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ABSTRACT

A MODEL FOR PREDICTING THE PERFORMANCE OF SPARSE MATRIX

VECTOR MULTIPLY (SPMV) USING MEMORY BANDWIDTH REQUIREMENTS

AND DATA LOCALITY

Sparse matrix vector multiply (SpMV) is an important computation that is used in many

scienti�c and structural engineering applications. Sparse computations like SpMV require

the use of special sparse data structures that e�ciently store and access non-zeros. However,

sparse data structures can tax the memory bandwidth of a machine and limit the performance

of a computation, which for these computations is typically less than 10% of a processor's

peak �oating point performance. The goal of this thesis was to understand the trade-o�

between memory bandwidth needs and data locality for SpMV performance. We construct

three performance models based on memory bandwidth requirements and the data locality

that is associated with the non-zero orderings within a sparse data structure. Our approach

uses metrics that can be applied to any sparse data structure to model SpMV performance.

We use a data locality metric termed Manhattan distance to predict the data locality exe-

cution time of each non-zero ordering, which produced strong per matrix results. Based on

the per matrix results for the Manhattan distance we constructed a model that computes

a linear �t for multiple parameters, but those results were not promising. We found that

the memory bandwidth requirement for a data structure is a key component to predicting

performance. Our �nal model uses memory bandwidth pressure and an averaged predicted

data locality time to accurately predict the fastest performing data structure 73-84% of the

time, depending upon the machine. Our results indicate that often the sparse data structure

with the least taxation on the memory bandwidth produces the fastest execution times.
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Chapter 1

Introduction

Sparse matrix vector multiply (SpMV) is an important computation that is used in

many scienti�c and structural engineering applications. In his DARPA HPCS presenta-

tion titled, "De�ning Software Requirements for Scienti�c Computing", Phillip Colella [1]

identi�ed seven numerical methods known as the Seven Dwarfs, which identify patterns of

computation and communication in algorithms that have persisted over time and will con-

tinue as important numerical methods for science and engineering for at least the next 10

years. Sparse linear algebra is included in this list as one of the Seven Dwarfs. The SpMV

computation is commonly used by iterative methods for solving sparse linear systems [2, 3].

SpMV uses sparse matrix data structures to avoid excessive computation with zeros.

The index array accesses needed by these structures apply pressure to the memory bandwidth

of the machine and limits the performance of the algorithm, which can be as slow as 10% of

a processor's peak �oating point performance [4].

One common technique that improves the performance of SpMV is to use special sparse

data structures that e�ciently store and access the non-zeros of the matrix in a compressed

format during computation. Other optimization techniques like cache blocking, and register

blocking compress part of the index space to improve memory overhead and to improve

locality by reordering the non-zeros of a sparse matrix to improve cache behavior. We

hypothesize that the memory bandwidth requirements and data locality of each sparse data

structure determines the execution time of the computation.

1



1.1 Memory Bandwidth Requirement versus Data Local-

ity

While experimenting with various sparse data structure representations (e.g., COO,

CSR, and cache blocked), we found that in some cases a sparse matrix data structure with

a greater memory bandwidth requirement resulted in better performance than a di�erent

sparse data structure with a smaller memory requirement. The faster performance of the

data structure with the larger memory bandwidth demand was due to a better ordering of

the non-zeros. In other cases we found that the memory bandwidth requirement was the

dominant performance factor. The goal of this thesis was to understand these results.

1.2 Previous Work

In related work, Nishtala et al. [4] observed similar performance behavior when com-

paring SpMV performance using a Compressed Sparse Row (CSR) data structure and cache

blocked matrices. Their work produced a performance model based on cache and TLB miss

and hit estimates, which was used to select cache block sizes that produced the best perfor-

mance. In related work, Nishtala, Vuduc, et al. [5], used this performance model coupled with

other cache blocking techniques to improve the performance of cache blocked SpMV. Related

research performed by the Berkeley Benchmarking and Optimization Group (BeBop) [6] pro-

duced an autotuner named, the Optimized Sparse Kernel Interface (OSKI), which specializes

in improving the performance of sparse kernels like SpMV and sparse triangular solve.

OSKI's performance model discussed in Nishtala's work is speci�c to SpMV, in which

non-zeros are accessed using a CSR ordering with cache blocking. OSKI's performance model

for SpMV was not applicable when we found a sparse matrix stored in the Coordinate storage

(COO) format performing better than a matrix stored in the CSR data structure [7]. The

CSR data structure is a more compressed format than the COO structure and may have

a smaller memory footprint of the two structures for the same matrix. Additionally, CSR

imposes a by row ordering to the non-zeros that is not required by the COO.
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The con�icting performance results that we observed for SpMV executed using data

structures with di�erent memory bandwidth demands and non-zero orderings indicates the

need for a performance model based on memory bandwidth requirements and data locality

that can guide the selection of the sparse data structure and ordering that will produce the

best performance.

1.3 Performance Model Contribution

This thesis analyzes the e�ect of data locality and memory bandwidth requirements on

execution time by isolating each performance factor and modeling its impact on performance.

We present a model that uses memory bandwidth needs and a data locality metric termed

Manhattan distance, which measures the access distance between array indices for di�erent

orderings of non-zeros. Manhattan distance was chosen as a data locality metric because this

measurement changes as the ordering of the non-zeros change, which enabled us to isolate

and estimate the impact of data locality on execution time for a given sparse matrix non-zero

ordering without the necessity to execute SpMV on additional data structures. Our model

uses a lower bound memory bandwidth prediction that assumes each data item only needs

to be brought in from memory once.

We evaluate our performance model based on its ability to predict execution time, select

the best performing data structure and reordering, and performance degredation when it does

not. The model is developed using linear regression techniques to determine the strength

and type of relationship that exists between memory bandwidth needs, data locality, and

execution time. We found that a linear relationship exists between our data locality metric,

Manhattan distance, and data locality execution time per matrix and incorporated this

�nding into the model. Speci�cally, Manhattan distance can be used to predict the non-zero

ordering that will produce the fastest execution times for a particular matrix. However, the

metric is only useful as a per matrix predictor.

Ideally, this model would predict the execution times of SpMV performed on any

sparse matrix. However, the average execution time relative error was 2.5 times the model's
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predicted execution time. Instead, we hypothesized that our performance model is able to

predict relative performance by predicting the data structure and ordering that will produce

the fastest execution time, but the accuracy was an average of 13.5%. Even though we were

unsuccessful in predicting data locality execution times, we found that we could predict the

fastest performing data structure 78.6% of the time using memory bandwidth requirements

with an average execution time error prediction of 7.2%.

We begin the discussion with some background information about the SpMV algorithm

and the data structures used in the analysis in Chapter 2. Chapter 3 discusses related work

followed by a discussion of our SpMV performance model in Chapter 4. Then, we evaluate

our performance model in Chapter 5 and discuss conclusions and future work in Chapter 6.

4



Chapter 2

Background

Optimizing performance of Sparse Matrix Vector Multiply (SpMV) is complicated by

machine architecture and the necessity to manipulate sparse data structures [4]. In general,

performance optimizations for sparse computations tend to result in the use of complex data

structures required to e�ciently store and access sparse matrices. In order to understand

the performance trade-o�s between memory bandwidth pressure and data locality for SpMV,

we must �rst understand the computation, and the sparse data structures that are used to

store and access the non-zeros during SpMV. Sparse data structures are designed to store

the non-zeros of sparse matrices in a compressed format that can be e�ciently accessed.

Some data structures impose a restriction to the ordering of the non-zeros that it stores and

others do not. We begin with a discussion of the SpMV algorithm and each of the three

data structures used in our analysis.

2.1 Sparse Matrix Vector Multiply (SpMV)

Figure 2.1 presents the general forumla for matrix vector multiply where A is the

matrix, X is the source vector, and Y is the solution vector. Figures 2.1 and 2.2 demonstrate

how the elements of a matrix, the source vector X and the solution vector Y are accessed

during matrix vector multiplication. The dot product is computed between each element

Aij in a row of matrix A and a corresponding source vector element Xj. The dot product

for a row is then stored in one element of Yi. The Sparse Matrix Vector (SpMV) algorithm
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discussed in this thesis is expressed as

~y = A~x.

n

yi =
∑

Aijxj

j = 1

Figure 2.1: Matrix Vector Multiply Formula

Figure 2.2: Matrix A, Source Vector X, and Solution Vector Y

2.2 Sparse Data Structures

This section presents a brief explanation for each of the data structures and non-

zero orderings that were used in our analysis, which includes Coordinate Storage (COO),

Compressed Sparse Row (CSR), and cache blocked data structures [8].

