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ABSTRACT 

The main objective of this paper is to study the stochastic structure of water use time series. 

Data of urban, irrigation and hydropower water use were obtained from different geographic locations of 
the United States, and from small and large systems; and a detailed analysis of their deterministic and stochastic 
components was performed. 

A general mathematical method is developed for the analysis of water usc time series which permits the 
identification, estimation and removal of annual trends in the mean and standard deviation, annual periodicities 
in the mean, standard deviation and autocorrelation coefficients, the time dependence structure and finally the 
reduction of the o riginal non-stationary process xp r to a second-order stationary and independent process ~p.r· 

Subsequently a general deterministic-stochastic model is proposed for representing water usc time series. 

Weekly and monthly series of urban water use are composed of annual trends in the mean and standard 
deviations, annual periodicities in the mean and standard deviation; in some cases annual periodicities in the 
autocorrelation coefficients and a time dependent stochastic component. Irrigation and hydropower series 
present the same deterministic-stochastic characteristics except for the annual trends. Annual series of urban 
water use are composed of a trend and a time dependent or independent stochastic component. The time 
dependence of the stochastic component of weekly, monthly and annual water use may be well approximated by 
the first, second or third order Markov models and the distribution of the independent stochastic component by 
the normal, lognormal-3 or gamma-3 functions. The explained variances of each deterministic-stochastic 
components are also determined. 

Cross-correlation and cross-spectral analyses show that there exists a linear relation between the annual 
cycles and between the independent st•1chastic components of water use, temperature and precipitation ; 
therefore, linear regression models for relat ing them may be adequate. 
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Chapter 1 

INTRODUCTION 

1.1 Water Use Time Series 

Design and operation of water resource systems 
requires, among other things, the determination of 
futu re water available and projected water use. 
During the past years, many investigators (Thomas 
and Fiering, 1962; Yevjevich, 1964; Beard, 1965; 
Roesner and Yevjevich, 1966; Quimpo, 1967; Beard, 
1967; Yevjevich 1971) have analyzed the time series 
structure of daily, monthly and annual runoff and 
have incorporated the corresponding mathematical 
models, or series generated from these models into 
the analysis of water resource systems. However, the 
stochastic characteristics of water use have not been 
studied systematically. 

Experience shows that projected water use for a 
city, for irrigation, power use of a region or any other 
water uses show substantial differences between past 
estimates and real water uses at the predicted times. 
With the ever increasing demand for water, pro­
jections of water uses computed deterministically by 
unique curves are no longer sufficient. Future water 
uses should be estimated considering both the 
deterministic (trends and periodicities) and the sto­
chastic components. 

One of the important reasons why the water 
uses for cities, irrigation and other purposes are of a 
stochastic nature is due to the climatological effect 
on water use; that is, the stochastic nature of climatic 
variations is transferred to become part of the 
stochastic component of w:~ter use. This effect can be 
easily noted in the case of urban water use or 
irrigation water use. For instance, for a given climate 
urban water use changes according to the fluctuations 
of the local weather , being higher during warm 
weather and lower during cold weather. Similarly, use 
of irrigation water are highly dependent on the 
stochastic variation of the local weather; that is, on 
the evapotranspira tion rates, infiltration and 
precipitation. 

Time series records do provide valuable 
information on past water use and when properly 
analyzed give a good indication of how and how 
much water may be used in the future. The optimal 
plann ing and operation of a water resource system 

requires that the projected water use and its vari­
ations be estimated as accurately as feasible or 
possible. The stochastic analysis of the urban water 
usc time series will pro~ide mathematical models 
which will account for the deterministic (trends 
and periodicities) components and for the sto­
chastic parts, and which will reflect the daily, 
weekly, seasonal and annual variations of water use of 
an urban environment. Similarly, the planning and 
design of irrigation systems require knowledge of how 
various factors affect the water use. These factors 
are: climate, soil, topography, crops, quality of 
water, investment in project works and farm develop­
ment, and irrigation methods and practices. The 
complexity of all factors involved in irrigation makes 
an accurate theoretical analysis virtually impossible 
(U.S.S.R., Report, 1960}. Considering all other 
factors known or assumed, the water use for 
irrigation is a funct ion of the stochastic variation of 
the local weather {changes in evapotranspiration rates 
and the probability of precipitation). Therefore, they 
must be determined on a stochastic basis. 

1.2 Objectives of the Study 

The main objectives of this study arc: 

(I) To investigate the structure of the time 
series of weekly, monthly and annual water use for 
different purposes. 

(2) To detect and separate the trends in the 
water use time series. 

(3) To detect and separate the periodicities in 
the water use time series. 

(4) To study the structure of the stochastic 
component and approximate the time dependence by 
an appropriate stochastic model. 

(5) To remove the dependence structure of the 
time series and obtain a second-order stationary and 
independent stochastic component. 

( 6) To find the probability distribution 
functions of the independent stochastic component. 
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(7) To find the explained variances by trends, 
periodicities and dependence models for a time series. 

(8) To represent time series of weekly, 
monthly and annual water use by mathematical 
models which in the future can be used for better 

planning and operation of water resource systems. 

(9) To study the relations between the water 
use time series and climatic factors such as temper­
atu re and precipitation. 

1.3 Significance of the Investigation 

The general practice of projecting water use or 
deliveries as a function of time has followed the 
major three lines: (1) an analysis of potential users 
and their needs, with the synthesis of individual uses 
in giving the time series of total requirements; (2) an 
an a I o gy with similar regions, cities, users, by 
synthesizing the expected total use as a function of 
time; and (3) by assuming the approximate water 

demands from the general trends in population 
changes and unit uses per inhabitant or per unit area, 
.or unit production, and with similar indices available 
in the professional literature. (The term "water 
demand" is used here in a loose sense, and does not 
refer to the relations of water quantities and their 
prices). The main result usually has been the mean 
requirements for water delivery for a given time unit 
and with time. In selecting a future time distribution 
for expected irrigation water use, a deterministic 
water demand per month or per 10 or 15 days 
intervals during the irrigation season are usually 
designed either in percentage of the t otal seasonal 
demand, or in water unit s, or in water units per unit 
area and per interval, and by similar methods. A 
detennin1stic distribution of water demand in time is 
a finite product of this analysis. 

Several long historical time series of water uses 
are available for each class of water users. Cities and 
metropolitan areas have water delivery records as long 
as 70 or 80, or more years. Many irrigation projects 
have kept good records of water delivery. Similar 
records exist for industries, navigation projects, low 
flow control, and similar users. 

The significance of the investigation presented 
in this paper is to show that past records of water use 
provide valuable information for determining the 
basic character or the structure of various time series 
of water uses. The analysis of these available results, 
under particular conditions of each individual water 
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user, should provide excellent information for 
projecting more realistically future water use. The 
method of analogy with existing cases or with past 
experience can then be based on an advanced analysis 
of a multitude of past records. As an example, many 
small towns or middle sized cities have excellent 

records of water supply deliveries. A new planned 
town or city can well be assessed as for their general 
climatic and other conditions, and then ftnd a town 
or city with similar conditions but also with an 
excellent record in past water supplies. The character 
of that supply can then be transferred for predicting 
the future water demand of the planned tnwn or city. 

A limited number of cases of water use time 
series is presented in 'his investigation to show the 
structure of these series and the importance of 
various components. However, the approach used and 
the results obtained should be considered as generally 
valid. A greater effort in collecting the appropriate 
data, and in estimating various parameters of mathe­
matical models of the water use time series, may 

provide the statistical information for much better 
egional or national standards in a more realistic 

prediction of future water demands. 

The difficulties in assessing accurately the water 
demand or the economical value of water have Jed to 
the concept of sensitivity analysis in decision making. 
and in optimizations in water resources planning. This 
cvncept of sensitivity analysis often may lead to a 
conclusion that the accuracy of water supply 
information does not need to be high because of large 
errors present in predicting water demand as well as 
various economic parameters related to the use of 
water. A better prediction of future water demand 
would automatically increase the accuracy in the 
optimization analysis and in decision making for 
various water resources problems. Therefore, the 
significance o f the investigation in this paper should 
be viewed from the standpoint of an increased 
accuracy in planning various water resources projects. 

The analysis of water supply and water use in 
Chapter 2 and systematization of water users may not 
be shared by all water resources specialists. However, 
this analysis and systematization are not a crucial 
point of the study, though they are necessary to put 
the presented results in a proper perspective of their 
application. 

1.4 Organization of the Paper 

Chapter 2 contains a general description and 
analysis of water use time series. Chapter 3 gives a 



mathematical background for the structural analysis 
of water use time series. Chapter 4 presents the 
information on the assembled data of various time 
seri,es. Chapter 5 treats time series of weekly and 
monthly values, while the Chapter 6 relates only to 
annual series of urban water use. Chapter 7 attempts 
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to estimate the importance of various components in 
weekly and monthly time series. Finally, Chapter 8 
gives conclusions in a summarized form. The material 
in appendices supports the analysis and conclusions in 
the previous chapters. 



Chapter 2 

WATER SUPPLY AND WATER USE 

2.1 General Characteristics of Supply and Use 
Series 

River runoff and water use time series of a 
region, of a river basin, or, in general, of any water 
resource projec t may have some similar 
deterministic-stochastic characteristics. In both cases, 
random variations are superposed on seasonal or 
periodic fluctuations. The differences are in fre­
quencies, amplitudes and phases of these periodic 
components, as well as in the relative importance and 
character of random components. 

Similarities may also exist in other deter­
ministic components of the time series. For example, 
water use time series of urban erlvironments usually 
show increasing annual trends in the mean and 
standard deviation; however, it may also show 
decreasing trends and positive or negative jumps 
(Hanke, 1970). These trends and jumps are functions 
of many social factors, such as growth or Joss of 
population, increase or decrease in standard of Jiving, 
various economic and social developments and 
changes, technological innovations, pricing of water, 
metering or not metering water deliveries, and so on. 
Similarly, time series of river runoff may also show 
trends and jumps since the continuous development 
of water resources in a river basin and various changes 
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Figure 1 Monthly water use for Dallas, Texas, for 
1950 - 1969, with an upward linear trend, 
periodicities and random fluctuations. 
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fornia, for 1940 - 1965, with an upward 
nonlinear trend, periodicities and random 
flucutations. 

~ •ooooo. 
:l .. 
.... ~000. 

~ 
:j500000. 

;: 
~ 250000. 

~ 200000. 
a: 
w 
~ tSOOOO . 
.X 

z 
~ 100000. 
a: 
::> 

50000. 

O. o. S. tO. 15 . 20. 25. 30. ~. ... .S. SO. 515. SO. IZI. '10. '15. 

T Itt: IN YEARS 
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trend and random fluctuations. 

in nature create nonhomogeneity in the structure of 
these time series. 

An example of the complex structure of water 
use time series is shown in Figures (1) to (4). Figures 
(I) and (2) show the monthly water use for Dallas, 
Texas f rom 1950-1969 and for Los Angeles, 
California from 1940-1965, respectively. They both 



show upward trends, periodicities, and random com­
ponents. Figure (3) represents the annual water use 
for Ne·w York City, New York, from 1898-1968 and 
shows a complex trend and random but dependent 
fluctuations around it. Figure (4) shows the example 
of a time series of irrigation water use at Carter Lake, 
Colorado, from 1957-1969, with evidently annual 
periodicity but also high randomness. 

4Sit 

•tit 

0 

ll\ '!Sit 

:: 
V> J ilt 
~ 

"' ~lSI! 
-' ... 
o Zltt 

"' ~ 
~ I Sit 

a .... .... • .., 

i Sit 

· Sit 

"'p;r 

L- ..... LJ ..... .... .... w ._ w ..... Ll 
I St lit 1St Zit ZSt Itt "' 1ft d t Sit 5St U t ' St 100 

Tl"( IN 11(((5 

Figure 4 Weekly irrigation deliveries at Carter Lake, 
Colorado, from 1957 - 1969 with peri­
odicities and random fluctuations. 

In general, the annual water supply time series, 
without nonhomogeneities, may be considered as a 
stationary or time-invariant stochastic process. 
Because the water demand (also of stochastic nature) 
increases with time, sooner or later the demand 
exceeds the supply. In matching demand and supply, 
the stochastic nature of both time series has signi­
ficant effects in the design and analysis of the 
operation of water resources systems. 

2.2 Definitions of Water Uses 

The following definitions are most commonly 
used in practice (U.S.S.R. Report, 1960; MacKichan, 
1961 ; Wollman, 1960; Davis, 1952; and California 
Department of Water Resources, Bulletin, 1968). 

2. 2. 1 Definitio ns rela t ed to an urban 
environment are as follows. 

(1) Urban water use is the water used for urban 
purposes, including domestic, public, commercial, 
industrial and thermal power. It includes the total 
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delivered water, composed of the consumed water 
plus the return flow (Figure 5). 

Inflow 
(water 

Figure 5 Schematic representation of urban water 
use. 

Domestic use is the water used in private 
residences, apartment houses, etc., for drinking, 
bathing, lawn irrigation and sanitary purposes. 

Public use is the water used in public 
facilities such as parks, civic buildings, schools, 
hospitals and so on. 

Commercial use is the water used by 
commercial establishments. 

Industrial use is the water used by 
industries; it is considered here as part of urban water 
use, although in many cases it may be completely 
outside of the urban water supply system. 

Steam power use is the water use by 
steam power utilities, mainly for cooling purposes. 

Loss and waste is the water which leaks 
from the system, meter slippage, unauthorized 
connections and all other unaccounted losses of 
water. 

(2) Water supply represents the water delivered 
to the user; it is also called the delivered water or 
withdrawal water. 

(3) Water consumption is the part of the 
supplied water which is actually consumed and is no 
longer available for further use. 

(4) Return flow is the part of the supplied 
water which returns to the river or the source of 
water, or recharges the groundwater acquifers. 

(5) Unit water use it is the average quantity of 
water used per person, per acre, and similar over a 

' 
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specified period of time. A common term is the 
so-called "water use per-capita per-day" which is the 
quantity of water used per person and per day. The 
term refers to the average, usually one year, and the 
unit water use is generally expressed in gpcd (gallons 
per capita and· per day), or liters per capita and per 
day. 

Another term commonly used is "per c:~pita 

water use" which is the water use per person during a 
specified period of time such as a month o r a year. 

(6) Total water use is the total quantity of 
water used in a specified period of time. Common 
terms in practice are daily, weekly, monthly, and 
annual water uses. They are usually referred in 
million gallons or acre-feet, or million liters, cubic 
meters, etc. 

(7) Water demand is generally referred to the 
fut ure water needs of an urban environment and it 
depends on the growth or loss of population, social, 
economical and industrial changes of the area con­
sidered, water pricing, water metering and so on. 

" Future wate r requirements" is another 
common term which means the same as "water 
demand". It may also be referred to specific types of 
water use in an urban area such as " domestic water 
demand", "commercial water demand", "industrial 
water demand", and so on. 

2.2.2 Definitions related to irrigation are as 
follows. 

(I) Consumptive use is often defined as the 
amount of water needed for crop growth and almost 
all of it is transpired back to the atmosphere; it is also 
called "crop requirement". 

(2) Irrigation requirement is the quantity of 
water that is expected to be delivered to irrigated 
land in order to ensure crop production; in other 
words, it is the consumptive use minus the precipi­
tation available for plant consumption. 

(3} Farm delivery requirement is the irrigation 
requirement for the crops plus the losses due to 
evaporation, percolation, surface waste and so on. 

( 4) Gross water requirements is the farm 
delivery requirement plus the seepage and eva­
poration losses in the canals between the diversion 
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dam and the farm unit, plus the waste water due to 
operation, breaks and overflows. 

(5) Project deliveries are the gross amounts of 
water delivered from the reservoirs, diverted from 
streams, pumped directly from the source of water, 
and similar, to the irrigation projects. 

(6) Return flow is part of the project deliveries 
which returns back to the river system. It includes 
percolating water not retained in the root zone, 
surface runoff during irrigation, wasted water, and 
canal seepage. Part of the return flow reaches the 
original river channel as surface runoff and can be 
measured. The remainder, however, reaches the river 
as ground water flow and is not easily measured. 

Figure 6 gives a schematic representation of an 
irrigation system and shows definitions described 
above. 

2.2.3 Definitions rela ted to hydropower are as 
follows. 

(l) Hydropower water use is the water used for 
generating hydroelectric power. 

(2) Hydropower water demand is the future 
water requirements for generating hydroelectric 
power. It is closely related to the total power require­
ments of an area which is met by thermopower and 
hydropower. 

(3) Firm water use is the water used for 
generating firm power, though the use of the concept 
of fum power may be obsolete in many aspects. 

(4) Surplus water use is the water available in 
excess of the fum water. 

(5) Total hydropowe.r water use is the total 
quantity of water used in a specified period of time. 

The following definitions are not strictly in 
terms of water use; however, they are very closely 
related to it. 

(6) Firm power is the amount of hydropower 
within the plant's capacity and characteristics, that 
may be supplied virtually at all times, with a small 
probability of not being delivered. 

(7) Surplus power is the available power in 
excess of the fum power. It is limited by the 
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Figure 6 Schematic representation of an irrigation 
system water cycle. 

generating capacity of the plant, by the head, and by 
the water available in excess of the fum water. 

(8) Average load is a hypothetical constant 
load over a specified period of time that would pro· 
duce the same energy output as the actual energy 
produced. 

(9) Peak load is the maximum load consumed 
or produ0ed by a unit or a group of units in a 
specified period of time. 

2.2.4 Definitions related to other uses. There 
are lhree olher important water uses en.:ountered in 
water resources systems. 

( I) Navigation water use is the water used for 
navigation purposes. Navigation may be served by 
water resource~ development in three ways: through 
the provision of river regulation , through low dams 
:mJ ship·locks to by pass the dams, and through arti· 
ficial qmals. In .:onsidering a multipurpose water 
resource system one has to take into account the 
operational t:haraderistks of each type of navigation 
facility an~ such factors :ls losses by evaporation, 
seepage, locking operation and so on. 
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(2) Recreatjon water use is lhe water used for 
recreational purposes. This type of water use has 
become important in the recent decades, and may be 
divided into two categories, "flat water recreation 
use" such as maintaining high levels of the reservoir 
for boating, swimming and so on, and "running water 
recreation use" such as water released from large 
reservoirs to provide fishing and other recreational 
facilities downstream along the river (Hall and 
Dracup, 1970). 

(3) Water use for quality control is the water 
used for maintaining specified levels of water quality 
in reservoirs, rivers, canals and so on; it is the amount 
of water required for the satisfactory diluti,)n of 
waste flow from municipal sewage, industry and 
other sources of water pollution. This amount is a 
function of the oxygen content, dissolved minerals, 
temperature of the river or reservoir water, and so on. 

Besides the water uses indicated above, in some 
cases the water used in mining must be considered for 
both the quantity and quality aspects of its use. 

The protection against floods cannot be defined 
in terms of use of water as such, but the use of 
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Chapter 3 

Mt\THEMATICAL METHOD OF ANALYSIS 

3.1 General Description of Mathematical Methods 

The approach in studying the stochastic 
structure of water use time series is based in first 
detecting and removing the trends in the mean and in 
the standard deviation. Subsequently, the 
periodicities in the mean, standard deviation and 
autocorrelation coefficients are identified and mathe­
matically described. These periodicities are removed 
with the st ructure of the remaining stochastic series 
analyzed and mathematically described. By using the 
autoregressive dependence schemes the second-order 
stationary and independent stochastic component is 
obtained. Finally, the probability distribution 
function of this independent stochastic component is 
obtained by the fit of either the normal, log-normal 2 
or 3, and gamma 2 or 3 probability density functions 
to the frequency density curve. 

The approach outlined above, and subsequently 
described, is general in character and is developed for 
the standard analysis of water use time series for vari· 
abies of daily, weekly, monthly, or their multiples, 
and annual values. ln general, daily, weekly, and 
monthly series have: (a) trends in the annual mean 
and annual standard deviation; {b) within-the-year 
periodicity in the mean, standard deviation, and auto­
correlation coefficients; and (c) a time dependent 
stochastic component. Annual mean values of water 
use usually show an upward tre.nd, and a time 
dependence in the stochastic component. 

High frequency periodicities may be present in 
daily u rban water use in addition to the 
within-the-year periodicity or low frequency. An 
example is the weekly periodicity. In such cases the 
mathematical model for representing the time series 
of daily values becomes complex. The Appendix 1 of 
this paper is an extension of the procedure described 
in this chapter for obtaining a second-order stationary 
independent stochastic component, and consequently 
the mathematical model of series of daily water uses, 
for cases in which the weekly periodicity is 
demonstrated as significant. 

