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Heft 7 (pp. 208-219 incl,) Bvery effort has been made to retain the charac~
teristics and continuity of the original article,

COMPLETE DEVELOPMENT OF THE TUhBULBNT DISTRIBUTION
OF VEIOCITY IN SMOOTH DUCTS

By H. Reichardt, GOttingen
(From the Max Planck-~Institute for Flow Research)

Translated by
~ H. H. Schweizer
Assistant Professor
Civil Engineering Department
Colorado A and M College
Fort Collins, Colorado
Based on experimental investigations of turbulent exchange of momentum,
an equation for the velocity distribution of turbulent flow in pipes and canals
was developed, This equation gives a complete' representation of the velocity
distribution; that is, it is valid for the region immediate to the boundary as

well as for the middle part of the cross~section of flow,

1, STATEMENT OF THE PROBLEM

Thus far, investigations of turbulent flow in pipes, canals, and
plane surfaces have shown that the velocity profile approaéhes a logarithmic
distribution, The evaluation of these investigations with the aid of dimensional

analysis results in the following turbulent boundary law:

| SR Y
R e s 1
| W kin?;c (1)
Here u is the mean velocity a distance y from the surface, lA*::./7B/Qo the

shear stress velocity, <9, the wall shear, @ the density of the medium,

*
u . ) .
=-%3—- the dimensionless distance from the boundary written in the form of a

M

characteristic Reynolds number; and P = -—— the kinematic viscosity. ﬁ( and

C are constants.,
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The development of the above boundary law carries the assumption that
the turbulent shear stress is practically of the same magnitude everywhere near
the boundary as the wall shear '73 . Bquation (1) is therefore only valid for
a thin layer near the boundary., On the other hand, this layer cannot be too
thin because the turbulent condition disappears in the immediate vicinity of the
boundary, if for no other reason than continuity. The theory thus far is then
limited on both sides to a small region,

As is known, the boundary law is still valid for greater distances
from the boundary where the turbulént shear ’Z% is considerably different from
the wall shear stress ’T; . This is without doubt of préctical importance.
However, when considered from the theoretical viewpoint, the validity d an
equation outside the range of its basic assumptions is unsatisfactory as long
as no sound physical explanation for this fact has been established,

Only toward the middle of the cross-~section of flow noticeable deviations
appear from the boundary law, and the actual velocities are greater than those
calculated by Eq. (1). BEven if these "additional velocities on the inner
region" (which we will designate by Uj ) are small, nevertheless it is of
fundamentai significance that here the dimensionless velocity does not only
directly depend on 7] but also on the distance from the boundary, A satisfactory
repfesentation of these specific relationships on the inner region of the friction
laygr is as yet lacking.

The writer has therefore set before him the broblem to fill in the
previously discussed gaps of the theory. First, the boundary law shall be com-
pleted by representation of the distribution of velocity in the laminar boundary
layer, Then Qe will clear up the dependence of the velocity of flow within the
friction layer upon the distance from the boundary and/or center distance and
describe this by an equation,
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We limit our considerations to the type of fully developed flow with
pressure drop as is observed in pipes or canals,

2. FUNDAMENTAL OBSERVATIONS

If we speak here of a complete representation of the turbulent velocity
profile, it does not mean a complete solution of the problem éf turbulent distri-
bﬁtion of velocity. Bxact solutions in turbulence research can only be given if
and when the problem of turbulence is solved as such; that is, when (as, for
example, in viscous flows) the physical problem can be traced back to purely
mathematical assignments, The research in turbulence is, however, sfill far from
this highest level of development. At the most, one can assist himself by work-
ing with hypotheses, the u;efulness of which the experiment must decide,

Of the efforts to date to lay a theoretical foundation in research of
turbulence, (most important are) Prandtl's mixing.length hypothesis and v,
Karm;n's similarity hypothesis, As far as pipe flow is concerned, both hypotheses
led to a nearly logarithmic distribution of velocity, We must, however, make
clear that this boundary law is in no way a binding consequence of the theory
about the behaviér of the eddies or about the similarity of eddy motion. The
only essential assumption for the numerical results was that the mixing length

