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ABSTRACT 

A MULTI-OBJECTIVE COMMUNITY-LEVEL SESIMIC RETROFIT OPTIMIZATION  

COMBINING SOCIAL VULNERABILITY WITH AN ENGINEERING FRAMEWORK FOR 

COMMUNITY RESILIENCY 

This dissertation presents a multi-objective optimization framework for community 

resiliency by providing decision maker(s) at the local, state, or other government level(s) with an 

optimal seismic retrofit plan for their community’s woodframe building stock.  A genetic 

algorithm was selected to perform the optimization due to its robustness in multi-objective 

problem solving.  In the present framework, the algorithm provides a set of optimal community-

level retrofit plans for the woodframe building inventory based on the socio-demographic 

characteristics of the focal community, Los Angeles, California.  The woodframe building 

inventory was modeled using 37 archetypes designed to several historical and state-of-the-art 

seismic design provisions and methodologies.  The performance of the archetypes was quantified 

in an extensive numerical study using nonlinear time history analysis.  Experimental testing was 

conducted at full scale on a three-story soft-story woodframe building.  The experimental testing 

investigated the seismic performance of several retrofit strategies for use in the framework, and 

the results were used in development of a metric correlating inter-story drift limits with damage 

states used in the framework.  A performance-based retrofit design is presented in detail, and the 

experimental testing results of four retrofits are provided as well.   

The algorithm uses each archetype’s seismic performance to identify the set of optimal 

community-level retrofit plans to enhance resiliency by minimizing four objectives:  initial cost, 
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economic loss, number of morbidities, and recovery time.  In the model, initial cost sums the 

cost of each new retrofit, economic loss incorporates direct and indirect costs; the number of 

morbidities includes injuries, fatalities, and persons diagnosed with post-traumatic stress disorder 

(PTSD); and a recovery time is estimated and may be used to represent the loss in quality of life 

for the affected population.  The framework was calibrated to the estimated losses from the 1994 

Northridge earthquake.  An application of the framework is presented using Los Angeles County 

as the community.  Two forecasted populations are also examined using the census data for Daly 

City, California and East Los Angeles to further exemplify the framework.  Analyses were 

conducted at six seismic intensities.  In all illustrative examples, the total financial loss (e.g., 

initial cost + economic loss) was higher for the initial population (i.e. un-retrofitted community).  

When combining this financial savings with the reduced number of morbidities, it is clear that 

the higher initial cost associated with retrofitting the woodframe building stock greatly 

outweighs the risks and losses associated with not retrofitting.  The results also demonstrated 

how retrofitting the existing woodframe building stock greatly reduces estimated losses, 

especially for very large earthquakes.  The resulting losses were further investigated to 

demonstrate the important role that the mental health of the population plays in a community’s 

economy and recovery following disastrous events such as earthquakes.  Overall, the results 

clearly demonstrate the necessity in including social vulnerability when assessing or designing 

for community-level resiliency for a seismic hazard.   
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Chapter 1: Introduction 

Disasters affect communities without discrimination, and in the immediate moments 

following the event a social leveling may temporarily exist.  This instance in time knows no 

social class, knows no race, knows no age, nor gender.  However, the moments following this 

brief instance in time, during, after, and throughout the recovery stage, are extremely biased and 

affect individuals and communities in different ways and to different extents.  The level to which 

an individual, a family, or a community is affected is based on their social vulnerability, and the 

time it takes them to recover is based on their resiliency.   Hazards are not consistent 

everywhere, but rather vary in type and intensity by location.  Loss happens to individuals and 

families, but recovery is a community effort.  Therefore, addressing resiliency at the regional or 

community levels may be most beneficial.  

Community disaster resiliency has become a mitigation focus worldwide.  The World 

Bank and World Health Organization have hundreds of country-specific projects with this focus. 

Within the U.S. in the past several years, major research efforts have been established by the 

American Society of Civil Engineers (ASCE), the American Society of Mechanical Engineers 

(ASME), the Pacific Earthquake Engineering Research (PEER) Center, the National Earthquake 

Hazards Reduction Program (NEHRP) with the National Research Council (NRC), National 

Academies, the Department of Homeland Security (DHS), the Federal Emergency Management 

Agency (FEMA), the American Technology Council (ATC), the American National Standards 

Institute (ANSI), and the National Institute of Standards and Technology (NIST).   
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1.1 Resiliency 

Vulnerability and resiliency are two well-developed concepts in the literature with many 

varying connotations across fields and focuses of study (i.e. engineering, sociology, psychology, 

geography, ecology, financial, biophysical, etc.).  A comprehensive set of definitions found in 

the literature is provided in Cutter (1996) for vulnerability and in Norris et al. (2008) for 

resiliency.  Social vulnerability is a pre-existing condition of an individual, or group, based on 

the social, economic, and political conditions of the place where the individual or group is 

located.   Vulnerable subjects have a higher risk, and lack some category, or categories, of 

resources to recover efficiently, or recover fully, when exposed to a hazard.  With this in mind, 

the relationship between risk and vulnerability may be expressed as  

Risk = Hazard*Vulnerability    Eq. 1-1   

That is to say that social vulnerability is not measured so much by the hazard itself, but rather by 

those pre-existing conditions, and risk is the measurement of a vulnerable population to a hazard.   

Throughout the past two decades, the United States government has made attempts at 

improving the resiliency of communities against disasters.  In 1994, FEMA declared the National 

Mitigation Strategy which provided incentives for seismic mitigation.  In 1997, Project Impact 

was initiated which declared a community to be disaster resistant if it met specific requirements 

and followed certain protocols, including the implementation of specific hazard risk reduction 

actions.  In 2013, the city of San Francisco, California passed a local ordinance mandating the 

retrofit of at-risk soft-story woodframe buildings, and more recently, the city of Los Angeles is 

working toward a similar retrofit program for soft-story woodframe (and potentially older non-

ductile concrete) buildings.  Globally, there have been many efforts as well.  A few of the 
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research efforts which have shaped how community disaster resilience is viewed today are 

presented below, but this review is not intended to be exhaustive.   

In 2003, Bruneau et al. presented a quantitative framework to assess and enhance the 

seismic resilience of communities.  The authors describe resiliency as consisting of four 

dimensions:  technical, organizational, social, and economic.  Each of the four dimensions, in its 

own way, must execute the four properties of resiliency: robustness, redundancy, 

resourcefulness, and rapidity, as they apply to physical and social systems.  These four 

dimensions may be thought of as performance objectives for either the ends or the means to 

resiliency.  Detailed examples of each dimension’s performance measures are provided in terms 

of the four properties. Figure 1-1 provides a conceptual definition of measuring seismic 

resilience, with a community’s functional capacity on the ordinate and time on the abscissa, 

where time could be in units of days, weeks, or even years.  Referring to Figure 1-1, during the 

pre-event stage, a normal level of operation exists for a given community.  The community’s 

functional capacity may actually be improving due to pre-event planning.  When an earthquake 

or other acute disturbance occurs, a sudden drop in the functional capacity is immediately 

realized potentially due to power outages, lifeline losses, infrastructure failures, etc.  First 

responders follow the drop, and then the gradual process of recovery takes place until a new 

normal level of functional capacity is met.  This new level could occur at the pre-event level of 

operation, or a new level of operation may be achieved with the potential to be better (or worse, 

but acceptable to the community) than the original level.  Considering the conceptual notion in 

Figure 1-1, resiliency can be defined as minimized time to recovery. 
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Figure 1-1:  Concept of Resiliency 

 
Some researchers have attempted to develop metrics for measuring and comparing 

community disaster resilience.  For example, a disaster resilience of place (DROP) model was 

developed by Cutter et al. (2008) to provide a standard metric for measurement and comparison 

of a community’s disaster resilience.  The research was conducted following the U.S. federal 

agency’s Subcommittee on Disaster Reduction (2005) grand challenges request for consistent 

factors and metrics to assess a community’s resilience in order to provide assistance with 

vulnerability reduction.   The DROP model provides a conceptual relationship between 

vulnerability and resiliency.  The model suggests that there is an overlap between vulnerability 

and resiliency, providing an explanation of how pre-event characteristics of a place interact with 

an event.  The community or region either possesses the appropriate amount of coping responses, 

or it does not, in which case a disaster occurs.  Following recovery, there is a learning stage 

which provides preparation for the next disaster.  The model is useful in a conceptual sense, but 

does not offer any type of measurement, solution or progression in resiliency. 
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Other groups of researchers, practitioners and planners have identified resiliency goals 

for implementation.  For example, the San Francisco Planning and Urban Research Association 

(SPUR) [McAllister (2013)] identified goals for resilience defined in the context of disaster 

planning, and identified three phases of response:  rescue, recovery, and rebuilding.  The second 

phase focused on restoring neighborhoods and reestablishing the workforce (30-60 days), which 

identified 95% of residences with the ability to shelter-in-place as a resilience goal.  The third 

phase consisted of the repair and reconstruction of the affected area (years).  With respect to the 

present work, if in the pre-event stage, the community possesses a resilient built environment, 

i.e. robustness, then the time associated with phases two and three can be significantly reduced. 

Additionally, NIST’s Technical Note 1795 [McAllister (2013)] thoroughly addresses the 

role of the built environment in community resilience and presents major findings from two 

workshops for the Resilience Roundtable on Standards for Disaster Resilience for Buildings and 

Physical Infrastructure System which were sponsored by NIST, DHS, and ANSI-HSSP.  Short 

term and long term activities in community resilience planning were identified.  These included 

terminology for resilience objectives, developing risk-based performance goals, developing 

resilience metrics and tools, as well as, developing guidelines for standards to incorporate these 

metrics into codes.  It was emphasized that in order for the desired community disaster resilience 

levels to be achieved, performance goals beyond the ones in current building codes would need 

to be established.  Although acknowledged as driving the requirements for the performance of 

the built environment, other aspects of community disaster resiliency such as social issues related 

to human health, safety, and general welfare were not addressed.   

5 
 



1.2 Motivation 

Severe earthquakes are low probability-high consequence events.  In fact, in the past 

decade over 400,000 deaths were caused by just four out of hundreds of earthquakes occurring 

worldwide [Spence et al. (2011)].  The three most recent large earthquakes occurring in the 

United States were the 1971 San Fernando earthquake, the 1989 Loma Prieta earthquake, and the 

1994 Northridge earthquake.  These earthquakes were each devastating with respect to loss of 

life, casualties, building damage, economic loss, and loss in quality of life.  In the latter two 

earthquakes, damage to woodframe structures was extensive resulting in more than $16.7 billion 

in losses in the Northridge earthquake alone [CUREE (2001)].  Considering that 90% of all 

residential buildings in the United States are of light-frame wood construction [Ellingwood et al. 

(2008)], improving the seismic resilience of the woodframe building stock would significantly 

improve resiliency at the community and/or regional level for regions in the United States.   

Due to the devastating effects of earthquakes, loss estimation models have been a 

research topic of interest with the intention of predicting and therefore preventing loss while 

improving immediate recovery efforts.  Many good earthquake loss estimation models are 

available in the literature at the single-building level and at the regional level.  Models, such as 

Hazus [DHS (2003)], employ generic fragility functions based largely on expert opinion, which 

produces the end result of a generalized solution.  What the literature lacks is an approach which 

employs a combination of analytical and empirical techniques with the efficiency associated with 

regional methods and the level of detail associated with building-specific methods.   

May (2006) discussed the lack of adoption of performance-based seismic design (PBSD) 

procedures in engineering firms, and stated that it would be necessary for changes in building 

code provisions to fuel the widespread adoption.  This is not an easy task however, because, as 
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May discusses, developing such guidelines is “fundamentally a value judgment that presumably 

requires some form of collective decision making” which may be aided by knowledge of the 

relevant seismic risk and cost-benefit relationships.   May concluded that future guidelines 

should incorporate “what is desirable from the public point-of-view, and what is empirically 

achievable.”  Therefore, methodologies to be included in future PBSD guidelines should provide 

a range of solution options with tradeoffs for each of the performance objectives.   

Additionally, thus far, the resiliency frameworks, hazard and vulnerability indices, and 

loss estimation models mention the importance of social vulnerability, however the explicit 

incorporation and/or quantification is generally neglected.  The exception is in Hazus and 

MAEViz which consider social losses and use demographic information for determining shelter 

needs.  Additionally, MAEViz computes a social vulnerability index to identify the specific 

area(s) of a region which are most vulnerable so that first-responder recovery efforts may be 

better directed.  Neither Hazus or MAEViz, or other loss models, have directly incorporated the 

social vulnerability to determine the loss in quality of life for the affected population.  Although 

a significant amount of uncertainty is associated with quantifying such subjective measures as 

post-traumatic stress disorder (PTSD) and loss in quality of life, there is a need to move beyond 

strictly qualitative measures.  The available loss estimation models, community disaster 

resiliency and decision-making frameworks similarly lack this crucial characteristic of including 

social variables in their metrics.   

The author has identified a major gap in the research which is to address community 

disaster resiliency by providing decision makers with a set of optimal retrofit plans for their 

community’s built environment based on a regional loss estimation model that estimates loss by 

considering both social vulnerability and building performance.  The optimal community retrofit 
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plans were based on performance objectives including the initial cost, associated economic loss, 

the impact on the mental health of society, the number of injuries and fatalities, and the time to 

recovery.  This allows decision makers to develop comparisons between multiple resilience 

levels with the associated risk-based performance criteria. 

1.3 Literature Review 

A literature review is provided in this section.   The initiation and transformation of 

performance-based seismic design (PBSD) is first discussed, then followed by a discussion on 

the state of the art in loss estimation models.  Next, vulnerability, risk, and resiliency studies and 

their major findings and contributions to the field, such as the SoVI, are presented.  Lastly, the 

role of mental health in recovery is discussed. 

1.3.1 Performance-Based Seismic Design 

Following the devastating earthquakes which occurred in the United States over the past 

several decades, important lessons were learned, and noteworthy changes were made to the 

existing building codes and seismic provisions of the time, as well as disaster preparedness 

planning, emergency protocols, and social vulnerability perceptions.  Henceforth, a shift in the 

design paradigm emerged based on owner and stake-holder articulated performance expectations 

conditioned on pre-defined limit states.  This new design methodology became known as 

performance-based design (PBD), or more pointedly with respect to this dissertation, 

performance-based seismic design (PBSD).  Design procedures falling under the large umbrella 

of PBSD are often displacement-, or drift-based, rather than ultimate strength-based.  A well-

known procedure for PBSD of woodframe structures is the direct displacement design (DDD) 

procedure [Pang and Rosowsky (2010)], and the simplified direct displacement design (SDDD) 

procedure [Pang et al. (2010)].   

8 
 



  

Even more recently, PBSD has shifted away from the limit states “Immediate 

Occupancy”, “Life Safety”, “Collapse Prevention”, etc., due to the realization that these can be 

difficult for owners and stakeholders to relate to and understand.  A second generation of PBSD 

begins to emerge in which the limit states include “Number of Casualties”, “Total Economic 

Loss”, and “Recovery Time” [FEMA (2012b)].   

FEMA 283 (1996), FEMA 349 (2000), and FEMA 445 (2006) were created as an 

initiation of the second generation of PBSD.  The Pacific Earthquake Engineering Research 

(PEER) Center formulated the first framework which quantified the metrics mentioned above, 

and is being implemented in the ATC-58 project.  The framework is probabilistic and addresses 

uncertainties in the performance objectives with probability distributions.  Damage and 

economic loss are estimated using the results from seismic hazard analysis and response 

simulation.  The framework is divided into four stages, where the results of each stage serves as 

input to the next stage.   Stage 1 generates the probabilistic seismic hazard and intensity of the 

site, stage 2 determines the engineering demand parameters (EDP) (e.g., inter-story drift) and 

collapse capacity of the structure under consideration, stage 3 correlates the EDPs with damage 

measures (DM) using fragility functions, and stage 4 provides decision variables (e.g., economic 

losses) based on repair and replacement costs, which can be used by stakeholders to aid in 

decision making [Porter (2003)].   

1.3.2 Loss Estimation Models 

A significant amount of research has been conducted on loss estimation models in an 

effort to predict the direct and indirect losses caused at a static point in time due to a specific 

seismic intensity.  There are many good earthquake loss estimation models available.  Several 

informative and extensive reviews have been published on hazard loss estimation models.  
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Specifically, as part of the World Bank’s disaster risk management (DRM), a study on 31 open 

source or open access hazard loss estimation softwares was published [GFDRR (2014)].  Eight 

models were covered for seismic hazards, including Hazus and MAEViz. The study provided 

details on the outputs of each software with the advantages and disadvantages.     

Perhaps the most widely used loss estimation model in the United States is Hazus.  In 

1997, the Federal Emergency Management Agency (FEMA) released their natural hazard loss 

estimation software package Hazus.  Hazus is applicable to earthquakes, floods, and hurricanes.  

The most recent version of Hazus uses Geographic Information Systems (GIS) technology to 

estimate physical, economic, and social impacts of disasters.  This allows users to overlap maps 

and compare different scenarios.  It applies Porter’s [Porter (2001)] assembly based vulnerability 

(ABV) approach, which sums assembly level component losses to compute a structure’s loss.  

The capacity spectrum method is employed for structural earthquake response. Hazus was 

intended to be used in macroscopic loss estimation, and was based on the estimated fragility of 

three types of building elements (structural drift-sensitive, nonstructural drift-sensitive, and 

nonstructural acceleration-sensitive).  Hazus was largely based on expert opinion, which 

although may be the state-of-the-art, is subjective and full of uncertainty.  However, this does 

allow the model to provide information, albeit subjective, for impacts on service outages for 

lifelines, estimates on fire ignitions and fire spread, potential for serious hazardous materials 

release, and indirect economic loss effects.  Hazus estimations are based around GIS software 

which is integrated with detailed databases of the building stock and demography of the United 

States, and therefore the Hazus methodology is not easily extended outside of the U.S.  The 

Hazus model uses the demographic information to provide estimates on social losses such as the 

number of casualties (injuries and fatalities) and the number of persons needing temporary 
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shelter.  To compute the shelter needs, weights are assigned to five income categories, five ethnic 

categories, and three age categories, and applied to the shelter needs estimate based on building 

damage.  Additionally, Hazus has been noted to consistently provide an overestimation of losses 

for small earthquakes (<M6) [CGS (2009)].   

The Mid-America Earthquake (MAE) Center and the National Center for 

Supercomputing Applications (NCSA) developed a seismic risk assessment software, MAEViz, 

in 2008.  MAEViz is based on Hazus with expansions in several categories including the damage 

states and social losses.  Loss estimates are provided for business content loss, business 

interruption loss, business inventory loss, household and population dislocation, shelter 

requirements, and short term shelter needs.  MAEViz uniquely computes the fiscal impact 

following an earthquake, and the social vulnerability of sub-areas within the affected region by 

scoring each from 1-10 based on the demographic information of the neighborhood areas.  The 

software uses a modified approach from Hazus to compute shelter needs and population 

dislocation.   

More recently and within the ATC-58 Project [FEMA (2012b)], the PEER methodology 

was developed into a loss estimation tool for its execution: the Performance Assessment and 

Calculation Tool (PACT) software.  PACT provides a way to keep track of all of the building 

inventory details, and to perform the intensive calculations for probabilistic computations and 

accumulation of losses.  Inputs include all of the building system and component information.  

The user may select which component fragilities to use out of the database of component 

fragilities.   Monte Carlo simulation is performed to account for the variability of the building 

performance for a specific seismic intensity.  Results from the simulation and structural analysis  
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are used to determine the three performance objectives (number of deaths, repair and 

replacement costs, and downtime).  The results are presented in a user-friendly and logical 

format for easy realization of losses.     

Ramirez and Miranda (2009) presented a building-specific loss estimation method for a 

simplified approach of performance-based earthquake engineering.  The study considered the 

PEER methodology and noted that the building-specific loss estimation was extremely detailed 

by requiring a full inventory of the building being evaluated and computationally-intensive by 

requiring the integration of many random variables.  The authors stated that improvement could 

be made in an effort toward simplification, and that simplification of the procedure may be the 

key to the successful adoption of performance-based design.  Some of the major contributions of 

their work included the development of the simplified methodology which took a more realistic 

and practical approach at computing direct loss due to building damage.  The approach summed 

the losses by repair needed per sub-contractor and by building story, rather than by existing 

methods of computing losses at the component level.  To estimate the mean economic loss, the 

second step in the PEER methodology was skipped and the engineering demand parameters 

(EDP) were used to compute the mean economic loss by consolidating fragility functions and 

repair costs.  Generic fragility functions were employed where existing ones were not available, 

and lastly the loss estimation considered, for the first time, buildings which did not collapse, but 

resulted in such excessive drift such that demolition was required.  There were other outcomes of 

their research; however those are not mentioned here.  The story-based loss estimation 

methodology developed distributions of total cost amongst the building stories.  The distribution 

is based on the fact that the bottom story often has a different layout from above stories 

consisting of a main entrance and lobby, as well as different façades and finishes, and therefore 
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has a different associated cost than a typical story which is consumed by many office units.  This 

again has a different associated cost than the top story which typically hosts the building’s 

mechanical equipment.  Using data from RS Means conjunctively with engineering judgment, 

story cost distributions were developed and applied in the framework.  Economic loss was 

computed by including the expected value of the loss at DBE, expected annual losses, and the 

present value for life-cycle costs.  The issue with using generic fragility functions, as in their 

study, is that the basis is largely dependent on expert opinion which can have substantial 

variation.  However, these types of generic fragility functions provide good relative insight into 

this complex problem, and as more data becomes available the uncertainties can be reduced.   

In 2007, Pei and van de Lindt developed a novel long-term loss estimation framework at 

the single building level for progression of and incorporation into performance based seismic 

design (PBSD).  The framework considered a response-damage-loss relationship and employed 

damage fragility systems to quantitatively model the uncertainty associated with that 

relationship.  This study was the first time that economic loss was considered in PBSD of 

woodframe structures.  The framework incorporated the assembly-based vulnerability (ABV) 

procedure [Porter (2001)].  Bayesian techniques were used for modeling subjective uncertainty 

and objective randomness.  The program SAPWood was used for modeling and analyzing the 

structure using nonlinear time history analysis using a suite of ground motion records.  Response 

parameters (i.e. EDPs) output and were used to generate cost-based correlation of the response 

parameters with damage fragilities.  Summing the costs for all damageable components, a single 

earthquake loss sample was obtained.  The process was repeated for multiple seismic intensities 

and the results were combined into vulnerability functions to be used in the long-term loss 

model.  For the damage fragilities, four damage levels were defined.  The probability of a 
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structure exposed to an earthquake falling into one of the four damage levels was accounted for 

by conducting Monte-Carlo simulation using the response parameters to obtain damage level 

information.  The variables that were explicitly modeled, along with their associated 

uncertainties, included construction quality, building materials, repair costs, future earthquake 

intensity, earthquake ground motion, and number of earthquake events in the estimation period.  

Shearwall, drywall, door, and window responses were explicitly modeled, whereas contents were 

aggregated into a single variable with an associated mean and standard deviation for damage 

level and repair costing, i.e. loss estimation.  Case studies were presented for two residential 

woodframe houses, and logical results were achieved which corresponded well with empirical 

data from the 1994 Northridge earthquake.  Although the authors conducted specific case studies 

on woodframe buildings, the methodology is extendable to other structure types.  

The loss estimation model presented in Pei and van de Lindt (2007) was extended, 

applied, and used to define performance objectives for woodframe buildings in terms of 

economic loss in Black et al. (2010).  The study presented in Black et al. (2010) offers the first 

detailed and comprehensive implementation of the PEER ABV approach to woodframe 

buildings.  The first-generation PBSD performance objectives of Immediate Occupancy, Life 

Safety, and Collapse Prevention were redefined in terms of direct economic loss.  The study 

considered woodframe building floor plans and incorporated a building variant factor to account 

for the many potential variations of woodframe buildings.  The direct economic loss probability 

distribution presented did not include loss associated with downtime or casualties.   The authors 

did explicitly model six variations of partition and shearwall assemblies using the ABV 

approach. The loss analysis module used an EDP output from the nonlinear time history analysis 

(NLTHA), correlated this output with pre-determined damage states based on fragility functions, 
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and then estimated economic loss based on the damage state and performance group.  Output 

from the model included loss as a percentage of building cost varying with earthquake intensity.  

Uncertainty, such as ground shaking intensity and corresponding building loss, was addressed 

explicitly by four potential refined performance objectives. 

The Pei and van de Lindt (2007) loss estimation model was again extended, this time to a 

regional sense, and employed in Han et al. (2013).  The Han et al. (2013) study contributed a 

hazard module to more accurately represent the regional hazard while eliminating some 

uncertainty, and explicitly accounting for the remaining uncertainty.  The study employed the Pei 

and van de Lindt (2007) loss model to woodframe buildings, and presented a new building 

variant selection method for identifying building designs specific to stated performance 

objectives.  The authors defined a “performance policy”, as a set of one or more performance 

objectives to all be satisfied in design, and concluded that performance policies at the regional 

scale must consider limits of what is reasonably achievable. 

In 2004, Dodo et al. presented three optimization methods for the selection of regional 

earthquake mitigation strategies.   The three optimization methods consisted of two linear 

programs and one stochastic program which were intended to be integrated into loss estimation 

models, such as Hazus, for a complete loss estimation analysis.  The authors identified many 

challenges associated with community decision making for disaster mitigation, and demonstrated 

that pre-earthquake mitigation investment was less expensive than post-earthquake recovery 

spending, while making note on the preservation of life achieved by the former case.  The 

optimization methods used simplified measures for design levels (i.e., built to low, moderate or 

high seismic code), and non-descriptive damage states (e.g., no damage, slight damage, moderate 

damage) as potential outcomes for buildings following a seismic event.  Outcomes provided how 
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to distribute mitigation amongst buildings based on construction type (e.g., wood, steel moment 

frame, steel braced frame, concrete shear walls, etc.) and occupancy type (e.g., residential, 

commercial, etc.).  The results were generalized to the simplified building stock and therefore 

did not capture the variability that exists in the actual building stock which would directly affect 

performance after an earthquake.   

There are many other loss estimation models available in the literature today.  The 

models presented above are similar in the fact that the loss estimations were point estimates in 

time and did not take into account structural aging or damage to structures caused by previous 

earthquakes.  However, resiliency and vulnerability are time varying processes.  To account for 

these time variant processes, researchers have proposed numerous approaches.  Van de Lindt and 

Niedzwecki (2000) introduced a performance-based approach to estimate the time variant 

reliability of structures exposed to earthquakes.  Davidson et al. (2003) developed a quantitative 

model to forecast changes in hurricane vulnerability for the woodframe building stock of a 

specific area using a Markov-based model.  The model accounted for changes in building 

vulnerability due to changes in building code content, changes due to technological innovations, 

structural aging, and building upgrades.  As time intervals progressed in the model, only the 

applicable vulnerability changes would be applied to previously existing buildings versus newly 

constructed buildings.  Although developed for hurricane vulnerability, the model could be 

extended to seismic vulnerability.  Rojas et al. (2008) developed a genetic algorithm for optimal 

design of steel frames by minimizing the weight of the steel frame and simultaneously 

minimizing economic annual loss using Hazus for damage assessment.  To account for time, the 

probability of all potential earthquakes that may occur during a single year and the mean 
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probability of occurrence of each were combined with the probable economic loss due to each 

possible earthquake to determine the annual economic loss for the structure. 

Additionally, there are many rapid earthquake loss assessment models (e.g., PAGER for 

the United States).  Erdik et al. (2011) provided a review of the previous decade’s worth of 

development of new approaches and applications for earthquake rapid response systems which 

oftentimes incorporate a quasi-real time earthquake loss assessment.  These models provide data 

in the immediate aftermath of an earthquake at the location of the event to aid in the allocation of 

immediate recovery operations until more detailed information is known.  Details of such models 

will not be discussed here; however it was felt that the literature review would be incomplete 

without the acknowledgment of their existence.   

1.3.3 Social Vulnerability 

There are three recognized categories of disasters: natural, technological, and mass 

violence.  Natural disasters, including earthquakes, hurricanes, tornados, tsunamis, floods, etc., 

are forces caused by nature.  Although it is thought by some that society is not merely a victim of 

natural disasters, but a contributor or modifier when considering global warming and its effects.  

Technological disasters include chemical or hazardous materials emergencies, dam failures, 

nuclear events, power outages, cyber security breaches, explosions, etc.  These are events caused 

by the malfunction of technological entities oftentimes with human error at the source or 

industrial disasters which can be due to accident, negligence or incompetence.  Lastly, mass 

violence disasters include terrorist attacks during a time of peace, mass shootings, bombings, etc.  

Many researchers have concluded that mass violence disasters are the most traumatic causing the 

most adverse mental health effects on the victimized population because they are human-induced 

and possess the characteristic of intention.  Technological and/or industrial disasters are 
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considered to cause more adverse consequences than natural disasters, because they are also 

caused by humans out of callousness and/or negligence [Norris et al. (2002a)].  These three 

categories of disasters are very different by their nature, but share the ability to adversely affect 

large groups of people simultaneously.  The literature review that follows covers studies that 

have identified predictors of poor mental health following natural disasters and studies that have 

attempted to quantify influential factors of, or develop metrics for quantifying, social 

vulnerability.  This is followed by a discussion regarding the role of mental health in community 

disaster resiliency and the associated economic loss.   

1.3.3.1 Quantitative Measures of Vulnerability 

Disastrous events, such as earthquakes, can have very adverse effects on the mental 

health of the exposed population.  Post-traumatic stress disorder (PTSD) has been shown to be, 

by far, the most common psychological problem for victimized people to develop, followed by 

depression [Norris et al. (2002b)]. It is also the most commonly assessed and observed 

psychological problem in post-disaster population studies [Norris et al. (2002b)].  Prevalence of 

PTSD following disasters ranges dramatically based on many external factors such as the 

category of the disaster (natural, technological, or mass violence), the size and location of the 

area affected by the disaster, the number of deaths and injuries, the number of building collapses, 

or mass property damage, etc.  PTSD prevalence following earthquake disasters has been shown 

in the literature to range from 13% - 73% of the exposed population.  This wide discrepancy in 

prevalence of PTSD is due to sample size and sample content, PTSD measurement scale, 

distance from the epicenter, as well as the factors just mentioned.  There are also numerous 

factors that are more internal factors of vulnerability to PTSD for an individual, such as previous 

experience with an earthquake (or other applicable disaster), previous history of mental illness, 
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exposure to the dead and dying, fearing for one’s life, major property damage, being female, 

being a single mother, being an ethnic or racial minority, having low socioeconomic status, 

among many others.  It is important to identify groups of people that are more vulnerable to 

PTSD so that appropriate pre-event and post-event measures may be taken. 

Norris et al. (2002a) and Norris et al. (2002b) presented a profound two-part review of 

empirical disaster studies published from 1981 to 2001, “60,000 Disaster Victims Speak”.  

Analyzing surveys from 160 samples of disaster victims, the authors conducted regression 

analysis to identify common predictors for adverse mental health following a disaster.  The 

intentions of the study were to “determine what is known about (1) the potential range, 

magnitude, and duration of a disaster’s effects on the mental health of the stricken community, 

and (2) the experiential, demographic, and psychosocial factors that influence who within that 

community is most likely to be adversely affected.”  Although the study was conducted for 

disasters in all three categories, it is assumed to be relevant here, for the single category of 

natural disasters, for general understanding.  The identified vulnerable persons started with 

women, which were shown to almost always be twice as susceptible to PTSD as men.  This 

statistic held true for female children too.  Mexican women were shown to be even more 

vulnerable, but African American women were shown to be less vulnerable, which indicated a 

cultural difference in the severity of gender as a predictor.  Children were shown to be more 

susceptible than adults to falling into the range of severe impairment.  Adult age was shown to be 

quite variable but also associated with culture.  Minority populations such as Hispanics and 

African Americans were shown to be at a higher risk in almost all surveys considered.  

Socioeconomic status, which included income, education, literacy and occupational prestige, was 

shown to be a high predictor, with persons of low socioeconomic status being more vulnerable.  
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Lastly, marital status and having children was examined.  Prevalence of PTSD with respect to 

marital status and being a parent differed by both gender and culture.  A relationship was found 

indicating that as the number of stressors and vulnerable characteristics increased so did the 

number and severity of the participant’s PTSD symptoms.   Additionally, the authors found that 

earthquake disasters in the United States showed lower prevalence of PTSD as compared to 

earthquakes which occurred in other developed nations and developing nations.  Interestingly, 

the developing countries showed lower prevalence of PTSD than the developed nations outside 

of the U.S.    Lastly, the authors found that longitudinal data suggested that symptoms of PTSD 

peak during the first year, and levels of immediate symptoms were good predictors for the levels 

of symptoms several months down the road.   

Another large body of work was conducted on the development and application of the 

Social Vulnerability Index (SoVI), developed by Cutter et al. (2003).  Socioeconomic and 

demographic information collected at the county-level from 1990 data was input as 42 variables.  

The factor-analytic approach identified eleven composite factors that contributed 76% of the 

variance in social vulnerability status.  These eleven factors were listed in order of “percent 

variation explained” (i.e. order of influence):   personal wealth, age, density of the built 

environment, single-sector economic dependence, housing stock and tenancy, being of African 

American race, being of Hispanic ethnicity, being of Native American ethnicity, being of Asian 

race, occupation, and infrastructure dependence.  The SoVI was developed using these 11 

variables.  To compute the SoVI, county-level information was uploaded, and the summation of 

variable scores represents the index value.  The regression analysis, which identified the 11 most 

influential variables, identified personal wealth to be the most significant factor accounting for 

12.4% of the variation, specifically per capita income.  This result is logical and can be explained 
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by the fact that wealthier individuals and communities typically have a larger quantity of 

financial, educational, and social resources to aid in recovery.   It also goes along well with the 

findings in Norris et al. (2002).   

Cutter and Finch (2008) conducted a study on the temporal changes in social 

vulnerability to natural hazards using Cutter et al.’s Social Vulnerability Index (SoVI).  Five 

periods in time were analyzed:  1960, 1970, 1980, 1990, and 2000.  The authors provided which 

demographic factors played the most significant role in each of the analyses, and for each of the 

five decades, the SoVI consistently indicated that socioeconomic status, level of development of 

the built environment, age, gender, and race/ethnicity were the most influential factors for all of 

the decades.  Socioeconomic status was also consistently shown to be the most influential factor.  

Albeit, the percent of the variance explained by socioeconomic status varied for each decade 

(from 13.3% to 18.4%), it was still consistently the controlling factor.  Over five decades, the 

four of the top five contributing demographic factors to social vulnerability were consistent and 

only varied by a few percent in each case.  A nation-wide case study was conducted using county 

data of the 48 conterminous United States via GeoData software for the spatial statistics 

calculations.  High social vulnerability was defined as being two standard deviations above the 

mean, and low social vulnerability was determined as being two standard deviations below the 

mean.  The study showed that New York County, NY was the most vulnerable county for all 

decades due to its urban development, race and ethnicity demographic, and low socioeconomic 

status of a large portion of the population.  Using the SoVI in this manner, comparing decades 

for the same place, can help to understand if and how the social vulnerability of a place changes.  

The study indicated that counties with increasing social vulnerability occurred due to either 

extreme depopulation (Great Plains) or population growth (Orange County, CA).  This 
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knowledge can lead to a better understanding of vulnerability, and help with the allocation of 

funds at the local and federal level by knowing which places need support the most.  

Schmidtlein et al. (2008) conducted a study on the sensitivity of the SoVI to a larger 

subset of variables, to changes in the geographic scale of the analyzed region, and variations in 

its construction.  An analysis was conducted comparing the index values and most influential 

factors when using 33 and 26 variables.  The results were fairly consistent showing wealth, race 

and poverty, age, Hispanic immigrants, and gender all being in the list of 8 and 6, respectively, 

most influential factors.   Analyses were also conducted using the original index at the county 

level, intermediate level, and census tract level.    The results for all three geographic levels 

varied, but were similar.  Of the top seven contributing factors for social vulnerability, as 

dictated by the SoVI, race and poverty, Hispanic immigrants, age, and a form of gender and 

wealth appeared for all three analyses, albeit in a slightly different order with slightly different 

percentages.  The final analysis investigated the robustness of the index based on constructing it 

in different ways.  Varying its construction showed large differences in the resulting values, 

consistent with the change in construction, a very logical outcome. Based on the study, it may be 

concluded that there is some discrepancy in the results when changing the number of variables 

and geographic scale; however there is significant consistency in the results and therefore still 

reliable. 

Prior to the SoVI, in 1997 the Earthquake Disaster Risk Index (EDRI) was introduced 

[Davidson (1997)].  The EDRI compares the disaster risk of different cities worldwide.  The 

index considered hazard, exposure, vulnerability, external context (i.e. the city’s prominence on 

the world stage), and emergency response and recovery capability as the five main factors which 

contribute to earthquake disaster risk.  The EDRI identifies seismically vulnerable cities, and 
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their sources of vulnerability, however similar to the SoVI, it does not offer a solution.  The 

EDRI acknowledges geological, engineering, economic, social, political, and cultural factors as 

contributing to earthquake disaster risk; however it does not explicitly incorporate social or 

cultural factors. 

Then in 2003, Rashed and Weeks conducted a study employing GIS to assess urban 

vulnerability to earthquake hazards through a spatial multicriteria analysis using fuzzy logic.  

The authors explain that the spatial variability of vulnerability is possibly due to a causal linkage 

between socioeconomic and demographic characteristics, as well as culture and how hazards are 

viewed by the culture.   Vulnerability was assessed through a combination of factors associated 

with the physical conditions of the geography and the social conditions of the population.  The 

evaluation criteria was organized into three categories:  (1) criteria for social risks (percentage of 

households that might seek temporary shelter and total economic cost); (2) criteria for physical 

induced risk (area of land that could be exposed to fire and amount of debris); and (3) criteria for 

systemic vulnerability (percentage of loss of functionality for hospitals, fire and police services, 

power utilities, highways, and bridges).  The criteria were mapped using fuzzy logic for the 

analysis.  The analysis was run for various earthquake scenarios which defuzzified (i.e. un-

mapped) the criteria to identify vulnerability “hot spots”.  The methodology was intended to be 

used in conjunction with a loss estimation model, such as Hazus, which was employed during the 

case study conducted on Los Angeles County, California.   

1.3.3.2 The Role of Mental Health 

Poor mental health, such as depression or post-traumatic stress disorder (PTSD), can be 

the direct effect of a disaster.  Mental health plays a critical role in the functioning and 

progression of society.  Following a disaster, the mental health of the affected community or 

23 
 



region is central to the recovery process.  When a person has poor mental health, the direct effect 

on the economy is through the practice of absenteesim and presenteeism.  Absenteesim is the 

habitual practice of missing work, or willful absence, without good reason.  Presenteeism is 

attending work while sick, or attending work when only capable of sub-par performance.  This 

effect on the economy is in addition to the effect on the individual’s loss due to the financial 

costs of seeking medical help. The following studies are in an effort to quantify the economic 

cost to society in which a portion of its community is stricken with PTSD. 

 Kessler and Frank (1997) conducted a study to examine the relationships between DSM-

III-R (Diagnostic and Statistical Manual of Mental Disorders, third edition, revised) psychiatric 

disorders and work impairment in major occupational groups in the U.S.  The data was collected 

via face-to-face in-home interviews with 8098 respondents.  The respondents ranged in age from 

15-54 years old.  The results indicated substantial variation across occupations with respect to 

the prevalence of DSM-III-R psychiatric disorders, but did not vary substantially across 

occupations with respect to work loss and work cut-back days.  Considering those with DSM-III-

R psychiatric disorders, an average of 6 work loss days per month per 100 workers and 31 cut-

back days per month per 100 workers were identified.  DSM-III-R psychiatric disorders include 

affective disorders such as depression and mania, anxiety disorders such as panic disorder and 

PTSD, and substance disorders such as dependence and abuse of alcohol or substances.  The 

occupations considered in the study included four professional occupations, two 

managerial/administration occupations, three craftsmen occupations, three clerical and sales 

worker occupations, and four laborers and operative worker occupations.   A bivariate linear 

regression analysis was conducted to show the relationships between 30-day DSM-III-R 

disorders and psychiatric work-impairment days.  The results indicated that PTSD was one of the 
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most positively associated disorders with work loss and work cut-back days.  The quantitative 

survey results explicitly showed the influence of education, salary, and occupational prestige on 

the susceptibility of various psychiatric disorders including depression and PTSD.  The results 

also demonstrated that once a person has depression or PTSD, the response was similar and 

independent of education, salary, or occupational prestige, that is to say that the average number 

of work loss and work cut-back days does not change based on socioeconomic status.   

A large study was conducted to determine how much illness costs in terms of impairment 

and disability by the World Health Organization (WHO) Global Burden of Disease (GBD).  

Kessler and Greenberg (2002) suggest that the results were severely underestimated and 

therefore the authors reviewed evidence on the economic burdens of anxiety and stress disorders 

by focusing the high societal costs as being influenced by eight specific factors.  These factors 

included frequency of occurrence, prevalence, onset, adverse effects and comorbidity.  The 

authors stated that patients with PTSD commonly “work at low-paying jobs because they are 

unable to cope with the stresses of higher paying jobs.  This would be considered a cost of illness 

from the societal perspective, but not from the perspective of the employer.”  The authors 

identified that out of six anxiety disorders PTSD was associated with the highest number of 

work-cutback days (4.9 days per month).  However, none of the six disorders were significantly 

associated with work-loss days indicating that quality of performance was most affected, rather 

than the amount of time spent at work.   