2.2.1 Coordinate Storage

The simplest implementation of SpMV uses a �at data structure known as Coordinate

Storage to store the non-zero elements of the sparse matrix. The algorithm is implemented
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using a single loop to iterate over the non-zeros and has an algorithm complexity of or-

der Θ(n), where n refers to the number of non-zeros in the matrix. Figure 2.3 shows the

pseudocode for SpMV performed using the COO data structure.

for (i = 0; i < nnz; i++) {

Y[row[i]]+=X[col[i]]* Val[i];

}

Figure 2.3: SpMV on Coordinate Storage Data Structure Pseudocode

Figure 2.4 shows a diagram of the COO data structure, which consists of three arrays of

equal length: the column array, row array, and value array. Each row, column pair maps to a

single non-zero. COO does not impose an ordering on the non-zeros like other sparse storage

structures, which enabled us to benchmark SpMV with various non-zero orderings including

a percent randomized reordering of the non-zeros when designing our performance model.

In particular, we were able to use the COO data structure to isolate the memory footprint

in our experiments by keeping the non-zero orderings the same as the non-zero orderings in

other data structures and comparing the performance between sparse matrix data structures

with di�erent memory bandwidth demands. Additionally, COO enabled us to isolate the

data locality by keeping the memory footprint the same and varying the non-zero orderings

within the COO data structure.

2.2.2 Compressed Sparse Row

One of the most common sparse data structures used in sparse computations is Com-

pressed Sparse Row (CSR), which restricts the ordering of the non-zero elements that it

stores to a by row ordering. SpMV implemented using the CSR data structure has an algo-

rithm complexity of order Θ(n + m), where n is the number of rows and m is the number of

non-zeros, but performance is dominated the n term due to the indexing overhead of the row

pointer array. This data structure consists of three arrays and is illustrated in Figure 2.5.

The row pointer array points to the �rst non-zero stored in a row and is equal to the length

of the number of rows + 1. The Column index array stores the column indices associated
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Figure 2.4: Coordinate Storage Data Structure (COO)

with each non-zero, and the value array stores the non-zeros. A pseudocode example of

SpMV performed using the CSR data structure is shown in Figure 2.6.

2.2.3 Cache Blocked

Cacheblocking is a technique that is commonly used to improve the performance of

SpMV by improving the temporal and spatial locality in the source vector X and solution

vector Y. Figures 2.7(a), and 2.7(b) demonstrate how the temporal and spatial locality

changes before and after cache blocking is applied. Figure 2.7(a) shows the order of accesses

to the X vector during SpMV without cache blocking, which is indicated by each access to

an index of X at time (t). In Figure 2.7(a) we see that the �rst index accessed at t(1) is

index 2. Then, at t(2) index 4 is accessed, followed by indices 6,1,5, and so forth. The spatial

locality is very poor in that the accesses to X are not to contiguous indices and therefore,

the data elements are not likely to be fetched together from the cache. Also, the accesses

to the same indices of X are probably not occuring close enough together in time so that

data would still reside in the cache between accesses in X and Y, which results in a lack of

8



Figure 2.5: Compressed Sparse Row Data Structure (CSR)

for (row = 0; row <= nrows -1; row ++) {

temp = 0.0;

for (j = rowptr[row]; j < rowptr[row +1]; j++ ) {

// j is index into the column array and value array

temp += Val[j] * X[ColInd[j]];

}

Y[row] = temp;

}

Figure 2.6: SpMV on Compressed Sparse Row Data Structure Pseudocode

temporal locality.

Figure 2.7(b) shows that cache blocking changes the access pattern in the source vector

such that contiguous indices of X are accessed multiple times during the iteration over the

same cache block, which are outlined in yellow. As an example, let us observe the access

pattern for a single cache block as shown in Figure 2.7(b). Looking at the �rst cache block,

we now see at time t(1) that the �rst index of X accessed is index 2 followed by index 1 at

t(2) and t(3). Then, index 2 is accessed again at t(4). This example explains how cache

blocking increases the likelihood that contiguous indices of X that are associated with a cache

block are accessed in short succession, thereby improving temporal and spatial locality on
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X. Temporal locality occurs as reuse on Y if the successive accesses occur close enough in

time as each dot product is computed between Aij and Xj and written to Yi. Thus, spatial

and temporal locality are improved via the cache blocking technique.

(a) Before Cache Blocking (b) After Cache Blocking

Figure 2.7: Cache Blocked Data Structure

Our implementation of cache blocking uses a row pointer array into each cache block

and row within a cache block, which results in an algorithm complexity of Θ(n ∗m) + nnz,

where n is the number of cache blocks, m is the number of rows in the cache block, and nnz

is the number of non-zeros in the matrix. Each cache block is accessed in a by row order,

similar to the CSR data structure shown in Figure 2.5. Example pseudocode of iterating

over a cache blocked data structure is shown in Figure 2.8.
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// nrows is number of rows in a cache block

//ncb is number of cache blocks

//for each cache block b

for (b = 0; b < ncb; b++) {

//for each row r in cache block b

for (r = 0, r < nrows; r++)

y0 = 0.0;

// for each non -zero value in row r of cache block b:

for (p = pptr[b*nrows+r]; p < pptr[b*nrows+r+1]; p++) {

c = col[p]; //c is column number

x0 = X[c];

y0 += val[p]*x0; //dot product

}

Y[r] += y0 // write to Y

}

}

Figure 2.8: SpMV on Cache Blocked Data Structure Pseudocode
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Chapter 3

Related Work

The SpMV performance problem is well studied and high performance has been achieved

using performance optimization tools like the Optimized Sparse Kernel Interface (OSKI) [3,9]

autotuner developed by the Berkeley Benchmarking and Optimization Group (BeBop) [6].

The OSKI autotuner uses performance models relevant to CSR-like data structures (e.g.,

BCSR, GCSR, and CSR), where as our performance model considers metrics that may be

used for any sparse data structure. Speci�cally, our model is based on the memory bandwith

needs and the data locality that is associcated with the various non-zero orderings.

This section also discusses the roo�ine model developed by Williams et al., [10]. The

roo�ine model was developed as a means to analyze performance of parallel programs ex-

ecuted on a particular architecture based on computation, memory bandwidth, and local-

ity. Our performance model predicts relative performance within the memory bandwidth

bounds for a particular data structure and architecture and for the data locality that occurs

within those performance bounds for a serial implementation of SpMV. Our model is speci�c

to SpMV and therefore incorporates some performance characteristics that are speci�c to

SpMV.

3.1 The Optimized Sparse Kernel Interface (OSKI)

One of the sparse matrix optimizations available in OSKI is cache blocking. When

OSKI tunes a sparse matrix for cache blocking, it splits the original Compressed Sparse Row

12



(CSR) matrix into a list of cache blocked submatrices. Each submatrix is accessed using a

CSR structure that is generated for each submatrix [11].

Given an autotuned rxc cache block size, the conversion algorithm uses an inspector

to step through the matrix along rows partitioning data into cache blocks. The start of each

cache block begins with the �rst non-zero in a column. Empty columns are not included in

the beginning of a cache block so, the start of each cache block begins with the �rst non-zero

in a column. Once the matrix is partitioned into a list of cache blocks, a sparse submatrix

is generated for each cache block [11]. Figure 3.1 illustrates this linked list of CSRs data

structure.

OSKI further optimizes this cache blocked data structure by using either a general

CSR (GCSR) or CSR storage. We found that the GCSR data structure was used to store

cache blocks ranging in size from 8-256 columns. We suspect this decision eliminates storing

empty rows and keeps the memory footprint small. Through inspecting the OSKI code base

we determined that the GCSR di�ers from the CSR data structure in that the GCSR does

not store information about rows that do not contain non-zeros. Thus, the GCSR data

structure is slightly more compressed than the traditional CSR and would have a slightly

smaller memory bandwidth need. Pseudocode for the OSKI 1.0.1h cache blocked SpMV

algorithm is shown below in Figure 3.2.

Figure 3.1: OSKI's Cache Blocked Linked List of Submatrix CSRs Data Structure
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//for each cache block submatrix stored as a CSR

//for each row in a cache block

for (r = 0; r < nrows; r++) {

y0=0;

//for each non -zero value in row r of a cache block

for (p = ptr[r]; p< ptr[r+1]; p++) {

c = ind[p]; // column number

x0 = X[c];

y0 += Val[p]*x0;

}

Y[r] += y0;

}

Figure 3.2: Pseudocode for OSKI 1.0.1h Cache Blocked SpMV

During benchmarking experiments in which we compared the performance of our cache

blocking algorithm to OSKI's we observed that OSKI executed faster than our implementa-

tion on the smaller cache block sizes. Our cache blocked implementation of SpMV accesses

the non-zeros in the same order as OSKI so, we suspected that the performance di�erence

was due to smaller memory bandwidth needs by the OSKI data structure.

Nishtala et al., [4] created a performance model for cache blocked SpMV based on a

cache and TLB miss model that is used to predict the best cache block size for a matrix.

In addition, the authors presented several matrix characteristics, which qualify a matrix

as favorable for cache blocked SpMV: when X is large, Y is small, random distribution of

non-zeros, and a su�ciently high density. Our performance model is used to predict relative

performance of SpMV for a given data structure and ordering, which includes the cache

blocked SpMV data structure and ordering.