.Zi , defined by the expression Y[%;' f%g. , increases linearly with distance
from the boundary., This assuﬁption seemeglplausible but ‘was, however; not a
logical consequence of that hypothesis; so the scientific advancement did not
regt in the hypotheses themselves but in a plausible aSSUmption of a helpful
idea which could be verified by experiment,

For further advancement of the theory it seemed to us practicable to
avoid any speculative considerations and to base the basic premise necessary

for the derivations directly on experience., Through formulative reproduction
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(which is not accomplished without vision) of the test results, naturally a cer-
tain error is introduced in the arithmetic expression, In any case, such an in-
exactly reproduced condition is a better base for the theory than a purely

[

hypothetical premise,
For the investigation at hand we will use the exchange coefficient A

as an essential concept. It is defined by the equation

du
(& =A7g3y (2)

where ‘Z% is the turbulent shear stress.® The turbulent mixing coefficient is
the formula analog of the molecular coefficient of viscosity whose equation of
definition is ‘ﬁn=/u-z§; . The coefficient A does not only have a formal,
but also an essentially physical meaning, because the question of relationship
between the turbulent shear stress 7} and viscous shear stress 'ﬁn (that is,
the relationship f%— ) has a direct physical sense, Therefore in almost all tur-~
bulence investigations, and especially so in the consideration at hand, A
plays an essential role,
We begin with our investigation using the following identity relafion
fu -
| d(’f?) %}7 _ Tnm
| ' d7 (d ) To

(3)
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1 The application of the mixing length concept would be impractical because the
'velocity gradient would not be eliminated by the representation of the relation~
. ship Tt/%m. Further, for the flows treated here, there appears the well
known difficulty that the mixing length leads to a singularity in the axis of
symmetry, Considering the linear behavior of the shear stress as well as the
velocity gradlent (see Fig, 4) we have for the middle region

[< z 1
L= t r~a ;f=? , where =z denotes the distance from

the center. i»therefore tends to infinity as z->0,



(The in&ex O denotes the value of the velocity gradient appearing at the sur-
face relétive to the viscous shear stress Ty .)? By verifying Eq (3) one is
"easily convinced that the differential quotient of the dimensionless velocity by
the dimensionless distance from the boundary signifies nothing other than the
relationship of the velocity gradient at position y to the corresponding gradient
at the wall,

We introduce the total shear stress T :

T=Tp+t T = (/“+A)%

€))
By substituting this equation into Eq (3) if follows that
u T
d(u*) = —Zo : (5)
dn ]+.A.
M
We can see from Eq (5) that the dimensionless distribution of velocity
i1
depends on the parameters -:L—- and ——§-=-li— . In the fully developed flow
T Tm M

with pressure drop, which we will consider in the following, QQ/T% is known and
eqﬁal to 1-—%; (where y is the distance to the boundary and r is the radius
- of the pipe or canal), Therefore, our problem reduces itself to the question of
the dependence of the exchange coefficient on the distance to the boundary and
thé Reynolds Number,

As we already mentioned, we can no more calculate the exchange coef~-
fiéient from the practically unexplored turbulence structure than we can calculate
thé mixing length or any other helpful concept. We have therefore determined the

ru*

A
dimensionless exchange coefficient -+-— by experiment =-—— ), This

B I I R i e T T I I I R R e e

2 From now on we omit the mean value dash above u if a confusion of u with

the instantaneous value u = u + u' is not to be feared,



experimentally determined function (see Fig., 5) will enter our calculations
later on,

3, THE BOUNDARY IAW

It is relatively easy to determine the exchange coefficient near the
boundary from the measured distribution of velocity. Nikuradse® has already
carried out such a determination of A , His measurements showed that near the

boundary

£y
gy K (6)