Zahran et al. (2011) calculated the economic costs of poor mental health days added by 

exposure to Hurricanes Katrina and/or Rita.  Particular focus was given to single mothers versus 

the general public.  The analyses indicated that poor mental health days increased by 

approximately 19% and 72% for all persons and single mothers, respectively, when exposed to a 
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hurricane.  Hurricane intensity was determined to be a predictor of more poor mental health days 

for both population groups.  Considering a $228.17 per day economic contribution made by the 

average worker, single mothers were estimated to have “suffered over $130 million in 

productivity loss from added post-disaster stress and disability.”  The total loss due to poor 

mental health caused by hurricane exposure was estimated at $460.4 million.  The authors 

conducted a negative binomial analysis to identify the predictors of poor mental health days, and 

identified single mothers, poor physical health, post-exposure period, exposed area, education, 

income, and social support to all be predictors, listed in the order of highest to lowest influence 

on all persons.  This study showed how vulnerable groups, such as single mothers, are more 

susceptible to poor mental health, and how that directly affects the economy and the achievement 

of full recovery.     

1.4 Objectives and Overview 

Mitigation against disasters can be a difficult task when it comes to deciding where 

money is best allocated such that it protects the population and preserves the quality of life.  This 

is especially true considering the pronounced diversity of some geographically adjacent 

communities, and therefore becomes an issue that is best addressed by local governments.  The 

framework presented here applies retrofit techniques such as those explored in the NEES-Soft 

Project [Jennings et al. (2014a), Jennings et al. (2014b)], a project which explored various soft-

story building retrofit techniques, by taking a multi-disciplinary approach to disaster mitigation 

caused by large earthquakes at the regional level.  The work proposed here aims to answer three 

questions.  (1) How can a local government best allocate funds to mitigate damage to woodframe 

structures caused by earthquakes?  (2) How can the probability of fatality, probability of injury, 

and the probability of a person developing PTSD be decreased by retrofitting the existing 

26 
 



  

woodframe building stock of a community? (3) Can an earthquake resilient community be 

established without considering the socioeconomic characteristics of the region? 

The problem decision makers have had in answering the first two questions lies with the 

conflicting objectives.  Ideally, any mitigation plan seeks to minimize the initial cost and 

minimize the total economic loss, while maximizing the preservation of life and maximizing the 

quality of life for the population at hand.  The problem researchers have had in answering the 

third question is due to the highly subjective nature of quantifying qualitative measures like how 

a person’s age, ethnicity, gender, etc. influences their likeliness of developing PTSD.   

This dissertation addresses community disaster resilience of the built environment 

considering community resilience planning and performance goals.  Performance objectives 

include minimizing:  initial cost, economic loss, the number of morbidities, and the time to 

recovery, where the time to recovery may be considered as a comparison for the loss in quality of 

life.  This planning provides improvements to be made in the short term and long term.  The 

performance goals were quantified for each building design option and summed for the building 

stock of the community considering the population demographics, and serve as the resilience 

metrics.  The optimization is executed via genetic algorithm (GA).  Iterations (i.e. generations) 

were run in an effort to obtain the full pareto-optimal set of solutions, however computation 

power was a limiting factor.  Obtaining the pareto-optimal set allows for comparisons between 

planning methods, and allows the community decision maker(s) to examine multiple resilience 

levels with the associated risk-based performance criteria.  The GA was re-run for multiple 

hazard intensities so that the results could be presented as fragilities.  The pareto-optimal set of 

solutions and fragilities provided risk-based performance criteria for various resilience levels for 

use by the decision maker(s) of communities.  Case studies are presented for Los Angeles 

27 
 



County, California using the 2010 U.S. census data, and two forecasted populations using the 

2010 census data for Daly City California and East Los Angeles, California.   

In the optimization of a community seismic mitigation plan, a single, known (i.e., 

convergent) solution cannot be identified due to the uncertainty in the decision maker.  

Preferences were not employed for the selection of a single optimal solution.  Rather, 5 solutions 

were selected and analyzed more extensively.  The final mitigation plan selection would be left 

to the decision maker.  A single solution could be identified if the decision maker preferences 

were employed as weights on the four objectives. 

The remainder of this dissertation presents the method, both analytically and numerically, 

providing several illustrative examples to demonstrate its application.   Chapter 2 presents the 

performance objectives employed in the framework and their relevance to community disaster 

resilience.  The four performance objectives are minimizing: the initial cost, the total economic 

loss, the number of morbidities, and the time to recovery.  Chapter 3 provides the theoretical 

formulation for the combined engineering-social loss model, along with its limitations.   

The numerical modeling of the engineering variables is presented in Chapter 4, starting 

with the designs, the numerical modeling, and the nonlinear analyses of the building archetypes.  

Chapter 5 continues the discussion on the engineering variables presenting the design and testing 

of a performance-based seismic retrofit of a soft-story woodframe building.  The correlation 

between the damage states and visual damage obtained from full-scale experimental tests is 

presented in Chapter 5 as well.  Chapter 6 presents a thorough literature review of the population 

studies used for the quantification of socioeconomic variables, followed by the modeling of the 

socioeconomic variables.  In Chapter 7, a brief description of the genetic algorithm is presented 

in biological terms, and then it is presented in its application for this study.     
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Several illustrative examples of the framework are presented in Chapter 8.  The 

illustrative examples were conducted on the three communities.  The first community was Los 

Angeles County, California, the second and third communities were investigated as potential 

population forecasts for Los Angeles County, using the 2010 U.S. census data for Daly City, 

California and East Los Angeles.  The analyses were conducted at six seismic hazard levels with 

and without the incorporation of the socioeconomic factors.  Comparisons are discussed for the 

various applications.  Finally in Chapter 9, the study conclusions and contributions are discussed, 

and followed by recommendations. 
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Chapter 2: Performance Objectives for Community Resiliency 

Three research questions were posed in section 1.4 regarding government allocations of 

mitigation funds and the influence of social factors on community disaster resiliency.  This work 

employs four performance objectives to answer those questions and to aid decision makers by 

providing comparisons between planning methods based on multiple resilience levels.  The four 

performance objectives are set forth in the form of minimizations and include the initial cost, 

economic loss, number of morbidities, and the time to recovery.  These four objectives are not 

mutually exclusive, but are interdependent. For example, the probability of PTSD (a category of 

morbidity to be discussed later in Chapter 5) is dependent on the time to recovery, which is 

dependent on the number of persons with PTSD.   However, modeling interdependency was 

outside of the scope of this study, and therefore the objectives were treated for the dependence 

on one another, but not interdependence.  For example, if the initial cost was spent on retrofitting 

existing structures and on building new structures to higher seismic resiliency, we expect to see a 

reduction in the number of morbidities and the economic loss (which includes the cost to repair 

building damage as well as the cost of each morbidity).  Additionally, the time to recovery is 

dependent on the economic loss and the number of morbidities.  The detailed conceptualization 

of each objective is discussed throughout this chapter.    

2.1 Initial Cost 

Ideally, every community would be designed to 100% resiliency for any event.  What 

limits this in application is the required initial cost.  Initial cost is an imperative objective as it 

usually governs any decision.  The goals of decision makers are only realized to the extent of the 

budget which funds the community.  Its presence here provides discrepancy between the other 
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three objectives requiring the algorithm to provide diverse solutions to then be presented to the 

decision makers.  In this study, the initial cost was computed by summing the cost of retrofitting 

the required number of existing buildings in the community in order to minimize the other 

objectives.  There were 37 archetypes used in this study; seven floor plans designed or retrofitted 

following five different seismic provisions or retrofit procedures, and then additionally two of 

the floor plans retrofitted by a sixth procedure.  The detailed account of the 37 archetypes is 

provided in Chapter 4. 

Following the 1994 Northridge earthquake, a study was conducted by CUREE which 

provided detailed sub-assembly cost estimations for four example archetypes including detailed 

new construction cost estimates [see CUREE Publication No. 29; Reitherman and Cobeen 

(2003), for details].  The archetypes used in that study serve as four of the thirty-seven 

archetypes in this study, with the floor plans representing four of seven total floor plans used in 

this study.  In this study, the detailed CUREE new construction cost estimates were divided by 

the respective archetype square footage to provide a cost per square foot (cost/sf) value for the 

four archetypes.  These four archetypes consist of a one-story single family dwelling (SFD), a 

two-story single family dwelling, a two-story multi-family townhome, and a three-story multi-

family apartment building.  Making the assumption that new construction costs are 

approximately the same for all one-story single-family dwellings of the same structural type (i.e. 

light woodframe construction), the computed value from the CUREE study was applied to all 

archetypes which were one-story single-family dwellings (7 in total), after adjusting for inflation.  

This same procedure was repeated for all similar archetypes, including the two-story single-

family dwellings, the two-story multi-family townhomes, and the three-story multi-family 

apartment buildings.  There is one additional archetype considered in this study, a four-story 
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office building.  The new construction cost per square foot was obtained from Reed Construction 

(RSMeans) data [RSMeans Online (2014)].  The new construction costs obtained from the 

CUREE study were adjusted for inflation (from 2001 to 2014 dollars).  Although the CUREE 

study was of excellent quality, and the RSMeans’ values are assumed to be a reasonable 

representation of actual construction costs, there is still an associated uncertainty in cost values 

as these differ across contractors and across regions.  Therefore cost values were represented by 

lognormal distributions with associated mean and standard deviation values.  The mean values 

were the values provided in the CUREE study and on the RSMeans website.  The standard 

deviation values were set as one-third of the mean values.    The new construction cost values 

were used for estimating economic loss based on the cost of collapsed buildings being rebuilt.  

The new construction cost distributions were fit with a lognormal distribution.  The lognormal 

distribution parameters are provided in Appendix A.   

The retrofits employed in this study were not similar to the retrofits in the CUREE study 

with respect to performance goals, and therefore the CUREE retrofit cost estimations were not 

used in this study.  Retrofit cost per square foot values were obtained and adjusted from two 

sources [Porter and Cobeen (2009), Samant et al. (2009)].  The study by Samant et al. (2009) 

provided retrofit costs per square foot for three retrofit schemes.  The third retrofit scheme had 

the same performance objectives as the ASCE 7-05 procedure used in this study, and therefore 

the mean value ($9/sf) was used here for the archetypes retrofitted following the ASCE 7-05 

methodology.  The study by Porter and Cobeen (2009) provided the average building square 

footage for the buildings considered in their study, and the average retrofit cost per building for 

three retrofit schemes.  The third retrofit scheme was designed to a similar level as the 

performance-based seismic retrofit to the Life Safety (PBSR-LS) limit state used in this study.  
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By dividing their third retrofit scheme’s cost by the average building square footage, the mean 

value for the retrofit cost per square foot for the PBSR-LS archetypes was determined ($28/sf).  

The final retrofit cost per square foot is for the archetypes retrofitted by a PBSR to Immediate 

Occupancy (PBSR-IO) limit state.  The mean value for these retrofits was adjusted from the 

PBSR-LS value using an amplification factor of 1.2 ($34/sf).  The retrofit cost per square foot 

values were multiplied by each archetype’s area (sf) which served as the mean retrofit cost.  The 

standard deviation values were set as one-third of the mean value.  The retrofit cost random 

variables were fit with lognormal distributions, where the lognormal distribution parameters are 

provided for each applicable archetype in Appendix A.   

2.2 Economic Loss 

Although the most important aspect of community disaster resilience is the preservation 

of life, the economic loss following earthquakes can be tremendous and have lasting effects on 

the exposed community which can in turn lessen the quality of life.  The exact value of economic 

loss is subjective and would be virtually impossible to quantify in an exact manner, however 

monetary values for economic loss are published following all disaster events.  These values 

range across publications depending on the extent of indirect costs considered in the calculation.  

The economic loss caused by the 1994 Northridge earthquake is most often reported as $49 

billion.  Similar to the way financial constraints were discussed in section 2.1 with the initial 

cost, decision makers put importance on the potential negative economic impact of a disaster on 

their community.  Therefore, when considering community disaster resilience, the economic loss 

plays a very important role.   

In this study, the economic loss includes direct and indirect costs.  The direct costs 

considered in this study include the repair cost of buildings based on the amount of damage 
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caused to each building, any temporary relocation costs (i.e. shelter-out-of-place costs), contents 

damage, the medical bills and downtime associated with each injury severity level and for 

treating PTSD, and a monetary value for each lost life.  The repair costs were based on a 

building’s damage state.  In this study, like the cost of new construction and retrofit, the repair 

costs were represented by random variables and fit with lognormal distributions.   The CUREE 

study [Reitherman and Cobeen (2003)] which provided the new construction estimates used 

herein also provided detailed subassembly repair cost estimates based on the damage state of the 

building.  The damage states used in that study were adopted in this study, and therefore the 

subassembly repair costs were directly incorporated into this study after adjusting for inflation.  

The number of subassembly units per archetype was determined for the computation of an 

archetype’s total repair cost based on the damage states.  This value served as the mean, and the 

standard deviation was computed as one-third of the mean.  The repair cost distribution for each 

archetype for each damage state was fit with a lognormal distribution.   The complete set of 

repair cost distribution parameters for the 37 archetypes and the five damage states are provided 

in Appendix A.  Contents damage was computed as a percentage of the total repair cost value. 

Once a building reaches the fourth damage state, shelter-out-of-place was modeled as a 

requirement.   The daily costs for sheltering out-of-place were estimated using the same 

procedure as Hazus, which determined the relocation costs based on occupancy class, floor area, 

damage state, and whether the damaged structure was rented or owned.  These values, although 

still uncertain, were employed as strict values and therefore were not fit with a probability 

distribution.   

The costs due to injury increased with increasing injury severity.  The costs were set as 

the values the U.S. government assigns to each injury severity level including fatality [FHWA 
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(1994)].  These values are comprehensive costs covering pain, lost quality or life, medical costs, 

legal costs, lost earnings, lost household production, etc.  No uncertainty is included in the 

analysis of these values since they are the actual values that federal government agencies use in 

cost-benefit analysis and were assigned as deterministic for this study.  The one-year treatment 

costs ($5,400) for a person with PTSD were determined from a study conducted by the Veteran’s 

Health Administration (VHA) [CBO (2012)] and incorporated in the economic loss.   

The indirect costs considered in this study included the downtime from work associated 

with each injury severity level and with PTSD.  The downtime due to injury and fatality was 

accounted for in the direct cost value from the government.  The downtime from work due to 

PTSD was modeled using work-loss days as well as work cut-back days caused by absenteeism 

and presenteeism, respectively.    The shelter-out-of-place costs, injury costs, fatality costs, 

PTSD treatment costs, and losses due to downtime caused by PTSD were all set as strict values, 

and not represented by random variables with distributions. 

This is clearly not the full story of what total economic loss involves, however it was felt 

to be an adequate representation for this study.  The detailed analytical quantification of the 

economic loss considering direct and indirect loss is provided in Chapter 3.   

2.3 Number of Morbidities 

The most important objective in any structural design is the preservation of life.  The 

tragically high number of morbidities which follow disasters has inspired research on safety for 

decades.  Just in the past decade, nearly half a million lives have been lost worldwide due to 

earthquakes.  This study puts great importance on the preservation of life by setting the reduction  
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in the total number of morbidities, where morbidities include the number of injured individuals, 

the number of fatalities, and the number of persons diagnosed with PTSD, as one of the four 

main objectives.   

In order to incorporate the number of morbidities into this research, injury rates based on 

five different injury severity levels (e.g., minor, moderate, severe, critical, and fatal) had to be 

quantified.  The combined injury severity rates and PTSD rate are discussed collectively as the 

morbidity rates throughout this work.   The morbidity rates are influenced by engineering 

variables and socioeconomic variables.  The morbidity rates are defined by the damage state, 

which is directly related to the building performance.    The other variables are used as factors to 

modify the morbidity rates.  Building performance and the age, quality, and density of the built 

environment are critical factors in morbidity rates.  During an earthquake, most injuries and 

deaths occur to people inside buildings.  In a dense built environment (i.e. urban setting), if 

buildings experience high responses to ground motions, then the morbidity rate of people outside 

of buildings will likely increase due to fallen building debris.  Older buildings and buildings with 

lower construction quality will perform poorly relative to newer buildings and buildings with a 

high quality of construction in protecting building occupants.  Newer buildings are also likely to 

have less debris fall.   

To measure and quantify building performance, an engineering variable was employed, 

i.e. peak inter-story drift (ISD).  Peak ISD has been shown to be well correlated to damage 

caused to woodframe structures [Filiatrault and Folz (2002)].  The full relationship employed 

here is as follows:  building damage is the result of building response, which is measured by the 

peak inter-story drift, which is the result of building capacity, construction quality and 

earthquake intensity.  If an earthquake occurred which caused severe damage to a building, one 
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can expect the number of casualties to be higher than the number of casualties resulting from a 

less damaged building.  Morbidity rates, as a function of building performance, differ by 

building damage state (the categorized level of damage).  That is, there is a single morbidity rate 

for each injury severity level and for each damage state, and there are five damage states 

considered in this study.  For example, the percentage of building occupants which experienced 

an injury placing them in critical condition is greater when the building has collapsed compared 

to if the building had only experienced minimal drywall damage.  In this study, inter-story drift 

was used to quantify the six morbidity rates for the five building damage states.   

There is considerable uncertainty associated with morbidity rates caused by building 

response due to an inability to conduct experiments and difficulty in obtaining true counts from 

past earthquakes.  Therefore, in this study, the morbidity rates were represented as random 

variables.  The mean values of the morbidity rates for each damage state are the values used in 

Hazus [DHS (2003)], and the standard deviation was one-third of the mean value.  The Hazus 

values were determined from the ATC-13 values and adjusted based on a study conducted after 

the 1994 Northridge earthquake which used hospital records and GIS mapping of the victims 

[DHS (2003)].   There were more injury severity levels considered in this study than in Hazus, 

however the damage states are the same.  Therefore, linear interpolation was used on the Hazus 

injury severity rates to provide the complete set of injury severity rates for the damage states.   

The rate of PTSD is newly considered by this study.  The rate of PTSD similarly changes 

with respect to the damage state.  PTSD rates based on damage states were modeled after the 

Hazus severe injury rates.  The details of this quantification are discussed later in Chapter 6. The 

rate of PTSD is dependent on the number of building collapses, the number of injured persons, 

the number of fatalities, and the recovery time.  In this study, the rate of PTSD was related to 
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these other factors through the damage state.  The morbidity rates caused by building response 

were represented by lognormal distributions.  The full set of lognormal distribution parameters 

for the morbidity rates based on damage states used in this study are provided in Appendix A.    

In addition to engineering factors, socioeconomic factors also influence the morbidity 

rates.  For example, it has been shown that individuals aged approximately 60 years and older are 

more susceptible to death or injury during an earthquake [Mahue-Giangreco et al. (2001)].  

Surveying the literature, one will find that many socioeconomic factors have been linked with 

injury, fatality, and PTSD diagnosis.  These linkages are found in population surveys conducted 

after disasters on the exposed population.  A detailed account of the meta-data analysis 

conducted on the population surveys used in this study is provided later in Chapter 6.  The 

socioeconomic variables used to quantify the morbidity rates in this study include:  age, gender, 

ethnicity, family structure, and socioeconomic status.  Many socioeconomic variables play a role 

in the probability of injury, fatality, and PTSD; however these variables were chosen here due to 

their higher accessibility in population surveys.  In this study, the socioeconomic variables were 

only used as an influence on the overall morbidity rates.  The socioeconomic variables were not 

used in any specific characterization of injury severity levels or damage states.  The engineering 

variable, peak inter-story drift, was strictly used for differing between injury severity levels and 

damages states.  The detailed analytical quantification of the resiliency objectives is provided in 

Chapter 3.   

For quantifying the probability of injury and fatality, three socioeconomic variables were 

modeled, age, gender, and socioeconomic status.  These three variables were selected due to their 

accessibility of their influence on injury and fatality in the population studies.  It has been shown 

that age influences the injury and fatality rates due to the physical limitations of elderly 
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individuals and their general inability to respond quickly.  In this study, the number of persons 

aged 65 years and older within the community was modeled such that it resulted in an increase in 

the overall injury and fatality rates.  The number of persons aged 64 years and younger were 

grouped together and determined to have no age-related effect on the overall injury and fatality 

rates.  This age grouping was a simplification, but felt to be reasonable and well-representative 

of the actual influence of age on the injury and fatality rates.  

The literature has demonstrated that during a typical moderate to large intensity 

earthquake, more females than males are injured and killed [Peek-Asa et al. (1998)].  Therefore, 

in this study, females of all ethnicities were grouped together to have a gender-specific impact on 

the injury and fatality rates in the marginalized community.    Socioeconomic status was the third 

and final socioeconomic variable used to quantify the injury and fatality rates.  Here, 

socioeconomic status included annual income and educational attainment.  This makes the 

assumption, based on the literature, that the more educated an individual is, the more likely they 

will take necessary precautions in order to insure their safety during an earthquake, and be able 

to respond appropriately.  Additionally, the wealthier an individual is, the more likely they will 

have the means to actually take these necessary precautions, such as install seismic restraints on 

non-structural components and contents in the building, and have earthquake insurance.  Wealthy 

individuals are also, in general, more likely to live and work in buildings of higher construction 

quality and designed using seismic provisions.  There are three levels of socioeconomic status 

considered in this study, low, moderate and high, which were quantified relative to the 

community being analyzed, and not relative to the country as a whole.   

In addition to the preservation of life and injury prevention, maintaining the quality of 

life and the mental health of the community is also very important. To quantify the mental health 
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of the community the rate of PTSD, or the probability of PTSD, was computed.  Chapter 1 

discussed the many variables which have been shown to increase a person’s risk for developing 

PTSD.  Five socioeconomic variables were used in this study to quantify the number of 

individuals developing PTSD:  age, gender, ethnicity and race, family structure and 

socioeconomic status.  Older individuals have been shown to be more resilient to PTSD, mostly 

due to previous life experiences.  Females have been shown to have nearly twice the risk of 

developing PTSD than males.  Ethnic and racial minorities, regardless of what race or ethnicity 

the minority is, have been shown to be more susceptible to PTSD following earthquakes mostly 

due to lack of resources (social support and political support).  Single parents and people living 

in single-person households have been shown to be more susceptible to developing PTSD mostly 

due to a lack of social support.  Finally, households of lower income and lower education (i.e. 

lower socioeconomic status) have been shown to be much more susceptible to PTSD also mostly 

due to a lack of resources.   

Detailed accounts of how each of the five socioeconomic variables influences the 

morbidity rates is provided in Chapter 6 of this dissertation.  Specific analytical quantification of 

the morbidity rates considering all variables discussed in this section is provided in Chapter 3.  

The population demographic data including the number of persons in each age group, in each 

race/ethnicity group, in each gender group, in each family structure group, and in each 

socioeconomic status group, were used as inputs to the optimization, and were obtained from 

U.S. census data [U.S. Census (2012)] for the specified community. 

2.4 Time to Recovery 

The fourth objective is the time to recovery.  Referring back to Figure 1-1, resiliency was 

shown to be directly related to time to recovery.  A resilient community has a short recovery 
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time.  As demonstrated in Figure 1-1, recovery time can vary depending on what is considered as 

recovery.  Recovery could be when the pre-event state or better is achieved, but it also can mean 

a lower state which is still within the manageable and acceptable operating state for the 

community.  This complicates the quantification for time to recovery, so much that these specific 

differences were not explicitly modeled here.  In this study, time to recovery was estimated 

based on the repair time, and the physical and emotional health recovery times.  Repair time was 

measured as the total amount of time for all damaged structures to be fully repaired; a factor 

dependent on the number of crews available for conducting the repairs.  The CUREE study 

[Reitherman and Cobeen (2003)] provided subassembly repair times.  Archetype repair times for 

each damage state were computed the same way archetype repair costs were computed using the 

CUREE  subassembly repair time values.  The mean value was obtained from the CUREE study, 

the standard deviation was set as one-third of the mean, and the repair time random variable was 

fit with a lognormal distribution.  Appendix A provides the distribution parameters for the repair 

time for each archetype for each damage state.    

Physical health-recovery time varies with the injury severity level.  PTSD recovery time 

was set as one year (365 days) based on the Norris et al. (2002a and 2002b) study which 

demonstrated that the most severe PTSD symptoms occur during the first year.  The community 

recovery time does not vary with the number of persons diagnosed with PTSD.  That is, the 

recovery time due to PTSD is not cumulative over the number of persons diagnosed with PTSD 

because all persons can recover simultaneously. Strict values were assigned to the physical 

health and mental health recovery times.   

Time to recovery may also be considered as the time to improve the loss in quality of life 

for the community.  That is, the more people suffering from PTSD, the more people injured or 
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who had family members or loved ones injured, or had family members or loved ones killed 

during the earthquake, as well as the amount of physical building damage and damage to 

personal belongings present within the community all takes a toll on the mental health of the 

community and the population’s quality of life.  The drop in mental health may be considered as 

a drop in the quality of life, and the quicker the mental health of the community can be restored 

to a pre-disaster state or better, the more resilient that community is considered to be.    

At the end of the multi-objective optimization, the Pareto-optimal set of solutions is 

provided with tradeoffs between resiliency objectives such as initial cost versus time to recovery.  

Decision makers may have resiliency goals such as “90% shelter in place for all single family 

dwellings” or “no collapse of soft-story woodframe buildings” during and following a seismic 

event of specified intensity.  The results from this study provide the mitigation plan for the 

decision makers to accomplish these goals along with an estimate of initial cost, economic loss, 

the number of morbidities, and the time for recovery for the exposed population.  Examples are 

provided in Chapter 8 with the outputted pareto-optimal set of solutions for the Los Angeles 

County community.   
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Chapter 3: Theoretical Formulation for Combined Engineering and  
 
Socioeconomic Loss Model 
 
 
 

The framework presented here applies retrofit techniques, such as those explored in the 

NEES-Soft Project [van de Lindt et al. (2011)], by taking a multi-disciplinary approach to 

disaster mitigation caused by large earthquakes at the community level.  The community-level 

mitigation plans are identified by solving a multi-objective optimization problem via genetic 

algorithm which minimizes the four performance objectives discussed in Chapter 2.  The 

diagram provided in Figure 3-1 demonstrates the dissertation framework and how each aspect 

connects, where ngen refers to the generation count in the genetic algorithm, and nROW refers to 

the number of weights to be applied to the objectives .  To use the framework, first, community 

leaders, building owners, or decision makers in general, must collectively formulate the 

resiliency-based optimization problem by defining the seismic hazard to which their community 

should be resilient.  The population socioeconomic data is then uploaded from U.S. census data, 

and all other inputs are provided.  The framework computes socioeconomic variable factors 

based on the required input values and information from the meta-data analysis conducted on 

population studies.  The meta-data analysis computed odds ratios for each variable subcategory 

relative to the other subcategories (e.g., odds ratios between female and male gender, odds ratio 

between young age group and older age group, etc.).  The odds ratios were determined for each 

performance objective.  For example, gender subcategory odds ratios differ for the probability of 

injury, the probability of fatality, and the probability of developing PTSD.  Table 3-1 provides  
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which variables were considered in each damage measure and performance objective.  Detailed 

accounts of the population studies used in the meta-data analysis are provided in Chapter 6.  A 

detailed categorized account of all input data is provided as follows:   

 
Figure 3-1:  Dissertation Framework 

 
Archetype-specific inputs:  detailed floor plan and subassembly count (e.g., number of 

interior wall, exterior wall, and ceiling 64sf units, number of windows, and number of water 
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heaters),  total floor area (sf), occupancy (number of persons occupying each archetype), unit 

cost of new construction, unit cost of retrofit ($/sf), contents value (% of total construction cost).    

Community-specific inputs:  density of the built environment (e.g., urban or rural), the 

percentage of families with children living in the household, the average annual salary of the 

population, the number of construction crews available for repair work following a large 

earthquake, the percentages of each age, ethnicity, family structure, gender, and socioeconomic 

status group present within the community (see Table 3-2), and the average number of persons 

per household. 

Hazard-specific inputs:  the spectral acceleration of the scenario earthquake (Sa = 0.1g – 

0.4g in 0.1g increments), the inter-story drift collapse limit (taken as 10% for woodframe 

buildings in this study), and the time of day in which the scenario earthquake occurs (occupancy 

is dependent on time of day). 

Optimization-specific inputs:  the nonexceedance probability of the engineering demand 

parameter(s), the quality level of population data to be used in formulation of the socioeconomic 

variable factors, the economic category for the country that the socioeconomic variable 

information was collected from (e.g., developed nations only, or both developed and developing 

nations),  the average number of hours per day in which an individual does not work due to 

PTSD (studies show 2 hours), and the full set of performance objective weights to be used in the 

development of the pareto-optimal surface of solutions.  

Algorithm-specific inputs:  the number of individuals in the population (i.e. the number of 

communities), the maximum number of generations, the probability of crossover, and the 

probability of mutation. 
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Referring back to Figure 3-1, once all inputs are provided, the genetic algorithm (GA) 

begins by initializing the population.  Here, an individual in the genetic algorithm is a modeled 

community (i.e. a collection of building archetypes).  The detailed account of the genetic 

algorithm is provided in Chapter 7.  Preliminary computations are conducted prior to 

employment of the GA operators.  These preliminary computations include: determining the 

population size based on the number of each building in the community and its respective 

occupancy, extracting the engineering demand parameter(s) for each archetype based on the 

seismic hazard and optimization inputs, using the socioeconomic data to determine damage 

measure factors, and determining the damage measures (e.g., morbidity rates, repair costs, repair 

times) based on the damage state.  These preliminary calculations are used to quantify the 

performance objectives.  For computing the fitness, the performance objectives are normalized 

by the minimum value of each respective performance objective in the current population so that 

each performance objective has the same order of magnitude.  The normalized performance 

objectives were summed together representing the fitness for each community in the population.  

Population statistics were recorded and then plotted, such as the maximum, minimum, and mean 

population values for each damage measure, each performance objective, and fitness for each 

generation.  These plots demonstrate the convergence of the fitness and show the resulting trend 

in the performance objectives and damage measures.  Following the computation of the fitness 

values, the three GA-operators selection, crossover and mutation are employed.  The fitness is 

re-calculated and the GA operators are employed again.  This process repeats until the maximum 

number of generations is reached.  Once this occurs, the GA reruns, starting with re-initialization 

of the population, for each set of weights applied to the performance objectives in an effort to 

achieve diverse solutions for forming the pareto-optimal surface.  The pareto-optimal surface 
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represents the optimal tradeoffs between the resiliency objectives.  The optimal tradeoff 

solutions would be provided to the decision maker(s) so that decisions can be made based on the 

preference over the performance objectives.   

The following sections provide the quantification of the damage measures and 

performance objectives, and discussion on the limitations.  Random (uncertain) variables are 

denoted by capital letters, particular values are denoted by lower case, probability is denoted by 

P[ ], and conditional probability is denoted by P[A|B].  The probability plots are theoretical 

distributions for exemplary purposes.  Within the framework, these distributions are adjusted 

based on the seismic hazard inputs and community demographics.   

Table 3-1:  Variables Considered in Performance Objectives 

Performance 
Objectives 

Density/Age 
of Built 

Environment 

Inter-
Story 
Drift 

Age Eth-
nicity Gender Family 

Structure 

Socio-
economic 

Status 
Initial Cost        

Economi
c Loss 

Building 
Damage × ×      

Morbidit
y × × × × × × × 

Number 
of 

Morbiditi
es 

Injuries × × ×  ×  × 
Fatalitie

s × × ×  ×  × 

PTSD  × × × × × × 
Time to Recovery × × × × × × × 
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Table 3-2:  Variable Subcategories 

Variable Subcategory 
Age Young 

Old 
Built Environment New Rural 

Old Rural 
New Urban 
Old Urban 

Ethnicity Majority 
Minority 

Family Structure Single 
Single Parent 

Partnered 
Partnered Parents 

Gender Female 
Male 

Socioeconomic 
Status 

Low 
Moderate 

Upper 
 
3.1 Damage States 

Five damage states were considered in this study based on major damage categories 

identified for woodframe structures.  These were determined based on experience of the author’s 

from experimental tests to be discussed in Chapter 5, but also matched the Hazus [DHS (2003)]  

and CUREE (Reitherman and Cobeen (2003)] damage states. Table 3-3 provides a description 

for each damage state with respect to the physical damage observed for woodframe structures.  

In this study, the damage states were centered on inter-story drift values observed from full-scale 

experimental tests.  Inter-story drift has been shown to be well-correlated with physical damage 

to woodframe structures [Filatrault and Folz (2002)].  The detailed determination of the 

overlapping inter-story drift ranges for each damage state is discussed in detail in Chapter 5.   
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Table 3-3:  Damage State Descriptions 

Damage State Level Description 
1 No Damage Structure can be immediately occupied, no repairs required. 

2 Slight Structure can be immediately occupied, minor drywall repairs 
required. 

3 Moderate Shelter-in-place allowed, drywall replacement required. 
4 Severe Shelter-in-place prohibited, structural damage incurred. 
5 Collapse Structure is not safe for entry, must be reconstructed. 

 
Within the framework, once the spectral acceleration, probability of nonexceedance and 

collapse limit values are set by the user, the engineering demand parameter (EDP), i.e. peak 

inter-story drift, is extracted from fragility functions developed for each archetype.   Using the 

extracted peak inter-story drift values, the probability of each archetype being in each damage 

state is then determined.  Lognormal cumulative distribution functions (CDFs) were developed 

for each damage state using the respective inter-story drift ranges determined in Chapter 5, and 

shown in Figure 3-2.  The damage states were modeled sequentially.  The probability of each 

damage state given a specific inter-story drift value was determined using the following 

relationship for sequential damage states and their respective CDFs: 

𝑃𝑃[𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]

= �
1 − 𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]                                                               𝑑𝑑𝑑𝑑 = 1       
𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]  − 𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑 + 1|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]         2 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝑛𝑛𝑑𝑑𝑑𝑑 − 1

𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]                                                                𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑
 

Eq. 3-2 

where  = 5 in this study, and 

∑ 𝑃𝑃[𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥] = 1.0𝑛𝑛𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑=1    Eq. 3-3 

Eq. 3-1 uses the extraction of the EDPs based on the input seismic hazard.  The probability of the 

sequential damage states given a peak inter-story drift value is provided in Figure 3-3.  In this 

study, the damage states provide the connection between the damage measures (e.g., building 
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performance, morbidity rates, repair costs, relocation costs, and repair times).  The quantification 

of building performance is provided in Chapter 4.  The following sections demonstrate the 

quantification of the remaining damage measures. 

 
Figure 3-2:  Damage State Lognormal CDFs given Inter-Story Drift 

 
Figure 3-3:  Probability of Sequential Damage States given Inter-Story Drift 
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3.2 Number of Morbidities 

The preservation of life is the central goal in any structural design.  In this dissertation it 

is proposed that preserving quality of life should also be considered as a design goal using the 

population’s mental health as a metric.  The number of morbidities was determined through the 

morbidity rates for injury, fatality, and PTSD diagnoses.  PTSD diagnoses were incorporated into 

the loss model to represent the mental health of the population by means of a count of the 

number of persons expected to be diagnosed with PTSD.  The morbidity rates were determined 

as a function of the damage states and adjusted based on the demographics of the population.  

The population demographics were incorporated through the socioeconomic factors, the 

applicable variables for each morbidity rate was shown in Table 3.1.    The morbidity rates for 

the injury severity levels were computed as 

𝑀𝑀𝑀𝑀𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑 = (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑛𝑛𝑒𝑒,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑑𝑑𝑎𝑎𝑑𝑑,𝑀𝑀𝑀𝑀) ∙ 𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑 Eq. 3-4 

and the morbidity rate for PTSD was computed as 

𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑 = (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑛𝑛𝑒𝑒,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑒𝑒ℎ,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑓𝑓𝑎𝑎𝑓𝑓,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑑𝑑𝑎𝑎𝑑𝑑,𝑀𝑀𝑀𝑀) ∙ 𝑃𝑃𝑀𝑀𝑑𝑑𝑑𝑑  Eq. 3-5 

where , , , , , and  are the socioeconomic factors for age, environment, ethnicity, family, 

gender, and socioeconomic status, respectively, and where the MR subscript refers to the factor 

value for either injury severity rate or PTSD rate.  ,ds and  are the probability of injury severity 

level is and PTSD diagnosis rate for damage state ds, respectively.  The morbidity rates were 

incorporated into the computation of three performance objectives:  economic loss, number of 

morbidities, and time to recovery.  The number of morbidities, , was computed by multiplying 

the morbidity rates by the population size of the community:   
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𝑀𝑀𝑅𝑅3 =  ∑ ��∑ 𝑀𝑀𝑀𝑀𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑
𝑛𝑛𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑=1 + 𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑� ∙ ∑ �𝑛𝑛𝑖𝑖,𝑑𝑑𝑑𝑑 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖�

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 �𝑛𝑛𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑=1     Eq. 3-6 

where ,ds is the number of each archetype i for the damage state ds;  is the occupancy for each 

archetype i.  The number of morbidities included the number of people in all injury severity 

levels, including fatalities, and the total number of PTSD diagnoses.   

3.2.1 Injury Severity Rates 

There are five injury severity levels considered in this study:  minor injury, moderate 

injury, severe injury, critical injury, and fatal injury.  The fatal injuries cover both assumed 

instantaneous deaths caused by the earthquake and deaths occurring in the immediate days 

following the earthquake in hospitals due to critical injuries or other unresolved health conditions 

attributed to the earthquake.  Table 3-4 provides the description for each injury severity level.  

The latter four injury severity levels are analogous to those in Hazus.  The minor injury severity 

level can be difficult to quantify due to the lack of record available caused by the nature of it 

being self-treated.  It was not included in Hazus, but was included in this study. 

Table 3-4:  Description of Injury Severity Levels 

Injury Severity Level Description 
Minor Self-treated injuries 
Moderate Injuries requiring basic medical aid 
Severe Hospitalized injuries 
Critical Life threatening injuries 
Fatal Deaths and non-survivable injuries 
 

The injury severity rates for each respective damage state, ,ds, were modeled as random 

variables using the lognormal distribution parameters provided in Appendix A, where the mean 

value was obtained from Hazus [DHS (2003)] for the latter four severity levels.  The mean value 

for the minor injury severity level was determined by dividing the moderate injury severity rates 

by a factor of 10.  The factor of 10 was chosen due to its use by Hazus in several instances for 

increasing/decreasing from one injury severity rate to the next.  The lognormal CDFs for each 
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injury severity level for each damage state conditioned on casualty rate are provided in Figure 

3-4 through Figure 3-8, where some of the curves appear to overlap (DS2, DS3, and/or DS4) due 

to the scale of the plot, but in fact differ slightly.  The percentage, ,i, of each archetype i being in 

each damage state ds was computed as  

𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖 =  𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖𝑑𝑑𝑑𝑑 ∙ 𝑛𝑛𝑖𝑖    Eq. 3-7 

where ,isd = P[DS = ds|ISD = x], i.e. the probability of archetype i being in damage state ds as 

determined in Eq. 3-1, and  is the total number of archetype i present in a single community.  

The percentage of buildings in the community whose occupants would be in injury severity level 

is was computed as 

𝑃𝑃𝑖𝑖𝑑𝑑 =  𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑 ∙ ∑ 𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1    Eq. 3-8 

where ,ds may also be described as a strict probability conditioned on the damage state, shown in 

Figure 3-9, and expressed as 

𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑 =  𝑃𝑃[𝐼𝐼𝐷𝐷 = 𝑖𝑖𝑑𝑑|𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑]   Eq. 3-9 

 

Figure 3-4:  Nonexceedance Probability for Injury Severity Level 1 for each Damage State 

53 
 



 

 

Figure 3-5: Nonexceedance Probability for Injury Severity Level 2 for each Damage State 

 

 

Figure 3-6: Nonexceedance Probability for Injury Severity Level 3 for each Damage State 
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Figure 3-7: Nonexceedance Probability for Injury Severity Level 4 for each Damage State 

 

 

Figure 3-8: Nonexceedance Probability for Injury Severity Level 5 for each Damage State 
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Figure 3-9:  Probability of Injury given each Damage State 

3.2.2 Rate of PTSD Diagnosis 

The rate of PTSD diagnosis was conditioned on the damage state, and is expressed as a 

random variable.  The mean value for each damage state was set to be the same as the severe 

injury rates.  The distribution parameters were provided in Appendix A.  The lognormal CDF for 

the rate of PTSD for all damage states is provided in Figure 3-10.  The percentage of the 

population that would be diagnosed with PTSD following a scenario earthquake, , was 

determined similarly as the percentage of the population that would sustain a specific injury 

severity level, it was expressed as   

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ �𝑃𝑃𝑀𝑀𝑑𝑑𝑑𝑑 ∙ ∑ �𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖�
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 �𝑛𝑛𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑=1    Eq. 3-10 

where  is the lognormal probability density function for PTSD diagnosis rate for damage state 

ds, ,i was determined in Eq. 3-6, and  is the number of archetypes i in the community.   may 

also be described as a strict probability conditioned on the damage state and expressed  
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as 

𝑃𝑃𝑀𝑀𝑑𝑑𝑑𝑑 =  𝑃𝑃[𝑃𝑃𝑀𝑀 = 𝑝𝑝𝑝𝑝|𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑]   Eq. 3-11 

The probability of PTSD diagnosis given a specific damage state is expressed graphically in 

Figure 3-11.  Eq. 3-7 and Eq. 3-9 provide the injury severity rates and PTSD diagnosis rate for 

the community based on the damage state used in Eq. 3-3 and Eq. 3-4.  To get the actual count, 

or number of people diagnosed with PTSD, Eq. 3-9 should be multiplied by the occupancy of 

each archetype. 

 

Figure 3-10: Nonexceedance Probability for the Rate of PTSD for each Damage State 
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Figure 3-11: Probability for the Rate of PTSD for each Damage State 

 

3.3 Initial Cost 

The initial cost was computed as the cost for all new retrofits, , it may be expressed as 

𝑀𝑀𝑅𝑅1 =  𝑖𝑖𝑜𝑜𝑝𝑝𝑎𝑎𝑒𝑒      Eq. 3-12 

The new retrofit costs were strict values computed using a unit cost per square foot for the 

respective archetype and respective retrofit, multiplied by the total floor area of the archetype.  

