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ABSTRACT
The main objective of this paper is to study the stochastic structure of water use time series.

Data of urban, irrigation and hydropower water use were obtained from different geographic locations of
the United States, and from small and large systems; and a detailed analysis of their deterministic and stochastic
components was performed.

A general mathematical method is developed for the analysis of water use time series which permits the
identification, estimation and removal of annual trends in the mean and standard deviation, annual periodicities
in the mean, standard deviation and autocorrelation coefficients, the time dependence structure and finally the
reduction of the original non-stationary process X, , toa second-order stationary and independent process ’;’p‘f‘
Subsequently a general deterministic-stochastic model is proposed for representing water use time series.

Weekly and monthly series of urban water use are composed of annual trends in the mean and standard
deviations, annual periodicities in the mean and standard deviation; in some cases annual periodicities in the
autocorrelation coefficients and a time dependent stochastic component. Irrigation and hydropower series
present the same deterministic-stochastic characteristics except for the annual trends. Annual series of urban
water use are composed of a trend and a time dependent or independent stochastic component. The time
dependence of the stochastic component of weekly, monthly and annual water use may be well approximated by
the first, second or third order Markov models and the distribution of the independent stochastic component by
the normal, lognormal-3 or gamma-3 functions. The explained variances of each deterministic-stochastic
components are also determined.

Cross-correlation and cross-spectral analyses show that there exists a linear relation between the annual
cycles and between the independent stochastic components of water use, temperature and precipitation,
therefore, linear regression models for relating them may be adequate.



Chapter 1

INTRODUCTION

1.1 Water Use Time Series

Design and operation of water resource systems
requires, among other things, the determination of
future water available and projected water use.
During the past years, many investigators (Thomas
and Fiering, 1962; Yevjevich, 1964; Beard, 1965;
Roesner and Yevijevich, 1966; Quimpo, 1967; Beard,
1967; Yevjevich 1971) have analyzed the time series
structure of daily, monthly and annual runoff and
have incorporated the corresponding mathematical
models, or series generated from these models into
the analysis of water resource systems. However, the
stochastic characteristics of water use have not been
studied systematically.

Experience shows that projected water use fora
city, for irrigation, power use of a region or any other
water uses show substantial differences between past
estimates and real water uses at the predicted times.
With the ever increasing demand for water, pro-
jections of water uses computed deterministically by
unique curves are no longer sufficient. Future water
uses should be estimated considering both the
deterministic (trends and periodicities) and the sto-
chastic components.

One of the important reasons why the water
uses for cities, irrigation and other purposes are of a
stochastic nature is due to the climatological effect
on water use; that is, the stochastic nature of climatic
variations is transferred to become part of the
stochastic component of water use. This effect can be
easily noted in the case of urban water use or
irrigation water use. For instance, for a given climate
urban water use changes according to the fluctuations
of the local weather, being higher during warm
weather and lower during cold weather. Similarly, use
of irrigation water are highly dependent on the
stochastic variation of the local weather; that is, on
the evapotranspiration rates, infiltration and
precipitation.

Time series records do provide valuable
information on past water use and when properly
analyzed give a good indication of how and how
much water may be used in the future. The optimal
planning and operation of a water resource system

requires that the projected water use and its vari-
ations be estimated as accurately as feasible or
possible. The stochastic analysis of the urban water
use time series will provide mathematical models
which will account for the deterministic (trends
and periodicities) components and for the sto-
chastic parts, and which will reflect the daily,
weekly, seasonal and annual variations of water use of
an urban environment. Similarly, the planning and
design of irrigation systems require knowledge of how
various factors affect the water use. These factors
are: climate, soil, topography, crops, quality of
water, investment in project works and farm develop-
ment, and irrigation methods and practices. The
complexity of all factors involved in irrigation makes
an accurate theoretical analysis virtually impossible
(U.S.B.R., Report, 1960). Considering all other
factors known or assumed, the water use for
irrigation is a function of the stochastic variation of
the local weather (changes in evapotranspiration rates
and the probability of precipitation). Therefore, they
must be determined on a stochastic basis.

1.2 Objectives of the Study
The main objectives of this study are:

(1) To investigate the structure of the time
series of weekly, monthly and annual water use for
different purposes.

(2) To detect and separate the trends in the
water use time series.

(3) To detect and separate the periodicities in
the water use time series.

(4) To study the structure of the stochastic
component and approximate the time dependence by
an appropriate stochastic model.

(5) To remove the dependence structure of the
time series and obtain a second-order stationary and
independent stochastic component.

(6) To find the probability distribution
functions of the independent stochastic component.
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(7) To find the explained variances by trends,
periodicities and dependence models for a time series.

(8) To represent time series of weekly,
monthly and annual water use by mathematical
models which in the future can be used for better
planning and operation of water resource systems.

(9) To study the relations between the water
use time series and climatic factors such as temper-
ature and precipitation.

1.3 Significance of the Investigation

The general practice of projecting water use or
deliveries as a function of time has followed the
major three lines: (1) an analysis of potential users
and their needs, with the synthesis of individual uses
in giving the time series of total requirements; (2) an
analogy with similar regions, cities, users, by
synthesizing the expected total use as a function of
time; and (3) by assuming the approximate water
demands from the general trends in population
changes and unit uses per inhabitant or per unit area,
or unit production, and with similar indices available
in the professional literature. (The term “water
demand” is used here in a loose sense, and does not
refer to the relations of water quantities and their
prices). The main result usually has been the mean
requirements for water delivery for a given time unit
and with time. In selecting a future time distribution
for expected irrigation water use, a deterministic
water demand per month or per 10 or 15 days
intervals during the irrigation season are usually
designed either in percentage of the total seasonal
demand, or in water units, or in water units per unit
area and per interval, and by similar methods. A
deterministic distribution of water demand in time is
a finite product of this analysis.

Several long historical time series of water uses
are available for each class of water users. Cities and
metropolitan areas have water delivery records as long
as 70 or 80, or more years. Many irrigation projects
have kept good records of water delivery. Similar
records exist for industries, navigation projects, low
flow control, and similar users.

The significance of the investigation presented
in this paper is to show that past records of water use
provide valuable information for determining the
basic character or the structure of various time series
of water uses, The analysis of these available results,
under particular conditions of each individual water

user, should provide excellent information for
projecting more realistically future water use. The
method of analogy with existing cases or with past
experience can then be based on an advanced analysis
of a multitude of past records. As an example, many
small towns or middle sized cities have excellent
records of water supply deliveries. A new planned
town or city can well be assessed as for their general
climatic and other conditions, and then find a town
or city with similar conditions but also with an
excellent record in past water supplies. The character
of that supply can then be transferred for predicting
the future water demand of the planned town or city.

A limited number of cases of water use time
series is presented in ‘his investigation to show the
structure of these series and the importance of
various components. However, the approach used and
the results obtained should be considered as generally
valid. A greater effort in collecting the appropriate
data, and in estimating various parameters of mathe-
matical models of the water use time series, may
provide the statistical information for much better
egional or national standards in a more realistic
prediction of future water demands.

The difficulties in assessing accurately the water
demand or the economical value of water have led to
the concept of sensitivity analysis in decision making
and in optimizations in water resources planning. This
concept of sensitivity analysis often may lead to a
conclusion that the accuracy of water supply
information does not need to be high because of large
errors present in predicting water demand as well as
various economic parameters related to the use of
water. A better prediction of future water demand
would automatically increase the accuracy in the
optimization analysis and in decision making for
various water resources problems. Therefore, the
significance of the investigation in this paper should
be viewed from the standpoint of an increased
accuracy in planning various water resources projects.

The analysis of water supply and water use in
Chapter 2 and systematization of water users may not
be shared by all water resources specialists. However,
this analysis and systematization are not a crucial
point of the study, though they are necessary to put
the presented results in a proper perspective of their
application.

1.4 Organization of the Paper

Chapter 2 contains a general description and
analysis of water use time series. Chapter 3 gives a



mathematical background for the structural analysis
of water use time series. Chapter 4 presents the
information on the assembled data of warious time
series. Chapter 5 treats time series of weekly and
monthly values, while the Chapter 6 relates only to
annual series of urban water use. Chapter 7 attempts

to estimate the importance of various components in
weekly and monthly time series. Finally, Chapter 8
gives conclusions in a summarized form. The material
in appendices supports the analysis and conclusions in
the previous chapters.

ey B S B



Chapter 2

WATER SUPPLY AND WATER

2.1 General Characteristics of Supply and Use
Series

River runoff and water use time series of a
region, of a river basin, or, in general, of any water
resource project may have some similar
deterministic-stochastic characteristics. In both cases,
random variations are superposed on seasonal or
periodic fluctuations. The differences are in fre-
quencies, amplitudes and phases of these periodic
components, as well as in the relative importance and
character of random components.

Similarities may also exist in other deter-
ministic components of the time series. For example,
water use time series of urban efvironments usually
show increasing annual trends in the mean and
standard deviation; however, it may also show
decreasing trends and positive or negative jumps
(Hanke, 1970). These trends and jumps are functions
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Figure 1 Monthly water use for Dallas, Texas, for
1950 — 1969, with an upward linear trend,
periodicities and random fluctuations.
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Figure 2 Monthly water use for Los Angeles, Cali-
fornia, for 1940 — 1965, with an upward
nonlinear trend, periodicities and random

An example of the complex structure of water
use time series is shown in Figures (1) to (4). Figures
(1) and (2) show the monthly water use for Dallas,
Texas from 1950-1969 and for Los Angeles,
California from 1940-1965, respectively. They both



show upward trends, periodicities, and random com-
ponents. Figure (3) represents the annual water use
for New York City, New York, from 1898-1968 and
shows a complex trend and random but dependent
fluctuations around it. Figure (4) shows the example
of a time series of irrigation water use at Carter Lake,
Colorado, from 1957-1969, with evidently annual
periodicity but also high randomness.

77—
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Figure 4 Weekly irrigation deliveries at Carter Lake,
Colorado, from 1957 — 1969 with peri-
odicities and random fluctuations.

IRRIGATION WATER DELIVERIES IN SFD

In general, the annual water supply time series,
without nonhomogeneities, may be considered as a
stationary or time-invariant stochastic process.
Because the water demand (also of stochastic nature)
increases with time, sooner or later the demand
exceeds the supply. In matching demand and supply,
the stochastic nature of both time series has signi-
ficant effects in the design and analysis of the
operation of water resources systems.

2.2 Definitions of Water Uses

The following definitions are most commonly
used in practice (U.S.B.R. Report, 1960; MacKichan,
1961; Wollman, 1960; Davis, 1952; and California
Department of Water Resources, Bulletin, 1968).

2.2.1 Definitions related to an urban
environment are as follows.

(1) Urban water use is the water used for urban
purposes, including domestic, public, commercial,
industrial and thermal power. It includes the total

delivered water, composed of the consumed water
plus the return flow (Figure 5).

Y
:
__g_

Inflow— o Outflow

(water | Environment Rt i(return
supply) l |F|0w || flow)

e i ittt

Figure 5 Schematic representation of urban water
use.

Domestic use is the water used in private
residences, apartment houses, etc., for drinking,
bathing, lawn irrigation and sanitary purposes.

Public use is the water used in public
facilities such as parks, civic buildings, schools,
hospitals and so on.

Commercial use is the water used by
commercial establishments.

Industrial use is the water used by
industries; it is considered here as part of urban water
use, although in many cases it may be completely
outside of the urban water supply system.

Steam power use is the water use by
steam power utilities, mainly for cooling purposes.

Loss and waste is the water which leaks
from the system, meter slippage, unauthorized
connections and all other unaccounted losses of
water.

(2) Water supply represents the water delivered
to the user; it is also called the delivered water or
withdrawal water.

(3) Water consumption is the part of the
supplied water which is actually consumed and is no
longer available for further use.

(4) Return flow is the part of the supplied
water which returns to the river or the source of
water, or recharges the groundwater acquifers.

(5) Unit water use it is the average quantity of
water used per person, per acre, and similar over a



specified period of time. A common term is the
so-called *“water use per-capita per-day™ which is the
quantity of water used per person and per day. The
term refers to the average, usually one year, and the
unit water use is generally expressed in gped (gallons
per capita and per day), or liters per capita and per
day.

Another term commonly used is “per capita
water use” which is the water use per person during a
specified period of time such as a month or a year.

(6) Total water use is the total quantity of
water used in a specified period of time. Common
terms in practice are daily, weekly, monthly, and
annual water uses, They are usually referred in
million gallons or acre-feet, or million liters, cubic
meters, etc.

(7) Water demand is generally referred to the
future water needs of an urban environment and it
depends on the growth or loss of population, social,
economical and industrial changes of the area con-
sidered, water pricing, water metering and so on.

“Future water requirements” is another
common term which means the same as “water
demand”. It may also be referred to specific types of
water use in an urban area such as “domestic water
demand”, “commercial water demand’, “industrial
water demand”, and so on.

2.2.2 Definitions related to irrigation are as
follows.

(1) Consumptive use is often defined as the
amount of water needed for crop growth and almost
all of it is transpired back to the atmosphere; it is also
called “crop requirement”.

(2) Irrigation requirement is the quantity of
water that is expected to be delivered to irrigated
land in order to ensure crop production; in other
words, it is the consumptive use minus the precipi-
tation available for plant consumption.

(3) Farm delivery requirement is the irrigation
requirement for the crops plus the losses due to
evaporation, percolation, surface waste and so on.

(4) Gross water requirements is the farm
delivery requirement plus the seepage and eva-
poration losses in the canals between the diversion

dam and the farm unit, plus the waste water due to
operation, breaks and overflows.

(5) Project deliveries are the gross amounts of
water delivered from the reservoirs, diverted from
streams, pumped directly from the source of water,
and similar, to the irrigation projects.

(6) Return flow is part of the project deliveries
which returns back to the river system. It includes
percolating water not retained in the root zone,
surface runoff during irrigation, wasted water, and
canal seepage. Part of the return flow reaches the
original river channel as surface runoff and can be
measured, The remainder, however, reaches the river
as ground water flow and is not easily measured.

Figure 6 gives a schematic representation of an
irrigation system and shows definitions described
above,

2.2.3 Definitions related to hydropower are as
follows.

(1) Hydropower water use is the water used for
generating hydroelectric power.

(2) Hydropower water demand is the future
water requirements for pgenerating hydroelectric
power. It is closely related to the total power require-
ments of an area which is met by thermopower and
hydropower.

(3) Firm water use is the water used for
generating firm power, though the use of the concept
of firm power may be obsolete in many aspects,

(4) Surplus water use is the water available in
excess of the firm water,

(5) Total hydropower water use is the total
quantity of water used in a specified period of time.

The following definitions are not strictly in
terms of water use; however, they are very closely
related to it.

(6) Firm power is the amount of hydropower
within the plant’s capacity and characteristics, that
may be supplied virtually at all times, with a small
probability of not being delivered.

(7) Surplus power is the available power in
excess of the firm power. It is limited by the
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Figure 6 Schematic representation of an irrigation

system water cycle.

generating capacity of the plant, by the head, and by
the water available in excess of the firm water.

(8) Average load is a hypothetical constant
load over a specified period of time that would pro-
duce the same energy output as the actual energy
produced,

(9) Peak load is the maximum load consumed
or produced by a unit or u group of units in a
specified period of time.

2.2.4 Definitions related to other uses. There
are three other important water uses encountered in
waler resources systems.

(1) Navigation water use is the water used for
navigation purposes. Navigation may be served by
water resources development in three ways: through
the provision of river regulation. through low dams
and ship-locks to by pass the dams, and through arti-
ficial canals. In considering a multipurpose water
resource system one has to take into account the
operational characteristics of each type of navigation
facility and such factors as losses by evaporation,
scepage, locking operation and so on.

(2) Recreation water use is the water used for
recreational purposes. This type of water use has
become important in the recent decades, and may be
divided into two categories, “flat water recreation
use” such as maintaining high levels of the reservoir
for boating, swimming and so on, and “running water
recreation use” such as water released from large
reservoirs to provide fishing and other recreational
facilities downstream along the river (Hall and
Dracup, 1970).

(3) Water use for quality control is the water
used for maintaining specified levels of water quality
in reservoirs, rivers, canals and so on; it is the amount
of water required for the satisfactory dilution of
waste flow from municipal sewage, industry and
other sources of water pollution. This amount is a
function of the oxygen content, dissolved minerals,
temperature of the river or reservoir water, and so on,

Besides the water uses indicated above, in some
cases the water used in mining must be considered for
both the quantity and quality aspects of its use.

The protection against floods cannot be defined
in terms of use of water as such, but the use of
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Figure 8 Schematic representation of inputs and out-
puts of urban, irrigation, and hydropower
systems.



Chapter 3

MATHEMATICAL METHOD OF ANALYSIS

3.1 General Description of Mathematical Methods

The approach in studying the stochastic
structure of water use time series is based in first
detecting and removing the trends in the mean and in
the standard deviation. Subsequently, the
periodicities in the mean, standard deviation and
autocorrelation coefficients are identified and mathe-
matically described. These periodicities are removed
with the structure of the remaining stochastic series
analyzed and mathematically described. By using the
autoregressive dependence schemes the second-order
stationary and independent stochastic component is
obtained. Finally, the probability distribution
function of this independent stochastic component is
obtained by the fit of either the normal, log-normal 2
or 3, and gamma 2 or 3 probability density functions
to the frequency density curve.

The approach outlined above, and subsequently
described, is general in character and is developed for
the standard analysis of water use time series for vari-
ables of daily, weekly, monthly, or their multiples,
and annual values. In general, daily, weekly, and
monthly series have: (a) trends in the annual mean
and annual standard deviation; (b) within-the-year
periodicity in the mean, standard deviation, and auto-
correlation coefficients; and (c¢) a time dependent
stochastic component. Annual mean values of water
use usually show an upward trend, and a time
dependence in the stochastic component.

High frequency periodicities may be present in
daily urban water use in addition to the
within-the-year periodicity or low frequency. An
example is the weekly periodicity. In such cases the
mathematical model for representing the time series
of daily values becomes complex. The Appendix 1 of
this paper is an extension of the procedure described
in this chapter for obtaining a second-order stationary
independent stochastic component, and consequently
the mathematical model of series of daily water uses,
for cases in which the weekly periodicity is
demonstrated as significant.

3.2 Deterministic Components

The time series are studied as for their various
components.