(the proportionality coefficient K is about 0,4). Farther awéy (approximately

increases less than linearly with : 2 . The investi-

above% = 0,10) 7

Mgy
gations of Nikuradse also give information about this behavior, (However, the
valués above .%;950.8 are uncertain, (For more details see Section 4.)).
Relative to the region of validity of Eq (6) nothing definite is known
as far as small distances from the surface are concerned, It is only definite
that Eq (6) can no longer be valid in the immediate vicinity of the boundary be-
cause the turbulent exchange there disappears for reasons of continuity, and the
liquid moves laminarly paralkl to the surface,
| Since the continuity is responsible for theksuppfeSSion of the turbu~
leﬁce at the boundary, we can obtain a relation for the decay of A from the

equations of continuity. The conditbn for continuity of the velocity fluctuations

ut (parallel to boundary) and v' (perpendicular to boundary) is as follows:

ov' _ _ ou'
ay  9x | (7)

e B b B B e B Gw Pw em e Bm B e B Bw Sm B B B4 B e Bd e B B P P Bw pe e Bd et 4 G Gy o w m e

3 J. Nikuradse, Gesetzmissigkeiten der turbulenten StrOmung in glatten Rohren,
VDI-Forschungsheft 356, 1932
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u'zoé.ﬁzoc(—dj— y (8)

where O represents a function of time and the x coordinate., If we introduce
Eq (8) into Eq (7), then follows:

- v s — ao(,(du _Zf ‘ - .
ox 2 2

Although we have to assume a linear increase of u' with y (corresponding to
the linear increase of u with y ) as a first approximation, it follows from

conditions of continuity that V"N‘y2 . From this it follows that
T =-pu'vi= 0.25 L 23 (10)
;=0 C3e y
0
for the turbulent shear stress,

For the exchange coefficient in proximity to the boundary we then obtain:

A - 0.05 2L (y“f (11
M 9(

Accordingly, the exchange coefficient is proportional to 773 (to be sure, here
we can make no statement about the magnitude of the factor of proportionality).
This signifies an extraordinarily low increase of A for small values of 77 "
The first as well as the second derivative of A with respect to 7 disappears
as fhe boundary, Only the third derivative has a finite value,*
B e e 68 e e A e
* Comments by the critics,

In the derivation at hand the criticism is that the third fluctuation

component w' was neglected. In this simplification, as Eq (11) shows,

2 a2
z‘f}—fv 1)3 when aa‘: 3u 7& 0 . But this condition is only

X
satisfied in flow which is not fully developed.

s
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If the w' component is considered and fully developed flow assumed,
one obtains instead of Eq (11):

. | Taﬁ N u*"’ @u) 3t (aw),? | (11a)

B ’
where g = z uk The question arises whether oy and aw)
are correlated, In case these two expressions are entirely uncorrelated, then
it follows that the exchange coefficient does not increase with '))3 but with
i a higher power of .

We arrive then at the following result: If the behavior of the exchange

coefficient in proximity to the boundary is represented by a power series of
, then the 7) and 72 terms drop out, The term of third degree
exists only with certainty for the flow not fully developed,

The knowledge of the behavior of the exchange coefficient in the immediate
vicinity of the boundary is of essential significance for the theory of heat
exchange, 1In a recent paper about "The Influence of Flow near the Surface on
the Turbulent Heat Exchange" the proportionality of the exchange coefficient
with 93 was accepted, (Mitteilungen aus dem Max~Planck-Institute fiir
Strémungsforschung Nr, 3, 1950,) The small A values given there for very
small distances are p0551b1y too large since - possibly increases by
higher than the 31 power of n - K. Elser in his paper, "Friction Temper-
ature Fields in Turbulent. Boundary Layers'", postulates an essentially higher
behavior of frictional turbulence near the surface, (Mitt, Inst,
Thermodynamik ETH Zurich, H. 8 (1949),

I T e I I T T I I I e T R I I T R I I )

A

. For the representation of u asa function of ¥y or 7) we there-

fore need a function whose first and second derivative is O on the boundary,
On the other hand, this function, at some distance from the boundary, must change
asymptotically to the linear behavior of K% .