The quantity of new retrofits was determined by subtracting the total number of buildings 

retrofitted by modern provisions (i.e. ASCE7-05, SDDD-LS, SDDD-IO, and FEMA P-807 

designs) for the current generation from the initial population in .  This may be expressed as   

𝑖𝑖𝑜𝑜𝑝𝑝𝑎𝑎𝑒𝑒 = ∑ 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑝𝑝𝑎𝑎𝑒𝑒,𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓𝑖𝑖 ∙ (𝑛𝑛𝑎𝑎𝑎𝑎𝑛𝑛,𝑖𝑖 − 𝑛𝑛𝑎𝑎𝑎𝑎𝑛𝑛0,𝑖𝑖
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ,𝑎𝑎𝑟𝑟𝑟𝑟
𝑖𝑖=𝑖𝑖 ) Eq. 3-13 

3.4 Economic Loss 

The economic loss was computed as the sum of direct and indirect costs. These costs 

included:  repair costs (including rebuild costs), , loss due to contents damage, , relocation 
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costs, , and morbidity costs, , (e.g., injury costs, PTSD treatment costs, PTSD downtime costs, 

and the value of a lost life).  The second objective, , (i.e. economic loss) may be expressed as 

𝑀𝑀𝑅𝑅2 =  𝐸𝐸𝐸𝐸𝑀𝑀𝑅𝑅 + 𝐸𝐸𝐸𝐸𝑀𝑀𝑅𝑅 + 𝐸𝐸𝐸𝐸𝑀𝑀    Eq. 3-14 

3.4.1 Repair Costs 

The economic losses due to repair costs, rebuild costs, and contents damage were 

grouped together.  The mean values for the repair costs were obtained from Reitherman and 

Cobeen (2003), as discussed in Chapter 2.  These repair costs were provided at the subassembly 

level for exterior walls (64sf unit size), interior walls (64sf unit size), ceilings (64sf unit size), 

windows (individual unit size) and water heaters (individual unit size).  Therefore, to determine 

the repair costs for archetype i, the number of units for each of the five subassemblies was 

determined.  To compute the total archetype repair cost for each damage state, ,i, the lognormal 

inverse CDF for the subassembly repair costs, ɸ-1( ,k), was multiplied by thirty percent of the 

number of subassembly units, ,k,  and summed together for all subassemblies k, expressed as   

𝑀𝑀𝑅𝑅𝑑𝑑𝑑𝑑,𝑖𝑖 =  ∑ 0.3 ∙ 𝑛𝑛𝑢𝑢𝑛𝑛𝑖𝑖𝑒𝑒,𝑘𝑘 ∙Φ
−1(𝑀𝑀𝑅𝑅𝑑𝑑𝑑𝑑,𝑘𝑘)5

𝑘𝑘=1    Eq. 3-15 

Only 30% of the subassembly units were used in determining the repair costs, because in reality, 

not every single 8 ft by 8 ft wall interior wall, exterior wall, and ceiling segments will be 

damaged on the building.  Based on the author’s experience discussed in Chapter 5, assuming 

30% of the subassembly units is still conservative.  The lognormal CDF for the repair cost for 

each damage state is provided in Figure 3-12.   
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Figure 3-12:  Nonexceedance Probability of Repair Cost for each Damage State 

 Economic loss due to rebuild costs were computed using the cost per square foot values 

determined in Chapter 2 from Reitherman and Cobeen (2003).  These values were multiplied by 

the archetype floor area and summed for all archetypes reaching damage state 5.  The economic 

loss due to rebuild costs may be expressed as 

    𝑀𝑀𝑅𝑅𝑃𝑃𝑃𝑃5,𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑖𝑖 ∙ 𝑛𝑛𝑑𝑑𝑑𝑑5,𝑖𝑖     Eq. 3-16 

 Economic loss due to contents damage was set as 50% of the repair cost value for 

residential structures and 100% of the mean repair cost value for commercial structures.  The 

contents values, , were used in DHS (2003) as percentages of the structure value.  The mean 

contents damage, ,i, may be expressed as 

𝑅𝑅𝐷𝐷𝑑𝑑𝑑𝑑,𝑖𝑖 = 𝑀𝑀𝑅𝑅𝑑𝑑𝑑𝑑,𝑖𝑖 ∙ 𝑅𝑅𝐶𝐶𝑖𝑖     Eq. 3-17 

To compute the economic loss due to all archetypes in the community over all damage states,  , 

the sum of the archetype i repair cost for damage state ds, ,i, the archetype rebuild costs for 

archetypes reaching damage state 5, ,i, and the archetype i contents damage  for damage state 
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ds, ,i,  was multiplied by the total number of archetypes i in the community and summed 

together.  The economic loss due to all archetypes in the community over all damage states may 

be expressed as 

𝐸𝐸𝐸𝐸𝑀𝑀𝑅𝑅 = ∑ ∑ (𝑀𝑀𝑅𝑅𝑑𝑑𝑑𝑑,𝑖𝑖 + 𝑀𝑀𝑅𝑅𝑃𝑃𝑃𝑃5,𝑖𝑖 + 𝑅𝑅𝐷𝐷𝑑𝑑𝑑𝑑,𝑖𝑖)
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 ∙ 𝑛𝑛𝑖𝑖

𝑛𝑛𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑=1   Eq. 3-18 

The strict probability of repair cost given each damage state, P[RC = rc|DS = ds], is provided in 

Figure 3-13. 

 

Figure 3-13:  Probability of Repair Cost for each Damage State 

3.4.2 Relocation Count and Cost 

Following the scenario earthquake, if a building reached DS4 or DS5, then temporary 

relocation of the building occupants would be required. The ability for building occupants to 

shelter in place is important to decision makers and community leaders.  If persons are displaced 

for too long, they may decide to permanently relocate to another community which will have 

significant impact on the community both financially and culturally.  The number of relocated 
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persons was computed as the number of buildings reaching damage states 4 and 5 multiplied by 

the specific building’s occupancy, expressed as   

𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟 = 𝑛𝑛𝑖𝑖,𝑃𝑃𝑃𝑃4 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 + 𝑛𝑛𝑖𝑖,𝑃𝑃𝑃𝑃5 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖     Eq. 3-19 

where,  = number of relocated persons; ,DS4 = number of archetypes i in damage state 4; ,DS5 = 

number of archetypes i in damage state 5;  = number of persons occupying archetype i.  The 

number of relocated persons is provided as a fragility function conditioned on the initial cost, 

expressed as      

𝑃𝑃[𝑛𝑛𝑀𝑀𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛|𝑖𝑖𝑜𝑜 = 𝑖𝑖𝑜𝑜𝑖𝑖]    Eq. 3-20 

where n = the number of relocated persons caused by ; ic = initial cost;  = the initial cost of the 

specific community mitigation plan i.  The computation of the cost for relocation was adopted 

from the Hazus methodology, and incorporated into the performance objective economic loss.  

The relocation cost may be expressed as    

𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖 =  𝑓𝑓𝑓𝑓𝑖𝑖 ∙ �(1 − 𝑝𝑝𝑛𝑛𝑝𝑝𝑖𝑖) ∙ � �𝑝𝑝𝑑𝑑𝑑𝑑,𝑖𝑖 ∙ 𝑑𝑑𝑜𝑜𝑖𝑖� +
5

𝑑𝑑𝑑𝑑=4

𝑝𝑝𝑛𝑛𝑝𝑝𝑖𝑖 ∙ � �𝑝𝑝𝑑𝑑𝑑𝑑,𝑖𝑖 ∙ (𝑑𝑑𝑜𝑜𝑖𝑖 + 𝑝𝑝𝑛𝑛𝑛𝑛𝑐𝑐𝑖𝑖 + 𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑,𝑖𝑖)�
5

𝑑𝑑𝑑𝑑=4

� 

Eq. 3-21 

where,  = the relocation costs for archetype i based on occupancy class;  = the floor area of 

archetype i; ,i = the probability of archetype i being in damage state ds;  = the disruption costs 

for archetype i based on occupancy class in units of dollars per square foot ($/sf); ,i = recovery 

time for archetype i in damage state ds;  is the percent owner occupied for archetype i;  = the 

rental cost for archetype i based on occupancy class in units of $/sf/day.  The values for , , and  

were obtained from Hazus and are provided in Table 3-5, where SFD is a single family dwelling, 

and MFD is a multi-family dwelling.  The values for ,i were the mean values for ,i provided in 

Appendix A.  To determine the economic loss due to relocation, , the relocation cost for 
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archetype i is multiplied by the total number of archetypes i in the community, and summed for 

all archetypes, expressed as 

𝐸𝐸𝐸𝐸𝑀𝑀𝑅𝑅 = ∑ 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 ∙ 𝑛𝑛𝑖𝑖    Eq. 3-22 

Table 3-5:  Relocation Cost Parameter Values 

Parameter Archetype Category Hazus Value 

dc ($/sf) 
Residential SFD 0.82 
Residential MFD 0.82 

Commercial 0.95 

per (%) 
Residential SFD 75 
Residential MFD 35 

Commercial 55 

rent ($/sf/month) 
Residential SFD 0.68 
Residential MFD 0.61 

Commercial 1.36 
 
3.4.3 Economic Loss due to Morbidity 

The economic loss due to morbidity, , was determined as the sum of the economic loss 

caused by the number of persons in each morbidity category (five injury severity levels, 

including fatality, and PTSD diagnoses), expressed as 

𝐸𝐸𝐸𝐸𝑀𝑀 =  ∑ 𝐸𝐸𝐸𝐸𝐼𝐼𝑛𝑛𝐼𝐼,𝑖𝑖𝑑𝑑 +5
𝑖𝑖=1 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   Eq. 3-23 

where ,is is the economic loss due to injury for injury severity level is, and  is the economic loss 

due to PTSD.  The community economic losses due to each injury severity level were modeled 

as random variables.  The mean value, ,is, was determined by multiplying the particular cost 

value associated with each injury severity level, ,is, by the respective mean value of the injury 

severity rate distribution, , respectively.  The standard deviation, ,is,  was determined similarly, 

but by taking one-third of the particular cost value.  Throughout the framework, if the standard 

deviation was unknown, it was assumed as one-third of the mean.  The mean and standard 

deviation for the economic loss due to injury based on injury severity rate may be expressed as 
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𝑚𝑚𝐸𝐸𝐸𝐸𝐼𝐼𝑛𝑛𝐼𝐼,𝑖𝑖𝑑𝑑 =  𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝐼𝐼𝑛𝑛𝐼𝐼,𝑖𝑖𝑑𝑑 ∙ 𝑚𝑚𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑    Eq. 

3-24 

𝑑𝑑𝐸𝐸𝐸𝐸𝐼𝐼𝑛𝑛𝐼𝐼,𝑖𝑖𝑑𝑑 =  (1
3
) ∙ 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝐼𝐼𝑛𝑛𝐼𝐼,𝑖𝑖𝑑𝑑 ∙ 𝑚𝑚𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑   Eq. 3-25 

The parameters in Eq. 3-24 and Eq. 3-25 were used to determine the lognormal distribution 

parameters.  The particular cost values for each injury severity level were set as the values the 

U.S. government assigns to each injury severity level, including fatality [FHWA (1994)], and 

adjusted for inflation to 2014 dollars.  These values are comprehensive costs covering pain, lost 

quality of life, medical costs, legal costs, lost earnings, lost household production, etc.  Table 3-6 

provides the cost values for each injury severity level. 

Table 3-6:  Injury Severity Costs 

Injury Severity Level Minor Moderate Severe Critical Fatality 
Cost ($) 8,000 64,000 785,000 3,170,000 4,165,000 
 

The economic loss due to PTSD is the sum of economic losses due to treatment of 

PTSD, ,trmt, and the downtime due to PTSD considering absenteeism from work, ,Abs, and 

presenteeism at work, ,Pres, expressed as 

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑒𝑒𝑝𝑝𝑓𝑓𝑒𝑒 + 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝑑𝑑 + 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑝𝑝𝑎𝑎𝑑𝑑  Eq. 3-26 

To model the economic loss due to PTSD as a random variable, the process above was 

similarly repeated by first combining the particular costs (or mean values) for treatment, 

downtime due to absenteeism, and downtime due to presenteeism, expressed as 

𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑒𝑒𝑝𝑝𝑓𝑓𝑒𝑒 + 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑎𝑎𝐴𝐴𝑑𝑑 + 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑝𝑝𝑝𝑝𝑎𝑎𝑑𝑑 Eq. 3-27 

𝑚𝑚𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑚𝑚𝑃𝑃𝑚𝑚𝐷𝐷𝐷𝐷  Eq. 3-28 

𝑑𝑑𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  (1
3
) ∙ 𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑃𝑃𝑚𝑚𝐷𝐷𝐷𝐷  Eq. 3-29 
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Recall from Chapter 2, that the treatment cost of PTSD was determined from a study conducted 

by the Congressional Budget Office on veterans [CBO (2012)] as $5400 per year.   

3.4.4 Absenteeism and Presenteeism 

The equations used for determining the number of work loss days and work cut back days 

due to PTSD were obtained from Goetzel et al. (2004).  The annual rate of absenteeism due to 

PTSD was computed as 

𝑀𝑀𝐴𝐴𝐴𝐴𝑑𝑑 = 𝑛𝑛𝑊𝑊𝑅𝑅𝑃𝑃 ∙ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝)/240   Eq. 3-30 

where  is the average annual number of work loss days per person obtained from Kessler and 

Frank (1997),  is the population size based on building occupancy, and 240 is the total number 

of work days per year.  The total loss due to absenteeism was estimated by multiplying the 

annual rate of absenteeism, , by the average salary of the population, expressed as 

𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝑑𝑑 =  𝑀𝑀𝑎𝑎𝐴𝐴𝑑𝑑 ∙ 𝑑𝑑𝑓𝑓𝑛𝑛𝑓𝑓𝑝𝑝𝑠𝑠   Eq. 3-31 

The annual rate of presenteeism due to PTSD is 

𝑀𝑀𝑃𝑃𝑝𝑝𝑎𝑎𝑑𝑑 = 𝑛𝑛𝑊𝑊𝑅𝑅𝑊𝑊𝑃𝑃 ∙ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝) ∙ ℎ𝑝𝑝𝑊𝑊𝑅𝑅𝑊𝑊 ∙ 0.125/240 Eq. 3-32 

where  is the average annual number of work cut back days per person due to PTSD [Kessler 

and Frank (1997)],  is the average number of hour per day in which work is cut back due to 

PTSD [Kessler and Frank (1997)], and 0.125 represents 8 hours per work day.  The total loss due 

to presenteeism was estimated using the average salary of the population, expressed as 
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𝑜𝑜𝑜𝑜𝑑𝑑𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑃𝑃𝑝𝑝𝑎𝑎𝑑𝑑 =  𝑀𝑀𝑃𝑃𝑝𝑝𝑎𝑎𝑑𝑑 ∙ 𝑑𝑑𝑓𝑓𝑛𝑛𝑓𝑓𝑝𝑝𝑠𝑠   Eq. 3-33 

Eq. 3-31 and Eq. 3-33 are incorporated into Eq. 3-27, along with the value for treating PTSD, for 

computing the mean value for the total economic loss due to PTSD.   

3.5 Time to Recovery 

As mentioned in Sec. 3.2, the quality of life and mental health of the population are 

important in order for a community to have a successful economy.   One way to measure the 

impact on the quality of life of the population is through the estimated recovery time.  To 

compute the community time to recovery, the maximum was taken over the recovery time for 

each morbidity category and the total repair time, expressed as   

𝑀𝑀𝑅𝑅4 =  𝑚𝑚𝑓𝑓𝑥𝑥 �
𝑀𝑀𝑛𝑛𝑜𝑜𝑚𝑚𝑀𝑀
𝑀𝑀𝑛𝑛𝑜𝑜𝑚𝑚𝑀𝑀𝑎𝑎𝑝𝑝

   Eq. 3-34 

3.5.1 Recovery Time due to Morbidity Rates 

The recovery time due to morbidity, , was determined by taking the maximum recovery 

time over the individual morbidity rates, , expressed as 

𝑀𝑀𝑛𝑛𝑜𝑜𝑚𝑚𝑀𝑀 =   𝑚𝑚𝑓𝑓𝑥𝑥

⎩
⎪
⎨

⎪
⎧
𝑚𝑚𝑝𝑝𝑐𝑐𝐼𝐼𝑃𝑃1
𝑚𝑚𝑝𝑝𝑐𝑐𝐼𝐼𝑃𝑃2
𝑚𝑚𝑝𝑝𝑐𝑐𝐼𝐼𝑃𝑃3
𝑚𝑚𝑝𝑝𝑐𝑐𝐼𝐼𝑃𝑃4
𝑚𝑚𝑝𝑝𝑐𝑐𝐼𝐼𝑃𝑃5
𝑚𝑚𝑝𝑝𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

   Eq. 3-35 

Eq. 3-35 assumes that there are members of the population in all morbidity rate categories.  In 

the model, the maximum value is only taken over the morbidity rates which have members of the 

population suffering from the specific morbidity.  That is to say that, if the defined seismic 

hazard was for a very small earthquake, there may not be any members of the population which 

experience the latter two morbidity categories (e.g., fatality and PTSD).  In which case, only the 

first four morbidity categories would be considered in Eq. 3-35.   
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The values for  were set as the values list in Table 3-7 for the various morbidities.  If a 

distribution for the recovery time due to each morbidity rate was desired, the values in Table 3-7 

could be set as the mean values and the standard deviation set to one-third of the mean.  Rather 

than doing this for each morbidity rate, the maximum value of all components of the recovery 

time, RO4, was taken as the mean value for the distribution and the standard deviation set as 

one-third of the mean.  It is evident from the Eq. 3-34 and the values in Table 3-7 that the 

recovery time due to PTSD would normally control for larger earthquakes.   

Table 3-7:  Recovery Time due to Morbidity 

Morbidity 
Rate 

Injury 
Severity 
Level 1 

Injury 
Severity 
Level 2 

Injury 
Severity 
Level 3 

Injury 
Severity 
Level 4 

Injury 
Severity 
Level 5 

PTSD 

Time 
(weeks) 1 6 16 26 26 52 

 
3.5.2 Time due to Repair 

The recovery time due to repair time, , was determined the same way that the economic 

loss due to repair costs, , was determined.  The mean values for the repair times were obtained 

from Reitherman and Cobeen (2003), as discussed in Chapter 2.  These repair times were 

provided at the subassembly level for exterior walls (64sf unit size), interior walls (64sf unit 

size), ceilings (64sf unit size), windows (individual unit size) and water heaters (individual unit 

size).  Therefore, to determine the repair times for archetype i, first the number of units for each 

of the five subassemblies was determined.  To compute the total archetype repair time, ,i, for 

each damage state, the lognormal inverse CDF for the subassembly repair time, φ-1( ,k) was 

multiplied by the number of subassembly units, ,k, and summed together for all subassemblies.  

The total archetype repair time may be expressed as   
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𝑀𝑀𝑚𝑚𝑑𝑑𝑑𝑑,𝑖𝑖 =  ∑ 𝑛𝑛𝑢𝑢𝑛𝑛𝑖𝑖𝑒𝑒,𝑘𝑘 ∙Φ
−1(𝑀𝑀𝑚𝑚𝑑𝑑𝑑𝑑,𝑘𝑘)5

𝑘𝑘=1    Eq. 3-36 

The lognormal CDF for the repair cost for each damage state is provided in Figure 3-14.  To 

compute the repair time due to all archetypes in the community, , for all damage states, the 

archetype i repair time for damage state ds, ,i, is multiplied by the total number of archetypes i in 

the community, summed over the community, and then divided by the number of repair persons, 

.  The number of repair crews was determined by the percentage of the Los Angeles County 

population that is in the construction industry (i.e. 5.7% on the 2010 U.S. census) divided by 

three to represent a three-person crew.  The actual number of repair crews is full of uncertainty.  

What is known is that if a major disaster were to occur, repair crews from all surrounding areas 

would come for work.  Therefore, conservatively assuming it this way accounts for non-

professionals and out-of-towners offering repair, as well as the local repair companies.  The 

community recovery time due to building repairs may be expressed as 

 𝑀𝑀𝑛𝑛𝑜𝑜𝑚𝑚𝑀𝑀𝑎𝑎𝑝𝑝 = (∑ ∑ 𝑀𝑀𝑚𝑚𝑑𝑑𝑑𝑑,𝑖𝑖
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 ∙ 𝑛𝑛𝑖𝑖

𝑛𝑛𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑=1 )/𝑛𝑛𝑝𝑝𝑎𝑎𝑝𝑝   Eq. 3-37 

The strict probability of repair time given each damage state is provided in Figure 3-15. 
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Figure 3-14:  Nonexceedance Probability of Repair Time for each Damage State 

 

Figure 3-15: Probability of Repair Time for each Damage State 

3.6 Limitations 

Many factors influence an individual’s social vulnerability and a community’s resiliency 

to earthquakes, and not all of these factors were included in this dissertation.  It is well known 

that the severity of the experience, proximity to the epicenter, magnitude of the earthquake, role 
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in the aftermath, severe damage caused to a person’s home or personal belongings, the amount of 

physical damage caused to the built environment in the community, experiencing previous 

trauma, being widowed, being alone during the earthquake, lack of social support, previous 

psychiatric illness, injury to self or a loved one, loss of a loved one, having a disability, gender, 

ethnicity, education, socioeconomic status, family structure, amount of time in the country, and 

many other factors, all play a significant role in vulnerability and resiliency.  Due to the 

limitations in this study, and the lack of data required for incorporating each influential factor, 

only the variables listed in Table 3-1  were considered here, although the importance of all 

factors is duly recognized.  Additionally, in order for a community to be resilient, many other 

aspects of mitigation are important aside from structurally strengthening the woodframe building 

stock, such as preparedness, planning, and execution of recovery operations.  Emergency 

facilities such as hospitals, police stations, fire stations, etc. must have access to power and water 

at all times.  Food, shelter, and psychiatric services must be made available immediately after the 

event, as well as an effort to resume children’s education.   

The present study aims for quantification of disaster resiliency at the community level by 

retrofitting the existing woodframe building stock.  This quantification proves a difficult task, 

even with its limitations, due to its subjective nature and the non-homogeneity of the existing 

research data.  For example, the most recent devastating earthquake occurring in the United 

States was two decades ago.  It may be assumed that in the past 20 years, a portion of the at-risk 

infrastructure has been rebuilt or retrofitted such that fewer buildings would collapse when 

subjected to a large earthquake, and thus causing fewer casualties.  Therefore, statistics from the 

1994 Northridge earthquake may be considered outdated.  Earthquakes are one of the most 

frequently occurring natural disasters in the world and an abundance of somewhat current 

70 
 



  

statistical data on building damage and the affected populations is available.  The problem then 

arises in comparing different societies and cultures in developing nations with more-developed 

nations, and applying the results globally.  For example at the engineering-level, light-frame 

wood construction is by far the dominant construction type for residential buildings in the United 

States; however masonry-type structures dominate the residential buildings stock in many other 

countries.  Therefore, statistics on such quantities as the number of buildings which collapsed, 

the number of injuries, and the number of fatalities may not be comparable.  Borden and Cutter 

(2008), as well as Gall et al. (2008), discuss in depth the issues that arise when simultaneously 

using data from different databases, using data from one area and applying its statistics to 

another area in the world, the issue of changing the geographic scale of the measured data for an 

analysis, and comparing losses over time.  Borden and Cutter (2008) demonstrate when 

considering public-access databases, the issue of “what constitutes a disaster” dictates which 

events are reported and the effect of this difference.  Loss numbers are calculated differently, 

either by direct losses, or both direct and indirect losses.  Data is collected at different levels:  for 

a city, county, census tract, etc., with various and inconsistent surveys.  In their study, Borden 

and Cutter (2008) demonstrated that a smaller county can sometimes show a very high fatality 

rate that can skew the conclusions.  Thus, using that data which offers a high fatality rate for a 

certain group of people may not be accurately applied to a different location and different group 

of people.  There are also many inconsistencies within the surveys used for collecting social 

demographic data; however these limitations will be discussed in Chapter 6. 

In spite of the vast number of discrepancies with the available data, even still, this study 

attempts to quantify a selection of desired relationships to be inputted into the proposed 

framework.  It is believed that the value of the framework itself does not decrease due to the 
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discrepancies with the data, although the accuracy of the output may be enriched with 

improvement in the consistency of the data collected.  It is anticipated that the quality and 

consistency of data will improve over the years and may then be used to update the framework.   

Aside from limitations with the socioeconomic data collection, there are other 

shortcomings with respect to defining the seismic hazard, modeling a set of archetypes, and 

determining the performance of the archetypes to the defined seismic hazard.  These 

shortcomings start with the uncertainty associated with the magnitude and location of future 

earthquakes.  This framework sets all buildings in the community an equal distance from the 

epicenter.  This assumption will require case studies to be on smaller population subgroups 

selected as 100,000 buildings.  The framework also assumes that all buildings are at full strength 

and stiffness, no degradation due to aging or past earthquakes is present.  The framework allows 

seven floor plans to represent all woodframe building floor plans in a potential community.  

Although this is a shortcoming, it was felt to represent the larger quantity of woodframe building 

types present in the United States. 
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Chapter 4: Numerical Modeling of Building Archetypes  
 
 
 

Structural design evolves as new information is gained from research and experiences.  

Major changes are often adopted in any type of design code or provision, and new guidelines are 

often published, following disastrous events that highlight existing or perceived deficiencies in 

calibration and sometimes philosophy.  The work presented in this chapter chronicles the 

evolution of seismic design for woodframe structures from 1959 through current state-of-the-art 

methodologies available in 2014, providing a brief background on the historical significance and 

major changes adopted in each code or guideline.   A set of seven base-archetypes were designed 

to five design or retrofit provisions selected based on their historical significance.  An extensive 

nonlinear numerical analysis was conducted to quantify the difference in performance obtained 

by each newer methodology.  The purpose of examining each of these is that a typical 

metropolitan statistical area (MSA) will have woodframe buildings designed to many different 

codes within its building inventory.  

4.1 Previous Reviews on Historical Seismic Design 

A number of other reviews are available in the literature providing historical timelines on 

various aspects of seismic design.  McIntosh and Pezeshk (1997) compared the purpose, type of 

document and target audience, lateral forces, and analysis provisions provided in the early 

1990’s editions of the National Earthquake Hazard Reduction Program (NEHRP), Structural 

Engineers Association of California (SEAOC), American Society of Civil Engineers (ASCE) 

Standard 7, and the Uniform Building Code (UBC) seismic design provisions.  Major differences 

in the design noted for these documents were that NEHRP and ASCE Standard 7 were based on 

strength design while SEAOC and UBC were based on allowable stress design, with many other 
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differences discussed in the review.  The authors discussed the importance of maintaining 

consistency in selected provisions for the material design, detail requirements, and load 

provisions when exceeding the elastic limit state.  A general review was provided with specific 

examples for steel and concrete framing systems.  No specific examples were provided for 

woodframe structures.   

In 2002, Beavers published a review on the history of seismic hazard maps, their 

development and use, and the use and adoption of seismic building codes in the United States 

from its first initiation to its state at that time (2002).  Beavers (2002) provided a complete 

review on these topics, some of which were touched upon in this work, however details were not 

repeated.   

Line (2006) provided a short review on benchmarking seismic design load and resistance 

values for woodframe shearwall structures over a span of approximately 50 years.  The review 

started with the 1955 Uniform Building Code (UBC) and concluded with the 2006 International 

Building Code (IBC).  Discussion on the changes in framing, wood structural panel, shearwall 

aspect ratios, nailing schedules, base shear, and shearwall resistance were provided.  An 

analytical comparison was provided on the seismic base shear computations for a regular one-

story woodframe structure with wood panel shearwalls for two aspect ratios and three locations 

in the United States.     

Then, in 2008, Diebold et al. chronicled the SEAOC Blue Book from 1959-2008.  The 

authors provided a historical lead up to the first Blue Book, its development, and the changes in 

the seismic design recommendations for each major time period. 

Thus far in these reviews, limited equations were presented, no analytical comparisons 

were presented based on building performance, and the most current to date is still several years 
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old and did not include any performance-based seismic design methodologies or newer retrofit 

procedures.  The present study focuses on the evolution of the seismic risk and performance of 

woodframe buildings based on historical changes in seismic design provisions from 1959 to 

2014.   

4.2 Design Codes 

Six different historical design and/or retrofit provisions were selected for this study.  

Three of the six were selected due to fundamental changes in the building codes which occurred 

following major earthquakes in the United States.  Others selected were two state-of-the-art 

performance-based seismic retrofit designs, and a new and economic soft-story-only retrofit 

guideline.  The following subsections provide the motivation behind each provision, code, or 

guideline selection, and some of the detailed calculations within the respective document. 

4.2.1 Pre-1971 San Fernando Earthquake Design 

On February 9, 1971 at 6:01am PST a Richter scale M6.6 earthquake occurred in San 

Fernando Valley, California.  Although only of moderate size on the Richter scale, in terms of 

motion, this was the strongest earthquake ever recorded in California at the time [Ritchie 

(2003)].  Governor Reagan, as well as, President Nixon declared Los Angeles County a disaster 

area.  The death toll totaled 58, and property damage estimates exceeded $2 billion.   The biggest 

impact of this earthquake for the region was the damage caused to several medical facilities.  In 

fact, 49 of the 58 fatalities occurred due to the collapse of the Veterans Administration Hospital 

building, and four more persons died due to the collapse of the newly built Olive View Hospital.  

There were several significant outcomes directly resulting from the 1971 San Fernando 

earthquake.  Perhaps the greatest conclusion drawn with respect to the building stock was the 

need for certain structures to be designed stronger than the minimum code requirements to 
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maintain functionality immediately after an earthquake, or other hazard, event.  These structure 

types were to include hospitals, schools used as emergency shelters, emergency communication 

buildings, fire departments, and other disaster relief agencies.  Furthermore, a new concept 

known as the “occupancy factor” was recommended after this event that would require greater 

resistance for buildings with large occupancy and special occupancy, such as schools, hospitals, 

theaters, etc. [Jennings (1971)].  Both the occupancy factor and building category were adopted 

into the building code as a direct result of the 1971 San Fernando earthquake.   

To provide the design space with a pre-1971 San Fernando earthquake design, the 1959 

SEAOC seismic recommendations [Seismology (1959)] and the 1970 Uniform Building Code 

[UBC (1970)] were selected.  The 1959 SEAOC seismic recommendations, often referred to as 

the Blue Book, were the first seismic provisions published in the United States by the Structural 

Engineering Association of California.   These provisions introduced the framing factor, K, 

which was to include the effect of the building’s ductility in the design base shear, V.  The design 

base shear, or minimum total lateral seismic force that a building was required to withstand in 

each of the building’s main axes was computed as 

V = K ∙ C ∙ W     Eq. 4 - 1 

where K was the horizontal force factor tabulated for buildings and other structures based on the 

building’s structural system, W was the total dead load, and C was the numerical coefficient for 

base shear determined by 

C =  0.05
T1/3     Eq. 4 - 2 

T was the fundamental period of vibration of the structure in seconds in the direction being 

considered.  If this information was not known, the structural engineering could estimate T by 

𝑚𝑚 =  0.05∙𝐻𝐻
√𝑃𝑃

     Eq. 4 - 3 
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where H was the height of the main portion of the building in feet above the base, and D was the 

dimension of the building in feet in a direction parallel to the applied forces.  The distribution of 

the total lateral force, V, over the building height was provided as 

Fx = V∙wx∙hx
∑w∙h

     Eq. 4 - 4 

where  was the portion of W for level x, and  was the height in feet above the base to level x.  

Further provisions were provided for the lateral force on parts or portions of buildings or other 

structures, but the presented provisions above was the extent to what was used in this study.   

The 1970 UBC permitted the use of gypsum lath and plaster, gypsum sheathing board, 

and gypsum wallboard to provide lateral resistance for vertical diaphragms in wood framed wall 

assemblies.  Table No. 47.1 (see Appendix B) from the 1970 UBC provided the allowable shear 

for seismic forces in pounds per square foot (psf) for these materials.    

4.2.2 Pre-1994 Northridge Earthquake Design 

Nearly exactly 23 years later, on January 17, 1994 at 4:31am, a magnitude 6.7 earthquake 

shook the nearly the same location as before in the San Fernando Valley area creating a near 

perfect “nature experiment”  thus presenting the opportunity for evaluating the effectiveness of 

earthquake policy legislation, building code policies, updated disaster recovery efforts, and the 

like.  Fortunately, this earthquake occurred on a holiday weekend, early in the morning, so the 

death toll was much lower than what could be expected on a typical Monday during typical 

working hours.  Even still, 71 people died.  Mayor Riordan of Los Angeles declared a state of 

emergency by 5:45am, and by 2:08pm, President Clinton announced a federal declaration of 

disaster for the area [Comfort (1994)].  Post 1971 San Fernando Valley earthquake, significant 

changes occurred in seismic hazard mapping, and the legislation and building code standards 

regarding earthquakes.  Most structures built between these two earthquakes incorporated some 
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form of seismic design.  Therefore, the count of 20,000 structures vacated and around 12,500 

structures damaged,  came as quite a surprise to some. Retrofitted structures were reported to 

have performed well, and post event, much more technical and complex seismic design 

provisions began being considered.  With the realization that even moderate events can cause 

billions of dollars of damage, the resulting losses from the 1994 Northridge earthquake sparked a 

shift in the design paradigm for structural engineers.  With damage estimates reaching $49 

billion, making this the most costly natural disaster in U.S. history in terms of dollar loss, the 

birth of the Performance-Based Design (PBD) philosophy was generated.   

To provide the design space with a pre-1994 Northridge earthquake and post-1971 San 

Fernando earthquake seismic design, the 1978 NEHRP provisions [ATC 3-06 (1978)] and the 

1988 Uniform Building Code [UBC (1988)] were selected.  In 1978, Congress mandated that the 

Federal Emergency Management Agency (FEMA) implement P.L. 95-124 and initiate the 

National Earthquake Hazard Reduction Program (NEHRP) in an effort to reduce risk from 

earthquakes [FEMA (2004)].  In collaboration with the Applied Technology Council (ATC), 

NEHRP published its first set of seismic provisions in 1978, titled:  “Tentative Provisions for the 

Development of Seismic Regulations for Buildings.”  The lateral seismic base shear, V, which 

was now expressed as 

V = Cs ∙ W     Eq. 4 - 5 

where W is the total gravity load of the building , and  is the seismic design coefficient expressed 

as 

𝑅𝑅𝑑𝑑 = 1.2∙𝐴𝐴𝑣𝑣∙𝑃𝑃
𝑀𝑀∙𝑃𝑃2/3      Eq. 4 - 6 

where  is the coefficient for effective peak velocity-related acceleration, S is the coefficient for 

the soil profile characteristics, R is the response modification factor (equal to 6.5 for woodframe 
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structures (Table 3-B in the 1978 NEHRP Provisions)), and T is the fundamental period of the 

building computed using the expression provided in Eq.  4-3.  The lateral seismic shear force, , 

induced at any level was expressed by  

𝐹𝐹𝑥𝑥 = 𝑅𝑅𝑒𝑒𝑥𝑥 ∙ 𝐶𝐶     Eq. 4 - 7 

where 

𝑅𝑅𝑒𝑒𝑥𝑥 = 𝑤𝑤𝑥𝑥∙ℎ𝑥𝑥𝑘𝑘

∑ 𝑤𝑤𝑖𝑖∙𝑤𝑤𝑖𝑖
𝑘𝑘𝑛𝑛

𝑖𝑖=1
    Eq. 4 - 8 

where k is an exponent related to the building period (k = 1 for buildings with a period of 0.5 

seconds or less, and k = 2 for buildings with a period of 2.5 seconds or higher, and linear 

interpolation was used for periods between 0.5 and 2.5 seconds).  By this time period (post-1971 

to pre-1994), several major changes were made to the seismic provisions:  (1) in the computation 

of the seismic base shear, which now included peak acceleration, soil profile characteristics, and 

the structural framing system, and (2) the building period was considered through an exponent in 

the vertical distribution of lateral forces, where buildings with lower periods would have a linear 

force distribution, and buildings with higher periods would have an exponential force 

distribution.   

Per section 4714(a) of the 1988 UBC, the use of gypsum lath and plaster, gypsum 

sheathing board, and gypsum wallboard were permitted to provide lateral resistance for vertical 

diaphragms in wood framed wall assemblies.  Table No. 47.1 (see Appendix B) from the 1988 

UBC provided the allowable shear for seismic forces in pounds-per-square foot (psf) for these 

materials.    

4.2.3 Modern Seismic Design 

Following the two major earthquakes previously discussed, a wealth of research was 

conducted in an effort to make systematic and powerful changes to the building codes and 
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seismic provisions so that the disastrous aftermaths of these two earthquakes would not be seen 

again following future earthquakes.  First introduced in the 1991 NEHRP Provisions, but not 

incorporated until much later, modern seismic design uses maps representing the exceedance 

probability of seismic intensity in terms of spectral values in a set number of years (10% PE in 

250 years, i.e. 1500-year event) based on spectral accelerations for two periods (0.3 sec and 1.0 

sec).  The seismic hazard equations were set on the B-C boundary (site class), and eventually 

conversions from the B-C boundary were provided for other site conditions.  Modern seismic 

design codes provide two probabilistic seismic hazard levels: (1) the design basis earthquake 

(DBE) (10% PE in 50 years, i.e. 500-year event), and (2) the maximum considered earthquake 

(MCE) (2% PE in 50 years, i.e. 2500-year event).   

The ASCE Standard 7-05 [ASCE (2005)] and 2006 International Building Code [IBC 

(2006)] were selected for the modern seismic design provisions.    In the ASCE Standard 7-05, 

the lateral seismic base shear, V, was expressed as it was in Eq. 4 - 5.  However, now, the seismic 

design coefficient, , incorporates the occupancy importance factor, I, and the new representation 

of the seismic hazard using the spectral response acceleration parameters, along with the 

response modification factor, R, and fundamental period, T.  The computation of  becomes 

significantly more complicated in the modern design codes with the new seismic hazard maps.  

Five equations are used to determine the final value of , and will not be presented here due to the 

complexity and also the associated incompleteness without providing a full description of 

defining the seismic hazard.  The approximate fundamental period was expressed as 

𝑚𝑚𝑎𝑎 = 𝑅𝑅𝑒𝑒 ∙ ℎ𝑛𝑛𝑥𝑥      Eq. 4 - 9 

where  is the height in feet above the base to the highest level of the structure, and the 

coefficients  and  x are determined based on the structure system (  = 0.02 and x = 0.75 for 
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woodframe structures).  The vertical force distribution is determined the same as was expressed 

in Eq. 4-7 and Eq. 4-8. It is important to note the significance in the change from previous 

seismic design being conducted for a single seismic hazard for all of the United States versus 

now seismic design being based on the actual seismic hazard at the specific building site.   

4.2.4 Performance-Based Seismic Retrofit Design 

Performance-based seismic design (PBSD) was centered on well-articulated performance 

objectives based on building owner/stakeholder performance goals.  PBSD is used for designing 

for extreme events, taking the design further than what traditional seismic design provisions 

provide guidance for.  Two performance-based seismic retrofit (PBSR) designs were used in this 

study, both of which employed the Simplified Direct Displacement Design (SDDD) procedure 

[Pang et al. (2010)].   

Traditional seismic design was based around strength criteria.  The height of woodframe 

construction was limited to four stories, and engineered wood construction was not based on a 

global seismic design philosophy.  Wood elements were not designed at the system-level with 

collective performance considered, but rather as individual elements which fit together [Pang et 

al. (2010)].    These facts and shortcomings were the impetus for the SDDD procedure.  Pang and 

Rosowsky (2010) developed the Direct Displacement Design (DDD) procedure which required 

modal analysis and a set 50% probability of non-exceedance (PNE) for drift limits.  The SDDD 

procedure is a simplified version of DDD which does not require modal analysis, and may be 

performed at any PNE through an adjustment factor.  Once the PNE is selected, and the 

adjustment is made through an adjustment factor , a design inter-story drift must be selected.  

Because inter-story drift has been shown to be well-correlated with damage to woodframe 

structures [Filiatrault and Folz (2004)], the design inter-story drift provides the basis of the limit 
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states and performance objectives.  The vertical distribution of the base shear is computed using 

the same expression as in Eq.  4-8.  A substitute structure is analyzed by applying the centroid of 

the lateral force distribution at an effective height, which may be expressed as 

ℎ𝑎𝑎𝑓𝑓𝑓𝑓 = ∑ 𝑅𝑅𝑒𝑒𝑖𝑖 ∙ ℎ𝑝𝑝𝑖𝑖𝑖𝑖     Eq. 4 - 10 

where  is the vertical distribution factor for the  floor provided in Eq.  4-8 , and  is the floor 

height with respect to the ground for the  floor.  Interpolation was used to determine the effective 

displacement, Δ , at the effective height.  An effective seismic weight, , of the substitute structure 

was determined by 

𝑊𝑊𝑎𝑎𝑓𝑓𝑓𝑓 = (∑ 𝑊𝑊𝑖𝑖∙∆𝑜𝑜𝑖𝑖𝑖𝑖 )2

∑ 𝑊𝑊𝑖𝑖∙∆𝑜𝑜𝑖𝑖
2

𝑖𝑖
    Eq. 4 - 11 

where  is the seismic weight of the  floor, and Δ  is the displacement of the  floor with respect to 

the ground.  The damping reduction factor was computed as 

𝛽𝛽𝜁𝜁 = 4
5.6−ln (100∙𝜁𝜁𝑟𝑟𝑒𝑒𝑒𝑒)

    Eq. 4 - 12 

where  

𝜁𝜁𝑎𝑎𝑓𝑓𝑓𝑓 = 𝜁𝜁𝑖𝑖𝑛𝑛𝑒𝑒 + 𝜁𝜁ℎ𝑦𝑦𝑑𝑑𝑒𝑒     Eq. 4 - 13 

where ζ  is the intrinsic damping and assumed to be 1% in this study, and ζ  is the hysteretic 

damping, which based on experimental studies was determined to be expressed as 

𝜁𝜁ℎ𝑦𝑦𝑑𝑑𝑒𝑒 = 0.32𝑛𝑛−1.38𝐾𝐾𝑑𝑑𝐾𝐾𝑜𝑜    Eq. 4 - 14 

where /  was set as 0.3 for this study.  The design base shear coefficient  was determined using 

the capacity spectrum approach, and was expressed by 

𝑅𝑅𝑐𝑐 = 𝑚𝑚𝑖𝑖𝑛𝑛 �

𝑅𝑅𝑁𝑁𝑁𝑁𝑃𝑃𝑋𝑋𝑋𝑋
𝑊𝑊𝜁𝜁

𝑎𝑎
4𝜋𝜋2Δ𝑟𝑟𝑒𝑒𝑒𝑒

�𝑅𝑅𝑁𝑁𝑁𝑁𝑃𝑃𝑋𝑋1
𝑊𝑊𝜁𝜁

�
2  Eq. 4 - 15 
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where g is the acceleration due to gravity,  and  and  are the short period and one second spectral 

parameters, which are based on the seismic hazard and site conditions, and are also used in the 

ASCE Standard 7-05 design procedure.  Lastly, the design forces are computed, which include 

the base shear, lateral forces, story shears, overturning moments, and required story secant 

stiffness.  These expressions are not provided here but can be found in Pang et al (2010).  