3.2 Deterministic Components 

The time series are studied as for their various 
components. 
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3.2.1 Trends in the mean and standard devi-
ation. Consider the x series as the original p,T 
nonstationary stochastic process with r = 1, 2, ... , 
w, w is the basic periodicity of discrete series, 
equal to 365, 52 or 12 respectively for daily, weekly 
and monthly value series, p = 1, 2, ... , n, and n is 
the number of years of record. Assume that xp,r has 
trends, periodicities, and a dependent stochastic 
component. Let TmP T and TsP ,7' be the trends in 
the mean and standard deviation of the process x . p,1' 

A new process y is generated by removing 
~,7' 

the trend in the mean Tm from x by p,T p,T 

y = x · Tm 
p,T p,T p,T 

(1) 

Because the process y has still a trend in the p,T 
standard deviation, Ts , a new process z is ob-p,r p,T 
tained by 

z = 
p,T T 

sp,r 
(2) 

The process z has now both trends in the 
mean and in the stl'ridard deviation removed, while 
maintaining the periodic and stochastic components 
of the original process x . p ,T 

The trends Tm and Ts may be in p,T Pt7' 
general approximated by the polynonual equations of 
the type 

Tm = A + B t + C t2 + D t 3 + . . . (3) 
p,r m m m m 

and 

Ts = A + B t + C t 2 + 0
5 

t 3 + . . . . . , {4) p ,7' s s s 

in which t = (p-1) w + r, and A, B, C and 
D are the coefficients of the polynomial regressions 
to be estimated from data. 

In many cases the linear term of Equation (3) 
and {4) is sufficient; however, higher-order terms may 
be necessary when the regression of Tm or Ts on t 
is far from linear. The regression constants 
A, B, C and D of Equations (3) and (4) may be 
estimated by the least squares procedure or by the 
multiple-linear-regression method. The frrst method 
was utilized in this paper. 



3.2.2 Periodic components in the mean and 
standard deviation. Following a procedure outlined 
by Yevjevich, 1972, the process z may be p .,T 
represented by 

z ="+a e p,'T ,_T T p,T ' 
(5) 

in which p.
1 

and or are the periodic mean and 
standard deviation, respectively, e is a dependent 

Jl,T 
stochastic component which may or may not be 
stationary, and, p and r are as defmed above. 

By the Fourier analysis the periodic p.r and 
aT are expressed by 

m 
p. = p. + :E 

T Z j=J 
m 

a =a + :E 
T Z j=l 

(A; cos 21rf/ + BJ sin 21Tf/] (6) 

[A. cos 21Tftr + B. sin 21Tf.r] , {7) 
l l l l 

in which J.Lz and a z are the mean values of 
p. and a , respectively, A. and B. the Fourier 
c~fficients: with j applied 'either to' ll or a , 

T T 
m is the number of significant harmonics, and ~ 

the frequency corresponding to the harmonic J. 

The Fourier coefficients A; and Bj of 
Equation (6) are given by 

and 

2 w 
A. = -w I: (m · m ) cos 2rrjr/w , J r=l ~ ~.,. z 

2 w 
B. = - I: (m., · mz) sin 2rrjr/w , 

J w r=l 

{8) 

(9) 

in which m and m are the sample estimates of 
T Z 

p.r and P.z, respectively. For the coefficients 
A; and Bi of Equation (7) mr and mz in 
Equations (IS) and (9) are substituted by sr and 
sz as the sample estimates of O"r and a z, 

respectively. 

Usually, when the harmonics, p.r and a.,. are 
fitted to the sample values m and s the sum of 

T T 
differences (m · p. ) and (s - O" ) does not 

T T T T 
necessarily amount to zero and so the 
differences (m - p. ) and (s .(} ), as sampling 

T T 1" 1" 
variations, become part of the stochastic component 
(Y evjevich, 1971 ) . 

The sample estimates of the periodic 
mean, m.,. , and periodic standard deviation s.,. are 
computed by 
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1 n 
m =-I: z 

T n p=J Jl,T 
{10) 

and 

s = I: z -m ~ 1 n 2] 1 12 
T {ii"'7I) p= J ( p,r T) . 

(11) 

For choosing the significant harmonics in 
Equations (6) and (7) an approximate procedure may 
be used. Let S2 (m ) be the variance of m , then 
var h. = (A~ + rf612 is mean square valu; o r the ' 

J J cl variance correspon ing to the harmonic j. Lets 
defme 

var h; 
61>.=-­

J sl(m ) 
T 

(12) 

as the part of explained variance by the 
harmonic j with respect to the total variance of mr. 
The ratios Ap. are ordered in a decreasing sequence 

J 
and added as 

j 
P = I: AP

1
. , for j = 1, 2, ... , m (13) 

J i=l 

where m = w/2 theoretically, but in applications it 
is sufficient to consider only the ftrst six harmonics. 
Two critical values for the sequence Pl are given by 

p min =a J1ff (14) 

and 

iP ;:::J-P 
max min ' (15) 

in which w = 365, 52 or 12, respectively for daily, 
weekly or monthly values, n the number of years of. 
record, c = I for the significant harmonics 
of m and c = 2 for the significant harmonics ., 
of" sr, and a is a properly choosen constant. With 
the above defmitions the following criteria are used 
for determining the significant harmonics: If P 6 < 
P . , there is no significant harmonic; if P6 > 

man 
P , the first j harmonics whose P1 value 

max 
first exceeds P rna x are selected. If P min ~ 
P <; P all six harmonics are significant. For 

6 max 
choosing the significant harmonics of s.,. the same 

procedure is followed. 

3.2.3 Periodic components in the autocor-
relation coefficients. The process e of Equation p,T 
(5) is often assumed in water resources to be 
second-{)rder stationary. However, computations 



show that it can have periodic autocorrelation co­
e fficients. 

Similarly as in the case of determining the 
periodic mean and standard deviation, the periodic 
autocorrelation coefficients pk where k is the 

,T 

time Jag, are determined by 
m 

Pk 7 = Pk +.I: [A. cos 2nf.r + B. sin 2nf.r) (16) 
' J"' 1 J J J J ' 

in which pk is the mean value of pk .r and the 
other are terms as defmed before. The Fourier co­
efficients are given by 

2 w 
A,. "'w ~ (rk - rk) cos 2trjr /w (17) 

r=1 '7 

and 

in which rk ,r is the sample estimate of Pk lr 
and rk as the mean value of rk ,,. is the samp e 
estimate of pk. 

The autocorrelation coefficient pk is defmed 
,T 

by 

Pk,T= 1/2 (19) 
[var {eP) var {ep,r +J ] 

artd it is estimated from the sample series by 

n* 
J. ~e e . ..L~ 
n* p=l. p ,,. p,T+k nn• p=l 

€l (J. £ € )l] 1/2 [.l 
p,r • n p= l p,r n* 

€ p ,r 

n• 
k 

p=1 

in which k < w and n• = n · I for W·T < k , and 
n * = n o therwise. For deterrnining the significant 
harmonics of rk , similar procedure is followed 

,T 

a.s in the case of m
7 

and S
7

• 

3.3 Stochastic Components 

The stochastic process e of Equation (5) is 
obtained by removing the perio~~ mean and standard 
deviation by the parametric approach 

zp,r ·llr 
(2 1) 

However, the nonparametric approach may also be 
used, especially in the case of monthly values, by 

using the sample estimates m
7 

and S
7 

instead 
of 1-1 and a , or 

r r 

n• 
I: 
p=I 

€ = 
p,7 

z - m p,7 T 

ST 

(22) 

The stochastic process e obtained by Equations p,r 
(21) or (22) whether stationary or not usually shows 
a time dependence structure. 

3 . 3 . 1 Dependence stochastic models. The 
general m-th order autoregressive linear dependence 
model h as bee n used by many investigators 
(Yevjevich , 1964; Roesner and Yevjevich, 1966, and 
Quimpo, 1967) fo r deterrnining the dependence 
structure of annual, monthly, and daily precipitation 
and runoff series. A similar approach is followed in 
this paper for investigating the dependence structure 
of water use time series. 

The m-th order autoregressive linear model is 
represented in general by 

m 
e = I: a. . e . + 

p,T j=l J,T·J p,T·J 

m m . f2 
[ I - I: I: a a. . p 1· ·1 k] ~ , (23) i=} j=1 i,T· i ),T·J I·J 0T • p ,r 

in which k = i if i < j and k = j if i > j 
with a. . the autoregression coefficient at the posi­

, T·J 
tion r-j', which are dependent on the autocorrelation 
coefficients pk .. Any of the first three linear 

T·J 
models, m =' 1, m = 2 and m = 3 of Equation 
(23) usually are good approximations based on the 

(20) 

( 
I e . -

p ,r+k n* 

13 

accuracy of data available, and, therefore, the pro­
cess ~p.r becomes a second-order stationary 
independent stochastic component. 

The autoregression coefficients a. J are 
J T • 

expressed as a function of the autocorrelation 
coefficients pk J as follows: 

,T· 

and 

For the model with m = 1, 

a t ,r-1 "" P 1 ,r -t 

For the model with m = 2 

Pl ,r-1 • Pl ,r-2 P2,r-2 

~.r-1 = 
I · P~ ,r-2 

(24) 

(25) 



P'l,T-2. PI ,T· l PI,T-2 
Q =--- -----

2,1'-2 1 2 
• Pl ,T-2 

For the model with m = 3 

(26) The probability density function of the nonnal 
distribution is 

1 [ J rm = - - exp • -2 

vffi a 2a 
' (31) 

pl;r·l (l·Pi ,T-3) + P, ,1'·3 p 1 ,T-2 P3,T-3 - pI ,1'-2 p2 ,T-2 • p2 ,T-3 p 3,T-3 
a = + 

I ,T· I 

1+2p p p 2 2 2 
1 ,1'·2 2 ,1'·3 1,1'·3 - p 1 ,T-3 - pI ,T-2 - P2,T·3 

(27) 

+ 
1 + 2 PI,T-2 P2,T-3 pI ,T-3 - p~ ,T-3 • p~ ,T-2 • P;,T-3 

PI,T-3 P2,T-3 Pl,T-1 (28) 

1 + 2 p 1 ,1'-2 p2 ,T-3 p I ,T-3 • p; ,T-3 -Pi ,1'·2 - p; ,T-3 

P3,T·3 (l -Pi,.,..2)+pi ,T-3 P I ,T-2 Pl,T·I ·PI ,T·3 P2,T-2 ·P2,T-3 PI ,T-1 
Q = 

3,1'-3 + 

pI ,T-2 p 2 ,T-2 p2 ,T-3 

1 + 2 pI ,T-2 p2 ,T-3 pI ,T-3 . p; ,T-3 - Pi ,T-2 - p; ,T- 3 ' 

(29) 

in which pk . , for k, j = I , 2, 3 are estimated 
,T·J 

by the sample values rk ,T-j, computed by Equation 
(20). By choosing the appropriate model the correlo­
gram pt (k) of ~P T may be computed and tested 
for E[rt (k)] = p~(k) = 0, for k =I 0, at the given 
level of significance. However , other techniques such 
as spectral analysis, and o thers, may be used. 

3.3.2 Independent stochastic component. By 
removing the dependence as indicated in 3.3 .1 the 
resulting stochastic process ~ is second-order 
stationary independent process. 

1
Kom Equation (23) 

~P is obtained by 
, T 

m 

~P,T = 

€ - >:: a. . € . 
p,T j=J J,T·J p,T·J 

m m 112 
[ 1 - >:: >:: o:. . a. . pl. ·I k] j=1 j= J t ,T·I J,T•J l·J ,T-

(30) 

With k = i if i < j and k = j if i > j. 

The independent stochastic process ~ was p ,T 
further investigated for finding its probability distri-
bution function. For this purpose, one symmetric 
distribution, the nonnal, and two asymmetric 
distributions, the three parameter lognormal and the 
three parameter gamma distribution functions were 
used. 
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in which 11 and a are the expected value and 
standard deviation of the random variable ~ . 

p ,T 

The lognormal three-parameter probability 
density function is 

(32) 

in which 11 is the mean of In (~ - ~ ), a the n o n 
standard deviation of In (~ · ~ ) and ~ is the 

0 0 
lower boundary. 

The gamma three-parameter probability density 
function is 

1 ~ ~ a-t { (l.ft~ } f(~) a-- (~} exp • • , 
~ r (a) t3 (J 

(33) 

in which a is the shape parameter, (I is the scale 
parameter and ~0 is the location parameter or lower 
boundary. 

The above three distribution functions are used 
for fitting the sample frequency distributions of the 
independent stochastic process ~P T' though in com­
plex cases other functions can be used. For the 
purpose of showing the basic structure of water use 



time series the use of only these three probability 
functions was considered as sufficient. The esti­
mation of parameters and fitting criteria are outlined 
in Appendix 2. 

3.4 Second Order Stationey Model of Water Use 

The mathematical method outlined above for 
the analysis of water use time series permits the 
identification, estimation and removal of trends in 
the mean and standard deviation, the periodic mean, 
standard deviation and autocorrelation coefficients, 
the time dependence structure, and thus reducing the 
or i gina l nonstationary process xp to a 

,T 
second-order stationary independent process ~ 

7
• p, 

All the information is given in the form of mathe-
matical models with their parameters estimated from 
the available data. 

Based on the above analysis, the following 
deterministic-stochastic model is proposed for the 
water use time series 

(34) may be used for any time unit of the water use 
time series. However, in the particular case of daily 
water use series the weekly periodicity is present in 
some parameters, for which case the mathematical 
model given in Appendix 1 should be applied. 

3.5 Analysis of the Stochastic Components of Two or 
More Series 

The linear relation between the stationary sto-
ch astic process ~ (from now on denoted p,T 
as ~1 ) of water use, precipitation , and temperature 
may be investigated in the time domain by cross 
correlation analysis, and in the frequency domain by 
spectral analysis. The purpose of investigating these 
relations is to find mathematical models which could 
describe the functional relations between these pro­
cesses. For example, one may postulate that the 
stochastic component of water use is dependent on 
the stochastic components of precipitation and 

dependence structure 

x =Tm + Ts fll +a[Y! a . . e .+ (1- ~~a . . a . . p
1 
. • 

1 
,.)112 ~ JJ p,r p,T p,T T T j'= l ),T·J p,T·J i=l j=l I,T·I ),T•J I •) ,T· " p,T 

t 1 7~--~t~ ____ Jt--------------~--~tL---~t~~t :_:__] 

(34) 

Trend Periodic Second-order 
Components Components stationary 

Independent stochastic component 

with k = i if i < j and k = j if i > j, with Tmp 
,T 

and Ts the trends in the mean and standard devi-p,r 
ation, respectively, J1

7 
and a 

1 
the within-the-year 

Periodic mean and standard deviation, a:. . the 
J ,T::J 

within-the-year periodic autoregression coefticients 
dependent on the periodic autocorrelation coef­
ficients p. ., e . a nonstationary and dependent. 

J,T·J p,T·J 
stochastic process, and ~ the second-order p,T 
stationary independent stochastic process. 

The general model proposed in Equation (34) 
permits the generation of new samples of the 
process x 

1 
by using the inferred or projected 

trends, Pperiodic parameters and stochastic 
dependence function, and generated samples of the 
independent stochastic component ~P from its 

,T 

inferred probability density func tion. Then these 
·g.enerated samples of xp,r may be used in the 
analysis of various problems of water resources 
systems. 

The proposed mathematical model of Equation 
(34) is general in character. The simplified models 
result directly from Equation (34) when some trends, 
periodicities, and time dependences are shown not to 
be statistically significant. Furthermore, Equation 
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temperature as 
ml m2 

~~(W) "'lo hiJ ~t-J(P) + k~O hl.k ~t-k(T) + Tl, ' (35) 

in which ~ (W), ~ (P), and ~1(T) are independent 
stochastic c~mpon~nts of water use, precipitation 
and temperature, respectively, h

1 
. and h

2 
.k are the 

regression coefficients, and 77
1 

the residual random 
component. 

Similar or more complex models (say nonlinear 
models) may be investigated according to the com­
plexity of a particular case. For instance, in the case 
of relating the stochastic components of water supply 
(runoff of a river), water demand (based on the 
analysis of water use), precipitation and temperature, 
Equation (35) will contain one more term. 

A simplification of the general model of 
Equation (35) is 

~.(w) = h
1 

~1(P) + h2 ~1(T) + 111 (36) 

which in many cases may be sufficiently accurate 
because of the limited precision of available data. 

The· linear relation between an output and an 
input of a system may be measured by the cross 



correlation coefficients and by the coherence 
spectrum. However, when there is more than one 
input, the partial correlation coefficients and the 
partial coherence functions are more useful (Jenkins 
and Watts, 1969). 

For example, referring to the Equation (36), if 
both h 1 and h2 are non-zero values, the random 
process ~1(W) is correlated with both ~1(P) and 
~~ (T). However, the cross correlation coefficients 
P(WP) and Pcwn which measure the separate 

correlations between ~1(W) and ~1{P), and between 
~1(W) and ~1 (T), are not meaningful because ~1 (P) 
and ~1(T) may be correlated. Therefore, in this case 
the partial cross correlation is a better measure of the 
correlation between the outputs and inputs of the 
system. The same thing holds true when the co­
herence and partial coherence are used. 

3. S .1 Correia tion cohe rence and phase 
f unction s. Lets consider the two stationary 
stochastic processes \ and y

1
• The autocovariance 

and cross covariance functions are defined as 

'Yxx(k) = E [<x, - ~xXxl+k - ~x) 1 
'Y xy (k) = E fcx, • ~x)(yt+k . ~Y) J 

(37) 

(38) 

in which k is the time lag and ~x and Jly are the 
expected values of x

1 
and y

1 
respectively. Similarly 

the autocorrelation and cross correlation functions 
are defined as 

(39) 

and 
'Yx/k) 

p (k)=-----
xy ['Y (0)-y (0)]1 /2 

XX YY 

(40) 

The spectrum and cross spectrum functions are 
given by 

i,..(f) = kL 70 (k) exp {121Tfk} , .{).S ~ f < O.S , 

(41) 
and 

-y• (f)= i' 'Y (k) exp f.i27TfkJ , -0.5 ~ f <; 0.5 , 
xy k=.oo xy [ 

(42) 
where f denotes the frequency. 

Because -y• (f) is complex valued, it may also xy 
be written as 
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.• 

in which 

J 00 

c (f)= -;; ~ ['Y (k) + 'Y (k)] cos (27Tfk) ' (44) xy _ k=.oo xy yx 

1 00 

q (f)= ..,... :E ('Y (k)- 'Y (k)] sin {27Tfk}, , (45) 
xy 1. k=-oo xy y x 

with cxy(f) and qxy(f) the cospectrum and 
quadrature spectrum, respectively. 

The coherence function, usually called the 
coherence spectrum, measures the linear relation 
between the two stationary processes x

1 
and y

1 
in 

the frequency domain, and is defined as 

(46) 

in which ~-y• (f)l2 is the cross amplitude spectrum. xy 
It may be shown that 

Finally, the phase spectrum function is 

qx/f) 
Ox/f)= arc tan -C(ff 

xy 

with c (f) and q (f) as defined above. xy xy 

(47) 

(48) 

The estimation of the coherence and phase 
functions as defmed above are described in Appendix 
3. 

3.5.2 Partial correlation, coherence and phase 
functions. For three stationary stochastic processes, 
x x and y , where the x's are the inputs and 

l ,t' 2 ,1 t (9) 
and y is the output of a system, see Figure , 
assume

1 
that y and x are highly correlated with 

I 1,1 

XJ r-- -(Unknown system}- --, 
t I 

(Highly I y 
coherent) SYSTEM 1 t 

I I 
x2t L_ _ __ _(Linear system) _ __ _j 

(Highly coherent) 

Figure 9 Example of a system composed of one 
output y

1 
and two inputs x

1 1 
and 

x2 ,t which are highly coherent. ' 



Befor e computing the cor relation 
between y

1 
and x 1 1, it is necess:1ry to remove the 

influence of the var'iable x2 . This is done by con-,t 
ducting a least squares regression of y

1 
on x

2 
, t 

and of x1 ,t on x2 ,t. The partial coHelation co­
efficient between x 1 and y is then defined to be 

,I t 
the correlation between the residuals from these two 
regressions (Jenkins and Watts, 1969). 

Assuming that the random 
variables y

1
, x

1 1 
and x2 1 

have zero mean, the 
linear relation between x

1 
,t and x2,1 and 

between y
1 

and x2,
1 

are 

"'f I 2 
e =x --- x 

12 1,1 1'22 2,1 
(49) 

and 
'Y2y 

€ =y . -- x y2 I -y
22 

2,1 (50) 

in which e
12 

and ey2 are the residuals of the two 
regressions, -y 

12 
the covariance between x1 •1 and 

~ ,t , "'f 2 2 the variance of x2 ,t, and 'Y 2 Y the co­
variance between x2.