The function

£ =k(9-7 tmh?%)

(12)

satisfies these two conditions, We will therefore use this equation as an expres-

A .

sion for & e

The constant 7]1 appearing in Eq (12) is a measure of the strength of
c the laminar boundary layer. 771 must be such that the calculated velocities of
the turbulent boundary flow coincide with the measured velocities (calculations

are made by using Bq (12)).

=8~



The behavior of WA— as given by Eq (12) is represented by Fig, 1 fer
K =0.4 and 7, =11 .* As we will show below, this value of 7; leads to
a value of 5.5 for the constant (€ of the logarithmic boundary law,

By using Eq (12) and considering the fact that in fully developed flow

R (S ‘;Y‘) it follows from Eq (5)

(e = - F ' | (13)
& L+K (7 +7), tanh )
1

The integration of this equation unfortunately cannot be performed with
the help of the familiar operations, We must therefore look for aids,
First of all, we can neglect the value of _}?’- compared to 1 because

we are dealing in this chapter with processes near the boundary, Furthermore, it

1
(t+Kn)

to make possible, at least, the integration by parts, After carrying out this

is advisable to separate a term on the right side of Eq (13) in order

integration we then obtain:

——"l—:—;=——é—ln(l+1<77)+f(n), (14)

Here 'f('?]) is defined by the equation:

(1) = fﬂ Ky, tanhid 7
: o (1+K7—K7‘tan&%)(1+)<77) X

Also, the integration of Eq (15) is not practicable, However, we can replace,

(15)

as an approximation, the integrand f'('f}) by the function

"3 M 68 M @& 5 E G e e PP 0 B N T M D SR D s P R P B MR SR PR M RS P N NG M M e

4 As Fig, 1 shows, A <M in the region e 11 and A >4 in the re~
gion 17 >= 11, The dimensionless boundary distance ~E§ is therefore
a measure of the strength of that layer near the boundary in which the mole-
cular friction outweighs the turbulent friction,
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through which the integration becomes possible, We than obtain for fl -

. f,= Cx(l-e'"/ﬂ‘ - -;;—-e‘b’U : (17)
1 , ’

Here constants C(; and b are to be determined from the boundary condition,
I1f we replace f in Eq. (14) by the approximation f1 as given in Eq.
€17), then we obtain for high values of 7 (for which 1 is to be neglected

compared to K7 ):

u 1 1 ;

Comparing this equation with Bq (1) which is valid for high values of 7] , then
it follows that }%I"K+ C;=¢C.
Using the usual values for K = 0,4 and C = 5,5, we obtain C; = 5.5 + 2,3 = 7.8,
The value of the constant 4], is determined from the condition that

the integral of Eq. (15) reaches the value 7.8 by using highv ')) values and
K = 0.4. We have graphically integrated and determined Eq. (15) for various
ﬁl values in such a manner that the boundary value of 7,8 is obtained when
7N = 11,

| The constént b was to be obtained from the boundary conditions of
th;e wall shear stress., These conditions are essentially not viddated if one
uses b ='0.33 . If we now introduce the above results into Eq (14), then we

obtain as an approximation for the boundary law:

Boo25mU+04y)+TsG-e UL P
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is represented in Fig. 1 for small 7} values and in Fig, 3 (as a function
of log 77 ) for somewhat large 9] values. The solid curves show the results
of the graphical integration while the dotted curves give -'%( according to the
approximate Eq (18), As one can see, no essential differences exist between the
dimensionless velocities obtained by graphical integration and those obtained
from the approximate solution, Somewhat larger differences exist at places be-
tween f' (solid) and f: (dotted), as is seen in Fig, 2, This deviation is
meaningless inasmuch as one is not dependent on the approximate BEq (16) for any
calculations in which the derivative of § is involved since the integrand of
Bq (15) can be used directly,

Compéred with Eq (1), our Eq (18) has the advantage of describing the
‘turbulent shear stress for every % value in the region near the boundary,
While -3:; goes to —oc with decreasing 79 as given by Eq (1), our Eq (18)
in addition fulfills the condition of W = 0 when 7=0.

