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Based on experimental investigations of turbulent exchange of momentum, 

an equation for the velocity distribution of turbulent flow in pipes and canals 

was developed. This equation gives a complete· representation of the velocity 

distribution; that is, it is valid for the region immediate to the boundary as 

well as for the middle part of the cross-section of flow. 

1. STATEMENT OF THE PROBLEM 

Thus far, investigations of turbulent flow in pipe s, canals, and 

plane surfaces have shown that the velocity profile approaches a logarithmic .. I 
distribution. The evaluat ion of these investigations with the aid of dime nsional I . 

I 
analysis results in the following turbulent boundary law: 

u'*- = 1... 1n -n + c u k ., ( 1) 

Here u is them ean velocity a distance y from · the surface, U *= ,./'(
0
/(J the 

velocity, 7 0 the wall shear, p the density of the medium, shear stress 
yu* 

7)= -- the ,v dimensionless distance from the boundary written in the form of a 

characteristic Reynolds numbe r, and 

C are constants. 

p. 
V=-. p 

I 
~ 

the kinematic viscosity • K and 
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The development of the above boundary law carries the assumption that 

the turbulent shear stress is practically of the same magnitude e~erywhere near 

the boundary as the wall shear ~0 • Equation (1) is therefore only valid for 

a thin layer near the boundary. On the othe r hand, this layer cannot be too 

thin because the turbulent condition disappears in the immediate vicinity of the 

boundary, if for no other reason than continuity. The theory . thus far is then 

limited on both sides to a small region. 

As is knownJ the boundary law is still valid for greater distances 

from the boundary where the turbulent shear 'Ct is considerably different from 

the wall shear stress 1r0 • This is without doubt of practical importance • 

However, when considered from the theoretical viewpoint, t he validitycr an 

equation outside the range of its basic assump tions is unsatisfactory as long 

as no sound physical explanation for this fact has been established. 

Only tO\'lard the middle of the cross-section of flo w noticeable deviations 

appear from the boundary law, and the actual velocities are greater than those 

calculated by Eq. (1). Even if these "additional velocities on the inne r 

region" (which we will designate by Ui ) are small , neve rthe less it is of 

fun~amental significance that here the dimensionless velocity does not only 
I .. I 

directly depend on ~ but also on the distance from the boundary. A satisfactory I . 
representation of these specific relationships on the inner region of the friction 

layer is as yet lacking. 
I 

The writer has therefore set before him the problem to fill in the 

previously discussed gaps of the theory. First, the boundary law shall be com-, 

pleted by representation of the distribution of velocity in the laminar boundary 

layer. Then we will clear up the dependence of the velocity of flow within the 

friction layer upon the distance from the boundary and/or center distance and 

describe this by an equation. 



We lu1it our considerations to the type of fully developed flow with 

pressure drop as is observed in pipes or canals. 

2. RJNDAMENTAL OBSERVATIONS 

If we speak here of a complete representation of the turbulent velocity 

profile, it does not mean a complete solution of the problem of turbulent distri-

bution of velocity. Exact solutions in turbulence research can only be given if 

and when the problem of turbulence is solved as such; that is, when (as, for 

example, in viscous flows) the physical problem can be traced back to purely 

mathematical assignments. The research in turbulence is, hov1ever, still far from 

this highest level of development. At the most, one can assist himself by work-

ing with hypotheses, the usefulness of which the experiment must decide. 

Of the efforts to date to lay a theoretical foundation in research of 

turbulence, (most important are) Prandtl's mixing length hypothesis and v. 

Karman's similarity hypothesis. As far as pipe flow is concerned, both hypotheses 

led to a nearly logarithmic distribution of velocity. We must, however, make 

clear that this boundary law is in no way a binding consequence of the theory 

about the pehavior of the eddies or about the similarity of eddy motion. The 

only . I 
t l 

I 
from 

I 

essential assumption for the numerical results was that the mixing length 

, defined by the expression~~~; , increases linearly with distance 

the boundary. This assumption seemed plausible but was, however, not a 

logical consequence of that hypothesis; so the scientific advancement did not 
I 

rest in the hypotheses themselves but in a plausible assumption of a helpful 

idea which could be verified by experiment. 