3.2 Roo�ine Model

The roo�ine model [12] was developed as tool for program analysis and optimization

for code executing on a parallel architecture. This model indicates that three primary com-

ponents determine performance: computation, communication, and locality. Computation

is measured in G�ops/s. Communication i.e., bandwidth is measured in GB/s with the

14



STREAM benchmark [13]. Locality is optimized by minimizing communication and improv-

ing data locality through software optimizations. The goal of the roo�ine model is to create

a visual representation of the performance, memory bandwidth, and locality that is unique

to each architecture.

The model bounds the best possible performance in terms of the product between

machine bandwidth and the �op:byte ratio, and the peak �oating point operations per second

(G�ops/s) [10]. By comparision our model bounds performance with memory access time

and attempts to �nd where within those bounds lies the attribution of data locality to

performance. More speci�cally, we attempt to model the impact of the ordering of non-zeros,

where as, the roo�ine model does not consider the impact of di�erent non-zero orderings on

its performance bounds.
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Chapter 4

SpMV Performance Model

Ideally, a performance model would predict execution time, however, a model that is

able to predict a data structure and non-zero reordering that provides the fastest execution

times for a given data set and machine is also useful. Additionally, once training is complete

for various non-zero orderings, we hypothesized that the model could predict performance

for multiple data structures. Information collected during a single training session could

then be used to predict performance for non-zero orderings and the COO, CSR, and cache

blocked data structures without running any more benchmarks. After training is complete

for a set of matrices, all that would be required for the model to predict performance for

COO, CSR, and cache blocked data structures and machines are some sparse matrix and

machine input parameters. The sparse matrix and input parameters include the number of

rows, columns, and non-zeros in the matrix, the size of the cache line on the machine, and

the machine bandwidth. This chapter describes the various performance models that we

developed.

4.1 Components of the SpMV Execution Time

Our models are composed of three components: memory bandwidth needs, the time

needed to refetch data for the SpMV computation, and the indexing overhead of a data

structure.

Execution time = (Time to fetch data from memory once)+
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(Time to refetch data) + (Indexing overhead for cache blocked data structure)

The memory bandwidth component in our models addresses the portion of execution time

that is attributed to the constraints on communication that exist within the memory hier-

archy. Speci�cally, memory bandwidth limits the rate at which data is transferred. We use

the STREAM benchmark [13] to measure memory bandwidth of each architecture to de-

termine the maximum rate at which data may be transferred within the memory hierarchy.

Machine bandwidth is measured in GB/s and used to predict the execution time that may

be attributed to the memory bandwidth needs of a data structure.

The data locality component of our model depends upon the ordering of access to the

non-zeros of the sparse matrices. Maximizing temporal and spatial locality on the source

and solution vectors improves execution time for SpMV by minimizing the number of cache

fetches required during the computation. In essence, the data locality component refers to

the time required to refetch the data. The third component of our model addresses any

indexing overhead that is associated with each sparse matrix data structure based on how it

stores the non-zero value indices.

4.2 Bounding Performance with Memory Access Time

SpMV is a memory bandwidth bound computation. In this section we discuss how

we can model the memory bandwidth bounds for the execution time performance that is

attributed to memory bandwidth and for now, ignore the indexing overhead that is due to

the number of non-zeros and indexing structures used by the COO, CSR, and cache blocked

data structures. Our training set used to develop the model consists of 32 matrices, which

are shown in Table A in the Appendix.The machine architectures including bandwidth and

cache con�guration information is shown in Table 4.1.

The average percent of the execution time used to bring in all of the data from memory

once is 53% and ranges between 34-71% of the total execution time. We compute this average

as follows. Let AMT refer to the average execution time attributed to memory bandwidth,

MFlb refers to the best possible execution time, ET refer to the total execution time, and
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Table 4.1: Various machine architectures and Cache Parameter.

Processor L1(KB) L2(MB) TLB(KB) BW
(GB/s)

Intel Core2 Duo E8300 32 6 128 entries x 8KB pages 5.34
Intel Core2 Duo 6400 32 2 256 entries x 4KB pages 8.53
Intel Xeon E5405 32 2 x 6 256 entries x 4KB pages 5.34

NM refer to the number of matrices.

AMT = (Σ(MFlb/ET ))/NM

We use machine bandwidth, the memory footprint for each of our sparse data struc-

tures, and assumptions about the number of cacheline fetches needed to fetch the data to

model the best and worst possible execution times attributed to memory bandwidth needs.

Figure 4.1 illustrates the concept by modeling the execution time boundaries for a given

data structure's memory bandwidth demands. The best possible execution time boundary,

shown as a dashed blue line, assumes that the matrix, source, and solution vectors are each

only read in once. The worst possible execution time boundary, shown in black, assumes

that one cache line for X and one cache line for Y must be fetched for every non-zero that

is accessed.

4.2.1 Computing Memory Bandwidth Requirements for SpMV

The smallest and largest memory bandwidth requirements for computing SpMV on a

given matrix are dependent upon the sparse matrix memory footprint. The equation for the

smallest memory bandwidth requirements assumes that the source and destination vectors,

X and Y, are only read into memory once and that they are stored sequentially in memory.

We compute the X and Y requirements by multiplying the number of rows and columns

by 8 because X and Y, both hold the doubles data type, which are 8 bytes each. The number

of non-zeros, nnz, is multiplied by 16 due to the construction of the COO data structure

as shown in Figure 2.4. We have 8 bytes for each double stored in the value array, and 4

bytes for each of the row and column index array entries, which are equal in length to the
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nnz in the matrix. The resulting equation for the smallest bandwidth requirement for the

COO data structure is as follows, where minbW refers to the smallest possible bandwidth

requirements for the COO data structure.

minBW = (16 ∗ nnz + (8 ∗ ncols) + (8 ∗ nrows))

Similarly, the smallest memory bandwidth required by the CSR data structure is com-

puted as follows. Again, the requirements for X and Y are computed as 8 ∗ ncols and

8 ∗ nrows, respectively. The row pointer array is equal in length to the number of rows

in the matrix + 1. So, 4 ∗ (nrows + 1) accounts for the integers stored in the row pointer

array. Next, the column index and value arrays are equal in length to the nnz in the matrix.

The value array holds doubles and the column index array holds integer values, which trans-

19



lates to 12 ∗ nnz. Putting the components of the equation together, we have the minimum

bandwidth requirements for CSR, indicated as minBW :

minBW = (((12 ∗ nnz) + (4 ∗ (nrows + 1)) + (8 ∗ ncols) + (8 ∗ nrows)).

Next, we compute the largest memory bandwidth requirements needed by the COO

and CSR data structures to perform SpMV. The worst possible requirements for band-

width assumes that every access to a non-zero in the matrix requires a line of the cache to

be fetched. The resulting equation needed to compute the maximum memory bandwidth,

maxBW needed by a matrix stored as COO follows:

maxBW = (16 ∗ nnz + (cacheline size ∗ 2 ∗ nnz)),

where cacheline size refers to the size in bytes used to store a line of data in the cache. The

size of a line of cache is 64 bytes for the architectures used in our experiments.

Similarly, we can compute the maximum memory bandwidth requirement needed by

CSR data structure, maxBW as

maxBw = (((12 ∗ nnz) + (4 ∗ nrows) + 4) + (cacheline size ∗ 2 ∗ nnz)).

The smallest memory bandwidth needed by the cacheblocked data structure is com-

puted as the summation of the memory required by each cache block, multiplied by the

number of cache blocks. Each cache block requires 12 ∗ (nnz/cache_block), which breaks

down as 8 bytes for the the cache block's portion of the value array and 4 bytes to store

the cache block's portion of the column array. The summation of all of the non-zeros in all

of the cache blocks is equal to all of the non-zeros in the matrix, which results in 12 ∗ nnz

for all of the cache blocks. In addition, there is a row pointer array that indexes into each

row of a cache block, which results as 4 ∗ nrows ∗ ncb, where ncb refers to the number of

cache blocks. Again, we account for the 8 bytes each that are needed for X and Y. The �nal

equation for the minimun bandwidth requirements for the cache blocked data structure is

minBW = (12 ∗ nnz) + (4 ∗ nrows ∗ ncb) + (8 ∗ ncols) + (8 ∗ nrows)).

20



The largest amount of memory bandwidth needed to perform cache blocked SpMV

for our implementation of the cache blocked data structure assumes that each access to a

non-zero results in cache line fetch for both the associated X and Y elements. The �nal

equation follows:

maxBW = (12 ∗ nnz) + (4 ∗ nrows ∗ ncb) + (cacheline size ∗ 2 ∗ nnz)).

