 : 1
51 :1 51 :2
5 2: 1 52: 1
53: 0 5 3: 0
5 4 : 2 54 : 0
5 5 : 1 5 5 : 1

6.4.3 Initial Population Generation

In the initial population generation step, a predefined number of chromosomes are
generated, the collection of which forms the initial population. When generating a
chromoso~e, a new matching string is obtained by randomly assigning each subtask
to a machine. To form a scheduling string, the SPDAG is first topologically sorted to
fo~ a ~asis.sch~duling string. Then, for each chromosome in the initial population,
this basis stnng IS mutated a random number of times (between one and the number
of subtasks) using the scheduling-string mutation operator to generate the ss vector
(which is a valid topological sort of the given SPDAG). Furthermore, it is common
in GA applications to incorporate solutions from some nonevolutionary heuristics
into the initial population, which may reduce the time needed for finding a satis­
factory solution [14]. In this GA-based approach, along with those chromosomes

144 GENETIC ALGORITHM APPROACH 6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 145

scheduling
string mutation
-----......

valid range
for Sv

o

scheduling
string
crossover

~

----------------1---

Figure 6.4 A scheduling string crossover example. Figure 6.5 A scheduling string mutation example. Only edges to and from the victim

subtask s; are shown. Before the mutation, s; is between Sb and s., After the mutation, it is

moved to between Sa and sb'

subtasks in the other original scheduling string in the pair, thus guaranteeing that the

newly generated scheduling strings (which replace the originals) are valid schedules.

Figure 6.4 demonstrates such a scheduling string crossover process.

The crossover operator selects a random number of pairs of matching strings,

where every string has an equal probability of being selected. For each pair, it

randomly generates a cutoffpoint to divide both matching strings of the pair into two

parts. Then the machine assignments of the bottom parts are exchanged, and the new

strings replace the originals.

6.4.6 Mutation Operators

The scheduling-string mutation operator selects a random number of scheduling

strings, where every string has an equal probability of being selected. Then for each

chosen scheduling string, it randomly selects a victim subtask. The valid range ofthe

victim subtask is the set of the positions in the scheduling string at which this victim

subtask can be placed without violating any data dependency constraints. Specifi­

cally, the valid range is after all source subtasks of the victim subtask and before any

destination subtask of the victim subtask. After a victim subtask is chosen, it is

moved randomly to another position in the scheduling string within its valid range.

The new string replaces the original. Figure 6.5 shows an example of this mutation

process. For the matching string mutation operator, every matching string has an

equal probability of having one of its subtasks assigned to a different, randomly

selected, machine.

6.4.7 Evaluation

The final step of an iteration of a GA is the evaluation of each chromosome to

determine its fitness value. In this GA-based approach, the chromosome structure is

independent of any particular communication subsystem. Only the evaluation step

needs the communication characteristics ofthe given HC system to schedule the data

transfers.
To test the effectiveness of this GA-based approach, an example communication

system modeled after a HiPPI LAN with a central crossbar switch [28, 53] is

assumed to connect a suite ofmachines. Each machine in the HC suite has one input

data link and one output data link. All these links are connected to a central crossbar

switch. If a subtask needs a gdi that is produced or consumed earlier by a different

subtask on the same machine, the communication time for this item is zero.

Otherwise, the communication time is obtained by dividing the size of the gdi by the

smaller bandwidth of the output link of the source machine and the input link of the

destination machine. In this research, it is assumed that for a given machine the

bandwidths of the input link and the output link are equal to each other. It is also

assumed that the crossbar switch has a higher bandwidth than that of each link. The

communication latency between any pair of machines is assumed to be the same.

Data transfers are neither preemptive nor multiplexed. Once a data-transfer path is

established, it cannot he relinquished until the data item (i.e., some gdij) scheduled

to be transferred over this path is received by the destination machine. Multiple data

transfers over the same path must be serialized.

146 GENETIC ALGORITHM APPROACH
6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 147

FO 66 A very simple example showing the evaluation step: (a) the chromosome; (b) ~he
s~~:~ ~xecution ordering on each machine given by (a); (c) the estimated ~ubtask execution
times' (d) the gdi intermachine transfer times (transfers between subtasks aS~I~ed to the same
machine take zero time); and (e) the subtask execution and data-transfer nmmgs, where the

completion time for this chromosome is 16.

fr among the producer of this data item and all the consumers that have received
th~~data item. These consumers areforwarders [51] '.The on.e (either the ~roducer or
a forwarder) from which the destination subtask will receive the data Item at the

earliest possible time is chosen. .., .
After the source subtask is chosen, the data transfer for the mput data Item IS

scheduled. A transfer starts at the earliest point in time when the path from the

(d)

gdio 1

gdi1 3
gdi2 2

gdi3 1

time

0

2

4

6

8

10

12

14

16
(e)

(b)

55

(a)

(c)

mo m1

50 52

51

53

mat

$0: 0
$1:0
$2: 1
53: 0

50 51 52 53

mo 5 9 4 2

m1 9 3 6 3

Situation 1 Let So and SI be assigned to the same machine mo and S2 be assigned
to another machine mI, as shown in Fig. 6.7b. In this situation, because So is to be
executed before St> gdi., is available before gdi, becomes available on machine
mo. Thus, it is better to consider the gdi., transfer before the gdi, transfer.

Situation 2 Let the three subtasks So, Sr. and S2 be assigned to three different
machines mo, mI' and m2' as shown in Fig. 6.7c. In this situation, if there is a
data dependency from So to sI' then So finishes its execution before sJ could
start. Therefore, gdio is available before gdi, becomes available. Hence, it is
better to consider the gdi., transfer before the gdi I transfer. If there are no data
dependencies from So to SI, the gdi., transfer can still be considered before the
gdi, transfer. While this may not be necessary in this case, it is reasonable to
do because there may be some other chromosome(s) that have sS(O)=SI and
ss(1) = So. When such a chromosome is evaluated, the gdi I transfer will be
considered before the gdi., transfer. Therefore, it is possible for all input gdi
scheduling orderings for gdi., and gdi I to be examined.

In the evaluation step, for each chromosome the final order of execution of the
subtasks and the intermachine data transfers are determined. The evaluation
procedure considers the subtasks in the order they appear on the scheduling string.
Subtasks assigned to the same machine are executed exactly in the order specified by
the scheduling string. For subtasks assigned to different machines, the actual
execution order may deviate from that specified by the scheduling string due to
factors such as input-data availability and machine availability. This is explained
below.

Before a subtask can he scheduled, all of its input gdis must be received. For
each subtask, its input data items are considered by the evaluation procedure in
the order of their producers' relative positions in the scheduling string. In Fig.
6.6, a simple example is shown to illustrate the evaluation for a given chromo­
some. In this example (as well as some others given later), because there are only
two machines, the source and destination machines for the gdi transfers are
implicit.

When a subtask to be scheduled has multiple input gdis that have not been
received, the gdi whose producer subtask is listed earliest in the scheduling string is
considered first. The reason for this ordering is to attempt to better utilize the overlap
of subtask executions and intermachine data communications. The following
example illustrates this idea. Let ss(O) = so' ss(1) = Sr. ss(2) = S2' as shown in Fig.
6.7a. Let S2 need two gdis, gdi., and gdi 1>from So and SJ, respectively. Depending on
the subtask to machine assignments, the data transfers of gdi-, and gdi I could be
either local, i.e., within a machine, or across machines. If at least one data transfer is
local, then the scheduling is trivial because it is assumed that local transfers within a
machine take negligible time. However, there exist two situations where both data
transfers are across machines so that they need to be ordered.

Data forwarding is another important feature of this evaluation process. For each
input data item to be considered, the evaluation process chooses the source subtask

148 GENETIC ALGORITHM APPROACH
6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 149

(e)

(d)

gdio 2
gdi1 1

gdi 2 5

gdi::l 4

55

(c)

(b)

(a)

ma m1

50 52

51 53

mat

5 0: 0

$ot: 0

5 2: 1

53: 1

So 51 S2 S3

me 3 5 5 7

m1 9 6 2 3

to the same machine, and (2) for examining data transfers. Two different scheduling

strings could result in the same ordering for (1) and ~2). . .
After a chromosome is evaluated, it is associated with a fitness value, which IS the

time when the last subtask finishes its execution. That is, the fitnes~ value .o~ a
chromosome is the overall execution time of the task, given the mappmg decision

specified by this chromosome and by the evaluation process. . . '
In summary, this evaluation mechanism considers subta~ks m the or?er m which

they appear in the scheduling string. For a subtask that requires some gdis from other

Figure 6.8 An example showing the in-order scheduling. of a chromo~ome: (a)" the
chromosome; (b) the subtask execution ordering on each machme; (c) the .estImated subtask
execution times; (d) the gdi transfer times (transfers between subtasks assigned ~o t~e same
machine take zero time); and (e) the subtask execution and data-transfer tImmgs.usm~ m-?rder
transfers (the gdi, transfer occurs before the gdiz transfer), where the completIOn time IS 17.

(b)

(c)

(a)

Figure 6.7 An. example scheduling string with two possible matching strings: (a) the
ex~ple schedulmg stnng; (b) the situation when the source subtasks of the input gdis are
ass~gned to th.esame machine; (c) the situation when the source subtasks of the input gdis are
assigned to different machines.

source machine to the destination machine is free for a period that is at least equal to
the needed transfer time. Thus, it is possible that, for example, gdi, is considered
before gdi-, but gdi, is transferred before gdi.. This is referred to as out-of-order
scheduling of data transfers because the data transfers do not occur in the order in
which they are considered (i.e., the in-order schedule). This (possibly) out-of-order
scheduling of the input item data transfers utilizes previously idle bandwidths of the
communication links, and thus could make some input data items available to some
subtasks earlier than the in-order scheduling. As a result, some subtasks could start
~eir e~ecution earlier, which would in turn decrease the overall task completion
tune. FIgures 6.8 and 6.9 show the in-order scheduling and the out-of-order sche­
duling for the same chromosome, respectively. In the in-order scheduling, the
transfer of gdi, is scheduled before the transfer of gdi, because subtask s input data

.s:: • 2
transrers are considered before those of subtask s3' In this example, the out-of-order
schedule does decrease the total execution time of the given task.