For very small finite values of 7 , it follows from Eq (18) that:

u
=7

This is the linear increase in velocity in the laminar boundary layer. We achieve
the same result from Bq (5) if we give A the value of O .- This linear increase
extends to Y= 4 (see Fig. 1), From there on, the dimensionless velocity in-
creases less than linearly with n . This velocity deviates more and more from
the straight line with .increasing y/, and eventually becomes logarithmic (at |
about 77 = 100).

The smaller magnitudes of the velocity compared to the straight line
relationship with 7 is caused by the appearance of turbulence. The influence
of the turbulent friction is recognized not only By the ratio :ﬁl (Fig, 1), but

also by the relationship



A
T __AM : (19)
T 1+'i%%‘

which is represented in Fig, 2 by use of Eq, (12)., As one recognizes from both
figures, a noticeable turbulent friction is determinable only after N =4,

where the dimensioniess velocity deviates from the straight line relationship with
‘ﬂ « Where the transition into the logarithmic velocity distribution occurs
(at about ‘n = 100), the part of the turbulent friction amounts to over 98% of
the total shear stress,

The observations as presented have.only approximate validity since we
do not know the exact manner of decay of the turbuient shear stress near the
boundary, The velocity distribution represented by our Eq (18) should, however,
not dgviate essentially from actuality because the boundary conditions for the
mixing coefficient as well as velocity, both on the boundary and at greater dise
tance from the boundary, were correctly satisfied,

The experimental investigation of the boundary law for small values of

41 is no simple problem because the velocity detectors (pitot tubes, hot wires)
close to the surface and ét very low velocities give erronedus indications, the
sufficiently exact determination of which presents great difficulties, Measure~
ments of velocity under conditions of small 7] values; which the author éarried
out in an earlier work®, are represented in Fig, 3. As one can see, most of the
measured points ;ie near the calculated curve, Somewhat larger deviations ap-
pear in hot-wire measurements carried out very close to the surface, and these

measured velocities tend to be too low,

5 H, Reichardt, Die Wiarmeubertragung in turbulenten Reibungsschichten, Z. angew.
Math, Mech 20 (1940}, S. 297,
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4, The Center Law

Since in the middle part of a canal or pipe éll processes are
symmetrical with respect to the center plane and/or axis, it is advisable to
loqate the origin of the coordinate system in the center plane or axis. .Let
the distance from this origin bg 2z , 2z varies from r to ~r , The boundary
may be locatéd to the left of the center at a distance z =r , We represented
the distribution of velocity in the vicinity of this boundary by the equation
mentioned above, Therefore z =r e~y or y=r -2z,

In the middle region the molecular viscosity can be neglected when
compared to the turbulent exchange, If we replace f¥! by éfi in our funda-

T

mental equation (Eq 5), then we obtain

T
(=)
A
43) a5 .

Our experiments give information about the dimensionless exchange co~
efficient :Eqi; « We could determine the exchange coefficient fairly accurately
in the middle region (See Figs. 4 and 5)® through direct measurement of the
differential quotient of the stagnation pressure by using a double pitot-tube,

These experiments may be approximately and uniformly represénted by the following

equation:
A K 2
. = 10- ]
= 0. e - (=
s 3[5+(,) -5 | - (21)
¢ In Fig, 4 ¢ = 1§L“ . The measurements were made in the middle vertical

cross~section of a rectangular canal 24,6 cm in height and 98 cm in width,

=13~




If we introduce this relation into Eq (20) and observe that in fully

iclOPed flow "g;" =1"‘¥- = %—- , At .follows:
£ . 2 |
St e ()
K = =f g s s const: (22)
(os+ (2] [1-¢2)°]

The integration gives

i =In( -(%)