Shearwalls are then selected and distributed throughout the building floorplan using the 

shearwall backbone forces at the target ISD to meet the required story shear.   

4.2.5 Soft-Story-Only Retrofit Design 

Soft-story woodframe buildings have long been recognized as a disaster preparedness 

issue.  FEMA began the Applied Technology Council (ATC) Project 71.1 which would 

eventually result in the FEMA P-807 Guidelines [FEMA (2012a)] for retrofitting soft-story 

woodframe buildings.  The FEMA P-807 Guidelines were developed to aid practicing engineers 

in retrofitting soft-story woodframe buildings in a cost-effective and practical manner for quick 

and consistent implementation.  Within the FEMA P-807 Guidelines, the retrofit is to be 

constrained to the soft-story with the intent of limiting disruption to the building’s occupants.  

The soft-story-only retrofit must be adequate to prevent the building from collapsing at the first 

story while not being too stiff or strong to potentially collapse the upper stories by driving the 

earthquake forces upward.   The building owner and other stakeholders can set specific 

performance objectives for retrofitting the building.  The FEMA P-807 Guidelines emphasize 

that the retrofit is not meant to prevent the soft-story building from being damaged during a 

seismic event, but rather to prevent the building from collapse and to achieve shelter-in-place 

following the earthquake. It is critical to note here that the FEMA P-807 Guidelines do not  
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necessarily provide a soft-story structure with a full design code-compliant retrofit.  This 

decision is left to the stakeholders including local and regional governments and building 

officials. 

The FEMA P-807 Guidelines were selected as one of the retrofit options in this study due 

to their uniqueness in methodology relative to the other selected provisions, and assumed future 

widespread use.  In order for a retrofit to meet the FEMA P-807 Guidelines it must meet the 

criteria in three categories:  (1) eligibility constraints, (2) strength requirements, and (3) an 

eccentricity limit.  The eligibility constraints are based on geometry and construction, the details 

of which can be found in the FEMA P-807 (2012a).  The general eligibility requirements restrict 

the building to no more than four woodframe above-grade stories without an above-grade 

concrete podium supporting the structure, and require that appropriate soil type and site class 

adjustment factors be used.  The strength requirements specify that the retrofitted building’s 

spectral capacity in each principal direction exceeds the spectral demand.  Drift limits are 

provided for two cases in association with the strength requirements:  (1) 4% maximum drift is 

acceptable for high-displacement capacity stories; and (2) 1.25% maximum drift is acceptable 

for the low-displacement capacity stories.  The FEMA P-807 Guidelines specify the various 

materials that can qualify a building story as either high-displacement (i.e. wood structural 

panels, horizontal wood siding, gypsum wall board, etc.) or low-displacement (i.e., stucco, 

plaster on wood or gypsum lath, diagonal wood sheathing, etc.).  The premise of the 

methodology focuses on eliminating torsion since it exacerbates the soft-story condition and 

gives rise to structural collapse. In support of this, the eccentricity limits recommend that zero 

eccentricity between the first-story center of strength and second-story center of strength remains 

following the retrofit.  If this is not possible, the maximum acceptable eccentricity must be less 
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than 10% of the corresponding building dimension.   A free downloadable software, the weak-

story tool, is available from FEMA’s website for executing the FEMA P-807 procedure. 

4.3 Shearwall Parameters 

For the pre-1971 San Fernando Earthquake design used in this dissertation, horizontal 

wood siding (HWS) was used as the exterior wall sheathing material and plaster on wood lath 

was used as the interior wall sheathing material.  These walls were modeled by the CUREE 10-

parameter hysteretic model [Folz and Filatrault (2001)] graphically represented in Figure 4-1.   

The 10 parameter hysteretic model for the HWS walls was obtained from Bahmani and van de 

Lindt (2013).  In that study, cyclic tests were conducted on a number of 8 ft × 8 ft (2.44 m × 

2.44 m) shearwalls sheathed with various materials.  The specimens with HWS were composed 

of a single layer of 1×8 (25 mm × 203 mm) Spruce-Pine-Fir (SPF) wood siding attached to the 

framing studs by 8d common nails with a shank diameter of 0.134 in. (3.4 mm), shank length of 

2.5 in. (63.5 mm), and head diameter of 9/32 in (7.1 mm).  The framing consisted of 2×4 

dimension lumber spaced at 16 in. (406.4 mm) on center, with a single bottom plate and double 

top plate.  The 10 parameter hysteretic parameters for the plaster on wood lath (PWL) were 

provided in Pang et al. (2012), which were obtained from experimental testing conducted in the 

1950s at the Forest Products Laboratory [Trayer (1956)].  The PWL walls were composed of the 

same framing method and spacings as previous walls, but with No. 1 common well-seasoned 

southern yellow pine lumber.  The experimentally tested PWL walls were 9 ft × 14 ft, (2.74 m ×  

4.27 m) which required 12 in. (304.8 mm) spacing between the outer studs on each side of the 

wall.  The wood lath were 4 ft (1.22 m) long, spaced at 0.25 in. (6.35 mm) and nailed with 3d 

nails, and grounds were 0.75 in. (19.05 mm).  The plaster proportions were 100 lbs to 175 lbs of 

plaster to sand, respectively.  Two coats were applied to the wall, and allowed one week to cure 
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prior to testing.    In the pre-1971 San Fernando Earthquake designs, only the allowable shear for 

the PWL walls was used to meet the required design shear, and not the HWS.  Although the use 

of gypsum wallboard was allowed by the 1970 UBC, it was not typical of this era to use such a 

sheathing material.  Therefore, it was not used in the pre-1971 San Fernando Earthquake designs.   

 

Figure 4-1:  CUREE 10-Parameter Hysteretic Model  
(figure excerpted from Pei and van de Lindt (2010)) 

 
For the pre-1994 Northridge Earthquake design, stucco was used as the exterior wall 

sheathing material and gypsum wallboard was used as the interior wall sheathing material.  Only 

the allowable shear of the GWB was used in the archetype design to meet the required design 

shear.  In this case, the full wall assembly was modeled using either GWB sheathing on both 

sides of the framing, or GWB on one side and stucco on the other side.  The double-sided GWB 

shearwall was modeled using the CUREE 10-parameter hysteretic model.  The stucco/GWB wall 

was modeled using the 16-parameter Evolutionary Parameter Hysteretic Model (EPHM) 

hysteretic model [Pang et al. (2007)], graphically represented in Figure 4-2.  The GWB, 

GWB/GWB, Stucco, and Stucco/GWB parameter sets were obtained from Bahmani and van de 

Lindt (2013).  The GWB assembly was composed of 0.5 in. (12.7 mm) thick regular GWB 
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fastened to framing studs with #6 coarse thread bugle head drywall screws at 16 in spacing.  The 

GWB panels were installed vertically and the edge at the middle was sealed with mud and mesh 

tape.  The stucco assembly was composed of 7/8 in. (22.2 mm) thick stucco consisting of five 

sub layers:  a weather barrier layer, wire lath, a scratch coat, a brown coat, and a finish coat.  For 

the experimental testing conducted by Bahmani and van de Lindt (2013), the stucco walls were 

intended to resemble 1920’s to 1950’s construction styles as closely as possible, and the stucco 

specimens were stated to have fully cured prior to the cyclic testing. 

 

Figure 4-2:  EPHM sixteen-parameter hysteretic model  
(figure excerpted from Bahmani and van de Lindt (2013)) 

 
For all of the modern seismic design codes and retrofits (post-1994 Northridge 

Earthquake designs), stucco was used as the exterior wall sheathing material, GWB was used as 

the interior wall sheathing material, and 15/32 in. oriented strand board (OSB) sheathing was 
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used as the shearwall sheathing material.  Only the allowable shear of the OSB-sheathed 

shearwalls was used for providing the lateral resistance for the archetypes.  The non-structural 

walls were modeled as complete wall assemblies, either GWB/GWB or Stucco/GWB.  For the 

portions of these walls which needed to be modified to shearwalls, the OSB sheathed wall was 

modeled separately and the multiple wall assemblies were superimposed in the numerical model.  

The shearwalls were distributed throughout the floor plan to provide lateral symmetry to the 

furthest extent possible avoiding the addition of shearwall length above the design requirement.  

The 10-parameter hysteretic models for all OSB sheathed shearwalls were obtained from Pang et 

al. (2010).   

Table 4-1 provides the 10 parameter hysteretic models in per-foot values for all wall 

types used in this study.  Table 4-2 provides the 16 parameter hysteretic models in per-foot 

values for all wall types used in the study.  The seismic coefficient, C or , for the archetypes 

designed by the 1959 SEAOC provisions, 1978 NEHRP provisions, and the 2005 ASCE-7 

Standard were 0.10, 0.15, and 0.154, respectively.  Table 4-3 provides the weight, W, and the 

design base shear, V, used in the design for each of the archetypes.  
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Table 4-8: CUREE 10-hysteretic parameters for walls 

Sheathing K0 
(k/in/ft) 

F0 
(k/ft) 

F1 
(k/ft) r1 r2 r3 r4 Xu (in) α β 

 0.110 0.050 0.020 0.128 -0.050 1.03 0.070 8.19 0.395 1.075 
 2.146 0.395 0.047 0.020 -0.330 1.02 0.007 0.669 0.800 1.050 
Stucco 2.695 0.295 0.040 0.045 -0.038 1.00 0.005 0.745 0.775 1.050 
 0.520 0.090 0.010 0.045 -0.059 1.04 0.007 1.135 0.750 1.050 
GWB/G
WB 1.0625 0.187 0.02 0.045 -0.059 1.03 0.006 1.14 0.75 1.05 

SPly 
(6/12)4 2.359 0.675 0.091 0.025 -0.049 1.01 0.019 1.841 0.714 1.286 

SPly 
(4/12) 3.028 1.006 0.146 0.026 -0.056 1.01 0.022 1.850 0.759 1.286 

SPly 
(3/12) 3.787 1.277 0.170 0.032 -0.060 1.01 0.023 1.898 0.714 1.286 

SPly 
(2/12) 4.232 1.989 0.248 0.030 -0.073 1.01 0.033 1.972 0.759 1.241 

DPly 
(6/12)5 3.459 1.499 0.087 0.009 -0.054 1.01 0.028 1.652 0.759 1.286 

DPly 
(4/12) 4.171 2.202 0.121 0.013 -0.068 1.01 0.035 1.735 0.759 1.241 

DPly 
(3/12) 4.582 2.916 0.155 0.024 -0.084 1.01 0.040 1.791 0.814 1.241 

DPly 
(2/12) 5.171 4.315 0.255 0.046 -0.114 1.01 0.053 1.990 0.723 1.150 

Horizontal wood siding [Bahmani and van de Lindt (2013)] 
 on wood lath [Pang et al. (2012)] 
 wallboard [Bahmani and van de Lindt (2013)] 
-ply OSB sheathing [Pang et al. (2010)] 

5 Double-ply OSB sheathing [Pang et al. (2010)] 

Table 4-9:  EPHM 16-hysteretic parameters for wall 

Wall K0 
(k/in/ft) F0 (k/ft) r1 Xu (in) r2 Xu1 

(in) P1 F1m 
(k/ft) 

Stucco/GWB 2.75 0.525 0.05 1.25 -0.15 1.5 -0.48 0.3125 

Wall F1r (k/ft) Df1a (in) Dflb (in) PF1 Pr4 r4r β Fur (k/ft) 

Stucco/GWB 0.00625 0.625 1.5 -0.2 -0.5 0.0001 1.07 0.1063 
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Table 4-10:  Archetype parametric values used in seismic design codes 

Design Code 1959 SEAOC 1978 NEHRP ASCE7-05 

Floor Plan W (kip) V (kip) W (kip) V (kip) W (kip) V (kip) 

1 29 2.9 25.7 3.9 24.2 3.7 

2 67.1 6.7 68 10.4 57.8 8.9 

3 201 20.1 181 27.8 147.5 22.7 

4 371 40 351.7 54.1 288.7 44.4 

5 34.1 3.4 31.7 4.9 28.6 4.4 

6 43.7 4.4 41.2 6.3 40 6.2 

7 489.5 57 443 68.1 392.2 60.3 
 
4.4 Archetypes 

Seven floor plans were selected as the base archetypes for this study, these include:  (1) a 

one-story house without a garage, (2) a two-story house with a garage, (3) a two-story three-unit 

townhouse, (4) a three-story ten-unit soft-story apartment building with tuck-under parking, (5) a 

one-story house with a garage, (6) a two-story house with a garage, (7) a four-story soft-story 

commercial mid-rise office building with large open space on the bottom story creating a 

torsional irregularity.    The base floor plans for these seven buildings are provided in Figure 4-3 

through Figure 4-9, respectively.  The first four floor plans came from Reitherman and Cobeen 

(2003), the remaining fifth and sixth floor plans came from Pei (2007), and the seventh floor plan 

was taken from FEMA (2012a) with new dimensions assigned.  Together, the seven were felt to 

be representative of the woodframe building stock present in California.  Each of the seven 

archetypes were designed to the four design codes previously discussed:  1959 SEAOC Blue 

Book (1959 Blue Book), 1978 NEHRP, ASCE Standard 7-05 (ASCE7-05), and the Simplified 

Direct Displacement Design (SDDD).  The archetypes were designed twice by the SDDD 

procedure.  The first SDDD was a superior level design to the limit state of life safety (SDDD-
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LS) which was set to have a 50% PNE of 3.00% ISD when subjected to a MCE seismic hazard.  

The second SDDD was an excellent level design to the limit state of immediate occupancy 

(SDDD-IO) which was set to have a 50% PNE of 1.00% ISD when subjected to a MCE seismic 

hazard.  Additionally, the two soft-story woodframe buildings (see Figure 4-6 and Figure 4-9) 

were retrofitted following the FEMA P-807 procedure using the weak-story tool.  This provided 

a total of 37 archetypes for the design space.  The floor plans presented in Figure 4-3 through 

Figure 4-9 provide limited dimensions with wall identification numbers labeled.  The wall 

identification numbers were assigned to those walls which were available to be structural 

shearwalls in any of the 37 archetype designs.  The sheathing and length for each shearwall in 

each of the archetypes are provided in Table 4-4 through Table 4-12 for each floor plan, 

respectively, with the seismic design provision listed.  The sheathing was listed by short hand 

using the same notation as in Table 4-1. 

 

Figure 4-1:  Floor Plan 1 - One-Story House without a Garage 
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(a) (b) 

Figure 4-2:  Floor Plan 2 - Two-Story House with a Garage:   (a) First Story; (b) Second Story 

 
 

(a) (b) 

Figure 4-3:  Floor Plan 3 - Two-Story Three-Unit Townhouse:  (a) Unit 1; (b) Unit 2; (c) Unit 3 
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(a) 

 

(b) 

Figure 4-4:  Floor Plan 4 - Three-Story Ten-Unit Soft-Story Apartment Building:   
(a) First Story; (b) Upper Stories 

94 
 



  

 

Figure 4-5:  Floor Plan 5 – One-Story House with a Garage 

 

Figure 4-6:  Floor Plan 6 - Two-Story House with a Garage 
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(a) (b) 

Figure 4-7:  Floor Plan 7 – Four-Story Soft-Story Office Building with Garage Doors Lining 
Large Portions of Bottom Story:  (a) First Story; (b) Upper Stories 

 
Table 4-11:  Floor Plan 1 – Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 

Wall ID Retrofit 
Length (in) Retrofit ID Retrofit 

Length (in) Retrofit ID Retrofit 
Length (in) Retrofit ID 

W1 - - 48 SPly (6/12) 48 SPly (6/12) 
W2 - - 48 SPly (6/12) 48 SPly (6/12) 
W3 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W4 - - 48 SPly (6/12) 48 SPly (6/12) 
W5 - - 48 SPly (6/12) 48 SPly (6/12) 
W6 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W7 - - 48 SPly (6/12) 48 SPly (6/12) 
W8 - - 96 SPly (6/12) 96 SPly (6/12) 
W9 48 SPly (6/12) - - - - 
W10 - - 48 SPly (6/12) 48 SPly (6/12) 
W11 - - 48 SPly (6/12) 48 SPly (6/12) 
W12 - - 48 SPly (6/12) 48 SPly (6/12) 
W13 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W14 - - 48 SPly (6/12) 48 SPly (6/12) 
W15 - - 48 SPly (6/12) 48 SPly (6/12) 
W16 - - 48 SPly (6/12) 48 SPly (6/12) 
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Table 4-12:  Floor Plan 2 - Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 
Story 

Wall ID 
Retrofit 
Length 

(in) 
Retrofit ID Retrofit 

Length (in) Retrofit ID Retrofit 
Length (in) 

Retrofit 
ID 

St
or

y 
1 

W1 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(3/12) 

W2 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W3 - - 87 SPly (6/12) 150 SPly 
(3/12) 

W4 - - 84 SPly (4/12) 48 SPly 
(3/12) 

W5 - - 67 SPly (4/12) 67 SPly 
(3/12) 

W6 - - 87 SPly (6/12) 87 SPly 
(3/12) 

W7 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W8 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W9 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(3/12) 

W10 48 SPly (6/12) 76 SPly (6/12) 76 SPly 
(3/12) 

W11 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W12 48 SPly (6/12) 80 SPly (6/12) 60 SPly 
(3/12) 

W13 48 SPly (6/12) 144 SPly (6/12) 120 SPly 
(3/12) 

W14 48 SPly (6/12) 60 SPly (6/12) 60 SPly 
(3/12) 

St
or

y 
2 

W1 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W2 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(3/12) 

W3 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W4 48 SPly (6/12) 48 SPly (6/12) 80 SPly 
(3/12) 

W5 - - 48 SPly (6/12) 60 SPly 
(3/12) 

W6 - - 48 SPly (6/12) 48 SPly 
(3/12) 
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W7 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(3/12) 

W8 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W9 - - 48 SPly (6/12) 48 SPly 
(3/12) 

W10 48 SPly (6/12) 48 SPly (6/12) 76 SPly 
(3/12) 
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Table 4-13:  Floor Plan 3 - Multi-Story Shearwall Locations 

Design  ASCE7-05 SDDD-LS SDDD-IO 
Story 

Wall ID 
Retrofit 
Length 

(in) 

Sheathing 
Material 

Retrofit 
Length (in) Retrofit ID Retrofit 

Length (in) Retrofit ID 

St
or

y 
1 

W1 - - 48 SPly (6/12) 48 SPly (6/12) 
W2 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W3 - - 48 SPly (6/12) 48 SPly (6/12) 
W4 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W5 - - 48 SPly (6/12) 48 SPly (6/12) 
W6 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W7 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W8 - - 96 SPly (6/12) 96 SPly (6/12) 
W9 - - 48 SPly (6/12) 48 SPly (6/12) 
W10 48 SPly (6/12) 131 SPly (6/12) 131 SPly (6/12) 
W11 48 SPly (6/12) 230 SPly (6/12) 230 SPly (6/12) 
W12 48 SPly (6/12) 58 SPly (6/12) 58 SPly (6/12) 
W13 48 SPly (6/12) 58 SPly (6/12) 58 SPly (6/12) 
W14 48 SPly (6/12) 144 SPly (6/12) 66 SPly (6/12) 
W15 - - 140 SPly (6/12) 140 SPly (6/12) 
W16 48 SPly (6/12) 66 SPly (6/12) 66 SPly (6/12) 
W17 48 SPly (6/12) - - 290 SPly (6/12) 
W18 48 SPly (6/12) - - 290 SPly (6/12) 
W19 - - - - 100 SPly (6/12) 
W20 48 SPly (6/12) - - 230 SPly (6/12) 
W21 48 SPly (6/12) 131 SPly (6/12) 131 SPly (6/12) 
W22 48 SPly (6/12) - - 230 SPly (6/12) 
W23 48 SPly (6/12) 131 SPly (6/12) 131 SPly (6/12) 
W24 - - - - 100 SPly (6/12) 

St
or

y 
2 

W1 - - 48 SPly (6/12) 48 SPly (6/12) 
W2 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W3 - - 48 SPly (6/12) 48 SPly (6/12) 
W4 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W5 - - 48 SPly (6/12) 48 SPly (6/12) 
W6 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W7 48 SPly (6/12) 48 SPly (6/12) 48 SPly (6/12) 
W8 - - 83 SPly (6/12) 83 SPly (6/12) 
W9 - - 48 SPly (6/12) 48 SPly (6/12) 
W10 48 SPly (6/12) 124 SPly (6/12) 124 SPly (6/12) 
W11 - - 87 SPly (6/12) 87 SPly (6/12) 
W12 48 SPly (6/12) 95 SPly (6/12) 95 SPly (6/12) 
W13 58 SPly (6/12) 58 SPly (6/12) 58 SPly (6/12) 
W14 58 SPly (6/12) 58 SPly (6/12) 58 SPly (6/12) 
W15 48 SPly (6/12) 95 SPly (6/12) 66 SPly (6/12) 

99 
 



W16 - - - - - - 
W17 - - 119 SPly (6/12) 119 SPly (6/12) 
W18 - - 66 SPly (6/12) 66 SPly (6/12) 
W19 48 SPly (6/12) - - - - 
W20 48 SPly (6/12) - - 290 SPly (6/12) 
W21 48 SPly (6/12) - - 290 SPly (6/12) 
W22 48 SPly (6/12) - - - - 
W23 48 SPly (6/12) - - - - 
W24 48 SPly (6/12) - - 230 SPly (6/12) 
W25 48 SPly (6/12) 124 SPly (6/12) 124 SPly (6/12) 

 addition to the designs shown in the table, the 1978 NEHRP design required three SPly (6/12) 
on walls W3, W4, and W21, with lengths 48”, 48”, and 131”, respectively. 
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Table 4-14:  Floor Plan 4 - Multi-Story Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 
Story 

Wall ID 
Retrofit 
Length 

(in) 

Sheathing 
Material 

Retrofit 
Length (in) Retrofit ID Retrofit 

Length (in) Retrofit ID 

St
or

y 
1 

W1 288 SPly (6/12) 442 SPly (6/12) 442 SPly (2/12) 
W2 192 SPly (6/12) 329 SPly (6/12) 329 SPly (3/12) 
W3 - - - - 84 SPly (3/12) 
W4 - - - - 48 SPly (3/12) 
W5 - - - - 341 SPly (3/12) 
W6 - - - - 84 SPly (3/12) 
W7 192 SPly (6/12) 312 SPly (6/12) 312 SPly (3/12) 
W8 288 SPly (6/12) 442 SPly (6/12) 442 SPly (2/12) 
W9 96 SPly (6/12) 186 SPly (6/12) 186 SPly (4/12) 
W10 - - - - 257 SPly (4/12) 
W11 - - - - 177 SPly (4/12) 
W12 - - 177 SPly (6/12) 177 SPly (2/12) 
W13 - - - - 223 SPly (4/12) 
W14 - - - - 306 SPly (4/12) 
W15 96 SPly (6/12) 222 SPly (6/12) 222 SPly (4/12) 
W16 72 SPly (6/12) 229 SPly (6/12) 229 SPly (2/12) 
W17 96 SPly (6/12) 106 SPly (2/12) 106 SPly (2/12) 
W18 72 SPly (6/12) - - 229 SPly (4/12) 

St
or

y 
2 

W1 96 SPly (6/12) 197 SPly (6/12) 197 SPly (2/12) 
W2 96 SPly (6/12) 197 SPly (6/12) 197 SPly (2/12) 
W3 96 SPly (6/12) 127 SPly (6/12) 127 SPly (2/12) 
W4 - - 122 SPly (6/12) 122 SPly (2/12) 
W5 - - 122 SPly (6/12) 122 SPly (2/12) 
W6 - - - - 122 SPly (2/12) 
W7 96 SPly (6/12) 148 SPly (6/12) 148 SPly (2/12) 
W8 96 SPly (6/12) 197 SPly (6/12) 197 SPly (2/12) 
W9 96 SPly (6/12) 197 SPly (6/12) 197 SPly (2/12) 
W10 96 SPly (6/12) 104 SPly (6/12) 104 SPly (2/12) 
W11 - - -  95 SPly (2/12) 
W12 - - 104 SPly (6/12) 104 SPly (2/12) 
W13 - - - - 58 SPly (2/12) 
W14 - - 104 SPly (6/12) 104 SPly (2/12) 
W15 - -   442 SPly (6/12) 
W16 - - - - 442 SPly (3/12) 
W17 - - 104 SPly (6/12) 104 SPly (2/12) 
W18 96 SPly (6/12) 104 SPly (6/12) 104 SPly (2/12) 

St
or

y 
3 

W1 60 SPly (6/12) 148 SPly (6/12) 197 SPly (3/12) 
W2 60 SPly (6/12) 148 SPly (6/12) 197 SPly (3/12) 
W3 60 SPly (6/12) 127 SPly (6/12) 127 SPly (3/12) 
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W4 - - - - 122 SPly (3/12) 
W5 - - - - 122 SPly (3/12) 
W6 - - - - - - 
W7 60 SPly (6/12) 148 SPly (6/12) 148 SPly (3/12) 
W8 60 SPly (6/12) 148 SPly (6/12) 197 SPly (3/12) 
W9 60 SPly (6/12) 148 SPly (6/12) 197 SPly (3/12) 
W10 60 SPly (6/12) 104 SPly (6/12) 104 SPly (3/12) 
W11 - - - - - - 
W12 - - - - 104 SPly (3/12) 
W13 - - - - - - 
W14 - - 104 SPly (6/12) 104 SPly (3/12) 
W15 - -   442 SPly (6/12) 
W16 - - - - - - 
W17 - - - - 104 SPly (3/12) 
W18 60 SPly (6/12) 104 SPly (6/12) 104 SPly (3/12) 

 
Table 4-15:  Floor Plan 4 - Soft-Story-Only Shearwall Locations 

Design Code 1959 Blue Book  1978 NEHRP FEMA P-807 

Wall ID Retrofit 
Length (in) 

Shearwall 
ID 

Retrofit 
Length (in) 

Shearwall 
ID 

Retrofit 
Length (in) Retrofit ID 

W1 442 SPly (6/12) 442 SPly (6/12) - - 
W2 - - - - - - 
W3 - - - - - - 
W4 - - - - - - 
W5 - - - - - - 
W6 - - - - - - 
W7 - - - - - - 
W8 442 SPly (6/12) 442 SPly (6/12) 264 SPly (4/12) 
W9 186 SPly (6/12) 186 SPly (6/12) - - 
W10 - - - - 257 SPly (2/12) 
W11 - - - - - - 
W12 - - - - - - 
W13 - - - - 223 SPly (2/12) 
W14 - - - - - - 
W15 222 SPly (6/12) 222 SPly (6/12) - - 
W16 - - - - 229 SPly (4/12) 

W17 106 SPly (3/12) 106 SPly (3/12) 107 DPly 
(2/12) 

W18 - - - - 229 DPly 
(2/12) 
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Table 4-16:  Floor Plan 5 - Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 

Wall ID Retrofit 
Length (in) Retrofit ID Retrofit 

Length (in) Retrofit ID Retrofit 
Length (in) Retrofit ID 

W1 48 SPly (6/12) 144 SPly (6/12) 144 SPly (6/12) 
W2 - - 126 SPly (6/12) 126 SPly (6/12) 
W3 - - 107 SPly (6/12) 107 SPly (6/12) 
W4 48 SPly (6/12) 79 SPly (6/12) 79 SPly (6/12) 
W5 - - 72 SPly (6/12) 72 SPly (6/12) 
W6 48 SPly (6/12) 155 SPly (6/12) 155 SPly (6/12) 
W7 - - 48 SPly (6/12) 48 SPly (6/12) 
W8 - - 48 SPly (6/12) 48 SPly (6/12) 
W9 - - 165 SPly (6/12) 165 SPly (6/12) 
W10 48 SPly (6/12) 67 SPly (6/12) 67 SPly (6/12) 
 
Table 4-17:  Floor Plan 6 - Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 
Story 

Wall ID 
Retrofit 
Length 

(in) 
Retrofit ID Retrofit 

Length (in) Retrofit ID Retrofit 
Length (in) 

Retrofit 
ID 

St
or

y 
1 

W1 48 SPly (6/12) 132 SPly (6/12) 188 SPly 
(6/12) 

W2 - - 48 SPly (6/12) 84 SPly 
(6/12) 

W3 - - 48 SPly (4/12) 155 SPly 
(6/12) 

W4 48 SPly (6/12) 48 SPly (4/12) 145 SPly 
(6/12) 

W5 - - 48 SPly (6/12) 93 SPly 
(6/12) 

W6 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(6/12) 

W7 - - - - - - 

W8 - - 48 SPly (4/12) 48 SPly 
(3/12) 

W9 48 SPly (6/12) 48 SPly (4/12) 60 SPly 
(3/12) 

W10 - - 84 SPly (6/12) 140 SPly 
(6/12) 

W11 - - 48 SPly (6/12) 48 SPly 
(6/12) 

W12 - - - - 48 SPly 
(4/12) 
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St
or

y 
2 

W1 48 SPly (6/12) 96 SPly (6/12) 132 SPly 
(4/12) 

W2 - - 48 SPly (6/12) 96 SPly 
(6/12) 

W3 48 SPly (6/12) 48 SPly (6/12) 96 SPly 
(6/12) 

W4 - - 48 SPly (6/12) 48 SPly 
(4/12) 

W5 48 SPly (6/12) 48 SPly (6/12) 48 SPly 
(4/12) 

W6 - - 48 SPly (6/12) 48 SPly 
(4/12) 

W7 48 SPly (6/12) 48 SPly (6/12) 60 SPly 
(4/12) 

W8 - - - - 48 SPly 
(6/12) 
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Table 4-18:  Floor Plan 7 – Multi-Story Shearwall Locations 

Design Code ASCE7-05 SDDD-LS SDDD-IO 
Story 

Wall ID 
Retrofit 
Length 

(in) 

Sheathing 
Material 

Retrofit 
Length (in) Retrofit ID Retrofit 

Length (in) Retrofit ID 

St
or

y 
1 

W1 288 SPly (4/12) 744 SPly (6/12) 744 DPly 
(4/12) 

W2 96 SPly (4/12) 305 SPly (6/12) 305 DPly 
(4/12) 

W3 96 SPly (3/12) - - 230 DPly 
(4/12) 

W4 96 SPly (4/12) 461 SPly (6/12) 461 DPly 
(4/12) 

W5 48 SPly (3/12) 53 SPly (3/12) 53 DPly 
(2/12) 

W6 - - 78 SPly (3/12) 78 DPly 
(2/12) 

W7 - - 78 SPly (3/12) 78 DPly 
(2/12) 

W8 48 SPly (3/12) 266 SPly (3/12) 266 DPly 
(2/12) 

W9 48 SPly (3/12) 60 SPly (3/12) 60 DPly 
(2/12) 

W10 - - 84 SPly (3/12) 84 DPly 
(2/12) 

W11 96 SPly (4/12) 120 SPly (3/12) 120 DPly 
(2/12) 

W12 96 SPly (4/12) 96 SPly (3/12) 96 DPly 
(2/12) 

W13 - - 72 SPly (3/12) 72 DPly 
(2/12) 

W14 48 SPly (3/12) 48 SPly (3/12) 48 DPly 
(2/12) 

W15 192 SPly (6/12) - - 744 SPly (3/12) 
W16 - - - - 461 SPly (6/12) 
W17 - - - - - - 

St
or

y 
2 

W1 288 SPly (6/12) 744 SPly (6/12) 744 SPly (2/12) 
W2 48 SPly (6/12) 305 SPly (6/12) 305 SPly (2/12) 
W3 96 SPly (6/12) - - - - 
W4 96 SPly (6/12) 461 SPly (6/12) 461 SPly (2/12) 

W5 48 SPly (3/12) 53 SPly (3/12) 53 DPly 
(2/12) 

W6 - - 78 SPly (3/12) 78 DPly 
(2/12) 
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W7 48 SPly (3/12) 78 SPly (3/12) 78 DPly 
(2/12) 

W8 - - 78 SPly (3/12) 78 DPly 
(2/12) 

W9 48 SPly (3/12) 78 SPly (3/12) 78 DPly 
(2/12) 

W10 60 SPly (6/12) 60 SPly (4/12) 60 DPly 
(2/12) 

W11 - - 84 SPly (4/12) 84 DPly 
(2/12) 

W12 72 SPly (4/12) 84 SPly (4/12) 84 DPly 
(2/12) 

W13 72 SPly (4/12) 84 SPly (4/12) 84 DPly 
(2/12) 

W14 - - 84 SPly (4/12) 84 DPly 
(2/12) 

W15 48 SPly (6/12) 59 SPly (4/12) 59 DPly 
(2/12) 

W16 - - - - 276 SPly (3/12) 
W17 - - - - 304 SPly (3/12) 
W18 - - - - 451 SPly (3/12) 

St
or

y 
3 

W1 196 SPly (6/12) 540 SPly (6/12) 744 SPly (2/12) 
W2 48 SPly (6/12) 240 SPly (6/12) 305 SPly (2/12) 
W3 - - - - - - 
W4 72 SPly (4/12) 240 SPly (6/12) 461 SPly (2/12) 

W5 48 SPly (4/12) 53 SPly (4/12) 53 DPly 
(2/12) 

W6 - - 78 SPly (4/12) 78 DPly 
(2/12) 

W7 48 SPly (4/12) 78 SPly (4/12) 78 DPly 
(2/12) 

W8 - - 78 SPly (4/12) 78 DPly 
(2/12) 

W9 48 SPly (4/12) 78 SPly (4/12) 78 DPly 
(2/12) 

W10 60 SPly (6/12) 60 SPly (4/12) 60 DPly 
(2/12) 

W11 - - 84 SPly (4/12) 84 DPly 
(2/12) 

W12 - - 84 SPly (4/12) 84 DPly 
(2/12) 

W13 - - 84 SPly (4/12) 84 DPly 
(2/12) 

W14 - - 84 SPly (4/12) 84 DPly 
(2/12) 
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W15 48 SPly (6/12) 59 SPly (4/12) 59 DPly 
(2/12) 

W16 - - - - - - 
W17 - - - - 304 SPly (6/12) 
W18 - - - - - - 

St
or

y 
4 

W1 120 SPly (6/12) 312 SPly (6/12) 744 SPly (4/12) 
W2 48 SPly (6/12) 144 SPly (6/12) 305 SPly (4/12) 
W3 - - - - - - 
W4 60 SPly (6/12) 144 SPly (6/12) 461 SPly (4/12) 
W5 48 SPly (6/12) - - 53 SPly (2/12) 
W6 - - 78 SPly (6/12) 78 SPly (2/12) 
W7 - - 78 SPly (6/12) 78 SPly (2/12) 
W8 - - 78 SPly (6/12) 78 SPly (2/12) 
W9 48 SPly (6/12) 78 SPly (6/12) 78 SPly (2/12) 
W10 60 SPly (6/12) 60 SPly (6/12) 60 SPly (2/12) 
W11 - - 84 SPly (6/12) 84 SPly (2/12) 
W12 - - - - 84 SPly (2/12) 
W13 - - - - 84 SPly (2/12) 
W14 - - 84 SPly (6/12) 84 SPly (2/12) 
W15 48 SPly (6/12) 59 SPly (6/12) 59 SPly (2/12) 
W16 - - - - - - 
W17 - - - - - - 
W18 - - - - - - 
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Table 4-19:  Floor Plan 7 - Soft-Story Only Shearwall Locations 

Design Code 1959 Blue Book  1978 NEHRP FEMA P-807 
Story 

Wall ID 
Retrofit 
Length 

(in) 

Shearwall 
ID 

Retrofit 
Length (in) 

Shearwall 
ID 

Retrofit 
Length (in) 

Retrofit 
ID 

St
or

y 
1 

W1 240 SPly (6/12) 240 SPly (6/12) 360 SPly 
(2/12) 

W2 - - - - - - 

W3 230 SPly (6/12) 230 SPly (6/12) 230 SPly 
(2/12) 

W4 - - - - 216 SPly 
(2/12) 

W5 53 SPly (3/12) 53 SPly (6/12) - - 
W6 - - 78 SPly (6/12) - - 
W7 - - 78 SPly (6/12) - - 

W8 266 SPly (6/12) 266 SPly (6/12) 228 SPly 
(2/12) 

W9 60 SPly (6/12) 60 SPly (6/12) - - 
W10 - - - - - - 

W11 120 SPly (6/12) 120 SPly (6/12) 48 SPly 
(2/12) 

W12 96 SPly (6/12) 96 SPly (6/12) 98 SPly 
(2/12) 

W13 - - - - 72 SPly 
(2/12) 

W14 48 SPly (6/12) 48 SPly (6/12) - - 
W15 - - - - - - 
W16 - - - - - - 
W17 - - - - - - 

 
4.5 Quantifying Archetype Performance 

All archetypes were modeled in SAPWood (Seismic Analysis Package for Woodframe 

Structures) [Pei and van de Lindt (2010)] using the 10 or 16 parameter hysteretic models 

provided above.  All structural and nonstructural walls were modeled.  To quantify the seismic 

performance of the 37 buildings presented in the previous section, nonlinear time history analysis 

(NLTHA) was conducted in SAPWood [Pei and van de Lindt (2010)].  The specific NLTHA 

method used was a multi-record incremental dynamic analysis (IDA) using the FEMA P695 

[FEMA (2009)] suite of 22 bi-axial ground motion records scaled to 40 spectral accelerations 
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totaling 1,760 NLTHA for each archetype.  The IDA results for the first story of each of the 37 

archetypes are provided in Appendix C.  These results were used to develop fragility curves 

conditioned on peak inter-story drift (ISD).  The peak inter-story drift fragility curves for each 

story of each of the archetypes are presented in Figure 4-10 through Figure 4-16 for a spectral 

acceleration equal to 1.5g (MCE seismic hazard for Los Angeles, California).  These fragility 

curves may be expressed as 

𝑃𝑃[𝑝𝑝𝑛𝑛𝑓𝑓𝑝𝑝 𝐼𝐼𝐷𝐷𝐷𝐷 ≤ 𝐼𝐼𝐷𝐷𝐷𝐷|𝐷𝐷𝑓𝑓 = 1.5𝑔𝑔]   Eq. 4 - 16 

 

 

Figure 4-8:  Floor Plan 1 - Peak Inter-Story Drift Probability of Non-Exceedance 
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(a) 

 
(b) 

Figure 4-9:  Floor Plan 2 - Peak Inter-Story Drift Probability of Non-Exceedance:  
(a) First Story; (b) Second Story 
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(a) 

(b) 
Figure 4-10:  Floor Plan 3 - Peak Inter-Story Drift Probability of Non-Exceedance: 

(a) First Story; (b) Second Story 
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(a) 

 
(b) 

 
(c) 

Figure 4-11:  Floor Plan 4 - Peak Inter-Story Drift Probability of Non-Exceedance:  
(a) First Story; (b) Second Story; (c) Third Story 
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Figure 4-12:  Floor Plan 5 - Peak Inter-Story Drift Probability of Non-Exceedance 
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(a) 

 
(b) 

Figure 4-13:  Floor Plan 6 - Peak Inter-Story Drift Probability of Non-Exceedance:  
(a) First Story; (b) Second Story 

  

114 
 



  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-14:  Floor Plan 7 - Peak Inter-Story Drift Probability of Non-Exceedance:  
(a) First Story; (b) Second Story; (c) Third Story; (d) Fourth Story 
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Referring to Figure 4-10 through Figure 4-12, and Figure 4-14 and Figure 4-15, it can be 

seen that the fragility curves line up, relative to each design, exactly as one might expect, i.e. that 

each newer design was an improvement upon the previous.  The 1959 Blue Book design is 

shown to be the worst performing design, followed by the 1978 NEHRP, the ASCE7-05, the 

SDDD-LS, and then with the SDDD-IO as the best performing design.    This trend was 

generally consistent, but with several overlapping fragility curves on the two one-story buildings 

(see Figure 4-10 and Figure 4-14).   

There was uncertainty associated with where the FEMA P-807 retrofit fragility curve 

would fall within the other designs due to the fact that is not necessarily code compliant.  