As described in previous chapters, our implementation of the cache blocked data struc-

ture has the overhead of an indexing array for every cache block that is generated, which

can be signi�cant enough to impact execution time for cache blocks ranging in size from 2K

to 8K columns per cache block. OSKI's cache blocked implementation uses either a CSR or

GCSR data structure to store the non-zeros in each cache block. The GCSR data structure

referred to as a generalized CSR does not index into an empty row of a cache block. This

optimization reduces the indexing overhead and as a result also reduces the memory band-

width requirements of the data structure for OSKI's implementation of the cache blocked

data structure, which improves performance over our implementation for the smaller cache

block sizes.

4.2.2 Computing the Execution Time Boundaries for the Memory

Bandwidth Model

Using the memory bandwidth requirements explained above, we computed the execu-

tion time boundaries for best and worst case execution times for every data structure and

ordering described in Chapter 2 on a training set of 32 matrices. The modeled boundaries

for the best and worst possible execution times are computed as

(Best Possible Execution time) = (least memory required /Machine bandwidth)

and

(Worst Possible Execution time) = (most memory required /

Machine bandwidth),
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where the least or most memory required refers to the amount of memory required to perform

SpMV for a given matrix and data structure. The amount of memory required for a data

structure is computed for each matrix and data as described in the previous section.

Timing experiments shown in Figure 4.1 were conducted on a 2.83 GHz, Intel Core 2

Duo E8300, 64-bit machine running Linux kernel 2.6.32.21- 168.fc12.x86 64. The machine

has 2 cores, a 32 KB L1 data cache, a 6MB L2 cache, and a 128 entry x 8KB page TLB. We

used the GNU C compiler version RedHat 4.4.4-10 with compiler �ags '-O3' for executables.

The results shown are for the training set of 32 matrices executing SpMV on each data

structure and non-zero ordering described above.

The x-axis in Figure 4.1 is the memory footprint measured in GB for each data struc-

ture and ordering using the equations presented in this section. The y-axis is the total

execution time measured for the SpMV computation, which was averaged over 100 itera-

tions of SpMV. From the graph we observe that execution time increases as the memory

bandwidth requirements increase, which limits the rate at which data is fetched from within

the memory hierarchy. The modeled performance bounds for SpMV as shown in Figure 4.1

mark the best and worst possible execution times based on the minimum and maximum

memory bandwidth required to perform SpMV given the assumptions for best and worst

performance described above, machine bandwidth, and cacheline size.

In the model for execution time bounds we can compute the amount of execution

time that is attributed to the memory bandwidth and the portion of execution time that

is attributed to data locality. We hypothesized that data locality is the other primary

component needed by our performance model. The amount of execution time attributed

to the memory bandwidth requirements in our model is the best possible execution time

boundary (MFlb), which was computed at the beginning of this section and is appears as

the red line in Figure 4.1. The amount of execution time attributed to data locality, DLT ,

is computed as the di�erence between the total execution time, ET , and the best possible

execution time, MFlb as shown in the equation below.

DLT = ET −MFlb
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4.3 Impact of Data Locality on Performance

Much research has been invested into developing sparse data structures that e�ciently

store sparse matrices and enable the user to iterate over the non-zeros in a manner that pro-

duces good data locality [14,15], [16] for a particular computation. In SpMV, opportunities

for both spatial and temporal data locality are present. Spatial locality for SpMV occurs

on the source vector X when contiguous data elements are fetched together from the cache,

which occurs when contiguous indices of X are accessed. Temporal locality occurs as reuse

of an X or Y element if more than 2 non-zeros in a column or row are accessed close enough

in time that the data is still in the cache.

Data locality can be measured directly by observing cache and TLB hit rates, which

means that we can measure the lack of data locality via the miss rates. We can estimate

the e�ect of data locality on performance with the Manhattan distance, which measures the

distance between address accesses in both the source and solution vectors.

On average, we observed that data locality accounts for 47% of the total execution time

for our training set and ranges between 29-66% of the total execution time. The average

portion of execution time attributed to data locality is computed as follows, where ADT

refers to the average execution time attributed to data locality, and MFlb, ET , and NM

refer to the best possible execution time, execution time, and the number of matrices.

ADT = (Σ((ET −MFlb)/ET )/NM

4.3.1 Measuring Data Locality Using Cache and TLB Misses

We measured the number of L1 and L2 cache and TLB misses in order to measure

the amount of data locality present in a set of non-zero orderings of a sparse matrix in the

data set. We used the performance API tool (PAPI) [17, 18] in combination with machine

hardware counters to observe the total number of cache and TLB misses that occur while

executing SpMV on the training set. Cache and TLB miss experiments shown in Figure 4.5

were conducted on a 2.0 GHz, Intel Xeon E5405, 64-bit machine. The machine has 4 cores,

a 32KB L1 datacache, a 2x6MB L2 cache, and a 256 entry x 4KB page TLB. We used the
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GNUC compiler with compiler �ags '-O3' for the executables and included the papi-3.7.0

library for the analysis.

We used the COO data structure to observe cache behavior for various orderings of the

non-zeros. Some data structures such as CSR restrict the order in which non-zeros are stored

to a by row ordering, but the Coordinate storage data structure (COO) does not impose

a restriction on the ordering. The orderings used in the experiment include the original

ordering of the sparse matrix �le, cache blocked orderings (2K, 8K, and 32K columns per

cache block), a range of percentage randomized reorderings on the original matrix from 10 -

100%, and the CSR by row ordering.

In the next section, we explain how Manhattan distance is used to measure data locality

and then, we compare the directly measured data locality counts of each non-zero ordering

against the computed Manhattan distance. The purpose of comparing the two measurements

is to show that the Manhattan distance is an e�ective means to estimating data locality

without the necessity of executing SpMV directly measure cache hits or misses.

4.3.2 Estimating Data Locality Using Manhattan Distance

We are able to use Manhattan distance to estimate the data locality per matrix. Ap-

plication of this metric is limited to a per matrix measurement that cannot be computed

across all of the data, but is applied as a per matrix data locality metric. One advantage of

using Manhattan distance to predict data locality execution time is that we are able to do

the prediction without executing SpMV on any other data structures than COO. Further,

this approach is an improvement over measuring data locality using cache and TLB misses,

which requires that we execute the code on each data structure, at which point, the code has

already executed and we should measure execution time directly. Lastly, we hypothesized

that this approach would allow our model to estimate total execution time for the test set

by computing the memory footprint component using several sparse matrix and machine

characteristics, which were described in Section 4.2.

Manhattan distance measures the access distance between the non-zeros as the order of
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Figure 4.2: Illustration of How Manhattan Distance is Computed for a Sparse Matrix.

the non-zeros change along the rows and columns, which in e�ect measures the data locality

present in the source and solution vectors due to the ordering of the non-zeros. Figure 4.2

shows how this metric is applied to an ordering of non-zeros in a sparse matrix to measure

address access distances on the source and solution vectors. The distance measured along

the path between non-zero values A20 an A05 is traced in red. The Manhattan distance

traced along the length of the red path shown in Figure 4.2 is 19. Similarly, the blue line

indicates the path along which a Manhattan distance between A31 and A14 is computed as

11. Using this metric, we are able to directly observe the change in execution time due to

data locality per non-zero ordering. This address access distance measurement forms the

basis for the data locality metric used in our initial model to predict execution time. The

formula used to compute our data locality metric Manhattan distance (MD) follows:

MD =
∑

((row distance) + (column distance)).

Since Manhattan distance changes with each new reordering of the non-zeros, we can

relate the amount of data locality present in each ordering to execution time using this metric.

The locality component of the model was developed using linear regression on the Manhattan

distances and corresponding data locality execution times for the randomly selected training

set. According to C. Annis [19], linear regression indicates the strength and the type of

relationship that exists between two or more variables. In our case, we use linear regression

to determine the strength and type of relationship that exists between Manhattan distance
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and data locality execution time. According to [20], linear regression is a method used to

best �t a linear equation of the form:

Y (x) = a + bx

to a collection of data points (xi, yi) where 1 ≤ i ≤ N , where (xi, yi) may refer to the

Manhattan distance and DLT data points for a matrix or to all of the Manhattan distances

and DLT values for all of the matrices. The slope is b and the y-intercept is a. First, we

compute Sumx over the independent variable x, which in our case is Manhattan distance.

N−1

Sumx =
∑

(xi − x̄)2

i=0

Then, we compute Sumy over the dependent variable y, which is the data locality execution

time (DLT ).

