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ABSTRACT OF DISSERTATION

TOWARDS AN EFFICIENT VULNERABILITY ANALYSIS METHODOLOGY FOR

BETTER SECURITY RISK MANAGEMENT

Risk management is a process that allows IT managers to balance between cost of the

protective measures and gains in mission capability. A system administrator has to make

a decision and choose an appropriate security plan that maximizes the resource utiliza-

tion. However, making the decision is not a trivial task. Most organizations have tight

budgets for IT security; therefore, the chosen plan must be reviewed as thoroughly as

other management decisions.

Unfortunately, even the best-practice security risk management frameworks do not

provide adequate information for effective risk management. Vulnerability scanning and

penetration testing that form the core of traditional risk management, identify only the set

of system vulnerabilities. Given the complexity of today’s network infrastructure, it is not

enough to consider the presence or absence of vulnerabilities in isolation. Materializing a

threat strongly requires the combination of multiple attacks using different vulnerabilities.

Such a requirement is far beyond the capabilities of current day vulnerability scanners.

Consequently, assessing the cost of an attack or cost of implementing appropriate security

controls is possible only in a piecemeal manner.

In this work, we develop and formalize new network vulnerability analysis model.

The model encodes in a concise manner, the contributions of different security conditions

that lead to system compromise. We extend the model with a systematic risk assessment
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methodlogy to support reasoning under uncertainty in an attempt to evaluate the vulnera-

bility exploitation probability. We develop a cost model to quantify the potential loss and

gain that can occur in a system if certain conditions are met (or protected). We also quan-

tify the security control cost incurred to implement a set of security hardening measures.

We propose solutions for the system administrator’s decision problems covering the area

of the risk analysis and risk mitigation analysis. Finally, we extend the vulnerability as-

sessment model to the areas of intrusion detection and forensic investigation.

Nayot Poolsappasit
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

Summer 2010
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Chapter 1

INTRODUCTION

Every organization has objective, asset, and mission to protect. These days, all or-

ganizations make use of automated information technology (IT) systems to process their

missions for greater benefits. The head of an organizational unit must ensure that the

organization has the capabilities needed to accomplish its missions. From the security

perspective, the organization needs the capabilities that allow it to maintain the desired

level of security in the face of real world threats. Risk management plays a critical role

in determining the security capabilities to protect an organizations information assets and

carry on its missions from IT-related risks. An effective risk management is an essential

part of a successful IT project.

Risk management is a process that allows IT managers to balance between cost of

the protective measures and gains in mission capability. A system administrator has to

make a decision and choose an appropriate security plan that maximizes the resource

utilization. However, making the decision is not a trivial task. Most organizations have

tight budgets for IT security; therefore, the chosen plan must be reviewed as thoroughly

as other management decisions.

Risk management is broken into three components namely risk assessment, risk mit-

igation, and evaluation. Risk assessment is a process of determining the extent of negative

impacts associated with the system. The output of this process helps decision maker to

identify appropriate controls for reducing the risk in the risk mitigation process. Risk

mitigation consists of several analysis methodologies which are used to prioritize risk

and choosing the appropriate risk-reducing measures. The evaluation process includes a
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process of risk acceptance which requires senior management to sign a statement accept-

ing the residual risk and authorizing the security hardening operation. A well-structured

risk management methodology, when used effectively, can help management identify ap-

propriate controls for providing the mission-essential security capabilities.

In summary, risk management is the process of identifying risk, assessing risk, and

taking steps to reduce risk to an acceptable level. Security Risk Management plays a

vital role in protecting information, assets, business missions, and secrets from potential

risks. Although each of these processes is equally important but we can not deny that the

success key in IT security relies on the perfection of risk identification process. Unfor-

tunately, even the best-practice risk management framework does not provide adequate

information for effective risk management. More specifically, most traditional security

risk management process ultimately boils down to only vulnerability identification for

identifying the list of system vulnerabilities. Given the complexity of today’s network

infrastructure, it is not enough to consider the presence or absence of vulnerabilities in

isolation. Materializing a threat strongly requires the combination of multiple attacks us-

ing different vulnerabilities. Such a requirement is far beyond what typical vulnerability

scanner can give.