For further advancement of the theory it seemed to us practicable to 

avoid any speculative conside rations and to base the basic premise necessary 

for the derivations directly on experience. Through formulative reproduction 



(which is not accomplished without vision) of the test results, naturally a cer-

~ tain error is introduced in the arithmetic expression. In any case, such an in-

exactly reproduced condition is a better base for the theory than a purely 

hypothetical premise~ 

For the investigation at hand we will use the exchange coefficient A 

as an essential concept . It is defined by the equation 

du 
7't =Aa:y (2) 

where 'Z"t is the turbulent shear stress. 1 The turbulent mixing coefficient is 

the formula analog of the molecular coefficient of viscosity whose equation of 
du 

definition is 'tm=fl. dy The coefficient A does not only have a formal, 

but also an essentially physical meaning, because the question of relationship 

between the turbulent shear stress ~t and viscous shear stress 'l"m (that is, 

the r~lationship ft ) has a direct physical sense. Therefore in almost all tur-

bulence investigations, and especially so in the consideration at hand, A 

plays an essential role. 

We begin with our investigation using the following identity relation 

(3) 

~ ~ ~ - ~ ~ - - M ~ ~ - ~ - - ~ - ~ ~ - ~ - ~ - - - - ~ ~ - - - - ~ ~ 
1 I The application of the mixing length concept would be impractical because the 

:velocity gradient would not be eliminated by the representation of the relation-
' ship ~t/qm. Further, for the flows treated here, there appears the well 
' knovrri difficulty that the mixing length leads to a singularity in the axis of 
· symmetry. Considering the linear behavior of the shear stress as well as the 
velocity gradient (see Fig. 4) we have for the middle region 
, Pft/du rz 1 . (I="/ p/ dv ,.-...J z- ~ rz ' where z denotes the distance from 
the center. Y l therefore tends to infinity as z~O • 
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(The index 0 denotes the value of the velocity gradient appearing at the sur-

face relative to the viscous shear stress 'rm . ) 2 By verifying Eq ( 3) one is 

·easily convinced that the differential quotient of the dimensionless velocity by 

the dimensionless distance from the boundary signifie s nothing other than the 

relationship of the velocity gradient at p~sition y to the corresponding gradient 

at the wall. 

We introduce the total shear stress ~ 

'{ = 'l"m + '( . = ( A.t + A) du 
t r · dy (4) 

By substituting this equation into Eq (3) if; follows that 

(5) 

We can see from Eq (5) that the dimensionless distribution of ve locity 

depends on the parameters _5_ and 7 
t = A In the fully developed flow 

'to 'fm ~ 
with pressure drop, which we will consider in the following, 't/'70 is known and 

. y 
equal to 1-~ (where y is the distance to the boundary and r is the radius 

of the pipe or canal). Therefore, our problem reduce s itself to the question of 
\ 

dependence of the exchange coefficient on the distance t .o the boundary and 

Reynolds Number. 

As we already mentioned, we can no more calculate the exchange coef-
! 

ficient from the practically unexplored turbulence structure than we can calculate 
I 

the mixing length or any other helpful concept. We have the r e fore determined the 
A ru* dimensionless exchange coefficient P.1)r by experiment ( 1Jr= y ) . This 

~ - - H ~ - - - - ~ - ~ ~ ~ - -

2 From now on we omit the mean value dash above u if a confusion of u with 
the instantaneous value u = u + u' is not to be feared. 
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experimentally determined function (see Fig. 5} will enter our calculations 

later on. 

3. THE BOUNDARY IAW 

It is relatively easy to determine the exchange coefficient near the 

boundary from the measured distribution of velocity. Nilquradse 3 has already 

carried out such a determination of A • His measurements showed that near the 

boundary 

A =K 
JJ. 1Jr 

y 
r (6) 

(the proportionality coefficient K is about 0. 4). Farther away (approximately 

above X = 0.10) r 
A 

A t'fJr increases less than linearly with x_ 
r The investi~ 

gations of Nikuradse also give information about this behavior. (However, the 

values above f ~ 0. 8 are uncertain. (For more details see Section 4.)). 