When two chromosomes have different matching strings, they are different
solutions because the subtask-to-machine assignments are different. However, two
chromosomes that have the same matching string but different scheduling strings
~ay or ~ay .not re~resent the same solution. This is because the scheduling-string
information IS used m two cases: (1) for scheduling subtasks that have been assigned

150 GENETIC ALGORITHM APPROACH 6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 151

Figure 6.9 An example showing the the out-of order scheduling, where the chromosome

and other statistics are the same as in Fig. 6.8. The completion time is 14.

m~chi~es, the .gdi transfer whose producer subtask appears earliest in the scheduling

string IS exammed first. When scheduling a gdi transfer, both the producing and the

forwarding subtasks are considered as possible sources. The source subtask that lets

this consumer subtask receive this gdi at the earliest possible time is chosen to send

the gdi. The out-of-order scheduling of the gdi transfers over a path could further

reduce the completion time of the application.

6.4.8 Experimental Results

To m~asure the performance of this GA-based approach, randomly generated

s~enanos were used, where each scenario corresponded to an SPDAG, the asso­

ciated subtask execution times, the sizes of the associated gdis, and the commu­

nication-link bandwidths ofthe machines. The scenarios were generated for different

nw:nbers of subtasks and different numbers of machines, as specified below. The

estimated expected execution time for each subtask on each machine the number of

gdis, the size of each gdi, and the bandwidth of each input link of each machine were

rando:mly generated with uniform probability over some predefined ranges. For each

machine, the bandwidth ofthe output link is made equal to that of the input link. The

produc~r and consumers of each gdi were also generated randomly. The scenario

generat~on used a IGI x lSI dependency matrix to guarantee that the precedence

constramts from data dependencies were acyclic.

These randomly generated scenarios were used for three reasons: (1) it is desir­

able to obtain data that demonstrate the effectiveness of the approach over a broad

range of conditions, (2) a generally accepted set of HC benchmark tasks does ~~t

exist, and (3) it is not clear what characteristics a "typical" HC tas~ would exhibit

[56]. Determining a representative set of HC task benchmarks remams a challenge

for the scientific community in this research area.

ill this work, small-scale and larger scenarios were used to quantify the pe~or­

mance of this GA-based approach. The scenarios were grouped into three categ.ones,

namely tasks with light, moderate, and heavy communication loads. A lightly

communicating task has its number of gdis in the range of 0 :::: IGI < (1/3)ISI; a

moderately communicating task has its number of gdis in the range ~f

0/3)ISI :::: IGI < (2/3)ISI; and a heavily communicating task has its number?f gdis

in the range of (2/3)ISI :::: IGI < lSI. The ranges of the gdi sizes and.the estimated

subtask execution times were both from 1 to 1,000. For these scenanos, the band­

widths of the input and output links were randomly generated, ranging from. 0.5. to

1.5. Hence, the communication times in these scenarios were source and destination

machine dependent. . .

The probability of crossover was the same for the matchmg stnng and ~he

scheduling string. The probability of mutation was also the same for the matchmg

string and the scheduling string. The stopping criteria were (1! the number of

iterations had reached 1,000, (2) the population had converged (i.e., all the chro­

mosomes had the same fitness value), or (3) the currently best solution had not

improved over the last 150 iterations. All th~ GA runs ~iscu~sed in this section

stopped due to their best solutions not improvmg for 150 iterations. .

The GA-based approach was first applied to 20 small-scale scenanos that

involved up to ten subtasks, three machines, and seven global data items '.~e GA

runs for small-scale scenarios had the following parameters. The probabilities for

scheduling-string and matching-string crossovers, were both chosen to be 0.4, and

scheduling-string and matching-string mutations were both chosen to be 0.1. ~e

GA population size, P, for small-scale scenarios was chosen to be 50. The angle ratio

of the sectors on the roulette wheel for two adjacently ranked chromosomes, R, was

chosen to be 1 + l/P. By using this simple formula, the angle ratio between the slots

of the best and median chromosomes for P = 50 (and also for P = 200 for larger

scenarios discussed later in this section) was very close to the optimal empirical ratio

value of 1.5 in [60].

The results from a small-scale scenario are used here to illustrate the search

process. This scenario had lSI = 7, IMI = 3, and IGI = 6. The. SPDAG, the es~­

mated execution times, and the transfer times of the global data Items are shown m

Fig. 6.10. The total numbers of possible different matching strings and different

valid scheduling strings (i.e., topological sorts of the SPDAG) were 37 = 2187 ~d

16, respectively. Thus, the total search space had 2187 x 16 = 34,992 possible

chromosomes.
Exhaustive searches were performed to find the optimal solutions for the small­

scale scenarios. For each of the small-scale scenarios that were conducted, the GA­

based approach found one or more optimal solutions that had the same completion

152 GENETIC ALGORITHM APPROACH 6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS 153

Figure 6.10 A small-scale simulation scenario: (a) the SPDAG; (b) the estimated execution

times; and (c) the transfer times of the gdis from a given source machine to a given destination

machine.

time, verified by the best solution(s) found by the exhaustive search. The GA search

for a small-scale scenario that had ten subtasks, three machines, and seven gdis took

about one minute to find multiple optimal solutions on a Sun Sparc5 workstation,

while the exhaustive search took about eight hours to find these optimal solutions.

The performance of this GA-based approach was also examined using larger

scenarios with up to 100 subtasks and 20 machines. These larger scenarios were

generated using the same procedure as for generating the small scenarios except that

the GA population size for larger scenarios was chosen to be 200.

Larger scenarios are intractable problems. It is currently impractical to directly

compare the quality of the solutions found by the GA-based approach f0i these

larger scenarios with those found by exhaustive searches. It is also often difficult to

compare the performance of different HC task mapping approaches due to the

different HC system models that are assumed by researchers when they design

mapping heuristics. However, the model used in [30] is similar to the one being used

in this research work. Hence, the performance of the GA-based approach on larger

scenarios was compared with the nonevolutionary levelized min-time (LMT) heur­

istic proposed in [30]. (In Section 6.6, a variety of heuristics are compared by

adapting them for a simple common model.)

(a)

So 51 52 S3 54 55 56

mo 872 251 542 40 742 970 457
m1 898 624 786 737 247 749 451
m2 708 778 23 258 535 776 15

(b)

mo"1 mcJ712 m1m2

gdio 489 321 489
gdi l 1244 818 1244
gdi2 62 41 62
gdi3 830 545 830
gdi4 387 255 387
gdi5 999 656 999

(c)

The LMT heuristic first establishes levels of subtasks in the following way. The

subtasks that have no input gdis are at the highest level. Each of the remaining

subtasks is at one level below the lowest producer of its gdis. The subtasks at the

highest level are to be considered first. The LMT heuristic averages the estimated

execution times for each subtask across all machines. At each level, a level-average

execution time i.e., the average of the machine-average execution times of all

subtasks at this level, is also computed. If there are some levels between a subtask

and its closest child subtask, the level-average execution time of each middle level is

subtracted from the machine-average execution time of this subtask. The adjusted

machine-average execution times of the subtasks are used to determine the ~riorities

of the subtasks within each level, i.e., a subtask with a larger average IS to be

considered earlier at its level. If the number of subtasks at a level is greater than the

number of machines in the HC suite, the subtasks with smaller averages are merged

so that as a result, the number of combined subtasks at each level equals the number

of machines available. When a subtask is being considered, it is assigned to the

fastest machine available from those machines that have not yet been assigned any

subtasks from the same level.

Another nonevolutionary heuristic, the baseline (EL), was developed as part of

this GA research, and the solution it found was incorporated into the initial popu­

lation. Similar to the LMT heuristic, the BL heuristic first establishes levels of

subtasks based upon their data dependencies. Then all subtasks are ordered suc~ that

a subtask at a higher level comes before one at a lower level. The subt~sks.m the

same level are arranged in descending order of their number of output gdis (ties a:e

broken arbitrarily). The subtasks are then scheduled as follows. Let the ith su?task m

this order be a., where 0 ::; i < lSI. First, subtask (Jo is assigned to a machme that

gives the shortest completion time for (Jo. Then, t~e heuristic ~valuat~s IMI

assignments for (J each time assigning (J 1 to a different machme, WIth the
l'

.

previously decided machine assignment of (J 0 left unchanged. ~e s~btask (J 1 IS

finally assigned to a machine that gives the shortest overal~ ~ompletIOn tn:nefor both

(J and (J • The BL heuristic continues to evaluate the remammg subtasks m the order
o 1

• .

defined earlier. When scheduling subtask (Ji' IMI possible machme assignments are

evaluated, each time with the previously decided machine assignment~ of sUbt~sks

(J. (0 ::;j < i) left unchanged. Subtask a, is finally assigned to a machme that grves

the shortest overall completion time of subtasks (Jo through a; The total number of

evaluations is thus lSI x IMI, and only i subtasks (out of IS\) are considered when

performing evaluations for the IMl machine assi~ents for subtasks. o;

To determine the best GA parameters for solvmg larger HC mappmg problems,

50 larger scenarios were randomly generated in each communication catego~. Each

of these scenarios contained 50 subtasks and 5 machines. For each scenano, GA

runs were conducted for the following combinations of crossover probability and

mutation probability. The crossover probability ranged from 0.1 to 1.0 in steps of

0.1, and the mutation probability ranged from 0.04 to 0.40 in steps of 0.04 ~d ~om

0.4 to 1.0 in steps of 0.1. Let the relative solution quality be the task completion time

of the solution found by the LMT heuristic divided by that found by the approach

being investigated. A greater value of the relative solution quality means that the

154 GENETIC ALGORITHM APPROACH

6.4 STATIC MATCHING AND SCHEDULING OF SUBTASKS
155

6.4.9 Summary
. . HC nvironments was presented.

A novel GA-based approach for task mappmg me. b it
. roach can be used in a variety of HC envIronments ecause 1