N−1

Sumy =
∑

(yi − ȳ)2

i=0

Then, we compute Sumxy over the product of the di�erences as:

N−1

Sumxy =
∑

(xi − x̄) ∗ (yi − ȳ).

i=0

The slope of the linear regression line, b is computed as:

Slopeb = Sumxy/Sumx.

and the y-intercept, a, is computed as:

y − intercepta = ȳ − bx̄.
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The formula for the correlation coe�cient, R2, is computed as:

R2 = Sumxy/
√

Sumx ∗ Sumxy

A correlation coe�cient (R2), which is a measure of the strength of the linear �t, was com-

puted both per matrix ordering and for a linear �t over the entire data set [21]. A correlation

coe�cient of 0.70 or greater indicates a strong linear relationship between components and

the closer the value is to 1 indicates a stronger linear relationship [22]. The correlation coef-
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Figure 4.3: Linear Regression over all of the Data Points for Manhattan Distances and
Data Locality Time

�cient for a linear �t over the various orderings of the entire data set was only 0.29 and the

results are shown in Figure 4.3. The y-axis is the data locality execution time (DLT ), which

is computed as the di�erence between the total execution time, ET , and the best possible

execution time attributed to the memory bandwidth (MFlb). The total execution time is

an execution time averaged over 100 iterations of SpMV.

DLT = ET −MFlb
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However, the average correlation coe�cient for the Manhattan distance and data lo-

cality execution time per matrix reordering is 0.95 for the training set used to develop our

hypothesis that Manhattan distance can be used to predict data locality execution time. A

95% correlation coe�cient indicates a very strong linear relationship between Manhattan

distance and data locality execution time per matrix for the listed orderings [23, 24]. Fig-

ures 4.4(a) and 4.4(b) show the preliminary results for the per matrix linear �t between the

Manhattan distance of each non-zero ordering and data locality execution time. This exam-

ple included the original COO ordering, a series of percentage randomized orderings, and

a by row ordering. The data is divided into two graphs for readability. Figure 4.4(a) con-

tains Manhattan data points that are less than 100K and Figure 4.4(b) contains Manhattan

distances greater than or equal to 100K.

The y-axis in Figure 4.4 is the data locality execution time (DLT ), which was computed

in the equation above. The x-axis in Figure 4.4 is the Manhattan distance between all of

the non-zeros in the matrix for the same reorderings shown in Figure 4.3 (COO original,

randomized, and by row). Each Manhattan distance is normalized by the number of non-

zeros in a matrix, so that data locality of one matrix may be compared to the locality of

other matrices in the data set. Given the preliminary by-matrix linear regression results,

we hypothesized that Manhattan distance could be used as a data locality metric in the

performance model and serve as an indicator of data locality execution time.

Figure 4.5 shows the number of cache and TLB misses per Manhattan distance for

the various non-zero reorderings. The y-axis is the number of misses and the x-axis is the

Manhattan distance. Three separate trend lines are shown for the L1, L2, and TLB misses.

The correlation coe�cients for the linear �ts shown for the L1, L2, and TLB trend lines

are 0.21, 0.25, and 0.24 respectively. The poor quality of these correlation coe�cients is

indicative of the di�culty of developing a performance model that works for all matrices.

This �gure shows us that a small Manhattan distance corresponds to a fewer number of

cache and TLB misses, which is indicated by the clustering of data points for Manhattan

distances less than 200K. This graph also shows that as the Manhattan distance increases
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to 600K, the data locality worsens as indicated by a sharply increasing number of cache

and TLB misses. Also, there are a few data points, which have large Manhattan distances

(greater than 400K) and a relatively small number of misses. This group corresponds with

7 very large matrices. Five of these 7 matrices are the most sparse matrices in the training

set and 2 of the matrices are the largest. The largest matrices in the training set correspond

with the matrices that have the most non-zeros, but these matrices are also some of the most

sparse in the training set. All 7 matrices are among the top 3% in sparsity based on

ave %sparsity = (ave sparsity of these 7 matrices)/

(average sparsity of the training set).

However, relative to the averages for other matrices in the training set, these matrices have

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0  200000  400000  600000  800000  1e+06  1.2e+06

L1
 a

nd
 L

2 
C

ac
he

 a
nd

 T
LB

 M
is

se
s

Manhattan Distance

Manhattan Distance vs Cache and TLB Misses

L1 L1 L2 L2 TLB TLB

Figure 4.5: Cache and TLB Misses per Manhattan Distance for all COO Non-zero Order-
ings

a larger nnz/col and very few nnz/row. Few nnz/row would produce a larger Manhattan

distance measured along the rows. More nnz/col indicates a increased opportunity for tem-

poral reuse on the source vector and fewer cache misses. These factors combined ameliorate
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the high degree of sparsity and explains why these matrices have relatively few cache misses,

yet large Manhattan distances.

4.4 Predicting Data Locality Time

The Manhattan distance metric does well per matrix, but not amongst all of the data

as shown by the poor linear �t across the data in Figure 4.3. Therefore, in order to predict

data locality execution time across all of the matrices in the data set, we hypothesized that it

is necessary to use other data locality metrics. Using a metric that has a linear relationship

with execution time across all of the data set would better enable the model to predict

the data locality execution time. Each line in Figure 4.4 shows a linear �t for each matrix

between Manhattan distance and DLT . We decided to compute a linear �t between each

of the 5 data locality metrics (matrix bandwidth, matrix bandwidth per ncols, sparsity, nnz

per row, and nnz per cols) and each slope from each of the lines shown in Figure 4.4. Then,

we repeated the process using the same metrics as our xi and each of the y-intercepts from

each of the lines shown in Figure 4.4 as our yi. The formulas for performing linear regression

over (xi, yi) were explained earlier.

We tried using many di�erent data locality metrics to model the slopes and y-intercepts

from Figure 4.4 for the data locality portion of the performance model. The approach

computed a linear regression �t and correlation coe�cient between each metric and the

slopes of the Manhattan distance plot and between each metric and the y-intercepts in the

plot. The data locality metrics that we tried were matrix bandwidth, matrix bandwidth

per ncols, sparsity, nnz per row, and nnz per cols. However, no strong correlation ex-

isted between either the data locality execution time slopes or y-intercepts and each of the

metrics shown in Figures 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11. Each linear regression plot in Fig-

ures 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11 is labeled with a corresponding correlation coe�cient

(R2) value, which indicates the strength and type of relationship that may exist between the

metric and slopes or y-intercepts. The largest R2 value computed for any of the metrics was

0.29, which occured between the y-intercepts from Figure 4.4 and matrix bandwidth.
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Figure 4.6: Linear Fit for Data Locality Execution Time Slopes versus Data Locality Metric
per Matrix: Bandwidth.
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(b) Slopes vs Sparsity R2 = 0.056

Figure 4.7: Linear Fit for Data Locality Execution Time Slopes versus Data Locality
Metrics per Matrix: Bandwidth per Number of Columns and Sparsity.
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(b) Slopes vs NNZ per Cols R2 = 0.002

Figure 4.8: Linear Fit for Data Locality Execution Time Slopes versus Data Locality
Metrics per Matrix: NNZ per Row and NNZ per Column.
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Figure 4.9: Linear Fit for Data Locality Execution Time Y-intercepts versus Data Locality
Metric per Matrix: Bandwidth.

The primary di�erence between these other data locality metrics and Manhattan dis-

tance is that Manhattan distance changes with each reordering of the non-zeros and the

other metrics do not. Each of the chosen metrics shown in Figures 4.6, 4.7, 4.8, 4.9, 4.10,

and 4.11 are primarily indicative of the amount of reuse that occurs either on the source

or solution vector during the SpMV computation. Matrix bandwidth (matrixBW ) is the

maximum distance between non-zeros in a row of a matrix computed by Gibbs et al., [25]

using the following formula:

matrixBW = max|i− j|

aij 6=0

The bandwidth of a matrix is the same for any permutation of the non-zeros in a matrix,

where each non-zero is a tuple consisting of the row index, column index, and value. Matrix

bandwidth, matrix bandwidth per number of columns, and the average nnz per row indicate
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(a) Y-int vs Bandwidth/NCols: R2 = 0.011
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(b) Y-int vs Sparsity R2 = 0.06

Figure 4.10: Linear Fit for Data Locality Execution Time Y-intercepts versus Various Data
Locality Metrics per Matrix: Bandwidth per Number of Columns and Sparsity.
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(a) Y-int vs NNZ per Row R2 = 0.001
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(b) Y-int vs NNZ per Cols R22 = 0.009

Figure 4.11: Linear Fit for Data Locality Execution Time Y-intercepts versus Various Data
Locality Metrics per Matrix: NNZ per Row and NNZ per Column.
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the potential spatial locality and temporal reuse that occurs on the solution vector if the

same data is accessible in a cache line between multiple accesses. These two metrics are also

indicative of spatial locality for SpMV, which occurs on the source vector when contiguously

stored data is fetched from the cache and used. A small matrix bandwidth, but not less

than one, or many non-zeros per row may correspond with greater spatial locality. The

average nnz per column indicate how much reuse may occur on the source vector if the

temporal reuse occurs close enough in time that the data is still in the cache. Sparsity is

the nnz/(nrows × ncols), which indicates the amount of spatial and temporal locality that

occurs on both the source and solution vectors when contiguously stored data is accessed

within a short enough time period that that the cache line being used is still in the cache.