Relative to the region of validity of Eq (6) nothing definite is known 

as far as small distances from the surface are concerned. It is only definite 

that Eq (6) can no longer be valid in the immediate vicinity of the boundary be-

cause the turbulent exchange there disappears for reasons of continuity, and the 

liquid moves laminarly paralel to the surface. 

Since the continuity is responsible for the suppression of the turbu~ 

lence at t he boundary, we can obtain a relation for the decay of A from the 

eq~ations of continuity. The conditbn for continuity of the velocity fluctuations 

u' (parallel to boundary) and v' (perpendicular to boundary) is as follows: 

ov' 
ay 

au' ----ax (7) 

- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -I 3 
1 J. Nikuradse, Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren. 

VDI-Forschungsheft 356, 1932 

-6-



u' we denote the relation --- by Ol , then we can express u' as: v: 

where at represents a function of time and the x coordinate. If we introdu ce 

Eq (8) into Eq (7), then follo ws : 

v' = _ oo<. (du) ox dy 0 
(9) 

Although we have to assume a linear increase of u' with y (corresponding to 

the linear increase of u with y ) as a first approximation, it follows from 

conditions of continuity that V ',..._ y 2 • From this it follows that 

(10) 

fer the turbulent shear stress. 

For the exchange coefficient in proximity to the boundary we then obtain: 

A = 0.25 o 0(,2 ( yu*)3 
P. o(~~ v 

(11) 

Accordingly, the exchange coefficient is proportional to 1]3 (to be sure, here 

we can make no statement about the magnitude of t he factor of proportionality). 

This signifies an extraordinarily low increase of A for small values of ~ 

The first as well as t he second derivative of A with respect to n disappear s 

as the boundary. Only the third derivative has a finite value.* 

- ~ - ~ - ~ ~ - M - - - - ~ - - - ~ ~ - - -

* Comments by the critics. 
In the derivation at hand the criticism is that the third fluctuation 

component w' was neglected. In this simplification, as Eq (11) shows, 

; ~ 1] 3 when ~~
2

"" ~~
12 

::j= 0 But this condition is oniy 
satisfied in flow which is not fully developed. 
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If the w' component is considered and fully developed flow assumed.1 
one obtains instead of Eq (11): 

_A _ 1 (~u') o ( ow'_'t 3 
A - 2 u* 2 '(aif 0 af ai/Jo 1J (lla) 

zu* ~ ' a (ovl) where ~ = v- The question arises whether (3 ~)0 and (J ~ o?J 0 
are correlated. In case these two expressions are entirely uncorrelat.ed, then 
it follows that the exchange coefficient does not increase with ~3 but with 

a higher power of lJ • 
We arrive then at the following result: If the behavior of the exchange 

coefficient in proximity to the boundary is represented by a power series of 
1J , then the 1J and 7} 2 terms drop out. The term of third degree 

exists only with certainty lor the flow not fully developed. 
The knowledge of the behavior of the exchange coefficient in the immediate 

vicinity of the boundary is of essential significance for the theory of he at 
exchange . In a recent paper about "The Influence of Flow near the Surface on 
the Turbulent Heat Exchange" the proportionality of the exchange coefficient 
with 113 was accepted. (Mitteilungen aus dem Max-Planck-Institute fur 
Stromungsforschung Nr. 3, 1950.) The small ~ values given there for very 
small ~ distances are poss ibly too large s1nce ~ possibly increases by 
higher than the 3·rcl power of TJ · • K. Elser in his paper, "Friction Temper-
ature Fields in Turbulent ·Boundary Layers" , postulates an essentially higher 
behavior of frictional turbulence near the surface. (Mitt. Inst. 
Thermodynamik ETH Zurich, H. 8 (1949). - .... -- _.. ..... ~ -- - - - - ~ - - -- - - ~ - - - - -

For the representation of ! as a function. of y or 7J we there-

fore need a function whose first and second derivative is 0 on the boundary. 
'-, 

On the other hand, this function, at some dist ance from the boundary, must change 

asymptotically to the linear b ehavior of k 17 • 

The function 

( 12) 

satisfies these two conditions . We will therefore use this equation as an expres-

sian for A ,u. • 

The constant n1 appearing in Eq (12 ) is a measure of the strength of 

the laminar boundary layer. n must be such that the calculated velocities of 
l 

the turbulent boundary flow coincide with the measured velocities (calcu lations 

are made by using Bq (12)). 