ThIS GA-based app ecific communication subsystem model. It is applicable to the

~~~~cns~~:e~~l:ga::i;~duction jobs, and can be readily used for scheduling multiple

10 100
number of subtasks (log scale)

(d) 1M! = 20

10 100
number of subtasks (log scale)

(b) 1M! = 5

10 100
number of subtas1<s (log scale)

(a) 1M! = 2

10' 100
num),er of subtasks (log scale)

(c) 1M= 10 .
.. f the GA-based approach with a crossover prob-

Figure 6.11 Perfonnance. compan
b

sbo.nl.sty°of 0 2 relative to the LMT heuristic for heavily
bility flO and a mutatton pro all . , . )

a 11 O. '. . . () a two-machine suite, (b) a five-machine SUIte, (c a ten-
commUnIcatmglarger scenanos m a . f the BL heuristic and

hi
it and (d) a 20-machine suite. The relative perfonnance 0mac ne SUI e,

the random search are also shown.

over the others showed an overall trend to increase as the number of ~ubtasks
. d The exact shape of the GA-based-approach performance curves IS not as
mcrease . h . ti erating on
significant as the overall trends because the curves are for a euns IC he: d
randomly generated data, resulting ~n some varied performance even w en average

over 50 scenarios for each data pomt.

approach being investigated finds a better solution to the HC mapping problem (i.e.,
with a shorter overall completion time for the application task represented by the
SPDAG). With each crossover and mutation probability pair and for each commu­
nication load, the average relative solution quality of the 50 GAruns, each on a
different scenario, was computed.

For each communication load category, a region of good performance could be
identified for a range of crossover and mutation probabilities. The regions of good
performance generally consisted of moderate-to-high crossover probability and low­
to-moderate mutation probability. This is consistent with the results from the GA
literature, which show that crossover is GA's major operator, and mutation plays a
secondary role in GA searches [14, 25, 49].

The crossover and mutation. probabilities with which the best relative solution
quality had been achieved were used in each corresponding communication load
category. When mapping real tasks, the communication load can be determined by
computing the ratio of the number of gdis to the number of subtasks. Once the
communication load category is known, a probability pair from the corresponding
region of good performance can be used.

On Sun Sparc5 workstations, for these larger scenarios, both the LMT heuristic
and the BL heuristic took no more than one minute of CPU time to execute. The
average CPU execution time of the GA-based approach on these scenarios ranged
from less than one minute for the smallest scenarios (i.e., five subtasks, two
machines, and light communication load) to about three and one-half hours for the
largest scenarios (i.e, 100 subtasks, 20 machines, and heavy communication load).
Recall that it is assumed that this GA-based approach will be used for application
tasks that are large production jobs such that the one-time investment of this high
execution time is justified.

The performance of the GA-based approach was also compared with that of a
random search. For each iteration of the random search, a chromosome was
randomly generated, this chromosome was evaluated, and the fitness value was
compared with the saved best fitness value. If the fitness value of the current
chromosome was better than the saved best value, it became the saved best fitness
value. For each scenario, the random search iterated for the same length of time as
that taken by the GA-based approach on the same scenario.

Figure 6.11 shows the performance comparisons between the LMT heuristic and
the GA-based approach for heavily communicating larger scenarios. The GA-based
approach used a crossover probability of 1.0 and a mutation probability of 0.2.
These values were the best performing probabilities over a wide range of combi­
nations examined for a separate set of test scenarios. In the figure, the horizontal
axes are the number of subtasks in log scale. The vertical axes are the relative
solution quality of the various approaches. Each point in the figure is the average of
50 independent scenarios. The performance comparisons among the GA-based
approach, the LMT heuristic, the BL heuristic, and the random search for moderately
communicating and lightly communicating larger scenarios can be found in [58].

In all cases, the GA-based approach presented here outperformed the BL and
LMT heuristics and the random search. The improvement ofthe GA-based approach



156 GENETIC ALGORITHM APPROACH

indepen~ent tasks (and their subtasks) collectively. For small-scale scenarios the

:,opose aPIPr?ach found. optimal solutions. For larger scenarios, it outperfo:med

o nonevo utionary heuristics and a random search

There are a number ofways this GA ba d .
b 'It f fu - ase approach for HC task mapping can be

U1 . upon or ture research. These include extending this a roach t

mUltIPle
h
p~oducer~ for each ?f the global data items, paralleliz~~ the G1-:~~~:

ap~roac: ~velopillg evaluation procedures for other communication subsyst

an considering loop and data-conditional constructs that involve multiple subtasks.

6.5 SEMISTATIC MATCHING AND SCHEDULING OF SUBTASKS

6.5.1 Overview

In this section, the. application do.m~in and HC platform assumed for the semistatic

::;~~~ht:e~~s~nbe~b[7d' ~]. Thi~ IS followed by a discussion of the enhancements

escn e ill Section 6.4 for determini ff-li '"

situation. Finally, Section 6.5.7 summarizes the results ~:~ e- Itne ~appll~~s ill this

study of . I d . . x enSlVe peuormance
a simu ate sermstatic mapping system [35].

6.5.2 Application Domain: Automatic Target Recognition

~ne type of automatic target recognition (ATR) system takes a stream of ima es

om a group of sensors and produces a scene descri tion [54] . g

::0:~m1~~0~p~sible ~rgets thro~gh the sequence of ima~s. A sim;li::~~~:m~~:
~s ~an e found ill [35]. The various types of ima e- rocessin

~Ie~ents required ill an A~R system ca~ be broadly classified into three
g
gr~ups: low~

sev\ rrocessillg (numeric computatIon), intermediate-level processing (quasi-

u~: ~;cd~~:b~a:::a:·g·, ~her~ numeric a~d sY~bolic types of operations are

. es an s apes of objects ill the scene) and hi h I I

processmg (symbolic computation, e.g., used to produce the scen~ descri It~o~ ev~

4]. Each of these subtasks may allow the use of If I P ) [ ,
f ffici mu tp e processors of the same type

c
or.e

cI;n~.~xecutIOn. Heterogeneous parallel architectures consisting of multiple

opies 0 1 erent types of ~rocessors (e.g., SHARC DSP and PowerPC RISC

processo~s [16]) are .appropnate computing platforms for efficiently handlin

computational tasks WIth such diverse requirements. g

Th~ class of ATR applications considered can be modeled as . .

:~~~~~~n ~: e~~cu~~~for ~ch image in the stream) of a set of parti::;y I~;~:~:~
. , e tas can be modeled by a DAG in which the nodes

represent subtasks and the edges represent the communi ti .

assum d th t ATR " . ica IOns among subtasks. It IS

repeat:dly ~an:fl ~P?IIcatIOn ~ this ~lass is a production job that is executed

. . ~re ore, It IS worthwhile to Invest extra off-line time in .

effective mapping of the application onto the hardware platform used ~r:~:; ~

6.5 SEMISTATIC MATCHING AND SCHEDULING OF SUBTASKS 157

6.5.3 An Intelligent Operating System

A major distinctive architectural feature of the envisioned lOS is the capability for

the on-line use of off-line computed mappings [7, 8, 35]. The ATR Kernel makes

decisions on how a given 'ATR application task should be accomplished, including

determining the partial ordering of subtasks and which algorithms could be used to

accomplish each subtask. The HC Kernel uses a semistatic method to decide how the

partially ordered algorithmic suggestions should be implemented and mapped onto

the heterogeneous parallel platform. Furthermore, the HC Kernel interacts with the

Basic Kernel (the low-level operating system) to initiate the application and monitor

its execution. This allows the HC Kernel to decide at the end of each iteration

through the application if the subtasks should be remapped onto the hardware

platform. Information from the Algorithm Database and the Knowledge Base is used

to support the ATR and HC Kernels.

The Algorithm Database includes one or more implementations ofeach algorithm

(e.g., one for each processor type). The Algorithm Database also contains the

expected execution time of each algorithm implementation, typically specified as a

function of type and number of processors assigned, interprocessor communication

time, and certain input data and application characteristics. Dynamic parameters are

those input characteristics, such as amount of clutter, and application characteristics,

such as number of located objects to be identified, that (1) will change during run

time, (2) can be computed by the application as it executes, and (3) can impact the

execution time of each subtask in the task graph. This is an expected time rather than

a definite time, because it can vary depending on the actual values of the input data

being processed. System parameters, such as the number of each type ofprocessor in

the platform, are stored in the Knowledge Base. The off-line and on-line components

of the HC Kernel are detailed below. For more details about the lOS, the reader is

referred to [8].

6.5.4 Off-line HC Kernel Component: MOOG Generator

A mapped data-dependency graph (MDDG) is a DAG annotated with the task-to­

machine mapping. The HC Kernel MDDG Generator, which is a major component

of the off-line lOS, is responsible for mapping each DAG onto the heterogeneous

parallel hardware platform creating a corresponding MDDG. The structure of the

HC Kernel MDDG Generator is such that any effective heuristic could be employed.

For the iterative ATR application domain, it is possible to use off-line precomputed

mappings to reconfigure resources in real time.

Because different sets of dynamic parameter values can lead to different subtask

execution times (e.g., more objects to be recognized in the scene), the HC Kernel

MDDG Generator will, in general, generate different mappings for the same DAG

(corresponding to different sets of dynamic parameter values). It is assumed that the

ranges of the dynamic parameters are known. The space of dynamic parameters is

partitioned into a number of disjoint regions, and within each region a random set of

representative dynamic parameter vectors are chosen, each of which is called a



158 GENETIC ALGORITHM APPROACH
6.5 SEMISTATIC MATCHING AND SCHEDULING OF SUBTASKS 159

sample vector. For each sample vector, an off-line mapping heuristic (the enhanced
?A described in Section 6.5.6) uses the following information to create a mapping,
I.e., to transform a DAG into an MDDG: (1) the Structure ofthe underlying DAG; (2).
the.expected executi?n time ofeach subtask on a set ofprocessors (ofthe same type)
assigned, as a function of the type and number of processors; (3) the intersubtask
data transfers needed, in terms of formats and expected sizes of the data items to be
transferred; (4) the expected time to send data from one processor to another as a
function of the size of the data item to be transferred; and (5) the number of each
type of processor that is in the hardware platform.