Looking at the fragility curves for the two-story floor plans in Figure 4-13 and Figure 4-16, the 

same general trend was seen with the SDDD-IO design as the best performing, followed by the 

SDDD-LS design, for all stories in both of the original soft-story buildings.    The 1959 Blue 

Book design was the worst performing for all three stories of the three-story building, and the 

worst performing design for the first story of the four-story building.  The 1959 Blue Book 

design and the FEMA P-807 retrofit design overlap and essentially provided the same fragility 

for the upper three stories of the four-story building, shown in Figure 4-16(b-d).  In both Figure 

4-13(a) and Figure 4-16(a), the FEMA P-807 retrofit design fragility curve fell approximately 

between the fragility curves for the 1959 Blue Book and 1978 NEHRP designs until 

approximately 35% PNE, then between the fragility curves of the 1978 NEHRP and ASCE7-05 

design from 50% PNE until approximately 70% PNE, and ended by overlapping the fragility 

curves of the ASCE7-05 and 1959 Blue Book designs.  In these two figures, at the first stories, 

the SDDD-IO design was significantly stronger than any other design.  At 50% PNE, the SDDD-

IO design showed a peak ISD value of approximately 1.2% for both buildings, the SDDD-LS 
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design showed a peak ISD value of approximately 3.7% for both buildings, and all other designs 

showed nearly or greater than 5% peak ISD for both buildings.  Similar trends were seen for the 

upper stories. 

The fragility curves presented in this section were incorporated into the decision 

framework presented herein, and became the basis of the damage states based on experimental 

studies, as discussed in Chapter 3.  The experimental studies and damage state definitions are 

provided in Chapter 5.  Community fragility curves were developed using the fragility curves 

presented in this section to provide decision makers with a graphical display of the community’s 

overall building performance.  The concept of community fragilities was first developed by Park 

et al. (2013).  The community fragility is the combination of each building’s fragility curve for 

every building in the community which may be expressed as a weighted summation of the single 

building fragilities.  The expression for the community fragility is  

𝐹𝐹𝑐𝑐 = ∑ 𝜆𝜆𝑖𝑖𝐴𝐴𝐹𝐹𝑖𝑖𝐴𝐴𝑛𝑛
𝑖𝑖=1      Eq. 4 - 

17 

where  is the community fragility,  is the fragility for the  building, n is the  total number of 

buildings in the community, and λ  is a weighting factor for the  building, which may be expressed 

as  

𝜆𝜆𝑖𝑖𝐴𝐴 = 𝐼𝐼𝑖𝑖
𝑏𝑏

∑ 𝐼𝐼𝑖𝑖
𝑏𝑏𝑛𝑛

𝑖𝑖=1
     Eq. 4 - 18 

where  is an importance parameter for the  building and can be used to account for the number 

of people living in the buildings, the overall area of the buildings, and the importance of the 

building in the community.  In this study,  was set equal to 1.0, such that each building was 

assigned equal importance.   
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Chapter 5: Experimental Testing and Damage State Development 
 
 
 

In this chapter, the damage states discussed in Chapter 3 are developed.  To do this, first 

several soft-story retrofit schemes were designed and modeled, to evaluate the retrofitted 

building’s performance through hybrid testing at full scale.  In order to provide enough variety in 

the design space of the algorithm, multiple design methodologies had to be identified.  The 

motivation behind the retrofit design and experimental testing presented in this chapter was to 

evaluate the efficacy of more modern and state-of-the-art retrofit design methodologies which do 

not currently have historical record of building performance.  The two retrofit procedures 

experimentally investigated were a performance-based seismic retrofit procedure and the FEMA 

P-7807 soft-story retrofit procedure.  The FEMA P-807 procedure needed to be experimentally 

tested due to the associated uncertainty considering that it is not necessarily code compliant, and 

since it has not been tested in an in-situ condition thus far and therefore real data was not 

available.  Similarly for the performance-based seismic retrofits, real-world data does not 

currently exist for such new methodologies and therefore needed to be investigated 

experimentally.   

A secondary motivation for the testing was the development of the damage state 

fragilities in an effort to fully utilize all of the data obtained from the testing.  Recall in Chapter 

3, the probability of a building being in each sequential damage states, ds, was expressed as 

𝑃𝑃[𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]

= �
1 − 𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]                                                               𝑑𝑑𝑑𝑑 = 1       
𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]  − 𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑 + 1|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]         2 ≤ 𝑑𝑑𝑑𝑑 ≤ 𝑛𝑛𝑑𝑑𝑑𝑑 − 1

𝑃𝑃[𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥]                                                                𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑
 

Eq. 5-38 
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where  = 5 in this study, and 

∑ 𝑃𝑃[𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑|𝐼𝐼𝐷𝐷𝐷𝐷 = 𝑥𝑥] = 1.0𝑛𝑛𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑=1    Eq. 5-39 

The inter-story drift, ISD, and conditional probability expressions used in Eq. 5-1 were obtained 

from the nonlinear time history analysis and resulting fragility curves presented in Chapter 4 for 

the 37 archetypes.  This chapter focuses on the development of the damage states which were 

based on correlating physical damage with inter-story drift measurements from the full-scale 

experimental testing at the University at Buffalo.  Those soft-story woodframe building tests 

were part of the NEES-Soft Project [van de Lindt et al. (2012)].  In this study, damage states are 

defined based on the non-structural and structural damage to woodframe structures, primarily 

walls.  Five damage states are utilized herein.  A description for each damage state was initially 

provided in Table 3-3, but is repeated in Table 5-1 for convenience.   

Table 5-20:  Damage State Descriptions 

Damage State Level Description 
1 No Damage Structure can be immediately occupied, no repairs required. 

2 Slight Structure can be immediately occupied, minor drywall repairs 
required. 

3 Moderate Shelter-in-place allowed, drywall replacement required. 
4 Severe Shelter-in-place prohibited, structural damage incurred. 
5 Collapse Structure is not safe for entry, must be reconstructed. 

 
Categorizing damage to woodframe buildings using engineering demand parameters (i.e. 

inter-story drift or peak floor acceleration) is a popular method.  In 2002, Filiatrault and Folz 

ported the Direct Displacement Design procedure to woodframe buildings; a displacement-based 

approach within performance-based seismic design rather than the traditional codified strength-

based design procedure.  The method, originally developed for concrete buildings [Priestly 

(1998)], was ported to woodframe following the 1994 Northridge earthquake where it was 

observed that excessive drifts caused cracking of interior and exterior wall finishes and 
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accelerations caused extensive damage to contents.  Continuing on the drift-damage path, in 

2005, van de Lindt articulated a damage-based seismic reliability concept by expressing damage 

as a linear combination of peak displacement and hysteretic energy dissipated by shearwalls 

within a structure during an earthquake.  The predictive capability of this model was investigated 

in van de Lindt and Gupta (2006) for several woodframe shearwalls with performance 

comparisons provided by experimental tests.  The model was used again in Park and van de 

Lindt (2009) for developing damage fragilities for a six-story light-frame wood building.     

These studies set the stage for drift correlation with damage to woodframe buildings, 

providing concepts used throughout this dissertation.  Prior to defining the inter-story drift ranges 

associated with each damage state used in this study, a brief introduction on the experimental 

testing is presented. 

5.1 Full-Scale Experimental Testing 

Hybrid testing is an emerging earthquake engineering experimental method which 

evaluates system-level response by testing only a portion of the system. To carry out the testing, 

a hybrid model was created consisting of two complementary parts: (1) an experimental 

substructure which is a physical test structure representing a portion of the full structure, and (2) 

a numerical substructure which is a numerical model representing the remainder of the full 

structure. The physical model provides force and/or displacement feedback to the numerical 

substructure model to yield global responses. The two substructures were fully coupled for 

system evaluation. The advantage of hybrid testing is that the portion of a structural system that 

is well-understood can be represented numerically, thus saving cost to the experiment, and 

allowing more testing on the less understood portion of the system.  In this study, the hysteretic 

behavior of the retrofits and their effects on the soft-story were reasonably known, thus the 

120 
 



  

retrofitted soft-story served as the numerical substructure.  The behavior of the un-retrofitted 

upper stories, and more specifically with the effect of the first story retrofit on their behavior, 

was less understood; hence the physical substructure consisted of the upper two stories which 

were constructed at full-scale in the laboratory.  Figure 5-1 presents a schematic showing the 

hybrid testing process employed here.  The hybrid test controller coordinated the two 

substructures by sending the displacement commands from the numerical substructure to the 

physical substructure (solid arrow) through the actuator controller and xPC target, and feeding 

the measured forces from the physical substructure back to the numerical substructure through 

the same path (dashed arrow) which would be used to update the full model for the next time 

step.  For more details on the hybrid testing algorithm and the numerical substructure model, the 

interested reader is referred to Shao et al. (2014) and Pang et al. (2012), respectively. 

 

Figure 5-1:  Hybrid Test Process 
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5.1.1 Test Building 

The un-retrofitted building was a three-story soft-story woodframe building (6.18 m x 

7.40 m plan dimension) modeled after typical 1920’s to 1940’s style construction to be 

representative of current structurally deficient soft-story woodframe buildings in Northern 

California.  The first story served as a parking garage with only two interior walls surrounding a 

stairwell, and the rest of the first story remained open for vehicle parking.  The two upper stories 

were identical in plan and consisted of single unit apartments.  The first story floor plan with 

dimensions is shown in Figure 5-2(a), and the dimensioned floor plan of the two upper stories is 

shown in Figure 5-2(b).  It is worth noting that these types of soft-story woodframe buildings are 

typically larger in plan, but building dimension limitations for this test program were constrained 

by the site of the NEES facility at the University at Buffalo. 

 

Figure 5-2:  Floor Plan of Un-retrofitted Test Building:   
(a) First Story; (b) Second and Third Stories 
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For the design of the physical substructure, typical construction for this era was 

reproduced to the extent possible based on several site visits to soft-story woodframe buildings in 

Northern California including two that were in the process of undergoing retrofit and renovation.  

The physical substructure consisted of the upper two stories of the building previously described, 

constructed at full-scale with finishing materials (Figure 5-2(b)).  The physical substructure was 

anchored to the strong floor through the second story sill plates which rested on top of a 

MC6×15.3 steel channel.  A 4×4 (88.9 mm × 88.9 mm) (3.5 in × 3.5 in) dimension lumber wood 

nailer provided the interface between the sill plates and steel channel.   Douglas Fir-Larch (DFL) 

dimension lumber was used for constructing the wall framing, the floor diaphragm, and the roof 

diaphragm.  Horizontal wood siding (HWS) made from 1x10 (19.0 mm × 235 mm) (0.75 in × 

9.25 in) DFL dimension lumber planks was used as the exterior sheathing, as seen in Figure 

5-3(a).  For fastening, two 8d common nails were hand-driven per board spaced vertically at 

each stud location at 406.4 mm (16 in) on center which formed a couple-moment when racking.  

One aspect that differed from the typical 1920’s to 1960’s construction was that gypsum 

wallboard (GWB) was used as the interior wall sheathing as opposed to stucco or plaster on 

wood lath due to project financial and repair time constraints.  Often soft-story woodframe 

buildings have been renovated with GWB as the interior sheathing, and the retrofits were 

designed based on GWB, thus no significant effect on test or project outcomes is envisioned as a 

result of this substitution.   
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(a) (b) 

Figure 5-3:  Physical Substructure:  (a) Exterior with Top Actuators Connected to roof 
Diaphragm; (b) Actuator Connection to Floor Joists 

 
Four actuators were attached to the floor joists of the third floor and roof diaphragms 

through a load transfer system, shown in Figure 5-3(b).  Two actuators with a stroke capacity of 

+/- 1.0 m (40 in) and +/- 13 degrees of rotational freedom in the horizontal direction were 

mounted at the third floor diaphragm and at the roof diaphragm.  Two actuators at each level 

allowed for control of both translation and in-plane rotation.  The two top actuators connected at 

the roof diaphragm can be seen in Figure 5-3(a), and the bottom two can be seen going through 

openings at the second (physical) level. 

5.1.2 Retrofit Designs 

Seven different retrofits were designed and tested on the three-story building.    Three 

retrofits were designed following the procedure provided in FEMA P-807 [FEMA (2012a)] using 

cross-laminated timber (CLT) rocking walls, steel cantilevered columns (CC), and viscous fluid 

dampers (VFD) as the retrofit elements.  A fourth retrofit was designed as an alternative using a 

woodframe distributed knee brace (DKB) as the retrofit elements.  These four retrofits were soft-

story-only retrofits and did not retrofit or otherwise alter the upper stories.  Two other retrofits 

were design using performance-based seismic design (PBSD) limit states which required upper 
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story retrofits.  The two PBSD retrofit elements were shape memory alloy (SMA) devices and 

steel moment frames (SMF).  Ordinary plywood-sheathed shearwalls with an anchor tiedown 

system for overturning restraint were used as the upper story retrofits.  A final retrofit using a 

soft-story-only layout of the SMA devices with the intention of over-strengthening the first-story 

forcing the seismic demand into the second story was tested during the final collapse test phase.   

The SMA PBSR and collapse test layouts were designed as part of this dissertation work and 

thus only the SMA PBSR will be presented here in detail.  The interested reader is referred to 

Jennings et al. (2014a) for more detail on the CLT and CC retrofits, Tian and Symans (2012) for 

more detail on the VFD retrofit, Gershfeld et al. (2014) for more detail on the DKB retrofit, 

Jennings et al. (2014b) for more detail on the SMA retrofit, and Jennings et al. (2014c) for more 

detail on the collapse tests. 

5.1.2.1 SMA PBSR Design for Building Performance 

 A seismic retrofit using a SMA-steel device in the scissor-jack brace [Jennings et al. 

(2014c)] was designed for a soft-story woodframe building using performance-based seismic 

design (PBSD) criteria to meet a superior building performance based on the needs of a potential 

building owner (or other stakeholder). To achieve the superior performance, the performance 

objectives for the seismic retrofit design considered two limit states:  immediate occupancy (IO) 

and life safety (LS).  The IO limit state was defined by 1.5% inter-story drift with a 50% 

probability of nonexceedance (PNE) of the design basis earthquake (DBE) for San Francisco, 

CA.  The LS limit state was defined by 2.5% inter-story drift with a 50% PNE of a maximum 

considered earthquake (MCE) for San Francisco, CA.    
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5.1.2.2 Procedure used in SMA PBSR Design 

 The retrofit design focused on eliminating the soft-story condition and eliminating the 

torsional response from the building while meeting the inter-story drift criteria set for both limit 

states.  The retrofit design was centered on maintaining all original functionality of the parking 

garage without compromising any of the building’s architectural features.  The Simplified Direct 

Displacement Design (DDD) procedure [Pang et al. (2010)] was followed to determine the 

additional capacity required for retrofitting the un-retrofitted building and fine-tuned using 

nonlinear time history analysis (NLTHA) in SAPWood.  The SMA-steel device was selected to 

provide the additional strength and stiffness required for removing the soft-story condition from 

the bottom story.  An appropriate number of SMA devices were selected based on the computed 

design story shear for the first story.  An attempt was made at only retrofitting the soft-story; 

however, reviewing the results from the multi-record NLTHA revealed the seismic demand had 

been shifted into the second story causing damage and indicated the need for upper story 

retrofits.  This is not surprising since the upper stories of these older buildings are typically 

structurally deficient like the soft-story, although not as deficient as the soft-story.  Ideally the 

upper story retrofits would perform adequately and be cost effective, but it would be necessary to 

minimize the interruption time for the building occupants.  Due to the available wall length on 

the upper stories and the less expensive material assembly and installation procedure associated 

with traditional shearwalls, plywood-sheathed wood shearwalls with an anchor tiedown system 

(ATS) for overturning restraint were selected as the upper story retrofits.  This approach of using 

the traditional shearwalls as the retrofit elements was not employed on the soft-story due to the 

lack of available wall length and the need to position retrofit elements to eliminate the 

eccentricity of the soft-story.  Of course, key was the objective of maintaining full functionality 
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of the parking garage.  Using the design story shears from the simplified DDD calculations on 

the upper stories, an appropriate number of shearwalls with corresponding nail patterns were 

selected.  The general step-by-step procedure used in the design process is presented in Figure 

5-4.  The detailed procedure for determining the location of the individual retrofits is more 

building-specific and will be discussed later. 
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Figure 5-4:  SMA Soft-Story Seismic Retrofit Design Procedure 
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5.1.2.3 Layout of Retrofit Elements in Building 

Four SMA-steel devices in scissor-jack braces were numerically placed on the first story 

of the three-story building.  Figure 5-5 provides a schematic of a bi-axial pair of scissor jack 

braces with a close-up on the SMA-steel device.  Braces were placed in sets of two, oriented at 

90° from each other in an ‘X’ like position at 45° and 135° from the principle building axes so 

that each device responded to motion in both directions.  The retrofit layout on all three stories is 

provided in Figure 5-6.  The braces in such a retrofit would not be incorporated into the walls, 

but set out from the wall with a 0.44  (4.7 sq. ft) footprint to be enclosed by partition walls with a 

service door for maintenance.  The footprint of the retrofit element did not block any parking or 

decrease any of the functionality of the parking garage, as indicated in Figure 5-6(a).  The 

scissor-jack braces were connected to the above floor system by a welded steel plate on top of 

the brace.  Thin steel plates were welded perpendicular to the top plate and bolted onto the floor 

joists ensuring the load transfers through the floor diaphragm.  The same type of connection was 

used at the base of the brace to transfer load into the foundation, connecting to the floor joists 

below the scissor-jack braces (see Figure 5-5).   
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Figure 5-5:  Bi-axial Pair of Scissor Jack Braces with SMA-Steel Device 
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Figure 5-6:  SMA-Retrofitted Test Building Floor Plan with Centers:  
(a) First Story; (b) Second Story; (c) Third Story 

 
The placement of the braces was determined using a weighted average of the stiffness of 

each existing wall, its center coordinates, and the additional stiffness from the four devices, back 

calculating for the best locations.  Due to the constraints imposed by maintaining the complete 

functionality of the parking garage, the potential device locations were limited and a small 

eccentricity remained in both principle building directions.  The layout of the devices on the first 

story with three ‘centers-of-interest’ labeled is provided in Figure 5-6(a).  In Figure 5-6, the 

circle marker represents the approximate center of mass, the triangle marker represents the center 

of rigidity of the un-retrofitted story, and the square marker was placed at the center of rigidity of 

the retrofitted story.  Prior to retrofitting, the resultant eccentricity existing between the 

approximate center of mass and center of rigidity equaled 2.4 m on the first story.  Following the 

seismic retrofit, the center of rigidity of the first story was relocated to very near the approximate 

center of mass with a resultant eccentricity of 0.3 m. 

131 
 



The upper story retrofit components were modeled by the same 10-parameter hysteretic 

model with the more common wood shearwall shape (e.g., see van de Lindt (2004)).  In total, ten 

walls with 12.7 mm (½ in) thick plywood sheathing fastened with 10d common nails were 

modeled in the upper stories.  Six shearwalls were required for meeting the design story shear on 

the second story with 50.8 mm (2 in) perimeter nail spacing, and four shearwalls were required 

on the third story with 152.4 mm (6 in) perimeter nail spacing.  All shearwalls were modeled 

with 304.8 mm (12 in) field nailing. The method used for placement of the shearwalls followed 

the same logic as was used on the first story.  A weighted average of the stiffness from the 

shearwalls and the existing walls was used with a desire to keep the shearwalls on the building 

perimeter, although this was not entirely possible. The layouts of the shearwalls for the second 

and third story retrofits were provided in Figure 5-6(b) and (c) where the shearwalls were shown 

by the bold lines and labeled SW #1 – 6.  Following the design of the seismic retrofit, the 

decrease in calculated eccentricity was not as profound for the upper stories as the first story due 

to their symmetry.  Table 5-2 lists the coordinate locations of all three centers for each story with 

the coordinate axis set at the bottom left corner of each floor plan.   

Table 5-21:  Coordinate Location of Building Centers 

Center 
Approximate Center of 

Mass 
Un-retrofitted Rigid 

Center Retrofitted Rigid Center 

x y x y x y 
Story 1 3.09 m 3.71 m 3.86 m 6.01 m 2.82 m 3.71 m 
Story 2 3.09 m 3.71 m 3.59 m 3.96 m 3.25 m 3.94 m 
Story 3 3.09 m 3.71 m 3.59 m 3.96 m 3.54 m 3.65 m 

 
5.1.2.4 Numerical Validation using Nonlinear Time History Analysis 

Multi-record NLTHA was conducted in SAPWood on the three-story building using the 

FEMA P695 [FEMA (2009)] suite of 22 far-field bi-axial earthquake ground motions.  Two 

analyses were conducted, each at different seismic intensities, i.e. the earthquake records scaled 
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to the DBE and MCE for San Francisco, California.  The results from the NLTHA were rank 

ordered creating a PNE of the selected damage measure, i.e. maximum inter-story drift, shown in 

Figure 5-7 for each story.  Vertical lines were plotted at the design limit states.  As can be seen 

from Figure 5-7, at 50% PNE, the design meets both limit states for all three stories. 

 

Figure 5-7:  Inter-Story Drift Probability of Non-Exceedance Curve for Retrofitted SAPWood 
Model:  (a) Third Story; (b) Second Story; (c) First Story 
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5.1.3 Hybrid Testing, Results and Discussion 

During the fall of 2013, slow pseudo-dynamic hybrid testing was carried out at the NEES 

facility at the University at Buffalo on the retrofitted three-story soft-story woodframe building 

described earlier. Testing was conducted slowly at full-scale. Table 5-3 summarizes the testing 

program including the earthquake ground motion with component, seismic hazard level, scaled 

peak ground acceleration (PGA), and the peak inter-story drift (ISD) response with the story it 

occurred in. 

Table 5-22:  Description of Hybrid Tests 

Retrofit Test 
No. 

Ground Motion 
with Component Seismic Hazard Level Scaled 

PGA (g) 

Peak ISD 
Response 
(Story) 

Cross-
Laminated 

Timber 
Rocking 
Walls  
(CLT) 

CLT01 Loma Prieta @ 
Capitola – 2 Low Percentile SRE 0.199 2.28% () 

CLT02 Loma Prieta @ 
Capitola - 2 Low Percentile DBE 0.453 1.60% () 

CLT03 Loma Prieta @ 
Gilroy - 1 High Percentile DBE 0.645 1.51% () 

CLT04 Loma Prieta @ 
Capitola - 2 Low Percentile MCE 0.680 2.62% () 

Cantilevered 
Column (CC) 

CC02 San Fernando @ 
LA – 2 High Percentile DBE 0.474 1.72% () 

CC03 Cape Mendocino 
@ Rio – 2 Low Percentile MCE 0.893 3.10% () 

CC04 Loma Prieta @ 
Gilroy - 1 High Percentile MCE 0.976 2.29% () 

Distributed 
Knee Brace 

(DKB) 

DKB01 Loma Prieta@ 
Gilroy – 2 Low Percentile DBE 0.427 1.30% () 

DKB02 Loma Prieta@ 
Gilroy – 1 High Percentile DBE 0.645 3.00% () 

DKB03 Loma Prieta@ 
Gilroy - 2 Low Percentile MCE 0.645 4.10% () 

Fluid 
Viscous 
Damper 
(FVD) 

FVD01 Loma Prieta@ 
Gilroy – 2 Low Percentile DBE 0.427 1.6% () 

FVD02 Loma Prieta@ 
Gilroy – 1 High Percentile DBE 0.645 1.0% () 

FVD03 Loma Prieta@ 
Gilroy – 2 Low Percentile MCE 0.645 3.8% () 
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FVD04 Loma Prieta@ 
Gilroy - 1 High Percentile MCE 0.976 N/A 

Shape 
Memory 

Alloy 
Devices 

SMA01 Loma Prieta @ 
Gilroy – 2 Low Percentile MCE 0.645 1.4% () 

SMA02 San Fernando @ 
LA – 2 High Percentile MCE 0.687 1.9% () 

SMA03 Loma Prieta @ 
Gilroy – 1 High Percentile MCE 0.976 2.2% () 

SMA04 Loma Prieta @ 
Gilroy – 1 Low Percentile DBE 0.623 1.7% () 

SMA05 Loma Prieta @ 
Gilroy - 2 High Percentile DBE 0.427 1.7% () 

Steel Moment 
Frame 
(SMF) 

SMF01 Sinusoidal Load PGA=0.25*g 0.250 3.60% () 
SMF02 Sinusoidal Load PGA=0.50*g 0.500 5.37% () 
SMF03 Sinusoidal Load PGA=0.50*g 0.500 6.11% () 
SMF04 Sinusoidal Load PGA=0.25*g 0.250 3.32% () 

Collapse 
(COL) 

COL01 Loma Prieta @ 
Capitola – 2 MCE 0.680 - 

COL02 Loma Prieta @ 
Capitola – 2 MCE 0.680 3.13% () 

COL03 Loma Prieta @ 
Capitola – 2 2.5*DBE 1.13 9.84% () 

COL04 Loma Prieta @ 
Capitola – 2 3*DBE 1.36 10.8% () 

COL05 San Fernando @ 
LA - 2 2.5*DBE 1.19 11.4% () 

 
5.1.3.1 FEMA P-807 Retrofit Results and Discussion 

The test program results presented herein sought to validate the FEMA P-807 soft-story 

retrofit procedure such that it could be used as an option in the decision-making framework.  The 

validation was articulated by meeting the design, namely two inter-story drift limits:  (1) a 4% 

inter-story drift limit identified as the on-set of collapse in FEMA P807 for the predetermined 

seismic intensity and DBE, and (2) a 7% inter-story drift limit for MCE intensity, the latter of 

which is believed to be closer to when collapse actually begins to occurs.  In all cases, the 

retrofitted soft-story woodframe building performed well meeting the 4% drift limit set in FEMA 

P-807 at an even higher intensity than designed (  = 1.14g).  The test results demonstrated the 

effectiveness of the soft-story-only retrofit in strengthening the soft-story while not transferring 
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enough force into the upper stories as to exceed the drift limit or on-set collapse, and in 

eliminating torsional response.  Overall the results indicated that the FEMA P-807 procedure 

results in building performance as was intended during the development of the guideline 

document and is a viable retrofit option for the decision-making framework presented in this 

dissertation. 

5.1.3.2 Performance-Based Seismic Retrofit Results and Discussion 

Similarly, the experimental testing conducted on the PBSR sought to include it in the 

decision-making framework as the highest level of design.  The results validated that the 

performance-based seismic retrofit would provide superior performance.  Detailed, but limited, 

results are presented on the SMA-steel device seismic retrofit.  The SMA-steel device seismic 

retrofit was based on the drift criteria discussed above, and only the detailed results to the higher 

intensity MCE hybrid tests are presented for brevity, since they governed the design.  The first 

test, SMA01, was conducted using the Loma Prieta ground motion, recorded at Gilroy, and 

scaled to MCE intensity for San Francisco, CA; the ISD time history for all three stories is 

provided in Figure 5-8.  Minimal ISD was seen in the first story where the SMA-steel devices 

were modeled. The most significant drift occurred in the second story with the peak ISD 

reaching 1.4%, meeting the Life Safety limit state set at 2.5%.  The third story follows a similar 

trend to the second story, but with only about half the ISD amplitude.  Figure 5-9 provides the 

ISD time history for SMA02.  Similar to the SMA01, the ground motion was scaled to MCE 

intensity, minimal ISD was seen on the first story, and the most significant ISD occurred on the 

second story with the peak ISD reaching 1.9%, still within the Life Safety limit state.  The ISD 

time history for SMA03 is provided in Figure 5-10.  This test, compared to the previous two 

hybrid tests, produced the largest ISD response from the building on all three stories.  This was 
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expected due to the accumulated damage from the previous tests.  The peak ISD occurred on the 

second story reaching 2.2%, just less than the Life Safety limit state.   

 

Figure 5-8:  Inter-story Drift Time History for SMA01:  
(a) Third Story; (b) Second Story; (c) First Story 
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Figure 5-9:  Inter-story Drift Time History for SMA02:  
(a) Third Story; (b) Second Story; (c) First Story 
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Figure 5-10: Inter-story Drift Time History for SMA03:  
(a) Third Story; (b) Second Story; (c) First Story 
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Prior to implementation into practice, the device should be optimized to use a shorter SMA wire 

length to provide for more options in providing shear capacity so that a linear distribution of the 

seismic demand per story for all building stories may be possible.  Furthermore, if the soft-story 

building being retrofitted has longer external wall segments, the scissor-jack brace configuration 

should be elongated to improve the magnification factor.  The work presented here showed that 

the bi-axial scissor-jack brace pair is a new promising configuration that may be able to host any 

type of damper and should be further explored experimentally.    

5.1.3.3 Collapse Test Results and Discussion 

The collapse tests aimed to develop fragilities conditioned on the collapse limit of 

woodframe buildings.  There was uncertainty in using traditional collapse limits for structurally 

deficient woodframe buildings constructed with archaic building materials.  To investigate the 

collapse limit for a structurally deficient woodframe building constructed with archaic building 

materials, the numerical model of the bottom soft-story was over-strengthened such that the 

seismic demand would be shifted into the un-retrofitted structurally-deficient upper stories.  

Following five high intensity real-time open-loop hybrid tests, collapse of the second story was 

identified following a very intense earthquake.  The Loma Prieta – Capitola record, a MCE level 

test (COL02) did not result in collapse at the second story.   It was shown that when 250% of the 

design basis earthquake was applied, which is equivalent to 167% of the MCE for Loma Prieta – 

Capitola, the structure immediately collapsed at the second story.  Thus, it can be concluded that 

for this record a second story collapse due to over-strengthening of the first story would likely 

occur at approximately 125% to 150% MCE for this earthquake record.  It was also of interest to 

identify drift limits where the various damage states occurred and what mechanisms caused the 

onset of each damage state.  Softening of the upper two stories was observed throughout the 
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collapse test program.  COL04 softened the upper two stories such that it was deemed collapsed.  

The mechanisms indicating the collapsed state were the 6.7% residual drift and multiple nail 

push-outs which resulted in a dramatic increase in the fundamental period.  The seismic demand 

shifted into the upper stories at the low seismic intensity level of COL02.  The collapse capacity 

of the archaic and un-retrofitted upper two stories may be quantified at approximately a 20 kN 

lateral strength capacity and 8% lateral drift capacity.  Structural damage was observed following 

test COL03 which was the first test to collapse the second story.   

5.1.3.4 System Identification and Damage Inspections 

Prior to each hybrid test, a system identification (system ID) test was conducted on the 

physical substructure to identify building properties, specifically the stiffness matrix of the 

physical substructure and its fundamental period.  The displacement protocol used in the System 

ID test is provided in Figure 5-10.  The first actuator moved forward to 2.54 mm (0.1 in), then 

backward through zero, continuing to -2.54 mm (-0.1 in), and then back to zero, while the other 

three actuators were held to zero displacement.  This was repeated for each of the four actuators 

and followed by the top two actuators moving together, the bottom two actuators moving 

together, and then all four actuators moving together.  The identified properties served three 

purposes:  (1) used in the preliminary numerical analysis to estimate the structural response and 

check for numerical instabilities prior to hybrid testing; (2) in conjunction with a visual 

inspection of the building to determine whether the damage caused by previous tests was too 

severe to continue; and (3) as the physical substructure properties in the initial integration step of 

the hybrid simulation.  The system ID tests helped determine the physical damage by comparing 

the stiffness matrix and period for the first three modes.  Figure 5-12 provides the physical 

substructure stiffness matrix comparison for all tests conducted as part of the NEES-
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Soft@Buffalo testing program.  Referring to the top left plot in Figure 5-12, a steady drop in 

stiffness is seen as tests progress, where rises in the curve were typically due to repairs.  Figure 

5-13 provides the physical substructure period comparison for the first three modes for all tests 

conducted as part of the NEES-Soft Project at the University at Buffalo.  Here again, drops in the 

fundamental period imply softening of the structure, and most rises were due to repairs.  

Comparing the change in stiffness, change in period and visual damage observations provided an 

effective method for quantifying damage to the physical substructure. 

 

Figure 5-11:  System ID Displacement Protocol 
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Figure 5-12:  Stiffness Comparison 
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Figure 5-13:  Period Comparison for First Three Modes 
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the panels detached.  Although not evident in the photographs, panel crushing was observed in 

Figure 5-14(c) – (f) at the bottom corners, along with multiple drywall screw push-outs. 

  
(a) (b) 

 

 
(c) (d) 
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(e) (f) 
Figure 5-14:  Photos Chronicling Damage Observed to South Wall in Stairwell:   

(a) SMA01; (b) SMA02; (c) SMA03; (d) COL02; (e) COL03; (f) COL05 
 

5.2 Correlating Damage with Inter-story Drift 

Figure 5-15 provides an image taken following experimental test CLT01 where the 

damage would be categorized as damage state 2.  The peak inter-story drift of this wall was 

measured as 1.64%.  In the photo one can see cracking along the panel edges, with minor 

spalling and tape separation in the adjoining wall corner.  There is no crushing, cracking, or 

separation of the panels evident, nor drywall screw pull-outs, and therefore immediate occupancy 

would be safely allowed.  However, the home owner or resident would want these minor repairs 

conducted. 
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Figure 5-15:  Damage State 2 Example 

Figure 5-16 provides a photo taken following CLT04.  The wall instrumentation 

measured a peak inter-story drift of 2.57%.  From the photo one can see cracking along the panel 

edges, spalling and tape separation along the adjoining wall corners, and large shear cracks 

extending off of the window corners through the panels.  This damage would be categorized as 

damage state 3, and would require replacement of at least four drywall panels on this wall.  With 

no drywall screw push-outs and no panel separation evident, and with this being one of the more 

severely damage walls in the building, shelter-in place would be permitted to the residents 

following an initial safety check.    
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Figure 5-16:  Damage State 3 Example 

Structural damage was identified only during the collapse test phase, and following 

COL03 where the peak inter-story drift 9.8% and a 1.9% residual drift was observed.  Figure 

5-17 provides a photo taken following COL03.  The panel separation shown in Figure 5-17 

would be representative of damage state 4, while the residual drift in the wall framing is 

representative of damage state 5.  In this case, extensive drywall replacement would be required, 

minor structural damage would have occurred, and the building occupants would be required to 

shelter-out-of place until repairs were complete.  Figure 5-18 provides two photos taken 

following COL05.  Figure 5-18(a) shows an approximately 2 in. separation between the second 

story ceiling and third story floor diaphragm.  Figure 5-18(b) provides an image of the building 

exterior with a 7.0% residual inter-story drift.  The damage shown in Figure 5-18 would be 

categorized as damage state 5.  This building would not be safe for entry, would be red-tagged, 

and would likely require demolition.  For safety during the experimental tests, a crane was 
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positioned directly over the physical substructure and a slackened strap positioned through the 

actuator openings on the roof.  The strap, along with the actuators, ensured the building would 

not physically fall over risking injury and damage to equipment.  If these two restraints were not 

provided, the building would have physically collapsed.   

 

Figure 5-17:  Damage State 4 and Damage State 5 Example 
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(a) (b) 
Figure 5-18:  Damage State 5 Example: (a) Separation between Upper Stories;  

(b) 7.0% Residual Drift on Physical Substructure 
 

Based on these damage inspections, the inter-story drift ranges identified to correspond to 

each damage state are provided in Table 5-4, where the upper bound limit for damage state 5 is 

shown as 14.0% for practical purposes.  This limit was imposed on the nonlinear time history 
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analysis data to overcome numerical anomalies. It is assumed that a woodframe building would 

be overcome by the gravity load if reaching 14.0% inter-story drift.  There were not enough 

measurements from the experimental tests to clearly define damage state 4.  The ranges in Table 

5-4 for damage state 4 were based on a combination of damage observations from the 

experimental testing and researcher opinion.  The values shown in Table 5-4 were used in the 

lognormal distribution model for developing the sequential damage state expressions in Eq. 5-1 

and in Chapter 3.   

Table 5-23:  Damage State Inter-story Drift Ranges 

Damage State Inter-story Drift Range (%) 
Lower Bound Upper Bound Mean 

1 0.00 0.52 0.26 
2 0.14 4.00 1.2 
3 1.00 4.50 2.75 
4 3.50 9.00 5.50 
5 7.00 14.0 9.00 
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Chapter 6: Modeling of Socioeconomic Variables 
 
 
 
   This chapter focuses on quantifying the effect of socioeconomic variables on social 

vulnerability and recovery time.  Complexities include high variability associated with the 

socioeconomics of different places, social vulnerability of different places, and the different 

hazards associated with those places.  Socioeconomics and social vulnerability are dynamic 

measures constantly evolving and changing.  Currently, social vulnerability is not well 

understood and neither is its dynamic nature.  What is understood is that the change in social 

vulnerability differs for different communities.  When grouping the current understanding and 

data availability with the randomness of earthquake occurrence and earthquake intensity, it 

becomes increasingly complex to quantify a community’s social vulnerability at any point in 

time.  There is enough information to statically model a generalized quantification of social 

vulnerability for a selected community using their socio-demographic data for scenario 

earthquakes.  This chapter presents the methodology used in this dissertation for such 

quantification. 

Five socioeconomic variables were incorporated into this study to help quantify three 

morbidity rates: the rate of injury, the rate of fatality, and the rate of post-traumatic stress 

disorder (PTSD) diagnoses.  The five variables are:  age, ethnicity/race, family structure, gender, 

and socioeconomic status.  The age and density of the built environment together were modeled 

as a sixth variable used in quantifying the three morbidity rates.  This variable was not 

considered a socioeconomic variable; however it was modeled identically to the socioeconomic 

variables, and therefore is discussed conjunctively in this chapter.  Not all six variables were 

used to quantify all three morbidity rates.  Table 6-1 provides which variables were included in 
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modeling each of the three morbidity rates.  These variables were selected due to their highly 

demonstrated influence on the morbidity rates and their availability in the literature.  A similar, 

but more inclusive table (Table 3-1) was presented in Chapter 3.     

Table 6-24:  Variables Considered in Morbidity Rates 

Morbidity Rate 
Variable 

Age Built 
Environment Ethnicity Family 

Structure Gender Socioeconomic 
Status 

Injury Rate × ×   × × 
Fatality Rate × ×   × × 
PTSD Diagnosis 
Rate × × × × × × 

 
6.1 Literature Review/Meta-Data Analysis 

An extensive meta-data analysis was conducted prior to quantifying the six variables 

listed in Table 6-1.  The data collection process was essentially a case study of case studies, or an 

empirical evaluation of the empirical literature.  Many references were used in the conceptual 

development of the socioeconomic variables, however only 33 references were used in the 

analytical modeling of the socioeconomic variables.  Table 6-2 summarizes the list of references 

that were used to quantify the six variables, providing which morbidity rate(s) and which 

variable(s) were gained from each study, the reported PTSD prevalence rate, if applicable, along 

with a brief description on the method of data collection, which earthquake the study followed, 

and the geographic scale in which data was gathered.  The meta-data analysis was only 

conducted on studies which looked at populations affected by earthquakes, and not any other 

kind of disaster.  References covering marginalized populations caused by other disasters are 

referenced in other places throughout this work.  The references which make up Table 6-2 are 

population studies conducted by sociologists, anthropologists, psychologists, psychiatrists, or 

other medical doctors after earthquakes.  The purpose of these studies is to survey the exposed 
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population and identify the marginalized population so that recovery efforts are efficient and to 

further our understanding of earthquake disasters on people and how the impact changes with 

demographic factors.  There were 16 earthquake events covered in the meta-data analysis which 

are listed in Table 6-3.  These earthquakes began with an earthquake occurring in 1993 in India, 

and concluded with the 2011 Tohoku, Japan earthquake.  There is a large variation in earthquake 

magnitude (and intensity presumably) and location.  These earthquakes were selected due to the 

availability of data provided in the literature on the affected population.  PTSD prevalence rates 

ranged from 2.5% to 60% among the sample populations.  The large range was expected due to 

the wide variety in sample size, PTSD diagnostic tool, post-event measurement time, severity of 

the event, and the socioeconomic variability associated with the marginalized populations.  

Major conclusions from this analysis regarding the variables’ relationship to the morbidity rates 

are provided in the following subsections, headed by each variable.   
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Table 6-25:  Summary of Meta-Data Analysis References 

Earthqua
ke 

Morbidit
y Rate 

Variable
s gained 

from 
study 

Description of data 
collection method 

Geographic 
scale 

PTSD 
Prevalen

ce 
Source 

1993 
India PTSD Age, 

Gender 

Semi-structured 
interview using 

questions based on 
DSM-III- criteria 
conducted 1 mo. 

post event 

Three villages:  
Mangrul, 

Nandurga, and 
Hasalgan 

23% 
Sharan 
et al. 

(1996) 

1994 
Northridg

e 
PTSD Gender 

Interview questions 
based on Diagnostic 

Interview 
Schedule/Disaster 

Supplement 32 
weeks post event. 

City blocks with 
the greatest 

concentration of 
property damage, 

most of which 
were in the 

Northridge area. 

13% 

McMil
len et 

al. 
(2000) 

1994 
Northridg

e 
PTSD 

Age, 
Ethnicit

y, 
Gender, 

SES 

Computer-assisted 
telephone survey 

using Civilian 
Mississippi Scale 

conducted 8-12 mo. 
post event. 

Los Angeles 
County and 

Ventura County 

Not 
Provide

d 

Siegel 
(2000) 

1994 
Northridg

e 

Injury, 
Fatality 

Age, 
Ethnicit

y, 
Gender 

Records from 78 
hospitals within two 

weeks post event. 

Los Angeles 
County NA 

Peek-
Asa et 

al. 
(1998) 

1994 
Northridg

e 

Injury, 
Fatality 

Age, 
Ethnicit

y, 
Gender 

Records from 4 
hospitals within 
three weeks post 

event. 

Los Angeles 
County NA 

Mahue
-

Giangr
eco et 

al. 
(2001) 

1994 
Northridg

e 

Injury, 
Fatality Gender 

Computer-assisted 
telephone survey 

conducted 6-24 mo. 
post event 

Los Angeles 
County NA 

Shoaf 
et al. 

(1998) 

1995 
Hanshin-
Awaji, 
Japan 

Injury, 
Fatality 

Age, 
Gender 

Records from 48 
affected and 47 

unaffected hospitals 
up to 15 days post 

event. 