3.21 Trends in the mean and standard devi-

ation. Consider the x n series as the original
nonstationary stochastic process with r =1, 2,
w, w is the basic periodicity of discrete series,
equal to 365, 52 or 12 respectively for daily, weekly
and monthly value series, p=1,2, ..., n, and n is
the number of years of record. Assume that Ry has
trends, periodicities, and a dependent stochastlc
component. Let Tm and Ts__ be the trends in
the mean and standard deviation of the process X,

A new process y_ _ is generated by removing
the trend in the mean 'Ipmp ; from X, , DY

-Tm

P.T p,T "

¥ =X (1)

P.T

has still a trend in the
, @ new process z is ob-

Because the process Yo
standard deviation, Ts
tained by

g,y o @)
p.T Tsp,r
The process z_ _ has now both trends in the
mean and in the standard deviation removed, while
maintaining the periodic and stochastic components
of the original process Xy

The trends Tm s and Ts_ _ may be in
general approximated by the polynormal equations of
the type

Tor.. =A, v B t4C, 4 3
and
Ts. _=A+B t+C t* +D ¢t 4)

P.7 5 s 5 R e !

in which t = (p-1) w + 7, and A, B, C and
D are the coefficients of the polynomial regressions
to be estimated from data,

In many cases the linear term of Equation (3)
and (4) is sufficient; however, higher-order terms may
be necessary when the regression of Tm or Ts on t
is far from linear. The regression constants
A, B, C and D of Equations (3) and (4) may be
estimated by the least squares procedure or by the
multiple-linear-regression method. The first method
was utilized in this paper.



3.2.2 Periodic components in the mean and
standard deviation. Following a procedure outlined
by Yevjevich, 1972, the process =z may be
represented by

P.T

)

in which By and o, are the periodic mean and
standard dev1at10n respecnvely, ¥ is a dependent
stochastic component which may or may not be
stationary, and, p and 7 are as defined above.

ZP.T S K, * % E|'.i.vr y

By the Fourier analysis the periodic p_ and
o, are expressed by

m
ol +j=2i [A; cos 2=f;7 + B, sin 27f;r]  (6)
m
g = +j=El [Aj cos 21rfj'r + Bj sin 21rfj‘r] )]
in which p, and o, are the mean values of
u. and o, respectively, A, and B, the Fourier

coefficients, with j applied either to p_ or o,
m is the number of significant harmonics, and fj
the frequency corresponding to the harmonic |

The Fourier coefficients A and B of

Equation (6) are given by
2 w
A=o rg (m_-m,) cos 27j7/w (8)
and
2 w ) )
B =g 751 (m, - m,) sin 2mjr/w ©)

in which m_ and m, are the sample estimates of
u, and p, respectively. For the coefficients
A; and B of Equation (7) m_ and m, in
Equations (é) and (9) are substituted by s, * and

s, as the sample estimates of @ and 0,
respectively.
Usually, when the harmonics, and o are

fitted to the sample values m_ and s_ the sum of
differences (m_-p ) and (s, - 0,) does not
necessarily amount to zero and so the
differences (m,_ - #,) and (s, -0,), as sampling
variations, become part of the stochastic component
(Yevjevich, 1971).

The sample estimates of the periodic
mean, m_ ,and periodic standard deviation s are
computed by
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_ I n
m‘r -_n'pél zpr L4 (10)
and
1 n 1/2
5 =[(ﬂ_'rj PEI (zp.r ) mr)z] an

For choosing the significant harmonics in
Equations (6) and (7) an approximate procedure may
be used. Let s*(m_) be the variance of m_, then

var h, (A2 /2 is mean square valué or the
vananoe correSponng to the harmonic j. Lets
define
var h.
(12)

b ogdm)
as the part of explained variance by the
harmonic j with respect to the total variance of m .
The ratios Ap. are ordered in a decreasing sequence
and added as

P, = (13)
where m = w/2 theoretically, but in applications it

is sufficient to consider only the first six harmonics.
Two critical values for the sequence P, are given by

J
'El AP, for j=1,2,..,m ,
1=

", w
P, =aVe (14)
and
Pmax ol & Pmin ? (15)
in which w = 365, 52 or 12, respectively for daily,

weekly or monthly values, n the number of years of
record, ¢ = 1| for the significant harmonics
of m_ and c¢ =2 for the significant harmonics
of s_, and a isa properly choosen constant. With
the above definitions the following criteria are used
for determining the significant harmonics: If P, <
P there is no significant harmonic; if P, >

P .. the first j harmonics whose P value
first exceeds P are selected. If Pm: "
PASE all six harmonics are significant. For

choosmg the significant harmonics of s_ the same

procedure is followed.

3.2.3 Periodic components in the autocor-
relation coefficients. The process &y of Equation
(5) is often assumed in water resources to be
second-order stationary. However, computations



show that it can have periodic autocorrelation co-
efficients.

Similarly as in the case of determining the
periodic mean and standard deviation, the periodic
autocorrelation coefficients Py + where k is the
time lag, are determined by

Pis =Py +j=gll [Aj cos 21rfjr + Bj sin 217{}7] «(16)

is the mean value of Py + and the
The Founcr co-

in which Py
other are terms as defined before.
efficients are given by

2 w
A =“‘_’r§l (ry , = 1y) cos 2mjr/e (17)
and
e 2 w * .
B=5% rz=:l (rk’r - ) sin 2mit/w , (18)
in which T r is the sample estimate of p,
and 1, as the mean value of r s the sample

estimate of p, .

The autocorrelation coefficient p, _ is defined

by
= i {Ep.f *€pur + i)
Per ™ 1/2

[var {epﬂ} var ‘[sp‘r +w ]

and it is estimated from the sample series by

(19)

n¥

T @)

p.T 5
The stochastic process e - obtained by Equations
(21) or (22) whether stationary or not usually shows
a time dependence structure,

3.3.1 Dependence stochastic models. The
general m-th order autoregressive linear dependence
model has been used by many investigators
(Yevjevich, 1964; Roesner and Yevjevich, 1966, and
Quimpo, 1967) for determining the dependence
structure of annual, monthly, and daily precipitation
and runoff series. A similar approach is followed in
this paper for investigating the dependence structure
of water use time series.

The m-th order autoregressive linear model is
represented in general by

-3
En.r“j 2 %rd Spra T
. /2
[1 -IE:I _]PI & rui I:xj.f-j ’O[i-ﬂ.f-k] Ep.r ,» (23)
in which k =iif i<j and k=j if i>]
with @ . the autoregression coefficient at the posi-

tion 74 , which are dependent on the autocorrelation
coefficients Py v Any of the first three linear
models, m—l m = 2 and m = 3 of Equation
(23) usually are good approximations based on the

1l Z e€ € L % € tg €
n* p=1 BT Ptk % p=1 P7 p=| p,7+k
> 20
k. : 4 27 172 n* ;o 21172 0)
% z 621' ) -l% }E. €o.r #" “ €prik | n* § €p.rek
p=1 ™ p=1 P p=1 ™ n* p=1l

in which k <@ and n*=n-1 for ws<k, and

= n otherwise. For determining the significant
harmonics of Ty similar procedure is followed
as in the case of m_ and s .

3.3 Stochastic Components

The stochastic process /o of Equation (5) is
obtained by removing the periodic mean and standard
deviation by the parametric approach

Zog “Hy

E =
p,T Or

(21)

However, the nonparametric approach may also be
used, especially in the case of monthly values, by
using the sample estimates m_ and s_ instead
of K, and o, of
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accuracy of data available, and, therefore, the pro-
cess becomes a second-order stationary
mdcpend‘::nt stochastic component.

The autoregression coefficients o, . are
expressed as a function of the autocorreldnon
coefficients p, % as follows:

For the model with m = 1,

«

L1 Piga (24)
For the model with m =2
_ pl.r-l . pl.r-! 92’7_2 (25)
al,f-l 1 -~ pz
1,7-2

and



Prr2 " PrrtPigra

” . (26) The probability density function of the normal
273 1- p v distribution is
For the model with m = 3 f(t) = exp| - €-wt| G1)
20
ma
2
P (1P] 1.3) ¥ Py 13P1 1.2 P33Py gis Paga “ P 73 P3.7.3 ”
o =
1,71 2
1420, 1.9P2 2.3P1 7.3 "P1 73 Plriz *Para
Py 1.3P2,7.2P2 2.3
192 — = : (27)
P1,r2P2,5.3P1 1.3 " P1 23 Prga Pass
2
P2 .r-‘l(l'p?,f-?v) K Py ‘oz,r-a '03,1-—3 F pl,r»-z Praa ™ Prr3Paqrs
& =
2,7-2 2 2 2
1420, 12P2 43P 737 Plir3 ™ P12 "Pars
P p p
1,73 72,r-3 " 1,7-1 : (28)
2 2 2
L+ 2*‘Ol.r-z Py r3Pyr3 Prr3 PrraPass
O o BT LT W N DR U SRS e
3,r-3 1,7-2 1,7-3 " 1,7-2 "1,r-1 1,7-3 72,72 2,73 71,7-1
a -
3,7-3 2 2 2
1420 12P373P1 7.3 Plrs Plea Pass
P72 PrraPass -
2 2 !
14201 12P203P1 3" Pries " Pl " Pors
in which p, ., for k,j=1,2,3 are estimated in which p and o are the expected value and

by the sample values Ty rej? computed by Equation

k,r

(20). By choosing the appropriate model the correlo-

gram pick) of Ep may be computed and tested
for E[r (k)] = pz(k) 0, for k # 0, at the given
level of SIgmﬁcance However, other techniques such
as spectral analysis, and others, may be used.

3.3.2 Independent stochastic component. By
removing the dependence as indic.ated in 3.3.1 the
resulting stochastic process is second-order
stationary independent process. %"rom Equation (23)

zp - is obtained by
1 m
o7~ 3-51 % 1 €p.rei
b ™ pl
[t - ) z & i % g Plicil ek (30)
i=1 j=1 i ’
with k =iifi<jand k =jif i >j.
The independent stochastic process E was

further investigated for finding its probablhty cllstn
bution function. For this purpose, one symmetric
distribution, the normal, and two asymmetric
distributions, the three parameter lognormal and the
three parameter gamma distribution functions were
used.
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standard deviation of the random variable Ep .

The lognormal three-parameter probability
density function is

E-k

1 o
i 32

RIS orf o H o m v

in which p_ is the mean of In (¢ -£)), o, the

standard deviation of In (¢ -£)) and £ is the

lower boundary.

The gamma three-parameter probability density
function is

) sr(a} (ET-%)M ""{' (E_;L}} ’

in which « is the shape parameter, § is the scale
parameter and £ is the location parameter or lower

boundary.

(33)

The above three distribution functions are used
for fitting the sample frequency distributions of the
independent stochastic process £ _, though in com-
plex cases other functions can be used. For the
purpose of showing the basic structure of water use



time series the use of only these three probability
functions was considered as sufficient. The esti-
mation of parameters and fitting criteria are outlined
in Appendix 2.

3.4 Second Order Stationary Model of Water Use

The mathematical method outlined above for
the analysis of water use time series permits the
identification, estimation and removal of trends in
the mean and standard deviation, the periodic mean,
standard deviation and autocorrelation coefficients,
the time dependence structure, and thus reducing the
original nonstationary process x to a
second-order stationary independent processs
All the information is given in the form of mathe-
matical models with their parameters estimated from
the available data.

Based on the above analysis, the following
deterministic-stochastic model is proposed for the
water use time series

dependence structure
e T

(34) may be used for any time unit of the water use
time series. However, in the particular case of daily
water use series the weekly periodicity is present in
some parameters, for which case the mathematical
model given in Appendix 1 should be applied.

3.5 Analysis of the Stochastic Components of Two or
More Series

The linear relation between the stationary sto-
chastic process (fmm now on denoted
as ) of water use, pre(:lpltatlon and temperature
may be investigated in the time domain by cross
correlation analysis, and in the frequency domain by
spectral analysis. The purpose of investigating these
relations is to find mathematical models which could
describe the functional relations between these pro-
cesses. For example, one may postulate that the
stochastic component of water use is dependent on
the stochastic components of precipitation and

-

X

Pr Tmp.f ¥ Tsp,r {u‘r 0
Lo .

T[ E %, p.r~j+(1 :
i B

T 4
Trend Periodic

Components Components

with k=i if i<j and k=j if i>j, with Tm -
and Ts,  the trendsin the mean and standard devi-
ation, respectively, u_ and 0, the within-the-year
periodic mean and standard dewauon, «, the
within-the-year periodic autoregression coeffllcmnts
dependent on the periodic autocorrelation coef-
ficients Pi s €p s dnonstationary and dependent
smc.hastlc "process, and ’gpr the second-order

stationary independent stochastic process.

The general model proposed in Equation (34)
permits the generation of new samples of the
process x by using the inferred or projected
trends, perlodlc parameters and stochastic
dependence function, and generated samples of the
independent stochastic component E from its
inferred probability density functlon "Then these
generated samples of Xy, may be used in the
analysis of various problems of water resources
systems.

The proposed mathematical model of Equation
(34) is general in character. The simplified models
result directly from Equation (34) when some trends,
periodicities, and time dependences are shown not to
be statistically significant. Furthermore, Equation

)
Im
i‘EI jEI ai,?‘-i aj';r-j p|i-j|,-r-"k) EPJ’J} (34)
1 i d +
Second-order
stationary

Independent stochastic component

temperature as

I!'lI m
Et(w) = J% hl.i ‘Et-l(P) N kxo hi.k Et-k(T) N K (35)

in which & (W), & (P), and £(T) are independent
stochastic components of water use, precipitation
and temperature, respectively, h, . and h, are the
regression coefficients, and n, t}]'le resu:lual random
component.

Similar or more complex models (say nonlinear
models) may be investigated according to the com-
plexity of a particular case. For instance, in the case
of relating the stochastic components of water supply
(runoff of a river), water demand (based on the
analysis of water use), precipitation and temperature,
Equation (35) will contain one more term.

A simplification of the general model of
Equation (35) is

EW)=h, @ +h, §M+n. . (36)

which in many cases may be sufficiently accurate
because of the limited precision of available data.

The linear relation between an output and an
input of a system may be measured by the cross



correlation coefficients and by the coherence
spectrum. However, when there is more than one
input, the partial correlation coefficients and the
partial coherence functions are more useful (Jenkins
and Watts, 1969).

For example, referring to the Equation (36), if
both hl and ]'L2 are non-zero values, the random
process Et(W) is correlated with both £ (P) and
Et(T). However, the cross correlation coefficients
Pwp) and PewT) which measure the separate

correlations between £ (W) and £ (P), and between
£ (W) and £(T), are not meaningful because £, (P)
and §(T) may be correlated. Therefore, in this case
the partial cross correlation is a better measure of the
correlation between the outputs and inputs of the
system. The same thing holds true when the co-
herence and partial coherence are used.

3.5.1 Correlation coherence and phase
functions. Lets consider the two stationary
stochastic processes x, and y,. The autocovariance
and cross covariance functions are defined as

¥, k) = E [(xt - B XX -u,)}
Ty k) = E f{xt W) b AR u,)}

(37)
(38)

in which k is the time lag and p  and u  are the
expected values of x, and y, respectively. Similarly
the autocorrelation and cross correlation functions
are defined as

Yex )
P = 50) (39)
d
“ )
Pyy®) = (40)

[ (©) 7, (O)]'/2

The spectrum and cross spectrum functions are
given by
.f“(f]. =k=25°° 7, (k) exp {-iwak} , 05 <f<05 ,
(41)

and

oo

Yoy (D =k§m Yoy (K) €XP I—inrfk} , 0.5<f<05,

(42)
where f denotes the frequency.
Because 7, (f) is complex valued, it may also
be written as

Vg =y O-iq, (O , (43)
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[,y (K) + 7, (K)] cos (27fk) , (44)

k=0

1 oo
Gy @ =7 | B 17,00 -7, ()] sin (208K, , (45)

with ¢ (f) and q”(f) the cospectrum and
quadrature spectrum, respectively.

The coherence function, usually called the
coherence spectrum, measures the linear relation
between the two stationary processes X, and y, in
the frequency domain, and is defined as

7y (OF

, JEEEREL (46)
7o 07,0

o2, (0=

?

in which |y} y(f')iz is the cross amplitude spectrum.
It may be shown that

Wy OF = 7 () 7, O @7)
Finally, the phase spectrum function is
q,,(0 (48)

?

0,,() = arc tan - o

with ¢  (f) and q”(f) as defined above.

The estimation of the coherence and phase
functions as defined above are described in Appendix
3.

3.5.2 Partial correlation, coherence and phase
functions. For three stationary stochastic processes,
X, o0 X and y,, where the x’s are the inputs and
and y, is the output of a system, see Figure (9),

assume that y and x are highly correlated with

X,z it
Xl,—~—— —(Unknown system)——- "i
(Highly |
cogerent) SYSTEM | 4
— = |
X2, ____ (Linear system) __ __|

(Highly coherent)

Figure 9 Example of a system composed of one
output y, and two inputs x, , and

X, , which are highly coherent. '



Before computing the correlation
between y, and x, . It is necessary to remove the
influence of the variable X, .- This is done by con-

The partial coherence function be-
tween X, K and y, by keeping x, constant is
defined as follows

ducting a least squares regressnon of y, on x,, i')':y-z(f)i:
and of Xy ¢ ON X, The partial correlation co- B gO)m——r——— (52)
efficient between xI 3 ancl y, is then defined to be Y1120 %5y 2D
the correlation between the resu:luals from these two in which + H
regressions (Jenkins and Watts, 1969). * =t 0 |1- 1,07 Y(f)
MO0 om0 69
Assuming that the random
variables y,, x,  and x,  have zero mean, the ¥ m(ﬂ“?] NG ‘ﬂfi (0] (34)
linear relanun between X and X, and " . "
between y, and x,  are Tyy 20 =7,,0) [1-05, D]  (55)
— 7_12__ % (49) with spectrum and cross spectrum functions on the
12 71t Yy, %t 7 right side of Equations (53) through (55) defined in
and Equations (41) and (42), and o ,(f) and «a, ()
Yay the coherence functions deﬁned m Equation (116)
ST i X0 (50) The partial coherence function «, (f) is obtained
by interchanging the indices 1 and in Equations
in which € , and €,, are the residuals of the two (52) to (55).
regressions, v, , the covariance between X ¢ and
X, ¢» Y,p the variance of Xy 40 and Yiy the co-
variance between Xg 4 and y,. Finally, the partial phase
spectrum 6, (f) which measures the direct phase
The correlation between these difference at each frequency between x . and
residuals € , and € , is defined as the partial y, after allowing for the phase differences between
- ¢,,Ma,,(M-q,,0) ¢, (H)-q,,0 ()] (56)
C tan - ’
T s W ¢,,(0+a,,(0g,,(0-¢, 73,0
correlation between x, and y, by X, and y, and between x, = and x,  is given

keeping x, constant and may be shown to be

Piy Pay P2

[(-o2) 020"

in which p, is the correlation coefficient between
Xy and X, and Pay is the correlation co-
efficient between L and y, as defined in
Equation (40). The partial correlation coefficient
Pryy 18 obtained by interchanging the indices

1"and 2 in Equation (51).