The mapping for each sample vector is exhaustively evaluated for every other
sample vector in the region by applying the mapping to the DAG and computing the
task execution time using that other sample vector's dynamic parameter values. The
mapping that gives the minimum average execution time is chosen as the repre­
se~tative mappi~g for the corresponding region in the dynamic parameter space.
ThIS representative mapping and the corresponding average execution time are
stored in the off-line mapping table (i.e., the MDDG Table), which is a multi­
dimensional array, indexed by dynamic parameter ranges. Thus, for a given DAG,
the MDDG for each region of the dynamic parameter space is stored in the MDDG
table for that DAG, along with the corresponding expected execution time.

6.5.5 On-line HC Kernel Component: Execution Monitor

~~ HC Ker~elMonitor is an on-line component responsible for (1) establishing the
ImtI~1 ~appmg of t~e given application onto the hardware platform, and (2)
momtonng the. execution of the application and, at the end of each iteration through
the corresponding DAG, deciding ifand how the mapping ofthe application onto the
hardware platform should be changed based on information about the actual values
of the dynamic parameters. Examples of dynamic parameters include the contrast
level of an image, the number of objects in a scene, and the average size (in pixels)
of an object in a scene.

The initial mapping is selected from the MDDG Table for that DAG based on
menu-driven input from the application user about an initial value to assume for each
of the dynamic parameters. During execution of the application, the HC Kernel
Monitor receives actual updated values ofthe dynamic parameters at the end of each
iteration through the corresponding DAG. The HC Kernel Monitor will use the most
recent values of these dynamic parameters to estimate if changing the mapping will
reduce the expected execution time of the next iteration through the corresponding
~AG: It d~es this by comparing the actual execution time of the last completed
IteratI~n w~th the sum of an estimated time for reconfiguration plus the expected
execution time from the MDDG Table entry for the region that includes the most
recent dynamic parameter values known. Thus, this decision is made in real time
after all subtasks' implementations for the current iteration have finished executing
and before any subtask implementations begin to execute for the next iteration. If it
is desirable to change the mapping, then the HC Kernel Monitor will pass the

MDDG Table entry index to the Basic Kernel for use in the next iteration. If not, the
same mapping will continue to be used.

6.5.6 Genetic Algorithm Used for Semistatic Approach

The genetic algorithm described in Section 6.4 is enhanced for determining the off­
line mappings. Because each subtask can be mapped to multiple processors of the
same type, a new string, called the allocation string, is also incorporated .into e~ch

chromosome in the enhanced GA. Specifically, each entry i in the allocation strmg
represents the number ofprocessors of a certain type (specifi~d by the c~rresponding

entry in the matching string) assigned to the subtask Si. Typically, multiple subtasks
will be assigned to some of the same processors in a processor ~oup. ~e sUbt~sks

are then executed in a nonpreemptive manner based on the ordenng that IS specified
by the scheduling string.

The initial allocation string for each chromosome is generated by randomly
selecting a value from 1 to Po t (defined in Section 6.5.7.2) as the number of
processors allocated to each sUb~ask (for the processor ?r?u~ type ~pecified ~ the
matching string). The solution generated by a fast heuristic IS also included in the
initial population. The heuristic used is a fast static scheduling algorithm, called.t~e
earliest completion time (BCT) algorithm [57], which is similar to the LMT he~nstIc

discussed in Section 6.4.8 and is described in [35]. One chromosome WIth an
allocation string where each entry is the optimal number of processors for that
subtask (individually) is also included in the initial population. .

The mutation operator for the allocation string randomly selects an entry m the
string and locally optimizes it by changing the number of processors to a.value .that
gives the best total task execution time. The ~rossover operato~ ~or allocatIOn. stnngs
is the same as the one used for matching strmgs. The probability for mutation and
crossover for all strings in the experiments below is 0.4.

The GA is executed 10 times for each sample vector. To enhance diversity, only 5
of the 10 runs include a chromosome generated by the ECT algorithm in the initial
population.

6.5.7 Performance Results

6.5.7.1 Overview In [34, 35], an extensive performance study was performed
on a simulated HC Kernel implemented using the enhanced GA as the off-line
heuristic. The goal of the study was to evaluate the ideas underlying the particular
semistatic method of on-line use of off-line-derived mappings described earlier
(referred to an On-Off in subsequent sections). Four approaches were compared in
the experiments: (1) the On-Off approach; (2) the ECT algorithm as a dynam~c

scheduling algorithm; (3) the infeasible approach of using th~ GA as ~ dyna~Il1c

scheduling algorithm (referred to as GA On-line) and (4) an Ideal but ImpossIb~e

approach that uses the GA On-line with the exact (as yet unknown) dynamic
parameters for the iteration to be executed next (referred to as Ideal). In t~e latt~r ~o

schemes, a mapping determined for a previous iteration is also included m the initial



160 GENETIC ALGORITHM APPROACH

~opuI~tion of the current iteration, and reconfiguration times are ignored. These two
infeasible schemes were merely used as references for comparison to solution quality
of the former two approaches.

6.5.7.2 System Model To evaluate the On-Off semistatic mapping methodol­
ogy, an ex~ple architecture was chosen [35]. It consisted of 4 different types of
processors with 16 processors for each type (i.e., total number of processors in the
HC platform is 64). The processors within each type are connected via a 17-port
crossbar switch, whereas the 4 different types of processor are connected using a 4­
port crossbar switch. The execution time of a subtask and the communication time
between subtasks in an application task were modeled by equations that are
functions of the dynamic parameters. Specifically, the simple execution time
expression used in this task model is a version of Amdahl's law extended by a
term representing the parallelization overhead (e.g., synchronization and commu­
ni~atio~)".The serial and parallel fractions of a subtask are frequently represented
using similar models (e.g., [9, 43]). The execution-time expression for subtask s.
includes: (1) three generic dynamic parameters, ex, f3, and Y; (2) the number or
pro.cessors ~sed, p; and (3) three coefficients, a., bi' and Ci . The parallel fraction and
senal fraction of subtask s, are represented by a/xlp and c/y, respectively. The
parallelization overhead is represented by bif3logp. The relative speed ofa subtask s·
on a processor of type u is given by the heterogeneity factor hiu. The execution time
o~ subta.sk. s, is. then given by the expression: biu(aiexlp + bif3logp + ciy). By
differentiating this .e~uation and ~quat.ing it to z~ro, the optimal value ofp (Popt)
that leads to the mmrmum execution time for a given subtask is (a/f.)/(bif3).

It is assumed that the size of the data to be transferred between two subtasks s,
and Sj ~onsists of a fixed portion dij and a variable portion eij/l, where /l is a fourth
dynamic parameter. For communication between virtual machines whose processor
types are u and v, suv and Ruv are the message start-up time and the data transmission
rate, respectively. The intersubtask communication time c between subtask s. on a

• •• UV I

VIrtual machine WIth processors of type u and subtask s. on a virtual machine with
processors of type v is given by the expression: S + (d.. + e"/l)IR. . uv 1) 1) uv·

The example architecture and the simplified generic equations are used as input to
the ~imulated HC Kernel only. The On-Off method can be adopted for other target
archI~ectures an~ the ac.~al time equations specified by the application developer. In
practice, a particular single dynamic parameter can impact any subset of the
components of a given subtask's execution time equation.

6.5.7.3" Workload To investigate the performance of the On-Off approach,
randomly generated DAGs containing 10, 50, 100, or 200 were used. These DAGs
included regularly structured graphs (in-trees, out-trees, and fork-joins [34, 35]) and
randomly structured DAGs. For each size and structure, 10 different graphs were
generated, and thus a total of 160 graphs were used. The input to the simulated on­
line module consists of an execution profile that is composed of a certain number of
iterations of executing the DAG. Examples of two randomly generated execution
profiles containing 20 iterations are shown in Table 6.1. In each profile, the dynamic

6.5 SEMISTATIC MATCHING AND SCHEDULING OF SUBTASKS 161

TABLE 6.1 Execution Profiles of Dynamic Parameters

Profile A Profile B

Iteration ex f3 y J.l" Iteration ex f3 y J.l

0 3,000 15 300 60 0 3,000 15 300 60

1 2,821 15 287 63 1 4,309 15 409 82

2 2,949 12 302 65 2 2,635 7 268 43

3 3,073 12 286 68 3 3,894 6 361 27

4 3,228 11 273 71 4 2,241 8 197 39

5 3,090 13 258 67 5 1,265 12 287 52

6 3,256 11 272 70 6 1,699 16 420 75

7 3,424 16 259 73 7 1,138 11 282 50

8 3,621 16 271 75 8 1,543 12 153 67

9 3,811 13 260 78 9 2,205 17 225 97

10 4,014 17 245 81 10 3,198 10 332 51

11 4,229 13 257 77 11 4,678 18 477 73

12 3,994 19 242 80 12 2,588 8 315 48

13 4,179 15 253 83 13 1,358 16 211 67

14 4,386 15 264 78 14 1,794 17 307 98

15 4,208 13 249 82 15 2,605 11 163 61

16 4,016 14 236 77 16 3,719 17 240 87

17 3,835 16 226 81 17 2,478 9 332 53

18 4,026 19 238 84 18 1,507 16 466 76

19 4,258 16 251 88 19 2,081 8 243 50

20 4,479 15 265 92 20 3,053 17 149 70

Notes: Profile A, average percentage change in dynamic parameter values = 5%. Profile B, average

percentage change = 40%.

parameter values change from one iteration to another within certain ranges (ex:
[1,000-5,000], f3: [5-25], y: [100-500], and u: [20-100]). Specifically, the average
percentage change in dynamic parameter values in Profile A and Profile B are 5~
and 40%, respectively. In each profile, row i represents the values of the dynamic
parameters observed after execution of the DAG for iteration i is finished. Thus,
when execution of the task iteration begins, the on-line module does not know the
(simulated) actual values of the dynamic parameters for that iteration. The on-line
module has to determine a mapping for iteration i based on the dynamic parameter
values of iteration i-I. The methods for generating the DAGs and execution

profiles can be found in [34, 35]. . .
In generating the off-line mapping tables, each dynamic parameter range IS

partitioned into four equal intervals, creating 44 = 256 regions. Thus, the MDDG
Table stores 256 mappings. Ten sample vectors are randomly chosen from each
region. Because the GA for each sample vector is performed with 10 different initial
populations, the GA is executed 256 x 10 x 10 = 25,600 times to build eac?
MDDG Table. The reconfiguration time is assumed to be 1,000 for these expen-

ments.



162 GENETIC ALGORITHM APPROACH