48 affected and 
47 unaffected 

hospitals 
NA 

Tanak
a et al. 
(1997) 
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1998 
Ceyhan, 
Turkey 

PTSD 

Age, 
Gender, 
Family 
Structur
e, SES 

 for DSM- 
administered 1 mo. 

and 13 mo. post 
event. 

Patients of the 
medical school of 

Dicle Univ. in 
Ceyhan. 

42% and 
23% 

Altind
ag et 
al. 

(2005) 

1999 Chi-
chi, 

Taiwan 
PTSD Gender 

Self-report 
administered by 

research 
psychiatrists using 
the  6 weeks post 

event. 

Chungliao (worst 
affected region) 21.70% 

Hsu et 
al. 

(2002) 

1999 Chi-
chi, 

Taiwan 
PTSD Gender, 

SES 
 distributed 10 mo. 

post event. 

Two of the most 
severely damaged 

villages. 
10% 

Chang 
et al. 

(2005) 

1999 Chi-
chi, 

Taiwan 

PTSD, 
Injury 

Age, 
Gender, 

SES 

Interviewed using 
the -Chinese one 
year post event. 

Victims in 
temporary 

housing units 
from severely 

affected regions 

16.50% 
Kuo et 

al. 
(2007) 

1999 Chi-
chi, 

Taiwan 

Injury, 
Fatality 

Age, 
Gender, 

SES 

Records through the 
Family Registration 

Database. 

22 municipalities 
officially affected 
by the earthquake 

NA 
Chou 
et al. 

(2004) 

1999 
Kocaeli, 
Turkey 

PTSD Gender 

Psychiatric interview 
using the  for DSM- 
administered 6-20 
weeks post event. 

Schools in two 
townships of 

Adapazari located 
in the epicentre of 

the earthquake. 

60% 
Eksi et 

al. 
(2006) 

1999 
Kocaeli, 
Turkey 

Injury, 
Fatality 

Age, 
Gender, 

SES 

Home interview 
conducted 19-21 mo. 

post event. 

One of the 
hardest hit cities, 

Gölcük. 
NA 

Ramir
ez et 
al. 

(2005) 

2000 
Iceland PTSD Gender, 

SES 
Post-distributed  

three mo. post event. 

Five exposed 
local government 

areas 
24% 

Bodva
rsdottir 

and 
Elklit 
(2004) 

2002 
Molise, 

Italy 
PTSD 

Age, 
Gender, 

SES 

Mental Health Team 
administered the  for 
PTSD six mo. post 

event. 

Five most 
affected villages 14.50% 

Priebe 
et al. 

(2009) 

2003 
Bam, Iran PTSD 

Age, 
Family 
Structur

e, 
Gender, 

SES 

Interviews by trained 
personnel using the 
GHQ- conducted 5 

mo. post event. 

Bam, Iran NA 

Monta
zeri et 

al. 
(2005) 
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2005 
Pakistan PTSD 

Age, 
Family 
Structur

e, 
Gender, 

SES 

Trained personnel 
administered the  30 

mo. post event. 

Three districts 
close to the 
epicenter. 

41.30% 
Ali et 

al. 
(2011) 

2007 
Pisco, 
Peru 

PTSD 

Age, 
Family 
Structur

e, 
Gender, 

SES 

Interviews by trained 
personnel using the  

and  conducted 5 
mo. post event. 

City of Pisco 25.20% 
Cairo 
et al. 

(2010) 

2007 
Pisco, 
Peru 

PTSD 

Age, 
Family 
Structur

e, 
Gender, 

SES 

PCL- questionnaire 
administered by 

professionals 4 years 
post event. 

Urban or peri-
urban areas of 5 
districts in the 

province of Pisco. 

15.90% 
Flores 
et al. 

(2014) 

2008 
Wenchua
n, China 

PTSD 

Age, 
Ethnicit

y, 
Gender 

PCL- questionnaire 
administered by 

professionals 4, 6, 9, 
and 12 mo. post 

event. 

Three secondary 
schools in 
Wenchuan 

11.2%, 
8.8%, 
6.8%, 
5.7% 

Liu et 
al. 

(2010) 

2008 
Wenchua
n, China 

PTSD Age, 
Gender 

Interview with 
psychiatrist based 
on  scale score, 

conducted 6.5 mo. 
post event. 

Three middle 
schools in 

Mianzhu city 
2.50% 

Ma et 
al. 

(2011) 

2008 
Wenchua
n, China 

PTSD 

Age, 
Ethnicit

y, 
Family 
Structur

e, 
Gender, 

SES 

PCL- administered 
by professionals 15 
months post event. 

Two of the most 
severely affected 
sub-districts - 39 

villages 

15.20% 

Jia et 
al. 

(2010a
) 

2008 
Wenchua
n, China 

PTSD, 
Injury 

Age, 
Ethnicit

y, 
Family 
Structur

e, 
Gender, 

SES 

In-person interviews 
by trained personnel 
using the CPTSD- 

conducted 15 
months post event. 

Two of the most 
severely affected 
sub-districts - 39 

villages 

12.40% 

Jia et 
al. 

(2010b
) 
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2008 
Wenchua
n, China 

PTSD 

Age, 
Family 
Structur

e 

Professional-
administered self-

report PCL- 
questionnaires 

conducted 6 mo. 
post event. 

9 different 
counties within 
the earthquake 

region 

4.50% 
Liu et 

al. 
(2012) 

2008 
Wenchua
n, China 

PTSD 

Age, 
Ethnicit

y, 
Gender, 

SES 

Self-report using 
PCL- one year post 

event. 

19 severely 
affected counties 40.10% 

Jin et 
al. 

(2014) 

2008 
Wenchua
n, China 

PTSD, 
Fatality 

Age, 
Ethnicit

y, 
Family 
Structur

e, 
Gender, 

SES 

Interviews by trained 
personnel using 

the  3 mo. post event. 

Four areas in 
Sichuan Province. 47.30% 

Kun et 
al. 

(2013) 

2009 
L’Aquila, 

Italy 
PTSD Age, 

Gender 
TALS- distributed 
10 mo. post event. 

Town of 
L’Aquila 37.50% 

Dell’O
sso et 

al. 
(2011) 

2009 
L’Aquila, 

Italy 
PTSD Age, 

Gender 
TALS- distributed 
10 mo. post event. 

Town of 
L’Aquila 41.30% 

Dell’O
sso et 

al. 
(2012) 

2009 
Padong, 

Indonesia 

Injury, 
Fatality 

Age, 
Family 
Structur

e, 
Gender 

Health records from 
the Health Office, 

Handicap 
International (NGO), 

five general 
hospitals, and a 
specific list of 
injured victims 

obtained from five 
villages. 

Padang, 
Indonesia NA 

Sudary
o et al. 
(2012) 

2010 
Haiti PTSD 

Age, 
Family 
Structur

e, 
Gender, 

SES 

In person interview 
by trained personnel 
using the  modified 

to include DSM-IV-, 
conducted 2-3.5 mo. 

post event. 

Nazon area of 
Port-au-Prince 24.60% 

Cerda 
et al. 

(2010) 
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2010 
Haiti PTSD 

Age, 
Gender, 

SES 

In-person interviews 
by trained personnel 
using the life events 

checklist, , IES- 
questionnaires 
conducted 30 

months post event. 

Port-au-Prince 
and surrounding 
municipalities 

36.75% 

Cenat 
and 

Derivo
is 

(2014) 

2011 
Tohoku, 

Japan 
PTSD Age, 

Gender 
Self-report PTSSC-

 eight mo. post event. 
Schools in 

Ishinomaki City 42.60% 
Usami 
et al. 

(2012) 
:  Clinician-Administered PTSD Scale. 
:   Children’s Interview for Psychiatric Syndromes. 
:  Davidson Trauma Scale. 
:  Harvard Trauma Questionnaire. 
 for PTSD:  Breslau Short Screening Scale for PTSD. 
-12:  12-Item General Health Questionnaire. 
-C: PTSD Check List – Civilian. 
:  Children’s Revised Impact of Event Scale. 
-RI:  Child PTSD Reaction Index. 
-SR:  Trauma and Loss Spectrum – Self Report. 
:  Peritraumatic Distress Inventory. 
-R:  Impact of Event Scale-Revised. 
-15: Post traumatic stress symptoms for children 15 items. 
:  Diagnostic and Statistical Manual of Mental Disorders 
 
Table 6-26:  Earthquake Events Surveyed in Meta-Data Analysis 

1993 India 2000 Icelandic 2009 Padong, Indonesia 
1994 Northridge, USA 2002 Italy 2009 L’Aquilla, Italy 
1995 Hanshin-Awaji, Japan 2003 Bam, Iran 2010 Haiti 
1998 Ceyhan, Turkey 2005 Pakistan 2011 Tohoku, Japan 
1999 Chi-chi, Taiwan 2007 Pisco, Peru  
1999 Kocaeli, Turkey 2008 Wenchuan, China  
 
6.1.1 Age 

Infants and the elderly represent the most vulnerable age groups to injury and fatality 

during and following an earthquake.  There is essentially no information regarding the morbidity 

rates on infants and only a little information regarding the morbidity rates on children after 

earthquakes.  Of this information, children are sometimes considered to be the most vulnerable 

age group [Jia et al. (2010b), Hsu et al. (2002), Liu et al. (2010), Zahran et al. (2008)].  This is 
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due to their physical size, muscular development, and psychological development with less of a 

conscious to react to a disastrous situation correctly [Zahran et al. (2008)].  Specifically, infants 

and young children are completely dependent on their care-givers.  Amongst the larger quantity 

of available data, elderly people are often deemed the most vulnerable to injury and fatality 

[Chou et al. (2004), Peek-Asa et al. (1998), Mahue-Giangreco et al. (2001)].  This may be due to 

the assumption that the elderly are generally more likely to be resistant to taking precautionary 

actions, and due to aging.  

The literature is quite mixed on which age group is most vulnerable to PTSD.  Elderly 

people are often deemed the most vulnerable to PTSD [Jia et al. (2010a), Cenat and Derivois 

(2014), Altindag et al. (2005), Priebe et al. (2009), Flores et al. (2014)].  This basis comes from 

the understanding that elderly people are less likely to have the financial savings to recover 

following a natural disaster and more likely to rely on Social Security or other sources for their 

income.  However, elderly people have a lifetime of experiences to help them emotionally 

recover from the traumatic events.  Prior exposure to disastrous events has been shown to make 

individuals both more emotionally resilient and less emotionally resilient to future disastrous 

events.  Some studies have shown that younger persons are more vulnerable to PTSD [Sharan et 

al. (1996), Kuo et al. (2007), Cerda et al. (2013), Sudaryo et al. (2012)]. Children are often 

overlooked, especially older children and their abilities to help during a disastrous situation.  

Peek (2008) discussed how parents and teachers often become distracted and distraught 

following a natural disaster and therefore may not properly attend to the emotional needs of 

children and reestablish their sense of security post-event, making the children vulnerable to 

PTSD and depression.  Middle-aged adults have been shown to have the highest rate of PTSD 
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[Kuo et al. (2007)] attributed to responsibilities and pressures to provide income and the family’s 

needs. 

6.1.2 Built Environment 

Widespread building damage to a community and damage to personal property have been 

linked to a higher rate of PTSD [Sharan et al. (1996), Shoaf et al. (1998), Siegel (2000), Ramirez 

et al. (2005), Altindag et al. (2005), Priebe et al. (2009), Liu et al. (2010),  Usami et al. (2012)].  

The majority of deaths and injuries resulting from earthquakes are due to building damage or 

collapse.  A highly dense built-up environment creates a vulnerable population due to the larger 

potential for more buildings to collapse,  collapse into each other creating debris missiles, and 

create a more congested area for egress.  Cutter et al. (2003) identified the density of the built 

environment as one of the eleven major contributors to vulnerability based on the significant 

potential for structural losses.  This vulnerability is exacerbated if the infrastructure is older 

and/or of poor quality.  Being in an urban environment does not always equate to a higher 

vulnerability.  If the major damage from an earthquake were to occur in a rural environment, it 

could be assumed that a lower number of buildings would be damaged, and likely a lower 

number of people injured or killed.  However, access to aid and resources for the immediate and 

prolonged recovery efforts could be much lower for a rural community potentially making the 

rural community more vulnerable.     

6.1.3 Ethnicity/Race 

There is a dearth of knowledge on the impact of earthquakes on ethnicity and race.  

Ethnicity and race have been shown to be linked with social vulnerability, specifically in the 

United States, those cultures which are also non-English speaking [Siegel (2000)].  Noticing this, 

significant progress has been made in the United States during the past 20 years to release 
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information regarding disasters in multiple languages.  People in ethnic and racial minority 

groups have been identified as more vulnerable than those in non-minority ethnic and non-

minority racial groups [Kun et al. (2013), Jia et al. (2010), Liu et al. (2010)].  This is due to the 

fact that minorities generally have a lower political power, lower access to resources, and lower 

social support.  Some ethnic groups are associated with fatalism, a term describing a person that 

thinks he/she is above natural hazard events; this is discussed in Fothergill and Peek (2004).  

This belief prevents the person from taking cover during an event and can lead to an increased 

probability of injury or fatality, as well as PTSD.  Perilla et al. (2002) reported that Latinos 

(38%) were the most likely to develop PTSD, followed by African-Americans (23%), and the 

least likely being Caucasians (15%) amongst victims of Hurricane Andrew in a study of 404 

residents in southern Florida.  These percentages were not used in the socioeconomic model, but 

do provide some information regarding the prevalence sequence based on the United States 

population percentages of each ethnic and racial group.     

6.1.4 Family Structure 

Cutter et al. (2003) identifies female-headed households to be highly vulnerable, and 

African-American female-headed households to be among the most vulnerable.  In a study by 

Zahran et al. (2011), hurricane-exposed single mothers were shown to never fully return to pre-

disaster levels of mental health.  Whether a female- or male-headed household, if a child resides 

in the household it has been shown that parents are more likely to respond to disaster warnings 

[Peek and Stough (2010)], which down the road should lead to a lower chance of developing 

PTSD.  Peek and Stough (2010) reported that if a parent develops PTSD, one or more of their 

children are more likely to develop PTSD as well.  On the other hand, single persons without 

children have been shown to be the least likely to develop PTSD when compared to their 
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partnered counterparts [Atlindag et al. (2005), Jia et al. (2010a), Flores et al. (2014)], which may 

be due to their independence.  This does not necessarily hold true if the single-household consists 

of a widowed elderly person.   

6.1.5 Gender 

Females are consistently shown to be at a greater risk to post-traumatic stress disorder 

following a natural disaster [Kuo et al. (2007), Kilic and Ulusol (2003), Bodvarsdottir and Elklit 

(2004), Priebe et al. (2009), Ali et al. (2011), Delll’Osso et al. (2011), Jin et al. (2014), Kim et al. 

(2013), Jia et al. (2010a), Jia et al. (2010b), Cenat and Derivois (2014), Sharan et al. (1996), 

Sharan et al. (2013), Flores et al. (2014)] with a few exceptions that observed the opposite [Galea 

et al. (2004), Dell’Osso et al. (2013), Xu and He (2012), Atlindag et al. (2005), Chang et al. 

(2005)].  This finding has been observed as especially true for females with children living in the 

household, i.e. mothers, and for female-headed households with or without children living in the 

household [Zahran et al. (2011)].  Females may also be more susceptible to physical injury, or 

death [Mahur-Giangreco et al. (2001), Ramirez et al. (2005), Peek-Asa et al. (1998), Shaof et al. 

(1998), Chou et al. (2004)] during a large earthquake.  The statistics may be coincidental, but it 

is more likely that they are due to the general difference in biological makeup between genders 

such as physical strength and emotional coping mechanisms.   

6.1.6 Socioeconomic Status 

Throughout the literature, social vulnerability is linked to socioeconomic status.  

Although being poor is not the only factor that makes a person or community vulnerable, it has 

been identified by many to be the most influential factor [Fothergill and Peek (2004), Cutter et 

al. (2003)].  In a study by Fothergill and Peek (2004), the poor were shown to be the most 

cautious and fearful of disasters, however they were also shown to take the least pre-cautionary 
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actions.  This may be rationalized by considering that the poor generally do not have great job 

security, live in lower quality housing, and cannot afford, nor have the authority if renting, to 

take pre-cautionary actions such as buying earthquake insurance and properly strengthening their 

homes.  The poor are generally associated with having lower political power, and less access to 

resources.  In 2003, Cutter et al. developed the Social Vulnerability Index (SoVI), during the 

process of which eleven composite factors that contributed the most to social vulnerability were 

identified.  Personal wealth was identified to be the most significant factor.  Wealthier 

individuals and communities likely have a larger quantity of, and generally more expensive, 

material items to lose, however they also have the means to replace and recover.  There are 

several case studies that have shown that the less-educated members of a society are more 

vulnerable to PTSD, injury, and death [Kuo et al. (2007), Galea et al. (2004), Bodvarsdottir and 

Elklit (2004), Priebe et al. (2009), Jin et al. (2014), Zahran et al. (2008), Schmidtlein et al. 

(2008), Cutter and Finch (2008), Altindag et al. (2005), Jia et al. (2010a), Cenat and Derivois 

(2014), Chang et al. (2005), Flores et al. (2014)].  Education generally goes hand-in-hand with 

annual income, i.e. the more educated are also wealthier, but not always.  Regardless of annual 

income, intuitively, a higher education lends itself to people being more educated on the threat of 

a disaster, and the need to take more precautionary actions which allows one to react more 

effectively in disastrous situations.   

6.2 Socioeconomic Variable Subcategories 

Each variable consists of smaller subcategories.  The subcategories were originally 

presented in Table 3-2, and now repeated for convenience in Table 6-4.  The subcategories were 

selected based on the information available in the literature which demonstrated their influence 

on the morbidity rates.  Originally, subcategories matched the subcategories available in census 
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data however there was not enough detailed information for most variables forcing 

simplifications and groupings of census subcategories.  For example, here, age has six 

subcategories:  child, adolescent, young adult, middle-aged adult, older adult, and elder.  Census 

data breaks age down into 30 different age groups.  Following the meta-data analysis discussed 

in the previous section, it was concluded that there was not enough information at this time to 

quantify the difference in any morbidity rate for children aged 2-3 versus 4-5 versus 6-7, etc., 

years old, although there is evidence to support that differences do in fact exist for younger and 

older children [Peek (2008)].  The meta-data analysis was conducted over many studies, nearly 

all of which split the age groups differently:  some by decade, some by different physical and 

emotional developmental periods, some by convenient splits based on the congregated data, and 

some in other ways.  Due to these differences, the conclusion which was revealed from these 

studies was the very evident difference in morbidity rates for children versus older adolescents 

versus young adults versus older adults versus the elderly.  The lines drawn between these 

subcategories were a little grey, but determined to be at the ages shown in Table 5-3 for this 

study.  There was no available data on the prevalence of PTSD for children aged 0-9, and 

therefore this subcategory was left out of the modeling of that morbidity rate. 

Table 6-27:  Variable Subcategories 

Variable Subcategory 
Age Child (0 - 9 y.o.) 

Adolescent (10 - 18 y.o.) 
Young Adult (19 - 29 y.o.) 
Middle-Aged Adult (30 - 45 
y.o.) 
Older Adult (46 - 64 y.o.) 
Elder (65+ y.o.) 

Built Environment New Rural 
Old Rural 
New Urban 
Old Urban 
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Ethnicity/Race Majority 
Minority 

Family Structure Single 
Partnered 
Parent 

Gender Female 
Male 

Socioeconomic 
Status 

Low 
Moderate 
Upper 

 
This same process was followed for the variable ethnicity/race.  There are numerous 

ethnicities and races present in the United States, and available in more modern U.S. census data.  

The studies surveyed in the meta-data analysis covered earthquakes that occurred worldwide.  

The various ethnicities and races present in different parts of the world can be very different 

from the United States as a whole, and especially when looking at specific communities in the 

United States.  Detailed PTSD prevalence following earthquakes amongst the more common 

ethnic and racial minorities in the United States is not readily available.  The last major 

earthquake which occurred in the United States was 20 years ago, and major progress has been 

accomplished with respect to disaster recovery for ethnic and racial minorities.  What was 

concluded from the meta-data analysis was that there was a clear difference in the morbidity 

rates for persons in under-represented groups, or minorities, versus non-minority groups (here 

termed as majority), where these minority/majority groups were based on the larger region, e.g., 

the country where the earthquake occurred [Kun et al. (2013), Jia et al. (2010), Liu et al. (2010)].  

When looking at the state of California in the United States, and zooming into specific 

communities, the demographics can be quite different.  In one community, white/Caucasian, 

non-Hispanic, may be the majority, and in another community Latino/Hispanic may be the 

majority.  Looking back to the 1971 San Fernando Earthquake, the majority of the affected area 

occurred in a Latino/Hispanic community.  Following that earthquake, post-disaster recovery aid 
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was distributed at the state and federal levels, at which levels the Latino/Hispanic ethnic group 

was a minority.  It was seen that the general response and time to recovery for members of the 

Latino/Hispanic ethnic group were mirrored to those of a minority group.  Many people were not 

familiar with the disaster-recovery process and were steered away due to their inability to speak 

English and their immigration status.  In the present framework, the white/Caucasian group was 

considered the majority, and all other ethnicities and races were grouped together as the minority 

in quantifying the morbidity rates.   This is not a perfect representation of the difference in 

morbidity rates based on ethnicity and race mostly due to the large number of groups which were 

lumped together as the minority.  Also, due to the fact that the literature reveals that people 

whom are non-English speaking or have English as a second language and currently live in the 

United States are generally more vulnerable than those minority members who have English as 

their native language [Siegel (2000)].  Although a legitimate fact, there was not enough 

information to quantify this difference into a new subcategory for the ethnicity/race variable.  

Especially when considering the lack of reliability in the U.S. census data to fully represent the 

number of persons in a community which would fall into that category.     

Family structure required a similar process.  There are at least six subcategories for 

family structure which differ from the three listed in Table 6-4 by distinguishing between being a 

single parent or partnered parent, and between being a single never married person, single-

divorced person, or single-widowed person.  However, in reality there are even more than six, 

and in this study all single-person households were grouped together without differentiating by 

previous marital status.  Zahran et al. (2011) demonstrated how single mothers were more 

vulnerable, and how single mothers required a longer recovery time following Hurricane Katrina.  

There was not enough information following the meta-data analysis to quantify the difference in 

167 
 



morbidity rates for single parents, or specifically single mothers.  There was also not enough 

information to distinguish between why a person was single and the resulting impacts.  What was 

revealed in the meta-data analysis was that parents respond differently and generally take more 

precautions than non-parents [Peek and Stough (2010)], which influences morbidity rates.  The 

meta-data analysis also revealed that single person households were generally less likely to take 

any precautions thereby influencing the morbidity rates negatively [Sudaryo et al. (2012)].   

The subcategories for socioeconomic status were modified from U.S. census data based 

on what was learned from the meta-data analysis.  Similar to the age and ethnicity/race variables, 

U.S. census data provides numerous subcategory breakdowns for annual income and education 

level.  There was not enough information to quantify the difference in the morbidity rates for 

households with annual income of $46,000 versus $50,000 versus $54,000, etc.  The referenced 

population surveys differed by identifying the group of people with the least monetary and social 

resources as a variety of terms such as the poor, working class, people of low income, or low 

socioeconomic status.  Educational brackets varied significantly worldwide relative to the 

educational brackets more traditionally used in the United States.  There was not enough 

information to quantify the difference in morbidity rates for persons with a high school diploma 

versus some college.  More common educational brackets found in the meta-data analysis 

included “no education” versus “literacy”.  What became very evident was that in each survey 

within the affected community there were fewer people in each of the morbidity categories that 

were in the highest income subcategory and/or in the highest education subcategory.  There was 

a significant amount of information regarding annual income and education level, but many 

studies did not provide information on both.  These two are generally linked, that is a person 

with a lack of education generally has a low income and a person with a more education 
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generally has a higher income.  Therefore annual income and education level were modeled 

collectively as socioeconomic status in this study.  Three subcategories were chosen:  low, 

moderate, and high, each set relative to national averages.  When developing the three 

subcategories, annual income extremes were used as cut-offs regardless of education level.  That 

is to say, that annual income was decided to play a greater role in vulnerability than education.  

For example, as mentioned earlier, when looking at the state of California, and zooming into 

specific communities, the demographics can be quite different.  In one community in Southern 

California the mean income may be over $200,000, and in another community in Southern 

California the mean income may be less than $42,000.  Regardless of education, no one in the 

$200,000 mean annual income community would be expected to experience similar morbidity 

rates to someone of low socioeconomic status.  Furthermore, the national mean income has been 

between $51,000 and $57,000 for the past ten years.  Therefore, no one, regardless of education, 

in the $42,000 mean annual income community would be expected to experience similar 

morbidity rates to someone of high socioeconomic status.  Table 6-5 provides the breakdown on 

the requirements to be in each socioeconomic status subcategory.   This shows that regardless of 

education, a household is placed in the low socioeconomic status subcategory if the annual 

income is less than $25,000, and a household is placed in the high socioeconomic status 

subcategory if the annual income is $150,000 or greater.  No modifications or groupings were 

used for the gender subcategories:  male and female.   
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Table 6-28:  Description of Socioeconomic Status Subcategories 

Subcategory Annual Income Education Level 
Low Less than $25,000 Any 

$25,000-$75,000 High school diploma 
Moderate $25,000 - $100,000 College degree 

$75,000 - $150,000 Some college 
High Greater than $75,000 College degree 

$150,000+ Any 
 
6.3 Socioeconomic Variable Weighting Functions 

The variables discussed throughout this chapter were used to develop adjustment factors 

for the three morbidity rates.  As discussed in Chapter 3, within the framework the morbidity 

rates were originally developed as a function of the damage states, and then adjusted based on 

the demographics of the population using the developed adjustment factors.   The expressions for 

the morbidity rates were originally provided in Eq. 3-3 and Eq. 3-4, but are repeated here for 

convenience.   The morbidity rates for injury and fatality are identical, and were expressed as 

𝑀𝑀𝑀𝑀𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑 = (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑛𝑛𝑒𝑒,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑑𝑑𝑎𝑎𝑑𝑑,𝑀𝑀𝑀𝑀) ∙ 𝐼𝐼𝐷𝐷𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑  Eq. 6 - 1 

The morbidity rate for PTSD diagnosis was expressed as 

𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑 = (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑛𝑛𝑒𝑒,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑒𝑒ℎ,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑓𝑓𝑎𝑎𝑓𝑓,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛,𝑀𝑀𝑀𝑀 ∙ 𝐹𝐹𝑑𝑑𝑎𝑎𝑑𝑑,𝑀𝑀𝑀𝑀) ∙ 𝑃𝑃𝑀𝑀𝑑𝑑𝑑𝑑  Eq. 6 - 2 

where , , , , , and  are the socioeconomic category factors for age, environment, ethnicity, 

family, gender, and socioeconomic status, respectively, and where the MR subscript refers to the 

factor value for either injury severity or PTSD rate.  ,ds and  are the probability of injury severity 

level is and PTSD diagnosis rate for damage state ds, respectively, which were developed in 

Chapter 3.  This section develops the socioeconomic factors in Eq. 6-1 and Eq. 6-2.  Each factor 

was modeled by the same procedure.  In each of the studies listed in Table 6-2, the authors 

surveyed members of the population in a specified area following an earthquake event.  The 

intention of those studies was to identify the vulnerable population members so that aid may be 

170 
 



  

provided, and to extend the existing knowledge on social vulnerability and the predictors for 

injury, fatality, or PTSD.  In most cases, tabulated outputs, and sometimes statistical analysis, 

were provided in the referenced publications providing the number or the percentage of a certain 

demographic which were victim to one of the morbidity rates.  Generally, the studies recorded 

the demographic information of the surveyed population distinguishing between whichever 

morbidity rate was relevant to their study.  These tabulated values were used to develop odds 

ratios between the subcategories used in this study.  The odds ratio provides the quantity of how 

much more likely was one demographic to be victim of one of the morbidities than another 

demographic.  A detailed example of how the odds ratios were computed is provided using the 

injury and fatality data given in Peek-Asa et al. (1998).  

Odds Ratio Example    

Following the 1994 Northridge earthquake, a survey was conducted over the 78 hospitals 

in Los Angeles County, California for earthquake admissions.  Overall, 171 earthquake-related 

injuries were identified in 16 hospitals.  In order to be considered an earthquake admission the 

patient had to have been admitted within two weeks after the mainshock, and the patient had to 

have been admitted due to a physical injury.  “Injuries were defined as earthquake-related if the 

injury was due to consequences of earthquake activity.”  Deaths were identified by the Los 

Angeles County Office of the Coroner, and had to have resulted from a physical injury to be 

considered in the study.  Table 6-6 is a regenerated version of the demographic data presented in 

Peek-Asa et al. (1998) for the 171 individuals.  The population numbers presented in Table 6-6 

were 1990 U.S. census estimates for Los Angeles County.  The 95% confidence intervals for the 

odds ratios were provided in Peek-Asa et al. (1998), but were not included here. 
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Table 6-29:  Earthquake-Related Injuries and Population Rates of Injury (Data from Peek-Asa et 
al. (1998)) 
 
Characteristic No. Earthquake-

Related Injuries Population Odds Ratio 

Total 171 8,863,164 N/A 
Severity Fatal 33 8,863,164 1.00 

Hospitalized 138 8,863,164 4.10 
Gender Male 78 4,421,398 1.00 

Female 93 4,441,766 1.20 
Age 0 – 9 y.o. 5 1,384,014 1.00 

10 – 19 y.o. 5 1,223,397 1.00 
20 – 39 y.o. 55 3,797,209 3.78 
40 – 59 y.o. 44 1,910,925 5.87 
60 – 79 y.o. 36 859,369 10.92 

80+ y.o. 25 188,498 34.58 
Ethnicity/Race White, non-Hispanic 102 3,618,850 1.00 

Hispanic 38 3,351,242 0.40 
African American 6 934,776 0.23 

Asian/Pacific Islander 12 907,810 0.47 
 

The odds ratios in the last column of Table 6-6 were computed using the population 

values for Los Angeles County to show the relative risk of injury for each demographic group 

over the entire population.  The odds ratio is expressed as 

𝑅𝑅𝑀𝑀 =  𝑎𝑎/𝐴𝐴
𝑐𝑐/𝑑𝑑

= 𝑎𝑎×𝑑𝑑
𝐴𝐴×𝑐𝑐

    Eq. 6 - 3 

where a is the number in the exposed group from demographic a, b is the number in the exposed 

group from demographic b, c is the number in the control group of demographic a, and d is the 

number in the control group of demographic b.  For example, using the values in Table 6-6, the 

odds ratio for male gender was computed by 

𝑅𝑅𝑀𝑀𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎 = 78×4,421,398
78×4,421,398

= 1.00   Eq. 6 - 4 

and the odds ratio for female gender was computed by 

𝑅𝑅𝑀𝑀𝑓𝑓𝑎𝑎𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎 = 93×4,441,766
78×4,421,398

= 1.20   Eq. 6 - 5 
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These odds ratios imply that females have a relative risk of 1.2:1.0 compared to males for an 

earthquake-related injury.  Or better stated as, females are 1.2 times more likely than males to 

suffer from an earthquake-related injury.   

Similar odds ratios were computed for all of the studies listed in Table 6-2, providing a 

range of relative risk values for each subcategory.  The mean value of all odds ratios for each 

subcategory was taken as the subcategory factor, , which may be expressed as  

𝑓𝑓𝑀𝑀𝑀𝑀(𝑑𝑑𝑢𝑢𝐴𝐴) = 𝑚𝑚𝑛𝑛𝑓𝑓𝑛𝑛�𝑓𝑓𝑀𝑀𝑀𝑀(𝑑𝑑𝑢𝑢𝐴𝐴,𝑖𝑖)�;            𝑖𝑖 = 1:𝑛𝑛𝑓𝑓𝑑𝑑𝑠𝑠𝑏𝑏    Eq. 6 - 6 

where MR is for the respective morbidity rate.  This computation was executed for all 

subcategories listed in Table 6-4.  The socioeconomic category factors, , used in Eq. 6-1 and Eq. 

6-2 were computed by multiplying the subcategory factors by the percentage of the population in 

each subcategory, , and summing for all subcategories.  The socioeconomic category factor may 

be expressed as  

𝐹𝐹𝑀𝑀𝑀𝑀(𝑐𝑐𝑎𝑎𝑒𝑒) = ∑ 𝑓𝑓𝑀𝑀𝑀𝑀(𝑑𝑑𝑢𝑢𝐴𝐴,𝑖𝑖) ∙ 𝑝𝑝𝑑𝑑𝑢𝑢𝐴𝐴,𝑖𝑖
𝑛𝑛𝑑𝑑𝑠𝑠𝑏𝑏
𝑖𝑖=1    Eq. 6 - 7

This effectively applies a factor (or weight) to the population data.  For example, if  = 2 and  = 

1, and if there were 50% of each gender in the population, then  would be computed as 

𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑝𝑝=1(0.5) + 2(0.5) = 1.5 Eq. 6 - 8 

This would imply that the rate of PTSD diagnosis is expected to be 150% of the baseline rate for 

the specified community following the scenario earthquake, where the baseline rate is 

determined based on building damage.  The final expected rate of PTSD diagnoses will increase 

further, or decrease, based on the other category factors.   

6.4 Limitations 

Some limitations to the work proposed in this dissertation were mentioned in Chapter 3. 

Those limitations were not felt to overcome the quality or intention of this work.  Limitations 
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directly related to the modeling of the socioeconomic variable subcategories were discussed in 

Sec. 6.2.  Other limitations associated with the socioeconomic model are as follows. 

There was not enough information to model the subcategory factors for the built 

environment, , in the same way as the socioeconomic variables.  Rather than averaging over 

several identified odds ratios, a set odds ratio was assigned to each subcategory of the built 

environment for each morbidity rate based on engineering judgment.  The values selected as the 

subcategory factors for the built environment for the three morbidity rates are provided in Table 

6-7.  Very little scatter was assumed for the injury and fatality rates, and only a bit more 

difference was assigned to the PTSD diagnosis rate.   

Table 6-30:  Subcategory factors for the Built Environment 

Subcategory Morbidity Rate 
Injury Fatality PTSD Diagnosis 

New Rural 0.95 0.90 1.10 
Old Rural 1.00 1.00 1.30 
New Urban 1.05 1.00 1.00 
Old Urban 1.15 1.10 1.20 
 

Odds ratios were computed from the referenced population data for modeling the 

subcategory factors.  Not all odds ratios were created equally.  That is, the quality of data 

collection was not consistent for all studies.  To account for this, quality ranks from 1 to 3, with 3 

being the highest quality, were assigned to each study.  The user of the framework may select to 

use only studies with a quality rank of 3, quality rank of 2 and 3, or all data regardless of quality 

rank.  For the studies providing data for PTSD diagnoses, there were three potential factors 

which could reduce the quality rank. 

Factor 1:  The data collection process for predictors of PTSD followed one of three 

methods:  (1) computer-assisted phone interview, (2) self-report symptom checklist, or (3) in-

person interview with trained personnel.  Considering these three methods, the bias in the sample 
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was assumed to decrease one quality rank level from method one to method two to method three, 

respectively.  That is, the assigned quality rank decreased a level for each decreasing method.   

Factor 2:  A major controversy in the field is on the different measurement scales that 

may be used to diagnose Post-Traumatic Stress Disorder (PTSD).  For example, in a brief survey 

of the literature four different scales used are the (1) Davidson Trauma Scale (DTS) [Kuo et al. 

(2007)], (2) the Breslau Short Screening Scale for PTSD [Priebe et al. (2009)], (3) the Harvard 

Trauma Questionnaire [Cairo et al. (2010)], and (4) the PTSD Check List [Flores et al. (2014)], 

to name a few.  The instrument used for diagnosing PTSD was often modified from the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis or used an incomplete 

tool.  The quality rank of studies which used modified or incomplete PTSD assessment tools was 

decreased by one point.   

Factor 3:  PTSD may not be properly diagnosed until it has been present for at least one 

month.  Some of the studies referenced in this work reported population estimates for PTSD 

prior to the one month requirement.  In this case, the quality rank of the study was decreased by 

one point. 

For studies which provided data for injury or fatality, only one detail was identified 

which reduced the quality rank which regarded the data collection method.  Data collected from 

medical records was considered of high quality.  Data collected from computer-assisted phone 

interviews were considered to have a quality rank of one level less. 

In addition to the difference in quality of the published data, studies were collected from 

earthquakes occurring worldwide.  This worldwide data collection method was under the 

assumption that relative risk of people in other countries subjected to an earthquake disaster 

could be applied to a United States earthquake disaster better than applying the relative risk from 
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different disaster types only occurring within the United States.  The latter would require using 

relative risk data from the terrorist attack on 9/11, Hurricane Katrina, Hurricane Sandy, the 

tornados in Joplin, MS, Tuscaloosa, AL, or Moore, OK, etc. to be applied to a potential 

earthquake disaster.  This route was rejected due to the fact that people respond differently to 

different disaster types, especially a natural disaster versus a terrorist attack.  Even still, the 

assumption that was employed is imperfect, especially when comparing information from 

developing nations and applying it to a developed nation.  The World Factbook [CIA (2011)] 

lists 34 developed countries (DC).  The user of the framework may select to only use studies 

conducted in DC, or they may select to use data from all countries to account for this 

assumption.   

As mentioned briefly in Sec. 3.6, there is a noted discrepancy in the literature on the 

accuracy of comparing losses over time and the accuracy of using statistical demographic data 

collected at one geographic scale and applying it to another geographic scale.  Both of these 

controversial methods are proposed to be used in the present framework and present a limitation 

to the study.  To combat these limitations, two studies are presented.  In 2008, Cutter and Finch 

conducted a study on the temporal changes in social vulnerability to natural hazards using 

Cutter’s Social Vulnerability Index (SoVI).  Five time periods were analyzed:  1960, 1970, 1980, 

1990, and 2000.  The authors provided which demographic factors played the most significant 

role in each of the analyses, and for each of the five decades, the SoVI indicated that 

socioeconomic status was the most influential factor.  Albeit, the percent of the variance 

explained by socioeconomic status varied for each decade, it was still the controlling factor.  

Three other factors, development, gender, and age, showed up in the five most significant 

contributors for all five analyses, and race showed up in all but one.  Over five decades, the four 
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of the top five contributing demographic factors to social vulnerability were consistent and only 

varied by a few percent in each case.  Also in 2008, Schmidtlein et al. conducted a similar study 

on the sensitivity of the SoVi to change in the geographic scales.  Analyses were conducted at 

the county level, intermediate level, and census tract level.    The results for all three geographic 

levels varied, but were similar.  Of the top seven contributing factors for social vulnerability, as 

dictated by the SoVI, race and poverty, Hispanic immigrants, age, gender, and wealth appeared 

for all three analyses, albeit in a slightly different order with slightly different percentages. 

Based on these two studies, although not perfect arguments for the present framework, it may be 

concluded that there is some discrepancy in the results when changing the time scale or 

geographic scale, however there is reasonable consistency in the results as well.  Therefore, these 

methods are proposed to be used here, but as noted limitations of the study. 
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Chapter 7: Genetic Algorithm 
 
 
 

To perform the optimization within the socioeconomic framework for identifying the 

optimal retrofit plans, a multi-objective genetic algorithm (GA) was employed.  A genetic 

algorithm is a search algorithm which generates multiple solutions at each iteration and 

continues until an optimal solution is found.  The optimal solutions are identified by the fitness 

function based on the objective function and constraints.  The objectives discussed in Chapter 2 

(i.e. initial cost, economic loss, number of morbidities, and recovery time) are minimized as the 

multi-objective function in this study. 

7.1 Genetic Algorithms  

Genetic algorithms (GA) are a subcategory of Evolutionary Algorithms, and are based on 

the mechanism of natural genetics and natural selection.  The theory behind GAs is a direct 

analogy to Charles Darwin’s Theory of Evolution.  GAs imitate biology by optimizing a 

population of chromosomes consisting of a set of genes.  Consider human beings where the 

genetic makeup of a human is described by a chromosome.  The chromosome consists of various 

genes such as eye color, hair color, gender, etc.  Each gene has various alleles, i.e. the value of 

the gene.  For example, the alleles of eye color are brown, hazel, blue, green, etc.  The world 

consists of an entire population of human beings.  Two humans will mate and produce offspring.  

The alleles of the offspring are a combination of the dominant genes from the two parents.  

Throughout time, dominant genes may change, but the dominant genes are the ones that survive 

and continue on to the next generation.   Fitness is the term used to measure each chromosome’s 

dominance, i.e. survival of the fittest.   
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Within a genetic algorithm, chromosomes are series of real numbers or binary strings 

which represent certain characteristics, features, or mechanisms (i.e. genes).  Each gene has a 

characteristic value denoted as its allele.  The chromosomes, genes, and alleles are problem-

specific.  For example, in the present study, the chromosomes represent a community’s 

woodframe building stock rather than humans.  The genes are the different types of buildings 

present in the community (i.e. the 37 archetypes).  The alleles are the quantity of each archetype 

present within the community.    

The first generation in a genetic algorithm is typically randomly generated.  In this study, 

the initial population is based on the input building statistics of the community (the quantity of 

woodframe buildings of each age and size that are actually present in the community).  Mating is 

represented by the crossover operator.  Two parent chromosomes “mate” and produce two 

offspring for the next generation.  This consists of swapping a single or group of genes between 

the two chromosomes.  A mutation operator is employed to maintain diversity within the 

population.  This operator was introduced into the numerical algorithm, rather than being 

representative of actual biology.  Mutation helps prevent premature convergence of the solution.  

Constraints are imposed to prevent the number of structurally deficient and structurally obsolete 

archetypes from increasing in future generations.  Following crossover and mutation, the 

offspring chromosomes go through a selection operator where they compete against each other.  