© (5D

pl y.2 =
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by (Jenkins and Watts, 1969)

where ¢ (), ¢, (f) and c, ((f) are the cospectra
deﬁned in Equatmn (44), q”(f) q, (f) and
(f) the quadrature spectra defined in Equat:on
g) and 7, 2(0 the spectrum function of Equation
(4l) The partial phase spectrum 8, . (f) is ob-
tained. by interchanging the lndlces l and 2 in
Equation (56). The estimation of the above partial
coherence and partial phase functions are described
in Appendix 3.



Chapter 4

RESEARCH DATA ASSEMBLY AND PROCESSING

4.1 Type of Data

Three types of water use data were assembled
for the present study. They are data for urban water
use, for irrigation, and for hydropower water use.
Long term data for other uses were not available.

Urban water use data were obtained from 14
cities in the United States and one in Canada.
Irrigation water use data were obtained from
irrigation projects located in Colorado, Utah, and
Nebraska. Hydropower water use data were obtained
from hydroelectric projects located in Colorado and
Wyoming. Their approximate geographic locations are
shown in Figure (10).

Weekly urban water use was obtained for three
cities, monthly series for nine and annual for three
cities. Part of these data were in unit values such as
gallons per capita per day and others were in total
values of water use such as in million gallons. For this
investigation all the series of weekly, monthly and
annual values were converted to million gallons units,
although some analysis of annual series was also made
on gpcd units.

Eight series of irrigation water deliveries were
obtained of which two were of weekly values and the
other six of monthly values. The data units varied
such as in second-foot-day (sfd), acre-feet (af), and
acre-feet per unit area (af/a). The analysis of these
series were made by conserving the units originally
obtained.

One series of weekly values of hydropower
water use (cfs) and seven series of monthly hydro-
power production (MGH) were obtained for this
investigation. Although the monthly series were not
in actual water units, but in energy units, their
analysis should provide approximate characteristics
of monthly water use series. The type of water use,
Jocation, and other pertinent information of each of
the data assembled is presented in Table (1).

4.2 Sources of Data

The urban water use data were obtained from
the water departments of the municipalities of the

Figure 10 Geographic distribution of obtained data.
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TABLE 1

DATA OBTAINED FOR ANALYSIS

NO. TYPE OF WATER NAME TIME UNIT DATA RECORDS AVAILABLE
USE UNIT

1 Fort Collins, Colorado Weekly M.G. 1930-1969

2 Denver, Caolorado Weekly M.G. 1950-1969

3 Greeley, Colorado Weekly M.G. 1952-1970

4 Colorado Sgrings, Colo. Manthly M.G. 1937-1969

5 Milwaukee, Wisconsin Manthly M.G. 1945-1969

6 Dallas, Texas Monthly M.G. 1950-1969

7 Urban Los Angeles, Calif. Monthly M.G. 1940-1965

8 Water San Fernando, Calif. Monthly M.G. 1940-1965

9 Use Fresno, California Monthly M.G. 1941-1965

10 Bakersfield, Calif. Manthly M.G. 1944-1965

n Hanford, California Monthly M.G. 1944-1965

12 Visalia, California Monthly M.G. 1944-1965

13 Baltimore, Maryland Annual M.G. 1885-15968

14 New York, New York Annual M.G. 1893-1968

15 Montreal, Canada Annual M.G. 1938-1969

16 Alpine Irr.Co.,Utah Monthly af 1945-1964

17 American Fork Irr.Co.,Utah Monthly af 1945-1964

18 Narth Bench Irr.Co.,Utah Monthly af 1945-1964

19 Irrigation Lehi, Irr.Co., Utah Monthly af 1945-1964

20 Water Plesanr Grove Irr.Co.,Utah  Monthly af 1945-1964

21 Use Carter Lake: Big Weekly sfd. 1957-1969
Thompson Project, Colo.

22 Hansen Canal: Big Weekly sfd. 1957-1969
Thompson Project, Colo.

23 Mirage Flats Project, Monthly af/a. 1949-1960
Nebraska

24 Alva 8. Adams Tunnel: Big Weekly cfs 1953-19565
Thompson Project, Colo.

25 Green Mountain Power Plant: Monthly MGH 1943-1969
Big Thempson Proj., Colo.

26 Estes Park Power Plant: Monthly MGH 1951-1969
Big Thompson Proj., Colo.

27 Hydropower Marys Lake Power Plant: Monthly MGH 1952-1969
Big Thompson Proj., Cola.

28 Water Pale Hill Power Plant: Monthly MGH 1954-1969
Big Thompson Proj., Colo.

29 Use Flat Iron Power Plant: Monthly MGH 1954-1969
Big Thompson Proj., Colo.

30 Guernsey Power Plant: Monthly MGH 1943-1969
Wyomirg

3 Kortes Power Plant: Monthly MGH 1950-1969
Wyoming

respective cities. The irrigation water use data were
obtained from the Region 7 of the U.S. Bureau of
Reclamation, Denver, Colorado; from the Northern
Colorado Water Conservancy District, Loveland,
Colorado; and from the Agricultural Engineering
Department of Colorado State University, Fort
Collins, Colorado. The hydropower data were ob-
tained from Region 7 of the U.S. Bureau of
Reclamation, Denver, Colorado. Temperature and
precipitation data were taken from data published by
the U.S. Weather Bureau.

All data of water use, temperature, and precipi-
tation were stored on magnetic tapes and all
computations were done on the CDC-6400 digital
computer at the Colorado State University Computer
Center. For each kind of data stored on tapes, the
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name of the city, irrigation, or hydropower project is
specified and also the type of water use data and the
number of years of record.

4.3 General Procedure of Analysis

For the decomposition of the original observed
time series of weekly and monthly water use three
main programs are used: (a) the program TREND for
analyzing the trends in the mean and standard devi-
ation; (b) the program PERIOD for estimating,
describing and removing periodic mean, standard
deviation and autocorrelation coefficients, and for
removing the dependence in the stochastic com-
ponent and; (c) the program DISTRIB for finding the
probability density functions of the best fit to the
frequency distribution of the independent stochastic



component. A simplified version of the flow charts of
the above three programs is shown in Appendix 4.

For obtaining the. trend in the mean, the mean
water use for each year was computed and the T-test
was performed on these values to test the hypothesis
that the slope of a linear trend was significant. If the
hypothesis was accepted, the regression constants of
the polynomial, Equation (3), were computed by the
least squares procedure and an analysis of variance,
based on the F-test at the 95 percent confidence
level, was applied for finding the significant higher
order terms of Equation (3). The regression co-
efficients obtained with mean annual values, as
explained above, were transformed in order to obtain
the coefficients corresponding to the weekly and
monthly time units. These values were used for
removing the trend from the original weekly or
monthly series, respectively. The trend in the
mean, Tm_ _ of Equation (3), was removed from
the original series . by using Equation (1). The
resulting series y - was further analyzed for testing
the significance 'of the trend in the standard
deviation.

For obtaining the trend in the standard devi-
ation, the standard deviation for each year was
computed and following a similar procedure as before
the T-test and the F-test were applied for deciding
whether there is a significant trend and for finding
the significant coefficients of the polynomial
regression of Equation (4).

For removing the trend in the standard devi-
ation T“p,r Equation (2) was slightly modified in
order to preserve the original mean X and to have a
constant standard deviation equal to the mean
standard deviation Ts_. This step was only necessary
for the subsequent analysis of explained variances of
each component; otherwise, Equation (2) is used.
Therefore, for the purpose explained above, Equation
(2) was modified to
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P —
zp.r = Is yp.r tx (57)

p.T

To find and remove periodic parameters in
the z . series and the correspondent dependence
models, the procedure given in sections 3.22 and
3.2.3 of 3.2 and 3.3.1 of 3.3 of Chapter 3 is followed
Each step, such as computing the sample values m_,
s, and T ro the Fourier coefficients for inferring
the corresponding p, o and p, . the criteria for
finding the significant harmonics, the removal of peri-
odic M and o, and autoregressive coefficients up
to obtaining the second-order stationary and
independent component EW ,is followed by using
the program PERIOD.

The fit of an adequate distribution function for
the independent stochastic component, £y o 18 sub-
sequently performed. All steps, such us the estimation
of parameters of the normal, lognormal-3 and
gamma-3 probability density functions, and the
chi-square fitting criterion for choosing the function
of the best fit are performed by using the program
DISTRIB.

Cross correlation and coherence functions, as
indicated in 3.5 of Chapter 3 are used for analyzing
the linear relations between monthly temperature,
precipitation, and water use time series. The results
obtained are given in 5.5 of Chapter 5.

The trends, time dependence structure, and
probability distribution of the independent residuals
are studied with annual water use time series. Also
the relation between the independent stochastic com-
ponents of water use, precipitation and temperature
are analyzed. The results are given in Chapter 6.

Finally, the analysis of explained variances by
the various deterministic components and by the sto-
chastic component is presented in Chapter 7.



MONTHLY WATER USE IN MILLION GALLONS

Chapter 5

ANALYSIS OF WEEKLY AND

MONTHLY WATER USE

TIME SERIES

5.1 Analysis of Trends

Weekly and monthly urban water use time
series show, in general, upward trends in the mean
and standard deviation. The physical reasons for these
upward trends are the annual increase in population,
standard of living, and some socio-economic changes
in each particular case. The investigations of weekly
and monthly series of water use for irrigation and
power did not show the significant trends in para-
meters.

Trends in the mean vary from simple linear
(Figure 11) to more complex nonlinear trend (Figure
16), such as quadratic and cubic. Two of the three
weekly urban water use series studied show a linear
trend in the mean (Denver and Greeley, Colorado),
and the third a quadratic trend (Fort Collins,
Colorado). Of the twelve monthly series, four have a
linear trend (Denver and Greeley, Colorado; Hanford,
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Figure 11 Observed monthly water use series X,
and the linear trend in the mean Tm

p.T
for Dallas . Texas for 1950-1969.

California, and Dallas, Texas), six have a quadratic
trend (Fort Collins, Colorado; Milwaukee, Wisconsin;
and L. Angeles, Fresno. Bakersfield and Visalia,
California), and the other two have a cubic trend
(Colorado Springs, Colorado; and San Fernando,
California). Examples of a linear and a cubic trend in
the mean are shown in the Figures (11) and (16) for
monthly series of Dallas, Texas, and Colorado
Springs, Colorado, respectively.

Trends in the standard deviation are either
linear or quadratic. Of the three weekly urban series
studied, one has a linear trend, (Greeley, Colorado)
and the other two a quadratic trend (Denver und Fort
Collins, Colorado). Six of the twelve monthly series
have linear trends in the standard deviation (Greeley,
Colorado; Milwaukee, Wisconsin; Dallas, Texas: and
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Figure 12 Resulting series ¥ of Eq. (1) after re-
moving the lmea: m.nd in the mean and
preserving the general mean x_ _ . An in-
creased fluctuation with time around the
general mean shows the presence of a
trend in the standard deviation for month-
ly data of Dallas, Texas, for 1950 — 1969.
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Figure 13 Computed and fitted linear trend in the
standard deviation Tspf for Dallas,
Texas, for 1950 — 1969.
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Figure 15 Recomputed standard deviations of the
series z_ of Eq. (57), for Dallas, Texas,
for 1950~ 1969, showing that the trend
has been removed.
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X
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and the cubic trend in the mean
for Colorado Springs, Colorado,

for 1937 — 1969.
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Figure 17 Resulting series y of Eq. (1) after re-

1000

moving the cubic trend in the mean and
preserving the original mean X . An in-
creasing fluctuation with time around the
mean shows the presence of a trend in the
standard deviation for monthly data of
Colorado Springs, Colorado, for 1937 —
1969.
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Resulting series z,  of Eq. (57) after re-

moving the trends in the mean and
standard deviation for Colorado Springs,
Colorado, for 1937 — 1969.
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the standard deviation Ts _ for Colo-
rado Springs, Colorado for f937-1969.
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series z, _ of Eq. (57) for Colorado
Springs, Colorado, for 1937 — 1969,
showing that the trend is removed.



Los Angeles, Fresno and Hanford, California), and
the other six quadratic trends (Fort Collins, Denver
and Colorado Springs, Colorado; and San Fernando,
Bakersfield and Visalia, California). Examples of
linear and quadratic trends in the standard deviation
are shown in the Figures (13) and (18) for monthly
series of Dallas, Texas, and Colorado Springs,
Colorado, respectively.

A general characteristic shown by the results is
that usually linear trends in the mean are ac-
companied by linear trends in the standard deviation,
and complex nonlinear trends in the mean are
accompanied by complex nonlinear trends in the
standard deviation.

Tables (2) through (5) show the mean, variance
and polynomial regression coeffigients for the trends

in the mean and standard deviation for both weekly
and monthly urban water use time series,
respectively. Figures (11) to (15) for monthly water
use of Dallas, Texas, and Figures (16) to (20) for that
of Colorado Springs, Colorado, show graphically the
separation of trends from the original series x_ .
For example, in the case of Dallas, Texas, Figure (l'l)
shows the original series X - and the fitted linear
upward trend in the mean, li"mp . After this trend is
removed, the new series Yo is given in Figure (12)
showing the increasing fluctuations with time around
the constant mean; that is, showing that the standard
deviation increases with time. The computed and
fitted trend for the standard deviation Ts i is
shown in Figure (13). After this trend Ts__ is re-
moved from the series Yoir by using Equation (57),
the resulting series z . is given in Figure (14)
showing that both trends Tm__ and Ts_ _ have
P\T pP.T
been removed from the original series Xp.r"

TABLE 2

MEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE

TREND IN THE MEAN OF WEEKLY URBAN WATER USE TIME SERIES

NAME MEAN VARIANCE REGRESSION COEFFICIENTS
Ta e An B Co
Fort Collins, Colo. | 35.8630 165.945 | 22.6393 | -0.003359 | 0.000012
Denver, Colo. 843.2013 | 11449.865  [657.7760 | 0.356245 &
Greeley, Colo. 47.5360 90,601 3,081 | 0.035209 o
TABLE 3

MEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE
TREND IN THE STANDARD DEVIATION OF WEEKLY URBAN WATER USE TIME SERIES

NAME MEAN VARIANCE REGRESSION COEFFICIENTS
= 2
Ts S'rs A Bs Cs
Fort Collins, Colo. | 16.778 27.7432 12.3767 -0.25088 0.016313
Denver, Colo. 419.879 7108.8090  [263.2716 13.99800 0.012071
Greeley, Colo. 25,991 22,3250 17.3327 0.88506 -
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TABLE 4

MEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE
TREND IN THE MEAN OF MONTHLY URBAN WATER USE TIME SERIES

MEAN VARIANCE REGRESSTON COEFFICIENTS*
NAME im st
" Ay B Cn On

Fort Collins, Colo. 155.760 3,136.904 98,2320 - 0.062495 0.000972
Denver, Colo. 3662.432 216,012.066 2855.7500 6.694459
Greeley, Colo. 206.544 1,711,636 1347190 0.66197
Colo. Springs, Colo. 460.071 54,708.915 294.4120 - 1.96233 0.014536 -0.000013
Milwaukee, Wisc. 4179.778 316,159.131 2981.4768 10.71667  -0.014687
Dallas, Texas 3028.179 748,383,581 1526.6790 12.46059
L. Angeles, Calif. 7231.806 1,670,253.054 4266.0300 29.28750 -0.049617
S. Fernando, Calif.  2678.567 2,500,630.314 863.3931 - B8.97B33 0.172597  -0.000315
Fresno, Calif. 1220.066 78,426.095 742.7463 3.05917 0.000561
Bakersfield, Calif. 860.034 63,063.739 341.7068 5.22975  -0.007474
. Hanford, Calif. 111.0520 620.0377 67.8413 0.326118
Visalfa, Calif. 171.1026 2,232.715 80.7948 0.81029  -0.000730

*TmeA +Bt+Cto a0t

t = time in months

TABLE 5
MEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE

TREND IN THE STANDARD DEVIATION OF MONTHLY WATER USE TIME 1ES
MEAN VARIANCE REGRESSION COEFFICIENTS*
NAME 8 52
Ts “S BS cs

Fort Collins, Colo. 67.583 470.926 52.0380 - 1.13030 0.069347
Denver, Colo. 1698.867 122,048.576 1151.8549 42.7330 0.77075
Greeley, Colo. 105.679 361.705 73.7930 3.5620
Colo. Springs, Colo. 170.063 8,375.636 83.7826 - 2.73390 0.34506
Milwaukee, Wisc. 600.665 19,581.602 365.1402 18.29558
Dallas, Texas 1020.928 82,426.113 509.1405 48.5287
L. Angeles, Calif. 1144.251 30,274.878 856.0202 22.74905
S. Fernando, Calif. 1096.640 237,100,974 105.1314 82.8970 =0.71911
Fresno, Calif, 682.857 26,078.877 419.7886 21.94211
Bakersfield, Calif. 481.970 19,393,749 173,6623 41.2840 -0.88849
Hanford, Calif. 59.0916 283.748 31.1973 2.59470
Visalia, Calif. 103.196 1,163,207 32.9022 28,5317 -0.14644

2 3
Ts = As+ asta-cgt +nst

t = time in months

5.2 Analysis of Periodic Mean and Standard Devi-
ation

5.2.1 Urban water use. The analysis of weekly
and monthly urban water use time series shows that
the within-the-year cycle and some harmonics are
important for describing the periodic mean and
standard deviation.

For the three weekly series studied, the
periodicity in the mean, m_ has the within-the-year
cycle, with its harmonics of 52 and 26 weeks signi-
ficant. However, the periodic standard deviation has
in addition to the harmonics of 52 and 26 weeks also
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significant harmonics such as the 17.3, 13.0, and so
on, depending on a particular case. Table (6) gives the
mean, variance, and significant harmonics in periodic
mean and standard deviation of weekly series.