1.1 Problem Statement

The goal of vulnerability identification is to determine an extent of negative impacts

associated with the system. The output of this process helps decision maker to identify

appropriate controls for reducing the risk in the risk mitigation process. Typically, vulner-

ability assessment relies heavily on developing a list of system vulnerabilities using vul-

nerability scanner or penetration testing. My research shows that the traditional practice

has at least two major drawbacks. First, traditional vulnerability scanners merely identify

a list of individual vulnerabilities but are unable to depict the correlations between these

vulnerabilities. Modern day attacks rely on exploiting multiple vulnerabilities in a cor-

related manner. Given the complexity of today’s network infrastructure, it is not enough
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to consider the presence or absence of vulnerabilities in isolation. Second, the value of

the penetration testing relies on the thoroughness of the testing scenarios, testing level,

and expertise of the testers. Penetration testing as practiced today is not a systematic

approach and does not guarantee completeness. Consequently, since the risk mitigation

analysis takes the input from the vulnerability assessment, then the cost-benefit analysis

would be mostly flat in structure. Then the choice of security controls would then be

determined by uncorrelated knowledges which do not describe the actual root cause of

security risk.

What is needed is a systematic approach that models threats against the system.

The model should allow system administrators to understand the actual outline of the

network vulnerability and help them manage the risk in a proper manner. Researchers

have proposed many vulnerability models using paradigms like attack graph [12, 38, 50,

62, 65] or attack tree [25, 43, 52, 60] to identify attack scenarios. But merely determining

possible attack scenarios is not enough to help the system administrators make appropriate

decisions. They are more interested in determining the best strategy to strengthen the

system. Keeping this in mind, I propose the security model that not only captures ways in

which the system can be attacked but also supports the calculations in risk analysis. The

proposed model uses the concept of attack tree paradigm.

1.2 Research Goals and Contribution

Towards an Efficient vulnerability analysis methodology, there are three goals of the

study.

1. To formalize the systematic model of the vulnerability assessment that outlines the

universe of possible consequences following a successful attack. In addition, we

wish to instantiate this abstraction to obtain a systematic method that automates the

vulnerability assessment process.
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2. To develop the pragmatic risk mitigation methodology to assist the security deci-

sion. In particular, we are interested to solve the system administrator’s dilemma in

choosing the best security hardening strategy that maximizes the resource utiliza-

tion as an optimization problem and progressively transform it into the next to cater

to more cost-benefit information as may be required by the decision maker.

3. Finally, we wish to evaluate the possibility of utilizing the proposed abstraction in

the area of intrusion detection and forensic investigation.

Toward this end, this work makes five major contributions. First, it refines and for-

malizes the notion of network vulnerability assessment model so as to encode the contri-

bution of different security conditions leading to system compromise. Second, it extends

the assessment model to encode with the systematic risk assessment analysis to support

the reasoning framework under uncertainty in an attempt to predict the vulnerability ex-

ploitation probability. Third, it proposes a cost model to quantify the potential loss and

gain that can occur in a system if a certain condition are met (or protected). The model

also quantifies the security control cost incurred to implement a set of security hardening

measures. Forth, it proposes solutions for the system administrator’s decision problems

covering the area of the risk analysis and risk mitigation analysis. Fifth, it extends the

vulnerability assessment model to the areas of intrusion detection and forensic investi-

gation. Last but not the least we discuss our thoughts and observations regarding to the

assessment model, in particular the critical sections and robust solutions, with a belief

that such this observation will help the system administrator decide what methodology to

adopt.

1.3 Dissertation Outline

The proposal is organized as the following. Chapter 2 presents the background of

risk management process covering risk assessment, risk mitigation, and ISMS security
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best-practice. Chapter 3 presents the literature review. It covers the related works in

the areas of vulnerabilities model, assessment methodologies, intrusion detection, and

forensic investigation. In Chapter 4, I give the test-bed network to illustrate the problem

and address technical challenges in designing security hardening strategies. The network

security risk assessment model is formulated in Chapter 5 and Chapter 6 describes an ap-

proach to represent and generate attack model given vulnerabilities and network topology

information. In the Chapter 7, we formulate the problem of security risk analysis and

develop a systematic approach to solve the problem using genetic algorithm and an attack

tree model of the system. The risk model lends itself to optimal cost-benefit analysis in

finding effective solutions for security hardening. Chapter 8 proposes dynamic risk as-

sessment framework using Bayesian networks to enable a system administrator quantifies