05+ (%4 )

+ CoﬂSf- (23)

We determine the constants for the center plane and/or axis, where
%;o and U= Uy by

Up- u i 11 [1-“2(2/!‘)

u* 1- (%24)° e

This formula represents the entire velocity distribution of flow for
the cross~section except for the thin layers close to the boundaries in which the
molecular friction plays an essential part., In Eq (24) no distance to the boundary
is involved and only the distance 2z from the center appears, This distance
represents the plane of symmetry and/or axis of symmetry of the velocity p“rofile,
an& therefore we have here to do with a genuine "Center Law,"

To test Bq (24) the author carried out measurements of velocity (see
footnote 6)., These measurements were presented in the.form prescribed by Bq (24).

As.Fig. 6 shows (in which instead of the natural logarithm the logarithm to the

'béée 10 appears) the measured points lie on or in the vicinity of a straight line
]% = 2,5 by using the
Z

natural logarithm), From the lower scale for T We can see that the center law

having a slope of 5.75 (this corresponds to a slope of

BEq (24) is valid past C%) = 0.9 ; that is, into the close vicinity of the boundaries.,

o1 4
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For small values of .}7:- the logarithm in Eq (24) may be replaced by a

series, and one can write

e (R | =4
u*

Thus we obtain for the middle part a parabolic form of the velocity profile,
: In Fig, 4, which shows the distribufion of velocity <P=%;n for

U = 15,2 cm/sec., the parabolic profile of Eq (25) is shown dotted, As one can
see, the parabola and the top of the measured velocity profile are aimost identical,

The parabolic shape of the top of the profile is due to the fact that

the friction coefficient barely changes in the middle part of the cross-section

of flow (for small -%— it follows from Eq (21) ’aA’] ~ _[_g__ Y. This condition
r

is also recognized directly from the actual linear behavior of the velocity

Z

— , the

gradient in the middle cross-section of flow, Because 7'=A%-—z =7
iinearity of %% is an indication of the constar;cy of the exchange coefficient,
It is typical for the turbulent profiles that with increasing distances
from the cenfer the velocity gradient first increéses slowly, as can be seen in
Fig. 4. In the center region (l-f'.—l<0.7) the measured points li——%‘ lie below
the observed linear 1.:elation5hip shown as a dotted line, This variation of the
prof-'i‘le from a straight line with increasing =z , which manifests itself in the
flattening of the velocity profile compared to the parabola, occurs because of the
increase in the value of the exchange coefficient (A’V %—/gjzi ) (see Fig. 5).
This. coefficient has its maximum when -rzT- X 0.50 as Nikuradse has already deter-
mined (see above). Here lies, therefore, also the minimum of the %iz‘g. profile,

We will now represent the calculated velocity distribution Eq (24) as

a function of a boundary distance and for this purpose introduce the distance vy

from the left boundary into Eq (24). Since vy = r-z, we then obtain:

=15«
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If here we omit the second term, we then obtain the center law in its present

(26)

form,

For further transformation of Eq (26) we define a dimensionless addie~

tional velocity -;é; by the following equation:

Z
k=L 15 ”)]- 27
¥
Furthermore, introducing ﬁb=.%;i. into Eq (26) and denoting the value of u

in the center by Wj, it follows:

. P Wi _Um L 7o
ur s In 77 u* u* ,‘? In 7,, == T%—- -A v (28)

On the right side of this equation are the constants which the individual terms
on the left side reach in the center of the pipe or canal, Since the right

side of Bq (28) is constant, we can also write

u

_ 1 Ui _ 1 1.5(1+ 24.)
’ﬁ?c"}"]"V"Tﬁ“* C—_Eln[q.____..';_

+ C 29
where € denotes a constant to be determined experimentally,
Through the introduction of the dimensionless boundary distance %  into

our center formula Eq (24) we arrive at an equation which is different from the

conventional boundary law equation by the additiohal term 12; . This term,

u
which depends only on the coordifgte -%; and/or %; but not on u* or /I

reflects the deviation of the velocity distribution from the logarithmic profile,