For monthly series the periodicity in the
mean, m_, has the within-the-year cycle with the
harmonic of 12 and 6 months significant in 11 out of
the 12 cases studied. However, in three cases the
other harmonics, such as 4.0 and 2.4 months were
also found significant. The periodic standard devi-
ation, 5,5 has the cycle also with the 12 and 6 month
harmonics significant in 10 out of 12 cases studied.
However, other harmonics such as 4.0, 3.0, 2.4 and



TABLE 6

MEAN, VARIANCE AND SIGNIFICANT HARMONICS OF PERIODIC MEAN
AND_STANDARD DEVIATION OF WEEKLY WATER USE TIME SERIES

PERIODIC MEAN

PERIODIC STANDARD DEVIATION

WATER UsE NANE ] s2 SIGNIFICANT| 5 _ s SIGNIFICANT
T HARMONICS T HARMONICS
Urban Fort Collins, Colo. 36.380 191.036| 52, 26 B.663 17.594 | 52, 26, 17.33, B.67
Water Denver, Colo. 852.288 129,232.417| 52, 26 180.411 | 16,817.020 | 52, 26, 17.33, 13
Use 10.4, 8.67
Greeley, Colo. 48.434 513.299| 52, 26 11.148 46.715 | 52, 26, 17.33, 13
10.4, 8.67
Irrigation Carter Lake, Colo. 981.779 705,400.448( 31, 15.5*% 618.992 (129,710.610 | 31, 15.5, 10.33
Water 7.75, 6.20
Use Hansen Canal, Colo. 1548.500 |3,151,511.410] 31, 15.5* 931.598 |278,443.114 | 31, 15.5, 10.33
7.75, 5.17
Hydropower A. B. Adams Tunnel, 2067.183 501.676,106| 52, 26, 965.156 | 98,352.718 | 52, 26, 17.33, 13,
Water Use Colo. 17.33, 13, 10.4, B.67
10.4, 8.67

* In this particular case, 31 weeks (instead of 52) s the basic period, because only during this time (April to October)

irrigation deliveries are necessary.

2.0 months are significant depending on each parti-
cular case. Table (7) gives the mean, variance, and
significant harmonics of periodic mean and standard
deviation of monthly series.

The periodic mean and standard deviation with
the annual cycle for the weekly series studied show,
in general, high values between the 20th and 35th
week of the year (from the middle of June to the
middle of September). This result is obtained for the
three cities analyzed (Fort Collins, Greeley, and
Denver, Colorado) and shows the effect of climato-
logic, air condition, lawns irrigation and socio-
economic environmental effects on water use. Figures
(21) and (22) give the computed values and the
fitted periodic mean and standard deviation for
weekly water use series of Fort Collins, Colorado.

The periodic mean for all monthly series
studied shows a similar shape. In 10 out of 12 cities
the highest monthly mean occurs in July and in the
other two cases in August. These two last cases are
Dallas, Texas, and Milwaukee, Wisconsin. Figures

26

(23), (25) and (27) show the computed means and
fitted periodic mean for the monthly water use of:
Fort Collins, Colorado; Dallas, Texas, and Bakers-
field, California.

The periodic standard deviation for the
monthly series studied shows different shapes mainly
according to the geographic location of cities. For
example, in case of cities in Colorado, Dallas,
Texas, and Milwaukee, Wisconsin, all show a similar
shape with predominantly high values during June to
August period. In case of cities in California, all show
a general similar shape with two predominantly high
values, For the cities located in the south coastal area
of California, the standard deviation, s_ ,had its
highest values in April and August for San Fernando,
and in April and September for Los Angeles. For the
cities located in the Tulare Lake Basin (Bakersfield,
Fresno, Hanford, and Visalia) the highest values
of s occur in June and October.

The above results seem to indicate a strong
influence of geographic location and climate on the



TABLE 7

MEAN, VARIANCE AND SIGNIFICANT HARMONICS OF PERIODIC
MEAN AND STANDARD DEVIATION OF MONTHLY WATER USE TIME SERIES

PERIODIC MEAN

PERIODIC STANDARD DEVIATION

WATER:USE e i, 52 SIGNIFICANT 8 § STGNIF ICANT
x HARMONICS ] HARMONICS
Fort Collins, Colo. 157.902 3,611.222 12, 6 28.870 137.520 12, 4, 3, 2
Denver, Colo. 3699.252 2,409,851.851 12, 6 583.710 147,991,250 12
Greeley, Colo. 210.185 9,513.028 12, 6 36.173 389.026 12,6, 4, 2
Colo.Springs, Colo. 469.497 22,090.080 12, 6 77.026 1,036.560 12, 6, 3
Urban Milwaukee, Wisc. 4213.185 307,837.630 12, 6, 2.4 211.517 9,137.303 12, 6, 2.4,2
Water Dallas, Texas 3028.179 854,457 .05 12,6,4 375.044 52,492.879 12, 6, 4, 3
Use L.Angeles, Calif. 7306.593 1,133,514.086 12, 2.4 417.971 3,763.152 12,6,3,2.4,2
S.Fernando, Calif. 2759.885 960,328.615 12, 6 485,180 12,574,829 12,6, 4, 2.4
Fresno, Calif, 1237.832 445,518,165 12, 6 128.550 3,486,783 12,6, 4, 2.4
Bakersfield, Calif. 877.756 220,137.481 12, 6 103.313 1,178.843 12, 6, 3, 2.4
Hanford, Calif. 112.846 3,318.451 12, 6 12.362 14,953 12,6,4,3,2.4
Visalia, Calif. 174.481 10,054.970 12, 6 22.284 83.869 12, 6, 2.4
Alpine Irr. Co., Utah 1456.429 850,412.245 7, 3.5 545.902 131,513,687 7, 3.5
) American Fork, Utah 2588.571 4,228,883.673 7, 3.5 976.793 634,582.787 7, 3.5
[rrigation MNorth Bench, Utah 1213.333 117,405.55 3 440,362 6,169.162 3
Water Lehi, Irr.Co.,Utah 1802.143  2,646,998.980 7, 3.5 648.198 328,482,512 7, 3.5
Use Plesanr Grove, Utah 1740.714  1,104,024.490 7, 3.5 583.751 148,065.239 7, 3.5
Carter Lake, Colo. 4347.879 12,490,133.006 7,3.5,2.33 2408.179 1,839,695.597 7, 3.5, 2.33
Hansen Canal, Colo. 6857.635 37,492,100.00 7,3.5,2.33 33B3.094 3,519,766,779 7, 3.5, 2.33
Mirage Flats, Nebr, 0.2136 0.03188 5, 2.5 0.0882 0.00195 by 2.9
A.B.Adams Tunnel 318.879 4,808.354 12,6,4,2.4 131.558 648.169 12, 2.0
(Big-Thomp.Proj.Colo)
G.Mountain Pow.Plant 5274.429 4,020,981.336 12, 6 2737.869 2,196,606.876 12, 6, 4, 2.4
(Big-Th. Proj., Colo)
Estes Park Pow.P1. 8285.603 3,762,080.247 12,6,4,2.4, 3B78.944 257,261.132 12, 4, 2.4,2.0
(Big-Th. Proj., Colo) 2.0
Hydropower Marys Lake Pow.P1. 3292.767 649,521.202 12,6,4,2.4, 1355.655 B4,552.560 12, 4, 3, 2.0
(Big-Th. Proj., Colo) 2.0
Water Pole Hill Pow.P1. 16874.635 4,283,958.B06 12,6,4,3,
(Big-Th, Proj., Colo) 2.4
Use Flat Iron Pow.P1, 21336.677 7,068,143.821 12,6,4,3,
(Big-Th. Proj., Colo) 2.4
Guernsey Pow.P1. 2044.531 2,820,391.391 12,6,4,2.4 712.455 134,409.966 12, 6, 4, 3
(Wyoming) 2.0
Kortes Pow. P1. 11655.852  2,717,058.596 12,6,4,3,
(Wyoming) 2.4

l“In the case of irrigation the basic periods were 7, 3 and 5 months.

shape of periodic standard deviation, s_. Figures
(24), (26) and (28) show the computed values and
fitted periodic standard deviation for the monthly
water use series of Fort Collins, Colorado; Dallas,
Texas; and Bakersfield, California.

Tables (8) through (11) give Fourier co-
efficients for fitted periodic mean and standard devi-
ation for both the weekly and monthly water use
time series, respectively.

5.2.2 Irrigation water use. The analysis of
weekly and monthly irrigation water uses shows that
the irrigation seasonal cycle and some of its harmo-
nics are important for describing the periodic mean
and standard deviation,

For the periodic mean of weekly series the
cycle of 31 weeks and its harmonic of 15.5 weeks are

shown to be significant. However, for the periodic
standard deviation in addition to the harmonics of 31
and 15.5 weeks, the harmonics of 10.3, 7.7, 6.2 and
5.2 weeks come out also to be important, depending
on particular cases. In both cases studied, the highest
values of the periodic mean is attained between the
15th to 25th week of the irrigation season (April to
October). On the other hand, the periodic standard
deviations show two predominantly high values
around the 8th and 16th weeks of the irrigation
season, respectively. Results for both cases studied of
the weekly irrigation deliveries should be expected,
since both cases are located in the same area of
Colorado. Table (6) gives the mean, variance and
significant harmonics of periodic mean and standard
deviation. Figures (29) and (30) show the com-
puted m_ and s_and the fitted periodic para-
meters p and o_ respectively, for the weekly irri-
gation deliveries of Carter Lake, Colorado.



TABLE 8

FOURIER COEFFICIENTS FOR PERIODIC MEAN OF WEEKLY WATER USE TIME SERIES

FOURIER COEFFICIENTS

WATER USE NAME "‘I Az A3 !‘ '.'S !5
B.I 92 B3 8' B5 B6
Fort Collins, Colo. = 17.4827 3.9654
Urban - 6.1514 3.9098
Water Denver, Colo. - 458.6282 89,1922
Use - 161.9815 96.0419
Greeley, Colo. - 28.4423 5.3071
- 11.9058 3.3401
Irrigation Carter Lake, Colo. - 745.2638 - 163.2444
Water - 779.5986 isz.7017
Use Hansen Canal, Colo. -1301.231 - 292.8102
-1229.5747 810.3999
Hydropower A.B. Adams Tunnel 252.2533 - 387.5076 - 169.3459 - 372.4300 - 198.1279 - 180.1036
H::er (Big-Th.Proj.,Cofo.) - 59,991 .2 - 103.3534 173.4574 29.1812 272.1282
TABLE 9
FOURIER COEFFICIENTS FOR PERIODIC STANDARD DEVIATION OF WEEKLY WATER USE TIME SERIES
FOURIER COEFFICIENTS
WATER USE NAME H] Az ha A‘ :'15 AE
B‘ 82 83 E‘ BS 85
Fort Collins, Colo. - 5.6805 0.2732 0.8892 0.1017
Urban - 0.7113 - 0.3538 0.3584 - 0.6170
HWater Denver, Colo. - 173.3654 10.2409 11.1260 = 2.5750 4.0296 - 7.5490
Use - 27.0142 - 17.11n 23.9472 9.5413 2.8335 - 15.1209
Greeley, Colo. - 8.9117 0.5010 0.9327 0.0327 0.6047 - 0.4199
- 0.5725 - 1.743 1.5070 0.6601 0.0416 = 0.9469
Carter Lake, Colo. - 404.1672 - 58,2048 71.2666 153.0724 - B6.5605
Irrigation - 24.9059 66.3937 194.2888 - 43.8925 14.0804
Water Hansen Canal, Colo. - 541.9052 - 164,1317 289.9824 100.0477 108,9210
Use 16.8318 107.4967 297.3520 - 56,9372 - 1.5179
Hydropower  A.B. Adams Tunnel - 338.7032 - 98.7915 109.2410 - 56.8127 - 33.3508 - 1.2337
Water Use (Big-Th.Proj., Colo) 57.2652 - 28.5305 43.7479 50.7410 45.9570 122.0872
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TABLE 10
FOURIER COEFFICIENTS FOR PERIODIC MEAN OF MONTHLY WATER USE TIME SERIES

FOURTER COEFFICIENTS

WATER USE NAME
M A A Ay Ag
8 8 By 8 Bg
Fort Coliins, Colo. - 68.779 9.721
- 42.655 21,761
Denver, Colo. -1797.80 202,599
-1118.816 522.648
Greeley, Colo. - 109.859 17.346
- 76.922 23121
Colo. Springs, Colo. - 176,207 13.403
- 109.886 22.802
Urban Milwaukee, Wisc. - 522,754 30.036 - 9.621
- 499,963 253.637 139,256
Water Dallas, Texas - 927.9M 35,702 157 .641
- 744.140 478.782 - 122.734
Use L. Angeles, Calif. -1136.330 100.364
- 936.554 199.425
5. Fernando, Calif. -1115.456 44.799
- 776.527 192.966
Fresno, Calif. - 806.716 58.111
- 455.158 164.631
Bakersfield, Calif. - 579.022 16.403
- 293.940 128.178
Hanford, Calif. - 72.165 5.923
- 34,024 14.515
Visalia, Calif. - 122.628 12.349
- 62.799 30.169
Alpine,Irr. Co., Utah - 810.815 - 115.777
965.358 - 310.881
American Fork, Utah -1914.002 - 265.815
1903.789 -1019.130
Irrigation North Bench, Utah 211.667
- 435.899
Water Lehi, Utah -1276.999 - 304.033
1702.230 - 803.174
Use Plesanr Grove, Utah -1061.531 - 95.197
909.456 - 475,874
Carter Lake, Colo. -1459.307 -1411.575 456.557
-4438.772 654.040 - 720.579
Hansen Canal, Colo. -2993.338 -3227.975 1240.485
-7184.913 1491.344 - 467.363
Mirage Flats, Nebr. - 0.0302 - 0.0346
- 0.2475 0.0195
A.B. Adams Tunnel B82.236 - 22.499 29,462 14.496
(Big=Th.Proj., Colo) 2.556 26.832 « 16.27 3.876
Hydropower G. Mountain, Po.P1. -2211.998 662.843
(Big-Th.Proj., Colo) -1381.501 B813.798
Water Estes Park, Pow.Pl. 2234.559 - 593,625 893.675 495.91% - 498.156
(Big-Th.Proj., Colo) 199,165 644 .037 - 288,719 E47.667 0.0
Use Marys Lake, Pow.P1. 936.986 - 257,775 345,492 188.311 - 180,132
{Big-Th.Proj., Colo) 70.183 302,986 - 112,107 226.374 0.0
Pole Hill, Pow.Pl1. - 461,134 1725.573 - 926,104 730.583 108,332
(Big-Th.Proj., Colo) 324.336 1459.559 - 701,937 - 355,43 1032.945
Flat Iron, Pow.P1, - B73.532 2203.305 - 928,432 930.284 163.
(Big-Th.PraJ.. tolo) 230.434 1802.339 - B95.078 - 842,047 132?3.222
Guernscy, Pow.P1. -2154.038 - 91.046 a8, 577 - 25.745 = 1ys. sl
(Wyoming) - (55.880 293.297 353,669 - 761.505 0.4
Kortes, Pow.Pl. £93.414 - 46.785 979.K52 - $09.282 204 .857
(Wyoming) 1629.500 - 642.619 102.7R1 210.020 383.130




TABLE 11

FOURIER COEFFICIENTS FOR PERIODIC STANDARD DEVIATION OF MONTHLY WATER USE TIME SERIES

FOURTER COEFFICIENTS

WATER USE NAME A' "'2 As '.‘4 #5 .ﬂs
B, B2 By By B Bg
Fort Collins, Colo. - 14.700 3.513 - 0.826 3.202
- 4.805 2.596 - 2.3 0.0
Denver, Colo. - 500,453
- 180.184
Greeley, Colo. - 25.24) 4.008 - 1.008 5.765
- 5,725 - 5,436 5,039 0.0
Colo. Springs, Colo. - 41.152 3.619 - 3.694
- 16.21 6.011 5.525
Urban Milwaukee, Wisc. - 92,179 14.619 - 19.985 26.475
- 73.733 42.461 31.136 0.0
Water Dallas, Texas - 230.844 13.1%0 - 9.716 - 15.075
- 181.175 103.710 - 57.232 58.606
Use L.Angeles, Calif. 10.558 - 25.625 6.458 - 1.413 16.462
’ 48.141 28,568 16.498 - 54,613 0.0
S. Fernando, Calif. 63.344 - 47.833 47.539 - 44.915
103.453 54.784 6.117 20.782
Fresno, Calif. - 73.649 - 4.815 7.626 - 2.946
10.759 - 30.504 - 9,326 14.778
Bakersfield, Calif. - 43,057 - 12.202 7.367 - 6.159
- 9.303 - B.625 7.767 3.789
Hanford, Calif. - 5.026 0.174 - 0.987 0.199 0.427
. 0.799 - 0.875 - 0.267 1.368 0.251
Visalia; Calif. - 12.309 1.117 = 1,465
- 1.643 - 2.501 1.152
Alpine, Irr. Co., Utah - 298.329 - 102.521
399.133 - 60.785
American Fork, Utah - 705,041 - 167.676
B27.269 - 236.889
Irrigation North Bench, Utah 50.475
- 98.947
Water Lehi, Utah - 438,966 - 141.949
638.358 - 187.485
Use Plesanr Grove, Utah ~ 363.993 - 79.691
374.474 - 126.057
Carter Lake, Colo. -1411.108 - 270.608 520.422
- 811.521 428.443 - 769.813
Hansen Canal, Colo. -1932.281 - 807.505 720,357
- 648.672 150,031 =1300.600
Mirage Flats, Nebr. - 0.0195 0.0153
- 0.0573 0.0007
A.B.Adams Tunnel - 33.547 - 9.341
(Big-Th.Proj., Colo) - 2.9 0.0
Hydropower G. Mountain, Pow.Pl. -1649.886 1036.€49 - 662,975 134.124
4 - 30.313 134.736 - 3.326 242.523
Water Estes Park, Pow.Pl. -~ 515,862 - 106.839 87,5602 = 317.584
M - 136.593 - 230.0:8 227.709 0.0
Use Marys Lake, Pow.P1. - 362.404 - 70,390 45.932 - 100.024
(") - 77.287 - 107.743 50.321 0.0
Pole IEHIIL Pow.P1.
Flat {n;n. Pow.P1.
Guernsey, Pow.Pl. - 317.483 = 113.491 - 16.600 129.393
" 241.420 - 227.791 164,193 - 17.270

Kortes, Pow.ll,
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Monthly irrigation deliveries show that the
means and standard deviations are periodic. The irri-
gation seasonal cycle of 3, 5 or 7 months (according
to each particular case) and some of its harmonics are
significant for the eight cases analyzed. A character-
istic of the monthly means and standard deviations is
their shape which changes according to the particular
area where the irrigation water is delivered. For
example, for the four cases of irrigation deliveries in
Utah (with irrigation season from April to October),
the highest values of m_ and s_ are attained during
the second and third month (May and June) of the
season. For the two irrigation deliveries in Colorado,
they occurred during the fourth and fifth month, and
for a case in Nebraska, during the third and fourth
month of the irrigation season; in both cases they
correspond to July and August. These results indicate
differences in amplitudes according to the total water
amounts delivered to each particular area, and in
phases according to different climates of areas to
which the irrigation water is delivered. Table (7) gives
the mean, variance and significant harmonics of peri-
odic monthly means and standard deviations, and
Tables (10) and (11) their respective Fourier coef-
ficients.