1 
and y

1
• 

The correlation between these 
residuals e 

1 2 and €Y2 is defined as the partial 

correlation between x
1

,
1 

and y 1 by 
keeping x2,

1 
constant and may be shown to be 

Ply ·P2y P12 

p = (51) 
1 y.2 ((I . p~ 

2
)(! . p~y)) 1/2 

in which p is the correlation coefficient between 
12 

x and x
2 

and p
2 

is the correlation co-
• t ,t y 0 

efficient between x
2

,
1 

and y1 as defined m 
Equation (40). The partial correlation coefficient 
p is obtained by interchanging the indices 
2y.l 

l and 2 in Equation (51). 
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Th e partial coherence function be­
tween x

1 
,r and y1 by keeping x2,

1 
constant is 

defined as follows 

in which 

h·; y.2(f)l2 

C(~ .y 2(f) = + (f) + (f) , .. (52) 
· 'Y11.2 ryy.2 

[ 
r~ 2 (f) r; yCf)l 

'Y~ y.2(f)='Y;/0 l·'Y;2(f)'Y~/f) {53) 

'Y~ 1.2(f) = 'Y~ 1 (f) [ 1 • C(~ 2(f)J (54) 

'Y;y.2(f)=-r;/f) (1-a~y(f)J (55) 

with spectrum and cross spectrum functions on the 
right side of Equations (53) through (55) defined in 
Equations ( 41) and ( 42), and a 1 2 {f) and a 2 (f) 
the coherence functions defined in Equation (46). 
The partial coherence function a 2 Y . I (f) is obtained 

by interchanging the indices 1 and 2 in Equations 

{52) to (55). 

Finally, the partial phase 
spectrum 8 1 y./f) which measures the direct phase 
difference at each frequency between x

1 
and 

,I 
y

1 
after allowing for the phase differences between 

(56) 

x2 and y and between x2 1 
and x

1 
,t is given 

, I t • 
by (Jenkins and Watts, 1969). 

where c (f), c (f) and c2 6(f) are the cospectra 12 I y 
defined in Equation {44); q 12(f), q 1 yCf) and 
q (f) the quadrature spectra defined in Equation 
(JS'), and -r;/f) the spectrum function of Equation 
(41). The partial phase spectrum 82 y. l (f) is ob­
tained. by interchanging the indices I and 2 in 
Equation (56). The estimation of the above partial 
coherence and partial phase functions are described 
in Appendix 3. 



Chapter 4 

RESEARCH DATA ASSE~BLY AND PROCESSING 

4.1 Type of Data 

Three types of water use data were assembled 
for the present study. They are data for urban water 
use, for irrigation, and for hydropower water use. 
Long term data for other uses were not available. 

Urban water use data were obtained from 14 
cities in the United States and one in Canada. 
Irrigation water use data were obtained from 
irrigation projects located in Colorado, Utah, and 
Nebraska. Hydropower water use data were obtained 
from hydroelectric projects located in Colorado and 
Wyoming. Their approximate geographic locations are 
shown in Figure ( 1 0). 

Weekly urban water use was obtained for three 
cities, monthly series for nine and annual for three 
cities. Part of these data were in unit values such as 
gallons per capita per day and others were in total 
values of water use such as in million gallons. For this 
investigation all the series of weekly, monthly and 
annual values were converted to million gallons units, 
although some analysis of annual series was. also made 
on gpcd units. 

Eight series of irrigation water deliveries were 
obtained of which two were of weekly values and the 
o ther six of monthly values. The data units varied 
such as in second-foot-day (sfd), acre-feet (af), and 
acre-feet per unit area (af/a). The analysis of these 
series were made by conserving the units originally 
obtained. 

One series of weekly values of hydropower 
water use ( cfs) and seven series of monthly hydro­
power production (MGH) were obtained for this 
investigation. Although the monthly series were not 
in actual water units, but in energy units, their 
analysis should provide approximate characteristics 
of. monthly water use series. The type of water use, 
location, and other pertinent information of each of 
the data assembled is presented in Table (1 ) . 

4.2 Sources of Data 

The urban water use data were obtained from 
the water departments of the municipalities of the 

Figure 10 Geographic distribution of obtained data. 
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TABLE 1 

DATA OBTAINED FOR ANALYSIS 

NO. TYPE OF IIA TER HA~E TIME UNIT DATA RECORDS AVAILABLE 
USE UNIT 

1 Fort Collins, Colorado Weekly M.G. 1930-1969 
2 Denver, Colorado Weekly M.G. 1950-1969 
3 Gree 1 ey, Co 1 orado Weekly M.G. 1952-1970 
4 Colorado Springs, Colo. Monthly M.G. 1937-1969 
5 Milwaukee, Wisconsin Monthly M. G. 1945-1969 
6 Dallas, Texas Monthly M.G. 1950-1969 
7 Urban Los Angeles, Calif. Monthly M.G. 1940-1965 
8 Water San Fernando, Calif. Monthly M.G. 1940-1965 
9 Use Fresno, California MGnthly M.G. 1941-1965 

10 Bakersfield, Calif. Monthly M. G. 1944-1965 
11 Hanford, California Monthly M.G. 1944-1965 
12 Visalia, California Monthly M.G. 1944-1965 
13 Baltimore, Maryland Annua 1 M. G. 1885-1 968 
14 New York, New York Annual M.G. 1898-1968 
15 Mont rea 1 , Canada Annual M.G. 1938-1969 

16 Alpine lrr .Co. ,Utah l'.onthly af 1945-1964 
17 American Fork lrr.Co.,Utah Monthly af 1945-1964 
18 North Bench Irr. Co. ,Utah Monthly at 1945·19G4 
19 Irrigation Lehi, Irr.Co., Utah Monthly af 1945-1964 
20 Water Pl esanr Grove Irr .Co., Utah Monthly af 1945-1964 
21 Use Carter Lake: Big Weekly sfd. 1957-1969 

Thompson Project, Colo. 
22 Hansen Canal: Big Weekly sfd. 1957-1969 

Thompson Project, Colo. 
23 Mi rage Flats Project, Monthly af/a. 1949-1960 

Nebraska 

24 Alva 8. Adams Tunnel: Big Weekly cfs 1953-1965 
Thompson Project, Colo. 

25 Green ~.ountain Power Plant: Monthly MGH 1943-1969 
Big Thompson Proj., Colo. 

26 Estes Park Power Plant: 
Big Thompson Proj., Colo. 

27 Hydropower Marys Lake Po.,-er Ph nt: 
Big Thompson Proj. , Colo. 

28 Water Pole Hill Power Plant: 
Big Thompson Proj., Colo. 

29 Use flat Iron Power Plant: 
Big T~mpson Proj., Colo. 

30 Guernsey Power Plant: 

31 
Wyoming 
Kortcs Power Plant: 
Wyoming 

respective cities. The irrigation water use data were 
obtained from the Region 7 of the U.S. Bureau of 
Reclamation, Denver, Colorado; from the Northern 
Colorado Water Conservancy District, Loveland, 
Colorado; and from the Agricultural Engineering 
Department of Colorado State University, Fort 
Collins, Colorado. The hydropower data were ob­
tained from Region 7 of the U.S. Bureau of 
Reclamation, Denver, Colorado. Temperature and 
precipitation data were taken from data published by 
the U.S. Weather Bureau. 

All data of water use, temperature, and precipi· 
ta tion were stored on magnetic tapes and all 
computations were done on the CDC-6400 digital 
computer at the Colorado State University Computer 
Center. For each kind of data stored on tapes, the 
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Monthly MGH 1951-1969 

Monthly MGH 1952-1969 

Monthly MGH 1954-1969 

Monthly MGH 1954-1969 

Monthly MGH 1943-1969 

Monthly MGH 1950-1969 

name of the city, irrigation, or hydropower project is 
specified and also the type of water use data and the 
number of years of record. 

4.3 General Procedure of Analysis 

For the decomposition of the original observed 
time series of weekly and monthly water use three 
main programs are used: (a) the program TREND for 
analy7jng the trends in the mean and standard devi­
ation; (b) the program PERIOD for estimating, 
describing and removing periodic mean, standard 
deviation and autocorrelation coefficients, and for 
removing the dependence in the stochastic com­
ponent and; (c) the program DISTRIB for finding the 
probability density functions of the best fit to the 
frequency distribution of the independent stochastic 



component. A simplified version. of the flow charts of 
the above three programs is shown in Appendix 4. 

For obtaining the trend in the mean, the mean 
water use for each year was computed and the T-test 
was performed on these values to test the hypothesis 
tha t the slope of a linear trend was significant. If the 
hypothesis was accepted, the regression constants of 
the polynomial, Equation (3), were computed by the 
least squares procedure and an analysis of variance, 
based on the F-test at the 95 percent confidence 
level, was applied for finding the significant higher 
order terms of Equation (3). The regression co­
efficients obtained with mean annual values, as 
explained above, were transformed in order to obtain 
the coefficients corresponding to the weekly and 
monthly time units. These values were used for 
removing the trend from the ori~nal weekly or 
monthly series, respectively. The trend in the 
mean, TmP ,r of Equation (3), was removed from 
the original series x by using Equation ( 1 ). The p,r 
resulting series y was further analyzed for testing 

P,T 
the significance of the trend in the standard 
deviation. 

For obtaining the trend in the standard devi­
ation, the standard deviation for each year was 
computed and following a similar procedure as before 
the T-test and the F-test were applied for deciding 
whether there is a significant trend and for fmding 
the significant coefficients of the polynomial 
regression of Equation (4). 

For removing the trend in the standard devi­
ation Tsp.r Equation (2) was slightly modified in 
order to preserve the original mean x and to have a 
constant standard deviation equal to the mean 
standard deviation 'i\,. This step was only necessary 
for the subsequent ani.tlysis of explained variances of 
each component; otherwise, Equation (2) is used. 
Therefore, for the purpose explained above, Equation 
(2) was modified to 
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(57) 

To find and remove periodic parameters in 
the z series and the correspondent dependence p.r 
models, the procedure given in sections 3.21 and 
3.2.3 of 3.2 and 3.3.1 of 3.3 of Chapter 3 is followed 
Each step, such as computing the sample values mr, 
s , and rk , the Fourier coefficients for inferring 
T 'T 

the corresponding J.J., , or and pk , , the criteria for 
finding the significant harmonics, the removal of peri­
odic J.J. and o and autoregressive coefficients up 

'T T 
to obtaining the second-order stationary and 
independent component ~ , is followed by using p,r 
the program PERIOD. 

The fit of .an adequate distribution function for 
the independent stochastic component, ~ r, is sub-

p, . . 
sequently performed. All steps, such as the estJmatwn 
of parameters of the normal, lognormal-3 and 
gamma-3 probability density functions, and the 
chi-square fitting criterion for choosing the function 
of the best fit are performed by using the program 
DlSTRIB. 

Cross correlation and coherence functions, as 
indicated in 3.5 of Chapter 3 are used for analyzing 
the linear relations between monthly temperature, 
precipitation, and water use time series. The results 
obtained are given in 5.5 of Chapter 5. 

The trends, time dependence structure, and 
probability distribution of the independent residuals 
are studied with annual water use time series. Also 
the relation between the independent stochastic com­
ponents of water use, precipitation and temperature 
are analyzed. The results are given in Chapter 6. 

Finally, the analysis of explained variances by 
the various deterministic components and by the sto­
chastic component is presented in Chapter 7. 



Chapter 5 

ANALYSIS OF WEEKLY AND MONTHLY WATER USE 

TlME SERIES 

6 

S.l Analysis of Trends 

Weekly and monthly urban water use ume 
series show, in general, upward trends in the mean 
and standard deviation. The physical reasons for these 
upward trends are the annual in.;rease in population, 
standard of living, and some so..:io-economic ..:hanges 
in each partkular case. The investigations of weekly 
and monthly series of water use for irrigation and 
power did not show the significant trends in para­
meters. 

Trends in the mean vary from simple linear 
(Figure 11) to more complex nonlinear trend (Figure 
16), such as quadratic and cubic. Two of the three 
weekly urban water use series studied show a linear 
trend in the mean (Denver and Greeley, Colorado), 
and the third :1 qu:~dratic trend (Fort Collins, 
Colorado). Of the twelve monthly series, four have a 
linear trend (Denver and Greeley, Colorado; Hanford, 

;t 1000 
<:> 
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TIH( IN HONTKS 

Figure ll Observed monthly water use series x p,T 
and the linear trend in the mean Tm 
r D p,T 
tOr alias, Texas for 1950-1969. 
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California, and Dallas, Texas), six have a quadratic 
trend (Fort Collins, Colorado; Milwaukee, Wisconsin; 
and L. Angeles, Fresno. Bakers11eld and Visalia 
California), and the other two h:~ve a cubic trend 
(Colorado Springs, Colorado; and San Fernando, 
California). Examples of a linear and a cubic trend in 
the mean are shown in the Figures ( 11) and (16) for 
monthly series of Dallas, Texas, and Colorado 
Springs, Colorado, respectively. 

Trends in the standard deviation are either 
linear or quadratic. Of the three weekly urban series 
studied, one has a linear trend, (Greeley, Colorado) 
and the other two a quadratic trend (Denver and Fort 
Collins, Colorado). Six of the twelve monthly series 
have linear trends in the standard deviation (Greeley, 
Colorado; Milwaukee, Wisconsin; Dallas, Texas; and 
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Figure 12 

TIHE IN HONTHS 

Resulting series y of Eq. ( 1) after re· p,T 
moving the linear trend in the mean and 
preserving the general mean x . An in­
creased fluctuation with t ime ~·;ound the 
genera] mean shows the presence of a 
trend in the stand:~rd deviation for month· 
ly data of Dallas, Texas, for 1950 - !969. 
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Figure 13 Computed and fitted linear trend in the 
standard deviation Ts for Dallas, p,T 
Texas, for 1950 - 1969. 
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of Eq. (57), for Dallas, Texas, 
for 195U- 1969, showing that the trend 
has been removed. 
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figure 14 Resulting series z of Eq. (57) after re-p,T 

.... 

moving the trends in the mean and 
standard deviations for Dallas, Texas, for 
1950 - ·1969 . 
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Figure 16 Observed monthly water use series 

x and the cubic trend in the mean 
Trit for Colorado Springs, Colorado, p ,T 
for 1937 - 1969. 
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TIHE IN HONTHS 

Resulting series y of Eq. (1) after re-p,r 
moving the cubic trend in the mean and 
preserving the original mean x . An in­
creasing fluctuation with time around the 
mean shows the presence of a trend in the 
standard deviation for monthly data of 
Colorado Springs, Colorado, for 1937 -
1969. 
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liHE IN MONTHS 
Resulting series z of Eq. (57) after re-p r 
moving the trends in the mean and 
standard deviation for Colorado Springs, 
Colorado, for 1937 - 1969. 
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Figure 18 Computed and fitted quadratic trend in 
the standard deviation Ts for Colo-
rado Springs, Colorado for f937-1969. 
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Springs, Colorado, for 1937 - 1969, 
showing that the trend is removed. 



Los Angeles, Fresno and Hanford, California), and 
the other six quadratic trends (Fort Collins, Denver 
and Colorado Springs, Colorado; and San Fernando, 
Bakersfield and Visalia, California). Examples of 
linear and quadratic trends in the standard deviation 
are shown in the Figures (13) and (18) for monthly 
se ries of Dallas, Texas, and Colorado Springs, 
Colorado, respectively. 

A general characteristic shown by the results is 
that usually linear trends in the mean are ac­
companied by linear trends in the standard deviation, 
and complex nonlinear trends in the mean are 
accompanied by complex nonlinear trends in the 
standard deviation. 

Tables (2) through (5) show the mean, variance 
and polynomial regression coeffi<fients for the trends 

in the mean and standard deviation for both weekly 
and monthly urban water use time series, 
respectively. Figures (II) to (15) for monthl?W.ater 
use of Dallas, Texas, and Figures (16) to (20) for that 
of Colorado Springs, Colorado, show graphically the 
separation of trends from the original series x . 
For example, in the case of Dallas, Texas, Figure (l•l) 
shows the original series x and the fitted linear 
upward trend in the mean, ~~ . After this trend is 
removed, the new series y i~ '~ven in Figure (12) p,T 
showing the increasing fluctuations with time aroun4 
the constant mean; that is, showing that the standard 
deviation increas-es with time. The computed and 
fitted trend for the standard deviation Tsp,r is 
shown in Figure (1 3). After this trend TsP.T is re­
moved from the series y by using Equation (57), p,T 
the resulting series z is given in Figure (14) p,T 
showing that both trends Tm and Ts have p,T p,T 
been removed from the original series x p,T 

TABLE 2 

MEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE 

TREND IN THE MEAN OF WEEKLY URBAN WATER USE TIME SERIES 

NN!E MEAN VARIANCE REGRESSION COEFFICIENTS 

r. 2 
S T• ~ s. c ... 

Fort Collins, Colo. 35.8630 165.945 22.6393 -0.003359 0.000012 
Denver , Colo. 843.2013 11449.865 657.7760 0.356245 -
Greeley, COlo. 47.5360 90.601 31.0411 0.035209 -

TABLE 3 

I'EAN, VARI AJICE AND POLYNOMIAL REGRESSION COEFfiCIEHTS FOR THE 

TREND IN THE STANDARD DEVIATION OF IIEEKL Y URBAN WATER USE Til£ SERIES 

NAME MEAN VARIANCE REGRESSION COEFFICIENTS 

-
Ts 2 

As 85 c 
S Ts s 

Fort Collins, Colo. 16.778 27.7432 12.3767 -0.25088 0.016313 
Denver, Colo. 419.879 7108.8090 263.2716 13.99800 0.012071 
Greeley, Colo. 25.991 22.3250 17.3327 0.88506 -
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TABlE 4 

HEAN, VARIANCE AND POLYNOHIAL REGRESSION COEFFICIENTS FOR THE 

TREND IN THE MEAN OF MONTHLY URBAN WATER USE TIME SERIES 

MEAN VARIANCE REGRESSION COEFFICIENTS• 
NAME tm 2 

Srm Am 8m em 

Fort Col l ins , Colo. 155.760 3,136.904 98.232D - 0 .062495 0.000972 
Denver, Colo. 3662.432 216,012.066 2855.7500 6.694459 
Greeley, Colo. 206.544 1,711.636 134.7190 0.66197 
Colo. Springs, Colo. ~60.071 54,708.91 5 294.4120 - 1.96233 0.014536 
H11waukee, lltsc. 4179.778 316,159.131 2981.4768 10.71667 -0.014687 

-0.000013 

Dallas , Texas 3028.179 748,383.581 1526 .6790 12 .46059 
l . Angeles, Calif. 7231.806 1,670,253.054 4266.0300 29.28750 -0.049617 
S. Fernando, Calif. 2678.567 2,500,630.314 863.3931 - 8. 97833 0.172597 -0.000315 
Fresno, Calif. 1220.066 78,426.095 742.7463 3.05917 0.000561 
Bakersfield, Cal if. 860.034 63,063 .739 341.7068 5.22975 -0.007474 
Hanford, Cal tf. 111 .0520 620.0377 67.8413 0.326118 
V t sa 11 a , Ca 11 f . 171.1026 2,232.715 80.7948 0.81029 -0.000730 

* T11 • Am + B111t + Cmt t • time In 111011ths 

TABLE 5 

HEAN, VARIANCE AND POLYNOMIAL REGRESSION COEFFICIENTS FOR THE 

TREND IN THE STANDARD DEVIATION OF MONTHLY URBAN WATER USE TIHE SERIES 

M£AN VARIANCE REGRESSION COEFFICICNTS• 
NAME fs s2 

Ts As 8s cs 

For t Collins, Colo. 67.583 470.926 52.0380 - 1.13030 0.069347 
Denver, Colo. 1698.867 122,048.576 1151 .8549 42 .7330 o. 77075 
Greeley, Colo. 105.679 361.705 73.7930 3.5620 
Colo. Spr ings , Colo. 170.063 8,375.636 83.7826 - 2.73390 0.34506 
Milwaukee, lllsc . 600.665 19,581.602 365.1402 18.29558 
Dallas, Texas 1020.928 82,426 .113 509.1405 48.5287 
l. Angeles , Cal if. 1144. 251 30,274.878 856.0202 22.74905 
S. Fernando , Calif. 1096.640 237 ,100.974 105.1314 82.8970 -0.71911 
Fresno, Ca 11 f. 682.857 26 ,078.877 419.7886 21.94211 
Bakersfield , Calif. 481.970 19 ,393.749 173,6623 41.2840 -0.88849 
Hanford, Calif. 59.0916 283 .748 31.197.3 2.59470 
v 1sa 1 ia , Ca llf. 103.196 1. 153.207 32.9022 8.5317 -0.14644 

Ts • A + B t + C t 2 + 0 t3 
s s s s t • time in 100nths 

5.2 Analygs of Periodic Mean and Standard Devi­
ation 

5.2.1 Urban water use. The analysis of weekly 
and monthly urban water usc time series shows that 
the within-the-year ~yde and some harmonics are 
important for des~ribing the periodic mean and 
standard deviation. 

