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ABSTRACT

NEURALATOR 5000: EXPLORING AND ENHANCING THE BOLD5000 FMRI DATASET

TO IMPROVE THE ROBUSTNESS OF ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) originally drew their inspiration from biological constructs.

Despite the rapid development of ANNs and their seeming divergence from their biological roots,

research using representational similarity analysis (RSA) shows a connection between the internal

representations of artificial and biological neural networks. To further investigate this connection,

human subject functional magnetic resonance imaging (fMRI) studies using stimuli drawn from

common ANN training datasets are being compiled. One such dataset is the BOLD5000, which

is composed of fMRI data from four subjects who were presented with stimuli selected from the

ImageNet, Common Objects in Context (COCO), and Scene UNderstanding (SUN) datasets. An

important area where this data can be fruitful is in improving ANN model robustness. This work

seeks to enhance the BOLD5000 dataset and make it more accessible for future ANN research by

re-segmenting the data from the second release of the BOLD5000 into new ROIs using the vcAtlas

and visfAtlas visual cortex atlases, generating representational dissimilarity matrices (RDMs) for

all ROIs, and providing a new, biologically-inspired set of supercategory labels specific to the

ImageNet dataset. To demonstrate the utility of these new BOLD5000 derivatives, I compare

human fMRI data to RDMs derived from the activations of four prominent vision ANNs: AlexNet,

ResNet-50, MobileNetV2, and EfficientNet B0. The results of this analysis show that the old,

less-advanced AlexNet has a higher neuro-similarity than the much more recent, and technically

better-performing models. These results are further confirmed through the use of Fiedler vector

analysis on the RDMs, which shows a reduction in the separability of the internal representations

of the biologically inspired supercategories.
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Chapter 1

Introduction

In the beginning, artificial neural networks designed for machine vision tasks drew their in-

spiration directly from the behavior of biological neurons [1]. Today, the link between the design

of cutting-edge machine vision models and neurobiology is tenuous at best. Although researchers

may no longer be looking to the natural world for their inspiration, that does not mean the connec-

tion between the artificial and the biological ends there.

Investigations into similarities between artificial neural networks and biological brains have

been unfolding since the early days of the neural network boom [2–5]. Using representational sim-

ilarity analysis (RSA) [6], researchers have shown that modern artificial neural networks (ANNs)

develop internal geometric representations to visual stimuli similar to the neuro-biological activa-

tions seen in the brains of primates and other mammals [7–17].

It has been demonstrated that ANN models with a greater neuro-similarity to the mammalian

brain perform better at some tasks than models with lesser neuro-similarity. Blanchard et al.

demonstrated that unsupervised predictive coding networks — a form of DNN composed of con-

volutional long short-term memory (LSTM) units — with greater neuro-similarity to functional

magnetic resonance imaging (fMRI) brain scans of human subjects performed better in next-frame

prediction and object matching tasks [18]. Li et al. were able to improve the robustness of a deep

convolutional neural network (DCNN) performing an image classification task to injected image

noise by modifying the model training with an additional loss function that favored greater neuro-

similarity to a dataset derived from two-photon excitation microscopy (2PEF) of mice brains [19].

These new advances show the utility of leveraging neuro-biologic data for use in machine learning

applications.

Following the methodology pioneered by Jamil et al. [20], we demonstrate that network rep-

resentations drift further away from biological representations when networks are optimized for

task performance. We posit that our findings mirror critiques of prominent research groups like
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Google’s DeepMind — [21] identified the viability of an adversarial typographic attack were sim-

ply writing the incorrect word on object sufficed for causing misclassifications (see Figure 1.1). In

a blog post discussing the attack, [21] suggested:

“this attack exploits the way image classification tasks are constructed. While images

may contain several items, only one target label is considered true, and thus the net-

work must learn to detect the most ‘salient’ item in the frame. The adversarial patch

exploits this feature by producing inputs much more salient than objects in the real

world. Thus, when attacking object detection or image segmentation models, we ex-

pect a targeted toaster patch to be classified as a toaster, and not to affect other portions

of the image."

Figure 1.1: An adversarial typographic attack where the name of an incorrect class is written on an object.

The attack causes a classifier to misclassify the apple with a confidence of 99.7%. Image source: [21].

Prior work has shown that representations closer to the biological brain are more robust to

adversarial attacks [19], are adaptable to new tasks in a zero-shot context [13, 18], and have gains

in task performance that emerge quicker than when learning representations without biological
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similarity [18,22]. Given this pedigree, one would be remiss not to wonder why research into these

comparisons is so rare. Unfortunately, most biological datasets are proprietary or too small [23] and

without this resource, neither researchers nor practitioners can further investigate this phenomenon.

Further, state-of-the-art models have traditionally been assessed by their accuracy on key datasets

while evaluations of how well-embedded representations generalize to new tasks is a relatively

recent phenomenon [24].

Indeed, assessing state-of-the-art models has always been important for both practitioners

adapting those models to their own tasks and researchers seeking to understand and push towards

better models [25]; however, the advent of works like CLIP, from [24], have ushered in a new era

driven by evaluating neural networks on how adaptable their learned representations are to new

tasks in a zero-shot context. This work provides the tools for researchers to take this idea further

providing biologically viable target representations that can be factored into the optimization of

networks.

Additionally, many of these works simply focus on post-hoc evaluations. There are relatively

few works investigating how to optimize networks to achieve biological representations [26–30].

Even recent efforts to learn strong representations focus on unsupervised methods that allow mas-

sive amounts of data to be used for training, with the hope that stronger representations will

emerge [24]. We hypothesize that a large biological dataset would facilitate a deeper investigation

into the viability of biological representations for artificial neural networks. Of particular interest

to this community is the potential for deeper investigations into how to optimize for biologically

grounded manifolds.