5.2.3 Hydropower water use. The analysis of
weekly and monthly hydropower water use showed
practically for all cases that the means and standard
deviations are periodic.
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Figure 21 Computed mean m_ and fitted periodic

mean p_,obtained by using Egs. (10)
and (6), respectively, for weekly urban
water use of Fort Collins, Colorado, 1930
— 1969.
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The weekly series of A.B. Adams Tunnel,
Colorado, had in addition to the cycle of 52 weeks its
harmonics of 26.0, 17.3, 13.0, 10.4 and 8.7 weeks, all
significant for both the means and standard devi-
ations. Table (6) gives the mean, variance and
significant harmonics of both m_ and s, and Tables
(8) and (9) their respective Founer coefﬁcwnts
Figures (31) and (32) show the computed
m_ and s_ and the fitted M., and 0 for the
weekly series. These two figures show the opposite
shape, because the periodic m_ has its highest values
in the first and last 10 weeks of the year and its
lowest values between the 20th and 30th weeks while
the periodic s has the opposite shape. This is the
result of controlled diversion of water from the
Colorado River storage capacities on the West Slope
to the East Slope of the Rocky Mountains.

Five of the eight monthly series studied show
significant periodicity in both the mean and standard
deviation; and the remaining three series showed
periodicity only in the mean. For the cases of
significant periodicities, the annual cycle of 12
months and its harmonics of 6, 4, 3, 2.4 and 2
months were also important depending on each
particular case. Table (7) gives the mean, variance
mean, variance and significant harmonics for

both g and o_. Tables (10) and (11) give their re-
spective Fourier coefficients.
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Figure 22 Computed standard deviation s and

fitted periodic standard devia-
tion ¢_ obtained by using Egs. (11) and
(7), respectively, for weekly urban water
use of Fort Collins, Colorado, 1930 —
1969.
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23 Computed mean m_ and fitted periodic
mean u_ , obtained by using Eqs. (10)
and (6), respectively for monthly urban
water use of Fort Collins, Colorado, 1930
— 1969.
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24 Computed standard deviation s and
fitted periodic standard deviation 0, ,0b-
tained by using Eqgs. (11) and (7), respec-
tively, for monthly urban water use of
Fort Collins, Colorado, 1930 — 1969.
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Figure 25 Computed mean m_ and fitted periodic
mean p_, obtained by using Egs. (10)
and (6), respectively, for monthly urban
water use of Dallas, Texas, 1950 — 1969.
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Figure 26 Computed standard deviation s_ and

fitted periodic standard deviation o, , 0b-
tained by using Egs. (11) and (7), respec-
tively, for monthly urban water use of
Dallas, Texas, 1950 — 1969.
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Figure 27 Computed mean m_ and fitted periodic
mean p_,obtained by using Egs. (10)
and (6), respectively, for monthly urban
water use of Bakersfield, California, 1944
— 1965.
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Figure 28 Computed standard deviation s_ , and fit-

ted periodic standard deviation g, ob-
tained by using Eqs. (11) and (7), respec-
tively, for monthly urban water used of
Bakersfield, California, 1944 — 1965.
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Figure 30 Computed standard deviation s_
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mean _,obtained by using Egs. (10)
and (6), respectively, for weekly irrigation
water deliveries of Carter Lake, Colorado,
1957 — 1969.
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and fit-
ted periodic standard deviation o, , 0b-
tained by using Eqgs. (11) and (7), respec-
tively, for weekly irrigation water deliver-
ies of Carter Lake, Colorado, 1957 —
1969.
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Figure 31 Computed mean m_ and fitted periodic

mean p_, obtained by using Eqgs. (10)
and (6), respectively, for weekly hydro-
power water use of A. B. Adams Tunnel,
Colorado, 1953 — 1965.

5.3 Analysis of Periodic Autocorrelation Coefficients

The dependence structure of weekly and mon-
thly water use series is analyzed by fitting the
first, second, or third order autoregressive models of
Equation (23). The degree of complexity for fitting
the above models depends on the complexity of the
covariance structure of the series, which in turn
depends on whether the autocorrelation coefficients
are periodic functions or constants. The results of the
analysis made on autocorrelation coefficients are
described for each type of water use studied.

5.3.1 Urban water use. The three weekly water
use series analyzed shows the autocorrelation coeffi-
cients for lags 1, 2 and 3 to be periodic functions
with the annual cycle of 52 weeks and its harmonics
of 26.0, 17.3, 13.0, 104 and 8.7 weeks to be signi-
ficant. In general, the autocorrelation coefficients for
all three lags were large varying from 0.60 to aimost
1.0 during the first and last 8 weeks of the year, and
they were small, less than 0.50 in the interval
between the 15th to the 40th week of the year. This
result of having periodic autocorrelation coefficients
significant is important in considering the further de-
composition of the dependent stochastic series in
order to obtain a second-order stationary and
independent stochastic component.

Table (12) gives the mean variance and signi-
ficant harmonics of the periodic autocorrelation
coefficients of weekly series, and Tables (13), (14)
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Figure 32 Computed standard deviation s_ and fit-
ted periodic standard deviation o_, ob-
tained by using Egs. (11) and (7), respec-
tively, for weekly hydropower water use
of A. B. Adams Tunnel, Colorado, 1953 —
1965.

and (15) their respective Fourier coefficients. Figures
(33), (34) and (35) show the computed and fitted
periodic autocorrelation coefficients for the lags 1, 2
and 3, respectively, for the weekly series of water use
of Fort Collins, Colorado. A general conclusion for
the periodicity in the autocorrelation coefficients of
monthly series cannot be drawn because in seven of
the twelve cases studied they were not significantly
periodic.

Table (16) gives the mean, variance and signi-
ficant harmonics of the autocorrelation coefficients
of monthly series. Figures (36), (37) and (38); (39),
(40) and (41); and (42), (43) and (44) show the com-
puted and fitted autocorrelation coefficients for
monthly series of water use in Fort Collins, Colorado;
Dallas, Texas; and Bakersfield, California, respec-
tively.

5.3.2 Irrigation water use. The weekly auto-
correlation coefficients for the lags 1, 2 and 3 were
found to be significantly periodic in the two cases
studied. They show low values of the autocorrelation
coefficient in the first and last weeks of the irrigation
season and high values in the rest of the season. The
mean, variance and significant harmonics of the three
autocorrelation coefficients are given in Table (12).
Figures (45), (46) and (47) show the first, second and
third autocorrelation coefficients, respectively, for
the weekly irrigation deliveries of Carter Lake,
Colorado.



The monthly autocorrelation coefficients for
the lags 1, 2 and 3 were found to be significantly
periodic for the irrigation deliveries in the Utah area.
However, for the two cases in Colorado and for the
one in Nebraska they were not found periodic.

The periodic autocorrelation coefficients for
the monthly deliveries in Utah had in general similar

shapes with their highest values attained between the -

3rd and 5th month of the irrigation season (April to
October). For all cases analyzed the mean, variance
and significant harmonics are given in Table (16).

5.3.3 Hydropower water use. The weekly auto-
correlation coefficients for the lags 1, 2 and 3, were
found to be significantly periodic in the only one case
studied. They all fluctuate around a mean value
which decreases and a variance which increases with
the increase in the time lag. Their respective values
are given in Table (12). Figures (48), (49) and (50)
show the weekly first, second and third auto-
correlation coefficients, respectively, for the series of
A. B. Adams Tunnel, Colorado.

Three of the eight monthly series analyzed
showed significant periodicities in the first, second

and third autocorrelation coefficients. In these cases,
the cycle of 12 months and its harmonics of 6, 4, 3,
2.4 and 2 months are important depending on each
particular case. The other five series did not show
significant periodicities. For all cases the mean, vari-
ance and significant harmonics are given in Table

(16).

In general, for weekly and monthly series of
any type of use, the dependence model and con-
sequently the resulting independent stochastic com-
ponent EP'T of Equation (30) are obtained
according to the type of autocorrelation function.
In other words, in the case of periodic auto-
correlation coefficients r , the autoregression
coefficients . of Equation (23), computed
by the Equations (24) through (29), were also
periodic; and in the case of nonperiodic
equal to "rk'r, the coefficients Q.
sequently nonperiodic or they are constants.

rIc i
are comn-

Tables (17) and (18) give a summary of the
types of autoregressive linear models obtained in the
analysis for each type of water use and for both
weekly and monthly data.

TABLE 12
MEAN, VARIANCE AND SIGNIFICANT HARMONICS OF PERIODIC

AUTOCORRELATION COEFFICIENTS OF WEEKLY WATER USE TIME SERIES

FIRST AUTOCOR. COEF. ry  SECOND AUTOCOR. COEF. r, THIRD AUTOCOR. COEF. ry
WATER USE NAME - 5 - 5 - 5
R SIGNIFICANT| 7, | s. SIGNIFICANT | 7y | st SIGNIFICANT
’ 1,1| HARMONICS ' 2.t| HARMONICS ' 3,1 | HARMONICS
Urban Fort Collins, Co. [0.6529| 0.0338 52, 26, 17.3,| 0.4999 | 0.0802( 52, 26, 17.3. |0.4410| 0.0859| 52, 2£, 17.3.
13, 10.4, 8,7 13, 10.4 8.7 13, 10.4, 8.7
Water Denver, Co. 0.5902| 0.0415| 52, 26, 17.3,| 0.4205 | 0.0612| 52, 26, 17.3, [0.3690| 0.0497| 52, 26, 17.3
13, 10.4, 8.7 13, 10.4, 8.7 13, 10.4, 8.7
Use Greeley, Co. 0.6461| 0.0506| 52, 26, 17.3,| 0.4632 | 0.0838| 52, 26, 17.3, (0.3891| 0.0782) 52, 26, 17.3,
13, 10.4, 8.7 13, 10.4, 8.7 13, 10.4, 8.7
Irrigation Carter Lake, Co. [0.7546| 0.0610/31.,15.5,10.33| 0.5175 | 0.0712|31.,15.5,10.330.3905| 0.0724| 31.,15.5,10.32
7.75, 6.20 7.75, 6.20 7.75,6.20
Mater Use Hansen Canal, Co. |0.6044| 0.0816[31:515.5,10.33) 0,390 | 0.0837(31.,15.5.10.330.2925| 0.1087| 31.,15.5.10.33
7.75, 6.20 7.75, 6.20 7.75,6.20
Hydropower A.B. Adams Tunnel |0.8486| 0.0464|52., 26, 17.3 | 0.7106 | 0.0781) 52., 26, 17.3]0.5981| 0.0918(52., 2.6,17.3
(Big-Th.Proj, Co) 13., 10.4, 8.7, 13,,10.4, 8.7 13.,10.4, 8.7
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TABLE 13
FOURIER COEFFI R_P FIRST
AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TIME SERIES

FOURIER COEFFICIENTS

NATER USE NAME A, A, A, A, g A
& ) By By Bg Bg
Fort Collins, Colo. 0.2103 0.0118 0.0035 - 0.0576 0.0040 0.0027
Urban 0.0696 0.0281 - 0.0187 - 0.0176 0.0080 0.0226
Water Denver, Colo. 01512 - 0.0106 - 0.06%4 - 0.0019 0.0077 0.0410
Use 0.0058 - 0.0137 - 0.0060 0.0098 0.0074 0.0703
Greeley, Colo. 0.2262 0.0008 - 0.0627 - 0.0364 0.0115 0.0036
0.0963 -  0.0262 0.0002 - 0.0302 0.0104 0.0657
TABLE 14
P R_COEFFI FOR_PERIODIC SECOND
AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TIME SERIES
FOURTER COEFFICIENTS
WATER USE NAME
A Ay A Ay Ag As
B ) & By Bs B
Fort Collins, Colo. 0.3518 - 0.0291 - 0.0097 - 0.0510 0.0295 0.0439
Urban 0.0375 0.0492 - 0.0438 - 0.0063 0.0102 0.0118
Water Denver, Colo. 0.1798 - 0.0331 - 0.042 - 0.0446 0.0785 -  0.0450
Use 0.0383 0.0032 - 0.0666 0.0078 0.0180 - 0.0879
Greeley, Colo. 0.3049 - 0.0467 - 0.0553 - 0.0962 0.0345 0.0367
0.0926 0.0132 - 0.0276 0.0029 0.0017 - 0.0641
TABLE 15
FOURIER COEFFICIENTS FOR PERIODIC THIRD
AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TIME SERIES
FOURIER COEFFICIENTS
WATER USE NAME
A A, Ay A, Ag Ag
B, 8, B B B B
Fort Collins, Colo. 0.3760 - 0.0173 - 0.0195 = 0,050 0.0274 0.0347
Urban 0.0279 0.0587 - 0.0377 - 0.0123 0.0185 0.0113
Water Denver, Colo. 0.1396 0.0452 0.0139 - 0.0566 0.0879 0.0134
Use - 0.0078 0.02662 - 0.0512 0.0220 0.0109 - 0.0692
Greeley, Colo. 0.2339 0.0167 - 0.0895 - 0.1210 0.0637 0.0548
0.0847 0.0719 - 0.0088 0.0815 0.0156 - 0.1053




TABLE 16

MEAN, VARIANCE AND STIGNIFICANT HARMONICS OF THE FIRST, SECOND AND THIRD
AUTOCORRELATION COEFFICIENTS OF MONTHLY WATER USE TIME SERIES

FIRST AUTOCOR. COEF. g e SECOND AUTOCOR. COEF. ra . THIRD AUTOCOR. COEF. Py
TR Yok N Fp, S SIGNIFIGANT F, = s2  SIGNIFICANT 7y  so SIGNIF ICANT
T 1ot HARMONICS it 2 HARMONICS ' Jat HARMONICS
Fort Collins, Co. 0.5980 0.0565 12, 6, 4, 2.4 0.4782 0.0624 12,6,3,2.4,2.0 0.3275 0.0669 12,6,3,2.0
Denver, Co. 0.4759 0.0316 0.3428 0.2852 0.0390
Greeley, Co. 0.4706 0.0017 0.2535 0.2032 0.0453
Colo. Springs, Co 0.5003 0.0237 0.2795 0.2008 0.0380
Urban Milwaukee, Wisc. 0.5079 0.0787 12,6,4,3 0.2733 0.1887 0.0988 12,6,4,3,2.4
Water Dallas, Texas 0.5862 0.0554 12,6,4,2.4,2. 0.3193 0.1618 0.1066 12,6,4,2.4
Use L. Angeles, Calif 0.4022 0.0337 0.2231 0.1932 0.0305
S. Fernando, Calif 0.4776 0.0528 0.4786 0.3466 0.0270
Fresno, Calif. 0.4041 0.0444 0.2039 0.1072 0.0569
Bakersfield, Calif 0.3378 0.0%23 12,6,4,2.4 0.2091 0.1191 0.0751 12.6.4,2.4
Hanford, Calif. 0.4841 0.0313 12,6,4,3,2.4 0.3488 0.2324 0.0399 12,6,4,3,2.4
2i
Yisalia, Calif. 0.4034 0.0327 0,2244 0.1330 0.0766
Alpine,Irr.Co,Ut 0.6064 0.0369 7,3.5,2.33 0.4049 0.3452 0.037% 7,3.5,2.33
American Fork,Ut 0.7346 0.0284 7,3.5 0.5610 0.3843 0.0585 7,3.5,2.33
Irrigation MNorth Bench, Utah 0.1713 0.0837 3 -0.1145 -0.1175 0.0038 3
Water Lehi, Utah 0.6003 0.0431 7,3.5,2.33 0.4785 0.3483 0.0606 7,3.5,2.33
Use Plesanr Grove,Ut 0./576 0.0359 7,3.5,2.33  0.544) 0.4361 0.0718 7,3.5,2.33
Carter Lake, Co 0.3713 0.i110 0.21288 0.0682 0.0314
Hansen Canal,Co 0.5678 0.0053 0.2208 0.0695 0,0407
Mirage Flats, Neb 0.0211 0.1147 -0.0278 0.2253 0.0464
A.B. Adams Tunnel 0.7442 0.0066 0.5534 0.0210 0.3921 0.0254
(Big-Th.Proj.,Co)
Green Mountain P.P 0.5402 0.0441 12.6,4,3,2.4 0.2148 0.0859 12,4,3,2.4,2 0.1172 0.1011 12,6,4,2.4,2
h 2
Estes ﬁark Pow.P1 0.7499 0.0103 0.5815 0.0255 0.4381 0.0447
Hvdropower Marys Lake,Pow.P1 0.7127 0.0088 0.52483 0.0214 0.4046 0.0305
Water Pole Iz‘i.‘)]‘ Pow.P1 0.5672 0.0334 12,6,4,3,2.4 0.3271 0.0782 12,6,3,2 0.2423 0.0639 12,6,4,3,2.4
Use Flat l:nn. Pow.P1 0.5412 0.0324 12,6,4,3,2.4 0.3550 0.0727 12,6,4,3,2,.4 0.243% 0.0680 12,6,4,32,2.4
Guernsey,Pow. P1. 0.3324 0:0735 0.0953 0.0955 0.0149 0.0484
Karte?.}Pow. P1., 0.675 0.0311 0.4390 0.0521 0.2058 0.0530
TABLE 17