F or the three weekly series studied, the 
periodicity in the mean, mT has the within-the-year 
cycle, with its harmonics of 52 and 26 weeks signi­
l'icant. However, the periodic standard deviation has 
in addition to the harmonks of 52 and 26 weeks also 
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significant harmonics such as the J 7 .3, 13.0, and so 
on, depending on a particular case. Table (6) gives the 
mean, variance, and significant harmonics in periodic 
mean and standard deviation of weekly series. 

For monthly series the periodicity in the 
mean, m , has the within-the-year cycle with the 

T 

harmonic of 12 and 6 months significant in 11 out of 
the 12 cases studied. However, in three cases the 
other harmonics, su~h as 4.0 and 2.4 months were 
also found significant. The periodic standard devi­
ation, s , has the cycle also with the 12 and 6 month 

T 

harmonics signifkant in I 0 out of 12 cases studied. 
However, other harmonics such as 4.0. 3.0, 2.4 and 



TABLE 6 

MEAN, VARIANCE AND SIGNIFICANT HARMONICS OF PERIODIC MEAN 

AND STANDARD DEVIAT ION OF WEEKLY WATER USE TIM£ SERIES 

PERIODIC MEAN PERIODIC STANDARD DEVIATION 
WATER USE IW1E it s2 SIGNIFICANT s s2 SIGNIFICANT 

T Ill HARHONICS l 5 HARJ()NICS T T 

Urban Fort Col l ins, Colo. 36.380 191.036 52, 26 8 .663 17 . 594 52 , 26, 17.33, 8 .67 

Water Denver, Colo. 852.288 129, 232.417 52, 26 180.411 16,817.020 52 • 26 • 17 . 33. 13 
Use 10.4. 8.67 

Greeley, Colo. 48.-C34 513.299 52 , 26 11.148 46.715 52, 26, 17.33 , 13 

10.4. 8.67 
. 
Irrigation Carter Lake, Colo. 981.779 705,400.448 31 , 15.5* 618.992 129,710.610 31, 15.5, 10.33 

Water 7 .75, 6.20 

Use Hansen Canal, Colo. 1548.500 3 , 151,511.410 31, 15.5* 931.598 278,443.114 31, 15.5, 10.33 

7.75 , 5.17 

Hydropower A. B. Adams Tunnel, 2067.183 501.676 .106 52 , 26 , 965.156 98 ,352.718 52 , 26 , 17.33, 13, 

Water Use Colo. 17.33, 13, 10.4, 8.67 

10'.4, 8.67 

• In this particular case, 31 weeks (instead of 52) Is the basic period, because only during this time (Apri l to October) 
Irrigation deliveries are necessary. 

2.0 months are significant depending on each parti­
cular case. Table (7) gives the mean, variance, and 
significant harmonics of periodic mean and standard 
deviation of monthly series. 

The periodic mean and standard deviation with 
the annual cycle for the weekly series studied show, 
in general, hlgh values between the 20th and 35th 
week of the year (from 1he middle of June to the 
middle of September). This result is obtained for the 
three cities analyzed (Fort Collins, Greeley, and 
Denver, Colorado) and shows the effect of climato­
logic, air condition, lawns irrigation and socio­
economic environmental effects on water use. Figures 
(21) and (22) give the computed values and the 
fitted periodic mean and standard deviation for 
weekly water use series of Fort Collins, Colorado. 

The periodic mean for all monthly series 
studied shows a similar shape. In 10 out of 12 cities 
the highest monthly mean occurs in July and in the 
o ther two cases in August. These two last cases are 
Dallas, Texas, and Milwaukee, Wisconsin. Figures 
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(23), (25) and (27) show the computed means and 
fitted periodic mean for the monthly water use of: 
Fort Collins, Colorado; Dallas, Texas, and Bakers­
field, California. 

The periodic standard deviation for the 
monthly series studied shows different shapes mainly 
according to the geographic location of cities. For 
example, in case of cities in Colorado, Dallas, 
Texas, and Milwaukee, Wisconsin, all show a similar 
shape with predominantly hlgh values during June to 
August period. In case of cities in California, all show 
a general similar shape with two predominantly high 
values. For the cities located in the south coastal area 
of California, the standard deviation, sr , had its 
highest values in April and August for San Fernando, 
and in April and September for Los Angeles. For the 
cities located in the Tulare Lake Basin (Bakersfield, 
Fresno, Hanford, and Visalia) the highest values 
of sr occur in June and October. 

The above results seem to indicate a strong 
influence of geographlc location and climate on the 



TABLE 7 

MEAN, VARI ANCE AND SIGNIFICANT HARMONI CS OF PERjODI~ 

MEAN AND STANDARD DEVIATION OF MONTHLY WATER USE TIME SERIES 

PERIODIC MEAN PERIODIC STANDARD DEVIATION 
WATER USE NAME ;n s2 SIGNIFICANT s s2 SIGNI FICANT 

T m HARMONICS T s HARMONICS T T 

Fort Collins, Colo. 157.902 3 ,611. 222 12, 6 28.870 137.520 12, 4. 3, 2 
Denver, Colo. 3699.252 2,409,851.851 12, 6 583.710 147,991.250 12 
Greeley, Colo. 210.185 9,513.028 12, 6 36.173 389 .026 12, 6, 4, 2 
Colo.Springs , Colo. 469.497 22,090.080 12, 6 77.026 1,036.560 12, 6, 3 

Urban Milwaukee, Wise. 4213.185 307,837.630 12, 6, 2.4 211.517 9,137.303 12 , 6, 2.4,2 
Water Dallas , Texas 3028.179 854,457.056 12 ,6,4 375.044 52,492 .879 12, 6, 4, 3 
Use L.Angeles, Calif. 7306.593 1,133,514.086 12, 2.4 417.971 3,763 .1 52 12,6,3,2.4,2 

S.Fernando, Calif. 2759.885 960,328.615 12, 6 485.180 12 ,574.!l29 12, 6, 4, 2.4 
Fresno, Calif. 1237.832 445,518.1 65 12, 6 128.590 3,486 .783 12 , 6, 4, 2.4 
Bakersfield, Calif. 877.756 220,137 .481 12. 6 103. 313 1,178.843 12, 6, 3, 2.4 
Hanford , Ca 1 if. 112.846 3,318.451 12, 6 12.362 14.953 12,6,4,3,2.4 
Visalia , Calif. 174.481 10,054.970 12, 6 22.284 83.869 12, 6, 2.4 

Alpine I r r . Co ., Utah 1456.429 850 ,412.245 7. 3. 5 545.902 131 ,513.687 7. 3. 5 
~nerican Fork, Utah 2588 .571 4,228 ,883.673 7. 3. 5 976 .793 634.582. 787 7. 3. 5 

Irrigation North Bench, Utah 1213.333 117,405.55 3 440.362 6 ,1 69.162 3 
Water Lehi , Irr.Co. ,Utah 1802 .143 2,646,998.980 7. 3. 5 648.198 328,482 .512 7, 3.5 
Use Plesanr Grove, Utah 1740.714 1,104,024.490 7. 3.5 583.751 148,065.239 7. 3. 5 

Carter Lake, Colo. 4347.879 12 ,490,133.006 7,3.5,2.33 2408.179 1,839,695.597 7. 3.5 , 2.33 
Hansen Canal, Colo . 6857 .635 37 ,492,100.00 7,3.5,2.33 3383.094 3,519,766 .779 7, 3.5, 2.33 
Mirage Flats, Nebr. 0.2136 0.03188 5, 2.5 0.0882 0.00195 5, 2.5 

A.B.Adams Tunnel 318.879 4,808.354 12,6,4,2.4 131. 558 648.169 12, 2.0 
(8ig-Thomp.Proj .Colo) 
G.Mounta in Pow.P1ant 5274.429 4,020,981.336 12, 6 2737.869 2,196,606.876 12, 6, 4, 2.4 
(Big-Th. Proj. , Colo) 
Es tes Park Pow.P1. 8285.603 3,762,080.247 12,6,4,2 .4, 3878 .944 257,261.132 12, 4, 2.4,2.0 
(8ig-Th. Proj. , Colo) 2.0 

Hydropower Marys Lake Pow.Pl. 3292.767 649, 521.202 12,6,4,2.4, 1355.655 84,552.560 12, 4, 3, 2.0 
(8ig-Th. Proj., Colo) 2.0 

Water Pole Hill Pow.Pl. 16874.635 4,283,958.806 12,6 ,4,3, 
(8ig-Th. Proj. , Colo) 2.4 

Use Flat Iron Pow.Pl. 21336 .677 7,068,1 43.821 12,6,4 ,3. 
(Big-Th. Proj. , Colo) 2.4 
Guernsey Pow. P1 . 2044.531 2,820,391.391 12,6,4,2.4 712.455 134,409.966 12, 6, 4, 3 
(W.vomin~) 2.0 
Kartes Pow. Pl. 11655.852 2,717,058.596 12,6,4,3, 
(Wyomi ng) 2.4 

•In the case of irrigation the basic periods were 7, 3 and 5 months. 

shape of periodic standard deviation, sr. Figures 
(24), (26) and (28) show the computed values and 
fitted periodic standard deviation for the monthly 
water use series of Fort Collins, Colorado; Dallas, 
Texas; and Bakersfield, California. 

Tables (8) through (II) give Fourier co­
efficients for fitted periodic mean and standard devi­
ation for both the weekly and monthly water use 
time series, respectively. 

5.2.2 Irrigation water use. The analysis of 
weekly and monthly irrigation wate r- uses shows that 
the irrigation seasonal cycle and some of its harmo­
nics are important for describing the periodic mean 
and standard deviation. 

For the periodic mean of weekly series the 
cycle of 31 weeks and its harmonic of 15.5 weeks are 

27 

shown to be significant. However. for the periodic 
standard deviation in addition to the harmonics of 31 
and 15.5 weeks, the harmonics of 10.3, 7.7, 6.2 and 
5.2 weeks come out also to be important , depending 
on particular cases. In both cases studied, the highest 
values of the periodic mean is attained between the 
15th to 25th week of the irrigation season (April to 
October). Oo the other hand, the periodic standard 
deviations show two predominantly high values 
around the 8th and 16th weeks of the irrigation 
season, respectively. Results for both cases studied of 
the weekly irrigation deliveries should be expected, 
since both cases are located in the same area of 
Colorado. Table (6) gives the mean, variance and 
significant harmonics of periodic mean and standard 
deviation. Figures (29) and (30) show the com­
puted mr and sr and the fitted periodic para­
meters fJ and a respectively , for the weekly irri-

r T 
gation deliveries of Carter Lake, Colorado. 



TABLE 8 

FOURIER COEFFICIENTS FOR PERIODIC MEAN OF WEEKLY WATER USE TIME SERIES 

FOURI ER COEFFIC IENTS 

WATER USE NAME Al A2 A3 A4 As A6 
81 92 83 84 B5 86 

Fort Co111ns, Colo. - 17.4827 3. 9654 
Urban 6.1514 3.9098 
Water Denver, Colo. - 458.6282 89.1922 
Use - 161.9815 96.0419 

Greeley, Colo. - 28.4423 5.5071 

- 11.9058 3.3401 

Irrigation Carter Lake, Colo. - 745.2638 - 163.2444 

\later - 779.5986 352.7017 

Use Hansen Canal, Colo. -1301.2311 - 292.8102 
-1229.5747 810.3999 

Hydropower A.B. Adams Tunnel 252.2533 - 387.5076 - 169.3459 - 372.4300 - 198.1279 - 180.1036 
\la ter (Big-Th.Proj.,Cofo.) - 59.9961 311.2141 - 103.3534 173.4574 29.1812 272.1282 Use 

TABLE 9 

FOURIER COEFFICIENTS FOR PERIODIC STANDARD DEVIATION OF WEEKLY WATER USE TIME SERIES 

FOURIER COEFFICIENTS 

WATER USE NAME Al Az A3 A4 As A6 
81 82 83 84 Bs 86 

Fort Collins, Colo. 5.6805 0.2732 0.8892 0.1017 
Urban 0.7113 0.3538 0.3584 0.6170 
\la ter Denver, Colo. - 173.3654 10.2409 11.1260 2.5750 4.0296 7.5490 

Use - 27.0742 - 17.1111 23.9472 9.5413 2.8335 - 15.1209 
Greeley, Colo. 8. 9717 0.5010 0.9327 0.0327 0.6047 0.4199 

o. 5725 1. 7431 1.5070 0.6601 0.0416 0.9469 

Carter Lake, Colo. -404.1672 - 58.2048 - 71.2666 153.0724 - 86.5605 
Irrigation - 24.9059 66.3937 - 194.2888 - 43.8925 14 .0804 
\la ter Hansen Canal, Colo. - 541.9052 - 164.1317 - 289.9824 100.0477 108.9210 

Use 16.8318 107.4967 - 297 .3520 - 56.9372 1. 5179 

Hydropower A.B. Adams Tunnel - 338.7032 - 98.7915 - 109.2410 - 56.8127 - 33.3508 3.2337 
Water Use (Big-Th.Proj., Colo) 57.2652 - 28.5305 43.7479 50.7410 45.9570 122.0872 
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TABLE 10 

FOURIER COEFFI CIENTS FOR PERIODIC ~£AN OF MONTHLY WATER USE TIME SERIES 

FOURIER COEFFICIENTS 

WATER USE KAME 
Al A2 A3 A4 As A6 

81 Bz 83 84 Bs 86 

fort Collins, Colo. - 68.779 9.721 
- 42.655 21.761 

Denver , Colo. -1797.801 202. 599 
- 1118 .816 522.648 

Greeley, Col o. - 109.859 l7 . 346 
- 76 . 922 23.121 

Colo. Springs, Colo. - 176.207 13.403 
- 109.886 22.802 

Urban Mi l wau kee , Wise . - 522.754 30.036 9.621 
- 499.963 253.637 139.256 

Water Dallas, Texas - 927.971 35.702 157.641 
- 744.140 478 . 782 - 122.734 

Use L. Angeles , Calif. - 1136.330 100.364 
- 936.554 199.425 

s. Fernando, Ca 1 i f. - 111 5.456 44.799 
- 776.527 192.966 

fresno , Ca 1 if. - 806.716 58.111 
-455.158 164 .631 

Bakersfield, Calif. - 579.022 16.403 
- 293.940 128.178 

Hanford, Ca 11 f. - 72.165 5.923 
- 34 .024 14 . 515 

Visalia, Calif. - 122.628 12.349 
- 62.799 30.169 

Alpine , l rr . Co., Utah - 810.1115 - 115.777 
965.358 - 310.881 

American Fork, Utah -1914.002 - 265.815 
1903 . 789 - 1019.130 

Irrigation North Bench, Utah 211.667 
- 435.899 

Water Lehi , Utah - 1276. 999 - 304.033 
1702.230 - 803.174 

Use Plesanr Grove , Utah -1061.531 - 95.197 
909.496 - 475.874 

Carter Lake, Col o. -1 459.307 -1411.575 456.557 
- 4438.772 654.040 - 720.579 

Hansen Canal, Col o. -2993.338 -3227.975 1240.485 
- 7184 .913 1491.344 - 467.363 

Mirage flats , Nebr. 0.0302 0 .0346 
0. 2475 0.0195 

A.B. Adams Tunnel 82 . 236 - 22.499 29.462 14.496 
(Big-Th.Proj., Col o) 2.556 26.832 - 16.271 3.876 

Hydr opower G. Mou ntain , Po.P1. - 2211 . 998 662.243 
(Big-Th.Proj., Col o) -1 381.501 813. 79B 

Water Estes P~rk, Pow.Pl . 2234.559 - 593.625 893.675 495.91 5 - 498.1 56 
(Big-Th.Proj., Colo) 19~.165 6b4 .037 - 250.719 547.661 0.0 

Use Marys Lake , Po>~.Pl . 936.986 - 257 .775 345.492 188.31 1 - 190.132 
(Big-Th.Proj ., Colo) 70.183 302 .986 - 112. 107 226.3!:4 0.0 
Pole Hill , Pow.Pl. - 461.1 34 ln5 . 573 - 926.104 730.583 108.332 
(Big-Th.Proj., Colo) 324.J86 1459. 559 - 701.937 - 355 .431 1032.945 
Flat Iron, Pow. Pl. - 873.533 2293.305 - 928. 432 930.284 163.622 (Big-Th.Proj., Colo) 230.434 1eo2 . 339 - 895. 078 - 442.047 1363.~65 
Guerns~y , Pow. rl .. -2154.038 - 91.046 488.577 - 25.745 • I Y~· .U~H 
( ;iyomin?) - r;:.5.aao 293.?.?7 35).66'1 - 2£3.505 (1 .1) 
Kortcs, Pow.P1. en.414 - 46.7'·9 9P.9.1158 - 409.302 294 .857 
( Wyoming) 162~.500 - 6112 .619 102. 7RJ 210.020 3;,3.130 
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TABLE 11 

FOURI ER COEFFICIEtiTS FOR PERIODIC STAND.\RD OEVIATIO!I OF HOSTHLY WATER USE TIME SERIES 

FOURIER COEFFICIENTS 

WATER USE tiAHE Al A2 A3 A4 As A6 

Bl Bz 83 84 Bs 86 

Fort Collins, Colo. - 14.700 3.513 0.826 3.202 
4.805 2.596 2.311 0. 0 

Denver, Colo . - 500.453 
- 180.184 

Greeley, Colo. - 25.241 4.008 1.018 5. 765 
5.725 5.436 5.039 0.0 

Colo. Springs, Co lo . - 41. I 52 3.619 3 . 694 - 16.271 6.011 5.525 
Urban Milwaukee, Wise. - 92.179 14.619 - 19.985 26.475 

- 73.733 42.461 31.136 0.0 
Water Dallas, Texas - 230.844 13.190 9.716 - 15.075 

- 181.175 103.710 - 57.232 58.606 
Use L.Angeles, Calif. 10.558 - 25.625 6.458 1.413 - 16.462 

48.141 28.568 16.498 54.613 0.0 
S. Fernando, Calif. 63 .344 - 47.833 47.539 - 44.915 

103.453 54 .784 6.117 20.782 
Fresno , Calif. - 73.649 4.815 7.626 2.946 

10.759 - 30. 504 9.326 14.778 
Bakersfield, C.lif . - 43.057 - 12.202 7.367 6.159 

9.303 8.625 7.767 3.789 
Hanford, Cal.if. 5.026 0.174 0.987 0.199 0.427 

0.799 0.875 0.267 1.368 0.~51 
Visalia; Calif. - 12.309 1.117 1.465 

1.643 2.501 1.152 

Alpine, Ir.-. Co., Utah - 298.329 - 102.521 
399. 133 - 60.785 

American Fork, Utah - 705.041 - 167.676 
827.269 - 236.889 

Irrigation North Bench, Uta h 50.475 - 98.947 
Water Lehi, Utah - 438.966 - 141.949 

638.358 - 187 .485 
Use Plesanr Grove, Utah ~ 363.993 - 79.691 

374.474 - 126.057 
Car ter Lake, Colo. -1411.108 - 270. 608 520.422 

- 811.521 428.443 - 789.813 
Hansen Canal , Col o. -1932.281 - 807.505 720.357 

- 648.672 150.031 -1300.600 
Mirage Flats, Nebr . 0 .0195 0 .0153 

0.0573 0.0007 

A.B.Adams Tunnel - 33.547 9 .341 
(Big-Th.Proj., Colo) 2.751 0.0 

Hydropower G. Mountain, Pow. Pl. -1649.886 1036. &49 - 662.975 134.124 
( ") - 30.313 134.756 3.326 242 . 523 

Water Estes Park, Pow.Pl. - 515.862 - 106.899 87. 502 - 317. 584 
(" ) - 136 . 593 - 230.038 227.709 0.0 

Use Marys La ke, Pow.Pl. - 362.404 - 70. 390 45.932 - 100.084 
(") - 77.287 - 107.743 50.321 0.0 

Pole Hill , Pow.Pl. 
(") 

Flat Iron, Pow.Pl. 
(") 

Guernsey , Pow. PI. - 317.483 - 113.4?1 - 16.600 129.393 
(" ) 241.420 - 227.791 n4.193 - 17.270 

Korle.s , Pow.Pl. 
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Monthly irrigation deliveries show that the 
means and standard deviations are periodic. The irri­
gation seasonal cycle of 3, 5 or 7 months (according 
to each particular case) and some of its harmonics are 
significant for the eight cases analyzed. A character­
istic of the monthly means and standard deviations is 
their shape which changes according to the particular 
area where the irrigation water is delivered. For 
example, for the four cases of irrigation deliveries in 
Utah (with irrigation season from April to October), 
the highest values of m and s are attained during 

'T 'T 

the second and third month (May and June) of the 
season. For the two irrigation deliveries in Colorado, 
they occurred during the fourth and fifth month, and 
for a case in Nebraska, during the third and fourth 
month of the irrigation season; in both cases they 
correspond to July and August. These results indicate 
differences in amplitudes according to the total water 
amounts delivered to each particular area, and in 
phases according to different climates of areas to 
which the irrigation water is delivered. Table (7) gives 
the mean, variance and significant harmonics of peri­
odic monthly means and standard deviations, and 
Tables (10) and (11) their respective Fourier coef­
ficients. 