The behavior of ~ as given by Bq (12) is represented by Fig. 1 for 

K = 0.4 and YJ1 = 11 • 4 As we will show below, this value of 7'/1 leads to 

a value of 5.5 for the constant C of the logarithmic boundary law. 

By using Eq (12) and considering the fact that in fully developed f~w 

'C = "o ( 1- ~) it follows from Eq ( 5) 

d(?.) 
= 

d1j 
1- I. 

1' ( 13) • 
1 + K ( 7'J + ?J1 to.nh~1 ) 

The integration of this equation unfortunately cannot be performed with 

the help of the familiar operations. We must therefore look for aids. 

First of all, we can neglect the value of Y compared to r 1 because 

we are dealing in th1s chapter with processes near the boundary. Furthermore, it 

is advisable to separate a term 1 on the right side of Eq (13) in order 
(J + KYJ) 

integration by to make possible, at least, the parts. After carrying out this 

integration we then obtain: 

(14) 

Here f(7]) is defined by the equation: 

J 'I K >z, tan'id 'I 
0 ( 1 + K 17 - K ~~ t~ n~ ) (1 + K'J) 

(15) 

Also, the integration of Bq (15) is not practicable. However, we can replace, 

as an approximation, the integrand f 1(YJ) by the function 

~ " ~ ~ M ~ H ~ ~ - H ~ ~ ~ ~ ~ M ~ ~ ~ ~ ~ M - ~ ~ - - ~ ~ ~ M ~ -

4 As Fig. 1 shows, A < P. in the region '7<-::.::, 11 and A ::;:. ;« in the re .... 
gion 11 > ~ 11 • The dimensionless boundary distance r; ~ 11 is therefore 
a measure of the strength of that layer near the boundary in which the mole-
cular friction outweighs the turbulent friction. 



• I 

(16) 

through which the integration becomes possible. We than obtain for £1 

(17) 

Here constants C1 and b are to be determined from the boundary condition. 

If we replace [ in Eq. ( 14) by the approximation £1 as given in Eq. 

(17), then we obtain for high values of ~ (for which 1 is to be neglected 

compared to K1'j ) : 

u 1 1 v - = -1 n t?? + - ln n. + ct. U* K · 'I K (14a) 

Comparing this equation with Eq (1) which is valid for high values of 1] , then 

it follows that t-/1( Ink+ C1 = C • 

Using the usual values for f.{= 0.4 and C = 5.5, we obtain C1. = 5.5 + 2.3 = 7.8. 

The value of the constant 171 is dete rmined from the condition that 

the integral of Eq. (15) reaches the value 7. 8 by using high 'lJ values and 

f( = 0.4. We have graphically integrated and determined Eq• (15) for various 

I q
1 

values in such a manner that the boundary value of 7.8 is obtained when 
I 

1'] = 11. 

uses b = 0.33 • If we now introduce the above r esults into Eq (14), then we 

obtain as an approximation for the boundary law: 

u c' ) ( - '7/tt T) e-0.331']) 
~ == 2.5 ln l -~o o. 4 TJ + 7.8 1- e - 0 ( 18) 

-10-
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~ is represented in Fig. 1 for small ~ values and in Fig. 3(as a function 

of log l7 ) for somewhat large 7.1 values. The solid curves show the results 

of the graphical integration while the dotted curves give according to the 

approximate Bq (18). As one can see, no essential differences exist between the 

dimensionless velocities obtained by graphical integration and those obtained 

from the approximate solution. Somewhat larger differences exist at places be-

tween f' {solid) and f , . . 
, (dotted), as 1s seen 1n Fig. 2. This deviation is 

meaningless inasmuch as one is · not dependent on the approximate Bq (16) for any 

calculations in which the derivative of t is involved since the integrand of 

Eq (15) can be used directly. 