TYPE OF AUTOREGRESSIVE LINEAR DEPENDENCE MODEL FOR WEEKLY SERIES

WATER NAME OBTAINED ORDER OF
USE WITH MODEL
Fort Collins, Colo. rk . Third

Urban Denver, Colo. L Third
Greeley, Colo. P Third

o Carter Lake, Colo. Fk Third
Lrrigatian Hansen Canal, Colo. Fk Second
Hydropower A. B. Adams Tunnel, Co. i Third




TABLE 18
TYPE OF AUTOREGRESSIVE LINEAR DEPENDENCE MODEL FOR MONTHLY SERIES

WATER NAME OBTAINED ORDER OF
USE WITH MODEL
Fort Collins, Colo. Pk Third
*
Denver, Colo. Fk Third
Greeley, Colo. Fk Second
Colo. Springs, Colo. Fk Third
L)
Urban Milwaukee, Wisc. Pt Second
L]
Dallas, Texas ke Second
L. Angeles, Calif. ry Second
S. Fernando, Calif. Fk Third
Fresmo, Calif. a'-k Third
Bakersfield Tkt Third
Hanford, Calif. Thos Third
Visalia, Calif. Fk Third
Alpine Irr. Co.,Ut. L Third
American Irr.Co.,Ut. Proo Third
North Bench Irr.Co.,Ut. Tt Second
Irrigation Lehi Irr. Co., Utah L Third
Plesanr Grove Irr.Co.Ut .t Second
att
Carter Lake, Colo. e Third
Hansen Canal, Colo. Fk Third
Mirage Flats, Colo. ‘-'k Third
A. B. Adams Tunnel, Co. i Third
G. Mountain Pow.P1., Co. rk i Second
Estes Park Pow.P1., Co. Fk Second
Marys Lake Pow. P1.,Co. Fk Third
Hydropower Pole Hill Pow.P1., Co. L. Third
Flat Iron Pow.Pl1., Co. Pi v Second
Guernsey Pow.Pl., Wyo. Fk Third
Kortes Pow.P1., Wyo. Fk Second
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Figure 33 Computed r, = and fitted periodicity
Py in the first autocorrelation coeffi-
cient of Egs. (20) and (16), respectively,
for weekly urban water use of Fort
Collins, Colorado.
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Figure 34 Computed r, and fitted periodicity
p, . in the second autocorrelation coeffi-
cient of Eqgs. (20) and (16), respectively,
for weekly urban water use of Fort
Collins, Colorado.
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Figure 35 Computed Ty and fitted periodicity -
0, . in the third autocorrelation coeffi-
cient of Eqs. (20) and (16), respectively,
for weekly urban water use of Fort
Collins, Colorado, 1930 — 1969,

TIHE IN MONTHS

Figure 36 Computed 1, _ and fitted periodicity
Py s in the first autocorrelation coeffi-
cient of Egs. (20) and (16), respectively,
for monthly urban water use of Fort
Collins, Colorado, 1930 — 1969.
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Figure 37 Computed r,, and fitted periodicity
[ in the second autocorrelation coef-
ficient of Eqs. (20) and (16), respectively,
for monthly urban water use of Fort
Collins, Colorado, 1930 - 1969,
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Figure 38 Computed Iy and fitted periodicity
P3. in the third autocorrelation coeffi-
cient of Eqgs. (20) and (16), respectively,
for monthly urban water use of Fort
Collins, Colorado, 1930 — 1969.
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Figure

Figure 40 Computed r
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39 Computed r, _ and fitted periodicity
p, . in the 8% autocorrelation coeffi-
cient of Egs. (20) and (16), respectively,
for monthly urban water use of Dallas,
Texas, 1950 — 1969.

TIME IN HONTHS

2.7 and fitted periodicity
Ps in the second autocorrelation coef-
ficient of Egs. (20) and (16), respectively,
for monthly urban water use of Dallas,
Texas, 1950 — 1969.
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Figure 41 Computed r
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3, and fitted periodicity
I in the third autocorrelation coeffi-
cient of Eqs. (20) and (16), respectively,
for monthly urban water use of Dallas,
Texas, 1950 — 1969.
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Figure 42 Computed r, _ and fitted periodicity

1,7 .
P, in the first autocorrelation coeffi-

cient for monthly urban water use of
Bakersfield, California, 1944 — 1965.
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Figure 43 Computed T, and fitted periodicity
Py in the second autocorrelation coef-
ficient for monthly urban water use of
Bakersfield, California, 1944 — 1965.
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Figure 44 Computed r, _and fitted periodicity
Py, in the third autocorrelation coeffi-
cient for monthly urban water use of
Bakersfield, California, 1944 — 1965.
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Figure 45 Computed By and fitted Py in the
first autocorrelation coefficient for
weekly irrigation water deliveries of
Carter Lake, Colorado, 1957 — 1969.
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Figure 46 Computed r, and fitted p, in the

2T i 24T :
second autocorrelation coetficient for
weekly irrigation water deliveries of
Carter Lake, Colorado, 1957 — 1969.
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Figure 47 Computed r, and fitted p, _in the

AUTQCORRELATION COEFFICIENTS =1

g8

0.0

third autocorrelation coefficient for week-
ly irrigation water deliveries of Carter
Lake, Colorado 1957 — 1969.
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Figure 48 Computed r . and fitted p _ in the

first autocorrelation coefficient for week-
ly hydropower water use of A. B. Adams
Tunnel, Colorado, 1953 — 1965.
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Figure 49 Computed r, and fitted p, _in the

second autocorrelation coefficient for
weekly hydropower water use of A. B.
Adams Tunnel, Colorado, 1953 — 1965.
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Figure 50 Computed Iy, and fitted Py , in the

third autocorrelation coefficients for
weekly hydropower water use of A. B.
Adams Tunnel, Colorado, 1953 — 1965.



3.4 Distributions of Independent Stochastic Com-
ponents

The normal, lognormal-3 and gamma-3 pro-
bability density functions are used for fitting the
frequency distributions of independent stochastic
components, £, of Equation (30). The best fit
was choosen by the chi-square criterion.,

The results obtained indicate that for weekly
series of water use the normal function approximates
well the frequency distribution of the independent
stochastic component. Only in the case of weekly
series for Denver, Colorado, the lognormal-3 function
gave a better fit. The parameters obtained for each
case are given in Table (19). Figure (51) gives an
example of the frequency distribution and the fitted
normal density and cumulative distribution functions

for the independent stochastic component of weekly
series of Fort Collins, Colorado.

Four out of twelve distributions of £
monthly series of urban water use are well fnted by
the normal function, six by the lognormal-3, and the
remaining two by the gamma-3 function. In the case
of irrigation water use, the lognormal-3 function was
best for five cases and the gamma-3 for the other
three. In the case of hydropower the normal function
was best for six series, the lognormal-3 for one series,
and the gamma-3 function for the other one. For all
cases the estimated parameters of distributions are
given in Table (20). Figures (52). (53), and (54) show
the empirical frequency distributions and the fitted
density and cumulative distribution functions for
three cases, of urban and irrigation water use.

TABLE 19
DISTRIBUTIONS OF THE INDEPENDENT STOCHASTIC COMPONENT

OF WEEKLY WATER USE TIME SERIES

PARAMETERS (*)

WATER USE NAME DISTRIBUTION
A B c

Fort Collins, Colo. Normal 0.000 0.7308
Urban
Water Denver, Colo. Log normal 3 2.5001 0.0660 -12.200
Use

Greeley, Colo. Normal 0.000 0.7666
Irrigaticn Carter Lake, Colo. Normal 0.000 0.6769
Mater
Use Hansen Canal, Colo. Normal 0.000 0.7239
Hydropower A.B. Adams Tunnel Normal 0.000 0.9386
Water Use (Big-Thomp.Proj,Co)

* For normal distribution:
A = mean
B = standard deviation

oo =

43

log normal 3 distribution:
mean of the 1 of (£-c)

standard deviation
lower boundary



TABLE 20

DISTRIBUTION OF THE INDEPENDENT STOCHASTIC COMPONENT
OF MONTHLY WATER USE TIME SERIES

PARAMETERS (*)

WATER USE NAME DISTRIBUTION
A 8 c
Fort Collins, Colo. Log normal 3 2.3338 0.0799 -10.3500
Denver, Colo. Gamma 3 8.8181 0.3277 - 2.,8895
Greeley, Colo. tormal 0.000 0.9390
Colo. Springs, Colo Normal 0.000 0.8890
Urban Milwaukee, Wisc. Log normal 3 2.3519 0.0916 -10.5500
Water Dallas, Texas Log normal 3 1.7995  0.1482 - 6.1088
Use L.Angeles, Calif, Log normal 3 2.8890 0.0522 -18.00
5. Fernando, Calif. Log normal 3 2.36812 0.0934 -10.650
Fresno, Calif. Gamma 3 117 .5665 0.0880 -10.3474
Bakersfield, Calif. Normal 0.000 0.9670
Hanford, Calif. Log normal 3 2.6693 0.0623 -14.4575
Visalia, Calif. Normal 0.000 0.9510
Alpine,Irr.Co. Utah Log normal 3 1.3795 0.1943 - 4.0462
American Fork, Utah Log normal 3 1.5159 0.1767 - 4.6227
Irrigation North Bench, Utah Leg normal 3 2.4953 0.0798 -12.1630
Water Lehi, Utah Gamma 3 15.0595 0.2062 - 3.1039
Use Plesanr Grove, Utah Log normal 3 1.6056 0.1627 - 5.0445
Carter Lake, Colo. Log normal 3 1.4001 0.2048 - 4.1423
Hangen Canal, Colo. Gamma 3 B.8512 0.2740 - 2.4224
Mirage Flats, Nebr. Gamma 3 23.9156 0.1981 - 4.7392
A.B. Adams Tunnel Log normal 3 2.3126 0.0709  -10.1250
G. Mountain, Pow.Pl Normal 0.000 0.8834
Estes Park, Pow.Pl. Normal 0.000 0.7014
Hydropower Marys Lake, Pow.P1. Normal 0.000 0.7381
Water Pole Hill, Pow.P1. Gamma 3 §9.5933 0.1126 - 6.720
Use Flat Iron, Pow.Pl. Normal 0.000 0.8446
Guernsey, Pow.P1. Normal 0.000 0.9814
Kortes, Pow.P1. Normal 2.000 0.7396

¥ For normal distribution:

A = mean

B = standard deviation

C=

Tower boundary
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Figure 51 Empirical (1) and fitted normal density (2) and cumulative distribution

(3) functions of the independent stochastic component of weekly water

use series of Fort Collins, Colorado.

For Log normal 3 distribution:
A = mean of the In of (e-C)

B = standard deviation of 'In {{-C)a = scale parameter

For Gamma 3 distribution:

A = shape parameter

C = lower boundary

3

-0

0.0 1.0

3.0



1.00

S0

80

80

S50+

204

5
T

0.00

1.00

90

70

60 |

S0+

40 -

201

0.00

-8.

Figure

52 Empirical (1) and fitted lognormal — 3
density (2) and cumulative (3) distribu-
tion functions of the independent sto-
chastic component of monthly water use
series of Fort Collins, Colorado.
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Figure 53 Empirical (1) and fitted lognormal — 3

density (2) and cumulative (3) distribu-
tion functions of the independent sto-
chastic component of monthly waier use
series of Los Angeles, California.
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54 Empirical (1) and fitted lognormal — 3
density (2) and cumulative (3) distribu-
tion functions of the independent sto-
chastic components of monthly irrigation
deliveries of Alpine Irrigation Company,
Utah.
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5.5 Relation Between Water Use Series, Temperature,
and Precipitation

Cross correlation and coherence functions are
used for investigating the linear relations between the
temperature, precipitation, and water use time series.
For doing this the trends in the mean and in the
standard deviation are first removed from the series
of water use.

The cross correlation functions of the series
2 of Equation (5) are first obtained for monthly
temperature and water use, and monthly precipi-
tation and water use series for the cities of Denver,
Colorado, and Dallas, Texas. Figures (55) and (56)
show these results for the case of Denver. These
figures show that the cycle in both temperature and
precipitation series are linearly related to the cycle of
the water use series. The highest cross correlation co-
efficient of about 0.90 was obtained for the series of
temperature and water use, and of about 0.40 for
precipitation and water use. These figures also show
that temperature and water use are both in phase; on
the other hand, a difference in phase of two months
exists between the precipitation and water use; that
is, the peak of precipitation occurs two months
earlier than the peak of water use.

l'z{-n ,Z_(W}(k}

-5 =

-10 1 1 e 1 1 1 ) K
=25 =20 ~-I5. -4 -5 0. 5 0. 15 20 25

Figure 55 Cross-correlation function between month-
ly temperature and water use series before
the periodicities are removed from the
series. Data correspond to Denver, Colo-
rado.
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Figure 56 Cross-correlation function between month-
ly precipitation and water use series
before the periodicities are removed from
the series. Data correspond to Denver,
Colorado.

The analysis in the frequency domain shows
basically the same result as obtained by the cross
correlation analysis. Figure (57) shows the coherence
function between the monthly temperature and
monthly water use, with a high value of almost 1.0
observed for the frequency corresponding to the
annual cycle. When the effect of precipitation is
subtracted, the partial coherence function of Figure
(58) shows practically the same result as the
coherence function of Figure (57), indicating that
both the temperature and precipitation are signifi-
cantly related to water use. This same result may be
inferred from Figures (59) and (60) which give the
coherence and partial coherence between the precipi-
tation and water use monthly series for Denver,
Colorado. The above results only show the good
relations at the frequency of the annual cycle of the
three series of water use, precipitation and tempera-
ture; therefore, further investigation is made for
studying the relation of the independent stochastic
components of the above series.

Figure (61) shows the correlograms for inde-
pendent stochastic components of temperature,
precipitation and water use monthly series for
Denver, Colorado. These independent components

47

100 1 1 1 1 1 ol 1 | 1 | 1 1 f
00 5 1.0 1.5 20 25 30 35 40 45 50 55 60 65

Figure 57 Coherence function between monthly
temperature and water use series before
the periodicities are removed from the
series. Data correspond to Denver, Colo-
rado.
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Partial  coherence  function between
monthly tempersture and water use
(effect of precipitation subtracted from
the analysis) before the periodicities are
removed from the series. Data correspond
to Denver, Colorado.

Figure 58
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Figure 59 Coherence function between monthly pre-
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cipitation and water use series before the
periodicities are removed from the series.
Data correspond to Denver, Colorado.
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Figure 60 Partial coherence function between the

monthly precipitation and water use
(effect of temperature subtracted from
the series) before the periodicities are re-
moved from the series. Data correspond
to Denver, Colorado.
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Figure 61 Correlograms for independent stochastic

components of monthly (a) water use, (b)
precipitation, and (c) temperature for
Denver, Colorado.
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are determined in the same way as tor other variables.
The cross correlation function of independent com-
ponents of temperature and water use and o1 precipi-
tation und water use ure shown in Figures (62) and
(63). respectively. Figure (62) shows that there is 4
relution at the lag zero between the independen: com-
ponents of temperature and water use and that they
are uncorrelated ut other lags. Similurly, Fiaure (63}
shows thuat there is a relation at the lag cero between
the independent components of precipitation und
water use. und that they are uncorrelated at other
lags.

The coherence spectra of independent com-
ponents oi temperature and water use and of precipi-
tation and water use are shown in the Figures (64)
and (66). The (st plot shows a constant coherence

(k)
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Figure 02 Cross correlation function between the in-
dependent stochastic components of
monthly temperature and water use for
Denver, Colorado.
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Figure 63 Cross correlation function between the in-
dependent stochastic components of
monthly precipitation and water use for
Denver, Colorado.
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ol 0.303
sumpling variability around it and the second plot
shows a constant value of 0.257, Their correspondent
partisl coherence spectra gave mean values of 0,224
and 0.216, respectively, und dhey are shown in the
Figures {03) and (67). These results indicate that the

spectrum for all frequencies with some

mdependent stochastic components of water use are
reluted 1o buth the independent stochastic com-
purienis ol temperature aad precipitation: therefore,
linear models for relating them, such as the ones pro-
posed 1 the Equations (35) and (36). may be used.
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Figure 64 Coherence function between the inde-
pendent stochastic components of
monthly temperature and water use for
Denver, Colorado.
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Figure 65 Partial coherence function between the in-
dependent stochastic components of
monthly temperature and water
(effect of precipitation subtracted from
the analysis) for Denver, Colorado.
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Figure 66 Coherence function between the inde-

pendent stochastic components of month-
ly precipitation and water use for Denver,
Colorado,
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Figure 67 Partial coherence function between the in-

dependent stochastic components of
monthly precipitation and water use
(effect of temperature subtracted from
the analysis) for Denver, Colorado.



Chapter 6

ANALYSIS OF ANNUAL SERIES OF URBAN WATER USE

6.1 Trends, Dependence Models, and Distribution Trends, time dependence structure, and pro-
Functions of Residuals bability distributions of the independent residuals are
studied in all cases. These results are given in Tables
Annual series of urban water use are analyzed (21) and (22). Table (21) gives for each city studied
for four cities in the United States and one in Canada. the type of trend and their correspondent polynomial
The five series are given as total values of water use regression coefficients.
(million gallons), and three of them also in unit values
(gpcd).
TABLE 21
POLYNOMIAL REGRESSION COEFFICIENTS FOR THE TREND IN THE ANNUAL
URBAN WATER USE
- o ORDER OF REGRESSION COEFFICIENTS
TREND A 8 c 5
Fort Collins, Colo. m.g. Quadratic 1,172.420 - 7.245 1.573
Colo, Springs, Colo. m.g. Cubic 3,532.943 - 282.570 25.118 -0.276
Baltimore, Maryland m.g. Quadratic 13,088.346 302.060 7.244
Baltimore, Maryland g.p-c.d. Quadratic 91.120 1.368 - 0.0071
New York, New York m.g. Quadratic 101,737.57 8187.10 -48.577
New York, New York g.p.c.d. Quadratic 104.389 0.844 - 0.0031
Montreal, Canada m.g. Quadratic 44,792.895  1135.30 17.344
Montreal, Canada g.p.c.d.  Quadratic 114.120 - 0.2569  0.0267
TABLE 22
NDENCE MODEL AN TRIBUTION OF THE INDEPENDENT
STOCHASTIC COMPONENT FOR_ANNUAL URBAN WATER USE
DEPENDENCE MODEL DISTRIBUTION
PARAMETERS PARAMETERS (*)
NAME UNIT TYPE TYPE
2y 9y 0y A B C
Fort Collins, Colo. m.g. Normal 0.0 204.29
Colo. Springs, Colo, m.g. Normal 0.0 419.99
Baltimore, Maryland m.g. First 0.825 Normal 0.0 0.563
Baltimore, Maryland g.p.c.d. First 0.766 Normal 0.0 0.633
New York, New York  m.g. First 0.681 Normal 0.0 0.729
New York, New York g.p.c.d. First 0,493 Normal 0.0 0.870
Montreal, Canada m.g. Third 0.629 0.318 -0.23 Lognormal-3 2.019 0.084 -7.54
Montreal, Canada g.p.c.d. Third 0.725 0.413 -0.067 Lognormal-3 1.593 0.116 -4.90
*For Normal: A = Mean For Lognormal-3: A = Mean of In(¢-C)
B = Standard deviation B = Standard deviation

C = Lower boundary
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Figures (68) and (70) show the original series
and the fitted quadratic trends in total annual water
use (million gallons) for New York City, New York,
and Baltimore, Maryland, Respectively. They both
show upward trends. However, in the first case the
trend is convex upwards and in the second case it is
concave upward. Figures (69) and (71) show the
original and the fitted quadratic trends for unit
annual water use (gpcd) for cities mentioned.