5.2.3 Hydropower water use. The analysis of 
weekly and monthly hydropower water use showed 
practically for all cases that the means and standard 
deviations are periodic. 
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Figure 21 

TIH( IN WW::S 

Computed 'mean m and fitted periodic 
'T 

mean JJ , obtained by using Eqs. (10) 
'T 

and (6), respectively, for weekly urban 
water use of Fort Collins, Colorado, 1930 
- 1969. ' 
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The weekly series of A.B. Adams Tunnel, 
Colorado, had in addition to the cycle of 52 weeks its 
harmonics of26.0, 17.3, 13.0, 10.4 and 8.7 weeks, all 
significant for both the means and standard devi­
ations. Table (6) gives the mean, variance and 
significant harmonics of both m and s and Tables 

'T T 
(8) and (9) their respective Fourier coefficients. 
Figures (31) and {32) show the computed 
m and s and the fitted JJ. , and (J for the 

T 'T 'T T 

weekly series. These two figures show the opposite 
shape, because the periodic mr has its highest values 
in the first and last 10 weeks of the year and its 
lowest values between the 20th and 30th weeks while 
the periodic s

7 
has the opposite shape. This is the 

result of controlled diversion of water from the 
Colorado River storage capacities on the West Slope 
to the East Slope of the Rocky Mountains. 

Five of the eight monthly series studied show 
significant periodicity in both the mean and standard 
deviation; and the remaining three series showed 
periodicity only in the mean. For the cases of 
significant periodicities, the annual cycle of 12 
months and its harmonics of 6, 4, 3, 2.4 and 2 
months were also important depending on each 
particular case. Table (7) gives the mean, variance 
me an, variance and significant harmonics for 
both JJ.

7 
and a

7
. Tables (10) and (11) give theirre­

spective Fourier coefficients. 
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Figure 22 
liHE IN WW:S 

Computed standard deviation s
7 

• and 
fitted periodi c standard devia­
tion a r obtained by using Eqs. {11) and 
{7), respectively, for weekly urban water 
use of Fort Collins, Colorado, 1930 -
1969. 
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mean lir , obtained by using Eqs. (10) 
and (6), respectively for monthly urban 
water use of Fort Collins, Colorado, 1930 
- 1969. 
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Figure 24 Computed standard deviation sr 3nd 
fitted periodic standard deviation a , ob-r 
tained by using Eqs. (11) and (7), respec-
tively, for monthly urban water use of 
Fort Collins, Colorado, 1930 - 1969. 
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Computed mean mr and fitted periodic 
rriean p. , obtained by using Eqs. (10) 

T 

and (6), respectively, for monthly urban 
water use of Dallas. Texas, 1950 - 1969. 
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Computed standard deviation s and 
• T 

fitted periodic standard deviation a , ob-
r 

tained by using Eqs. (11) and (7), respec-
tively, for monthly urban water use of 
Dallas, Texas, 1950 - 1969. 

1. 



II II 

''" 
mT•fLT 

.... 
''" 
.... 

"' z 
~- ... 

'" 
Cll 

m 
T 

' I ' I II l l " TillE IN IIONTHS 

Figure 27 Computed mean mr and fitted periodic 
mean JlT , obtained by using Eqs. (10) 
and {6), respectively, for monthly urban 
water use of Bakersfield , California, 1944 
- 1965. 
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Figure 28 Computed standard deviation sT , and fit· 
ted periodic standard deviation 'J , ob· 
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tained by using Eqs. (1 J) and (7), respec· 
tivcly, for monthly urban water used of 
Bakersfield, California, 1944 - 1965. 

33 

zm 

2200 mT,f-LT 

ZIOO 

lUI 

lU I 

1100 

VI z 
<( 

•zoo 
'f! 

1010 

Ill 

uo l coo 

201 .... 
0~~~~~~~-L-L~~~~~~._~~ 

0 Z C ' I II 12 I& ' ' II ZO Zl 2C 25 Zl )0 ) 2 

lit!( I N Wf.( C S 

Figure 29 Computed mean mT and fitted periodic 
mean JlT , obtained by using Eqs. (I 0) 
and {6), respectively, for weekly irrigation 
wa ter deliveries of Carter Lake, Colorado, 
1957- 1969. 
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Figure 30 Computed standard deviation sr and fit· 
ted periodic standard deviation aT , ob· 
tained by using Eqs. (11) and (7), respec­
tively, for weekly irrigation water deliver· 
ies of Carter Lake, Colorado, 1957 -
1969. 
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Figure 31 
Till( IN W((I:S 

Computed mean m and fitted periodic 
T 

mean J.IT , obtained by using Eqs. ( 10) 
and {6), respectively, for weekly hydro­
power water use of A. B. Adams Tunnel, 
Colorado, 1953- 1965. 

5.3 Analysis of Periodic Autocorrelatio n Coefficients 

The dependence structure of weekly and mon­
thly water use series is analyzed by fitting the 
first, second, or third order autoregressive models of 
Equation (23). The degree of complexity for fitting 
the above models depends on the complexity of the 
covariance structure of the series, which in turn 
depends on whether the autocorrelation coefficients 
are periodic functions or constants. The results of the 
analysis made on autocorrelation coefficients are 
described for each type of water use stud ied. 

5.3.1 Urban water use. The three weekly water 
us:e series analyzed shows the autocorrelation coeffi­
cients for lags I, 2 and 3 to be periodic functions 
with the annual cycle of 52 weeks and its harmonics 
of 26.0, 17.3, 13.0, 10.4 and 8.7 weeks to be signi· 
ficant. In general, the autocorrelation coefficients for 
all three lags were large varying from 0.60 to almost 
1.0 during the fust and last 8 weeks of the year, and 
they were small, Jess than 0.50 in the interval 
between the 15th to the 40th week of the year. This 
result of having periodic autocorrelation coefficients 
significant is important in considering the further de­
composition of the dependent stochastic series in 
order to obtain a second-order stationary and 
independent stochastic component. 

Table ( 12) gives the mean variance and signi­
ficant harmonics of the periodic autocorrelation 
coefficients of weekly series, and Tables {13) , (14) 
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Computed standard deviation s and fit­
r 

ted periodic standard deviation aT , ob-
tained by using Eqs. (I 1) and (7), respec­
tively, for weekly hydropower water use 
of A. B. Adams Tunnel, Colorado, 1953 -
1965. 

and (J 5) their respective Fourier coefficients. Figures 
(33), {34) and (35) show the computed and fitted 
periodic autocorrelation coefficients for the lags 1, 2 
and 3, respectively, for the weekly series of water use 
of Fort Collins, Colorado. A general conclusion for 
the periodicity in the autocorrelation coefficients of 
monthly series cannot be drawn because in seven of 
the twelve cases studied they were not significantly 
periodic. 

Table {16) gives the mean, variance and signi­
ficant harmonics of the autocorrelation coefficients 
of monthly series. Figures {36), {37) and {38); {39), 
(40) and (41); and (42), {43) and (44) show the com­
puted and fitted autocorrelation coefficients for 
monthly series of water use in Fort Collins, Colorado; 
Dallas, Texas; and Bakersfield, California, respec­
tively. 

5.3.2 Irrigation water use. The weekly auto­
correlation coefficients for the lags 1, 2 and 3 were 
found to be significantly periodic in the two cases 
studied. They show low values of the autocorrelation 
coefficient in the fust and last weeks of the irrigation 
season and high values in the rest of the season. The 
mean, variance and significant harmonics of the three 
autocorrelation coefficients are given in Table (12). 
Figures {45), (46) and (47) show the fust, second and 
third autocorrelation coefficients, respectively, for 
the weekly irrigation deliveries of Carter Lake, 
Colorado. 

! 



The monthly autocorrelation coefficients for 
the lags 1, 2 and 3 were found to be significantly 
periodic for the irrigation deliveries in the Utah area. 
However, for the two cases in Colorado and for the 
one in Nebraska they were not found periodic. 

The periodic autocorrelation coefficients for 
the monthly deliveries in Utah had in general similar 
shapes with their highest values attained between the 
3rd and 5th month of the irrigation season (April to 
October). For all cases analyzed the mean, variance 
and significant harmonics are given in Table (16). 

5.3.3 Hydropower water use. The weekly auto­
correlation coefficients for the lags 1, 2 and 3, were 
found to be significantly periodic in the only one case 
studied. They all fluctuate around a mean value 
which decreases and a variance which increases with 
the increase in the time lag. Their respective values 
are given in Table (12). Figures (48), (49) and (50) 
show the weekly first, second and third auto­
correlation coefficients, respectively, for the series of 
A. B. Adams Tunnel, Colorado. 

Three of the eight monthly series analyzed 
showed significant periodicities in the first, second 

and third autocorrelation coefficients. In these cases, 
the cycle of 12 months and its harmonics of 6, 4, 3, 
2.4 and 2 months are important depending on each 
particular case. The other five series did not show 
significant periodicities. For all cases the mean, vari· 
ance and significant harmonics are given in Table 
(16). 

In general, for weekly and monthly series of 
any type of !USe, the dependence model and con­
sequently the resulting independent stochastic com­
ponent ~P of Equation (30) are obtained 

,T 

according to the type of autocorrelation function. 
In other words, in the case of periodic auto­
correlation coefficients rk , the autoregression 

,T 

coefficients <:k. of Equation (23), computed 
),T 

by the Equations (24) through (29), were also 
periodic; and in the case of non periodic r k ;r, 

equal to rk , the coefficients a. are con-.-r J,'T 
sequently nonperiodic or they are constants. 

Tables (17) and (18) give a summary of the 
types of autoregressive linear models obtained in the 
analysis for each type of water use and for both 
weekly and monthly data. 

TABLE 12 

WATER USE 

Urban 

Water 

Use 

Irriga t ion 

Water Use 

Hydropower 

MEAN, VARIANCE AND SIGNIFICANT HARMONICS OF PERIODIC 

AUTOCORRELATION COEFFICIENTS OF WEEKLY WATER USE TEME SERIES 

FIRST AUTOCOR. COEF. rl,T SECOND AUTOCOR. COEF. r2,T 

NAME 
s<: s<: 

r J 1 T 
SIGNIFICANT r2, t SIGNif iCANT 

rl ,T HARMONICS r2,T HARMONICS 

Fort Collins, Co. 0.6529 0.0338 52, 26 , 17.3, 0.4999 0.0802 52 . 26 • 17. 3. 
13, 10.41 8.7 13, 10.4 8.7 

Denver, Co. 0.5902 0.0415 52 , 26, 7.3, 0.4205 0.0612 52 , 26 , 17.3, 
13, 10.4, 8.7 13, 10.4. 8.7 

Greeley, Co. 0.6461 0.0506 52 0 26 t 17 o 3 1 0.4632 0.0838 521 26 t 17 o 3, 
13, 10.4, 8.7 13, 10.4, 8. 7 

Carter Lake, Co . 0.7546 0.0610 31. ,15. 5,10.33 0. 5175 0.0712 31.,15.5,10.33 
7.755 6.20 7.75, 6.20 

Hansen Canal , Co. 0.6044 0.0816 31.,1 .5,10.33 0.3990 0.0837 31 . ,15.5,10.33 
7.75, 6. 20 7.75, 6.20 

A.B. Adams Tunnel 0.8486 0.0464 52 . • 26, 17.3 0.7.106 .0.0781 52. 1 26, 17.3 
(Big-Th.Proj , Co) 13., 10. 4, 8.7 13. ,10.4, 8.7 

35 

THIRD AUTOCOR . COEF. r3,
1 

sl r3, t SIGNIFICANT 
r3, 1 HARMONICS 

0.4410 0.0859 s?. , zr,, 17. 3. 

0.3690 0.0497 
13 , 10. 4, 6.1 
52, 2G, 17.3 
D . 10 .4. 8.1 

0.3891 0.0782 52, 26, 17.3, 
1~. 10.4, 8.7 

0.3905 0.0724 31. ,15.5,10.3 
7.75,6.20 

0.2925 0.1087 31. ,15.5,10.3 3 
7.75,6.20 

0.5981 0.0918 52 .• 2.6.17.3 
13.,10.4, 8.7 



TABLE 13 

FOURIER CQEFFICIENTS FQR PERIODIC FIR~T 

AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TIME SERI ES 

FOURIER COEFFICIENTS 

WATER USE NAME Al A2 A3 A4 As A6 
81 82 83 84 8s 86 

Fort Coll ins, Colo. 0.2103 0.0118 0.0035 0.0576 0.0040 0.0027 
Urban 0.0696 0.0281 0.0187 0.0176 0.0080 0.0226 
Water Denver, Colo. 0.1512 0.0106 0.0694 0.0019 0.0077 0.0410 
Use 0.0458 0.0137 0.0060 0.0098 0.0074 0.0703 

Greeley, Colo. 0.2262 0.0008 0.0627 0.0364 0.0115 0.0036 
0.0963 0.0262 0.0002 0.0302 0.0104 0.0657 

TABLE 14 

' FOURIER COEFFICIENTS FOR P~RIQDIC SECOND 

AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TlHE SERIES 

FOURIER COEFFICIENTS 
WATER USE NAME 

Al A2 A3 A4 As A6 
81 82 83 B4 8s 86 

Fort Collins, Colo. 0.3618 0.0291 0.0097 0.0510 0.0295 0.0439 
Urban 0.0375 0.0492 0.0438 0.0063 0.0102 0.0118 
Water Denver, Colo. 0.1798 D.0331 0.0542 0.0446 0.0785 0.0450 

Use 0.0383 0.0032 0.0666 0.0078 0.0180 0.0879 

Greeley, Colo. 0.3049 0.0467 0.0553 0.0962 0.0345 0.0367 
0.0926 0.0132 0.0276 0.0029 0.0017 0.0641 

TABLE 15 

FOURIER COEFFICIENT~ FOR PERIODIC THIRD 

AUTOCORRELATION COEFFICIENT OF WEEKLY URBAN WATER USE TIME SERIES 

FOURIER COEFFICIENTS 
WATER USE NAHE 

Al A2 A3 A4 As A6 
81 82 B3 B4 Bs B6 

Fort Col lins, Colo. 0.3760 0.0173 0.0195 0.0507 0.0274 0.0347 
Urban 0.0279 0.0597 0.0377 0.0123 0.0185 0.0113 

W• ter Denver, Colo. 0.1396 0.0452 0.0139 0.0566 0.0879 0.0134 

Use 0.0078 0.0262 0.0512 0.0220 0.0109 0.0692 
Greeley, Colo. 0.2339 0.0167 0.0896 0.1210 0.0637 0.0548 

0.0447 0.0719 0.0088 0.0815 0.0156 0.1053 
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TABLE 16 

MEAN, VARIAN CE AND SIGNIFICANT HARMONICS OF THE FIRST 1 SECDtm AND THIRD 

AUTOCORRELATION COEFFICIENTS OF MONTHLY WATER USE TIME SERIES 

FIRST AUTOCOR. COEF. rl ,T SECOND AUTOCOR. COEF. r 2, , THIRD AUTOCOR . COEF . r3. , 

WATER USE NM1E 
rl , r 

52 SIGNIFICANT 2 SIGNIFICANT r3, r 
s2 SIGNIFICANT r2, t sr 

rl , t HARMONICS 2, t HARMON ICS r3 ,r HARMONICS 

Fort Collins , Co. 0.5980 0.0565 12, 6, 4, 2.4 0.4782 0. 0624 12,6 ,3,2.4 ,2.0 0.3275 0.0669 12,6,3,2.0 
Denver, Co. 0.4759 0.0316 0.3428 0.0442 0.2852 0.0390 
Greeley, Co . 0.4706 0.0417 0.2535 0.0859 0.2032 0.0453 
Colo. Springs, Co 0.5003 0.0237 0.2795 0.0468 0.2008 0.0380 

Urban Mi lwaukee. Wise: . 0.5079 0.0787 12,6,4 ,3 0.2733 0. 1470 12 ,6,4,3 0.1887 0.0988 12 ,6,4,3,2 .4 
Water Dallas, Texas 0.5862 0.0554 12,6,4,2.4,2 . 0.3193 0.11 51 12,6 ,4,2 .0 0.1618 0.1066 12,6,4,2 .4 
Use L. Angeles, Calif 0.4022 0.0337 0.2231 0.0209 0.1932 0.0305 

S. Fernando, Cal if 0.4776 0.0528 0.4786 0.0147 0.3466 0.0270 
Fresno, Calif. 0.4041 0.0444 0.2039 0.0381 0.1072 0.0569 
Bakersfi eld, Calif 0.3378 0.0523 12,6,4,2.4 0.2091 0.0684 12,6,4 ,2.4 0.1191 0.07 51 12,6 ,4,2.4 
Hanford, . Calif. 0.4841 0.0313 12,6,4,3 ,2.4 0.3488 0.0535 12,6,4,3,2.4, 0.2324 0.0399 12 ,6,4,3,2.4 

2. 2. 
'lisa11a , Calif. 0.4034 0.0327 0.2244 o. 0768 0.133D 0.0766 

Alpine ,Irr.Co,Ut 0.6064 0.0369 7,3.5,2.33 0.4049 0.0585 7,2.33 0.3452 0.0375 7,3.5,2.33 
American For k,Ut 0. 7346 0. 0384 7,3.5 0.5610 O.OGE7 7,3.5,2.33 0.3843 0.0585 7,3.5,2.33 

Irr igat ion North Bench, Utah 0. 1713 0. 0537 3 -0.1145 0.0'.'82 3 -0.1175 0.0038 3 
Water Lehi , Utah 0. 6003 0.0431 7,3.5,2.33 0.4785 0.1)681 7,3.5,2.33 0.3483 0.0606 7,3. 5.2.33 
Use Plesanr Grove,Ut 0.'1576 0.0359 7,3.5 ,2.33 0. 5441 0.0686 7,3.5,2.33 0.4361 0.0718 7,3.5 ,2.33 

Ca rter Lake, Co 0.3713 0. 1110 0. 21213 0.0235 0.0682 0.0314 
Hansen Can a 1 , Co 0.5678 0.0053 0.2208 0.0175 0.0695 0.0407 
Mi rage Flats, Neb o. 0211 0.1147 -0.0278 0. 0258 0.2253 0.0464 

A.B. Adams Tunnel o. 7442 0.0066 0. 5534 0.0210 0.3921 0.0254 
(Big-Th.Proj. ,Co) 
Green Mountain P.P 0.5402 0.0441 12 ,6,4,3,2.4 0.2148 0.0859 12,4,3,2.4,2 0.1172 0. 1011 12,6 ,4,2.4,2 

( " ) 2 
Estes Par k Pow.Pl o. 7499 0.0103 0.5815 0.0255 0.4381 0.0447 

(") 
Hydr opower Ma rys La ke ,Pow.Pl o. 7127 0.0088 0.5483 0.0214 0.4046 0.0305 

(") 
Water Pole Hill , Pow.Pl o. 5572 0.0334 12,6,4,3,2 .4 0.3271 0.0782 12.6,3,2 0.2423 0.0639 12,6,4,3,2.4 

(") 
Use Fl at Iron , Pow.Pl 0.5412 0.0324 12,6 ,4,3,2.4 

(") 
0.3550 0.0727 12,6,4,3,2.4 0.2439 0.0680 12 ,6,4,3,2'.4 

Guernse),Pow. Pl. 0. 3324 0;0735 0.0953 0.0955 0.0149 0.0484 
(" 

Kortes, Pow. Pl . 0.6756 0.0311 0.4390 0.0521 0.2058 0.0530 
(") 

TABLE 17 

TYPE OF ~UTOREGRESSIVE LI NEAR DEPENDENCE MODEL FOR WEEKLY SERIES 

WATER NAME OBTAINED ORDER OF 
USE WI TH ~DEL 

For t Collins , Colo. r 
k,r Third 

Urban Denver, Colo. rk,r Thi rd 
Greeley, Colo . rk, r Third 

Carter Lake, Colo. ~k Third 
Irrigation Hansen Canal , Colo. rk Second 

Hydropower A. B. Adams Tunnel , Co . r k Third 
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TABL£ 18 

TYPE OF AUTOREGRESSIVE LINEAR DEPENDENCE MODEL FOR MONTHLY SERIES 

WAHR NAME OBTAINED ORDER OF 
USE WITH MODEL 

Fort Collins, Colo. rk,t Third 

Denver, Colo. ;.k Third 

Greeley, Colo. rk Second 

Colo. Springs, Colo. ;.k 
• 

Third 

Urban Milwaukee, Wise. rk,t Second 

Dallas, Texas ~k,t Second 

L. Angeles, calif. rk Second 

s. Fernando, Calif. ;.k Third 

Fresno, Calif. rk Third 

Bakersfield rk,t Third 

Hanford, calif. rk,t Tllird 

Visalia, Calif. rk Third 

Alpine Irr. CO. ,Ut. rk,T Third 
American Irr.Co. ,Ut. rk,t Third 
North Bench Irr.Co. ,Ut. rk,t Second 