Linear regression between the Manhattan distance slopes and matrix bandwidth pro-

duced a positive slope and R2 value of 0.025, which does not indicate a strong linear rela-

tionship between the metric and the slopes. However, we found that of the 5 metrics used to

model Manhattan distance slopes, that the matrix bandwidth produced the best accuracy

in predicting relative performance. No metric was discovered, which models the y-intercept

for the data locality execution time as well as the actual y-intercepts. Without a metric

to model the y-intercepts we are unable to predict the ordering that will produce the best

performance.

4.5 Impact of Indexing

An initial model with just memory bandwidth requirements and Manhatten distance

did not su�ciently model some of the sparse matrix data structures we investigated, specif-

ically the cache block data structure. Figure 4.12 shows the result of performing linear

regression on Manhattan distance and data locality execution time after the addition of the

cache blocked ordering to include 2K, 8K, and 32K columns per cache block.

The addition of the cache block orderings resulted in the negative slopes that appear

in Figure 4.12. Recall from previous chapters that our implementation of the cache blocked

data structure has the overhead of an indexing array into each row of a cache block. Smaller
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Figure 4.12: Using Manhattan Distance to Predict Data Locality per data structure and
orderings, which includes the coo original, coo random, coo by row, and cache blocked
ordering with 2K, 8K, and 32K columns per cache block.
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cache block sizes generate a greater number of blocks than larger cache block sizes for a

matrix, thereby, increasing the overhead of the indexing array that points to each row of

a cache block. Also, smaller cache blocks increase the likelihood of empty rows in a cache

block, which are not skipped over. If there are a large number of empty cache block ×nrow

combinations then, the indexing overhead of the data structure starts to contribute to the

execution time.

The negative slopes in Figure 4.12 correspond to an increased execution time as a

result of the indexing overhead associated with smaller cache block sizes. To illustrate the

point, let us consider the t2em matrix, which is an 921,632 x 921,632 matrix with 4,590,832

non-zeros. Using a cache block size of 2K columns per cache block, the cache blocking data

structure must iterate over 451 cache blocks ×921, 632 rows, which amounts to 415,656,032

row index accesses far exceeding the nnz in the matrix. By comparison, a cache block size of

32K columns per cache block only requires 29 cache blocks × 921, 632 rows, which requires

26,727,328 row accesses. This data structure requires that the smaller cache block size of 2K

columns per cache block perform 16 times the number of row index accesses as that of the

32K column cache block, which greatly increases the indexing overhead and execution time.

4.5.1 Computing Indexing Overhead

Each data structure is associated with a di�erent indexing overhead. Recall from

Chapter 2 that the simplest data structure, COO, is a �at data structure with a 1 to 1

mapping between each row and column index to a value and has an algorithm complexity of

Θ(nnz). Indexing overhead associated with COO is equal to the number of index accesses

to nnz.

SpMV executed on the CSR data structure has an algorithmic complexity of Θ(nrows +

nnz) and performance is dominated by the indexing overhead of the row pointer array, which

indexes into the �rst non-zero of each row. Finally, our implementation of the cache blocked

data structure has an algorithm complexity of Θ(ncb ×nrows)+nnz, where ncb refers to the

number of cache blocks generated. The indexing overhead associated with the cache blocking
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data structure is the array that indexes into each cache block row. As the size of that array

increases to the nnz in the matrix, the the overhead greatly impacts performance and must

be accounted for in the performance model. In 4.6 we discuss in detail how indexing overhead

is computed in the model for the COO, CSR, and cache blocked data structures.

4.6 Training the Model

The most general form of the model used to predict the relative performance of SpMV

is

Execution time = (Time to fetch data from memory once)+

(Indexing overhead for cache blocked data structure) + (Time to refetch data).

The next two sections discuss each of the components of the model in much greater de-

tail, beginning with the memory component, which is used to predict the execution time

attributed to by the memory bandwidth requirements.

4.6.1 Computing the Time to Fetch the Data from Memory Once

Much of the details describing how we compute the memory component of the model

were discussed in the Bounding Performance with Memory Access Time under Section 4.2.

To recap, we compute the minimum memory bandwidth requirement for the computation

based on the assumption that the matrix, source vector and solution vectors are each read

in only once, such that that the

minBW = (memory footprint of a data structure) + (8 ∗ nrows) + (8 ∗ ncols).

We multiply the number of rows and columns by 8 because the source and solution vectors,

X and Y, hold doubles, which are 8 bytes each. The formulas used to compute the memory

footprints for each of the data structures in the analysis was discussed in Section 4.2. The

best possible execution time attributed to the memory bandwidth is computed for each data

structure using the machine bandwidth, which was measured using the STREAM bench-
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mark [13] as MFlb = (least memory required/Machine Bandwidth), where MFlb is the

best possible execution time for a given memory footprint and SpMV.

4.6.2 Computing the Data Locality Component

In this section we discuss how we modeled the execution time attributed to data locality,

where data locality time (DLT ) is computed as

DLT = ET −MFlb,

and ET refers to total execution time. In Section 4.4 we discussed the limitations of using

Manhattan distance to predict data locality execution time per matrix and the need to model

the slope and y-intercept for the data locality portion of the performance model. We tried

to model the slope and y-intercept using multiple phases of linear regression using 5 di�erent

data locality metrics. The results of using linear regression to select an appropriate data lo-

cality metric to model the slopes and y-intercepts were shown in Figures 4.6, 4.7, 4.8, 4.9, 4.10,

and 4.11.

4.6.3 Data Locality Model 1 Based on Linear Regression of Man-

hattan Distance

The model for the data locality component is composed a model slope, a data locality

metric, and a model of the y-intercept. Initally, we applied this approach using linear

regression to predict the model slope and model y-intercept. The initial model for data

locality took the form:

ET −MFlb = (model slope ∗MD) + (model y − intercept),

where MD refers to the Manhattan distance. Taking the preliminary model a step further,

we can decompose the model slope and model y-intercept as follows:

(a0 ∗ data locality metric1 + a1) ∗Manhattan Distance

+(b0 ∗ data locality metric2 + b1).
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In this equation, a0 and a1 are the slopes and y-intercepts resulting from computing the

linear �t between the 5 data locality metrics and the slopes taken from the per matrix linear

�t between Manhattan distance and DLT . The results of the the linear regression between

the slopes and each metric were shown in Figures 4.6, 4.7, and 4.8. Similarly, we attempted to

model the y-intercept component of the data locality model by computing a linear regression

between each of the 5 data locality metrics identi�ed in Figures 4.9, 4.10, and 4.11 and the

y-intercept taken from the linear regression between Manhattan distance and DLT , which

was not successful. The y-intercept component is modeled above using b0, b1, and data

locality metric2. This initial approach of modeling the slopes and y-intercepts did not work

because no strong linear relationshiop exists between the 5 data locality metrics and the

model slope or model y-intercept.

4.6.4 Data Locality Model 2 Based on Multi-parameter Linear Re-

gression

The results of this initial model prompted an approach, which uses a multi-parameter

linear �t library from the GNU Scienti�c Library [26] and accounts for the indexing overhead

discussed in Section 4.5.1. This approach uses the formula L = Pc to solve for the coe�cients

in c, which result from a multi-parameter linear �t on various data locality metrics, which

is used to model the locality component of the performance model. L is an n× 1 vector of

data locality execution time values and P is an n × ncoeffs matrix where ncoeffs refers

to the number of coe�cients.

The input parameters to the model include the L vector, which is equal to the ET −

MFbest. The 8 input parameters for matrix P include 1, MD , IOH, nnz, (BWCols∗MD),

BWCols, (matrixBW ∗MD), and BW are used to solve for the coe�cient vector c.

Initially, the input parameters included all 5 of the data locality metrics modeled in

Figures 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11. The reason being that very small coe�cients would

result for those parameters if the �t was poor and essentially cancel out the e�ect of those

poor �tting parameters. However, the �t was unable to converge with sparsity, nnz per
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row and column. The IOH and nnz components are used to model indexing overhead.

We include nnz because the overhead of the indexing arrays is due in-part to the non-zeros

contained in the rows, which are indexed into by the row pointers of the CSR and cache

blocking data structures. Also, BWCols parameter refers to the bandwidth per number of

columns in the parameter list above. The multi-parameter linear �t approach results in the

following formula used to predict ET −MFlb time.

ET −MFlb = a + (b ∗MD) + (c ∗ IOH) + (d ∗ nnz)+

(e ∗BWCols ∗MD) + (f ∗BWCols) + (g ∗BW ∗MD) + (h ∗BW ).

We can decompose this formula into 3 components:

Modeled slope = a + (b ∗MD),

Modeled indexing overhead = (c ∗ IOH) + (d ∗ nnz),

and

Modeled y − intercept = (e ∗BWCols ∗MD) + (f ∗BWCols) + (g ∗BW ∗MD)

+(h ∗BW ).