Table (22) gives the type and parameters of the
fitted dependence model to deviations from the
trends for all cases studied. In the case of Fort Collins
and Colorado Springs, Colorado, the residuals after
removing the correspondent trends are found to be
independent; therefore, no dependence model was
necessary to fit. On the other hand, for Baltimore,
Maryland, and New York City, New York, the first
order autoregressive model resulted fn an independent
residual series. Figures (72) and (73) show for the
case of New York City, New York, the correlograms
of residuals after removing the trend and of inde-
pendent residuals after removing the time dependence
for both the total and unit annual water use,
respectively. In both cases the correlograms show that
after fitting a first order model the residuals produced
an uncorrelated series, so they may be assumed to be
independent. In the case of Montreal, Canada, it was
necessary to fit a third order model for obtaining
uncorrelated residuals. Fitting these type of
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Figure 68 Annual water use in million gallons and

fitted quadratic trend for New York City,
New York (1898 — 1968).
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dependence models has physical significance in the
cases studied because after removing the trends it is
observed that positive or negative residuals in one
year lead to positive or negative residuals in the
following year, respectively.

Table (22) gives also the type and parameters of
the fitted probability distribution function to inde-
pendent residuals obtained in all cases studied. The
normal function fitted well the frequency distri-
bution in all cases except for Montreal, Canada, in
which case the lognormal-3 function gave a better fit.

6.2 Relation Between Annual Residual Series of
Water Use, Temperature and Precipitation

Cross correlation functions are used for investi-
gating the linear relation between annual residual
series of water use and the annual precipitation and
mean annual temperature for the cities of Fort
Collins and Colorado Springs, Colorado. The three
corresponding series of Fort Collins are shown in
Figure (74). Figures (75) and (76) show the cross
correlation functions between the mean annual tem-
perature and water use and between annual preci-
pitation and water use, respectively, for the case of
Fort Collins. They do not indicate a significant corre-
lation, and some high values may be due to sampling
variability only.
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Figure 69 Annual water use in g.p.c.d. and fitted
quadratic trend for New York City, New
York (1898 — 1968).
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Chapter 7

EXPLAINED VARIANCES BY TRENDS, PERIODICITIES AND STOCHASTIC
COMPONENTS OF WEEKLY AND MONTHLY SERIES

7.1 General Procedure

From Equation (1) the original series
Xy p MAY be written as

+v
YP.T

xp?T=Tm

(58)

p,T

Therefore the variance of Xp 7 is equal to

var {xp,7}= var {Tmpsf} + var {YD,T} . (89)

because Tmp . and y , are assumed and are close
to be independent. Based on this equation the
explained variance of the trend in the mean, denoted

by EVTM becomes
var {yp‘r}

\m\r{TmP =
EVTM = i F :
var{xp’r} var {xp‘r}

All explained variances described are relative to the
total variance of the original series x_ . Equation
(60) is used in the computed program TREND for
obtaining the value of EVTM, although this explained
variance may be also computed by using the re-
gression parameters estimated for the trend 'l‘mp 5

(60)

After removing the annual trend in the mean,
the trend in the standard deviation is removed by
using Equation (57) in order to obtain a constant
standard deviation equal to Tsp‘r. The explained
variance of the trend in the standard deviation
denoted by EVTS is computed by

EVTS = [var{ypﬁ} . var{zp.T} var x, .

or

EVTS = [var {yp}r} - (_Tsp)2 ]/var {xp‘r} . (61)

Therefore, the variance explained by both annual
trends in the mean and standard deviation denoted by
EVT is

EVT = EVIM + EVTS , (62)

with EVTM and EVTS defined by Equations (60) and
(61), respectively.
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For finding the explained variances by the
periodic components, denoted by EVP, an approxi-
mation was made by assuming that the periodicities
u_ and o_ of Equation (5) are proportional or

that 07,-’;1‘_ =m, =m, a constant. Therefore,
Equation (5) is written as
ZP.T =“T‘ 2 n l“‘l’ EP,T
or
- — A*
2o THe L Hmey Jobey, (63)

By logarithmic transformation this equation becomes

log B log u, +log e;‘r (64)
which is used for finding the explained variance of
the periodic and stochastic components denoted by

EVP and EVS, respectively. It follows

var {log 2o } = var {lﬂg Fi,.} +var {log e:,r} ,(65)

so that
var {log “r} var {z . }
ENP = {log zp‘r} ’ Var{xpp :} ) (66)
e var{log e* } var {z }
p,T p.7 (67)

EVS=or {log zp_r} " var {xp,r}

The use of logarithms to transform a product of
two variables into their sum of logarithms has a bias,
but this is the practical way of determining an ap-
proximate explained variance of each of these vari-
ables. The concept of explained variances is mainly
developed under the assumption that there is a sum
of several variables to account for the variation of a
dependent variable.

In some cases the approximation referred to the
proportionality of p_and ¢_ was not accurate
mainly due to the differences in phases of K,
and o¢_ and nonproportionality of correspondinig
amplitudes. In such cases the explained variance of



the periodic component was approximated with the
variance of u_ only.

7.2 Results

Tables (23) through (32) give variances and
explained variances obtained in the analysis of weekly
and monthly series of each type of use. All the
explained variances showed in these tables are given
in percent, either relative to the variance of the
original series or relative to the variance left after
removing the annual trends.

Tables (23) and (28) give the means and vari-
ances of original series x . for the weekly and
monthly series, respectively. Table (24) gives the
explained variances by trends in the mean and
standard deviation of the weekly urban water use
series. It is interesting to observe the different values
of EVTM obtained for the cities in Colorado, while in
the case of Denver EVIM it is only 6.10 percent, for
Fort Collins it is as high as 36.20 percent.

The explained variances by periodic com-
ponent, EVP, for weekly series of all type of use
studied, are given in Tables (25) and (27). Table (25)
gives the explained variances relative to the variance
of the original series x . ,while Table (27) gives
them relative to the variance left after removing the
trends. In the first case, the explained variances of the
urban series studied varied for 40.90 percent to 73.80
percent while in the second case they varied from
70.20 percent to 81,50 percent. In the case of irri-
gation the resulting values of EVP are similar and
greater than 50 percent and for the hydropower series
studied it was only 23.70 percent.

The explained variances by stochastic com-
ponents of weekly series of all uses are given in Tables
(25) and (27). Table (25) gives the explained vari-
ances relative to the variance of the original series
Xp re while Table (27) gives them relative to the
variance left after removing the trends. The most
notable result is that the variance explained by the
stochastic components changes considerably
according to the type of use. For example, for urban
use they vary from 8.50 to 29.80 percent, for irri-
gation use they are 37.40 and 44.10 percent, and for
hydropower use 76.30 percent. (These percentages
are relative to the variance of the series after the
trends were removed). Table (26) gives a summary of
the explained variances by trends, periodicities and
stochastic components, relative to the variance of the
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original series x_ _ , and Table (27) gives a summary
of the explainecr variances of periodic and stochastic
components relative to the variance after the trends
are removed.

Table (29) gives the explained variances by
trends in the mean and standard deviation for the
monthly urban water use series studied. The resulting
EVTM values varies considerably. For example, in
Colorado the value of EVTM for Colorado Springs
was as high as 61.70 percent; on the other hand, in
Denver it was only 7.00 percent. In the case of
California it is interesting to note that for cities
located in the south coastal area the EVTM values are
high; 54.10 percent for Los Angeles and 67.00
percent for San Fernando. On the other hand, for
cities located in the Tulare Lake Basin they are re-
latively low varying from 14.20 percent to 19.80 per-
cent. The explained variances EVTS are low in
general, varying from 0.90 percent to 7.60 percent.

The explained variances by periodic com-
ponents of monthly values show a variety of results.
They are given in Tables (30) and (32). For the case
of urban water use, they vary from 24.10 to 78.70
percent when the explained variances are relative to
the variance of the original series x _— , they vary
from 76.0 to 95.90 percent when they are related to
the variance after the trends are removed. These last
percentages give a better idea of the seasonal effect
on water use. It is interesting to note in the case of
the California cities the effect of different geographic
locations on the explained variances by the periodic
components. While cities located in the south coastal
area have values of EVP of 78.30 and 85.10 percent,
the cities located in the Tulare Lake Basin have higher
values, varying from 94.90 to 95.90 percent.

For the case of monthly irrigation, the EVP
values vary from 72.90 percent to 81.00 percent
except for one case in which it was only 38.20 per-
cent. Opposite results are obtained in the case of
hydropower for which they vary from 8.35 percent
to 29.60 percent except in one case in which it was
80.50 percent.

Tables (30) and (32) give the explained vari-
ances by stochastic components of monthly series of
all uses studied. Table (30) gives the explained vari-
ances relative to the variance of the original series
X, ,» Wwhile Table (32) gives them relative to the
variance after the trends are removed. In the case of
urban use, the variances explained by the stochastic



component vary from 4.10 to 24.00 percent, in the
case of irrigation from 19.00 to 61.80 percent, and in
the case of hydropower from 19.50 to 91.65 percent.
Finally, Table (31) gives a summary of the explained
variances by trends, periodicities and stochastic com-

ponents, relative to the variance of the original series
X,, and Table (32) uvives a summary of the
explained variances of periodic and stochastic com-
ponents relative to the variance after the trends are

removed.

TABLE 23

GENERAL_ MEAN AND VARIANCE OF THE WEEKLY WATER USE TIME SERIES

WATER USE NAME MEAN R VARIANCE S2  UNIT °
Urban Water Fort Collins, Colo. 36.380 484,614 M.G
u Denver, Colo. 852.285 195,075.53] M.G
8 Greeley, Colo. 48.434 795.774  M.G
Irrigation Carter Lake, Colo. 981.779 1,178,810.81 sfd.
Vater Use Hansen Canal, Colo. 1548.500 3,151,511.41 sfd.
Hydropower A.B. Adams Tunnel 2067.183 1,454,485.020 cfs-w
tatar Use (Big-Thomp. Proj. Colo.)
MG: million gallons sfd: second feet day
cfs-w: cubic feet per second (per week)
TABLE 24
EXPLAINED VARIANCES BY TRENDS IN THE MEAN AND
STANDARD DEVIATION OF WEEKLY URBAN WATER USE TIME SERIES
(relative to the variance of the original series L 1_)
Trend in
Trend in the Mean the Standard Deviation
NAME Type of \Efxp]ﬁ ned Type of Exp]_ai ned
ariance ariance
REEE (percent) Trend (percent)
Fort Collins, Colo. Quadratic 36.20 Quadratic 5.70
Denver, Colo. Linear 6.10 Quadratic 3.50
Greeley, Colo. Linear 12.00 Linear 3.00
TABLE 25

EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS

(relative to the variance of the original series x

OF WEEKLY WATER USE TIME SERIES

)

PsT

EXPLAINED VARIANCES (percent)

WATER USE NAME PERIODIC STOCHASTIC
Fort Collins, Colo. 40.90 17.20
Urban Water Use Denver, Colo. 73.80 16.60
Greeley, Colo. 62.50 22.50
Irrigation Carter Lake, Cole. 55.90 44.10
Water Use Hansen Canal, Colo. 62.60 37.40
Hydropower A.B. Adams, Tunnel 23.70 76.30
Water Use (8ig Thompson Pro., Colo.)
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THE WEEKLY WATER USE TIME SERIES (in percent, or relative to the variance of the original series x
1

SUMMARY OF THE EX

INED VARIAN

TABLE 26

BY TREN

PERIOD.

TIC COM

EXPLAINED VARIANCES
WATER USE NAME
ITRENDS PERIODICITIES STOCHASTIC COMPONENT

Fort Collins, Colo. K1.%0 40.90 17.20
Urban
Water Denver, Colo. 9.60 73.80 16.60
VUse

Greeley, Colo. 15.00 62.50 22.50

Carter Lake, Colo. 55.90 44,10
Irrigation
Mater Use Hansen Canal, Colo. 62.60 37.40
Hydropower | A.B. Adams Tunnel 23.70 76.30
rmr Use | (Big-Thomp.Proj. Co)

TABLE 27

SUMMARY OF THE EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS OF THE WEEKLY WATER USE

TIME SERIES (in percent or relative to th

rianc ft afte

EXPLAINED VARIANCES
WATER USE NAME
PERIODICITIES STOCHASTIC COMPONENT
Fort Collins, Colorado 70.20 29.80
Urban
Water Denver, Coloradoe 81.50 18.50
Use
Greeley, Colorado 73.50 26.50
Carter Lake, Colorado 55.90 44,10
Irrigation
Water Use |Hansen Canal, Colorado 62.60 37.40
Hydropower | A. B. Adams Tunnel 23.70 76.30
Water Use | (Big-Thomp. Proj. Colo.)
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TABLE 28
GENERAL MEAN AND VARTANCE OF THE MONTHLY WATER USE TIME SERIES

2

WATER USE NAME MEAN X VARIANCE Sx UNIT
)
Fort Collins, Colo. 157.902 8,328.060 M.G.
Denver, Colo. 3699.252 3,226,398.234 M.G.
Greeley, Colo. 210.185 13,353.595 M.G.
Cole. Springs, Colo. 469.497 94,296.189 M.G. TABLE 29
Erhan gi}?auke%, Wisc. 42;3.}?3 " gg;.gg?.:lg M.G.
ater allas, Texas 3028. ,B883,281. M.G. £
Use L. Angeles, Calif. 7306593 27909.764.730 M.G. XPLAINED VARIANCES BY TRENDS IN THE MEAN AND THE STANDARD
5. Fernando, Calif. 2759.885 3,865,532.112 M.G.
Frasno, Calif: 1237832 568.501.737 M.G. DEVIATION OF MONTHLY URBAN WATER USE TIME SERIES (relative to
Bakersfield, Calif. 877.756 307,423.035 M.G. 5 .
Hanford, Calif. 112.846 4,369.723 M.G. O yariacy ol theoriging sertes X0
Visalia, Calif, 174.481 13,689.248 M.G.
Alpine Irr. Co., Utah 1456.429 1.258,458.6 af. TREND IN THE MEAN TREND IN THE STANDARD DE?IATIEN
American Fork, Utah  2588.571 5,738,155.1 af. NAME
Irrigation North Bench, Utah 1213.333 307,488.89 af. TYPE OF EXPLAINED TYPE OF EXPLAINED
Water Lehi, Utah 1802.143 3,358,209.70 af. TREND VARIANCE TREND YARIANCE
Use Plesanr Grove, Utah 1740.714 1,568,413.78  af. (percent) (percent)
Carter Lake, Colo. 4347.879 19,550,000.00 sfd.
Hansen Canal, Colo. 6857.635 51,306,029.60 sfd.
Mirage Flats, Nebr. 0.2136 0.041147 af/a Fort Collins, Colo. Quadratic 39,90 Quadratic 5.20
Denver, Colo. Linear 7.00 Quadratic 3.50
A.B. Adams, Tunnel 318.879 21,382.83 cfs. Greeley, Colo. Linear 13.50 Linear 3.00
(Big-Thompson Proj, Co.) o . . 5 -
Green Mountain, Pow.Pl. 5274.429  13,340,723.80  MGH Cole, Springs; Golo, Cublo 6.9 Quadratic 7%
" Milwaukee, Wisc. Quadratic 44.60 Linear 2.80
Estes Park, Pow.Pl.  8285.603  18,260,100.70  MGH Dallas, Texas i o 39.80 Etuear 4.80
Hydropower  Marys Lake, Pow.Pl. 3292.767 2,465,077.95  MGH L. Angeles, Calif. Quadratic 54.10 Linear 0.90
Water Use (") S. Fernando, Calif.  Cubi 67.00 drati
Pole Hill, Pow.P1.  16874.635  20,335,611.20  MGH bt M . Batvatio s
" Fresno, Calif. Quadratic 14.20 Linear 3.80
!{’13*- Iron, Pow.P1. 21336.677  33,080,325.60  MGH Bakersfield, Calif.  Quadratic 19.80 Quadratic 4.20
Guernsey, Pow.Pl. 2044.531 ,436,713.53 MGH Hanford, Calif. Linear 14.50 Linear 5.60
. Visalia, Calif. Quadratic 16.20 Quadratic 5.80
?nrtes. Pow.P1. 11655.853 32,192,115.30 MGH
57,

*M.G.: millon gallons

a.f.: acre-feet

sfd.: second-foot-day

affa: acre-feet per acre
cfs.: cubic feet per second
MGH.: megawatts per hour



TABLE 30

the original series x_ )

Pat

EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS

OF MONTHLY WATER USE TIME SERIES (relative to the variance of

EXPLAINED VARIANCES (percent)

TABLE 31
SUMMARY OF THE EXPLAINED VARIAKCES BY TRENDS, PERIODIC AND STOCHASTIC COMPONENTS OF THE

MONTHLY WATER USE TIME SERIES (relative to the variance of the original series

EXPLAINED VARIANCES (percent)