1.1 Introduction to the BOLD5000

To this end, human fMRI brain scan datasets are being collected using stimuli images pulled

from existing machine vision image datasets to make using fMRI data in machine learning research

both easier and more fruitful [31,32]. Of particular interest, and the subject of the work performed

in this paper, is the BOLD5000 [23].

3



BOLD5000, one of the largest, publicly available fMRI datasets, was created to address three

areas of neural dataset design: 1) create a dataset of sufficient size to enable fine-tuning an ANN,

2) have a greater diversity of images and image categories than is normally present in a neural

study, and 3) provide an overlap between the stimulus images used in the fMRI trials and the

training image datasets of ANNs to allow for a more direct comparison of ANNs and human brain

activation’s [23].

The BOLD5000 is composed of stimuli images pulled from existing machine vision image

datasets [31,32]. In total, it consists of fMRI brain scans from four participants (CSI1-4) presented

with 5,000 real-world images from three commonly used computer vision datasets: 1,916 from

ImageNet [33], 2,000 from Common Objects in Context (COCO) [34], and 1,000 custom images of

scenes from categories inspired by Scene UNderstanding (SUN) [35]. Collectively, these datasets

span a wide variety of categories and consist of images of real-world indoor and outdoor scenes,

and objects either centered in or interacting with complex, real-world scenes.

To collect this brain data, all selected images were resized, cropped to 375 × 375, and ad-

justed for even luminance. For each input dataset, exemplar images were hand-selected by the

BOLD5000 authors on a per-category basis. Subjects then engaged in 15 functional MRI sessions,

where all images were presented on a single trial basis, except for a subset of 113, for which

unique neural representation data was collected. During this, one participant (CSI4) did not com-

plete the entire experiment. As a result, their data is typically discarded from studies using the

BOLD5000 [17]. However, in this work, we incorporate their data into our final preprocessed

work.

Recently, a second revision of the BOLD5000 data has been made available that uses the GLM-

Single toolbox to enhance the reliability of the beta estimates [36]. However, this second release

only contains raw voxel beta values for the whole brain of each participant. The data has not yet

been broken out into functional regions nor has any further analysis, such as RSA, been made pub-

licly available that may aid in further machine learning research. As illustrated in Figure 1.2 this

work seeks to remedy this by augmenting the BOLD5000 dataset in the following ways:
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Figure 1.2: This work presents a new, biologically grounded representation for the evaluation and opti-

mization of neural representations. Prior work has shown such representations correspond with robustness

to adversarial attacks and task generalization. The curation of this new benchmark required preprocessing

the BOLD5000 data into representational dissimilarity matrices (RDMs) and establishing a framework for

investigating biological representations. The viability of the discovered representation was investigated with

a novel application of Fiedler partitioning on the data to demonstrate the potential of the biological repre-

sentation for adversarial robustness.

• Split the raw voxel beta values into functional regions of interest (ROIs) using the masks

from the original release

• Re-segment each subject’s cortical surface using two new brain atlases that map the ventral

visual stream and other functional areas

• Calculate pre-computed representational dissimilarity matrices (RDMs) for each subject

• Leverage metadata available from the input datasets to demonstrate how additional insights

can be gleaned using an interdisciplinary approach

• Apply a previously unexplored graph-based technique, the Fiedler algorithm, to this prepro-

cessed dataset, demonstrating its versatility as an evaluation metric

• Introduce a framework that allows researchers to fine-tune, evaluate, and select models for

robustness.
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Ultimately, the products of this work will facilitate future research into how robust represen-

tations manifest and methods for optimizing networks to achieve trustworthy and adversarially

robust results.
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Chapter 2

Literature Review

2.1 Neuro-Similarity

Here, we detail prior works that investigate biological representation benchmarks. In partic-

ular, we focus on methods that investigate “neuro-similarity," i.e., the similarity of an artificial

neural network’s (ANN) learned representation to a benchmark of the biological brain. First, we

examine metrics of neuro-similarity, then, efforts to increase neuro-similarity, and conclude with

an investigation of works that link biologically consistent ANNs and robustness.

2.1.1 Metrics of Neuro-Similarity

Most works that evaluate ANNs for neuro-similarity utilize methods from representational sim-

ilarity analysis (RSA). In particular, researchers derive metrics from representational dissimilarity

matrices (RDMs) — either an ANN or neural data can be abstracted into an RDM for a set of

stimuli. If two RDMs are created using the same stimuli set, they can be directly compared to

one another by measuring the similarity of the consistency across that stimuli set. Two established

metrics that capitalize on RSA for measuring the neuro-similarity of ANNs are human-model sim-

ilarity (HMS) [18] and the Brain Score [13].

HMS [18] evaluates the neuro-similarity between fMRI data and ANNs as the Spearman cor-

relation between the averaged fMRI RDM and an ANN’s RDM. They validated their metric on

self-supervised predictive coding networks — a form of ANN composed of convolutional long

short-term memory (LSTM) units designed to mimic predictive coding employed by biological

visual systems. They found that models with higher HMS exhibited higher performance on next-

frame prediction (the self-supervised task the networks were trained on) and were more robust

to other tasks that networks were not trained for, such as object matching. They also found that
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HMS could be accurately measured early in the training process, and they proposed that it could be

utilized for "early stopping" i.e., training could be abandoned before the weights fully converged.