6.5.7.4 Results First consider the results of scheduling a IO-node random task
DAG using the two execution profiles. The structure and parameters of an example
IO-node random DAG are shown in Fig. 6.12. Detailed results of using the four
approaches for Profile A are shown in Table 6.2. The definitions of the data columns
are (1) t(map[i - 1]): the task execution time of iteration i using the mapping chosen
at the end of iteration i-I, denoted by map[i - 1]; (2) f(tabU - 1]): the task
execution time of the mapping stored in the MDDG Table, denoted by tab[i - 1], of
the sample vector whose region includes the dynamic parameter values at iteration
i-I; (3) rc: the reconfiguration time, if remapping is performed; (4) t(ect[i - 1]):
the execution time of the mapping, denoted by ect[i - 1], determined using the BCT
algorithm with the parameters at iteration i-I; (5) t(ga[i - 1]): the task execution
time of iteration i by applying the mapping determined by the GA using the dynamic
parameter values from iteration i-I; and (6) t(ga[i]): the task execution time of
iteration i determined by the GA using the exact dynamic parameter values for
iteration i.

As can be seen from Table 6.2, the On-Off approach of dynamically using off­
line-derived mappings resulted in much smaller total execution time (1,115,545)
compared to that of using the ECT algorithm (1,668,705). The improvement is

Figure 6.12 (a) An example of a l G-node randomly generated task graph; (b) coefficients of
the subtask execution-time equations; (c) coefficients of the intersubtask communication data
equations; (d) heterogeneity factors hiu for the subtask execution-time equation.

~
a>
,D

~ ~
~

O-N~~~~~OO~~~~~~~~~~~~ ~

<
~

t:2
0
l-c
~

OJ)

.5
<IJ

::I
..=
~
t':l
l-cc
8
0

"C

=t':l
~
~

~"C
0 0
~ b
0 0...-4

~

;S
l-c.s
~

"3
<IJ
~

~

N
~

~
~

~

5i ai bi Ci

50 9 24 49
51 42 61 9
52 42 50 43
53 2 34 47
54 9 10 38
5S 33 59 76
56 63 45 29
57 56 14 54
5a 48 68 10
59 36 25 29

(b)

hiO hil hi2 hi3

So 0.4897 0.6815 0.7711 0.7503
5, 0.2828 0.7129 0.4511 0.2725
52 0.2575 0.8511 0.5096 0.8779
53 0.6337 0.6921 0.8479 0.3451
54 0.8283 0.2745 0.4114 0.2836
55 0.7267 0.3124 0.2600 0.3354
56 0.3932 0.7026 0.8072 0.8066
57 0.5276 0.7990 0.5081 0.7942
sa 0.5876 0.3863 0.6515 0.6472
59 0.8760 0.8794 0.6965 0.2407

(d)

dij eq

50-51 5 3
So -52 6 6
50 -53 2 1
50 -54 7 5
50 -55 3 7
50 -5a 5 6
5,-57 3 2
52-59 7 7
54 -56 4 2
56-57 5 6
56 -Sa 7 8
56-59 9 10

(c)

(a)

163



164 GENETIC ALGORITHM APPROACH
6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS 165

Figure 6:13 Comparison of normalized total task execution times for randomly structured
graphs with (a) Profile A and (b) Profile B.

approximately 33%. The On-Off approach consistently resulted in performance that
was comp~rable to the infeasible GA On-line scheme (about 2% worse), and was
only margmally outperfo~ed by. the Ideal (but impossible) method (about 5%
:vors~). Indeed, one very mterestmg observation is that at some iterations (i e
iterations 2 3 5 8 11 12 13 d 15) h . . .,, , , , ., , , an , t e On-Off approach generated a mapping

resulting in a shorter execution time than the GA On-line approach. Thus, the GA
On-line approach, because it computes a mapping optimized for the specific
dynamic parameter values from the previous iteration, is sometimes not as robust to
changes in the dynamic parameter values as the region-sampling techniques used by
the On-Off approach.

Figure 6.13a and b show the average normalized total execution times ofthe ECT,
On-Off, and GA On-line approaches with respect to the Ideal method for the
randomly structured graphs. The normalized total execution time ofeach test case is
calculated by dividing the total execution time of a particular approach (e.g., ECT)
by that of the Ideal method. Each point on the curves gives the average value of 10
test cases. As can be seen, the normalized total execution times are, in general,
slightly higher for Profile B than for Profile A. The normalized total execution times
of On-Off and GA On-line are consistently of similar values for all graph sizes.
However, the ECT approach performed much worse, especially for large graphs
(sizes 100 and 200). An explanation for this phenomenon is because the ECT
algorithm employs a strictly greedy scheduling method, the effect of making
mistakes at early stages of scheduling can be propagated to later stages. The adverse
impact of such a greedy approach can be more profound for larger graphs. For more
detailed results, the reader is referred to [34, 35].

6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS

6.5.8 Summary

This study focused on the design of a semistatic approach for using GA derived
mappings in real time. For the computational environment considered, an HC Kernel
was presented for making real-time, on-line, input-data-dependent remappings ofthe
application subtasks to the processors in the heterogeneous parallel hardware plat­
form using previously stored off-line, statically determined mappings. In particular,
it was shown how the HC Kernel can be used to create the MDDG Table off-line
using a GA with a novel dynamic parameter space partitioning and sampling tech­
nique, and then use it to make real-time, on-line decisions and selections of
mappings. The simulation results indicated that the semistatic On-Off approach is
effective in that it consistently outperformed a fast dynamic mapping heuristic by a
considerable margin, and gave reasonable performance even when compared to the
impossible approach ofusing the genetic algorithm on-line with future knowledge of
the next iteration's dynamic parameters. The On-Off approach reviewed here can
also be used for other application domains and classes of hardware platforms whose
characteristics are similar to those of the applications and platforms considered here.

6.6.1 Introduction

This study implemented 11 different static meta-task mapping heuristics, including 2
evolutionary approaches, so a comparison could be made of their performance using

.~_-~-_-.---.-X·-----·····- ...- .-- .-..---- --------

ECT -B-
On-Off --X-­

GA On-line --7IE-

60 80 100 120 140 160 180.200
graph size

(a)

ECT -B-
On-Oft --x-­

GAOn-line~

20 40 60 80 100 120 140 160 180 200
graph size

(b)

4
Q)

:§
3.5c

.Q
"5 30
Q)
x
Q)

(ij 2.5
E
"0 2Q)

.~rn
E 1.5
0c

<D

~ 4
c
.Q
"5 3.5
o
<D

~ 3
:s
,g 2.5
"0

~ 2
(ij

~ 1.5

1
o



166 GENETIC ALGORITHM APPROACH
6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS 167

TABLE 6.3 Sample 8 x 8 Excerpt from an ETC Matrix with Inconsistent, High-Task,

High-Machine Heterogeniety

4.6.3 Description of Heuristics

The definitions of the 11 static meta-task mapping heuristics are provided below.
First, some preliminary terms must be defined. Machine availability time, availij), is
the earliest time a machine j can complete the execution of all the tasks that
previously have been assigned to it. The completion time (ct) for a new task i on
machine j is ct(i, j) or the machine availability time plus the execution time of task i

TABLE 6.4 Sample 8 x 8 Excerpt from an ETC Matrix with Inconsistent, Low-Task,

Low-Machine Heterogeneity

Machines

512 268 924 494 611 606 921 209

8 16 23 19 27 22 19 8

228 238 107 180 334 88 192 125

345 642 136 206 559 349 640 664
Tasks

117 235 149 71 136 363 182 359

240 412 259 319 237 338 178 537

462 93 574' 449 421 559 487 298

119 36 224 194 176 156 182 192

inconsistent matrices that include a consistent submatrix. For the semiconsistent
matrices used here, the row elements in column positions {O, 2, 4, ... } of row i are
extracted sorted, and replaced in order, while the row elements in column positions
{1, 3, 5, ... } remain unordered. (That is, the even columns are consistent and the
odd columns are, in general, inconsistent.)

Sample ETC matrices are shown in Tables 6.3 and 6.4. All results in this study
used ETC matrices that were of size ITI = 512 tasks by IMI = 16 machines. While
it was necessary to select some specific parameter values to allow implementation of
a simulation, the characteristics and techniques presented here are completely
general. Therefore, if these parameter values do not apply to a specific situation of
interest, researchers may use other ranges, distributions, matrix sizes, etc.

251,140
1,769,184

11,392
1,206,158

88,737
1,066,470

5,039
1,052,728

1,340,988 740,028 1,749,673
2,286,210 2,779,669 220,536

401,682 218,826 242,699
351,387 925,070 2,097,914
576,238 223,453 256,804

1,624,942 2,070,705 1,977,650
29,817 1,143 44,249

1,192,052 1,922,914 701,336

Machines

815,309 891,469 1,722,197
933,830 2,156,144 2,202,018
479,091 150,324 386,338

1,400,308 2,378,363 2,458,087
576,144 1,475,908 424,448
43,439 1,355,855 1,736,937

7,453 3,454 23,720
1,682,338 1,978,545 788,342

436,735
950,470
453,126

1,289,078
646,129

1,061,682
10,783

1,940,704

Tasks

a common simulated HC environment [6]. Section 6.6.2 presents information about
how the ETC matrices were generated. Descriptions of the 11 heuristics imple­
mented appear in Section 6.6.3. Last, a sampling of results from the experiments are
shown in Section 6.6.4.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used
were generated using the following method. Initially, a ITI x 1 baseline column
vector, B, of floating-point values is created. Let cPb be the upper bound of the range
of possible values within the baseline vector. The baseline column vector is gener­
ated by repeatedly selecting a uniform random number, ~ E [1, cPb), and B(i) = x~

for 0 ::s i < ITI. Next, the rows of the ETC matrix are constructed. Each element
ETC(i, j) in row i of the ETC matrix is created by taking the baseline value, B(i), and
multiplying it by a uniform random number, x~J, which has an upper bound of cPr.
This new random number, x~J E [1, cPr), is called a row multiplier. One row requires
IMI different row multipliers, 0 <l < IMI. Each row i of the ETC matrix then can
be described as ETC(i, j) =B(i) x x~J, for 0 ::Sj < IMI. The baseline column itself
does not appear in the final ETC matrix.) This process is repeated for each row until
the IMI x ITI ETC matrix is full. Therefore any given value in the ETC matrix is
within the range [1, cPb X cPr)'

To evaluate the heuristics for different mapping scenarios, the characteristics of
the ETC matrix were varied based on several different methods from [3]. The
amount of variance among the execution times of tasks in the meta-task for a given
machine is defined as task heterogeneity. Task heterogeneity was varied by changing
the upper bound of the random numbers within the baseline column vector. High
task heterogeneity was represented by cPb = 3,000, and low task heterogeneity by
cPb = 100. Machine heterogeneity represents the variation that is possible among the
execution times for a given task across all the machines. Machine heterogeneity was
varied by changing the upper bound of the random numbers used to multiply the
baseline values. High machine heterogeneity values were generated using
cPr = 1,000, while low machine heterogeneity values used cP; = 10. These hetero­
geneous ranges are based on one type of expected environment for MSHN. The
ranges were chosen to reflect the fact that in real situations there is more variability
across task execution times on a given machine than the execution time for a single
task across different machines.

To further vary the ETC matrix in an attempt to capture more aspects of realistic