Compared with Bq (1), our Eq (18) has the advantage of describing the 

turbulent shear stress for every 7J value in the region near the boundary. 

While u to u"' · goes -oe with decreasing 7J as given by Bq ( 1), our Bq (18) 

in addition fulfills the condition of " = 0 when 1} = 0 0 

For very small finite values of 7J , it follows from Bq ( 18) that: 

u 1? = 17 

This is the linear increase in velocity in the laminar boundary layer . We achieve 

the same r esult from Eq (5) if we give A the value of 0 • This linear increase 

extends to 1) ~ 4 (see Fig. 1). From there on, the dimensionless velocity in-

creases less than linearly with ~ This velocity deviates more and more from 

the straight line with increasing ~ and eventually becomes logarithmic (at 

about 1'J = 100}. 

The smaller magnitudes of the velocity compared to the straight line 

relationship with 7J is caused by the appearance of turbulence . The influence 

of the turbulent friction is recognized not only ~y the ratio 

also by the relationship 

A 
A 

(Fig. 1), but 



l I 
I 

1+ _A_ 

""" 
( 19) 

which is represented in Fig. 2 by use of Bq. (12). As one recognizes from both 

figures, a noticeable turbulent friction is determinable only after 

where the dimensionless velocity deviates from the straight line relationship with 

• Where the transition into the logarithmic yelocity distribution occurs 

(at about ~ = 100), the part of the turbulent friction amounts to over 98°/o of 

the total shear stress. 

The observations as presented have only approximate validity since we 

do not know the exact manner of decay of the turbulent shear stress near the 

boundary. The velocity distribution represented by our Eq (18) should, however, 

not ~iate essentially from actuality because the boundary conditions for the 

mixing coefficient as well as velocity, both on the boundary and at greater disM 

tance from the boundary, were correctly satisfied. 

The experimental investigation of the boundary law for small values of 

~ is no simple problem because the velocity detectors (pitot tubes, hot wires) 

close to the surface and at very low velocities give errone~us indications, the 

sufficiently exact determination of which presents great difficulties. Measure-

ments of velocity under conditions of small ?7 values, which the author carried 

out in an earlier work5 , are represented in Fig. 3. As one can see, most of the 

measured points lie near the calculated curve. Somewhat larger deviations ap..,.. 

pear in hot-wire measurements carried out very close to the surface, and these 

measured velocities tend to be too low. 

5 H. Reichardt, Die Warmeubertragung in turbulenten Reibungsschichten~ 
Math. Mech 20 (1940}, S. 297. 

z. angew. 
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4. The Center Law 

Since in the middle part of a canal or pipe all processes are 

symmetrical with respect to the center plane and/or axis, it is advisable to 

lo~ate the origin of the coordinate system in the center plane or axis • . Let 

the distance from this origin be· z • z varies from r to ... r The boundary 

.may be located to the left of the center at a distance z = r • We represented 

the distribution of velocity in the vicinity of this boundary by the equation 

mentioned above. Therefore z = r ~ y or y = r - z • 

In the middle region the molecular viscosity can be neglected when 
d dz compared to the turbulent exchange. If we replace _J! by in our funda-r r 

mental equation (Eq 5}, then we obtain 

d(7.) r 

d(;) (20) 

Our experiments give information about the dimensionless exchange co-

efficient • We could determine the exchange coefficient fairly accurately 

in the middle region (See Figs. 4 and 5) 6 through direct measurement of the 

differential quotient of the stagnation pressure. by using a double pitot-tube. 

These experiments may be approximately and uniformly represented by the following 

equation: 

A 
(21) 

- M ~ ~ H ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M ~ - - ~ 

6 In Fig. 4 ¢> = uii • The measurements were made in the middle vertical 
cross .... section of a111~~ctangu lar canal 24.6 em in height and 98 em in width. 

_ ...... 