Assembling all of the components together produces our second performance model:

ET = MFlb + a + (b ∗MD) + (c ∗ IOH) + (d ∗ nnz)+

(e ∗BWCols ∗MD) + (f ∗BWCols) + (g ∗BW ∗MD) + (h ∗BW ).

Figure 4.13: Model Used to Predict the Relative Performance of SpMV.

Table 4.2 shows a representative example of the coe�cients obtained using the model

shown in Figure 4.13 after executing on the Intel Core2 Duo E8300 architecture. A negative

coe�cient indicates that the parameter has a negative relationship with L [27]. A coe�-

cient value close to zero indicates that no relationship exists between the parameter and L.

44



Table 4.2: Multi-parameter Linear Regression Fit Coe�cients

Term Coe�cient
a: 3.0x10−1

b: −5.5x10−7
c: 7.0x10−8
d: 8.6x10−9
e: 1.4x10−7
f: 2.9x10−2
g: 1.8x10−12
h: −1.3x10−6
i: −4.9x10−2
j: −1.5x10−5

The parameters with the strongest relationship with L are the constant coe�cient a and

BWCols coe�cient f . We observed this same pattern of coe�cient strength on the other

two machines as well, which we hypothesized indicated that the BWCols and coe�cient

a are good predictors of relative performance over the data set. However, BWCols does

not change with data locality and we found that the R2 value between BWCols and DLT

indicated that no relationship exists between them. This discovery lead to our third and

�nal model.

4.6.5 Data Locality Model 3 Based on Average Predicted Data Lo-

cality Time

The constant coe�cient a in Table 4.2 is by far the strongest coe�cient. Based on this

�nding we determined that modeling data locality time as an average is a better performance

indicator than any linear �t to the terms shown in Table 4.2. The �nal model follows:

ET = MFlb + (ave DLT remaining).
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Chapter 5

Evaluating the Performance Model

Our initial performance models use various data locality metrics to model data locality

execution time, but the average relative error for predicting execution time using those

models was 111% for the �rst model and 254% for the second model. Our �nal performance

model for predicting actual execution time had an average relative error of only 7.2%, but this

performance model does not model data locality and therefore is able to predict the fastest

performing data structure and not the optimal non-zero ordering. However, we identi�ed

Manhattan distance as a metric that is capable of estimating the impact of data locality on

execution time for di�erent non-zero orderings of a particular matrix.

The purpose of this performance model is to select the non-zero ordering AND data

structure, which will produce the fastest execution time for the SpMV computation and a

given set of machine and matrix parameters. We hypothesized that given a set of possible

sparse data structures (in terms of their memory footprint equations) and an estimate of

the data locality of possible orderings (in terms of Manhattan distance), the performance

model could select the data structure and ordering that will produce the fastest performance.

However, the �rst two models failed to determine the impact of data locality on execution

time.

Our approach was to select a representative training set, perform the training as de-

scribed in Section 4.6, and then evaluate the accuracy of the execution time model on another

set of sparse matrices.

However, using multiple phases of linear regression and additional data locality matri-
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ces, our model is unable to predict which non-zero reordering produces the fastest execution

times for the data set. Ideally, we could predict execution time, but the average relative error

for predicting execution times was too high. Our SpMV performance model was developed

on three Intel architectures: two Intel Core2 Duo architectures E8300 and 6400, and an Intel

Xeon (Harpertown).

5.1 Selecting Representative Training Matrices and the

Testing Set

Ninety-six matrices with a memory footprint greater than 6MB were randomly selected

from the Florida sparse matrix collection [28] and benchmarked on SpMV. A table of the 32

matrices that compose the training set are shown in Table A. The other 64 matrices, which

make up our test set are shown in the other two tables of the Appendix. The size of the cache

in the machines used for our experiments were 6MB, and we chose matrices that exceeded

the size of the caches used in our experiments. Matrices with a memory footprint, which

exceeds the size of the cache, ensured our ability to observe cache misses and the impact of

memory bandwidth pressure on performance.

In order to ensure that the training set of 32 matrices was representative of the en-

tire data set of 96 matrices, the training set was selected by mapping each matrix in the

entire data set to a 3 dimensional space composed of several locality metrics: sparsity, the

average nnz per row, and the average nnz per column for each matrix. Sparsity is the

nnz/(nrows × ncols), which indicates the amount of reuse that occurs on both the source

and solution vectors and is also indicative of spatial locality as is the average nnz per row.

The averge number of non-zeros per column indicate the amount of reuse that occurs in

this computation for a particular matrix. Columns in the tables of Appendix A include the

memory footprint(MB), nnz/row, nnz/column, and sparsity for each matrix in the data set.

Randomly selecting a data set of 32 matrices from this space produced a training

set that is representive of some of the data locality characteristics present across the set.

Figure 5.1 shows this 3 dimensional space that each of the 96 matrices were mapped into. A
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random sampling approach that divides that sampling space into evenly sized blocks from

which to sample was used to select 32 matrices for the training set. A 4 × 8 grid was

superimposed over the 3D space to randomly sample 1 matrix from within each block [29].

Elements of the training set were selected nearest the center of each of the 32 blocks. If no

sample was present inside of a block then, no sample was collected from that block. In such

a case, multiple samples were collected randomly from another block, which was selected

such that the sampling was evenly distributed over the rows and columns of the 4× 8 grid.

No more than two samples were collected from a single block and only 5 of the blocks were

double sampled due to 5 empty blocks within the 4× 8 grid.
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Figure 5.1: Random Selection of Training Data Set
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5.2 Models for Intel Core2 Duo and Intel Xeon Architec-

tures

We evaluate each model based on its ability to predict execution time, select the best

performing data structure and reordering, and performance degredation when it does not.

Using the formulas for each model, the remainder of the data set was benchmarked and

modeled using each model's components. The accuracy for the execution time prediction

and the relative performance prediction follow.

5.3 Accuracy of Execution Time Prediction

The average relative error for predicting execution time on the test set for the �nal

model is 7.2%. The error is computed for the three models using actual execution time (ET )

and model execution time (MET ).The formula used to compute relative error of execution

time follows:

Execution time prediction error:

%error in predicted execution time = 100 ∗ (ET −MET )/ET

5.4 Accuracy of Relative Performance Prediction

In this section we evaluate the relative performance of our model based on its ability to

accurately predict the data structure that will produce the fastest execution times per matrix.

The average accuracy for predicting, which data structure will produce the fastest execution

times using our �nal model is 78.6%. Relative performance is computed by comparing the

execution time of the data structure that actually performs the fastest against the execution

time of the data structure recommended by the model.

Percent Correct:

%of T ime model picks winner =

(100 ∗ total number of correct pick)/

49



(total number of matrices)

Percent Degredation:

%degredation in performance when model fails =

100 ∗ (ET − ET ofModel recommended data structure)/ET

The results for model error computation are shown in below in Tables 5.1, 5.2, and 5.3.

Model No. % Correct Ave.
%
Degre-
dation

Ave. % Exec Time Pred Error R2

1 48.4% 49.8% 25.7% 0.38
2 14.0% 265.4% 228.1% -0.019
3 84.3% 38.1% 5.95% 0.002

Table 5.1: Error prediction results for the 3 models executed on Intel Core2 Duo E8300 on
a test set of 64 matrices.

Model No. % Correct Ave.
%
Degre-
dation

Ave. % Exec Time Pred Error R2

1 0% 257.9% 257.9% 0.34
2 12.5% 213.8% 187% 0.009
3 78.1% 17.8% 3.9% 0.003

Table 5.2: Error prediction results for the 3 models executed on Intel Xeon E5405 on a test
set of 64 matrices.

Model No. % Correct Ave.
%
Degre-
dation

Ave. % Exec Time Pred Error R2

1 15.6% 62% 52% -0.62
2 14% 405% 348% -0.074
3 73.4% 44.2% 11.7% 0.002

Table 5.3: Error prediction results for the 3 models executed on Intel Core2 Duo 6400 on a
test set of 64 matrices.
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In order to better understand why our third model is able to predict the best data

structure let us look at an example. Figure 5.4 shows the case where data locality determines

execution time. The model predicts that the CSR data structure is the fastest performing,

but the actual fastest in this case is the COO. We computed the percent di�erence for the

memory footprint between CSR and COO as:

%Memory Footprint Error = (COO Footprint − CSR Footprint)/

COO Footprint

and found a 21% di�erence.

Figure 5.2: Example showing the amount of error that occurs when the model fails to
accurately predict the correct data structure
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Chapter 6

Conclusions and Future Work

The goal of this thesis was to understand the performance trade-o�s in SpMV that

are due to memory bandwidth pressure and data locality. We hypothesized that a perfor-

mance model based on these factors could accurately predict execution time based on our

preliminary �ndings for using Manhattan distance as a data locality performance indica-

tor. However, our experiments show that Manhattan distance is an excellent data locality

performance metric per matrix, but not amongst all of the data.