Irrigation Lehi Irr. Co., Utah rk,t Third 
Plesanr Grove lrr.Co.Ut ~k.t Second 
Carter Lake, Colo . rk Third 
Hansen Canal, Colo. ~k Third 
Mirage Flats, Colo. rk Third 

A. B. Ada~s Tunnel, Co. rk Third 
G. Mountain Pow.Pl., Co. rk,t Second 
Estes Park Pow.Pl., Co. ~k Second 
Marys Lake Pow. Pl.,Co. rk Thi rd 

Hydropower Pole Hill Pow.Pl., Co. rk . t Third 
Flat Iron Pow.Pl., Co. rk, t Second 

Guernsey Pow.PI. , Wyo. ~k Third 
Kartes Pow.Pl •• Wyo. rk Second 
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Figure 33 Computed r
1 

and fitted periodicity 
( T 

p
1 

in the first autocorrelation coeffi-,r 
cient of Eqs. (20) and (16), respectively, 
for weekly urban water use of Fort 
Collins, Colorado. 
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34 Computed r2 and fitted periodicity 
,T 

p2 ,r in the second autocorrelation coeffi-
cient of Eqs. (20) and ( 16), respectively, 
for weekly urban water use of Fort 
Collins, Colorado. 
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in the third autocorrelation coeffi-

cient of Eqs. (20) and ( 16), respectively, 
for weekly urban water use of Fort 
Collins, Colorado, 1930 - 1969. 
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36 Computed r
1 

and fitted periodicity 
,T 

p 
1 7 

in the first autocorrelation coeffi-
cien't of Eqs. (20) and ( 16), respectively, 
for monthly urban wa ter use of Fort 
Collins, Colorado, 1930 - 1969. 
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Figure 37 Computed r2 and fitted periodicity ; r 
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ficient of Eqs. (20) and (16), respectively, 
for monthly urban water use of Fort 
Collins, Colorado, 1930 -- 1969. 
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38 Computed r
3 7 

and fitted periodicity 
p
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in the third autocorrelation coeffi­

cient of Eqs. (20) and (16), respectively, 
for monthly urban water use of Fort 
ColJins, Colorado, 1930 - 1969. 
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p
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in the first autocorrelation coeffi-,r 
cient of Eqs. (20) and ( 16), respectively , 
for monthly urban water use of Dallas, 
Texas, 1950- 1969. 
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Figure 40 Computed r2 r and fitted periodicity 
p2 in the second autocorrelation coef-

,T 
ficient of Eqs. (20) and (16), respectively, 
for monthly urban water use of Dallas, 
Texas, 1950 - 1969. 
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Figure 41 Computed r 3 .r and fitted periodicity 
p,. in the third autocorrelation coeffi-_.,r 
dent of Eqs. (20) and ( 16), respectively, 
for monthly urban water use of DaUas, 
Texas, 1950 - 1969. 
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Figure 42 Computed r
1 

and fitted periodicity 
,T 

p
1 

in the fust autocorrelation coeffi-,r 
cient for monthly urban water use 0f 
Bakersfield, California, 1944 - 1965. 
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Figure 43 Computed r
2 

and fitted periodicity 
,r 

p
2 

in the second autocorrelation coef-
,r 

flcient for monthly urban water use of 
Bakersfield, California, 1944 - 1965. 
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Figure 44 Computed r
3 

r and fitted periodicity 
p

3 
r in the thlrd :J.Utocorrelation coeft1-

cien't for monthly urban water use of 
Bakersfield, California, 1944 - 1965. 
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45 Computed r
1 

and fitted p 1 in 
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the 
for 
of 
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first auto corre Ia tion coeffkient 
week ly irrigation water deliveries 
Carter Lake, Colorado . 1957 - 1969. 
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Figure 46 Computed r2 ,r and fitted P2 ,r in the 
second autocorrelation coefficient for 
weekly irrigation water deliveries of 
Carter Lake, c,1lorado, 1957 - 1 969 . 
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and fitted p
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third autocorrelation coefficient or week-
ly irrigation water deliveries of Carter 
Lake, Colorado 1957 - 1969. 
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Computed r
1 

and fitted p 
1 

in the 
1
r ,T 

first autocorretation coefGcient for week-
ly hydropower water usc of A. B. Adams 
Tunnel, Colorado, 1953 - 1965. 
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Figure 49 Computed r2 ,r and fitted p2 ,T in the 
second autocorrelation coefficient for 
weekly hydropower water use of A. B. 
Adams Tunnel, Colorado, 1953 - 1965. 
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Figure 50 Computed r3 T and fitted p3 r in the 
third au toconelation coefficients for 
weekly hydropower water use of A. B. 
Adams Tunnel, Colorado, 1953 - 1965. 



5.4 Distributions of Independent Stochastic Com­
ponents 

TI1e normal, lognormal-3 and gamma-3 pro­
bl:bility density functions are used for fitting the 
frequency distributions of independent stochastic 
components, ~ , of Equation (30). The best l1t 

!),T 
was choosen by the chi-square criterion. 

The results obtained indicate th3t for weekly 
series of wat~;r use the normal function approximates 
well the frequency distribution of the independent 
stochastic component. Only in the case of weekly 
series for Denwr, Colorado, the lognormal-3 function 
gave a better fit. The parameters obtained for each 
case are given in Table (19). Figure (51) gives an 
example of the frequency distribution and the fitted 
normal density and cumulative distribution functions 

for the independent stochastic component \)f weekly 
series of Fort Collins, Colorado. 

Four out of twelve distributions of ~ of 
p,T 

monthly series of urban water usc are well fitted by 
the normal function, six by the lognormal-3, and the 
remaining two by the gamma-3 function. ln the case 
of irrigation water use, the lognormal-3 function was 
best for five .;ases and the gamma-3 for the other 
three. In the case of hydropow~r the normal function 
was best for six series, the lognormal-3 for one series, 
and the gamma-3 function for the other one . For all 
cases the estimated parameters of distributions are 
giv~n in Table (20). Figures (52). (53), and (54) show 
the empirical frequency distributions and the fitted 
density md cumulative distribution functions for 
three cases, of urban and irrigation water use. 

TABLE 19 

DISTRIBUTIONS OF THE INDEPENDENT STOCHASTIC COMPONENT 

OF WEEKLY WATER USE TIME SERIES 

PARAMETERS (*) 
WATER USE NAME DISTRIBUTION 

A B c 

Fort Collins , Colo . Normal 0.000 o. 730B 
Urban 
liater Oenver, Colo. Log normal 3 2.5001 0.0660 -12 .200 
Use 

Greeley, Colo. Nanna 1 0.000 0.7666 

Irrigat1cn Carter Lake, Colo . Norma 1 0.000 0.6769 
Water 
Use Hansen Canal, Colo. Normal 0.000 0.7239 

Hydropower A. B. Adams Tunnel Normal 0.000 0.9386 
Water Use (Big-Thomp.Proj,Co) 

• For norma l distribution: For log normal 3 distribution: 
A = mean A = mean of t he l n of ((-C) 
B = standard deviation B = standard deviat ion 

C • lower boundary 
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TABLE 20 

DISTRIBUTION OF THE INDEPENDENT ~TOCHASTIC COMPONENT 

OF MONTHLY WATER USE TIME SERIES 

PARAMETERS (* ) 
~~TER USE IWIE DISTRIBUTION 

A a c 
Fort Col lins, Colo. Log normal 3 2. 3338 0.0799 -10.3500 
Denver, Colo. Galll!la 3 8.8181 0.3277 - 2.8895 
Greeley, Colo. Normal 0.000 0.9390 
Colo. Spr ings , Colo Norma 1 0 .000 0.8890 

Url>an Mil waukee, Wi sc . Log normal" 3 2.3519 0.0916 -10.55DO 
Water Dallas, Te~u Log normal 3 1.7995 0.1482 -6.1088 
Use l.Angeles, Calif. Log normal 3 2.8890 0.0522 -18.00 

S. Fernando, Calif. log normal 3 2.3612 0.0934 -10.650 
Fresno, Cal if. Gamma 3 117.5665 0.0880 -10.3474 
Bakersfield, Cali f . Normal 0.000 0.9670 
Hanford, Ca 1 if. Log normal 3 2.66g3 0.0623 - 14 .4575 
Visalia , Calif. Normal 0.000 0.9510 

Al pine,Irr .Co. ,Utah Log normal 3 1.3795 0.1943 - 4.0462 
American Fork, Utah Log nonnal 3 1. 5159 0 .1767 - 4.6227 

Irrigation North Bench, Utah log normal 3 2.4953 0.0798 -12.1630 
Water Lehi , Utah Garrma 3 15.0595 0.2062 -3.1039 
Use Pl esanr Gro~e , Utah Log normal 3 1.6056 0.1627 - 5.0445 

Carter Lake, Colo. Log normal 3 1.4001 0 .2048 - 4 .1423 
Hanten Canal, Colo. Gallina 3 8.8512 0 . 2740 - 2.4224 
Mirage Flats, Nebr. Gal\llla 3 23.9156 0.1981 - 4.7392 

A.B. Adams Tunnel Log nonnal 2.3126 0.0709 -10.1250 
G. Kountain, Pow.Pl Norma 1 0.000 0.8834 
Estes Park, Pow.Pl. Normal 0.000 0.7014 

Hydropower Marys Lake, Pow.Pl. Nonnal 0.000 0.7381 
Water Pole Hill, Pow. Pl. Gaana 3 59.5933 0.1126 - 6.7120 
Use Flat lron, Pow.Pl. Nol'llllll 0.000 0.8446 

Guernsey, Pow.Pl. Normal 0 .000 0.9814 
Kartes, Pow.Pl. Normal 0.000 0.7396 

For normal distribution: For Log normal 3 di stribution: For Garrma 3 distribution: 
A = mean 
8 • standard deviation 

A ~ mean of the 1 of (t·C) A • shape parameter 
8 • standard devi~tion of 1 ((-C)8 • scal e parameter 

n C • lower boundary 
C • lower boundary 
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Figure 51 Empirical (I ) and fitted normal density (2) and cumulative distribution 
(3) functions of the independent stochastic component of weekly water 
use series of Fort Collins, Colorado. 
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Figure 52 Empirical (1) and fitted lognormal - 3 
density (2) and cumulative (3) distribu­
tion functions of the independent sto­
chastic component of monthly water use 
series of Fort Collins, Colorado. 
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Figure 53 Empirical (1) and fitted lognormal - 3 
density (2) and cumulative (3) distribu­
tion functions of the independent sto­
chastic component of monthly water use 
series of Los Angeles, California. 
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5.5 Relation Between Water Use Series, Temperature, 
and Precipitation 

Cross correlation and coherence functions are 
used for investigating the linear relations between the 
temperature, precipitation, and water use time series . 
For doing this the trends in the mean and in the 
standard deviation are first removed from the series 
of water use . 

The cross correlation functions of the series 
z of Equation {5) are first obtained for monthly 

p,T 
temperature and water use, and monthly precipi-
tation and water use series for the cities of Denver, 
Colorado, and Dallas, Texas. Figures (55) and (56) 
show these results for the case of Denver. These 
figures show that the cycle in both temperature and 
precipitation series are linearly related to the cycle of 
the water use series. The highest cross correlation co­
efficient of about 0.90 was obtained for the series of 
temperature and .water use, and of about 0.40 for 
precipitation and water use. These figures also show 
that temperature and water use are both in phase; on 
the other hand, a difference in phase of two months 
exists between the precipitation and water use; that 
is, the peak of precipitation occurs two months 
earlier than the peak of water use . 

(k) rzm 
tD r-~~~----,----------------, 

- .2 
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-.6 

-3.0 -2.0 -1 .0 0.0 1.0 2 .0 3.0 4 .0 5.0 - B 

Figure 54 Empirical (1) and fitted lognormal - 3 
density {2) and cumulative {3) distribu­
tion functions of the independent sto­
chastic components of monthly irrigation 
deliveries of Alpine Irrigation Company, 
Utah. 

46 

-1.0 .___.__....__....___. _ _.__...___._ ...... _.......,k.;......, 
-25. -20. - 15. -10. -5. 0. 5. 10. 15. 20. 25. 

Figure 55 Cross-correlation function between month­
ly temperature and water use series before 
the periodicities are removed from the 
series. Data correspond to Denver, Colo­
rado. 
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Figure 56 Cross-correlation function between month­
ly precipitation and water use series 
before the periodicities are removed from 
the series. Data correspond to Denver, 
Colorado. 

The analysis in the frequency domain shows 
basically the same result as obtained by the cross 
correlation analysis. Figure (57) shows the coherence 
function between the monthly temperature :~nd 
monthly water use, with a high value of almost 1.0 
observed for the frequen~:y .:orresponding to the 
annual cycle. When the effc~:t of precipitation is 
subtracted, the partial coherence function of Figure 
(58 ) shows pmctically the same result as the 
coherence function of Figure (57), indicating that 
both the temperature and precipit:ltion are signifi­
cantly related to W:Jter use. This same result may be 
inferred from Figures (59) and (60) which give the 
coherence and partial coherence between the precipi­
tation and water use monthly series for Denver, 
Colorado. The above results only show the good 
relations at the frequency of the annual cycle 0f the 
three series of water use, pre..:ipitation and tempera­
ture; therefore, further investigation is made t'or 
studying the relation of the independent stochastic 
components of the above series. 

Figure (61 ) shows the ~:o rrelograms for inde­
pendent stochastic components of temperature, 
precipitation and water use monthly series for 
Denver, Colorado. These independent components 
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Figure 57 Coherence function between monthly 
temperature and water use series before 
the periodicities are removed from the 
series. Data correspond to Denver, Colo­
rado. 
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Figure 58 Parti:!l .:oherence funcrion betwl!en 
monthly temper:.ture :md water use 
(effect of preo;ipitJtion subtract!!d from 
the analysis) before the periodicities :lrc 
removed from the series. Data correspond 
to Denver, Colorado. 
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Figure 59 Coherence function between monthly pre· 
cipitation and water use series before the 
periodicities are removed from the series. 
Data correspond to Denver, Colorado. 
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Figure 60 Partial coherence function between the 
monthly precipitation and water use 
(effect of temperature subtracted from 
the series) before the periodicities are re­
moved from the series. Data correspond 
to Denver, Colorado. 
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Figure 61 Correlograms for independent stochastic 
components of monthly (a) water use, (b) 
precipitation, and (c) temperature for 
De~ver, Colorado. 
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arc determined in th~ ':.tm~ w:Jy :.ts f~.>r uth.:r •.tnJ0ic~. 
The ..:ro~~ ..:urr<!l:ttion fun.; rion vf indeper:J.:nt ..:um­
ponents •>1. tcmp<!wtur.: :,nd w:.~tcr us.; anJ o!" plc.;ipi­

lation :!nd wa tl!r usc :.trc shown in F 1gu rc$ ( 62) anJ 
(63). r:.!spc.;tivl!ly. Figure (62) show~ 1hat thcr<! i~ a 
rebtion at the lag t.:cro bctw..:en th~ in<.h::pt:nd..:ll" .;um­
j)l)nent:s of tcmpcr:nur.: anJ water ttsc and !hat t h~y 

ure uncorr~btt::J :Jt uthcr b gs. Similarly, Fittur..: (63\ 
~huws th:.tl thcre is J !dation :~1 the lag tcru bdwt:en 
:h<! inJcp..:ndcnt ,,>mpon.:nb .,f J>o"<!.:ipil.lliun anJ 
WJicr u<>c :md th;ll they arc um:qrrcbr..:d at util.:r 
Ia:,;~. 

Th:.! O.:•Jih·r..:nce ,;p..:.; tr3 ut :nJcpcndCIH COill­
pollC!l!~ o: t.:mpcr:~tur..: :ull.f \\,ttcr u~c :n.J ur' pn.:.;Jpi-
1:11 ion ·.tc.d water u~e ar..: \hown in thc Figure~ ( h-I ) 

:111d (66 l. fllc tlr~t p!tlt show:> a ,·vn~tan t ,;. >hcrcn.;c.:: 
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Figure:: 62 Cross corrd:.llion functi vn between th..: in­
dep..:ndent stodla~tic .:omp~llh.:nts uf 
munth.ly tempcraturc and w:ncr use for 
Denver, Culorado. 
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Figure 63 Cross correbtion function between the in­
dependent stochastic components of 
monthly precipitation and water use for 
Denver, Color;tdo. 
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Figure 64 Cohcren.;e function between tho.: inde­
pendent stocln~ tic •omponents or 
monthly temperature and water usc for 
Denver, Colorado. 
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Figure 65 Partial coherence function b~tween the in­
de pc n dent stochastic components of 
monthly temperature :~nd water use 
(effect of precipitation subtracted from 
the analysis) for Denver, Colorado. 
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Figure 66 Coherence function between the inde­
pendent stochastic components of month­
ly precipitation and water use for Denver, 
Colorado. 
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Figure 67 Partial coherence function between the in­
dependent stochastic components of 
monthly precipitation and water use 
(effect of temperature subtracted from 
the analysis) for Denver, Colorado. 
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Chapter 6 

ANALYSIS OF ANNUAL SERIES OF URBAN WATER USE 

6.1 Trends, Dependence Models, and Distribution 
Functions of Residuals 

Annual series of urban water use are analyzed 
for four cities in the United States and one in Canada. 
The five series are given as total values of water use 
(million gallons), and three of them also in unit values 
(gpcd). 

Trends, time dependence structure, and pro· 
bability distributions of the independent residuals are 
studied in all cases. These results are given in Tables 
(21) and (22). Table (21) gives for each city studied 
the type of trend and their correspondent polynomial 
regression coefficients. 

NAME 

Fort Collins , Colo. 
Colo. Springs, Colo. 
Ba 1 timore, Haryl and 
Baltimore, Maryland 
New York, New York 
New York, New York 
Montreal, Canada 
Montreal, Canada 

NAME 

Fort Collins, Colo. 
Colo. Springs, Colo. 
Baltimore, Maryland 
Baltimore, Maryland 
Hew York, New York 
New York, New York 
Montreal, Canada 
Montreal, Canada 

TABLE 21 

POLYNOMIAL REGRESSION COEFFICIENTS FOR THE TREND IN THE ANNUAL 

URBAN WATER USE 

ORDER OF REGRESSION COEFFICIENTS 
UNIT TREND A 8 

m.g. Quadratic 1,172.420 7.245 
m.g. Cubic 3,532.943 - 282.570 
m.g. Quadratic 13,088.346 302.060 
g.p.c.d . Quadratic gJ.120 1.368 
m.g. Quadratic 101 , 737.57 8187.10 
g.p.c.d. Quadratic 104.389 0.844 
m.g. Quadratic 44,792.895 1135 .30 
g.p.c.d. Quadratic 114.120 0.2569 

TABLE 22 

DEPENDENCE MODEL AND DISTRIBUTION OF TME INDEPENDENT 

STOCHASTIC COMPONENT FOR ANNUAL URBAN WATER USE 

c 
1.573 

25.118 
7.244 

. 0.0071 
-49.577 
- 0.0031 
17.344 
0.0267 

DEPENDENCE HODEL ·DISTRIBUTION 

D 

·0.276 

UNIT PARAMETERS PARAMETERS (,.) 
TYPE TYPE 

A B c 

lll.g. Normal 0.0 204.29 
m.g. Nonnal o.o 419.99 
m.g. First 0.825 H<lnnal 0.0 0.563 
g.p.c.d. First 0.766 Normal 0.0 0.633 
m.g. First 0.681 Honnal 0.0 0.729 
g.p.c.d. First 0.493 Normal 0.0 0.870 
m.g. Third 0.629 0.318 ·0.23 Lognormal-3 2.019 0.084 -7 .54 
g.p.c.d. Third 0.725 0.413 ·0.067 Lognorma1-3 l .593 0.116 -4.90 

*For Norma 1 : A • Mean For Lognormal -3: A • Mean of ln((-G) 
8 = Standard deviation 
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Figures (68) and (70) show the original series 
and the fitted quadratic trends in total annual water 
use (million gallons) for New York City, New York, 
and Baltimore, Maryland, Respectively. They both 
show upward trends. However, in the fust case the 
trend is convex upwards and in the second case it is 
concave upward. Figures (69) and (71) show the 
original and the fitted quadratic trends for unit 
annual water use (gpcd) for cities mentioned. 