If we introduce this relation into Eq (20) and observe that in fully 

_. .,~ Joped flow ~ == J- ~ = ~ , it follows: 

+ C.Dt1Sf. 

rhe integration gives 

[ 
J-(~)2 J 

= Jn ) 2 + eonsf. 
0.5+ (~r 

We determine the constants for the center plane and/or axis, where 

_;_ ~ 0 and U =- Ltm by r 

(22) 

(23) 

(24) 

This formula represents the entire velocity distribution of flow for 

the cross-section except for the thin layers close to the boundaries in which the 

molecular friction plays an essential part. In Eq (24) no distance to the boundary 

is involved and only the distance z from the c~nter appears. This distance 

represents the plane of symmetry and/or axis of symme try of ·the velocity p~rofile, 
I 

and therefore we have here to do with a genuine "Center Law." 
I 
I 

. I To test Eq (24) the author. carried out measurements of yeloci ty (see 

footnote 6). These measurements were presented in the form prescribed by Eq (24). 
I 

As ,Fig. 6 shows (in which instead of the natural logarithm the logarithm to the 
I 

base 10 appears) the measured points lie on or in the vicinity of a straight line 

having a slope of 5.75 (this corresponds to a slope of~= 2.5 by using ·the 

natural logarithm). · From the lower scale for ; we can see that the center law 

Eq (24) · is valid past ( ;) ~ 0. 9 ; that is, into the cfose vicinity of the boundaries. 

-14-



For small values of z -r the logarithm in Eq (24) may be replaced by a 

series, and one can write 

---.3..--(~r )2 K am 
u* 

(J = 1 -

Thus we obtain for the middle part a parabolic form of the velocity profile. 

In Fig. 4, which shows the distribution of velocity u 
~=- for 

Um 

(25) 

U ::: 15.2 em/sec. 1 the parabolic profile of Eq (25) is shown dotted. As one can 

see, the parabola and the top of the measured velocity profile are almost identical. 

The parabolic shape of the top of the profile is due to the fact that 

the friction coefficient barely changes in the middle part of the cross-section 

of flow (for small ~ r it follows from Eq (21} ~ ~ ~ 
A '1 r """ 6 

). This condition 

is also recognized directly from the actual linear behavior of the velocity 

- gradient in the middle cross-section of flow. Because 'f::::Adli=7:.~ dz o r , the 

dii 1inearity of dz is an irldication of the constancy of the exchange coefficient. 

_It is typ&cal for the turbulent profile s that with increasing distances 

from the center the velocity gradient first increases slowly, as can be seen in 

Fig. 
1
4. In the center region ( j ; J <..0.7) the mea~ured points. ~~~ \ lie below 

the observed linear relationship shown as a dotted line. This variation of the 
. I 

profile from a straight line with increasing z, which manifests itself in the 
! 

flattening of the veloc~ty profile compared to the parabola, occurs because of the 

incret se in the value of the exchange coefficient (A........, ~~ ~~ ) (see Fig. 5}. 

This coefficient has its maximum when z r ~ o.5o as Nikuradse has already deter-

mined (see above). Here lies, therefore, also the minimum of the d 
2
¢ profile 

dz2. • 
i . We will now represent the ca lculated velocity distribution Eq (24) as 

a function of a boundary distance and for this purpose introduce the distance y 

from the left boundary into Eq (24). Since y = r-z, we than obtain: 



z u- Um 

u* 1n r 1 +- J 
l+2(~J . 

(26) 

If here we omit the second term, we then obtain the center law in its present 

form. 

For further transformation of Eq (26} we define a dimensionless addi~ 
u· tional velocity u:A: by the following equation: 

ui =.!..ln[ o.s(l-y) J. (27) 
~ I< 1+2(;.)~ 

Furthermore, . . r u* 1ntroduc1ng ?? = -- into Eq (26) and denoting the value of U 
~'r v 

in the center by Ujm it follows: 

u . 
-- 1 1 1J * - n -u K 

tAm 1 u. 
- - - 1n n - --...!.!R u* /( ·1r u* (28) 

On the right side of this equation are the const ants which the individual terms 

on the left side reach in the center of the pd!pe or canal. Since the righ t 

side of Eq (28) is constant, we can also write 

' 
u 11 ui + c- J ~ - [ J.s(J+;r) J 
~=/( n~+---;-;v -- n YJ +C 
U u K J + 2 (~)z. (29) 

I . I 
where 

I 
e denotes a constant to be determined experimentally. 