Similar to HMS, Brain-Score [13] is a composite neural and behavioral benchmark set, which

uses multiple evaluation metrics to score and rank ANNs according to how brain-like their visual

object-recognition mechanisms are. To accomplish this, the internal representations of ANNs

trained on ImageNet were compared for similarity against neural recordings taken from the V4

and IT cortical areas of macaque monkeys. From this, Dense-Net169, COREnet-S, and ResNet-

101 were found to be the most brain-like, though Brain-Score was unable to reveal why.

HMS is the most similar to our methodology since we too use publicly available fMRI data,

but a major limitation of HMS is that it only utilizes 92 stimuli, making it unsuitable to train with

since networks quickly overfit to the small sample. These metrics are a great starting point for

measuring neural similarity — however, to improve model robustness, more specific metrics need

to be created. To effectively achieve this, datasets similar to this one must have as little noise in

them as possible, something we address with BOLD5000.

2.1.2 Increasing Neuro-Similarity

The methods utilized for increasing the neuro-similarity of a DCNN can be split into two broad

categories: the tailoring of image training datasets to achieve a distribution of input stimuli that

more closely matches what may be experienced in nature [32, 37–39], and directly influencing the

training of DNNs through the addition of a loss function that penalizes neuro-dissimilarity.

The former method has several examples in recent literature, and the approach is based on

observations that training datasets designed for machine vision applications are crafted for domain-

specific applications, or otherwise contain internal biases in their distribution of subject matter that

do not match what is in nature [40]. A specific example of such a bias is the fact that ImageNet [33],

one of the most widely used image classification datasets in the field, contains 120 categories of

dog breeds but lacks any categories for humans. By creating datasets with more natural image
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distributions, researchers have been able to significantly improve the neuro-similarity of the DNNs

trained on these datasets.

While this approach does improve neuro-similarity in the trained models and demonstrates

the potential of DNNs achieving higher levels of neuro-similarity, it may not always be feasible

or desirable to augment every dataset with a great enough volume of images, or images of the

correct type, to achieve a distribution that matches the natural world. For example, domain-specific

datasets, such as for medical imaging research, don’t have a complementary input set in nature to

draw from. Datasets for machine vision research are also growing in size constantly and it may not

be cost-effective or efficient to increase their size to a point where a natural distribution is achieved.

However, these domain-specific models can potentially still benefit from greater neuro-similarity.

It has been demonstrated that DNN models with a greater neuro-similarity perform better at

some tasks than models with lesser neuro-similarity. One exciting example of this, and the inspi-

ration for this paper, was work done by [19], who improved the robustness of a deep convolutional

neural network (DCNN) to image noise via fine-tuning with an additional loss function that fa-

vored greater neuro-similarity. These experiments were conducted using a dataset derived from

two-photon excitation microscopy (2PEF) of mice brains — they released the code to enable the

fine-tuning but did not release the data itself. The fine-tuning was enabled via RDM comparisons

— however, unlike Brain Score and HMS, they approximated complete RDMs during training by

only creating an RDM for a subset of stimuli. Constructing an entire RDM during training is com-

putationally expensive because activations for each of the stimuli must be collected and compared.

2.1.3 Linking Neuro-Similarity to robustness

Despite [19] initial findings that improving neuro-similarity could increase robustness, none of

the known evaluation metrics explicitly measure this improvement. We think this is an area where

some could be created. We propose that robustness should be measured via Psychophysics [41,41].

This evaluation focuses on evaluating robustness across a range of different noise levels. It also

focuses on explainable and trustworthy evaluations of networks — by exploring a multitude of

9



different noise types, the evaluation reveals specific weaknesses that networks are susceptible to

e.g., in the domain of face recognition, [41] found that FaceNet was surprisingly susceptible to

brown noise, while other methods were not.

Research like this shows the utility of leveraging neuro-similarity for use in machine learning

applications and illustrates why more datasets, accessible to researchers outside of neuroscience,

are needed. Further, the scarcity of evaluation metrics to apply to datasets like this means a notable

research gap exists, worthy of future work.

2.2 Ventral Visual Stream

The ventral visual stream is a series of hierarchical cortical regions in the primate brain re-

sponsible for object recognition that has been termed the "what" pathway of the brain’s vision

center [42]. In humans, it extends from the primary visual cortex (V1), which is responsible for

low-level visual features, to the inferior temporal (IT) cortex, which contains high-dimensional

representations of object shape and category [43]. Due to its importance in object recognition,

the ventral visual stream is the subject of many of the recent neuro-similarity papers, either as

a whole [10, 14, 16], or for specific regions within the ventral stream such as V1 [44], or the IT

cortex [7, 9, 15]. Due to the importance of the ventral visual stream in neuro-similarity research,

and because the original BOLD5000 dataset does not include ROIs derived from the ventral visual

stream, vcAtlas was selected as a way to add this context to the dataset.
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Chapter 3

Materials and Methods

This work contains a synthesis of data from multiple sources and multiple fields of study. This

section briefly covers some of the details of each of the datasets used in this work, how they were

used, and how they were processed them into representational dissimilarity matrices (RDMs).

Figure 3.1 give a high-level overview of the processing pipeline used to enhance the BOLD5000

dataset.

vcAtlas on

fsaverage Surface

Resample onto

Subject's Cortical

Surface

 Create Volumetric

ROI Masks 

Calculate RDMs

from ROI Betas

Figure 3.1: Overview of the processing pipeline used to enhance the BOLD5000 dataset. New cortical

atlases are mapped onto each participant’s cortical surface, new volumetric ROI masks are generated, vectors

are extracted for each of the stimuli presentations, and finally, RDMs are created from comparisons of the

stimuli response vectors.