Table (22) gives the type and parameters of the 
fitted dependence model to deviations from the 
trends for all cases studied. In the case of Fort Collins 
and Colorado Springs, Colorado, the residuals after 
removing the correspondent trends are found to be 
independent ; therefore, no dependence model was 
necessary to fit. On the other hand, for Baltimore, 
Maryland, and New York City, New York, the fust 
order autoregressive model resulted fn an independent 
residual series. Figures {72) and (73) show for the 
case of New York City, New York , the correlograms 
of residuals after removing the trend and of inde­
pendent residuals after removing the time dependence 
for both the total and unit annual water use, 
respectively. In both cases the correlograms show that 
after fitting a fust order model the residuals produced 
an uncorrelated series, so they may be assumed to be 
independent. In the case of Montreal, Canada, it was 
necessary to fit a third order model for obtaining 
un correlated residuals. Fitting these type of 
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Figure 68 Annual water use in million gallons and 
fitted quadratic trend for New York City, 
New York (1898 - 1968). 
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dependence models has physical significance in the 
cases studied because after removing the trends it is 
observed that positive or negative residuals in one 
year lead to positive or negative residuals in the 
following year, respectively. 

Table (22) gives also the type and parameters o.f 
the fitted probability distribution function to inde­
pendent residuals obtained in all cases studied. TI1e 
normal function fitted well the frequency distri­
bution in all cases except for Montreal, Canada, in 
which case the lognormal-3 function gave a better fit. 

6.2 Relation Between Annual Residual Series of 
Water Use, Temperature and Precipitation 

Cross correlation functions are used for investi­
gating the linear relation between annual residual 
series of water use and the annual precipitation and 
mean annual temperature for the cities of Fort 
Collins and Colorado Springs, Colorado. The three 
corresponding series of Fort Collins are shown in 
Figure (74). Figures (75) and (76) show the cross 
correlation functions between the mean annual tem­
perature and water use and between annual preci­
pitation and water use, respectively, for the case of 
Fort Collins. They do not indicate a significant corre­
lation, and some high values may be due to sampling 
variability only. 
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Figure 69 Annual water use in g.p.c.d. and fitted 
quadratic trend for New York City, New 
York (1898 - 1968). 



V> z 
0 

80000 . 

::::: 70000, ... 
"' z 
~ 60000. 

2: soooo. 
z 

~ 40000. 
::> 

"" .... 
~ ~000. 
:X 
__, 
~ 20000. 
z z .... 

10000. 

0.~-....~~~--~--~--~---L---L---L--~ 
0. 10. 20. 30. 40. so. 60. 70. 80. 90 . 

TI HE IN YEARS 

Figure 70 Annual water use in million gallons and 
fitted quadratic trend for Baltimore, 
Maryland, {1885 - 1968). 
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Figure 71 Annual water use in g.p.c.d. and fitted 
quadratic trend for Baltimore, Maryland, 
(1885 ·- 1968). 
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Figure 72 Correlogram of the residuals y
1 

= X
1 

• 

Tm
1

, (I), and of the independent series 
~~, (2), after fitting the first order model 
with 95 percent tolerance level for inde­
pendent series. Data correspond to 
annual water use in m'illion gallons for 
New York City, New York. 
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Figure 73 Correlogram of the residuals Y1 = 
x

1 
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, ( J ) , and of the independent 

series ~ , (2), after fitting the first 
t . 

order model. Data corre::;pond to annual 
water use in g.p.c.d. for New York City, 
New York. 
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Figure 74 Annual series of precipitation, mean 
annual temperature and independent sto­
chastic component of water use for Fort 
Collins, Colorado, (1930 - 1969). 
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Figure 75 Cross correlation between the mean annual 
temperature and independent series of 
water use for Fort Collins, Colorado. 
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cipitat ion and independent series of water 
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Chapter 7 

EXPLAINED VARIANCES BY TRENDS, PERIODICITIES AND STOCHASTIC 

COMPONENTS OF WEEKLY AND MONTHLY SERIES 

7.1 General Procedure 

From Equation ( 1) the original series 
x may be written as p,r 

x = Tm + v (58) p,r p,r • p,r 

Therefore the variance of x is equal to p,r 

vJr {xp,J= var {Tmp,r} + var {y P ,r} , (59) 

because Tm and y are assumed and are close p,r e_,r 
to be independent. tsased on this equation the 
explained variance of the trend in the mean, denoted 
by EVTM becomes 

var{Tm } var {Y } p.r p,r 
EVTM = -va-r{.;-x-.}-" = l.O · var {x } 

p,r p.r 
(60) 

All explained variances described are relative to the 
total variance of the original series x . Equation p,r 
( 60) is used in the computed program TREND for 
obtaining the value of EVTM, although this explained 
variance may be also computed by using the re­
gression parameters estimated for the trend Tm . p,r 

After removing the annual trend in the mean, 
the trend in the standard deviation is. removed by 
using Equation (57) in order to obtain a constant 
standard deviation equal to Ts _. The explained p , . 
variance of the trend in the standard deviation 
denoted by EVTS is computed by 

EVTS = [var{Yp,,.} · var{ zp,r}J/var xp ,r 

or 

EVTS = [var {y } - (Ts )2 ]/var .f x } . (61) p ,r · p L p ,T 

Therefore, the variance explained by both annual 
trends in the mean and standard deviation denoted by 
EVT is 

EVT = EVTM + EVTS , (62) 

with EVTM and EVTS defined by Equations (60) and 
(6 1), respectively. 
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For flnding the explained variances by the 
periodic components, denoted by EVP, an approxi­
mation was made by assuming that the periodicities 
J.1 and o of Equation (5) are proportional or r r 
that o /JJ. = TJ = TJ , a const:.mt. Therefore, 

T T T 

Equation (5) is written as 

or 

* z - j.J. [ 1 + TJ € J - j.J. € (63) p,T 7 p,r T p,r 

By logarithmic transformation this equation becomes 

)O!! 7. = log J.1 + log e* 
~ p,r T p,r (64) 

which is used for finding the explained variance of 
the periodic and stochastic components denoted by 
EVP and EVS, respectively. It follows 

var{logzp,r}=var {logJ.1,.} +var { loge~,r} , (65) 

so that 

var {log J.L,.} 
EVP = - ---rr----.:--

var pog zp ,r} 
and 

var {loge* } p,r 

EVS = va1 { loa z } b p ,T 

var {z } 
(>,T 

(66) 

(67) 

The use of logarithms to transform a product of 
two variables into their sum of logarithms has a bias, 
but this is the practical way of determining an ap­
proximate explained variance of each of these vari­
ables. The concept of explained variances is mainly 
developed under the assumption that there is a sum 
of several variables to account for the variation of a 
dependent variable. 

In some cases the approximation referred to the 
proportionality of JJ.

7 
and ar was not accurate 

mainly due to the differences in phases of JJ.
7 

and a and nonproportionality of corresponding 
T 

amplitudes. In such cases the explained variance of 



the periodic component was approximated with the 
variance of JlT only. 

7.2 Results 

Tables (23) through (32) give variances and 
explained variances obtained in the analysis of weekly 
and monthly series of each type of use. All the 
explained variances showed in these tables are given 
in percent, either relative to the variance of the 
original series or relative to the variance left after 
removing the annual trends. 

Tables (23) and (28) give the means and vari· 
ances of original series x for the weekly and p,T 
monthly series, respectively. Table (24) gives the 
explained variances by trends in the mean and 
standard deviation of the weekly urban water use 
series. It is interesting to observe the different values 
of EVTM obtained for the dties in Colorado, while in 
the case of Denver EVTM it is only 6.10 percent, for 
Fort Collins it is as high as 36.20 percent. 

The explained variances by periodic com­
ponent, EVP, for weekly series of all type of use 
studied, are given in Tables (25) and (27). Table (25) 
gives the explained variances relative to the variance 
of the original series x , while Table (27) gives 

~,T f af . th them relative to the vanance le t ter removmg e 
trends. In the fust case, the explained variances of the 
urban series studied varied for 40.90 percent to 73.80 
percent while in the second case they varied from 
70.20 percent to 8 1.50 percent. In the case of irri· 
gation the resulting values of EVP are similar and 
greater than 50 percent and for the hydropower series 
studied it was only 23.70 percent. 

The explained variances by stochastic com­
ponents of weekly series of all uses are given in Tables 
(25) and (27). Table (25) gives the explained vari· 
ances relative to the variance of the original series 
xP T' while Table (27) gives them relative to the 
variance left after removing the trends. The most 
notable result is that the variance explained by the 
stochastic components changes considerably 
according to the type of use. For example, for urban 
use they vary from 8.50 to 29.80 percent, for irri· 
gation use they are 37.40 and 44.10 percent, and for 
hydropower use 76.30 percent. ('These percentages 
are relative to the variance of the series after the 
trends were removed). Table (26) gives a summary of 
the explained variances by trends, periodicities and 
stochastic components, relative to the variance of the 
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original series x T , and Table (27) gives a summary 
of the explainecl\ariances of periodic and stochastic 
components relative to the variance after the trends 
are removed. 

Table (29) gives the explained variances by 
trends in the mean and standard deviation for the 
monthly urban water use series studied. The resulting 
EVTM values varies considerably. For example, in 
Colorado the value of EVTM for Colorado Springs 
was as high as 61.70 percent; on the other hand, in 
Denver it was only 7.00 percent. In the case of 
California it is interesting to note that for cities 
located in the south coastal area the EVTM values are 
high; 54.10 percent for Los Angeles and 67.00 
percent for San Fernando. On the other hand, for 
cities located in the Tulare Lake Basin they are re­
latively low varying from 14.20 percent to 19.80 per­
cent. The explained variances EVTS are low in 
general, varying from 0.90 percent to 7.60 percent. 

The explained variances by periodic com­
ponents of monthly values show a variety of results. 
They are given in Tables (30) and (32). For the case 
of urban water use, they vary from 24.10 to 78.70 
percent when the explained variances are relative to 
the variance of the original series xp,T , they vary 
from 76.0 to 95.90 percent when they are related to 
the variance after the trends are removed. These last 
percentages give a better idea of the seasonal effect 
on water use. It is interesting to note in the case of 
the California cities the effect of different geographic 
locations on the explained variances by the periodic 
components. While cities located in the south coastal 
area have values of EVP of 78.30 and 85.10 percent, 
the cities located in the Tulare Lake Basin have higher 
values, varying from 94.90 to 95.90 percent. 

For the case of monthly irrigation, the EVP 
values vary from 72.90 percent to 81.00 percent 
except for one case in which it was only 38.20 per· 
cent. Opposite results are obtained in the case of 
hydropower for which they vary from 8.35 percent 
to 29.60 percent except in one case in which it was 
80.50 percent. 

Tables {30) and {32) give the explained vari· 
ances by stochastic components of monthly series of 
all uses studied. Table (30) gives the explained vari· 
ances relative to the variance of the original series 
x while Table (32) gives them relative to the 

p,T' 
variance after the trends are removed. In the case of 
urban use, the variances explained by the stochastic 



component vary from 4.10 to 24.00 percent, in the 
ca.sc of irrigation from 19.00 to 61.80 percent, and in 
the case of hydropower from 19.50 to 91.65 percent. 
Finally, Table (31) gives a summary of the explained 
variances by trends, periodicities and stochastic com-

ponents, relative to the variance of the original series 
xp,T and Table (32) gives a summary of the 
explained variances of periodic and stochastic com­
ponents relative to the variance after the trends are 
removed. 

TABLE 23 

GENERAL MEAN AND VARIANCE OF THE WEEKLY WATER USE TIME SERIES 

WATER USE NAME MEAN ~ VARIANCE S~. 

Urban Water Fort Collins, Colo. 36.380 484.614 

Use Denver, Colo. 852.285 195,075. 531 
Greeley, Colo. 48.434 795.774 

Irrigation Carter Lake, Colo. 981.779 1,178,810.81 
Water Use Hansen Canal , Colo. 1548.500 3,151.511.41 

Hydropower A.B. Adams Tunnel 2067.183 1,454,485.020 

llater Use (~ig-Thomp. Proj. Colo . ) 

MG: million gal lons sfd: second feet da.y 
cfs-w: cubic feet per second (per week) 

TABLE 24 

EXPLAINED VARIANCES BY TRENDS IN THE MEAN AND 

STANOARD DEVIATION OF WEEKLY URBAN WATER USE TIME SERIES 
(relative to the variance of the original series x ) p,t 

UNIT · 

M.G. 
M.G. 
M.G. 

sfd. 
sf d. 

cfs-w 

Trend i n 
Trend in the Mean the Standard Deviation 

NAME 
Type of Explained Type of Explained 

Trend Variance Trend 
Variance 

(percent) (percent) 

Fort Collins, Colo. Quadratic 36.20 Quadratic 5. 70 
Denver, Colo. Linear 6.10 Quadratic 3.50 
Greeley, Colo. Linear 12.00 Linear 3.00 

TABLE 25 

EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS 

OF WEEKLY WATER USE TIME SERIES 
(relative to the variance of the original series xp.~) 

EXPLAINED VARIANCES (percent) 
WATER USE NAME PERIODIC STOCHASTIC 

Fort Collins, Colo. 40.90 17.20 
Urban Water Use Denver, Colo. 73.80 16.60 

Greeley, Colo. 62.50 22.50 

Irrigation Carter Lake, Colo. 55.90 44.10 
Water Use Hansen Canal, Colo. 62.60 37 .40 

Hydropower A.B. Adams, Tunnel 23 .70 76 .30 
Water Use (Big Thompson Pro., Colo . ) 
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TABLE 26 

SUMMARY OF THE EXPLAINED VARIANCES BY TRENDS, PERIODIC AND STOCHASTIC COMPQNENTS OF 

THE WEEKLY WATER USE TIME SERIES (In percent, or rela tive to the variance of the original series x 
1

) 

EXPLAINED VARIANCES 

~TER USE NAME 
TRENDS PERIODIC !TIES STOCHASTIC COMPONENT 

Fort Collins, Colo. ~1.90 40.90 17.20 
Urban 
lo/ater Denver, Colo. 9.60 73.80 16.60 
Use 

Greeley, Colo. 5.00 62.50 22.50 

Carter Lake, Colo. 55.90 44.10 
Irrigation 
lla ter Use Hansen Canal , Colo. 62.60 37.40 

Hydropower 
~Iter Use 

A.B. Adams Tunnel 
(Big-Thomp.Proj. Co) 

23.70 76.30 

TABLE 27 

SUMMARY OF THE EXPLAI NED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS OF THE WEEKLY WATER USE 

TIME SERIES (in percent or relative to the variance left after ~moving the trends) 

EXPLAINED VARIANCES 

WATER USE NAME 

PERIODICITIES STOCHASTIC CO.IPOHENT 

Fort Collins , Colorado 70.20 29.80 
Uri! an 
Wa ter Denver, Colorado 81.50 18 .50 
Use 

Greeley, Colorado 73.50 26.50 

Carter Lake, Colorado 55.90 44.10 
Irrigation 
Water Use Hansen Canal , Colorado 62.60 37.40 

Hydropower A. B. Adams Tunnel 23.70 76.30 
Water Use (Bfg-Thomp. Proj. Colo.) 
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TABLE 28 

GENERAL MEAN AND VARIANCE OF THE MONTHLY WATER USE TIME SERIES 

WATER USE NAME MEAN X VARIANCE s! 

Fort Coll i ns, Colo. 157.902 8 ,328.060 
Denver, Colo. 3699.252 3,226,398.234 
Greeley, Colo, 210.185 13,353.595 
Col o. Springs , Colo. 469.497 94 ,296.189 

Urban Milwaukee, Wise. 4213.185 685,245.415 
Water Dallas, Texas 3028.179 1,883,281.443 
Use l. Angeles , Calif. 7306.593 2,909,764.730 

S. Fernando, Calif. 2759.885 3,865 ,532.112 
Fresno, Ca 1 if. 1237 .832 568,591 . 737 
Bakersfield, Calif. 877.756 307 ,423. 035 
Hanford , Ca 1 if. 112.846 4,369 .723 
Visal ia, Calif. 174 .481 13,689.248 

Alpine lrr. Co ., Utah 1456.429 1,258,458.6 
American Fork, Utah 2588.571 5,738,155.1 

Irrigation North Bench, Utah 1213.333 307 ,488.89 
Water Lehi, Utah 1802.143 3,358,209.70 
Use Plesanr Grove, Utah 1740.714 1,568,413.78 

Carter lake, Colo. 4347.879 19,550,000.00 
Hansen Canal. Colo. 6857.635 51,306,029.60 
Mirage Flats, Nebr. 0.2136 0.041147 

A.B. Adams, Tunnel 318.879 21,382.83 
(Big-Thompson Proj, Co.) 
Green Mountain, Pow.Pl. 5274.429 13 ,340 ,723.80 
(") 
Estes Park, Pow.Pl . 
{') 

8285.603 18,260,100.70 

Hydropower Marys Lake, Pow.Pl. 3292.767 2,465,077.95 
Water Use ( " ) 

Pole Hill, Pow.Pl. 16874.635 20,335,611.20 
(") 
Flat Iron, Pow.Pl. 21 336.677 33,080,325.60 
(') 
Guernsey, Pow.Pl. 
(") 

2044.531 3,436,713.53 

Kartes, Pow.Pl. l1655.B53 32,192 ,115 .30 
(") 

*M.G. millon gallons 
a.f. acre-feet 
sfd. second-foot-day 
af/a acre-feet per acre 
cfs. cubic feet per second 
HGH. megawatts per hour 

UNIT 
(* ) 

M. G. 
M.G, 
M.G. 
M.G. 
M.G. 
M.G. 
M.G. 
M.G . 
M.G. 
M.G. 
M.G. 
M.G. 

a f. 
a f. 
af. 
a f. 
a f. 
sfd. 
sfd. 
af/ a 

cfs. 

MGH 

MGH 

MGH 

MGH 

MGH 

MGH 

MGH 

TABLE 29 

EXPLAINED VARIANCES BY TRENDS IN THE MEAN AND THE ST~~DARD 

DEVIATION OF MONTHLY URBAN WATER USE TIME SERIES {relative to 

the variance of the original series x
0

,T) 

TREND IN THE MEAN TREND IN THE STANDARD DEVIATION 
NAME TYPE OF EXPLAI NED TYPE OF EXPLAINED 

TREND VARIANCE TREND VARIANCE 
(percent) {percent) 

Fort Collins, Colo. Quadratic 39.90 Quadratic 5.20 
Denver , Colo. linear 7.00 Quadratic 3.50 
Greeley, Colo. Linear 13. 50 Linear 3.00 
Colo. Springs, Colo. Cubic 61.70 Quadratic 7.60 
Mi lwaukee, Wise . Quadratic 44.60 linear 2.80 
Dallas, Texas Linear 39.80 Linear 4.BO 
L. Angeles, Calif. Quadratic 54.10 Linear D.90 
S. Fernando, Calif. Cubic 67.00 Quadratic 1.90 
Fresno, Ca 1 if. Quadratic 14.20 Linear 3.80 
Bakersfield , Calif. Quadratic 19.80 Quadrat ic 4.20 
Hanford, Ca 1 if. Linear 14.50 Linear 5.60 
Visalia , Calif . Quadratic 16.20 Quadratic 5.80 



TABLE 30 

EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS 

OF MONTHLY WATER USE TIME SERIES {relative to the v.rhnce of TABLE 31 

the origln.l series ~D.t) 
SUMMARY OF THE EXPLAINED VARIANCES BY TRENDS, PERIODIC AND STOCHASTIC COMPONENTS OF THE 

MONTHLY WATER USE TIME SERIES (relative to the variance of the original series xl!.• 

Water EXPLAINE.D VARIANCES (percent) EXPLAINED VARIANCES (percent) 
Use Name Periodic Stochutfc WATER USE NAME TRENOS PERIODICITIES STOCHASTIC COfiPONENT 

Fort Coll ins , Colo. 43.4D 11.60 Fort Collins, Colo. 45.10 43.30 11.60 Denver, Colo. 77.60 11.90 Denver, Colo. l0 .5D 77.60 11.90 Greeley, Colo. 72.10 11.40 Greeley, Colo. 16.50 72 .10 11 .40 Colo. Springs, Colo. 24.10 7.60 Colo. Springs, Colo. 68.30 24.10 7.60 Milwaukee, Wise. 45.80 6.80 Urban Milwaukee, Wise. 47.40 45.80 6.80 Dallas, Te~as 47.40 B.OO Water Dallas, Texas 44.60 47.40 8.00 Urban L. Angeles, Calif. 38.40 6.60 Use L.Angeles, Calif . 55.00 38 .40 6.60 S. Fernando, Cliff. 24.40 6.70 S.Fernando, Calif. 68.90 24.40 6. 7D Fresno, Ca 11 f. 78.70 3.30 Fresno, Calif. 18.00 78.70 3.30 0\ Bakersfield, Calif. 72.25 3.75 Bakersf ield, Calif. 24.00 72.25 3.75 0 Hanford, Calif. 75.80 4.10 Hanford, Calif. 20.00 75.80 4.10 Visa lfa, Ca 11f. 74.00 4.00 Vlulia, Calif. 22.00 74 .00 4.00 

Alpine lrr. Co., Utah 78.40 21.60 Alpine lr. Co., Utah 78.40 21 .60 American Fork, Utah 78.00 22.00 Irrigation American F. Co ., Utah 78.00 22.00 Irrigation North Bench, Utah 38.2D 61.80 North Bench Co. , Utah 38.20 61.80 Water Leht, Utah 78.00 22.00 Leht, Irra. Co., Utah 78.00 22.00 Use Pleasant Grove, Utah 76.00 24.00 Pleasant G. Co. , Utah 76.00 24.00 Carter Lake, Colo. 76.50 23.50 Carter Loke, Colo. 76.50 23.50 Hansen Canal , Colo. 72.90 27.10 Hansen Canal, Colo. 72 .90 27.10 Htrage Flats, Nebr. 81 .00 19.00 Mirage Flats, Neb. 81.00 19.00 
A.B. Adams Tunnel 21.90 78.10 
G. Mountain Pow. Pl. 29.60 70.40 

A. B. AdaMS Tunnel 21.90 78.10 Estes Park, Pow. PI • 15.10 84.90 
G. Mountain Pow. Pl. 29.60 70.40 )\ydropower Marys Lake, Pow. Pl. 26.25 73.73 
Estes Park Pow. Pl. 15 .10 84.90 Water Pole Hill , Pow. Pl. 20.95 79.05 

l(ydro power Marys Lake Pow. Pl. 26.25 73.75 Use Fltt Iron, Pow. Pl. 21.00 79.00 
Water Use Pole H111 Pow. Pl. 2D.95 79.05 Guernsey, Pow. Pl . 8D.50 19.50 

Flat Iron Pow. Pl. 21.00 79.00 Kortes. Pow. Pl. 8 .35 91.65 
Guerns~y Pow. Pl . 80.50 19.50 
Kortes Pow. PI • 8.35 91.65 

ll" ~ ... ~" ..... '! • .,.. ,_.._~..._..~ ..... .. __ .__..._.-" •~------·--,•.IIO•~ ............ ,.......~A*'"'....._......,_ftlt -11. 