mapping situations, different ETC matrix consistencies were used. An ETC matrix is
said to be consistent if whenever a machine j executes any task i faster than machine
k, then machine j executes all tasks faster than machine k [3]. Consistent matrices
were generated by sorting each row of the ETC matrix independently. In contrast,
inconsistent matrices characterize the situation where machine j is faster than
machine k for some tasks, and slower for others. These matrices are left in the
unordered, random state in which they were generated. Semiconsistent matrices are

6.6.2. ETC Matrices



168 GENETIC ALGORITHM APPROACH 6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS 169

on machine j, i.e., ct(i, j) = avail(j) + ETC(i, j). The performance criterion used to
compare the results of the heuristics is the maximum value ofct(i,j), for 0 ::s i < ITI
and 0 ::Sj < IMI, for each heuristic, also known as the makespan [39]. Each heuristic
is attempting to minimize the makespan (i.e., finish execution of the meta-task as
soon as possible).

The descriptions below implicitly assume that the machine availability times are
updated after each task is mapped. For cases when tasks can be considered in an
arbitrary order, the order in which the tasks appeared in the ETC matrix was used.
Some of the heuristics listed below had to be modified from their original imple­
mentation to better handle the environment under consideration.

For many of the heuristics, there are control .parameter values and/or control­
function specifications that can be selected for a given implementation. For the
studies here, such values and specifications were selected based on experimentation
and/or information in the literature. A more thorough description of each of the
heuristics and some of the intuition behind them, along with a listing of some
alternative implementations, can be found in [6].

OLB Opportunistic load balancing (OLB) assigns each task, in arbitrary order,
to the next available machine, regardless of the task's expected execution time
on that machine [2, 21, 22].

UDA In contrast to OLB, user-directed assignment (UDA) assigns each task, in
arbitrary order, to the machine with the best expected execution time for that
task, regardless of that machine's availability. UDA is sometimes referred to as
limited best assignment (LBA), as in [2, 21]. In general, this heuristic is
obviously not applicable to HC environments characterized by consistent ETC
matrices.

Fast Greedy Fast Greedy assigns each task, in arbitrary order, to the machine
with the minimum completion time for that task [2].

Min-min The Min-min heuristic begins with the set U of all unmapped tasks.
Then, the set of minimum completion times, MCT = {met, : met, =
minO:9"<IMI(ct(i,j)), for each i E U}, is found. Next, the task from U with
the overall minimum completion time is selected and assigned to the corre­
sponding machine (hence the name Min-min). Last, the newly mapped task is
removed from U, and the process repeats until tasks are mapped (i.e., U is
empty) [2, 21, 29].

Max-min The Max-min heuristic is very similar to Min-min. The Max-min
heuristic also begins with the set U of all unmapped tasks. Then, the set of
MCTs is found. Next, the task from U with the overall maximum completion
time is selected and assigned to the corresponding machine (hence the name
Max-min). Last, the newly mapped task is removed from U, and the process
repeats until all tasks are mapped (i.e., U is empty) [2, 21, 29].

Greedy The Greedy heuristic is literally a combination of the Min-min and
Max-min heuristics. The Greedy heuristic performs both of the Min-min and
Max-min heuristics, and uses the better solution [2, 21].

GA The genetic algorithm (GA) implemented in this study was adapted from
[58] (see Section 6.4 for a description of [58]) to be applied to meta-tasks, and
unless otherwise noted, uses similar values and techniques. The GA operates
on a population of200 chromosomes for a given meta-task. Each chromosome
is a ITI x 1 vector, where position i (0 :s i < IT!) represents task i, and the
entry in position i is the machine to which the task has been mapped. The
makespan is the fitness value. The initial population is generated using two
methods: (1) 200 randomly generated chromosomes from a uniform distribu­
tion, or (2) one chromosome (seed) that is the Min-min solution and 199
random solutions (mappings). The probability of crossover was 60% and
mutation was 40%. The stopping criteria that usually occurred in testing were
"no changes in the elite chromosome in 150 iterations". Eight GA runs were
performed (four times with different initial populations from each method),
and the best of the eight mappings is used as the final solution

SA Simulated annealing (SA) is an iterative technique that considers only one
possible solution (mapping) for each meta-task at a time. This technique uses
the same representation for a solution as the chromosome for the GA.
Mutations of the current chromosome are also performed similarly to the GA.

The corresponding selection process for SA uses a procedure that prob­
abilistically allows poorer solutions to be accepted to attempt to obtain a better
search of the solution space (e.g., [13, 33, 42]). This probability is based on a
system temperature that decreases for each iteration. As the system tempera­
ture "cools," it is more difficult for currently poorer solutions to be accepted.
The initial system temperature is the makespan of the initial (random)
mapping.

Therefore, the SA begins with the current chromosome, mutates it, and then
uses the system temperature to determine whether to accept or reject this new
solution. After each mutation, the system temperature is decreased by 10%.
This represents one iteration of SA. The heuristic stops when there is no
change in the makespan of the solution for 150 iterations or the system
temperature reaches zero.

GSA The genetic simulated annealing (GSA) heuristic is a combination of the
GA and SA techniques [10, 45]. In general, GSA follows procedures similar to
the GA just outlined. GSA operates on a population of200 chromosomes, uses
a Min-min seed in four out of eight initial populations, and performs similar
mutation and crossover operations. However, for the selection process, GSA
uses the SA cooling schedule and system temperature, and a simplified SA
decision process for accepting or rejecting new chromosomes. GSA also
employs elitism to guarantee that the best solution always remains in the
population.

Tabu Tabu search is a solution space search that keeps track of the regions of
the solution space that have already been searched, so as not to repeat a search
near these areas [15,24]. A solution (mapping) uses the same representation as
a chromosome in the GA approach.



170 GENETIC ALGORITHM APPROACH 6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS 171

The implementation of Tabu search used here begins with a random
mapping, generated from a uniform distribution. Starting with the :first task
in the mapping, task i = 0, each possible pair of tasks is formed, (i,j) for
o:s i < ITI - 1 and i <j < ITI. As each pair of tasks is formed, they
potentially exchange machine assignments. This constitutes a short hop.
After each exchange, the new makespan is evaluated. If the new makespan
is an improvement, the new exchange is retained, forming a new mapping (a
successful short hop). New short hops are generated until a maximum number
of successful hops have been made (see next paragraph) or all combinations of
task pairs have been exhausted with no further improvement.

At this point, the final mapping from the local solution space search is
added to the tabu list. Next, a new random mapping is generated, and it must
differ from each mapping in the tabu list by at least half of the machine
assignments (a successful long hop). Then the short hops are repeated. The
final stopping criterion for the heuristic is a total of 1200 successful hops
(short and long combined). Then, the best mapping from the tabu list is the
final answer.

A * A * has been applied to many other task-allocation problems (e.g., [11, 31,
42, 44D. The technique used here is similar to [11].

A* is a tree search beginning at a root node that is a null solution. As the
tree grows, intermediate nodes represent partial solutions (a subset oftasks are
assigned to machines). The partial solution of a child node has one more task
mapped than the parent node. Call this additional task a. Each parent node
generates IMI children, one for each possible mapping of a. Based on
experimentation and a desire to keep execution time of the heuristic tractable
the maximum number of leafnodes in the tree at anyone time is limited in this
study to nmax = 1,024.

Each node, n, has a costfunction,f(n), associated with it. The cost function
is an estimated lower bound on the makespan of the best solution, which
includes the partial solution represented by node n. (The lower bound on the
time for executing the remaining tasks includes the assumptions that each task
is assigned to its preferred machine and that all machines are equally utilized.)

Thus, beginning with the root, the node with the minimumf(n) is expanded
by its IMI children, until nmax leaf nodes are created. From that point on, any
time a node is added, the tree is pruned by deleting the leaf node with the
largest f(n). This process continues until a leaf node representing a complete
mapping is reached. Note that if the tree is not pruned, this method is
equivalent to an exhaustive search.

6.6.4 Results

An interactive software tool has been developed that allows simulation, testing, and
demonstration of the heuristics examined in Section 6.6.3. This software tool
operates on the meta-tasks defined by the ETC matrices described in Section 6.6.2.

The software allows a user to specify ITI and IMI, to select which types of ETC
matrices to use, and to choose which heuristics to execute. It then generates the
specified ETC matrices, executes the desired heuristics, and displays the resu~ts,
similar to Fig. 6.14. The results discussed in this section were generated usmg

portions of this software. ... . .
When comparing mapping heuristics, the execution time of the heuns~cs

themselves is an important consideration. For the heuristics listed, the execution
times varied greatly. The experimental results discussed below were obtained on a
Pentium II 400-MHz processor with I GB of RAM. Each of the simpler heuristics
[OLB, UDA, Fast Greedy, and Greedy (which includes both Min-min and Max­
min)] executed in a few seconds for one ETC matrix with ITI = 512 and IMI = 16.
For the same-sized ETC matrix, SA and Tabu, both of which manipulate a single
solution during an iteration, averaged less than 30 s. GA and GSA required
approximately 60 s per matrix because they manipulate entire populations, and A*
required about 20 min per matrix. . .

The resulting meta-task execution times (makespans) from the simulations of
sample HC environments are shown in Fig. 6.14. All experimental results represent
the execution time of a meta-task (defined by a particular ETC matrix) based on the
mapping found by the heuristic specified, averaged over 100 different ETC matrices
of the same type (i.e., 100 mappings). For each heuristic, the range bars show the
minimum and maximum meta-task execution times over the 100 mappings (l00
ETC matrices) used to compute the average meta-task execution time.