3.1 Datasets

3.1.1 ImageNet in BOLD5000

The use of images from the ImageNet dataset in the BOLD5000 presents a unique opportunity

because the ImageNet Large Scale Visual Recognition Challenge (ILSVC) benchmark remains the

standard benchmark and training dataset for image classification models such as those included in

this paper [45]. Before the BOLD5000 data, representations of neurological data tended to be col-
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lected for simple stripped-back stimuli such as a clearly cut-out image against a grey background.

While these simple stimuli enabled research comparing biological representations to artificial rep-

resentations (e.g., like [18]), they had limited additional uses. For example, these stimuli were too

simple and too few for fine-tuning networks to exhibit biologically consistent embeddings. The use

of complex images like those within the ImageNet dataset may be non-ideal for traditional fMRI

research, but they enable a wealth of experiments examining artificial neural networks (ANNs).

ImageNet classes are based on the WordNet synset hierarchy. In theory, this synset hierar-

chy can be used to establish the relationships between image classes. In practice, however, there

are known deficiencies in the WordNet structure and most researchers resort to creating custom

“supercategories" for the the image classes. Figure 3.2 illustrates a small portion of the synset

hierarchy for the 1000 ILSVRC image classes. As can be seen in the far left of the synset tree, the

classes for the two stringed instruments, "violin" and "acoustic guitar", are correctly placed near

each other and therefore have a high path similarity. A counter-counter example is seen with the

"spotlight", and "traffic light" pair of synsets. Both should fall under the hypernym of artifact, i.e. a

man-made object. Instead, "traffic light" is labeled as an abstraction because of its use as a "signal"

(there is no other hypernym path available for "traffic light"). Another problematic example is that

of "orange", which has multiple hypernym paths. One path proceeds up through "natural object",

while the other, confusingly leads from "food", through "solid", to "matter". This is a problematic

series of hypernyms because while oranges and foodstuffs, in general, are indeed "solid matter",

almost all other labels, including vertebrates and invertebrates, are not derived from this branch.

"Natural object" was the supercategory selected for food objects because of this incongruity.

To overcome the deficiencies in the synset hierarchy new supercategories were manually se-

lected for this paper. They were selected for their similarity to other categories used in fMRI

research. The five supercategories used are Vertebrate, Invertebrate, Natural Object, Artifact, and

Place. Table 3.1 summarizes the supercategories created for this project and the hypernyms of

each supercategory. Each of the ImageNet labels was sorted into a supercategory by searching
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entity

physical_entity

object

whole

artifact

instrumentality

device

musical_instrument

stringed_instrument

bowed_stringed_instrument

violin

guitar

acoustic_guitar

source_of_illumination

lamp

spotlight

abstraction

communication

signal

visual_signal

light

traffic_light

natural_object

plant_part

plant_organ

reproductive_structure

fruit

edible_fruit

citrus

orange

matter

solid

food

produce

Example Hypernym Hierarchy

Figure 3.2: Graph representing the hypernym paths for the four synsets "violin", "acoustic guitar, "traffic

light", "spotlight" and "orange". All ImageNet labels are nouns, and all nouns in WordNet have "entity" as

their root.

its hypernym paths for one of the hypernyms listed in the table. Once a matching hypernym was

found, the image was sorted into the corresponding supercategory.

Table 3.1: Five supercategories were created by combining the synset labels from the ImageNet stimuli.

Each supercategory is made up of a set of hypernyms.

Supercategory Hypernyms Num. Images

Vertebrate [animal, person] 646

Invertebrate [invertebrate] 96

Natural Object [food, plant, fungus, plant_part] 128

Artifact [artifact] 912

Place [structure, geological_formation] 134

Challenges with ImageNet Images

Multiple challenges were encountered with the ImageNet images used as BOLD5000 stimuli

that likely contribute to the overall level of noise in the final RDM data and detract from the accu-
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racy of the categorical analysis. The first challenge is that while ImageNet images are theoretically

supposed to be singular images of just the entity described in the label without much additional

context, many ImageNet images contain far more than just the entity in the image. This differs

significantly from typical fMRI stimuli, which usually have the entire background whited out to

focus the test subjects’ attention. The second major challenge is related to the first, and is the fact

that quite frequently the additional entity in the image is a human face. This is doubly problematic

because the human brain has highly tuned areas of its visual cortex dedicated to the detection and

decoding of human faces, such as the fusiform face area [46]. A number of the more egregious

examples of this are presented in Figure 3.3. While the BOLD 5000 authors claimed to have se-

lected "exemplars" of each label, it appears likely that two images were merely selected at random.

Images that are supposed to be of artifacts or places, and are therefore expected to have a large

dissimilarity to images of vertebrates, are going to be significantly affected by this source of noise.

3.1.2 vcAtlas Cortex Atlas

vcAtlas is a cross-validated cytoarchitectonic atlas of the human ventral visual stream [47].

Cytoarchitectonic regions of interest (cROIs) are defined by the spatial arrangement and type dis-

tribution of neural cells in the cortical ribbon. For the vcAtlas study, the borders of these regions

are defined by statistically significant changes in the cellular structure using the gray level index

(GLI). Data from 11 postmortem adult brains was used to define 8 cROIS; four in the occipital

lobe (hOc1-4), and four in the fusiform gyrus (FG1-4). Each of the postmortem brains was aligned

to Freesurfer’s common fsaverage surface using cortex-based alignment. Once aligned, maximum

probability maps (MPM) were created for each cROI based on the proportion of subjects for which

a given vertex was contained within that cROI. The final atlas was created by taking the over-

lapping MPMs and assigning each vertex of the fsaverage surface to the cROI with the highest

probability.
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ImageNet Stimuli with Human Face Noise

Figure 3.3: Nine BOLD5000 stimuli and their respective ImageNet labels. Each image is shown as it was

presented during the original study, i.e. with cropping and resizing applied. These examples demonstrate

how many of the stimuli images chosen for the BOLD 5000 prominently contain human faces alongside, or

even instead of, the entity described in the image label.
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3.1.3 visfAtlas Cortex Atlas

Similar to vcAtlas, visfAltas is an atlas of the human cortex, but instead of focusing on cy-

toarchitectonic regions of the brain, visfAtlas is focused on functional ROIs of the early-visual

and category-selective regions of the cortex [48]. Early visual areas of the brain were mapped

using retinotopy. Category-selective regions for characters, bodies, places, faces, and objects were

mapped using functional localization. Additionally, a motion-selective region, hMT+, was defined

using a separate localizer.