If one sets A =0.,4 into Bq (27), then %;;_ takes the form shown in Fig, 5,



j’ X
-7 of -:%,— s which lies at Y=~ 0.78, amounts to 1,28, From there on G decrease

7 As Fig, 5 shows, the additional velocities are small, The maximum value

uj

rapidly until it reaches the value 1,01 in the center. This behavior is naturally

only valid for the case  the fully developed flow with pressure drop as treated

here, If one would calculate a corresponding function for the boundary layer of

tﬁe smooth plate, then one would (judging from the measurement of Schultz-Grunew?)

obtain twice as high values éf -%%- « These higher additional velocities ob-

viously have their foundations in the decay of the turbulent exchange at the transi-

tion of the boundary layer flow into the outer potential motion, 7
The peculiar form pf the function -{%& explains the well known

slightly curved sections of the velocity distribution which the test data, within

the cross-~section of flow, indicate when plotted semi-logarithmically., These

deviations from the logarithmic straight line disappear when instead of %%;

E%gél is plotted as a function of log 7 . This is brought out in Fig. 7,

where the velocity measurements appearing in Fig, 6 are'repeatedly plotted in

. . u u-u;
the manner just described, In contrast to the -—x test data, the ——

points form an entirely straight line, indicating the usefulness of the formula

Ui
fror —a-;‘_- .
As Fig. 7 shows, the points —-{fgi~ lie somewhat below the straight

2.3
dotted line which has the slope 7 5.75 and cuts the abscissa at the point
C =5,5, We have to withhold an exact determination of € and XK from-
the measurements at hand because the uX values determined from the pressure

gradient are too inexact for this problem®,

L T I I e I e e T T R T I S

7 P, Schultz-Grunow, Neues Reibungswiderstandsgesetz fiir glatte Platten,
- Lufo 17 (1940), S. 239,

The question of whether and to what degree the constants K and <€ depend
on the cross-section of flow can only be cleared up through further experiments,



ﬁ.
i,

7
Af present we can only say that the use of the term .;_:. has fundamentally intro~

duced a certain change in the values of the constants € and K . Looking
forward, one can retain the value K = 0.4 and use a reduced value of C ,

: Also, in the new plot there is still a certain scattering of data pre-
sent as is indicated in Fig, 7. These undulations are only partly accountable
;hrough errors in measurement and/or mean value formation, Because of certain
deficiencies of the experimental set-up (disturbances in the upstream flow) at
times the velocity profiles were not entirely symmetrical,. These disturbances
affected the measurements, Something else is still to be reflected upon,

A

Qur measurements represented in Fig, 5 of 5375; show a certain depen-
dence of this function on the Reynold's number and/or Ne - If this observa-
tion should be true, then our simple equation (21) (whose right side is inde-
pendent of 7, ) would be fundamentally inadequate for an exact representation
of the turbulent profile. Although extraordinarily important in principle, this
‘question should, however, play no role, since even through such a considerable
change of the theory as it is indicated in our expression (21) only the following
fact could be brought out: namely, that the deviations from the logarithmic
velocity distribution in the middle region of the cross~section of flow are minor,

We have yet to answer the important question: why is the logarithmic
shape of the velocity profile so domingnt even though the logarithmic law should,
according to hypothesis, be valid only for the direct vicinity of the bouﬁdary?
This peculiar condition rests in the fact that in the dd theory two factors were
neglected which, when they are considered, cancel each other in part, The one
factor is the decrease of the shear stress with the distance from the boundary,

and the other is the deviation of the exchange coefficient from the assumed

linear increase at the boundary.

=18~



To show this, we introduce into our fundamental equation (5) (in

ji;ich 1 compared to f%. is to be neglected)i?-: {- —;; (instead of the former
0

value 1), as well as

: A op Ity L
b /unr’k r<1 r) (30)
instead of the formerly used expression KV%; . We then obtain
: u
d(g) -+
i) wXe L : L)
r kf—;— - 1.)