The dominant chromosomes, those which most satisfy the objective(s), survive.  Consecutive 

generations are determined based on the problem-specific objective function and fitness.  This 

process of crossover-mutation-selection repeats for a set number of generations or until a 

specified outcome is obtained.   
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7.2 Advantages of GAs over Other Optimization Methods 

Genetic algorithms are simple in nature, but have the ability to solve most optimization 

problems making them quite robust.  Due to the complex nature of the multi-objective 

community-level mitigation planning optimization addressed here, genetic algorithms have 

several advantages over other optimization methods.  Goldberg (1989) discussed how genetic 

algorithms have four fundamental differences that allow them to be more robust than other 

optimization methods: 

1. GAs work with a coding of the parameter set, not the parameters themselves.  This is 

advantageous because often times the parameters are in different units or measurement 

scales and can be very difficult to model.  It is also beneficial when the number of 

parameters in the multi-objective optimization problem is very large. 

2. GAs search parallel from a population of points, not a single point.  This is beneficial 

when there are multiple local optima because the GA will avoid premature convergence 

to local optimal solutions or false-peaks. 

3. GAs use payoff (objective function) information, not derivatives or other auxiliary 

information.  This is beneficial if the objective function is not smooth, or is nonlinear, or 

if there are a large number of parameters to which the gradient information is not known. 

4. GAs use probabilistic transition rules, not deterministic ones making them quite robust 

and able to solve most optimization problems. 

Genetic algorithms are especially beneficial in solving multi-objective optimization 

problems due to the population of solutions generated every iteration.  In this study, the GA will 

produce the pareto-optimal set of solutions for the decision maker(s) by extracting diverse 

solutions generated at each iteration.    The decision maker(s) could input preferences by 
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weighting the performance objectives and allowing the genetic algorithm to identify the optimal 

solution.  In this study, multiple weights were used to generate diverse solutions so that the 

pareto-optimal set may be developed.  Once the pareto-optimal set was obtained, then decision 

maker preference was employed. 

7.3 Description of the Genetic Model 

The general procedure for the GA to be employed here is shown in Figure 7-1.  There are 

three major sub steps in any genetic algorithm:  crossover, mutation, and selection.  The 

population is initialized through building statistic inputs for each archetype based on census data 

for the region, and the population initial fitness is computed.   If the population fitness does not 

meet a pre-defined value, the population goes through the selection, crossover, and mutation 

operators and the population fitness is re-calculated.  If there is still diversity in the population 

fitness or if the number of generations is less than the maximum set number of generations, the 

next generation is spawned repeating the crossover, mutation and selection operators until the 

solution converges or meets the specified maximum number of generations.  
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Figure 7-1:  Generalized Genetic Algorithm Procedure 

7.3.1 Fitness Formulation 

The fitness function is a key part of the genetic algorithm.  Genetic algorithms are based 

on the theory of evolution and survival of the fittest.  The fitness function measures the “fitness” 

of each population member so that the most-fit member (i.e. optimal solution) may be identified.  

In this study, the fitness was computed by using only the mean values for each of the 

performance objectives to provide a strict number for comparison purposes.  The mean 

performance objectives, , were normalized by the minimum population value of each respective 

performance objective in order to keep each on the same order of magnitude.  Once normalized, 

the performance objectives were weighted, , and summed together.  The fitness function may be 

expressed as    
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𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑 =  𝑤𝑤1 ∙ 𝑝𝑝𝑜𝑜1 + 𝑤𝑤2 ∙ 𝑝𝑝𝑜𝑜2 + 𝑤𝑤3 ∙ 𝑝𝑝𝑜𝑜3 + 𝑤𝑤4 ∙ 𝑝𝑝𝑜𝑜4   Eq. 7-40 

where the expressions for  were provided in Eqs. 3-11, 3-13, 3-5, and 3-34 for initial cost, 

economic loss, number of morbidities, and time to recovery, respectively.  The weights allow 

input of the decision maker preferences and can be changed to provide more diverse solutions. 

The lower the fitness value, the more fit the individual, and the more likely for it to be duplicated 

in future generations, this is the premise of a genetic algorithm. 

7.3.2 Tournament Selection 

The selection process uses the objective functions and fitness to determine which 

individuals will move on to the next generation.  The tournament selection procedure is 

commonly used in optimization problems and was employed here.  In tournament selection, each 

individual has two copies inserted into a mating pool, and therefore each individual competes in 

the tournament twice.  Two individuals are randomly selected from the mating pool; the 

individual with the higher fitness value wins the tournament and moves on to the next 

generation.  Another pair of individuals is drawn and the process continues until the new 

population has filled.  Using this procedure, the most-fit individual in the population receives 

two copies in the new population, and the least-fit individual is removed from the new 

population.  In this way, it is easy to see how the fitness of the population improves with future 

generations.   

7.3.3 Double-Point Crossover 

A crossover routine randomly exchanges characteristics (genes) between randomly 

selected individuals (chromosomes).  The number of individuals selected to take on the crossover 

operator depends on the crossover rate, or probability of crossover, which is dictated by the user. 

The value of the crossover rate used in this study was 0.85.  A single, or multiple, crossover 

183 



site(s) may be randomly generated or set.  Many complicated crossover routines have been 

developed, however for this study; a double point crossover was employed due to the 

characteristic makeup of the chromosomes.  The two crossover sites were set at the same 

locations for each chromosome entering into the crossover operator.  Figure 7-2 provides a 

schematic demonstrating the crossover routine used in this study.  Recall, within a chromosome 

the first seven genes are the number of each archetype designed by the 1959 Blue Book 

provisions, followed by the 1978 NEHRP designs, ASCE7-05 designs, SDDD-IO and SDDD-LS 

designs for all seven floor plans.  The final two chromosomes are the two soft-story buildings 

retrofitted following the FEMA P-807 guideline.  Referring to Figure 7-2, during crossover, the 

alleles of the modern designs (ASCE7-05 designs, SDDD-IO and SDDD-LS) of one parent are 

switched with the alleles of the other parent forming the two new offspring.  The example genes 

in Figure 7-2 are all two-digit values for demonstrative purposes only.    

 

Figure 7-2:  Example of Double-Point Crossover Operator 
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7.3.4 Mutation 

The mutation operator changes one or more alleles within a selected chromosome.  The 

number of chromosomes which enter the mutation operator is based on the mutation rate, or 

probability of mutation which is similarly input by the user.  The value of the mutation rate used 

in this study was 0.10; it is typically much lower than the crossover rate. The mutation operator 

helps maintain diversity in the population and keep the solution from premature and less than 

optimal convergence by randomly switching genes throughout the optimization process.  To 

execute the mutation operator, a randomly selected single gene on a randomly selected individual 

mutates to a random (feasible) value.   In this study, a single-point mutation site was used, and 

randomly selected as any of the first 14 gene within the chromosome (i.e. the 1959 Blue Book 

and 1978 NEHRP designs).  The selected gene’s allele mutates to a randomly generated number 

constrained by real number values to be between 0 and 1000.  Figure 7-3 demonstrates the 

mutation operator on an example chromosome.  The example genes in Figure 7-3 are all two-

digit values for demonstrative purposes only.    

 

Figure 7-3:  Example of Mutation Operator 

7.4 Penalty Functions and Constraints 

Penalty functions may be incorporated into a genetic algorithm as a way to impose 

constraints on the solutions, or to encourage the solution in a more optimal direction.  There were 
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multiple penalty functions and constraints imposed in the GA used here.  A constraint requires a 

solution to follow it.  A solution may not meet the constraint imposed in a penalty function, and 

if it does not, then its fitness is altered in a negative way.   

7.4.1 Constraints 

The constraints imposed in this genetic algorithm were all based on controlling the 

number of each archetype, the total number of each floor plan over all designs, and the total 

number of all archetypes in a single solution.  The constraints used in this study are provided as 

follows 

• At all times, the total number of archetypes in the population is to remain at 100,000. 

• At all times, the total number of floor plan, , over all designs, cannot be less than the 

original number of floor plan, , for the two outdated designs (1959 Blue Book and 1978 

NEHRP) combined.  This constraint ensures that the solution does not converge to having 

only a single floor plan present in the community.  This constraint does allow more 

buildings of each building to be constructed, as long as the total number of archetypes 

does not exceed 100,000 as per the previous constraint. 

• At all times, the total number of floor plan, , designed following the 1959 Blue Book 

provisions may not be greater than the original number of floor plan, , designed 

following the 1959 Blue Book provisions in the initial population.  This same constraint 

is duplicated for all archetypes designed by the 1978 NEHRP provisions.  These 

constraints ensure that the solution does not imply that more structurally obsolete or 

deficient buildings should be constructed.   
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7.4.2 Penalty Functions 

There were three penalty functions imposed in the genetic algorithm.  Two of the three 

penalty functions were imposed based on the budget input by the user, and the third penalty 

function was for further controlling the total number archetypes in the community.  In each case, 

if the constraint was not met by the individual (solution), the corresponding fitness was 

multiplied by a factor of two.  The first penalty function was for directing the initial cost of the 

optimal solution to be less than the budget set by the user.  If the initial cost of the solution was 

greater than the budget, then its corresponding fitness value was multiplied by a factor of two. 

The first penalty function for limiting the initial cost may be expressed as 

𝐼𝐼𝐹𝐹 𝑀𝑀𝑅𝑅1,𝐼𝐼 > 𝑏𝑏𝑏𝑏𝑑𝑑𝑔𝑔𝑛𝑛𝑐𝑐
𝑚𝑚𝑇𝑇𝐸𝐸𝑇𝑇 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼 = 2 ∗ 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼

 

where  is the initial cost of the  individual in the current generation, as was defined in Eq. 3-11.  

The second penalty function was for directing the total economic loss of the optimal solution to 

be less than 10 times the budget set by the user.  If the economic loss of the solution was greater 

than 10 times the budget, then its corresponding value was multiplied by a factor of two.  The 

second penalty function for limiting the total economic loss may be expressed as 

𝐼𝐼𝐹𝐹 𝑀𝑀𝑅𝑅2,𝐼𝐼 > 10 ∗ 𝑏𝑏𝑏𝑏𝑑𝑑𝑔𝑔𝑛𝑛𝑐𝑐
𝑚𝑚𝑇𝑇𝐸𝐸𝑇𝑇 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼 = 2 ∗ 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼

 

where  is the economic loss of the  individual in the current generation, as was defined in Eq. 3-

13. The last penalty function was imposed for controlling the total number of archetypes in the

community.  If the total number of archetypes in the community was not equal to 100,000, then 

the corresponding fitness value was multiplied by a factor of two.  The third penalty function 

may be expressed as 
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𝐼𝐼𝐹𝐹 � 𝑛𝑛𝑎𝑎𝑝𝑝𝑐𝑐ℎ,𝐼𝐼 ≠ 100,000
37

𝑎𝑎𝑝𝑝𝑐𝑐ℎ=1
𝑚𝑚𝑇𝑇𝐸𝐸𝑇𝑇 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼 = 2 ∗ 𝑓𝑓𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼

 

The constraints were imposed following the Crossover and Mutation operators, and the penalty 

functions were imposed prior to the Selection operator.  The factor of two was somewhat 

arbitrarily chosen, however through several trial runs it was identified to be an effective value.  It 

should be noted that all coding for the genetic algorithm and socioeconomic framework was 

written in MATLab by the author.   
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Chapter 8: Application of Framework 
 
 
 

In this chapter the community resiliency framework is applied to several illustrative 

examples over a subset of Los Angeles County, California.  Prior to the illustrative examples, the 

framework was calibrated to the reported morbidity rates from the USGS Shakeout Scenario 

[USGS (2008)].  The USGS Shakeout Scenario looked at a much larger area, around 10,000,000 

people.  In this study, the framework is applied to a subset of 100,000 buildings, corresponding 

to approximately 1,000,000 people.  The morbidity rates predicted in the Shakeout Scenario for a 

very large earthquake were approximately matched at a spectral acceleration of 2.5g, 

corresponding to a MCE seismic intensity which would be caused by a ground shaking intensity 

approximately equal to the worst section of what was examined in the Shakeout Scenario.  At 

2.5g spectral acceleration, the framework was applied using the Los Angeles County population 

without including the socioeconomic parameters, since these were not modeled in the Shakeout 

Scenario.  Once a satisfactory level of calibration was achieved for the morbidity rates, the 

framework was reapplied using the socioeconomic parameters to compare the loss estimates with 

the reported losses from the 1994 Northridge earthquakes.   

The 1994 Northridge earthquake was the last major earthquake which occurred in the 

United States.  Most woodframe residential structures have fundamental periods of, or very near 

to, 0.2 seconds.  A range of peak ground acceleration (PGA) values (less than 0.3g and up to 

greater than 0.6g) were recorded from the 1994 Northridge ground motion.  The PGA for this 

study was taken as 0.5g resulting in an average spectral acceleration of 1.1g for the buildings 

with a fundamental period of 0.2 seconds.  In 2003, a large federally-funded project known as 

the CUREE-Caltech Woodframe Project [Shierle (2003)] conducted an extensive investigation 
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on the damage to woodframe structures caused by the 1994 Northridge earthquake.  The project 

reported various loss estimations, including the subassembly repair costs and repair times used in 

this study [Reitherman and Cobeen (2003)]. CUREE Publication No. W-09 reports that “About 

half of the $40 billion in property loss was in woodframe buildings.”  Therefore, the economic 

loss from the framework should be approximately, but less than, $20 billion.  Applying the 

framework to the Los Angeles County population at 1.1g spectral acceleration at the same 

occupancy rates that might have been experienced during the Northridge earthquake (peak 

occupancy for residential structures), the  percentile value for the economic loss was 

approximately $16 billion, which was felt to be close enough to the Northridge earthquake.  

Additionally, the CUREE publication reports “48,000 housing units were uninhabitable”, 

therefore the total number of archetypes being classified in either damage state 4 or damage state 

5 were summed and calibrated to equal approximately 48,000.   

The calibrations discussed above were achieved by multiplying the resulting distributions 

for the estimated losses by factors to achieve the reported values.  Eq. 3-5 presented the 

expression used for computing the number of morbidities.  Rearranging this expression and 

incorporating the calibration factors, the expression for computing the number of morbidities 

becomes 

𝑀𝑀𝑅𝑅3 =  𝐹𝐹𝑖𝑖𝑛𝑛𝐼𝐼 ∙ ∑ ��∑ 𝑀𝑀𝑀𝑀𝑖𝑖𝑑𝑑,𝑑𝑑𝑑𝑑
4
𝑖𝑖𝑑𝑑=1 � ∙ ∑ �𝑛𝑛𝑖𝑖,𝑑𝑑𝑑𝑑 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖�

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 �𝑛𝑛𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑=1 + 𝐹𝐹𝑓𝑓𝑎𝑎𝑒𝑒 ∙ ∑ �𝑀𝑀𝑀𝑀𝑖𝑖𝑑𝑑5,𝑑𝑑𝑑𝑑 ∙
𝑛𝑛𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑=1

∑ �𝑛𝑛𝑖𝑖,𝑑𝑑𝑑𝑑 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖�
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 � + 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ ∑ �𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑 ∙ ∑ �𝑛𝑛𝑖𝑖,𝑑𝑑𝑑𝑑 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖�

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎ℎ
𝑖𝑖=1 �𝑛𝑛𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑=1    Eq. 8 - 1 

 where , , and  are the calibration factors for the injury, fatality, and PTSD diagnoses counts, 

respectively.  These factors were determined to be 0.5 in all three cases.  The remaining variables 

were defined in Chapter 3.   
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Once the framework was calibrated, illustrative examples were executed by analyzing 

three populations.  The first population was the current demographic found in the 2010 U.S. 

census data for Los Angeles County, California.  The second and third populations provide 

example demographics to further demonstrate the framework based on potential population 

growths, or population forecasts, for Los Angeles County.  In each case, the framework was 

applied at six different seismic intensity levels, with and without incorporation of the 

socioeconomic variables.  In total, 36 applications of the framework are presented demonstrating 

the significance of the socioeconomic variables, followed by three examples demonstrating the 

importance of the time of day. 

Due to the framework’s assumption that all buildings within the community are at an 

equal distance from the epicenter of the earthquake, a subset of the population size had to be 

used, rather than the entire population size for Los Angeles County as mentioned earlier.  The 

subset population size was set as 100,000 buildings.  There were several constants for the case 

studies presented below.  These included the initial building inventory (see Table 8-1) which was 

selected as the building inventory of Los Angeles County based on 2010 U.S. census data.  For 

the modernly design buildings, it was not evident from the census data which seismic provision 

was used in the design.  Therefore, the quantity of modern buildings was evenly distributed over 

the last 23 genes for each respective floor plan.  Subsequently the initial percentages for the 

subcategories of the built environment were constant for all case studies.  In addition to the 

demographic and housing data, the genetic algorithm and optimization inputs were held 

constants for all examples.  The probability of crossover was set to 0.85, the probability of 

mutation was set to 0.10, and the number of individuals in the population per generation was set 

to 50.  The maximum number of generations was set to 100.  A collapse limit of 10% inter-story 
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drift was employed.  The peak inter-story drift values for each archetype from the nonlinear time 

history analyses were extracted at 50 percent probability on nonexceedance.  The objective 

weights were set to unity in all cases so that the decision maker(s) could employ preferences at 

the end. 
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Table 8-31:  Building Stock of Initial Population 

Seismic Provision Floor Plan Percentage of 100,000 in
Initial Population 

1959 Blue Book 1 9.59% 
2 9.59% 
3 6.90% 
4 10.43% 
5 9.59% 
6 9.59% 
7 20.22% 

1978 NEHRP 1 2.26% 
2 2.26% 
3 1.63% 
4 2.46% 
5 2.26% 
6 2.26% 
7 4.77% 

ASCE7-05 1 0.26% 
2 0.26% 
3 0.19% 
4 0.21% 
5 0.26% 
6 0.26% 
7 0.41% 

SDDD-IO 1 0.26% 
2 0.26% 
3 0.19% 
4 0.21% 
5 0.26% 
6 0.26% 
7 0.41% 

SDDD-LS 1 0.26% 
2 0.26% 
3 0.19% 
4 0.21% 
5 0.26% 
6 0.26% 
7 0.41% 

FEMA P-807 1 0.21% 
2 0.41% 
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8.1 Case Study 1:  Los Angeles County, California 

The first case study was conducted using the 2010 U.S. census data for Los Angeles 

County, California.  The input values for each subcategory are provided in Table 8-2.   

Table 8-32:  Los Angeles County Community Inputs 

Variable Subcategory Input Value 
Total Population Size 9,818,605 
Mean Annual Income $81,729 
Mean Household Size 2.98 
Percentage of Households with Children 37.2% 
Age Child (0 - 9 y.o.) 13.1% 

Adolescent (10 - 19 y.o.) 14.6% 
Young Adult (20 - 29 y.o.) 15.4% 
Middle-Aged Adult (30 - 45 
y.o.)

21.9% 

Older Adult (46 - 64 y.o.) 24.2% 
Elder (65+ y.o.) 10.9% 

Ethnicity/Race Majority 1.5% 
Minority 98.5% 

Family Structure Single 19.5% 
Partnered 80.5% 
Parent 37.2% 

Gender Female 50.3% 
Male 49.7% 

Socioeconomic 
Status 

Low 50.3% 
Moderate 34.9% 
Upper 14.5% 

8.1.1 Illustrative Examples of the Optimization Framework 

The examples presented in this subsection were conducted using the optimization 

framework for community-level resiliency.  The analyses were conducted over the 2010 Los 

Angeles County population (see Table 8-2) at a MCE seismic hazard (Sa = 2.5g).  The time of 

day was set to night (2:00am) such that peak occupancy of the residential structures would be 

achieved.  Specifically, the occupancy percentage employed for the residential structures was 

98%, and 25% for the commercial structures.  The analysis was conducted once using the social 

vulnerability computations, and once without including the social vulnerability computations.  In 
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each case, six plots are presented.  The plots provide relationships between the  percentile values 

for the objectives.  Each point on a plot represents a different solution identified by the genetic 

algorithm.  The same solutions are plotted on all six plots, but with the different objective values 

compared.  Recall, the framework solution is a chromosome representing the number of each of 

the 37 archetypes present within the community.  There are 5000 solutions on each plot, many of 

which are identical.  The  percentile values were extracted from the full lognormal distributions 

of each objective.  The full distribution plots are provided in Appendix D for each of the 

objectives, as well as, several complimentary damage measures.   

8.1.1.1 Community-Level Optimization of Los Angeles County at a MCE Seismic Hazard using 

Social Vulnerability 

A community-level optimization was conducted using the resiliency framework on the 

2010 Los Angeles County population at a MCE seismic hazard considering the social 

vulnerability of the community.  The resulting  percentile values for the four objectives are 

plotted in Figure 8-1 through Figure 8-6.  The green circles highlight the pareto-optimal 

solutions in each figure.  The pareto-optimal surface represents the optimal tradeoff with respect 

to the two objectives being compared.  The pareto-optimal surface is not identical in the figures, 

because the identified solutions are optimal for only a subset of the objectives, and not all four 

objectives.  Figure 8-1 provides the relationship between the estimated economic loss and the 

associated initial cost of the solutions.  Three solutions formed the pareto-optimal surface for 

these two objectives.  Figure 8-2 provides the relationship between the estimated number of 

morbidities and the associated initial cost of the solutions.  Recall that the number of morbidities 

includes the total number of injuries, fatalities, and PTSD diagnoses. In this case, only two 

solutions were identified on the pareto-optimal surface. Figure 8-3 provides the relationship 
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between the estimated recovery time and the associated initial cost of the solutions, where only a 

single optimal solution was identified.  Figure 8-4 provides the relationship between the 

estimated economic loss and the recovery time of the solutions, with only a single optimal 

solution identified.  Figure 8-5 provides the relationship between the estimated number of 

morbidities and the recovery time of the solutions, again, with only a single optimal solution 

identified.  Figure 8-6 provides the relationship between the estimated number of morbidities and 

the associated economic loss of the solutions.  In this case, two solutions were identified to form 

the pareto-optimal surface.  From these six plots, only three solutions were identified to form the 

pareto-optimal set of solutions for all four resiliency objectives.  However, only two were 

extracted for further investigation.  One of the two selected solutions provided the optimal 

tradeoff for the objectives number of morbidities and recovery time.  The second selected 

solution provided the optimal tradeoff for the objectives initial cost and economic loss. 

 

Figure 8-1:  Percentile Values for Economic Loss vs. Initial Cost for Los Angeles County at 
MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-2:   Percentile Values for Number of Morbidities vs. Initial Cost for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

 

  

Figure 8-3:   Percentile Values for Recovery Time vs. Initial Cost for Los Angeles County at 
MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-4:   Percentile Values for Economic Loss vs. Recovery Time for Los Angeles County at 
MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

 

 

Figure 8-5:   Percentile Values for Number of Morbidities vs. Recovery Time for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-6:   Percentile Values for Number of Morbidities vs. Economic Loss for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

8.1.1.2 Community-Level Optimization of Los Angeles County at a MCE Seismic Hazard without 

using Social Vulnerability 

A community-level optimization was conducted using the resiliency framework on the 

2010 Los Angeles County population at a MCE seismic hazard without considering the social 

vulnerability of the community.  The resulting  percentile values for the four objectives were 

plotted in Figure 8-7 through Figure 8-12.  Similar to the above discussion, the green circles 

highlight the pareto-optimal surface of solutions.  Figure 8-7 provides the relationship between 

the estimated economic loss and the associated initial cost of the solutions.  Five solutions were 

identified to form the pareto-optimal surface for these two objectives.  Figure 8-8 provides the 

relationship between the estimated number of morbidities and the associated initial cost of the 

solutions.  Four solutions were identified to form the pareto-optimal surface for these two 

objectives.  Figure 8-9 provides the relationship between the estimated recovery time and the 

associated initial cost of the solutions.  Figure 8-10 provides the relationship between the 

estimated economic loss and the recovery time of the solutions.  Figure 8-11 provides the 
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relationship between the estimated number of morbidities and the recovery time of the solutions. 

The three figures (Figure 8-9 - Figure 8-11) which compare recovery time to another objective, 

all revealed only a single solution on the pareto-optimal surface.  Figure 8-12 provides the 

relationship between the estimated number of morbidities and the associated economic loss of 

the solutions.  Two solutions were identified to form the pareto-optimal surface for these two 

objectives.  In total, five solutions were identified to form the pareto-optimal set of solutions for 

the four objectives.  Similar to the above analysis, only two were extracted for further 

investigation.  These two solutions were selected based on the same criteria used previously. 

Figure 8-7:   Percentile Values for Economic Loss vs. Initial Cost for Los Angeles County at 
MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-8:   Percentile Values for Number of Morbidities vs. Initial Cost for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

 

 

Figure 8-9:   Percentile Values for Recovery Time vs. Initial Cost for Los Angeles County at 
MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-10:   Percentile Values for Economic Loss vs. Recovery Time for Los Angeles County 
at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

 

 

Figure 8-11:   Percentile Values for Number of Morbidities vs. Recovery Time for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 
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Figure 8-12:   Percentile Values for Number of Morbidities vs. Economic Loss for Los Angeles 
County at MCE using Social Vulnerability with Pareto Optimal Surface Labeled 

 
In reviewing Figure 8-1 through Figure 8-12, one can see similar trends in the figures 

which compare the same objectives.   Figure 8-1 and Figure 8-7 both compared the economic 

loss versus the initial cost.  In these figures, there was a large cluster of solutions demonstrating a 

trend which indicated that the higher the initial cost the lower the economic loss, the exact 

relationship that is to be expected.  Similarly, in Figure 8-2 and Figure 8-8, when the number of 

morbidities was plotted against the initial cost, a similar trend was revealed indicating that the 

higher the initial cost the fewer estimated number of morbidities.   Figure 8-3 and Figure 8-9 

provided the comparison between the time to recovery and the initial cost.  Similar to the above 

two comparisons, the general trend reveals that in general, the higher the initial cost, the lower 

the time to recovery.  Figure 8-4 and Figure 8-10 compared the economic loss and the time to 

recovery, whereas Figure 8-5 and Figure 8-11 compared the number of morbidities with the time 

to recovery.  In both cases, similar trends were revealed that the lower the recovery time, the 

lower the economic loss and the fewer morbidities.  In these figures which compare an objective 

versus the time to recovery, a vertical lower limit is shown at approximately 52 weeks.  This 
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vertical lower limit suggests that at least one person in the exposed population would be 

diagnosed with PTSD, and therefore the recovery time could not be less than one year.  Upon 

further inspection, one would find that the estimated repair times might be lower than 52 weeks 

for some solutions.   Finally, Figure 8-6 and Figure 8-12 demonstrated the relationship between 

the number of morbidities and the economic loss.  These two objectives clearly go hand-in-hand 

providing a linear trend showing that fewer morbidities always correspond to a lower economic 

loss.  These trends, in all cases, were what was to be expected, and were successfully achieved. 

8.1.1.3 Identifying the Pareto-Optimal Surface based on MCE Seismic Hazard 

The initial population, the two optimal solutions identified in Sec. 1.2.1.1, and the two 

optimal solutions identified in Sec. 1.2.1.2 are provided in Table 8-5, respectively.  These five 

solutions will be used for conducting the remaining community-level case studies.  It should be 

noted that using a population size of 50 and a maximum number of 100 generations will not 

generate every possible solution.  Therefore, there may be more and more-optimal solutions than 

the four listed in Table 8-5, or found in the analyses presented above.  These input parameters 

were felt to provide an extensive set of solutions for the illustrative examples presented in this 

dissertation.  However, if the framework was to be used by a decision maker for generating the 

optimal retrofit plan for their community, then the population size should be increased by at least 

two orders of magnitude, and likely the maximum number of generations would increase 

similarly.  The computing power to support a population of such size was not available to the 

author at the time of this dissertation.  From Table 8-3, one can see that the four optimal 

solutions wanted to retrofit all of the three-story and four-story buildings designed by the 1959  
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Blue Book (i.e. A4 and A7) as these must have represented the most vulnerable structures to the 

population.  The algorithm did not allow the counts to reduce to zero to prohibit numerical 

instabilities in the computations. 
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Table 8-33:   Initial Population and the Pareto-Optimal Set of Solutions Considering a MCE 
Seismic Hazard for Los Angeles County 
 

Solution Alleles for 1959 Blue Book Designs 
A1 A2 A3 A4 A5 A6 A7 

1 9586 9586 6898 10432 9586 9586 20220 
2 6791 1 1 1 1 1 1 
3 6624 1 23 1 44 1 1 
4 1 8790 1 1 8790 1 1 
5 1 8242 1 1 8242 1 1 

Solution Alleles for the 1978 NEHRP Designs 
A1 A2 A3 A4 A5 A6 A7 

1 2261 2261 1627 2460 2261 2261 4867 
2 1 1 1 1 1 1 1974 
3 1 1 1 1 1 1 1806 
4 1464 1 830 1664 1464 1 3972 
5 1 1 823 1116 917 1 3425 

Solution Alleles for the 2005 ASCE-7 Designs 
A1 A2 A3 A4 A5 A6 A7 

1 261 261 188 213 261 261 414 
2 1509 1509 1509 2172 2404 1825 2509 
3 4287 3061 3061 3061 3264 3061 3061 
4 2949 250 2684 1207 250 1608 250 
5 3645 486 3032 958 487 516 2137 

Solution Alleles for the SDDD-IO Retrofit Designs 
A1 A2 A3 A4 A5 A6 A7 

1 261 261 188 213 261 261 414 
2 5559 6687 4899 6120 6041 4999 3292 
3 5054 6360 4595 4758 4302 3220 3061 
4 4220 4507 2672 4662 4384 5100 5682 
5 4220 4507 2739 4914 4446 4654 6797 

Solution Alleles for the SDDD-LS Retrofit Designs 
A1 A2 A3 A4 A5 A6 A7 

1 261 261 188 213 261 261 414 
2 5559 6687 4899 6120 6041 4999 3292 
3 5054 6360 4595 4758 4302 3220 3061 
4 4221 4507 2672 4662 4384 5100 5682 
5 4221 4070 2739 4914 4446 4548 6684 

Solution Alleles for the FEMA P-807 Retrofit Designs 
A1 A2 A3 A4 A5 A6 A7 

1 - - - 213 - - 413 
2 - - - 2171 - - 1509 
3 - - - 3061 - - 3061 
4 - - - 1207 - - 250 
5 - - - 958 - - 2137 
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8.1.2 Illustrative Examples of the Community Resiliency Framework 

In this section, and the remainder of the illustrative examples, five specific solutions were 

selected and analyzed more closely.   The five solutions were provided in Table 8-5.  In all cases, 

these are real solutions which the search algorithm found.  In this case study and the following 

two case studies, the analyses were conducted at six seismic intensities.  The six seismic 

intensities are:  17%, 33%, 50%, 66%, 83%, and 100% of MCE (Sa = 0.3g, 0.7g, 1.2g, 1.6g, 

2.1g, and 2.5g, respectively).  In the following subsections, the results to analyses using the 2010 

Los Angeles County population data with and without the inclusion of social vulnerability are 

provided.  The resulting fragilities for the latter three objectives conditioned on initial cost are 

provided in Figure 8-13 through Figure 8-30 for the six seismic intensities, respectively.  The 

economic loss, number of morbidities, and recovery time were conditioned on initial cost 

because these three objectives conflict with initial cost.  In each case, the estimated losses are 

compared for the five solutions, with and without the incorporation of the social vulnerability 

computations.  The green curves are the estimated losses using the social vulnerability 

computations, and the black curves are without.  In each case, the estimated losses were less 

when the social vulnerability computations were not included for each respective solution.  

When reviewing the figures, one can see how the axis values increase with increasing seismic 

intensity.  The initial population is S1; it had the highest estimated losses for each seismic 

intensity regardless of whether the social vulnerability computations were included.  Reviewing 

Figure 8-13 through Figure 8-30, the data is presented on multiple plots.  For the objectives 

economic loss and recovery time, the data is separated based on whether the social vulnerability 

computations were included or not.  This was done because for economic loss, the difference in 

the curves was not visible at a reasonable scale, therefore they were separated.  Looking at the 
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recovery time fragilities in Figure 8-15, Figure 8-18, Figure 8-21, Figure 8-24, Figure 8-27, and 

Figure 8-30, the curves presented are actually identical for the two cases (e.g., with and without 

including the social vulnerability computations).  This is because the repair times do not consider 

the socioeconomic variables and they controlled over the recovery times due to morbidities, 

where PTSD recovery time is the worst case and set at 52 weeks.  Therefore, the recovery times 

were estimated as the same distributions regardless of whether the social vulnerability 

computations were included or not.   For the objective, number of morbidities, the data was 

separated onto three plots based on the abscissa values.  Note, when viewing Figure 8-14, Figure 

8-17, Figure 8-20, Figure 8-23, Figure 8-26, and Figure 8-29, the data was split to demonstrate 

the distribution (i.e. COV) in each case.  The  percentile values from each of the 18 fragilities 

curves were extracted and are compared more closely with discussion in Section 8.5.      

 

Figure 8-13:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/6) MCE using Los Angeles County Population 
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Figure 8-14:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/6) MCE using Los Angeles County Population 

 

 

Figure 8-15:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/6) MCE using Los Angeles County Population 
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Figure 8-16:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/3) MCE using Los Angeles County Population 

 

 

Figure 8-17:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/3) MCE using Los Angeles County Population 
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Figure 8-18:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/3) MCE using Los Angeles County Population 

 

 

Figure 8-19:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/2) MCE using Los Angeles County Population 
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Figure 8-20:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/2) MCE using Los Angeles County Population 

Figure 8-21:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/2) MCE using Los Angeles County Population 
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Figure 8-22:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(2/3) MCE using Los Angeles County Population 

Figure 8-23:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (2/3) MCE using Los Angeles County Population 
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Figure 8-24:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (2/3) MCE using Los Angeles County Population 

 

 

Figure 8-25:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(5/6) MCE using Los Angeles County Population 
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Figure 8-26:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (5/6) MCE using Los Angeles County Population 

 

 

Figure 8-27:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (5/6) MCE using Los Angeles County Population 
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Figure 8-28:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
MCE using Los Angeles County Population 

 

 

Figure 8-29:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at MCE using Los Angeles County Population 
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Figure 8-30:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at MCE using Los Angeles County Population 
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Los Angeles, California.  This area has a very high population of ethnic minorities with a much 
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60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P[
R

ec
ov

er
yT

im
e 

| I
ni

tia
lC

os
t]

Recovery Time (weeks)

 

 

S1
S2
S3
S4
S5

60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovery Time (weeks)

 

 

S1 No SV
S2 No SV
S3 No SV
S4 No SV
S5 No SV

217 
 



Table 8-34:  East Los Angeles Community Inputs 

Variable Subcategory Input Value 
Total Population Size 126,496 
Mean Annual Income $37,982 
Mean Household Size 4.09 
Percentage of Households with Children 42.6% 
Age Child (0 - 9 y.o.) 17.2% 

Adolescent (10 - 19 y.o.) 18.1% 
Young Adult (20 - 29 y.o.) 16.1% 
Middle-Aged Adult (30 - 45 
y.o.) 

21.6% 

Older Adult (46 - 64 y.o.) 18.4% 
Elder (65+ y.o.) 8.4% 

Ethnicity/Race Majority 1.5% 
Minority 98.5% 

Family Structure Single 19.5% 
Partnered 80.5% 
Parent 42.6% 

Gender Female 50.3% 
Male 49.7% 

Socioeconomic 
Status 

Low 50.3% 
Moderate 34.9% 
Upper 14.5% 

 
The five solutions provided in Table 8-5 were analyzed at the same six seismic intensities 

investigated before, but with the East Los Angeles population data.  The resulting fragilities for 

the latter three objectives conditioned on initial cost are provided in Figure 8-31 through Figure 

8-48 for the six seismic intensities, respectively.  Similar to the above case study, the estimated 

losses are compared for the five solutions, with and without the incorporation of the social 

vulnerability computations.  The green curves are the estimated losses using the social 

vulnerability computations, and the black curves are without.  In each case, the estimated losses 

were less when the social vulnerability computations were not included for each respective 

solution.  When reviewing Figure 8-31 through Figure 8-48, one can see how the axis values 

increase with increasing seismic hazard intensity, similar to the case study above.  The initial 

population is S1, had the highest estimated losses for each seismic intensity regardless of 
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whether the social vulnerability computations were included.  The approach used for presenting 

the data in the above section is repeated here.   The  percentile values from each of the 18 

fragilities curves using the East Los Angeles population data were extracted and are compared 

more closely with discussion in Section 8.5.      

 

Figure 8-31:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/6) MCE using East Los Angeles Population 
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Figure 8-32:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/6) MCE using East Los Angeles Population 

 

 

Figure 8-33:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/6) MCE using East Los Angeles Population 
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Figure 8-34:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/3) MCE using East Los Angeles Population 

 

 

Figure 8-35:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/3) MCE using East Los Angeles Population 
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Figure 8-36:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/3) MCE using East Los Angeles Population 

 

 

Figure 8-37:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/2) MCE using East Los Angeles Population 
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Figure 8-38:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/2) MCE using East Los Angeles Population 

 

 

Figure 8-39:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/2) MCE using East Los Angeles Population 
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Figure 8-40:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(2/3) MCE using East Los Angeles Population 

 

 

Figure 8-41:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (2/3) MCE using East Los Angeles Population 
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Figure 8-42:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (2/3) MCE using East Los Angeles Population 

 

 

Figure 8-43:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(5/6) MCE using East Los Angeles Population 
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Figure 8-44:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (5/6) MCE using East Los Angeles Population 

 

 

Figure 8-45:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (5/6) MCE using East Los Angeles Population 
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Figure 8-46:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
MCE using East Los Angeles Population 

 

 

Figure 8-47:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at MCE using East Los Angeles Population 
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Figure 8-48:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at MCE using East Los Angeles Population 

 
8.3 Case Study 3:  Forecasted Population for Los Angeles County, California 

The final set of case studies were conducted using the 2010 U.S. census data for Daly 

City, California.  This area has an above average population of ethnic minorities, but with a 

higher mean annual income than Los Angeles County, and a higher educational attainment 

distribution.  Potential population growths for Los Angeles County could converge to having 

similar demographics as Daly City, and therefore using this community’s demographics were of 

interest.  The values input for each subcategory are provided in Table 8-5. 
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Table 8-35:  Daly City Community Inputs 

Variable Subcategory Input Value 
Total Population Size 101,123 
Mean Annual Income $89,180 
Mean Household Size 3.23 
Percentage of Households with Children 35.5% 
Age Child (0 - 9 y.o.) 10.5% 

Adolescent (10 - 10 y.o.) 11.5% 
Young Adult (20 - 29 y.o.) 15.9% 
Middle-Aged Adult (30 - 45 
y.o.) 

21.2% 

Older Adult (46 - 64 y.o.) 27.3% 
Elder (65+ y.o.) 13.4% 

Ethnicity/Race Majority 13.9% 
Minority 86.1% 

Family Structure Single 26.7% 
Partnered 73.3% 
Parent 35.5% 

Gender Female 50.6% 
Male 49.4% 

Socioeconomic 
Status 

Low 23.8% 
Moderate 37.8% 
Upper 35.6% 

 
The five solutions provided in Table 8-5 were analyzed at the same six seismic intensities 

investigated before, but with the Daly City population data.  The resulting fragilities for the latter 

three objectives conditioned on initial cost are provided in Figure 8-49 through Figure 8-66 for 

the six seismic intensities, respectively.  Similar to the above case studies, the estimated losses 

were compared for the five solutions, with and without the incorporation of the social 

vulnerability computations.  The green curves are the estimated losses using the social 

vulnerability computations, and the black curves are without.  In each case, the estimated losses 

were less when the social vulnerability computations were not included for each respective 

solution.  When reviewing Figure 8-49 through Figure 8-66, one can see how the axis values 

increase with increasing seismic hazard intensity, similar to the case studies above.  The initial 

population is S1, had the highest estimated losses for each seismic intensity regardless of 
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whether the social vulnerability computations were included.  The approach used for presenting 

the data in the above sections is repeated here.   The  percentile values from each of the 18 

fragilities curves using the Daly City population data were extracted and are compared more 

closely with discussion in Section 8.5.      

 

Figure 8-49:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/6) MCE using Daly City Population 
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Figure 8-50:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/6) MCE using Daly City Population 

 

 

Figure 8-51:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/6) MCE using Daly City Population 
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Figure 8-52:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/3) MCE using Daly City Population 

 

 

Figure 8-53:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/3) MCE using Daly City Population 
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Figure 8-54:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/3) MCE using Daly City Population 

 

 

Figure 8-55:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(1/2) MCE using Daly City Population 

 

40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P[
R

ec
ov

er
yT

im
e 

| I
ni

tia
lC

os
t]

Recovery Time (weeks)

 

 

S1
S2
S3
S4
S5

40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovery Time (weeks)

 

 

S1 No SV
S2 No SV
S3 No SV
S4 No SV
S5 No SV

0 1 2 3 4 5
x 1010

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Economic Loss ($)

P[
Ec

on
om

ic
Lo

ss
 | 

In
iti

al
C

os
t]

 

 

S1
S2
S3
S4
S5

0 1 2 3 4
x 1010

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Economic Loss ($)

 

 

S1 No SV
S2 No SV
S3 No SV
S4 No SV
S5 No SV

233 
 



 

Figure 8-56:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (1/2) MCE using Daly City Population 

 

 

Figure 8-57:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (1/2) MCE using Daly City Population 
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Figure 8-58:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(2/3) MCE using Daly City Population 

 

 

Figure 8-59:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (2/3) MCE using Daly City Population 
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Figure 8-60:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (2/3) MCE using Daly City Population 

Figure 8-61:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
(5/6) MCE using Daly City Population 
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Figure 8-62:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at (5/6) MCE using Daly City Population 

 

 

Figure 8-63:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at (5/6) MCE using Daly City Population 

 

0 5 10 15
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
[N

um
be

rM
or

bi
di

tie
s 

| I
ni

tia
lC

os
t]

 

 

S1
S1 No SV

1 1.5 2 2.5 3
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Morbidities (persons)

 

 

S2
S3
S4
S5

4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

S2 No SV
S3 No SV
S4 No SV
S5 No SV

60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P[
R

ec
ov

er
yT

im
e 

| I
ni

tia
lC

os
t]

Recovery Time (weeks)

 

 

S1
S2
S3
S4
S5

60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovery Time (weeks)

 

 

S1 No SV
S2 No SV
S3 No SV
S4 No SV
S5 No SV

237 
 



 

Figure 8-64:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost at 
MCE using Daly City Population 

 

 

Figure 8-65:  Probability of Nonexceedance for the Number of Morbidities Given a Specific 
Initial Cost at MCE using Daly City Population 
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Figure 8-66:  Probability of Nonexceedance for the Recovery Time Given a Specific Initial Cost 
at MCE using Daly City Population 
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different time of day.  Recall, the 1994 Northridge earthquake occurred around 4:00am.  The 

earthquake also occurred on a holiday weekend, so it is possible that many people were actually 

out of town.  Anytime the fatality count is greater than zero, a tragic loss has occurred, however 

overall for this earthquake, and given the fact that more than one roadway bridge collapsed, the 

fatality count of 26 persons was much lower than what could have been expected if the 

earthquake had occurred on a non-holiday during rush hour.     