Combined, vcAtlas and visfAtlas give both structural and functional ROI mappings of the

human visual cortex enabling future vision research.

3.2 Preprocessing

All betas were provided in NIfTI format, divided by subject and session. The image coordi-

nate transforms, provided within the file headers, did not correspond to the transforms used for

brainmasks, ROI masks, and T1w anatomical images from the original BOLD5000 release. This

transform information is required for several other processing steps, including the re-application

of the functional ROI masks from the original release of the BOLD5000 and the application of the

two new ROI atlases, vcAtlas, and visfAtlas, to the four participant brains. We solved this issue

by intuiting that the provided NIfTI files were derived from the same fMRIPrep derivatives as the

original BOLD5000, thus allowing us to utilize the same alignments and brainmasks. The affine

transforms from the original BOLD5000 brainmasks were applied to the GLMSingle beta files and

results were visually checked against both the original brainmasks and the T1w anatomical scans

of the participants to confirm good alignment. The generation of a global brainmask intersection

was also required for each of the four subjects across all sessions. RSA analysis calculates distance

metrics for each pair of input stimuli and therefore requires that the input vectors for each of the

stimuli have the same number of dimensions (in the case of fMRI, each dimension is a voxel). The

BOLD5000 is somewhat unique in that it is largely made up of single presentations of each stim-

ulus, and the order of the stimuli is randomized across multiple sessions for each participant. This
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poses a challenge because even very minor positional changes between sessions can lead to the

introduction of invalid voxel values, especially around the very edge or pial surface of the brain.

The fMRIPrep pipeline uses several advanced tools to correct for any changes [49], however,

it was found that the participant brain masks provided in the original BOLD5000 release still

resulted in invalid voxels being included for some trials. To address this issue, a global mask was

calculated for each participant using the intersection of the valid voxels for each input across all

sessions. These global participant brain masks were applied to every ROI to ensure that no invalid

voxel data was entered into the RSA calculations.

3.2.1 FreeSurfer

FreeSurfer is an incredibly powerful suite of tools originally developed to reconstruct cortical

surface models from T1w anatomical scans. A further goal of this original development in recon-

structing the cortical surface is finding alignments between subject brains based on cortical folding

patterns [50]. It is this alignment functionality that makes the FreeSurfer a vital component of the

fMRIPrep pipeline used in the original BOLD5000 release.

As follow-on researchers, we leverage these FreeSurfer derivatives to extract additional infor-

mation from the dataset. We use FreeSurfer to parcellate a reconstructed cortical surface based

on its folding patterns using specially crafted atlases. We used this functionality to identify and

extract additional areas relevant to vision based on structural connectivity or functional response

to images using vcAtlas and visfAtlas respectively. Our analysis is concerned with comparing the

BOLD activations of voxels in volumetric space. Thus, several steps were required to convert these

surface atlases into volumetric ROI masks.

First, the labels from the atlases were resampled from the standard fsaverage surface to each of

the subjects’ cortical surfaces. This is accomplished using the mri_surf2surf command. With the

labels for each atlas and ROI now resampled onto the subjects’ cortical surfaces, the labels were

used to define a volumetric ROI as by the volume of gray matter that makes up the cortex beneath

the cortical surface label. This is accomplished with the mri_label2vol command with projection
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fraction set to include 100% of the volume between the pial and white matter surfaces. The output

of this function is a series of volumetric ROI masks in NIfTI format, similar to the ROI masks from

the original BOLD5000. All ROI masks generated using FreeSurfer also had the global mask for

each participant applied to them to ensure that only valid voxels would be extracted for a given

ROI.

3.3 Representational Similarity Analysis

After preprocessing and utilizing FreeSurfer to identify ROIs, we create RDMs from the neural

data. We construct RDMs using the established methodology [6, 18]. Here, we briefly summarize

the process:

RDM construction. Given a single feature f and a single stimulus s, v = f(s), where v is the

value of feature f in response to s. Likewise, the vector

v⃗ =


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
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(3.1)

can represent the feature values of a collection of n features, f1, f2, ..., fn, in response to s. If one

expands the representation of s to a set of m stimuli S = s1, s2, ..., sm, the natural extension of v⃗

is the set of feature value collections V = v⃗1, v⃗2, ..., v⃗m, in which si ∈ S is paired with v⃗i ∈ V for

each i = 1, 2, ...,m. The last step before constructing an RDM is to define the dissimilarity score

between any two v⃗i ∈ V and v⃗j ∈ V . We use the symmetric function

ψ(v⃗i, v⃗j) := 1−
(v⃗i − v̄i) · (v⃗j − v̄j)

∥v⃗i − v̄i∥2∥v⃗j − v̄j∥2
(3.2)
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where v̄ is the mean of the features in v⃗. An RDM R may then be constructed from S, V , and ψ

as:

R =
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




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(3.3)

3.3.1 Biological Similarity Metric

The methodology for comparing a network to a biologically constructed RDM is simple: After

constructing an RDM R1 for the network following the procedure outlined in 3.3 using the same

stimuli set S, one can compute the similarity to the biological RDM R2 with the function

biologicalSimilarity = ρ(R̂1, R̂2) (3.4)

where R̂ is the flattened RDM and ρ corresponds with a similarity metric e.g., Pearson’s correla-

tion. Note, many works suggest estimating the RDM during training by only considering a subset

of the stimuli [19].