TABLE 32 

Suw.ARY OF THE EXPLAINED VARIANCES BY PERIODIC AND STOCHASTIC COMPONENTS OF TilE l«lNTHLY 

WATER USE TIME SERIES (In percent or relative to the variance left after retnOving the trends) 

EXPLAINED VARIANCES 

WAT£R USE NAME PERIODICITIES STOCHASTIC COMPONENT 

Fort Collins, Colorado 79.00 21.00 
Denver, Colorado B6.60 13.40 
Greeley, Colorado 86.40 13.60 
Colo. Springs, Colorado 76.00 24.00 

Urban Milwaukee, ~iscons1n 87.00 13.00 
Water Dallas, Texas 85.40 14.60 
Use Los Angeles, California 85.10 14.90 

San Fernando, California 78.30 21.70 
Fresno, California 95.90 4.10 
Bakersfield , California 95.00 5.00 
Hanford, California 95.00 5.00 
Visalia , California 94.90 5.10 

Alpine lrr. Co., Utah 78.40 21.60 
American Fork, Utah 78.00 22.00 
North Bench, Utah 38.20 61.80 

Irrigation Lehi, Utah 78.00 22.00 
Water Use Pleasant Grove, Utah 76.00 24.00 

Carter Lake, Colorado 76.5D 23.50 
Hansen Canal , Colorado 72.90 27.10 
Mirage Flats, Nebraska 81.00 19.00 

A.B. Ad~ms Tunnel 21.90 78.10 
G. Mountain Pow. Pl. 29.60 70.40 
Estes Park, Pow. Pl. 15.10 84.90 

Hydropower Marys Lake, Pow. Pl. 26.25 73.75 
Water Use Pole Hill. Pow. Pl ~· -- 20.95 79.05 

Flat Iron, Pow. Pl. 21.00 79.00 
Guernsey, Pow. Pl. 80.50 19.50 
Kortes, Pow. Pl. 8.35 91.65 

61 



Chapter 8 

CONCLUSIONS 

Results of thls investigation of the stochastic 
structure of weekly, monthly and annual water use 
time series may be summarized in the following con­
clusions: 

(1) A general mathematical approach developed 
for the analysis of water use time series permits the 
identification, estimation, and removal of trends in 
the mean and standard deviation, periodicities in the 
mean, standard deviation and autocorrelation coef­
ficients, the investigation of time dependence, and 
finally the reduction of the original nonstationary 
?rocess, xp,r, to a second-order stationary and 
mdependent process ~ . p,r 

(2) A general deterministic-stochastic model 
Equation (34), for representing water use time serie; 
may be used for the generation of new samples of the 
process x~,,. by using the estimated or projected 
trends, estimated peri?dicities, and by generating new 
samples of the independent stochastic component 
~P ,,. , from its inferred probability distribution 
function. These generated samples may be used for 
the analysis, design and f uture operation of water 
resource systems. 

(3) Weekly series of urban water use are com­
posed 'of trends in the mean and standard deviation 
annual periodicities in the mean, standard deviatio~ 
and autocorrelation coefficients and a time 
dependent stochastic component. ' 

(4) Monthly series of urban water use are com­
posed of trends in the mean and standard deviation 
annual periodicities in the mean and standard devi: 
ation (and in some cases of annual periodicities in the 
autocorrelation coefficients) and a time dependent 
stochastic component. 

(5) WeekJy series of irrigation and hydropower 
water use is composed of annual periodicities in the 
mean standard deviation and autocorrelation coeffi­
cients and a time dependent stochastic component. 

(6) Monthly series of irrigation water use is 
composed of annual periodicities in the mean, 
standard deviation and autocorrelation coefficients 
and a time dependent stochastic component. 
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(7) Monthly series of hydropower water use is 
composed, in the cases studied, of annual periodici­
ties in the mean and standard deviation (in some cases 
of annual periodicities in the autocorrelation coef­
ficients) and a time dependent stochastic component. 

(8) Annual series of urban water use is com­
posed of trends and a time dependent or independent 
stochastic component. The time dependence of the 
stochastic component may be approximated by the 
first, second or third order autoregressive linear 
models. 

(9) The trends in the mean and standard devi­
ation of weekly and monthly series of urban water 
use is either linear or nonlinear (quadratic or cubic), 
and is well described by polynomial regression 
equations. The same characteristics are shown in the 
trends of annual series. 

(1 0) Periodicities in the mean, standard devi­
ation, and autocorrelation coefficients are well 
described by Fourier series, with the annual cycle (52 
weeks or 12 months) and its harmonics. 

(11) The time dependence of the stochastic 
component of weekly and monthly water use series 
may be well approximated by the second or third 
autoregressive Jine:1r models, with periodic or con­
stant autoregressive coefficients. The removal of this 
dependence leads to a second-order stationary and 
independent stochastic series. 

(1 2) The frequency distribution curves of the 
independent stochastic component of weekly, 
monthly and annual series of water use may be well 
approximated by the normal, lognormal-3 or 
gamma-3 probability distribution functions. 

(13) The variance explained by trend com­
ponents of urban water use in respect to the variance 
of the original series xp,r vary in the range of 9.60 
to 41.90 percent for weekly series and of 10.50 to 
68.90 percent for monthly series. 

(14) The variance explained by periodic com­
ponents of urban water use vary in the range of 70.20 

I 
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to S 1.50 percent for wccl.J.y se1i~s :lild of '76.00 tv 
95 .90 percent for momllJy s.!rks. For iHig:~<i•)Il \vawr 
u~c they are 55.90 :md 62.60 pcrc.:nt for lhc '.vcekly 
series ~tudicd and n ry in the range of 3~.20 to 81.00 
p.:rcent for monthly ~ric!). For hydJOpO'.v<!i watcr 
the figure is 23.70 percent for the weekly $Cri.:s 
studied and vary in the rangc of 8.35 w 30.50 per­
cent for mvn t hly series. 

(15) The varian.:c .:x.?bi::cd by the J:>.:lcpc;1J.:nt 
sh.>chasnc C•)mponcnt of urb;ui wat~r usc v:lt !C:· in 1.'\~ 

raugc uf 11.50 to '29 .~0 percent for w..:ckly sc:rks :1nd 
of -UO to 24.00 p..-n:cnt for montl1Jy series. Fur 
irrigation WJt~r, the figures are 37 AO :md 4·U 0 ?'!r­
Cl'IH f•)r the weekly series and 19.00 to ~ 1.00 pcrccnt 
for monthly sef.es. !=or hydropower w.:.t...r, th~ !'igurt' 
is 7 6 .30 percent fm the weekly series and 18.50 to 
';} 1 .65 percent for monthly senes. 
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( 16) Cross corrd:nion :llld a.lss :;peclral 
an~lysis show chat a linear r;::lation exists between the 
.:.lnt•al ..:ydes oi rempernure, pre..:ipitation and W:Itcr 
L:.:ic ~-:rio;:s. T t:mpcrature and w:ttcr use :tnnuJ] C) ~..:cs 
were in phase; however. :J diffcrcncc.: in ph:.~sc is f,1und 
!'.;r tlli! :mr.uaJ :;:dcs vf i)rccipitation Jnd \val~·r u~e. 
fur data •)f ::>~nvu, Culowdo. 

( 1 7) Cross ·:urrebtion :1nd Cf\')~~ spectr:Jl 
::.:i tl~sis show t:lat .1 lir.c:Jr rcbtion c<Xists bctWI!cll rhl! 
l!ldcpe :: ·)~nt stoch:J$tic cc)mi:un..:n:.s of t<!mp..:r:lturc. 
t:rccipit~tion and water use. 

( 18) ~v si .;nirk~mt corrcbtion is ~"•)tmd 

between th..: :lll'tu:ll values •)l m-:.1n temperature, ~·nal 
prcdplt:llion :~:td residuals of ::nnual w:.~ tcr u$e for 
urban water u~e at Fort C.:>llins :llld Color:Jdo Springs, 
Colorado. 
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Appendix I 

MATHEMATICAL MODEL OF DAILY WATER USE IN CASE OF WEEKLY PERIODICITY 

In .:ases where the weekly periodicity is statis­
tically significant, the procedure outlined in 3.2 and 
3.3 (Chapter 3) may be extended to daily series as 
follows. 

The trends in the mean and standard deviation, 
the within-the-year periodicities in the mean, 
standard deviation and autocorrelation coefficients 
are first removed from the original process x , as 

p,r 
described in 3.2 and 3.3 (Chapter 3), by obtaining the 
process ~ ~ of Equation (26). In cas.e of weekly p,. 
periodicity significant, further transformation is 
necessary to obtain ~ . 

p,r 

Consider the process ~ of Equation (26), p ,r 
denoted by ~;,r' where r = J , 2, ... ,w~with 
w* equal to 7, and p = 1 ,2, ... n*, with n* the 
number of weeks in the series....Sirnil.:u..pwcedmes as 
in 3.2 and 3.3 is followed for removing the weekly 
periodicity from ~* r. Therefore from Equation (5) p , 

~* = J.l* + a! c* 
p ,r T ' p ,r 

(68) 

in which p* and a* are weekly periodic mean and r r 
standard deviation of the process, ~* , and tt' is p,r p.r 
the stochastic component. The removal of p* and 

r 
a* from ~* may, in many cases, be sufficient for 

T p,T 
obtaining a second-order stationary and independent 
process. If proper statistical tests show that E*P still ,r 
is nonstationary, then the weekly periodic auto-
correlation coefficients may be removed fro m the 
series e* . By estimating pk* as in Equations 

p~ ~ 

(1 6) , (17), ( 18) :md (20), and subsequently by 
using Equation (30), this can be achieved. That is, 

m 
€* · ~ a:" . e* . 

p ,T j= l ) ,T·) p ,T · ) 

~ =- --------- -
p,r m m 

[I ·~ ~ 
i=l j=l 

k=i if i<q (69) 
k=j if i>j 
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in which a;!' . are expressed in function of 
).T· ) P: r ·i for k, j = 1 ,2,3 , as in Equations (24), or 

(2S) and (26) or (27), (28) and (29), and 
with pk~ . estimated by r,* . of Equation (20). 

T·J K 7J 
The ~ _· process of Equation ~69) is now a second-p . • 
order stationary and independent stochastic process. 

Therefore, the most general model for repre­
senting water use time series, considering the trends 
in the mean and in the standard deviation, the annual 
and weekly periodic mean, standard deviation and 
autocorrelation coefficients, and the time dependence 
of stochastic component, is 

x = Tm + Ts [f.l. +a [ ~ 0'. . c . + 
p.r p,r p ,r r 7 j=l J,T ·J p.r·J 

1 - ~ ~· 0'. a. . p . . ~ 
( 

m ~ ) 112 * J] i= 1 j'=l 1,r· l J,T·J h ·JI,k p ,r 
(70) 

with k = i if i < j and k=j if i > j: r= 1,2,3, ... , 
w, and w = 365 days, p = 1, 2, ... , n, and n = 
number of years, and ~; _

7 
given by 

[ 

1l1 
~* = p* +a* ~ a* . c* . + 

p,7 T r j=J J,T·J p,r·J 

( I - ~ L a.* . c.:~ . p* . . ) 
1 12 ~ ] i=l j=J 1,r-1 J,T·J h -JI,k p,r (71) 

with k= i if i < j and k =j if i > j: T = l,2 , ... , 
w*, w* = 7 days, p = 1, 2, ... , n* , and n* = number 
number of weeks. 

Equation (70) constitutes the most gener:1l 
model for the structural mathematical description of 
daily water use time series; any degree of simplifi­
cation can be made by proper statistical tests. 



Appendix 2 

FITTING OF PROBABILITY DISTRIBUTION F UNCTIONS TO F REQUENCY DISTRIBUTIONS 

OF STOCHASTIC COMPONENTS 

2.1 Estimation of Parameters 

The parameters are estimated by the maximum 

likelihood method. The maximum likelihood esti-
...-.. 

mator 8 is obtained by solving the equation 

aL(8, x
1 

, ..• , x
0

) 

ao 
for each parameter 8. 

= 0 ' (72) 

Based on the above equation, the maximum 

likelihood estimators of parameters of the three 

distribution functions used (normal, lognormal-3, 

gamma-3) are given (Markovic, 1965) for the normal 

density function of Equation (31) by 

A 1 N 
p. = !iT L ~. ' 

i=I I 

(73) 

[ 
l N ] 1/2 

~= -N ~ (~. -PY 
1=1 I 

(74) 

as the estimates of the mean and standard deviation, 

respectively, with N the sample size; for the log­

normal-3 density function of Equation (32) 

....-.. l N "' 
(ln J.L ) = n L ln(~. · ~ ) , 

n •~ i=l 1 o 
(75) 

as the estimate of the population mean, 

[
I N "' A 21 1 /2 

0
0 

= n . L (ln(~. - ~ ) - In J.L ] , 
1~ 1=l 1 o n 

(76) 

as the estimate of the population standard deviation, 

and 

(77) 

as the equation which can be solved by iteration 
procedure giving the location parameter estimate, 
f

0
; for the gamma-3 density function of Equation 

(33) 

1 / 2 

1 + f +r[InCf-~)-k i~1 ~n(~i - ~)]} g: 

~ - "' l.N "' ~ 4 In(~- ~ ) -N L In(~. - ~ ) 
0 i= J I 0 (78) 

as the estimate o f the shape parameter a, with 1a a 
correction factor tabulated in functio n of g values 
and r is the mean of the ~i values; 

g = l- (~ · fo) 
a 

(79) 

as the estimate of the scale parameter a, and 13. 

1 + {1 + ~[ln(I- f ) · .L ~ ln(~. -f ~ }
112 

5 o N i=l 1 oj 

I +{1 + y rln(~ · f ) · ~ .~ In(~. · f )l }
112 

• 4 [In(~ · ~ ) · k. ~ ln(~i · ~0 ~ 0 t=l I 0 ~ 0 1:} 'J 

(t 1 ) .L ~ (_l_) = 0 ' (80) 
• <> • '>o N i= l ~~ ·'lo 
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as the equation which can be solved by an iteration 
A 

procedure giving the location parameter estimate ~ . 
0 

2.2 Fitting Criteria 

Several criteria can be used for testing the good­

ness of fit of a probability distribution function to 
frequency distributions. The chi-square test, the 

likelihood ratio test, the Smirnov-Kolmorogov 
statistic test may be used. In this paper the chi-square 

test was used as described below. 

The basic concept of the chi-square test is 
summarized as follows. The total range of sample 
observations is divided into k mutually exclusive 
cl:~ss intervals, each h2ving the observed class fre­
quency Ni and the corresponding class probability 
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Pi' i = I , 2, ... , k. The meosure of the departures 
between the observation frequencies N. and the 

I 

expected probabilities NPi (corresponding to the 
distribution function to be fit ted) is defined as the 
chi-square statistic 

xz = ~ (N~- NPY 
i=lpi 

(81) 

This st:ltistic is asymptotically chi-square distributed 
with k-1 -r degrees of freedom. where r is the 
number of parameters already estimated from the 
observed data. 

The chi-square test prescribes the critical 

val ue x; for a given confidence level so that 
for x~ < x2 the null hypothesis of a good fit is ac-

0 

cepted, and for x2 ~ x2 it is rejected. o, 



Appendix 3 

ESTIMATION OF THE COHERENCE AND PHASE FUNCTIONS 

In estimating the coherence and phase, and 
partial coherence and partial phase functions, the 

autocovariances and cross covariances are fust esti· 
mated by 

~xx(k)=~ 
N-k 
:E xtxt+k · 

t=l 

___l__ N-k N-k 
:E xt :E xt +k 

(N • k)2 t=l t=l 
(82) 

A (k)-__l_ 
N-k 

'Yxy - (N-k) :E xtyt+k · 
t= l 

N-k N-k 

(N -k? 
L X :E y 

t=l t t=l t+k (83) 

in which k = 0, I , 2, ... is the lag and N is the 
number of observations. 

To avoid negative estimates of spectra and to 
obtain estimates of the coherence not greater than 

one, the estimated autocovariance and cross­
covariance functions of Equations {82) and (83) are 
smoothed by using the smoothing function (Parzen, 
1964), 

D{k) = 1 · 6(~/ {I · ~), 0 ~ k EO;~ 

D{k) = 2(1 · ~)3 , p EO; k ~ m , 
{84) 

in which m is the truncation point of the 
function D(k), or the maximum number of lags. 
Therefore, by substituting the smoothed covariance 

function into Equation (41) the estimated spectrum 

function of any series x1 becomes 

-0.5 " f ~ 0.5 ' (85) 
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which may also be written as 

-0.5 ~ f~ 0.5 (86) 

A 

Since Y,. x (f) is an even function of frequency, 
it is only necessary to calculate it over the 
range 0 ~ f .s;;;; 0.5. However, to preserve the 

Fourier transform relations between the sample spec­
trum and the sample autocovariance function, it is 

necessary to double the power associated with each 
frequency in the range " 0 ~ f ~ 0.5, (Jenkins and 
Watts, 1969). Therefore r:x (f) becomes 

0" f~ 0.5 (87) 

with f = j/2m and j = 0, 1, 2, ... ,m. 

Similarly for the estimation of the cross ampli· 

tude spectrum lix/012 ,the smoothed cospectrum 
and quadrature spectrum are first estimated by Equa­

tions (44) and (45) as 

m 
'C (f)= 2 :E D(k) [:Y (k) + :Y (k)] cos(21rfk) xy k=O xy yx 

(88) 

and 

m 
'<} (f)= 2 L D(k)[:Yxy(k) • ~yx(k)J sin (27Tfk) , 

xy k=O 

{89) 

with f = j /2m and j = 0, 1, 2, ... , m. 

Thus the cross amplitude spectrum is estimated 

by 

IY: (f)l2 = 'C2 (f) + "q2 (f) . 
xy xy xy (90) 
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Combining Equations (87) to (90), the co­
herence and phase spectra are estimated by 

"' 11-:/012 

a:xyCf) = "'+ (f)~t ('f) , 0 ~ f ~ 0.5 , (9!) 
"~xx Ty y · 
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,. ~x/f) 
e (f) =arc tan --- , 0 ~ f ~ 0.5 (92) 

X y ~ (f) 
xy 

The partial coherence and partial phase func­
tions are estimated by substituting the estimated 
spectra, cross spectra, and coherence functions, into 
Equations (52) to (56). 



Appendix 4 

SIMPLIFIED FLOW CHARTS OF COMPUTER PROGRAMS USED 

In order to present the basic features of 
programs TREND, PERIOD, and DISTRIB, the 

Figure 77 General schematic representation of the 
decomposition of a water use time series. 
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simplified flow charts of these programs are presented 
in Figures (77) through (80). 

Figure 78 Simplified flow chart of the progran. 
TREND. 
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Figure 79 Simplified flow chart of the program 
PERIOD. 

Figure 80 Simplified flow chart of the program 
DISTRIB. 
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