Since here ]—%; can be abbreviated, this equation means that the logarithmic
distribution of velocity would be exactly valid to the center of the cross—section
of flow if Eq (30) were valid for the exchange coefficient., 1In any case, the
deviations of the actual distribution of velocity from the logarithmic profile
can be traéed back to the departures of the measured values é%ﬂ from the
function described by Eq. (30). '

To be able to evaluate these differences we have also plotted the
function of Bq. (30) in Fig. 5 (see the dotted parabola), As one can see, this
parab§1a showslthe tendency of the behavior of the exchange' coefficient much
better than the constantly increasing straight line Kig; . In spite of con-
siderable deviations in spots from the measured points, the parabolic behavior
in the vicinity of the boundary represents a proportbnally favorable approach
to the actuality (reaching about as far as -%;= 0,15), But at this distance from
the boundary the flow has already reached a considerable velocity ( U=’ 0.7 Umax) -

The development of the velocity is completed for the most part in a zone in which

the logarithmic distribution is fairly valid,

=19+



: u
# The rest of the development of the velocity (0,7 < g e 1) extends
=S fﬁver a great range (0,15 <-¥-< 1) ., In the middle cross-section of flow the

" 4
/ yelocity profile is then relatively flat, But the smaller the velocity gradient

4 is, the weaker also is the influence of the value of the exchange coefficient on

the rest of the velocity behavior, We understand, therefore, that the greater

deviations of the measured values from those represented by Eq, (30)

r
(which appear towards the inside) have then a small effect.
As we have already shown, the deviations from the logarithmic distri-
bution take place in the sense of additive velocities, The actual velocities
are tﬁerefore higher than‘those of the logarithmic profile because the actual

turbulent friction coefficient is, for the most part of the cross-section of flow,

smaller than the friction coefficient of Eq. (30) on which the logarithmic law

A
r
parabola representing Eq. (30) up to a surface distance of -%;= 0.78, The

is based. As one can see from Fig, 5, the measured values lie below the

u . . u; '
additional velocity —;;% therefore has its maximum at -¥;= 0.78, Then 'Tﬁ% de~

creases again for still greater distances from the surface until the center is

reached because the actual exchange coefficient is greater in this region than

the coefficient of the logarithmic profile represented by Eq. (30).

5. FORMUIA FOR THE ENTIRE CROSS~SECTION
.wb have derived a formula in Section 3 qu. (lé)) which represents the
distribution of velécity reaching into the laminar bdundary layer, This distri~
bution of velocity extends internally to the logarithmic pxfile,

In Section 4 we have shown that the logarithmic profile is not exactly

valid in the middle region of the cross—section of flow, and we have calculited



f sl g i u; 5 <
/, additional velocities - appearing there (Eq. (27)). These additional

L od

!%;1ocities are defined so that instead of —E; " -giféi’ obeys the logarithmic
j""df law,
g;f We can therefore extend the region of validity of our boundary Eq. (18)
| to the.entire'cross~section of flow since we substituted u:;:i for ‘ﬁ% in

Eq. (18). If we discard the still somewhat uncertain numerical values for the

constants K , 7, , and b as well as the value of the term Cl= C—’—é—an

which is influenced by the shape of the cross~section of flow, we then obtain
u-u;

{ -, -b :
“wh= iUk + ¢, (1- e _%e 7). (32)

Further, if we introduce -g; from Eq. (27) then we obtain as a final

valid formula for the turbulent distribution of velocity for the entire cross~

section:
uo_ 15(1+ %) - -b
= 4 { Y ) o
wr = g [< +ky) tva (%)l Ci(1-e 7 % e ) i

As one can easily verify, this equation transforms into the Boundary

law Bq. (18) for small distances from the boundary (é@:cl ) . Otherwise the

cross~section Eq. (29) follows from Eq. (33) for high q’ values,

Submitted Aug., 28, 1950,
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