the chances of network compromise at various levels and shows how to use this infor-

mation to develop a security mitigation and management plan. In Chapter 9 we develop

an algorithm for intent-based intrusion detection system to detect threats from malicious

insiders who can execute perfectly legitimate operations to compromise the system. The

algorithm generates minimal forms of an attack tree customized for each user such that

it can be used efficiently to monitor the users activities. If the users activities progress

sufficiently up along the branches of the attack tree towards the goal of system compro-

mise, the system can correctly predict the outcome and timely generates an alarm. Finally,

chapter 11 summarizes the whole research and outlines the significants of network risk

models and risk management process in supporting capabilities that allow IT business to

maintain the desired level of security in the face of real world threats.



Chapter 2

BACKGROUND ON RISK MANAGEMENT

Risk management is a process that allows IT managers to balance between costs of

protective measures and gains in mission capabilities. The objective of performing risk

management is to enable the organization to accomplish its mission by increasing the

security level of the IT systems, enabling management to make well-informed risk man-

agement decisions to justify the expenditures that are part of an IT budget and assisting

management in authorizing or accrediting the IT systems on the basis of the supporting

documentation resulting from the performance of risk management.

Risk management is broken into three major components namely risk assessment,

risk mitigation, and evaluation. Each can be briefly described as follow.

2.1 Risk Assessment

Risk assessment is a process of determining the extent of negative impacts associated

with the system. The output of this process helps decision maker identify appropriate

controls for reducing the risk in the risk mitigation process. NIST SP800-30 [64] divides

the risk assessment process into nine steps listed as follow:

Step 1 System Characterization: Identify the boundaries of the IT system along with

the resources and the information that constitute the system. The goal of this step

is to establish the scope of the risk assessment effort, delineate the operational au-

thorization (or accreditation) boundaries, and provide information (e.g., hardware,

software, system connectivity, and responsible division or support personnel) es-

sential to define the risk.
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Step 2 Threat Identification: Identify the potential threat-sources, motivations and ac-

tions. The goal of this step is to realize the threat model by listing potential threat-

sources along with the motivations and actions that are applicable to the IT system

being evaluated.

Step 3 Vulnerability Identification: Identify the flaws or misconfigurations that can be

accidentally triggered or intentionally exploited. The goal of this step is to develop

a list of system vulnerabilities that could be exploited by potential threat-sources.

Step 4 Control Analysis: The goal of this step is to analyze the security measures that

already been implemented or planned to be implemented by the organization to

minimize or eliminate the likelihood of a threat’s exercising a system vulnerability.

Step 5 Likelihood Determination: Estimate the overall likelihood rating that indicates

the probability that a potential vulnerability may be exploited under the threat envi-

ronment (threat-sources, nature of vulnerability and level of security controls). The

likelihood can be expressed as high, medium and low. NIST gives the descriptions

of these quantitative measure in Table 2.1.

Likelihood Level Definition
High The threat-source is highly motivated and sufficiently capable, and controls to

prevent the vulnerability from being exercised are ineffective.
Medium The threat-source is motivated and capable, but controls are in place that may

impede successful exercise of the vulnerability.
Low The threat-source lacks motivation or capability, or controls are in place to

prevent, or at least significantly impede, the vulnerability from being exercised.

Table 2.1: Likelihood Definitions (Source G. Stoneburner et. al.,“Risk Management
Guide for Information Technology Systems”, NIST SP 800-30, 2002).

Step 6 Impact Analysis: Estimate the level of risk by determining the adverse impact

resulting from a successful threat exercise of a vulnerability. This information can

be obtained from existing organization documents, such as the mission analysis re-

port or asset criticality assessment report. A mission analysis prioritizes the impact
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levels associated with the compromise of information assets. An asset critical-

ity assessment identifies and prioritizes an organization’s information assets (e.g.,

hardware, software, systems, services, and related technology assets) that support

the organization’s critical missions.

Step 7 Risk Determination: The final determination of mission risk is derived by mul-

tiplying the ratings assigned for likelihood and impact. The purpose of this step is

to assess the level of risk to the IT system.