Through the introduction of the dimensionless boundary distance ~ into 

our center formula .: Eq (24) we arrive at an equation which i s different from the 
I 

conventional boundary law equation by the additional term Ui This term, 
U* 

which depends only on the coordiavte z and/or y but not u*" or 1} r on ' r 
reflects the deviation of the velocity distribution from the logarithmic profile. 

If one sets K= o. 4 u,· into Eq (27), then 
~ 

~16-

t akes the form shown in Fig. 5. 



As Fig. 5 shows, the additional velocities are small. The maximum value 

Ui h' h 1' t ti* , w 1c 1es a Y~ 0.78, amounts to 1.28. From there on ~ decrease 
tl 

rapidly until it reaches the value 1.01 in the center. This behavior is naturally 

only valid for the case a the fully developed flow with pressure drop as treated 

here. If one would calculate a corresponding function for the boundary layer of 

the smooth plate, then one would (judging from the measurement of Schultz~Grun w7 ) 

obtain twice as high values of Ui -u* • These higher additional velocities ob-

viously have their foundations in the decay of the turbulent exchange at the transi~ 

tion of .the boundary layer flow into the outer potential motion. 
U· 

The peculiar form of the function U~ explains the well known 

slightly curved sect.ions of the velocity distribution which the test data, within 

the cross-section of flow, indicate when plotted semi-logarithmically. These 

deviations from the logarithmic straight line disappear when instead of u 
u* , 

is plotted as a function of log ~ This is brought out in Fig . 7, 

where the velocity measurements appearing in Fig. 6 are repeatedly plotted in 

the manner just described. In contrast to the test data, the U -Ui 
u.*"" 

points form an entirely straight line, indicating the usefulness of the formula 

for 

As Fig. 7 shows, the points lie somewhat below the straight 

dotted line which has the slope 2.3 y= 5.75 and cuts the abscissa at the point 

C = 5.5 • We have to withhold an exact determination of C and K from · 

the measurements at hand because the u* value s determined from the pressure 

gradient are too inexact for this problem8 • 

T 

8 

.... ~ ~ - - - ..... .... 
F. Schultz-Grunow, Neues Reibungswiderstandsgesetz fur glatte Platten. 
Lufo 17 (1940), s. 239. 

The question of whether and to what degree the constants A( and C depend 
on the cross-section of flow can only be cleared up through further experiments • 

.. J7-



I 
,.tt present we can only say that the use of the term u· _l has fundamentally · intro~ 

U*' 

duced a certain change in the values . of the constants C and K . Looking 

forward, one can retain the value K = 0.4 and use a reduced value of C • 

Also, in the new plot there is still a certain scattering of data pre-

sent as is indicated in Fig. 7. These undulations are only partly accountable 

through errors in measurement and/or mean value formation. Because of certain 

deficiencies of the experimental set-up (disturbances in the upstream flow) at 

times the velocity profiles were not entirely symmetrical.. These disturbances 

affected the measurements. Something else is still to be reflected upon. 

Our measurements represented in Fig. 5 of show a certain depen-

dence of this function on the Reynold's number and/or If this observa~ 

tion should be true, then our simple equation (21) (whose right side is inde-

pendent of ~r ) would be fundamentally inadequate for an exact representation 

of the turbulent profile. Although extraordinarily important in principle, this 

'question should, however, play no role, since even through such a conside rable 

change of the theory as it is indicated in our expression (21) only the following 

fact could be brought out: namely, that the deviations from the logarithmic 

velocity distribution in the middle region of the cross-section of flow a·re minor. 

We have yet to answer the important question: why is the logarithmic 

shape of the velocity profile so dominant even though the logarithmic law should, 

according to hypothesis, be valid only for the direct vicinity of tne boundary? 