Based on the associated occupancy rates provided above, one would expect the worst 

case to be at 2:00am, and the lowest loss estimations to be at 5:00pm during the commute since 

the framework only considers morbidities occurring in buildings and most of those buildings are 

residential.  This was not the response demonstrated in Figure 8-67 through Figure 8-69 for the 

respective objectives.  The 2:00pm case caused the highest economic loss and highest number of 

morbidities.  This is likely due to the higher occupancy of the four-story commercial building 

relative to the one-, two-, and three-story residential buildings.  Figure 8-69 only shows one 

curve, because the recovery time was controlled by the recovery time associated with PTSD (one 

year) which is the same for all three times of day.  Although not investigated, it is likely that the 

2:00am and 2:00pm loss estimations would differ more significantly at a higher seismic 

intensity. 
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Figure 8-67:  Probability of Nonexceedance for Economic Loss Given a Specific Initial Cost 
using Los Angeles County Population at Three Occupancy Levels and 1994 Northridge 

Earthquake Equivalent Seismic Hazard 
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Figure 8-68:  Probability of Nonexceedance for Number of Morbidities Given a Specific Initial 
Cost using Los Angeles County Population at Three Occupancy Levels and 1994 Northridge 

Earthquake Equivalent Seismic Hazard 
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Figure 8-69:  Probability of Nonexceedance for Recovery Time Given a Specific Initial Cost 
using Los Angeles County Population at Three Occupancy Levels and 1994 Northridge 

Earthquake Equivalent Seismic Hazard 
 

8.5 Discussion 
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included versus when it is not included indicates that there will be a difference in the resulting 

loss estimation values.  One can see that although the demographics of these three communities 

varied, the factors determined for the probability of injury and fatality did not vary significantly 

with respect to each other.  The population with the highest socio-economic status, Daly City, 
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has the lowest factors applied to all three morbidity rates.  The population with the lowest socio-

economic status, East Los Angeles, has the highest factors applied to all three morbidity rates.  

This means one can expect the highest losses to come from East Los Angeles for an identical 

magnitude earthquake relative to the other two communities.  This infers that their higher social 

vulnerability to earthquakes, and therefore greater precautionary measures should be investigated 

in that community.  The factors in Table 8-6 also demonstrate that socioeconomic status is a 

higher contributor to social vulnerability than ethnicity in the framework since Daly City and 

East Los Angeles both have high ethnic minority populations, but Daly City also has a high 

socioeconomic status.  Although only these three populations were investigated here, where all 

of the factors in Table 8-6 were higher than unity when the social vulnerability computations 

were included, a population could exist where these factor are less than unity.  Such a population 

was not explored here, and may only be representative of a virtual community with modified 

inputs from any U.S. census data.  Factors lower than unity would be representative of a 

community with very low social vulnerability.   

Table 8-36:  Factors for Morbidity Computations 

Community 
With Social Vulnerability 

Without Social Vulnerability 
Injury and Fatality Rates PTSD Rate 

Los Angeles County 1.67 3.52 1.00 

East Los Angeles 1.71 4.00 1.00 

Daly City 1.57 3.26 1.00 
 

To further demonstrate the significance of including the socioeconomic variables in loss 

estimation and mitigation planning, the  percentile values were extracted from the economic loss 

and number of morbidities fragilities above for two solutions, S1 and S2 as an example.  S1 was 

selected since it is the initial population, and S2 was selected to represent one of the optimal 
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solutions.  The  percentile values were not further investigated for the recovery time since these 

values matched for the analyses when using and not using the social vulnerability computations.  

The  percentile values are tabulated with a percent difference comparison for economic loss and 

for the number of morbidities for all three populations where the percent differences are in bold.  

Moving from left to right in Table 8-7, the percent differences increase with increasing seismic 

intensity.  The percent differences are higher for the initial population than for the optimal 

solution S2 for the economic loss computation in Table 8-7.  In Table 8-8, the percent 

differences for the number of morbidities are very severe at all seismic intensities for both 

solutions.  Recall that the economic loss is a compilation of the repair costs, contents damage, 

and the costs due to morbidities (medical costs and downtime).  Therefore, if the highest 

contributor to economic loss is repair costs (say for the initial population where the building 

stock is mostly old and structurally deficient), then we would expect to see a larger difference in 

economic loss values when using versus not using the social vulnerability computations.  The 

number of morbidities, on the other hand, is completely based upon the morbidities which 

incorporate the factors shown in Table 8-6, therefore regardless of the mitigation level of the 

building stock, we would expect to see major differences in the morbidity count when including 

the social vulnerability computations.  One point that was noted in discussion of Table 8-6 was 

that the East LA population would be considered the most vulnerable, followed by Los Angeles 

County, leaving Daly City to be the least vulnerable of the three populations.  Reviewing the 

percent differences in Table 8-7 and Table 8-8, the largest percent difference values are for East 

LA, followed by Los Angeles County, leaving Daly City with the smallest percent difference 

values for both economic loss and the number of morbidities in most cases.  These results are 

exactly what one would expect, and from this, one can conclude that the more socially 
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vulnerable the population is, the more important it is to include social vulnerability into the loss 

estimations and mitigation planning to avoid under-prediction of the losses. 

Table 8-37:  50th Percentile and Percent Difference for Economic Loss 

Population Solution Seismic Intensity 
1/6MCE 1/3MCE 1/2MCE 2/3MCE 5/6MCE MCE 

Los 
Angeles 
County 

S1  No SV 
($) 2.20E+09 9.03E+09 2.03E+10 5.47E+10 1.02E+11 1.45E+11 

S1 With 
SV ($) 2.22E+09 9.12E+09 2.07E+10 5.58E+10 1.05E+11 1.48E+11 

Difference 
(%) 0.91 1.00 1.97 2.01 2.94 2.07 

S2 No SV 
($) 8.15E+08 3.79E+09 7.25E+09 1.28E+10 2.68E+10 4.67E+10 

S2 With 
SV ($) 8.19E+08 3.81E+09 7.34E+09 1.30E+10 2.72E+10 4.76E+10 

Difference 
(%) 0.49 0.53 1.24 1.56 1.49 1.93 

East LA 

S1 No SV 
($) 2.21E+09 9.05E+09 2.04E+10 5.49E+10 1.03E+11 1.46E+11 

S1 With 
SV ($) 2.22E+09 9.16E+09 2.09E+10 5.62E+10 1.06E+11 1.50E+11 

Difference 
(%) 0.45 1.22 2.45 2.37 2.91 2.74 

S2 No SV 
($) 8.16E+08 3.80E+09 7.28E+09 1.28E+10 2.69E+10 4.71E+10 

S2 With 
SV ($) 8.20E+08 3.83E+09 7.39E+09 1.31E+10 2.75E+10 4.83E+10 

Difference 
(%) 0.49 0.79 1.51 2.34 2.23 2.55 

Daly City 

S1 No SV 
($) 2.21E+09 9.03E+09 2.04E+10 5.47E+10 1.03E+11 1.45E+11 

S1 With 
SV ($) 2.22E+09 9.12E+09 2.07E+10 5.57E+10 1.05E+11 1.48E+11 

Difference 
(%) 0.45 1.00 1.47 1.83 1.94 2.07 

S2 No SV 
($) 8.15E+08 3.79E+09 7.26E+09 1.28E+10 2.68E+10 4.68E+10 

S2 With 
SV ($) 8.18E+08 3.81E+09 7.33E+09 1.30E+10 2.72E+10 4.76E+10 

Difference 
(%) 0.37 0.53 0.96 1.56 1.49 1.71 
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Table 8-38:  50th Percentile and Percent Difference for the Number of Morbidities 

Population Solution Seismic Intensity 
1/6MCE 1/3MCE 1/2MCE 2/3MCE 5/6MCE MCE 

Los 
Angeles 
County 

S1  No SV 
(persons) 224 1440 3540 12500 32700 53000 

S1 With 
SV 

(persons) 
491 3570 8310 35200 91600 146000 

Difference 
(%) 119 148 135 182 180 175 

S2 No SV 
(persons) 53.7 642 1160 1920 5440 14800 

S2 With 
SV 

(persons) 
102 1210 2610 4660 15300 41700 

Difference 
(%) 90 88 125 143 181 182 

East LA 

S1 No SV 
(persons) 265 1840 4410 15000 39800 65000 

S1 With 
SV 

(persons) 
595 4740 11000 45200 121000 195000 

Difference 
(%) 125 158 149 201 204 200 

S2 No SV 
(persons) 64.5 871 1640 2630 7040 19200 

S2 With 
SV 

(persons) 
126 1680 3880 6750 21100 58500 

Difference 
(%) 95 93 137 157 200 205 

Daly City 

S1 No SV 
(persons) 233 1530 3730 13000 34300 55700 

S1 With 
SV 

(persons) 
467 3450 8050 33700 88700 142000 

Difference 
(%) 100 125 116 159 159 155 

S2 No SV 
(persons) 56.1 692 1260 2080 5790 15800 

S2 With 
SV 

(persons) 
97 1190 2590 4560 14800 40800 

Difference 
(%) 73 72 106 119 156 158 
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The  percentile values for the three populations are plotted in Figure 8-70 - Figure 8-75.  

The  percentile values for economic loss and the number of morbidities versus the seismic 

intensity are provided in Figure 8-70 and Figure 8-71 for the Los Angeles County population.  

One can see from these figures that when comparing the estimated losses between using the 

social vulnerability computations versus not using them, the difference between values increases 

as the seismic intensity increases.  The differences between S1 loss estimations were more 

significant than S2.  That is to say, when computing loss estimations for a less resilient building 

stock, it is even more imperative to include social vulnerability into the loss estimations.  Figure 

8-72 and Figure 8-73 plot the  percentile values for economic loss and the number of 

morbidities, respectively, for the East Los Angeles population.  This population was deemed the 

most vulnerable of the three populations, and this conclusion is again apparent in Figure 8-71, 

Figure 8-73, and Figure 8-75 since Figure 8-73 has much higher ordinate values.  Figure 8-74 

and Figure 8-75 plot the  percentile values for economic loss and the number of morbidities, 

respectively, for the Daly City population.  This population was deemed the least vulnerable of 

the three populations, however the importance in including the social vulnerability computations 

is still very significant as provided by the percent differences reported in Table 8-7 and Table 

8-8, and the curves presented in the figures.  Overall, one can see that not including social 

vulnerability leads to large underestimations in losses, and this is particularly true for a highly 

vulnerable population with an outdated or structurally deficient building stock. 
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Figure 8-70:  50th Percentile Economic Loss versus Seismic Intensity for the Los Angeles 
County Population 

 

 

Figure 8-71:  50th Percentile Number of Morbidities versus Seismic Intensity for the Los 
Angeles County Population 
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Figure 8-72:  50th Percentile Economic Loss versus Seismic Intensity for the East Los Angeles 
Population 

 

 

Figure 8-73:  50th Percentile Number of Morbidities versus Seismic Intensity for the East Los 
Angeles Population 
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Figure 8-74:  50th Percentile Economic Loss versus Seismic Intensity for the Daly City 
Population 

 

 

Figure 8-75:  50th Percentile Number of Morbidities versus Seismic Intensity for the Daly City 
Population 
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 The percent differences between the economic loss determined when including and not 

including the social vulnerability computations presented in Table 8-7 may seem very small 

ranging from 0.37% to 2.94%.  However, these monetary values are very large, therefore small 

percent difference still corresponds to millions or billions of dollars difference.  Now, if the  

percentile values for economic loss are extracted from Table 8-7, and added to the initial cost for 

solutions 1 and 2, then the total financial loss may be investigated.  Table 8- 9 provides these 

computations, along with the percent difference between the total financial losses for the two 

solutions.  In all cases, for all three populations and all seismic intensities, the initial population 

(i.e. solution 1) has a higher estimated total financial loss.  This means that, although there is no 

associated initial cost, the estimated economic loss, even for very small earthquakes, is greater 

than the total financial loss for the retrofitted case.  Looking at the change in percent difference 

for each seismic intensity, the most significant difference occurs at 2/3MCE, or at DBE with 

approximately 76% difference.  It is not clear why this is, however it does hold a lot of 

implications  

since this is the seismic intensity that could very well be expected to occur.  When considering 

the reduced number of morbidities associated with the retrofitted solutions, it is clear that 

retrofitting is better, even if there is a higher associated initial cost. 
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Table 8- 9:  Comparison of Total Financial Loss for Three Case Studies 

Solution Measure Seismic Intensity 
1/6MCE 1/3MCE 1/2MCE 2/3MCE 5/6MCE MCE 

LA
 C

ou
nt

y 

S1 
With 
SV 

Initial Cost 
($) 0 0 0 0 0 0 

Economic 
Loss ($) 2.22E+09 9.12E+09 2.07E+10 5.58E+10 1.05E+11 1.48E+11 

Sum ($) 2.22E+09 9.12E+09 2.07E+10 5.58E+10 1.05E+11 1.48E+11 

S2 
With 
SV 

Initial Cost 
($) 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 

Economic 
Loss ($) 8.19E+08 3.81E+09 7.34E+09 1.30E+10 2.72E+10 4.76E+10 

Sum ($) 1.35E+09 4.34E+09 7.87E+09 1.35E+10 2.77E+10 4.81E+10 
Percent Difference 
(%) 39.14 52.39 61.97 75.75 73.59 67.48 

Ea
st

 L
A

 

S1 
With 
SV 

Initial Cost 
($) 0 0 0 0 0 0 

Economic 
Loss ($) 2.22E+09 9.16E+09 2.09E+10 5.62E+10 1.06E+11 1.50E+11 

Sum ($) 2.22E+09 9.16E+09 2.09E+10 5.62E+10 1.06E+11 1.50E+11 

S2 
With 
SV 

Initial Cost 
($) 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 

Economic 
Loss ($) 8.20E+08 3.83E+09 7.39E+09 1.31E+10 2.75E+10 4.83E+10 

Sum ($) 1.35E+09 4.36E+09 7.92E+09 1.36E+10 2.80E+10 4.88E+10 
Percent Difference 
(%) 39.10 52.38 62.10 75.74 73.55 67.45 

D
al

y 
C

ity
 

S1 
With 
SV 

Initial Cost 
($) 0 0 0 0 0 0 

Economic 
Loss ($) 2.22E+09 9.12E+09 2.07E+10 5.57E+10 1.05E+11 1.48E+11 

Sum ($) 2.22E+09 9.12E+09 2.07E+10 5.57E+10 1.05E+11 1.48E+11 

S2 
With 
SV 

Initial Cost 
($) 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 

Economic 
Loss ($) 8.18E+08 3.81E+09 7.33E+09 1.30E+10 2.72E+10 4.76E+10 

Sum ($) 1.35E+09 4.34E+09 7.86E+09 1.35E+10 2.77E+10 4.81E+10 
Percent Difference 
(%) 39.19 52.39 62.02 75.71 73.59 67.48 

 
  Further investigation of Table 8- 9 reveals that the total financial loss, and therefore the 

percent differences, for the three populations are approximately the same.  Only three significant 

digits are provided, so these values appear to be equal.  However, if more significant digits were 
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provided a slight difference would be seen in all cases.  Recall from Chapter 3, that the economic 

loss was computed by summing the repair costs, relocation costs, contents damage, cost due to 

injury, due to fatality, cost due to medical treatment of PTSD, and the downtime due to PTSD.  

All of these values are independent of the community’s economics except the last measure, 

downtime due to PTSD.  The downtime due to PTSD is computed using the mean annual income 

of the community.  Thus, the similarity in Table 8- 9 between the Los Angeles County 

population and the Daly City population occurs due to the similarity in the mean annual income 

for these two populations, $81,729 and $89,180 for Los Angeles County and Daly City, 

respectively, and the similar factors in Table 8-6.   The mean annual income for East Los 

Angeles was reported as $37,982, significantly less than the other two, and the factors in Table 

8-6 were higher.  Referring back to Table 8-8, one can see that the  percentile values of the 

number of morbidities for solution 2 are very similar for the Los Angeles County and Daly City 

populations at all six seismic intensity levels.  At all six seismic intensity levels, the number of 

morbidities for East Los Angeles was higher.  In fact, the number of morbidities estimated for 

East Los Angeles is approximately 39% higher than the estimates for either of the other two 

populations.  Taking this one step further, the estimated number of work hours lost in one year 

due to employees suffering from posttraumatic stress disorder may be determined for the current 

(i.e. initial) population.  The  percentile value for this measure at DBE (i.e. 2/3MCE), using 

Eqns. 3-30 and 3-32 was computed as 7,200, 9,500, and 6,800 hours for Los Angeles County, 

East Los Angeles, and Daly City, respectively.  Dividing the mean annual income for these three 

populations by 260 work days per year at 8 hours per day, providing an equivalent hourly rate for 

all three populations, the total dollars lost due to downtime, not medical costs, caused by persons 

having PTSD may be computed as $74 million, $45 million, and $76 million, for Los Angeles 
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County, East Los Angeles, and Daly City, respectively.  These values further demonstrate that 

the mental health of the population is critical for economic prosperity and recovery following 

disastrous events such as earthquakes, and further demonstrate the need for seismic mitigation.   
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Chapter 9: Conclusions, Contributions, and Recommendations 
 
 
 

A multi-objective optimization problem was solved via genetic algorithm using 

socioeconomic and engineering variables to improve community resiliency by identifying 

optimal retrofit plans for the woodframe building stock of the community.  The retrofit plans 

may be used by decision makers in determining where mitigation funds may best be allocated by 

providing the associated risk with each retrofit plan.  The associated risk was based upon four 

contributors:  initial cost, economic loss, number of morbidities, and recovery time.  

Additionally, the loss in quality of life for the population was demonstrated using 

complementary measures such as the number of building collapses, the number of persons 

sheltering out-of-place, the number of persons injured, killed, and diagnosed with PTSD, along 

with the estimated recovery time.  The primary and complementary measures were determined 

by modeling the influence that age, ethnicity and race, family structure, gender, socioeconomic 

status, the age, density and quality of the built environment, and building performance have on 

community seismic resiliency.  Following an extensive literature survey and meta-data analysis, 

it may be concluded that socio-economic variables can be quantified in a meaningful way in 

order to be included in engineering frameworks.  In this study, the probability of the morbidities, 

the economic loss, the recovery time, and the loss in quality of life were all modeled to be 

dependent on the socioeconomic variables.   

Due to the large quantity of at-risk soft-story woodframe buildings in California, and with 

California being the focal area of the applied framework, these building types were desired to 

serve as archetypes in the present framework.  Prior to inclusion into the framework, the seismic 

behavior of these buildings, post-retrofit, needed to be experimentally investigated to obtain 
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proper performance data  An experimental study was conducted to investigate the adequacy of 

soft-story woodframe buildings retrofitted by performance-based seismic retrofit procedures and 

the FEMA P-807 retrofit procedure.  The results of the experimental studies confirmed that soft-

story buildings retrofitted by performance-based seismic design procedures provide excellent 

seismic performance when subjected to very large  

earthquakes.  The results also demonstrated that soft-story woodframe buildings retrofitted 

following the FEMA P-807 procedure perform better than design expectations and can withstand 

large earthquakes without collapsing.   

Additionally, these experimental tests provided the means to develop a metric for 

correlating physical building damage to woodframe structures with peak inter-story drifts.  The 

metric became the basis of the damage states used in this study and were the connective tie 

between physical building damage, morbidity rates, economic loss, and recovery time.   

In total, 37 archetypes were modeled and analytically tested for usage in the framework.  

Design procedures dating back to 1959 and through 2014 state-of-the-art were followed in 

designing the archetypes.  The analytical analyses demonstrated the increase in performance 

provided by each newer design code for identical floor plans.  The performance-based seismic 

retrofits were superior to buildings design by seismic design codes, while the performance of 

FEMA P-807 retrofitted buildings was worse than PBSR and the modern seismic design code, 

but fell within the performance of the structurally obsolete buildings.  This investigation on the 

historical seismic performance of woodframe buildings confirms the improvement of seismic 

provisions with time; a comforting conclusion. 

There are many assumptions and approximations embedded into the framework which 

can leave to exponentially increasing uncertainty in the estimated losses.  With this in mind, the 
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framework was calibrated to meet several reported loss values for the 1994 Northridge 

earthquake, the most recent earthquake disaster in the United States.  Several illustrative 

examples were conducted as applications of the combined socioeconomic and engineering 

framework for optimizing community resiliency.  The county of Los Angeles, California was the 

focal point for the illustrative examples.  The population based on the 2010 U.S. census data for 

Los Angeles county, as well as two forecasted populations using the 2010 U.S. census data for 

East Los Angeles and Daly City, California were analyzed.   The application of the framework 

demonstrated that of the three populations, the one with the lowest socioeconomic status (i.e. 

East Los Angeles) was the most vulnerable to an earthquake disaster, and provided the highest 

estimated losses for economic loss, number of morbidities, and recovery time over the other two 

populations.  The application of the framework also demonstrated that the population with the 

highest socioeconomic status (i.e. Daly City) was the least vulnerable and produced the lowest 

estimated losses of the three populations.  These results revealed that socioeconomic status was a 

higher contributor to social vulnerability than ethnicity or race.  This conclusion fits in well with 

what other researchers have reported [Cutter et al. (2003), Cutter and Finch (2008)]. 

Through applying the framework to select populations in California, it was effectively 

demonstrated that extreme losses should be expected if a very large earthquake were to occur on 

the current woodframe building stock.  For a maximum considered earthquake (e.g. 2475 year 

return period), economic loss estimations exceeded $148 billion.  This amount was reduced to as 

much as $47 billion for one of the retrofit plans investigated in the illustrative examples. For this 

same size earthquake, the number of morbidities was estimated at approximately 146,000 people 

under the current woodframe building stock.  This count was reduced to as much as 41,700 

persons for one of the retrofit plans investigated.  The recovery time was reduced from 119 
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weeks to as little as 78 weeks by retrofitting.  The discussed values were taken at a 50% 

probability of nonexceedance with the social vulnerability computations included.   

For a design basis earthquake (i.e. 475 year return period), the estimated economic loss 

and number of morbidities for the current buildings tock in Los Angeles County, California was 

reported as $56 billion and 35,200 persons, respectively.  These values were reduced to as much 

as $13 billion and 4,660 persons, respectively.  The recovery time was reduced from 117 weeks 

to 56 weeks by retrofitting.  In the retrofitted case, the recovery time was controlled by the time 

for PTSD recovery and the building repair time was less than one year. 

The reduced loss values in both cases are still unfortunately high, although they were 

reduced by approximately an order of magnitude.  A greater reduction could potentially be made 

if the input parameters to genetic algorithm were increased allowing for more solutions to be 

explored.  It is believed that if the algorithm would have been allowed to run for much longer, it 

would have identified more and more optimal solutions that would reduce the estimated losses to 

lower values that those discussed above.   

Through the illustrative examples, it was effectively demonstrated that by not including 

social vulnerability into the loss estimations, large underestimations in losses result.  This was 

consistent in all examples for all loss estimates, except recovery time since the repair times were 

not modeled using the social vulnerability parameters.  In all exemplified applications, the total 

financial loss (e.g., initial cost + economic loss) was higher for the initial population (i.e. un-

retrofitted case).  When combining this financial savings with the reduced number of 

morbidities, it is clear that the higher initial cost associated with retrofitting the woodframe 

building stock greatly outweighs the risks and losses associated with not retrofitting. 
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The largest difference in total financial loss was demonstrated to occur at a DBE seismic 

intensity.  This finding was interesting, and should further encourage retrofit since a DBE event 

is very likely to occur in focal communities.   

The resulting losses were further investigated to demonstrate how important including the 

emotional health of the population is for the community’s economy and recovery.  The  

percentile values for the total number of work hours lost due to employees having PTSD was 

estimated as 7,200 hours, 9,500 hours, and 6,800 hours for Los Angeles County, East Los 

Angeles, and Daly City, respectively for a DBE seismic intensity.  These hour estimates equated 

to $74 million, $45 million, and $76 million, respectively, financial loss for the commercial 

industry based on the mean annual income for the three communities.  Considering these large 

estimated losses for a design bases earthquake, it is clear that including the mental health of the 

population is critical for economic prosperity and recovery following disastrous events such as 

earthquakes.  Considering 2,000 work-hours on average for a person per year, 7,200 work-hours 

lost by a DBE event may not seem like much for a population around the size of 1,000,000 

people.  The input values for determining the annual work-hours lost may be on the low side of 

estimating the number of hours lost due to presenteeism and absenteeism, and should be further 

explored. 

A study was conducted to demonstrate the difference in estimated losses based on the 

time of day.  This application was based on the 1994 Northridge earthquake.  Considering the 

woodframe building stock, the time of occurrence for the Northridge earthquake was a worst-

case time since the early morning hours (i.e. 4:00am) was modeled to have peak occupancy of 

the residential structures.  The illustrative example demonstrated that if the earthquake had 

occurred during the lowest residential occupancy hour (i.e. 5:00pm commute) the losses would 

260 
 



  

have been lower.  This is an interesting conclusion and demonstrates a short-coming in the 

framework.  The reason that the estimated losses were not much higher, especially the morbidity 

rates, following the actual time of day of the 1994 Northridge earthquake is because it did occur 

when most people were not driving on the roads since there were roadway bridge collapses.  The 

framework only considers losses occurring from the woodframe building stock and therefore 

does not capture losses occurring from highway bridges, etc.  Therefore the framework suggests 

that what one would assume to be the actual worst time of day for the 1994 Northridge 

earthquake to occur would be the best time of day considering loss estimations.   

In all actuality, there were several limitations to this study.  The most significant of which 

are that the distance variations over the community area from the epicenter were not considered, 

and that only the woodframe building stock was modeled for the built environment.  

Additionally, the initial population of the woodframe building stock was based on assumptions 

from census data, and not necessarily the exact current situation in the community being 

analyzed.   The framework, as it is, is specific to California and could not readily be applied to 

other locations with seismic hazards such as Memphis, Tennessee, or other parts of the world.  

This is because the seismic hazard used in the archetype designs, as well as the selected seismic 

design provisions and soft-story woodframe building archetypes are all specific to California.  

The framework is generalized and may easily be extended once other region-specific archetypes 

are incorporated. 

There are several major contributions of this dissertation.  The soft-story retrofit 

strategies designed and tested as part of this dissertation can be incorporated into practice to 

address the current at-risk condition of many communities in California.  Thus far an extensive 
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analysis on the evolution of risk for seismically designed woodframe buildings has not been 

conducted, but is a complementary output from the archetype designs and analyses.   

The socioeconomic parametric models may be used in other studies as a basis for 

quantifying such qualitative measures, and may be incorporated into other designs and 

frameworks when the social vulnerability of a place is included as a design objective.  The 

combined socioeconomic and engineering framework may be adopted and applied by local and 

state decision makers for optimizing the allocation of earthquake mitigation funds amongst its 

woodframe building stock, and as determining the best retrofit plan for their at-risk communities.  

The framework may also be incorporated into existing system level studies which desire to 

include social vulnerability and the quality of life within their models. 

Future work by the author will include addressing some of the limitations described 

above, including extending the framework to include emergency facilities and buildings of all 

structural types, as well as the aftermath potential of tsunamis and fire hazards.  The author will 

design a set of archetypes for the Memphis, Tennessee region, and apply the framework to local 

communities in that region.  Additionally, the author plans to develop similar socioeconomic 

variable factors for other hazards so as to extend the framework to other natural and human-

induced hazards. 
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Appendix A  
 
 
 

1. Example of fitting a lognormal distribution using distribution parameters. 

The lognormal probability density function (pdf) may be expressed as 

𝑓𝑓𝑥𝑥(𝑥𝑥; 𝜇𝜇,𝜎𝜎) =  1
𝑥𝑥𝑥𝑥√2𝜋𝜋

𝑛𝑛−
(𝑙𝑙𝑛𝑛𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 , 𝑥𝑥 > 0   Eq. A - 1  

The lognormal cumulative distribution function (CDF) may be expressed as 

𝐹𝐹𝑥𝑥(𝑥𝑥; 𝜇𝜇,𝜎𝜎) = 1
2
�1 + 𝑛𝑛𝑝𝑝𝑓𝑓 �𝑟𝑟𝑛𝑛 𝑥𝑥−𝜇𝜇

𝑥𝑥√2
�� = 𝛷𝛷 �𝑟𝑟𝑛𝑛𝑥𝑥−𝜇𝜇

𝑥𝑥
�  Eq. A - 2  

where μ and σ are the mean and standard deviation, respectively, of the associated normal 

distribution.  They represent the two distribution parameters where μ may be called the location 

parameters and σ the scale parameter. 

In MATLab, there are three commands associated with fitting the lognormal distribution, lognfit, 

lognpdf, and logncdf.  The lognormal distribution’s pdf and CDF may be developed by using the 

parametric values provided in the tables below as follows. 

�𝑌𝑌𝑝𝑝𝑑𝑑𝑓𝑓� = 𝑛𝑛𝑜𝑜𝑔𝑔𝑛𝑛𝑝𝑝𝑑𝑑𝑓𝑓(𝑋𝑋, 𝜇𝜇,𝜎𝜎)   Eq. A - 3  

[𝑌𝑌𝑅𝑅𝑃𝑃𝐶𝐶] = 𝑛𝑛𝑜𝑜𝑔𝑔𝑛𝑛𝑜𝑜𝑑𝑑𝑓𝑓(𝑋𝑋, 𝜇𝜇,𝜎𝜎)   Eq. A - 4  

where X is the rank-ordered vector of the random variable (e.g., peak inter-story drift, number of 

persons diagnosed with PTSD, etc.),  is the fitted probability vector of the pdf (i.e. the 

probability density function vector), and  is the fitted probability vector of the CDF (i.e. the 

cumulative distribution function vector). 
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2. Unit Cost of New Construction (cost per square foot) 

Floor 
Plan 

Design Procedure 
1959 Blue 

Book 
1978 

NEHRP ASCE7-05 SDDD-LS SDDD-IO FEMA P-807 

μ σ μ σ μ σ μ σ μ σ μ σ 
1 150 ⅓μ 150 ⅓μ 150 ⅓μ 150 ⅓μ 150 ⅓μ - - 
2 160 ⅓μ 160 ⅓μ 160 ⅓μ 160 ⅓μ 160 ⅓μ - - 
3 162 ⅓μ 162 ⅓μ 162 ⅓μ 162 ⅓μ 162 ⅓μ - - 
4 167 ⅓μ 167 ⅓μ 167 ⅓μ 167 ⅓μ 167 ⅓μ 167 ⅓μ 
5 150 ⅓μ 150 ⅓μ 150 ⅓μ 150 ⅓μ 150 ⅓μ - - 
6 160 ⅓μ 160 ⅓μ 160 ⅓μ 160 ⅓μ 160 ⅓μ - - 
7 152 ⅓μ 152 ⅓μ 152 ⅓μ 152 ⅓μ 152 ⅓μ 152 ⅓μ 

 

3. Unit Time of New Construction (time (month)) 

Floor 
Plan 

Design Procedure 
1959 Blue 

Book 
1978 

NEHRP ASCE7-05 SDDD-LS SDDD-IO FEMA P-807 

μ σ μ σ μ σ μ σ μ σ μ σ 
1 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ - - 
2 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ - - 
3 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ - - 
4 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 
5 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ - - 
6 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ 7 ⅓μ - - 
7 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 12 ⅓μ 

 

4. Cost of Retrofit (cost per square foot) 

Floor 
Plan 

Design Procedure 
ASCE7-05 SDDD-LS SDDD-IO FEMA P-807 

μ σ μ σ μ σ μ σ 
1 9 ⅓μ 28 ⅓μ 34 ⅓μ - - 
2 9 ⅓μ 28 ⅓μ 34 ⅓μ - - 
3 4.5 ⅓μ 14 ⅓μ 17 ⅓μ - - 
4 20.7 ⅓μ 8.4 ⅓μ 10.2 ⅓μ 2.7 ⅓μ 
5 9 ⅓μ 28 ⅓μ 34 ⅓μ - - 
6 9 ⅓μ 28 ⅓μ 34 ⅓μ - - 
7 2.25 ⅓μ 7 ⅓μ 8.5 ⅓μ 2.25 ⅓μ 
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5. Repair Costs (cost per unit ($/unit)) 

Unit Parameters Damage 
State 1 

Damage 
State 2 

Damage 
State 3 

Damage 
State 4 

Damage 
State 5 

Interior 
Wall 
(64sf) 

μ 0.0 453 453 1109 - 

σ 0.0 14 14 32 - 

Exterior 
Wall 
(64sf) 

μ 0.0 445 445 1328 - 

σ 0.0 13 13 37 - 

Ceiling 
(64sf) 

μ 0.0 245 245 409 - 
σ 0.0 8 8 13 - 

Window 
(each) 

μ 0.0 - - 239 - 
σ 0.0 - - 8 - 

Water 
Heater 
(each) 

μ 0.0 - - 752 - 

σ 0.0 - - 20 - 

 

6. Repair Times (time per unit (hour/unit)) 

Unit Parameters Damage 
State 1 

Damage 
State 2 

Damage 
State 3 

Damage 
State 4 

Damage 
State 5 

Interior 
Wall 
(64sf) 

μ 0.0 8 8 18.5 - 

σ 0.0 0.5 0.5 0.5 - 

Exterior 
Wall 
(64sf) 

μ 0.0 9 9 22.5 - 

σ 0.0 0.75 0.75 0.75 - 

Ceiling 
(64sf) 

μ 0.0 5 5 7.5 - 
σ 0.0 0.5 0.5 0.5 - 

Window 
(each) 

μ 0.0 - - 3 - 
σ 0.0 - - 0.25 - 

Water 
Heater 
(each) 

μ 0.0 - - 5.25 - 
σ 0.0 - - 0.375 - 
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7. Number of Units per Floor Plan 

Unit Floor Plan 
1 2 3 4 5 6 7 

Interior Wall (64sf) 12 26 62 115 14 16 201 
Exterior Wall (64sf) μ 28 106 115 15 23 98 

Ceiling (64sf) σ 44 56 214 22 23 316 
Window (each) 15 28 51 58 6 12 47 
Water Heater 

(each) 1 1 3 10 1 1 4 

 

8. Morbidity Rates (% of population) 

Morbidity 
Rates Parameters Damage 

State 1 
Damage 
State 2 

Damage 
State 3 

Damage 
State 4 

Damage 
State 5 

Injury 
Severity 
Level 1 

μ 0.0 0.005 0.025 0.1 0.3 

σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 

Injury 
Severity 
Level 2 

μ 0.0 0.0005 0.00225 0.01 0.4 

σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 

Injury 
Severity 
Level 3 

μ 0.0 0.000005 0.0003 0.001 0.2 

σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 

Injury 
Severity 
Level 4 

μ 0.0 0.0000005 0.0000003 0.00001 0.03 

σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 

Injury 
Severity 
Level 5 

μ 0.0 0.0000005 0.0000003 0.00001 0.05 

σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 

PTSD μ 0.0 0.000005 0.0003 0.001 0.2 
σ 0.0 ⅓μ ⅓μ ⅓μ ⅓μ 
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Appendix B 
 
 
 

 

Figure B-1:  1970 UBC Allowable Shear for Gypsum Materials 

278 
 



  

 

 

Figure B-2:  1988 UBC Allowable Shear for Gypsum Materials 
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Appendix C 
 
 
 

The resulting curves from the multi-record IDA analysis are provided in Figure C-1 through 

Figure C-37 for the first story of each of the 37 archetypes.  For the IDA, the FEMA P-695 suite 

of 22 bi-axial ground motions were scaled to forty spectral accelerations starting with 0.1g and 

ending with 4.0g at increments of 0.1g.  The peak inter-story drift response, from either principle 

building direction, were extracted from each scaled ground motion and plotted.   

 

Figure C-1:  Multi-Record IDA for Floor Plan 1, 1959 Blue Book Design 
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Figure C-2:  Multi-Record IDA Floor Plan 1, 1978 NEHRP Design 

 

 

Figure C-3:  Multi-Record IDA for Floor Plan 1, ASCE7-05 Design 
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Figure C-4:  Multi-Record IDA for Floor Plan 1, SDDD-LS Retrofit Design 

 

 

Figure C-5:  Multi-Record IDA for Floor Plan 1, SDDD-IO Retrofit Design 
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Figure C-6:  Multi-Record IDA for Floor Plan 2, 1959 Blue Book Design 

 

 

Figure C-7:  Multi-Record IDA Floor Plan 2, 1978 NEHRP Design 
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Figure C-8:  Multi-Record IDA for Floor Plan 2, ASCE7-05 Design 

 

 

Figure C-9:  Multi-Record IDA for Floor Plan 2, SDDD-LS Retrofit Design 
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Figure C-10:  Multi-Record IDA for Floor Plan 2, SDDD-IO Retrofit Design 

 

 

Figure C-11:  Multi-Record IDA for Floor Plan 3, 1959 Blue Book Design 
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Figure C-12:  Multi-Record IDA Floor Plan 3, 1978 NEHRP Design 

 

 

Figure C-13:  Multi-Record IDA for Floor Plan 3, ASCE7-05 Design 
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Figure C-14:  Multi-Record IDA for Floor Plan 3, SDDD-LS Retrofit Design 

 

 

Figure C-15:  Multi-Record IDA for Floor Plan 3, SDDD-IO Retrofit Design 
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Figure C-16:  Multi-Record IDA for Floor Plan 4, 1959 Blue Book Design 

 

 

Figure C-17:  Multi-Record IDA Floor Plan 4, 1978 NEHRP Design 
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Figure C-18:  Multi-Record IDA for Floor Plan 4, ASCE7-05 Design 

 

 

Figure C-19:  Multi-Record IDA for Floor Plan 4, SDDD-LS Retrofit Design 
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Figure C-20:  Multi-Record IDA for Floor Plan 4, SDDD-IO Retrofit Design 

 

 

Figure C-21:  Multi-Record IDA for Floor Plan 4, FEMA P-807 Retrofit Design 
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Figure C-22:  Multi-Record IDA for Floor Plan 5, 1959 Blue Book Design 

 

 

Figure C-23:  Multi-Record IDA Floor Plan 5, 1978 NEHRP Design 
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Figure C-24:  Multi-Record IDA for Floor Plan 5, ASCE7-05 Design 

 

 

Figure C-25:  Multi-Record IDA for Floor Plan 5, SDDD-LS Retrofit Design 
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Figure C-26:  Multi-Record IDA for Floor Plan 5, SDDD-IO Retrofit Design 

 

 

Figure C-27:  Multi-Record IDA for Floor Plan 6, 1959 Blue Book Design 

293 
 



 

Figure C-28:  Multi-Record IDA Floor Plan 6, 1978 NEHRP Design 

 

 

Figure C-29:  Multi-Record IDA for Floor Plan 6, ASCE7-05 Design 

294 
 



  

 

Figure C-30:  Multi-Record IDA for Floor Plan 6, SDDD-LS Retrofit Design 

 

 

Figure C-31:  Multi-Record IDA for Floor Plan 6, SDDD-IO Retrofit Design 
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Figure C-32:  Multi-Record IDA for Floor Plan 7, 1959 Blue Book Design 

 

 

Figure C-33:  Multi-Record IDA Floor Plan 7, 1978 NEHRP Design 
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Figure C-34:  Multi-Record IDA for Floor Plan 7, ASCE7-05 Design 

 

 

Figure C-35:  Multi-Record IDA for Floor Plan 7, SDDD-LS Retrofit Design 
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Figure C-36:  Multi-Record IDA for Floor Plan 7, SDDD-IO Retrofit Design 

 

 

Figure C-37:  Multi-Record IDA for Floor Plan 7, FEMA P-807 Retrofit Design 
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Appendix D 
 
 
 
Case Study 1 Results: 

  
(a) (b) 

Figure D-1:  Probability of Economic Loss Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 

 

  
(a) (b) 

Figure D-2:  Probability of Morbidity Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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(a) (b) 

Figure D-3:  Probability of Recovery Time Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 

 

  
(a) (b) 

Figure D-4:  Probability of Repair Cost Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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(a) (b) 

Figure D-5:  Probability of Repair Time Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 

 

  
(a) (b) 

Figure D-6:  Probability of Injury Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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(a) (b) 

Figure D-7:  Probability of Fatality Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 

 

  
(a) (b) 

Figure D-8:  Probability of PTSD Diagnosis Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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(a) (b) 

Figure D-9:  Probability of Community Inter-Story Drift Conditioned on Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 

 

  
(a) (b) 

Figure D-10:  Number of Building Collapses versus Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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(a) (b) 

Figure D-11:  Number of Displaced Persons versus Initial Cost:   
a) with Social Vulnerability Factors; b) without Social Vulnerability Factors 
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