Step 8 Control Recommendations: The control recommendations are the results of the

risk assessment process and are inputs to the risk mitigation process. During this

step, the recommended procedural or technical security controls are identified to

reduce the level of risk to an acceptable level. It should be noted that not all possible

recommended controls can be implemented to reduce loss. A security administrator

has to assess the security controls by conducting a cost-benefit analysis to verify

that the costs of implementing the controls are worth for the investment. The cost-

benefit analysis is covered in risk mitigation analysis.

Step 9 Results Documentation: Once the risk assessment has been completed, the re-

sults should be documented in an official report or briefing to help decision makers

reach decisions on policy, procedural, budget, and system operational and manage-

ment changes.

2.2 Risk Mitigation

Risk mitigation involves prioritizing, evaluating and implementing the appropriate

risk-reducing controls recommended from the risk assessment process. Risk mitigation

can be achieved through any of the following options:

• Research and Acknowledgment: To acknowledge the potential vulnerability or flaw

and researching controls to correct the vulnerability
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Figure 2.1: Risk Assessment Methodology Flow Chart (Adapted from G. Stoneburner
et. al.,“Risk Management Guide for Information Technology Systems”, NIST SP 800-30,
2002)
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• Risk Avoidance: To avoid the risk by eliminating the risk cause and/or consequence

(e.g., forgo certain functions of the system or shut down the system when risks are

detected)

• Risk Limitation: To limit the risk by implementing controls that minimize the ad-

verse impact of a threat’s exercising a vulnerability (e.g., use of supporting, preven-

tive, detective controls)

• Risk Tolerance: To implement controls to lower the risk to an acceptable level and

accept the remaining risk that can potentially cause damages while continuing the

operation of the IT system.

• Risk Transference: To transfer the risk by using other options to compensate for the

loss, such as purchasing insurance.

The goal of risk mitigation is to consider in selecting any of these options. Certainly,

it may not be practical to address all identified risks, so priority should be given to the

vulnerabilities that have the potential to cause significant mission impact or harm. Also,

in safeguarding an organization’s missions and its IT systems, each organization has its

own environment and objectives. Hence, the option(s) used to mitigate the risk and the

methodologies may vary. The following are steps toward the risk mitigation analysis.

Step 1 Prioritize Actions: Based on the risk levels presented in the risk assessment re-

port, the implementation actions are prioritized. In allocating resources, top priority

should be given to risk items with are dangerously high. These items will require

immediate corrective actions to protect an organization’s interest and mission.

Step 2 Evaluate Recommended Control Options: The controls recommended in the

risk assessment process may not be the most appropriate and feasible options for

a specific organization and IT system. During this step, the feasibility (e.g., com-

patibility, user acceptance) and effectiveness (e.g., degree of protection and level of
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risk mitigation) of the recommended control options are analyzed. The objective is

to select the most appropriate control option for minimizing risk.

Step 3 Conduct Cost-Benefit Analysis: To aid management in decision making and to

identify cost-effective controls, a cost-benefit analysis is conducted. Cost-benefit

analysis is the process that allows system administrators to find a trade-off between

the cost of implementing security hardening measures, and the gains in mission

objectives results from implementing the security control. With cost-effectiveness

in mind, system administrators can find out how to spend the resources to strengthen

the system to balance the operation and economic cost of protective measures and

achieve gains in mission capability.

Step 4 Select Control: On the basis of the results of the cost-benefit analysis, manage-

ment determines the most cost-effective control(s) for reducing risk to the organi-

zation’s mission. The controls selected should combine technical, operational, and

management control elements to ensure adequate security for the IT system and the

organization.

Step 5 Assign Responsibility: Appropriate persons who have the appropriate expertise

and skill-sets to implement the selected control are identified, and responsibility is

assigned.

Step 6 Develop a Safeguard Implementation Plan: The safeguard implementation

plan prioritizes the implementation actions and projects the start and target

completion dates. This plan will aid and expedite the risk mitigation process.

Step 7 Implement Selected Control(s): Executing selected controls in the safeguard

implementation.

Depending on the situations, the implemented controls may lower the risk level but

not eliminate the risk. The remaining risk after the implementation of security controls is
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called “residual risk”. Hence, the residual risk is an outcome of the risk mitigation analy-

sis. Figure 2.2 shows the flowchart of risk mitigation process. Note that, as mandated by

OMB Circular A-130 [9], the intent of this process is to identify risks that are not fully

addressed and to determine whether additional controls are needed to mitigate the risks

identified in the IT system. For federal agencies, after the appropriate controls have been

put in place for the identified risks, organization’s senior management needs to sign a

statement accepting any residual risk and authorizing the operation of the new IT system

or the continued processing of the existing IT system. If the residual risk has not been

reduced to an acceptable level, the risk management cycle must be repeated to identify a

way of lowering the residual risk to an acceptable level.