This peculiar condition rests in the fact that in the cld theory two factors were 

neglected which, when they are considered, cancel each other in part. The one 

factor is the decrease of the shear stress with the distance from the boundary, 

and the other is the deviation of the exchange coefficient from the assumed 

linear increase at the boundary. 
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To show this, we introduce into our fundamental equation (5) (in 

1 ~ompared to A p is to be neglected) 5_ == 1 -
'lo r 

y 
(instead of the former 

1), as well as 

_A_ =K _L(l- L) p 'Yir r r 

instead of the formerly used expression 
. y 
K-. r 

t- L 

(30) 

• We then obtain 

;:: l' - (31) 
KL(1-L) r r 

Since here J- Y can be abbreviated, this equation means that the logarithmic 
r 

distribution of velocity would be exactly valid to the center of the cross-section 

of flow if Eq (30) were valid for the exchange coefficient. In any case, the 

deviations of the actual distribution of velocity from the logarithmic profile 
I 

can be traced back to the departures of the measured values from the 

function described by Eq. (30). 

To be able to evaluate these differences we have also plotted the 

function of Eq. (30) in Fig. 5 (see the dotted parabola). As one can see, this 

parabola shows the tendency of the behavior of the excha~ge · coefficient much 

better than the constantly increasing straight line K ~ • In spite of con-

siderable deviations in spots from the measured points, the parabolic behavior 

in the vicinity of the boundary represents a proportbnally favorable approach 

to the actuality (reaching about as far as ~ = O.i5). But at this distance from 

the boundary the flow has already reached a considerable velocity ( u ~ 0.1Um.,.x). 

The development of the velocity is completed for the most part in a zone in which 

the logarithmic distribution is fairly valid. 



r 
I 

J 
u The rest of the development of the velocity (0. 7 < Urn< 1) extends 

,:trer a great range (0.15 < ;. < 1~ • In the middle cross-section of flow the 

; yelocity profile is then relatively flat. But the smaller the velocity gradient 

is, the weaker also is the influence of the value of the exchange coefficient on 

the rest of the velocity behavior. We understand, therefore, that the greater 
-deviations of the measured values from those represented by Eq. (30) 

(which appear towards the inside} have then a small effect. 

As we have already shown, the deviations from the logarithmic distri~ 

bution take place in the sense of additive velocities. The actual velocities 

are therefore higher than those of the logarithmic profile because the actual 

turbulent friction coefficient is, for the most part of the cross-section of flow, 

smaller than the friction coefficient of Eq. (30) on which the logarithmi~ law 

is based. As one can see from Fig. 5, the measured A 
A 'f/r 

values lie below the 

parabola representing Eq. (30} up to a surface distance of y 
-y= 0. 78. The 

U· 
additional velocity ~ therefore has its maximum at u 

y 
y-=0.78. 

U· 
Then ~ de-u 

creases again for still greater distances from the surface until the center is 

reached because the actual exchange coefficient is greater in this region than 

the coefficient of the logarithmic profile represented by Eq. (30). 

5. FORMUlA FOR THE ENTIRE CROSS-SE<:;!TION 
! 

We have derived a formula in Section 3 (Eq. {lS}) which represents the 

di1stribution of velocity reaching into the laminar boundary layer. This distri-

bj tion of velocity extends internally to the logarithmic prrfile. 

In Section 4 we have shown that the logarithmic profile is not exactly 

valid in the middle region of the cross-section of flow 1 and we have calculated 

-20-



ui 
1 addi tiona! velocities •• * appearing there (Eq. ( 27)). These additional 

I 1~ """ 

' u .,e1ocities are defined so that instead of u*, obeys the logarithmic 

1aw. 

We can therefore extend the region of validity of our boundary Eq. (18) 

to the entire · crossMsection of flow since we substituted u- Ui 
u* for ..!!.. in u* 

Eq. (18). If we discard the still somewhat uncertain numerical values for the 

constants K, , and b as well a~ the yalue of the term C = C -..Ltn k 
l K 

which is influenced by the shape of the cross-section of flow, we then obtain 

(32) 

Further, if we introduce from Eq. (27) then we obtain as a final 

valid formula for the turbulent distribution of velocity for the entire cross-

section: 

(33) 

As one can easily verify, this equation transforms into the boundary 

law Eq. ( 18) for small distances from the boundary ( ~ ~ 1 ) • Otherwise the r 

cross-section Eq. (29) follows from Eq. (33) for high ~ values. 

Submitted Aug. 28, 1950. 
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