Water
Use fame Periodic Stochastic WATER USE NAME TRENDS  PERIODICITIES  STOCHASTIC COMPONENT
Fort Collins, Colo. 43.40 11.60
g Fort Collins, Colo.  45.10 43.30 11.60
puawae. tale- LE4i L Denver., Colo. 10.50 77.60 11.90
ole garfms' colo 5410 760 Greeley, Colo. 16.50 72.10 11.40
Hi'lu;ukee Higc. * 45‘30 6'50 Colo. Springs, Colo. 68.30 24.10 7.60
Dallas T;xas 4?'1{! 8.00 Urban Milwaukee, Wisc. 47.40 45.80 6.80
Urban L. Angeles, Calif 38.40 6.60 Water Dallas, Texas 44,60 47.40 8.00
S Fernands. Calif 24 40 6.70 Use L.Angeles, Calif. 55.00 38.40 6.60
Foaan GIHE 78.70 3.30 S.Fernando, Calif. 68.90 24.40 6.70
Bakersfield, Calif. 72.25 .75 SO i, Bt g 3.4
Hanford, Calif. 75.80 4.10 FLlMIN Cadaf. 200 4 318
Visalis Galif 74.00 .00 Hanford, Calif. 20.00 75.80 4.10
saliag ‘ ‘ ‘ Visalia, Calif. 22.00 74.00 4.00
Alpine Irr. Co., Utah 78.40 21.60
Alpine Ir. Co., Utah 78.40 21.60
Irrigation  American F. Co., Utah 78.00 22.00 St R fcan Forkeioran - 22.00
North Bench Co.. Utah 38.20 61.80 rrigation North Bench, Uta .2 61.80
Lehi, Irra. Co., Utah 78.00 22.00 e Eheis o . 3209
P]“;lﬂt G. co-‘ Utah 75'm 24.00 Use Pleasant Grove, Utah 76.00 24.00
Carter Lake, Colo 76.50 23 50 Carter Lake, Colo. 76.50 23.50
Hansan c“.-i Coh; 72'90 21'“) Hansen Canal, Colo. 72.90 27.10
Mirage n.u: "eh‘. s]:w ,g:m Mirage Flats, Nebr. 81.00 19.00
A.B. Man: Tunnel 21.90 18.10
G. Mountain Paw. P1, 29.60 70.40
A. B. Adams Tunnel 21.%0 78.10 Estes Park, Pow. P1, 15.10 84.90
Gomeeresor RS B e - Bl
- - . . r e » - . . .
Hydropower Marys Lake Pow. P1, 26.25 73.75 Use Flat Iron, Pow. P1. 21.00 79.00
Water Use Pole Hi1l Pow. P1. 20.95 79.05 Guernsey, Pow. P1. 80.50 19.50
Flat Iron Pow. P1, 21.00 79.00 Kortes, Pow. P1. 8.35 91.65
Guernsey Pow. P1. 80.50 19.50
Kortes Pow. P1. B.35 91.65




TABLE 32
SUMMARY OF THE EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS OF THE MONTHLY

WATER USE TIME SERIES (in percent or relative to the variance left after removing the trends)

EXPLAINED VARIANCES

WATER USE NAME PERIODICITIES STOCHASTIC COMPONENT
Fort Collins, Colorado 79.00 21.00
Denver, Colorado 86.60 13.40
Greeley, Colorado 86.40 13.60
Colo. Springs, Colorado 76.00 24.00
Urban Milwaukee, Wisconsin 87.00 13.00
Water Dallas, Texas 85.40 14.60
Use Los Angeles, California 85.10 14,90
San Fernando, California 78.30 21.70
Fresno, California 95,90 4.10
Bakersfield, California 95.00 5.00
Hanford, California 95.00 5.00
Visalia, California 94.90 5.10
Alpine Irr. Co., Utah 78.40 21.60
American Fork, Utah 78.00 22.00
North Bench, Utah 38.20 61.80
Irrigation Lehi, Utah 78.00 22.00
Water Use Pleasant Grove, Utah 76.00 24,00
Carter Lake, Colorado 76.50 23.50
Hansen Canal, Colorado 72.90 27.10
Mirage Flats, Nebraska 81.00 19.00
A.B. Adams Tunnel 21.90 78.10
G. Mountain Pow. P1. 29.60 70.40
Estes Park, Pow. P1. 15.10 B84.90
Hydropower Marys Lake, Pow. P1. 26.25 73.75
Water Use Pole Hill, Pow. P1. 20.95 79.05
Flat lron, Pow. P1. 21.00 79.00
Guernsey, Pow. P1. 80.50 19.50
Kortes, Pow. P1. 8.35 91.65
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Chapter 8

CONCLUSIONS

Results of this investigation of the stochastic
structure of weekly, monthly and annual water use
time series may be summarized in the following con-
clusions:

(1) A general mathematical approach developed
for the analysis of water use time series permits the
identification, estimation, and removal of trends in
the mean and standard deviation, periodicities in the
mean, standard deviation and autocorrelation coef-
ficients, the investigation of time dependence, and
finally the reduction of the original nonstationary
process, X, - ,to a second-order stationary and
independent process ’;‘p'r.

(2) A general deterministic-stochastic model,
Equation (34), for representing water use time series
may be used for the generation of new samples of the
process X, by using the estimated or projected
trends, estimated periodicities, and by generating new
samples of the independent stochastic component
Ep.r , from its inferred probability distribution
function. These generated samples may be used for
the analysis, design and future operation of water
resource systems.

(3) Weekly series of urban water use are com-
posed of trends in the mean and standard deviation,
annual periodicities in the mean, standard deviation
and autocorrelation coefficients, and a time
dependent stochastic component.

(4) Monthly series of urban water use are com-
posed of trends in the mean and standard deviatiom,
annual periodicities in the mean and standard devi-
ation (and in some cases of annual periodicities in the
autocorrelation coefficients) and a time dependent
stochastic component.

(5) Weekly series of irrigation and hydropower
water use is composed of annual periodicities in the
mean standard deviation and autocorrelation coeffi-
cients and a time dependent stochastic component.

(6) Monthly series of irrigation water use is
composed of annual periodicities in the mean,
standard deviation and autocorrelation coefficients
and a time dependent stochastic component.
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(7) Monthly series of hydropower water use is
composed, in the cases studied, of annual periodici-
ties in the mean and standard deviation (in some cases
of annual periodicities in the autocorrelation coef-
ficients) and a time dependent stochastic component.

(8) Annual series of urban water use is com-
posed of trends and a time dependent or independent
stochastic component. The time dependence of the
stochastic component may be approximated by the
first, second or third order autoregressive linear
models.

(9) The trends in the mean and standard devi-
ation of weekly and monthly series of urban water
use is either linear or nonlinear (quadratic or cubic),
and is well described by polynomial regression
equations. The same characteristics are shown in the
trends of annual series.

(10) Periodicities in the mean, standard devi-
ation, and autocorrelation coefficients are well
described by Fourier series, with the annual cycle (52
weeks or 12 months) and its harmonics.

(11) The time dependence of the stochastic
component of weekly and monthly water use series
may be well approximated by the second or third
autoregressive linear models, with periodic or con-
stant autoregressive coefficients. The removal of this
dependence leads to a second-order stationary and
independent stochastic series.

(12) The frequency distribution curves of the
independent stochastic component of weekly,
monthly and annual series of water use may be well
approximated by the normal, lognormal-3 or
gamma-3 probability distribution functions.

(13) The variance explained by trend com-
ponents of urban water use in respect to the variance
of the original series x  _ vary in the range of 9.60
to 41.90 percent for weekly series and of 10.50 to
68.90 percent for monthly series.

(14) The variance explained by periodic com-
ponents of urban water use vary in the range of 70.20
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to 81.50 percent for weekly series and of 76.00 10
95.90 percent for monthly series. For irrigeiion water
use they are 55.90 and 62.60 percent for the weekly
series studied and vary in che runge of 38.20 to 81.00
percent for monthly scrics. For hydiopower water
the figure is 23.70 percent for the weekly series
studied and vary in the range of 8.35 10 30.50 per-
cent for monthly series.

(15) The variance explained by the independen
stechastic component of urban water use varies in the
range of 11.50 to 29.50 percent for weekly serics and
of 4.10 to 24.00 percent for monthly series. For
irrigation water, the figures are 37.40 and 4-4.10 per-
cent for the weekly series and 19.00 10 81.00 percenm
for monthly series. For hydropower water, the figure
is 76.30 perceni for the weekly series and 15.50 to
91.65 percent for monthly series.
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(18) Cross correlation and cross spectral
anclysis show that a linear relation e¢xists between the
znnual cycles of temperature, precipitation and water
use geries, Temperature and water use unnual cyches
were in phase: however, a difference in phase is found
fur the annual cocles of precipitation and waler use.
for data of Denver, Colorado.

{17} Cross cuorrelation and cross spectral
zatlysis show that a linear relation exists between the
wdependent stochastic components of temperature,
precipitation and water use.

{18) No significant correlation is found
between the annual values ol mean temperature, total
precipitation and residuals of annual water use for
arhan water use at Fort Collins and Colorado Springs,
Colorado.
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Appendix 1

MATHEMATICAL MODEL OF DAILY WATER USE IN CASE OF WEEKLY PERIODICITY

In cases where the weekly periodicity is statis-
tically significant, the procedure outlined in 3.2 and
3.3 (Chapter 3) may be extended to daily series as
follows.

The trends in the mean and standard deviation,
the within-the-year periodicities in the mean,
standard deviation and autocorrelation coefficients
are first removed from the original process X 88
described in 3.2 and 3.3 (Chapter 3), by obtaining the
process E e of Equation (26). In case of weekly
perlodu:uy significant, further transformation is
necessary to obtain Ep,r

Consider the process v of Equation (26),
where T =1, 2, ..,w¥with

denoted by £
w* equal to 7, and p=12, .. n* with n* the
number of weeks in the series. Similar procedures as.
in 3.2 and 3.3 is followed for removing the weekly
periodicity from E;"r. Therefore from Equation (5)

E: —“_* + U,_E*

ip,T (68)

in which p* and 0‘“"‘ are weekly periodic mean and
standard dwlatmn of the process, £* , and ¢ 5 I8
the stochastic component. The removal of p¥ and
a: from g;"f may, in many cases, be sufficient for
obtaining a second-order stationary and independent
process. If proper statistical tests show that 6* o still

is nonstationary, then the weekly pcrmdic auto-

correlation coefficients may be removed from the
series  €* . By estimating pk as in Equations
(16), (17), (18) and (20), and subsequently by
using Equation (30), this can be achieved. That is,

m
X o B a¥ e .
p.T J=I ) P I Y |
pr ™ mOm L i v
-2 5 % B Pl o
=i if i< (69)
k=j if
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in which
p;“f‘j tor
(25) and

cr"‘r are expressed in function of
k j = 12,3, as in Equations (24), or
{”6) or (2?), (28) and (29), and
with pk estimated by r. of Equation (20).
The g ) prm,ess of Equanon (169) is now a second-
order siatmnary and independent stochastic process.

Therefore, the most general model for repre-
senting water use time series, considering the trends
in the mean and in the standard deviation, the annual
and weekly periodic mean, standard deviation and
autocorrelation coefficients, and the time dependence
of stochastic component, is

m
o Tml—"-f * TSP.T {,uT ¥ Or[ _]El Y1 Cprai *
m m Li3 o
e lj‘l ]\l Y, 1%,75 pii-jl,k) ED,T (70)
with k=i if i<jand k=j if i>j; 7=1,2,3,..,
w, and w = 365 days,p=1,2,..., n, and n=
number of vears, und E;‘J given by
* # * n * *
R ng o i €0 ¥
2‘! 5 * * * Lz
X jEI St Y Pk | ()

with k=1 if i<j and k=] if i>ir=1,2,.
w*, w*=7days,p=1,2,., n* and n* =number
number of weeks.

Equation (70) constitutes the most general
model for the structural mathematical description of
daily water use time series; any degree of simplifi-
cation can be made by proper statistical tests.



Appendix 2

FITTING OF PROBABILITY DISTRIBUTION FUNCTIONS TO FREQUENCY DISTRIBUTIONS
OF STOCHASTIC COMPONENTS

2.1 Estimation of Parameters

The parameters are estimated by the maximum
likelihood method. The maximum likelihood esti-
mator @ is obtained by solving the equation

aL(8, xn)

Pl (72)

for each parameter 6.

Based on the above equation, the maximum
likelihood estimators of parameters of the three
distribution functions used (normal, lognormal-3,
gamma-3) are given (Markovic, 1965) for the normal
density function of Equation (31) by

a1 N
R=g 2 & (73)
1 N G

?=[ N Z, (Ei-u)’] (74)

as the estimates of the mean and standard deviation,
respectively, with N the sample size; for the log-
normal-3 density function of Equation (32)

(nw)=y 2 bG-E), 03

as the estimate of the population mean,

i N a TR
1+{1 +%[ln(z-zo)-lh 2 m(e,-so)]}

1 N A A 2] 12
0n=[ﬂ z lln(Ei-Eu)-lnun]] . (76)

as the estimate of the population standard deviation,
and

g 1 1 %’ I Dz 1 %I] ¢ P
=1 ) N A [in - &)1 | B & 1 -%)

LN N InG-£)
: . —_——im 77
N 2 InG; ?o)}ﬂﬁ‘} iz 0 (77)

as the equation which can be solved by iteration
procedure giving the location parameter estimate,
?o; for the gamma-3 density function of Equation
(33)

1/2

= N A
+{1+§~[1n(s-?o)-§; pRUG ~zo)]}

A N A
4[1:1(? E)-§ 2 In(E - )]

A
2 - AX

(78)

as the estimate of the shape parameter a, with Aa a
correction factor tabulated in function of @ values
and ¥ is the mean of the £ values;

B=L¢-t) (79)
a

as the estimate of the scale parameter «, and f.

1/2

e —

L —

= N -
-4[1n(£-$o)-hi33, In(, -fo)]

- N a
+{1+%[ln(z-§o)-h z !n(si-so)}}
= N
G- & z L) =0, (80)

1 El "gﬁ
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as the equation which can be solved by an iteration
i ; = -~
procedure giving the location parameter estimate .

2.2 Fitting Criteria

Several criteria can be used for testing the good-
ness of fit of a probability distribution function to
frequency distributions. The chi-square test, the
likelihood ratio test, the Smirnov-Kolmorogov
statistic test may be used. In this paper the chi-square
test was used as described below.

The basic concept of the chi-square test is
summarized as follows. The total range of sample
observations is divided into k mutually exclusive
class intervals, each having the observed class fre-
quency N, and the corresponding class probability
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Pi, i=1,2, .., K. The measure of the departures
between the observation frequencies N, and the
expected probabilities NP,  (corresponding to the
distribution function to be fitted) is defined as the
chi-square statistic

k :
=2 Rk (81)

This statistic is asymptotically chi-square distributed
with k-1-r degrees of freedom, where r is the
number of parameters already estimated from the
observed data.

The chi-square test prescribes the critical
value x2 for a given confidence level so that
for x*< x2 the null hypothesis of a good fit is ac-
cepted, and for x* = xg it is rejected.



Appendix 3

ESTIMATION OF THE COHERENCE AND PHASE FUNCTIONS

In estimating the coherence and phase, and
partial coherence and partial phase functions, the
autocovariances and cross covariances are first esti-
mated by

I Nk Nk
zZ X (82)

Y - (N 4 k) =1 tyt+k
1 N-k N-k ;
(N E k)l (-"E-] xt IE] yt+k (33)

in which k =0, 1, 2,... is the lag and N is the
number of observations,

To avoid negative estimates of spectra and to
obtain estimates of the coherence not greater than
one, the estimated autocovariance and cross-
covariance functions of Equations (82) and (83) are
smoothed by using the smoothing function (Parzen,
1964),

D) =1-6Ky (1 -K), o<k <P
(84)
D) =2(1 - Ky, P<k<m ,

in which m is the truncation point of the
function D(k), or the maximum number of lags.
Therefore, by substituting the smoothed covariance
function into Equation (41) the estimated spectrum
function of any series x, becomes

m .
V= 2 D), (k) exp {i2ntk}

05<f<05 , (85)
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which may also be written as
A A m
T =7 () +2 2 DEK) 7, (k) cos (2nfk),

0.5<f<0.5 (86)

Since %x(f) is an even function of frequency,
it is only necessary to calculate it over the
range 0 < f < 0.5. However, to preserve the
Fourier transform relations between the sample spec-
trum and the sample autocovariance function, it is
necessary to double the power associated with each
frequency in the range 0 < f < 0.5, (Jenkins and
Watts, 1969). Therefore 'f;x(f) becomes

7.,0=28 +2 £ D) 5 (k) cos(2nfk
TaD= 27, @42 X DEK) 7, (K) cos2rfk)] ,
0<f<05 , (87)
with f = j/2m and j = 0, 1, 2,...,m.
Similarly for the estimation of the cross ampli-
tude spectrum I'f“(f)i: ,the smoothed cospectrum

and quadrature spectrum are first estimated by Equa-
tions (44) and (45) as

8y (0=2 2 DK) [7,,()+3,,00] cos(2rik)
(38)
and
m A A ¥
4,0=2 2 DIIA,,K-F,,0]sn @aik) ,
(89)
with f = j/2m and j = 0, 1, 2,...,m.

Thus the cross amplitude spectrum is estimated
by

v, OF =2 O+8 0O . (90)

T




Combining Equations (87) to (90), the co-
herence and phase spectra are estimated by

. (2
8 (=

e  ISIS0S
7 0%,

(91)

oY

8,
2,0

The partial coherence and partial phase func-
tions are estimated by substituting the estimated
spectra, cross spectra, and coherence functions, into
Equations (52) to (56).

, 0<f<05 (92

Fs)
ny(ﬂ = arc tan -



Appendix 4

SIMPLIFIED FLOW CHARTS OF COMPUTER PROGRAMS USED

In order to present the basic features of
programs TREND, PERIOD, and DISTRIB, the

2
Trend in Trend in the
the mean TREND s. deviation
Ip,r
1
Periodicities Dependence
PERIODC
Prt Ter Py model
eI’.r
| DISTRIB l

|fh:). F(xll

Figure 77 General schematic representation of the
decomposition of a water use time series.
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simplified flow charts of these programs are presented
in Figures (77) through (80).

Figure 78 Simplified flow chart of the program
TREND.

S P — L e v —————

e e B ik e 8

b S S —— s



|

ID.T

Computed periodicty

m'r' %

Markov |

T

Fitted Perindicity

LS R 3

Is Hr
significant 2

I
Sa’r

significant 2

p.T

=(Zp,r_‘“r”ar

= ED.'r
independent ?

Markov 3

BT

r

Compuled Periodwity

k,T

1

» k= 12,3

A

k, T

Fitted Periodicily
R b 2

»

Are Py

r
significant ?

Markov Model
no good good

Figure 79 Simplified flow chart of the program
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