3.3.2 The rsatoolbox Package

rsatoolbox is a Python package for representational similarity analysis developed by Nili

et al. from the laboratory of Nikolaus Kriegeskorte, one of the pioneers of RSA use in fMRI

research [51]. Originally developed for Matlab, rsatoolbox is under active development and

can be used for the generation and comparison of RDMs, the creation and evaluation of multiple

types of models with various statistical tools, and visualization tools. All fMRI RDMs, RDM
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comparisons, and models were performed with rsatoolbox. (Initial RDM generation for the

ANNs was generated using functionality built into the Net2Brain tool as detailed in 3.4.)

3.3.3 Categorical Model Analysis

While the end goal of our RSA analysis is to compare the biological data from the BOLD5000

fMRI trials to ANNs, RSA also allows us to leverage other types of dissimilarity models such as

the supercategories within ImageNet as described in Section 3.1.1. First, categorical RDMs are

generated for each supercategory as illustrated in Figure 4.1. These consist of an RDM where all

images of the same category are assigned the minimum distance/dissimilarity for a given metric

and all images from other categories are assigned the maximum distance/dissimilarity for a given

metric.

Using rastoolbox’s Model Weighted functionality, these individual category RDMs are com-

bined as a weighted sum and are linearly fit to the Mean Subject RDMs for the vcAtlas ROIs.

The model weights are then used to predict the final categorical model shown in Figure 4.2. This

categorical model is a representation of the relative similarities of each of the supercategories as

perceived by the human brain. Categorical models such as this can act as a reference point for

later RSA analysis because they rely on additional structural information that is embedded into the

ImageNet image labels.

As a final analysis step, each of the vcAtlas ROIs from the mean subject is compared back

against the predicted categorical model to determine which ROI or ROIs best represent the su-

percategorical structure of the data. Figure 4.3 shows the correlation of each of the ROIs to the

categorical model. In the case of the BOLD5000 data, the Left-Hand Fusiform Gyrus 3 (LHFG3)

is the best exemplar of the categorical model. Going forward, LHFG3 is selected going forward as

the best single ROI with which to compare the ANNs.
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3.4 Net2Brain

Here, we link our preprocessed data and subsequent evaluations to Net2Brain, a toolbox for

researching the internal geometric representations of artificial deep neural networks, particularly

convolution neural networks, using RSA. One of the strengths of Net2Brain is the very extensive

set of over 600 models that it is preconfigured to pull down, extract activations from, and calculate

RDMs for. Net2Brain can pull models not only from the official PyTorch model zoo but also from

timm, the Pytorch Image Models library created by Ross Wightman. All of the aforementioned

600+ models available to Net2Brain come pre-trained and are fully ready for activation extraction.

All of the stimuli from the BOLD5000 are made available to Net2Brain and once it pulls down the

pre-trained model in question, it presents each of the BOLD5000 images to the model as input and

performs a forward pass. The model activations from each of the model’s convolutional layers are

then extracted and stored on disk. Once all of the activations have been extracted, RDMs for each

of the convolutional layers are calculated. As of the time of writing, the toolbox enables creating

RDMs using Pearson’s correlation, and there are plans to add various other distance metrics.

3.4.1 Model Selection

Of the over 600 models available, four were chosen based on a couple of criteria. First, due to

the limitations in the architecture of both Net2Brain and rsatoolbox, the calculation of RDMs

required substantial amounts of memory given the number of unique stimuli in the BOLD5000.

There was, therefore a relative size limit to the number of output activations in a model given the

memory limits of available hardware. The second criterion was to achieve a representative sam-

pling of ANN model architectures that are designed for image classification tasks and pre-trained

on the ImageNet dataset over time. The four models chosen were: AlexNet [52], progenitor of

all subsequent deep convolutional neural networks, ResNet50 [53], which introduced skip con-

nections to neural network architectures, MobileNetv2 [54], which was specifically designed to

perform well even on restricted hardware such as mobile devices, and finally, EfficientNet [30],
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which expands on the same architectural concepts present in MobilNet with efficient network scal-

ing.

3.5 Fiedler Vector Partitioning

In this section, we detail how we employ Fiedler partitioning, a graph-based technique, on the

processed data. Fiedler partitioning aims to partition a graph into two distinct groups by utilizing

the Fiedler vector, which corresponds to the second smallest eigenvector of the graph Laplacian

matrix [55, 56].

3.5.1 Experiments

We analyzed individual RDMs for three BOLD5000 participants (CSI1-3), and a mean RDM

(averaged subject data) for fMRI data specific to the LHFG3. Each RDM is composed of the

following supercategories: vertebrate, invertebrate, natural object, artifact, and place. From these

super categories, we first extracted subsets of two classes from each RDM before combining all

five super categories into two overarching classes: animate and inanimate. Here, the animate class

included the vertebrate and invertebrate categories, while the inanimate class encompassed the

natural_object, artifact, and place categories. We then applied Fiedler partitioning to these RDMs

and recorded the classification accuracy for each class in a pair. The pseudo-code for finding the

Fiedler partitioning accuracy for an RDM is detailed in Algorithm 1.

Algorithm 1 Fiedler Partitioning Classifier

Require: Representational Dissimilarity Matrix R
Ensure: Classification Accuracy

1) Get a subset Ri of R with two categories.