For the four consistent cases (i.e., each combination of high and low task and
machine heterogeneity), the UDA algorithm mapped all tasks to the same machine,
resulting in the worst performance by an order of magnitude (therefore, UDA is not
included in Fig. 6.14a). GA performed the best for the consistent cases. This was
due in large part to the good performance of the Min-min heuristic. The best GA
solution always came from one of the populations that had been seeded with the
Min-min solution. As is apparent in the figure, Min-min performed very well on its
own, giving the second best results. However, the mutation, crossover, and s~lection

operations of the GA were always able to improve on this solution. GSA, WhICh also
used a Min-min seed, did not always improve upon the Min-min solution. Because
of the probabilistic procedure used during selection, GSA would sometimes accept
poorer intermediate solutions. These poorer intermediate solutions never led to
better final solutions; thus, GSA gave poorer results than the GA. The performance
of A* was hindered because the estimates made by f(n) are not as accurate for
consistent cases as they are for inconsistent and semiconsistent cases.

These results suggest that if the best overall solution is desired, the GA should be
employed. However, the improvement of the GA solution over the Min-min solution
was never more than 10%. Therefore, the Min-min heuristic may be more appro­
priate in certain situations, given the difference in execution times of the two

heuristics.
For the four inconsistent test cases, UDA performs very well while the perfor-

mance of OLB degrades. The OLB performance degradation for the inconsistent



172 GENETIC ALGORITHM APPROACH 6.6 STATIC MATCHING AND SCHEDULING FOR META-TASKS 173

Figure 6.~4 Met~-task mapping results for 512 low-heterogeneity tasks and 16 high­
heterogeneity machmes for ETCs that are (a) consistent, (b) inconsistent, and (c) semiconsis­
tent. The graphs show the mean and range over 100 trials.

(c)

6.6.5 Summary

The goal of this study was to provide insights and a basis for comparison of 11
different heuristics for the mapping of static meta-tasks in different HC environ­
ments. The characteristics of the ETC matrices used as input for the heuristics and
the methods used to generate them were specified. The implementation of a
collection of 11 heuristics from the literature was described. The results of the
mapping heuristics were discussed, revealing the best heuristics to use in certain

cases can likely be attributed to more "unfavorable" assignments occurring as
compared to the consistent cases. For example, for the consistent cases, one machine
executes all of the tasks quickest, so more tasks will be assigned to this machine,
which is again the best assignment for that task. This phenomenon is less likely to
occur for the inconsistent cases because there is no one "best" machine for all of the
tasks. In contrast, UDA improves because the "best" machines are distributed across
the set ofmachines, thus task assignments will be more evenly distributed among the
set of machines, avoiding load imbalance (to some extent, this is due to the random
distributions used in the simulation). Similarly,Fast Greedy and Min-min performed
very well, and slightly outperformed UDA, because the machines providing the best
task completion times are more evenly distributed among the set of machines. Min­
min was also better than Max-min for all of the inconsistent cases. The advantages

.Min-min gains by mapping "best-case" tasks first outweighs the possible savings in
"packing" that Max-min has by mapping "worst-case" tasks first [6].

Tabu gave the second poorest results for the inconsistent cases, .with makespans
that were always at least 20% worse than Max-min (the third poorest heuristic in
terms of mean performance). Inconsistent matrices generated more successful short
hops than the associated consistent matrices. Therefore, fewer long hops were
generated and less of the solution space was searched, resulting in poorer solutions.

GA and A* had the best average makespans, and were usually within a small
constant factor of each other. GA again benefited from having the initial Min-min
mapping. A* did well because, if the tasks get more evenly distributed among the
machines, this more closely matches the lower-bound estimates f(n).

For semiconsistent cases with high machine heterogeneity, the UDA heuristic
again gave the worst.results. Intuitively, UDA is suffering from the same problem as
in the consistent cases: at least half of all tasks are getting assigned to the same
machine. OLB does poorly for high machine heterogeneity cases because worst-case
matchings will have higher execution times for high machine heterogeneity. For low
machine heterogeneity, the worst-case matchings have a much lower penalty. The
best heuristics for the semiconsistent cases were Min-min and GA. This is not
surprising because these were two of the best heuristics from the consistent and
inconsistent tests, and semiconsistent matrices are a combination of consistent and
inconsistent matrices. Min-min was able to do well because it searched the entire
row for each task "and assigned a high percentage of tasks to their first-choice
machine. GA was robust enough to handle the consistent components of the
matrices, and did well for the same reason mentioned for inconsistent matrices.

(b)

(a)

_ 7.0E+05 ,------------ --,
~

CD 6.0E+05 .-=-----------------------1
E
~ 5.0E+05
o
5 4.0E+05o

~ 3.0E+05
.:Y:

Jg 2.0E+05_
cb
CD 1.0E+05
E

O.OE+OO

o-$J 0~ ~<;- ~~ b-\
~.....(j-0 ~~ ~# (j-0

0

<r.'li'
_ 1.0E+06 ,------------- ---,

~ 9.0E+05 1"-::-.---------------------1
CD
.S 8.0E+05
~ 7.0E+05
g 6.0E+05
:J

g 5.0E+05
~ 4.0E+05

.:Y:
~ 3.0E+05
&; 2.0E+05

~ 1.0E+05
O.OE+OO

o-$J

_ 1.0E+06 r-----"'---------------------.
~ 9.0E+05 ,----r--------------------l
Q)

.S 8.0E+05 t-----;::t::-----------:..----------l
~ 7.0E+05 -+--1-­

:§ 6.0E+05*5.0E+05
CD 4.0E+05
~

~ 3.0E+05
ctl 2.0E+05
~ 1.0E+05

O.OE+OO

o'v~



174 GENETIC ALGORITHM APPROACH REFERENCES 175

environments. For the situations, implementations, and parameter values used here,
GAwas the best heuristic for most cases, followed closely by Min-min, with A* also
doing well for inconsistent matrices. The comparisons in this study can be used by
researchers as a baseline for evaluating the efficacy of new techniques.

6.7 SUMMARY

In a mixed-machine, distributed, heterogeneous computing environment, there is a
suite of high-performance machines with different computational capabilities. These
machines are interconnected by high-speed links. Such a suite of machines can be
used to execute a single application, whose subtasks have diverse execution
requirements, or to execute a meta-task, which is a collection of independent tasks
with different computational needs.

For the single-application case, subtasks are assigned to and executed on the
machines that will result in a minimal execution time for the overall task, consid­
ering subtask computation time and intermachine communication overhead. A GA­
based approach was described for matching subtasks to machines and scheduling the
execution of the subtasks. This approach is used off-line and is based on expected
computation and communication times for the subtasks. A dynamic-parameter­
sampling-based method for using this approach on-line in certain application
domains was also presented. This on-line adaptation may be helpful when compu­
tation and communication times can vary significantly from the expected values,
depending on the input data being processed.

For the meta-task case, the goal is to match each task to a machine in the suite so
that the execution time for the entire meta-task is minimized, In the situation
considered here, the matching process occurs off-line and plans the machine
assignments and execution schedule for a meta-task for a later time interval (e.g., a
large set of production jobs that will execute the next day). In this situation, the
matching process can also be used to determine if a proposed set of machines can
perform the meta-task within some time limit. The use of GA-based approach for
this environment was discussed.

In summary, much work has been done using GAs of various types to solve the
problem of matching and scheduling of tasks and meta-tasks in a mixed-machine
distributed, heterogeneous computing environment. This chapter has discussed three
~es of genetic algorithms that have been studied to solve this problem. Each
nnplementation has particular specifications and qualifications that were being met.
In all cases, the genetic algorithm proved to be a useful method for solving the
making and scheduling problem being researched.

ACKNOWLEDGMENTS

This research was supported by the DARPA/ITO Quorum Program through GSA subcontract
number GS09K99BH0250, an AFCEA Fellowship, the Hong Kong Research Grants Council

under contract numbers HKU7124/99E and HKUST6076/97E, and a research initiation grant
from the HKU CRCG.

The authors thank N. Beck and A. Naik for their useful comments. We also acknowledge
the contributions of our coauthors of the papers [6, 8, 35, 58], which form the basis for this
chapter: I. Ahmad, N. Beck, L.L. Boloni, J.R. Budenske, R.E Freund, A. Ghafoor, D.
Hensgen, M. Maheswaran, R.S. Ramanujan, AI. Reuther, J.P. Robertson, R. Roychowdhury,
L. Wang, and B. Yao.

REFERENCES

1. H. M. Alnuweiri and V. K. Prasanna, Parallel architectures and algorithms for image
component labeling. IEEE Trans. Pattern Anal. Machine Intelligence, 14(10):1014-1034,
Oct. 1992.

2. R. Armstrong, D. Heusgen, and T. Kidd, The relative performance of various mapping
algorithms is independent of sizable variances in run-time predictions. In Proceedings of
the Seventh IEEE Heterogeneous Computing Workshop (HCW '98), pp. 79:""'87, Mar. 1998.

3. R. Armstrong, Investigation of Effect ofDifferent Run-Time Distributions on SmartNet
Performance. Thesis, Department of Computer Science, Naval Postgraduate School
Monterey, CA, Sept. 1997.

4. P. Baglietto, M. Maresca, M. Migliardi, and N. Zingirian, Image processing on high­
performance RISe systems. Proc. IEEE, 84(7):917-930, July 1996.

5. T. D. Braun, H. J. Siegel, N. Beck, L. L. B5loni, M. Maheswaran,A 1. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, A taxonomy for describing matching and scheduling
heuristics for mixed-machine heterogeneous computing systems. Proceedings of the
Seventh IEEE Symposium on Reliable Distributed Systems, 1998, pp. 330-335, Oct. 1998.

6. T. D. Braun, H. 1. Siegel, N. Beck, L. L. B61oni, M. Maheswaran, A I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, A comparison study of
static mapping heuristics for a class ofmeta-tasks on heterogeneous computing system. In
Proceedings ofthe Eighth IEEE Workshop on Heterogeneous Computing Systems (HCW
'99), pp. 15-29, Apr. 1999.

7. 1. R. Budenske, R. S. Ramanujan, and H. 1. Siegel, Modeling ATR applications for
intelligent execution upon a heterogeneous computing platform. In Proceedings of 1997
IEEE International Conference on Systems, Man and Cybernetics, pp. 649-656, Oct.
1997.

8. 1.R. Budenske, R. S. Ramanujan, and H. J. Siegel, A method for the on-line use ofoff-line
derived remappings of iterative automatic target recognition tasks onto a particular class of
heterogeneous parallel platforms. Jour. Supercomputing, 12(4):387-406, Oct. 1998.