6.1 Understanding Performance Trade-o�s in SpMV

Based on our observation that Manhattan distance is not a good performance predictor

over all of the data, we hypothesized that these results indicated that other data locality

metrics are needed to predict data locality execution time across the data set. Linear re-

gression showed that none of the 5 data locality metrics that we identi�ed could be used to

model either the slope or the y-intercepts of the Manhattan distance graph and predict data

locality time. Our next approach was to use a multi-parameter linear �t to predict actual

execution times and relative performance, which was only able to accurately predict relative

performance for an average of 14% of the test set.

During the investigation we discovered that the memory bandwidth component of the

model is often able to successfully predict the data structure with the fastest relative per-

formance. These �ndings indicate that the smallest footprint leads to the best performance
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for most of the matrices in this test set and that the trade-o� between memory versus data

locality requirements will most often favor the data structure with the smallest memory

bandwidth requirements.

This �nding also con�rms our hypothesis about the faster performance of OSKI's im-

plementation of SpMV for smaller cache block sizes. The data structure that OSKI uses for

the smaller cache block sizes is slightly more compressed than CSR, which indicates that

the GCSR's memory bandwidth needs are less than the needs of a CSR storing the same

matrix. The model that predicts the performance bounds based on memory access times can

be computed using memory footprint information for a matrix, and the size of the line of

cache and machine bandwidth. Predicting relative performance based on these parameters

can be computed without the need to train or execute the SpMV code. However, a model

that does not consider the impact of data locality on execution time, is unable to model

instances in which data locality dominates performance.

6.2 Predicting Data Locality Across a Data Set With a

Clustering Algorithm

We have shown that memory bandwidth pressure can often be used to predict the data

structure with the fastest relative performance. However, predicting actual execution time

will require modeling the data locality component as well. One of the primary challenges

in developing this model was identifying strong data locality performance indicators that

could predict data locality across the data set. Figure 4.5 identi�ed 3 clusters of matrices

within the data set, which included matrices with small and large Manhattan distances that

behaved as we exepcted, and matrices with a large Manhattan distance, but small data

locality execution time. Based on the presence of these 3 clusters, perhaps it is possible to

use a clustering algorithm to identify shared data locality characteristics amongst matrices

(e.g. nnz/row, nnz/column, sparsity, Manhattan distance, etc.), which could be used to

predict execution time.
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Appendix A

Training and Testing Matrices
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Table A.1: List of the training set matrices selected from the University of Florida Sparse
Matrix Collection. Matrices are sorted by Size(MB).

Matrix Size(MB) nnz/row nnz/col Sparsity
g2circuit 6.68877 2.9206 2.920601 0.000019
fome21 7.09939 6.86801 2.150654 0.000032
dawson5 8.10496 10.3063 10.306324 0.000200
mesh-deform 13.0284 3.64848 90.900566 0.000388
qa8fk 13.1738 13.056 13.055984 0.000197
benElechi1b 14.8265 3.95195 23.966702 0.000097
landmark 17.5667 16.0 425.751465 0.005917
vanbody 18.1883 25.3226 25.322592 0.000538
language 18.56 3.04746 3.047463 0.000008
lp-nug30 23.9227 30.0 4.132859 0.000079
majorbasis 26.709 10.9401 10.940100 0.000068
dubcova3 28.8645 12.8958 12.895780 0.000088
cant 31.0508 32.5842 32.584217 0.000522
mc2depi 32.0471 3.99415 3.994152 0.000008
si34H36 40.0845 26.9243 26.924269 0.000276
consph 46.4916 36.5626 36.562592 0.000439
bmw7st1 57.0757 26.4633 26.463293 0.000187
shipsec1 60.6863 28.2319 28.231888 0.000200
ga19As19H42 68.8015 33.8708 33.870789 0.000254
t2em 70.0508 4.9812 4.981199 0.000005
g3circuit 70.5434 2.91594 2.915936 0.000002
largeRegFile 75.4422 2.34194 6.169655 0.000003
1d5pt 76.2941 4.99999 4.999994 0.000005
x104 78.3995 47.4056 47.405560 0.000437
cont11l 82.1381 3.6654 2.744476 0.000002
para-10 82.647 34.7372 34.737167 0.000223
siO2 87.2714 36.8208 36.820835 0.000237
tsopf-fs-b300-c3 100.384 77.9344 77.934380 0.000923
rail2586 122.244 3097.97 8.677170 0.003355
ohne2 168.817 61.0089 61.008945 0.000336
bone010 554.298 36.8161 36.816055 0.000037
audikw1 599.636 41.6424 41.642448 0.000044
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Table A.2: List of the test set matrices selected from the University of Florida Sparse Matrix
Collection. Matrices are sorted by Size(MB).

Matrix Size(MB) nnz/row nnz/col Sparsity
apache1 4.75341 3.8551 3.855099 0.000048
andrews 6.25766 6.83462 6.834617 0.000114
epb3 7.07482 5.4791 5.479100 0.000065
lung2 7.51616 4.49995 4.499945 0.000041
rajat23 8.49818 5.04679 5.046785 0.000046
mri1 8.99994 9.0 4.00000 0.000061
denormal 9.50374 6.96658 6.966577 0.000078
nemeth22 10.4397 71.9723 71.972336 0.007571
neos2 10.454 5.16782 5.107710 0.000039
2cubes-sphere 13.3417 8.61524 8.615241 0.000085
linmat 15.4296 3.95 3.950000 0.000015
tsc-opf-1047 15.4501 124.388 124.388329 0.015281
pds-90 15.4747 7.10065 2.133011 0.000015
pds-100 16.724 7.01473 2.129909 0.000014
h2O 17.4234 17.0369 17.036882 0.000254
xenon1 18.0224 24.3029 24.302881 0.000500
twotone 18.6798 10.1385 10.138501 0.000084
maceconfwd500 19.4304 6.16653 6.166533 0.000030
nasasrb 20.8445 24.897 24.896975 0.000454
�lter3D 21.4661 13.2173 13.217283 0.000124
lhr71c 23.3165 21.7355 21.735491 0.000309
cfd2 24.5002 13.0077 13.007688 0.000105
invextr1-new 27.3725 58.986 58.985958 0.001940
oilpan 28.0074 24.8871 24.887054 0.000337
mixtank-new 30.4415 66.5968 66.596825 0.002223
water-tank 31.0559 33.5081 33.508083 0.000552
neos3 31.3569 4.01208 3.960866 0.000008
parabolicfem 32.0471 3.99415 3.994152 0.000008
t3dh-a 33.8084 27.9855 27.985474 0.000353
asic680ks 35.54 3.41165 3.411652 0.000005
apache2 42.2134 3.86831 3.868311 0.000005
thermomechdK 43.4299 13.9305 13.930519 0.000068
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Table A.3: List of the test set matrices selected from the University of Florida Sparse Matrix
Collection. Matrices are sorted by Size(MB).

Matrix Size(MB) nnz/row nnz/col Sparsity
ecology2 45.7462 2.998 2.997998 0.000003
webbase1M 47.3866 3.10552 3.105520 0.000003
laminar-duct3D 58.4878 57.0628 57.062763 0.000849
xenon2 59.0008 24.556 24.556013 0.000156
barrier2-9 59.4719 33.7086 33.708603 0.000292
comat 60.1743 17.8347 17.834686 0.000081
tsopf-fs-b300-c2 67.0024 77.2885 77.288536 0.001360
torso3 67.582 17.0903 17.090254 0.000066
thermal2 74.8319 3.99348 3.993485 0.000003
bmwcra1 82.3419 36.2733 36.273350 0.000244
para-9 82.647 34.7372 34.737167 0.000223
hood 83.839 24.9136 24.913572 0.000113
hamrle3 84.1411 3.80986 3.809862 0.000003
pre2 89.0204 8.85243 8.852430 0.000013
pwtk 90.4264 27.1945 27.194500 0.000125
ccSphere 91.7125 72.1252 72.125183 0.000865
esoc 91.8569 18.4061 159.131348 0.000487
benElechi1 102.206 27.2423 27.242348 0.000111
cont1l 107.3 3.66556 3.659457 0.000002
crankseg2 108.434 111.318 111.318459 0.001744
cage13 114.126 16.7956 16.795624 0.000038
stanfordBerkley 115.713 11.0958 11.095794 0.000016
kkt-power 124.06 3.94009 3.940086 0.000002
pr02R 124.895 50.8173 50.817261 0.000315
torso1 129.952 73.3182 73.318237 0.000631
atmosmodd 134.504 6.93849 6.938490 0.000005
kim2r 172.882 24.7935 24.793468 0.000054
sphere150 175.604 74.2774 74.277390 0.000479
nd24k 219.633 199.914 199.914124 0.002777
tsopf-rs-b2383 246.752 424.217 424.217438 0.011128
ldoor 362.203 24.9289 24.928865 0.000026
spal004 704.47 4524.96 143.514755 0.014066
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