2) Compute Adjacency Matrix A = 1−Ri.

3) Compute Degree matrix from A.

4) Compute Laplacian matrix: L = D − A.

5) Get the second smallest eigenvector e2 for L.

6) Compute Fiedler partitioning: P1 = {i ∈ N : e2(i) < 0} and P2 = {i ∈ N : e2(i) > 0}.
7) Compute Accuracy = (|P1|+ |P2|)/len(e2)
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Chapter 4

Results

4.1 Representational Similarity Analysis

4.1.1 Categorical Model Analysis

Figure 4.4 shows the RDM for LHFG3 from the mean subject with the images sorted by su-

percategory. Comparing LHFG3 Figure Figure 4.4 to the categorical model Figure 4.2, it is clear

how the supercategory representations cluster together. This can be explored further through the

comparison of RDM correlations.

Figure 4.5 shows the RDMs of the layer with the highest correlation to the categorical model for

each of the four ANNs investigated. When visually comparing the categorical model, Figure 4.2,

the mean subject fMRI response, Figure 4.4 and the ANN responses, Figure 4.5, a correspondence

between the representation of the supercategories is evident.

4.1.2 RDM Comparison

Direct comparison of RDMs can be accomplished through several different similarity mea-

sures. Here, we report Pearson correlation, an established standard for use in RSA [6]. Table 4.1

presents the Pearson correlation between the categorical model and each of the four ANNs under

test.

Table 4.1: Comparison of Mean Subject LHFG3 RDM to Categorical Model and ANN RDMs

Model Pearson Correlation ± SEM p (against 0)

Categorical 0.165 ± 0.009 < 0.001

AlexNet 0.054 ± 0.006 < 0.001

MobileNet v2 0.023 ± 0.003 < 0.001

ResNet50 0.031 ± 0.004 < 0.001

EfficientNet b0 0.015 ± 0.002 < 0.001
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Artifact Invertebrate Natural Object

Place Vertebrate

Categorical RDMs for ImageNet Supercategories

Figure 4.1: Categorical RDMS for each ImageNet supercategory. Categorical RDMs consist of an RDM

where all images of the same category are assigned the minimum distance/dissimilarity for a given metric

(i.e., for the 1-r distance metric, 0), and all images from other categories are assigned the maximum dis-

tance/dissimilarity for a given metric (i.e. 1).
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Figure 4.2: Predicted output RDM of the weighted categorical model.

An unexpected result of this analysis is the inverse relationship between model age and its

biological similarity. AlexNet [52], the model arguably kicked off the deep convolutional neural

network revolution in machine vision, has the highest biological similarity of the models tested,

and EfficientNet [57], the most modern and highest performing classification model, has bar far

the lowest biological similarity.

4.1.3 Comparing fMRI ROIs to Individual ANN Layers

In Figure 4.6, we break down our evaluation layer-by-layer to provide fine-grained details on

which components of the trained network best exhibit biological similarity.

4.2 Fiedler Vector Partitioning

One of the goals in reprocessing the BOLD5000 dataset using the vcAtlas and visfAtlas maps

was to enable future research into comparing how various components of an ANN, such as individ-
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Figure 4.3: An exemplar ROI is chosen from the available vcAtlas ROIs by comparing its Pearson correla-

tion to the categorical model (Figure 4.2). The Left-Hand Fusiform Gyrus 3 (LHFG3) (highlighted in red),

was found to have the highest correlation with the categorical model.
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Figure 4.4: RDM of the Left-Hand Fusiform Gyrus 3 (LHFG3) ROI calculated from the mean subject using

the correlation distance metric. Image inputs are sorted by their ImageNet supercategory. The clustering of

similar images within supercategories is visible, as is the dissimilarity between supercategories.
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Figure 4.5: RDMs from each of the four ANNs ordered by ImageNet supercategory. Each RDM is taken

from the ANN layer with the highest correlation to the categorical model.
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Figure 4.6: Pairwise analysis of each of the layers of AlexNet, the ANN found to have the highest biological

similarity, to the two new ROI brain maps used in this research: vcAtlas and visfAtlas. In the vcAtlas

comparison it can be seen that while the LHFG3 ROI does dominate the comparison, there is a correlation

between the first two layers of AlexNet with the early visual cortex in Oc1 and Oc2.
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ual convolutional layers, can be compared to specialized structures in biological representations.

For example, the theoretical concept behind the ventral visual stream in the human brain is that

visual information flows from the early visual cortex at the back of the brain forward into the

Fusiform Gyrus. Along the way, the visual stimuli are decoded in increasingly higher-order repre-

sentations. Our findings give credence to the observation that deep convolutional neural networks

mimic some of what occurs with this process.

The human brain also has several very specialized areas for certain tasks such as facial recog-

nition in the Fusiform Face Area (FFA) [46], one of the ROIs included in the visfAtlas. The goal

is to provide the data so that these specialized areas of the brain can be used to analyze and train

equivalent specialized components of ANNs.

Figure 4.7 displays the Fiedler partitioning accuracies for the various ANNs from our experi-

ments, and Figure 4.8 shows the partition accuracy for the biological data. All accuracies illustrate

the separability of class pairs — the results indicate that the human subjects consistently achieved

higher classification accuracy when discriminating between the vertebrate class and the inverte-

brate, natural object, and place categories. This shows that the feature embeddings in the LHFG3

are well clustered for those categories.