9. E. A Carmona and M. D. Rice, Modeling the serial and parallel fractions of a parallel
program. Parallel and Distributed Computing, 13(3):286-298, Nov. 1991.

10. H. Chen, N. S. Flann, and D. W.Watson, Parallel genetic simulated annealing: A massively
parallel SIMD approach, IEEE Trans. Parallel and Distributed Computing, 9(2):126-136,
Feb. 1998.

11. K. Chow and B. Liu, On mapping signal processing algorithms to a heterogeneous
multiprocessor system. In 1991 International Conference on Acoustics, Speech, and
Signal Processing (ICASSP '91), Vol. 3, pp. 1585-1588, May 1991.



176 GENETIC ALGORITHM APPROACH
REFERENCES 177

12. T. H. Connen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge
University Press, Cambridge, MA, 1992.

13. M. Coli and P. Palazzari, Real time pipelined system design through simulated annealing.
Jour. Sys. Architecture, 42(6-7):465-475, Dec. 1996.

14. L. Davis, ed., Handbook ofGenetic Algorithms, Van Nostrand Reinhold, New York, 1991.

15. 1.De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, Improving search by incorporating
evolution principles in parallel tabu search. In 1994 IEEE Conference on Evolutionary
Computation, Vol. 2, pp. 823-828, 1994.

16. T. H. Einstein, Mercury computer systems' modular heterogeneous RACE multicomputer.
In Proceedings of the Sixth IEEE Heterogeneous Computing Workshop (HCW '97), pp.
60-71, April 1997. .

17. M. M. Eshaghian, ed., Heterogeneous Computing. Artech House, Northwood, MA, 1996.

18. M. M. Eshaghian and M. E Shaaban, Cluster-M programming paradigm. Int. Jour. High
Speed Computing, 6(2):287-309, June 1994.

19. D. Fernandez-Baca, Allocating modules to processors in a distributed system. IEEE Trans.
Software Eng. SE-15(11):1427-1436, Nov. 1989.

20. R. F. Freund, Optimal selection theory for superconcurrency. Supercomputing '89, pp.
699-703, Nov. 1989.

21. R. F. Freund, M. Gherrity, S. Ambrosius. M. Campbell, M. Halderman, D. Hensgen, E.
Keith, T. Kidd, M. Kussow, 1. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. 1. Siegel,
Scheduling resources in multi-user heterogeneous, computing environments with Smart­
Net. In Proceedings ofthe Seventh IEEE Heterogeneous Computing Workshop (HCW '98),
pp. 184-199, March 1998.

22. R. F. Freund and H. 1. Siegel, Heterogeneous processing, IEEE Comuputer, 26(6):13-17,
June 1993.

23. A. Ghafoor and 1.Yang, Distributed heterogeneous supercomputing management system.
IEEE Computer, 26(6):78-86, June 1993.

24. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston, MA, 1997.

25. D. B. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

26. D. A. Hensgen, T. Kidd, M. C. Schnaidt, D. St. John, H. 1. Siegel, T. D. Braun, M.
Maheswaran, S. Ali, 1.-K. Kim, C. Irvine, T. Levin, R. Wright, R. F. Freund, M. Godfrey,
A. Duman, P. Carff, S. Kidd, V. Prasanna, P. Bhat, and A. Alhusaini, An overview of
MSHN: A management system for heterogeneous networks. In Proceedings ofthe Eighth
IEEE Workshop on Heterogeneous Computing Systems (HCW '99), pp. 184-198, April
1999.

27. 1.H. Holland, Adaptation in Natural and Artificial Systems. University ofMichigan Press,
Ann Arbor, MI, 1975.

28. R. Hoebelheinrich and R. Thomsen, Multiple crossbar network integrated supercomputing
framework, Supercomputing '89, pp. 713-720, Nov. 1989.

29. O. H. Ibarra and C. E. Kim, Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Jour. ACM, 24(2):280-289, April1977.

30. M. A. Iverson, F. Ozguncr, and G. 1. Follen, Parallelizing existing applications in a
distributed heterogeneous environment. In Proceedings ofthe Fifth IEEE Heterogeneous
Computing Workshop (HCW '95), pp. 93-100, April 1995.

31. M. Kafil and 1. Ahmad, Optimal task assignment in heterogeneous distributed computing
systems. IEEE Concurrency, 6(3):42-51, July-Sept. 1998.

32. A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, Heterogeneous computing:
Challenges and opportunities. IEEE Computer, 26(6):18-27, June 1993.

33. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by simulated annealing.
Science, 220(4598):671-680, May 1983.

34. Y-K. Kwok, A. A. Maciejewski, H. 1. Siegel, A. Ghafoor, and 1.Ahmad, Evaluation of a
semi-static approach to mapping dynamic iterative tasks onto heterogeneous computing
systems. In Fourth International Symposium on Parallel Architectures, Algorithms, and
Networks (I-SPAN'99), pp. 204-209, June 1999.

35. Y-K. Kwok, A. A. Maciejewski, H. 1. Siegel, A. Ghafoor, and 1. Ahmad, Implementation
and Performance Study ofa Semi-static Approach to Mapping Dynamic Iterative Tasks onto
Heterogeneous Computing Systems. Technial report HKUST-CS99-15, Department of
Computer Science, The Hong Kong University of Science and Technology, in preparation.

36. M. Maheswaran, T. D. Braun, and H. .1.Siegel, Heterogeneous distributed computing. In 1.
Webster, ed., Encyclopedia ofElectrical Engineering and Electronics, Vol. 8, pp. 679­
690, Wiley, New York, 2000.

37. M. Maheswaran, S. Ali, H. 1. Siegel, D. Hensgen, and R. F.Freund, Dynamic mapping ofa
class of independent tasks onto heterogeneous computing systems. Jour. Parallel and
Distributed Computing, 59(2):107-121, Nov. 1999.

38. B. Narahari, A. Youssef, and H. A. Choi, Matching and scheduling in a generalized
optimal selection theory. In Proceedings of the Third IEEE Heterogeneous Compuing
Workshop (HCW '94), pp. 3-8, April 1994.

39. M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1995.

40. 1. L. Ribeiro Filho and P. C. Treleaven, Genetic-algorithm programming environments.
IEEE Computer, 27(6):28-43, June 1994.

41. G. Rudolph, Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural
Networks, 5(1):96-101, Jan. 1994.

42. S. 1. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

43. K. C. Sevcik, Characterizations ofparallelism in applications and their use in scheduling.
Performance Evaluation Rev., 17(1):171-180, May 1989.

44. c.-C Shen and W-H. Tsai, A graph matching approach to optimal task assignment in
distributed computing system using a minmax criterion. IEEE Trans. Computers,
C-34(3):197-203, March 1985.

45. P. Shroff, D. W Watson, N. S. Flann, and R. F. Freund, Genetic simulated annealing for
scheduling data-dependent tasks in heterogeneous environments. In Proceedings of the
Fifth IEEE Heterogeneous Computing Workshop (HCW '96), pp. 98-104, April 1996.

46. H. 1.Siegel, 1.K. Antonio, R. C. Metzger, M. Tan, and L. A. Li, Heterogeneous computing.
In A. Y Zomaya ed., Parallel and Distributed Computing Handbook, pp. 725-761,
McGraw-Hill, New York, 1996.

47. H. 1. Siegel, H. G. Dietz and 1.K. Antonio, Software support for heterogeneous computing.
In A. B. Tucker Jr. Ed., The Computer Science and Engineering Handbook, pp. 1886­
1909, CRC Press, Boca Raton, FL, 1997.



178 GENETIC ALGORITHM APPROACH

48.H. Singh and A. Youssef, Mapping and scheduling heterogeneous task graphs using
genetic algorithms. In Proceedings ofthe Fifth IEEE Heterogeneous Computing Workshop
(HCW '96), pp. 86-97, Apri11996.

49. M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey. IEEE Computer, 27(6):17­
26, June 1994.

50. V. S. Sunderam, Design issues in heterogeneous network computing. In IEEE Workshop on
Heterogeneous Processing (rev. Ed.), pp. 101-112, March 1992.

51. M. Tan, H. 1. Siegel, 1. K. Antonio, and Y. A. Li, Minimizing the application execution
time through scheduling of subtasks and communication traffic in a heterogeneous
computing system. IEEE Trans. Parallel and Distributed Sys., 8(8):857-871, Aug. 1997.

52. Y. G. Tirat-Gefen and A. C. Parker, MEGA An approach to system-level design of
application-specific heterogeneous multiprocessors. In Proceedings of the Fourth IEEE
Heterogeneous Computing Workshop (HCW (96), pp. 105-117, April 1996.

53. D. Tolmie and 1. Renwick, HiPPI: Simplicity yields success. IEEE Network, 7(1):28-32,
Jan. 1993.

54. 1.G. Verly and R. I. Delanoy, Model-based automatic target recognition (ATR) system for
forwardlooking groundbased and airborne imaging laser radars (LADAR). Proc. IEEE,
84(2): 126-163, Feb. 1996.

55. D. W Watson, 1.K. Antonio, H. 1.Siegel, and M. 1.Atallah, Static program decomposition
among machines in an SIMD/ SPMD heterogeneous environment with non-constant mode
switching cost. In Proceedings of the Third IEEE Heterogeneous Computing Workshop
(HCW (94),pp. 58-65, Apri11994.

56. D. W Watson, 1.K. Antonio, H. 1.Siegel, R. Gupta, and M. 1.Atallah, Static matching of
ordered program segments to dedicated machines in a heterogeneous computing environ­
ment. In Proceedings ofthe Fifth IEEE Heterogeneous Computing Workshop (HCW (96),
pp. 24-37, April 1996.

57. Q. Wang and K. H. Cheng, List scheduling of parallel tasks. Information Processing Lett.,
37(5):291-297, March 1991.

58. L. Wang, H. 1. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-based
approach. Jour. Parallel and Distributed Computing, 47(1):1-15, Nov. 1997.

59. C. C. Weems, G. E. Weaver, and S. G. Dropsho, Linguistic support for heterogeneous
parallel processing: A survey and an approach. In Proceedings of the Third IEEE
Heterogeneous Computing Workshop (HCW (94),pp. 81-88, April 1994.

60. D. Whitley, The GENITOR algorithm and selection pressure: Why rank-based allocation
ofreproductive trials is best. In 1989 International Conference on Genetic Algorithms, pp.
116-121, Morgan Kaufmann, June 1989.

61. A. Zomaya, C. Ward, and B. Macey, Genetic scheduling for parallel processor systems:
Comparative studies and performance issues, IEEE Trans. Parallel and Distributed Sys.,
10(8):795-812, Aug. 1999.

CHAPTER 7

Evolving Cellular Automata-Based
Algorithms for Multiprocessor
Scheduling

F. SEREDYNSKI

Polish Academy of Sciences

7.1 INTRODUCTION

Constructing efficient algorithms for scheduling tasks of a parallel pro~am in a
multiprocessor architecture remains an unsolved issue in parallel computing. The
problem of multiprocessor scheduling, even limited to a two-proc~ssor systems ?ut
any parallel program, is known to be NP complete [4, 11]..Despite m~y studies,
progress in this area due to an NP completeness of a scheduling problem IS ~low and
insufficient to automatize corresponding functions of operating systems designed for

multiprocessor systems.
Current works [1, 4, 11, 16] concerning the scheduling problem are focused

either on selecting problems for which exact solutions can be constructed or
designing heuristic algorithms to find near-optimal solutions for more general cases.
In particular, scheduling algorithms based on applying techniques derived from
nature, such as simulated annealing, genetic algorithms, or neural networks [6, :3,
15], belong to the latter area of research. While most of the propos~d schedul~ng
algorithms are sequential algorithms, a new direction in this area IS developing
parallel and distributed scheduling algorithms [2, 20]. . . .

In this chapter I develop parallel and distributed scheduling algonthms usm? a
recent and very promising technique based on combining evolutionary computation
and cellular automata (CAs). CAs present a distributed system of single, locally
interacting units that are able to produce global behavior. CAs can be considered a
model ofnaturally existing systems produced by natural evolution. Natural evolution
has produced such systems that are capable of producing globally coordinated
information processing, unguided by any global criterion or central control. The

Solutions to Parallel and Distributed Computing Problems, Edited by A. Zomaya, F.Ercal, and S. Olariu
ISBN 0-471-35352-3 © 2001 John Wiley & Sons, Inc.

179