Overall, our findings indicate that the representational dissimilarity matrix effectively clusters

the data. Similar to our findings with the RDM comparisons, a surprising trend emerges with the

ANNs. AlexNet, the oldest of the ANNs, produces a far higher Fiedler partitioning accuracy than

the newer models. EfficientNet B0, in particular, does not produce results significantly above noise

for most of the supercategory pairings. This is an interesting result that will be explored in more

depth in Section 5.
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Figure 4.7: Fiedler partitioning accuracy for each of the four ANNs. AlexNet showed the highest accuracy

using Fiedler partitioning on convolutional layer activations, followed by ResNet, then MobileNet, and

finally EfficientNet. EfficientNet did not show accuracy above noise for the majority of supercategory

comparisons.
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Figure 4.8: Fiedler partitioning accuracy for LHFG3 for CSI1-3 BOLD5000 subjects across the five super

categories.
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Chapter 5

Discussion

ANNs have long suffered from decreased performance as a result of their sensitivity to random

noise and adversarial attacks. Recent works have shown that fine-tuning a network representation

to align with a biological standard fortifies networks against both noise and adversarial corruptions

of images [18, 19]. However, exploration of these ideas has been limited by the unavailability of

public datasets: prior works have relied on private datasets [19] or datasets with a limited number

of stimuli [18]. The BOLD5000 dataset has always been a promising resource for investigating just

this, but the data was not intended for use by researchers without a strong neuroscience background

to explore. Here, we eliminate this barrier — our curation and investigations of the BOLD5000

data will now enable the broader community to explore the viability of biological representation in

networks.

An important and surprising result of our analysis is that recent, more advanced, neural net-

works, such as EfficientNet [57], have lower neuro-similarity than the much older and simpler

AlexNet, despite also performing much better on the standard ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC). The discovery that ANNs are diverging from their biological inspira-

tion is not, in and of itself, surprising, but it does emphasize the fundamental question of whether

or not neuro-similarity is an asset, a hindrance, or simply a non-factor. Are these newer models

performing better on an, admittedly artificial, metric because of their neuro-dissimilarity or in spite

of it? Humans are not susceptible to the same adversarial attacks that ANNs have been shown to

be susceptible to, so this divergence in the geometry of ANN embedding spaces from their human

counterparts may open up new avenues of attack.

To put a finer point on it, are more advanced models achieving higher accuracy by focusing on

minutia instead of the complete composition, e.g., are the features being extracted from an image

of one of ImageNet’s many dog breed classes focused on things like fur texture and color as a way

to correctly classify the breed, the source of the image classification, or on the fact that the image
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depicts a four-legged creature with two eyes and other mammalian features? Having a fragmented

embedding space that emphasizes minutia is likely to make a model more susceptible to adver-

sarial attacks. To use the example above, a model that has been overfit to the point where it only

focuses on fur pattern features to identify something as a dog, could be tricked into misidentifying

a common artifact such as a box, by covering it with a fake fur texture or image.

We expect images containing similar features to elicit activations that are closer together within

the embedding space while dissimilar activations should exist further apart — [21] investigated

the presence of this phenomenon, finding certain neuron groups in CLIP activated or deactivated

in response to similar concepts. Fiedler partitioning of an RDM should be able to exploit this

clustering of like embeddings to get us in the ballpark of a reasonable classification by selecting

an appropriate class category regardless of whether or not there is a strong correlation between the

ANN and biological benchmark. By demonstrating that this works well for a model like AlexNet,

but not for a model like EfficientNet, we imply that these more advanced models are not creating

the expected clusters within their embedding space. This leads to the question of how these new

ANNs are actually structuring their feature space or whether they are extracting a similar set of

features at all. Our work shows that ANNs trained for classification performance are evolving

internal embedding space geometries ever more dissimilar from the human vision system and that

these embedding spaces lack a geometry that clusters like image subjects together. We can either

conclude that state-of-the-art ANNs are creating a novel way to learn and store image feature

representations, or we must conclude that embedding spaces are becoming ever more disjoint

because of the singular push to maximize classification accuracy.

Since learned representations like [21] do seem to demonstrate this phenomenon with CLIP

embeddings, and since CLIP embeddings match or surpass the performance of the models we

evaluate [24], it seems likely that the biological ideal does correspond with robustness. However,

a full investigation of the viability of the biological benchmark is beyond the scope of this work —

and likely beyond the scope of any singular work. Instead, a wealth of future research is needed

to tease out the intricacies of what kinds of representations correspond with robustness. The most
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impactful outcome of this work is the facilitation of these future research projects via a shared,

publicly available dataset that allows researchers and practitioners to scrutinize the evidence for a

biologically grounded representation, and investigate alternatives.

Finally, the curation of this data also facilitates additional uses of the data: modeling neural

processes and creating new biologically consistent architectures. Neural networks are the premier

means for modeling neural data. However, it has also been shown that current architectures have

largely plateaued [15] and that all networks are equally predictive of the human inferior temporal

cortex. This is problematic because these models still fail to predict certain properties of visual

processing [15]. Our data could facilitate the creation of neural network designs that are biolog-

ically grounded. Previously, work has shown that networks deliberately modeled on neural phe-

nomena exhibit higher biological consistency than traditional CNNs [22], which corresponds with

higher performance. However, even this work would vastly benefit from expanding methods for

comparing with biological benchmarks via novel techniques like extending RDMs into Laplacian

matrices [20].
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Chapter 6

Conclusion

Here, we establish a new biological benchmark for embedded representations. Our experiments

on our benchmark establish the viability of utilizing this data to enhance the robustness of learned

representations to inputs like adversarial attacks. Specifically, our experiments with Fiedler parti-

tioning showcase how biologically grounded representations facilitate interwoven separability and

clustering of data. As part of this work, we release our curated data and a framework to facilitate

further investigation.
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