2.3 Risk Evaluation

This section emphasizes good practice and need for an ongoing risk evaluation and

assessment and the factors that will lead to a successful risk management program. In

most organizations, the network itself will continually be expanded and updated, its com-

ponents changed, and its software applications replaced or updated with newer versions.

In addition, personnel changes will occur and security policies are likely to change over

time. These changes mean that new risks will surface and risks previously mitigated may

again become a concern. Thus, the risk management process is ongoing and evolving.

As mandated by OMB Circular A-130, the risk assessment process must regularly repeat

at least every three years for federal agencies. Following the best practice, risk manage-

ment should be conducted and integrated in the Software Development Life Cycle of IT

systems, not because it is required by law or regulation, but because it supports the or-

ganization’s business objectives or mission. A successful risk management program will

rely on (1) senior management’s commitment; (2) the full support and participation of the

IT team; (3) the competence of the risk assessment team, which must have the expertise

to apply the risk assessment methodology to a specific site and system; (4) the aware-

ness and cooperation of members of the user community, who must follow procedures
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Figure 2.2: Risk Mitigation Methodology Flow Chart (Adapted from G. Stoneburner
et. al.,“Risk Management Guide for Information Technology Systems”, NIST SP 800-30,
2002)
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and comply with the implemented controls to safeguard the mission of their organization;

and (5) an ongoing evaluation and assessment of the IT-related mission risks. A well-

structured risk management methodology, when used effectively, can help management

identify appropriate controls for providing the mission-essential security capabilities.



Chapter 3

RELATED WORKS

Figure 3.1: Research Areas in Security Risk Management

Security risk management research is a complex area. It encompasses four aspects

namely risk assessment, risk mitigation, security best-practice, and security technology.

There are many research groups behind the development of security risk management

research. This chapter presents works in the areas that are relevant to our research. We

organize this chapter into four major areas including risk modeling, risk assessment anal-

ysis, intrusion detection, and forensic investigation.
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3.1 Risk Modeling

Most traditional risk analysis frameworks rely heavily on the list of vulnerabili-

ties obtained from the vulnerability scanner tools. A number of commercial and non-

commercial scanning tools such as SAINT, Nessus, and Snort [6, 7, 29, 54, 70] evaluate

the security risk of a network by developing a list of vulnerabilities per host basis. When

evaluating the security of a network, it is not enough to simply consider the presence or

absence of vulnerabilities in isolation. The major disadvantage of the vulnerability list is

that it does not consider the network properties. Therefore, it cannot correlate local vul-

nerabilities to depict the global vulnerability introduced by the interconnections between

hosts.

Graph-based models have been proposed to address this problem. Graph-based mod-

els have gained more acceptance as the method allows analysts to analyze the threats from

both outside and inside of the network. In addition, Graph-base models can analyze risk

to a specific network asset, or examine the universe of possible consequences follow-

ing a successful attack. The system could be used to test the effectiveness of making

configuration changes, implementing an intrusion detection system, etc. Among these

representations, attack graph [37, 50, 53, 55, 63] and attack tree [31, 23, 60] are the two

most general accepted models. Attack graphs depict ways in which an adversary exploits

system vulnerabilities to achieve undesirable states. Paths in an attack graph represent

different attack scenarios which attackers may use to achieve undesirable states (e.g. sys-

tem compromise, DOS, information leakage, etc.). Node in attack graphs represents an

individual attack.

On the other hand, attack trees have been proposed as a systematic method to spec-

ify system security based on varying attacks. An attack tree helps organize intrusion

and/or misuse scenarios by utilizing known vulnerabilities in the system, analyzing sys-

tem dependencies, and representing these dependencies in the form of an And-Or tree.

An often-cited criticism of attack trees (vis-a-vis attack graphs) is that they are not able
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to model cycles and time dependencies. However, we believe that this criticism is valid

only in cases where attack trees are used to represent a sequence of operations leading

to attacks, not when it is used to represent the dependency of system states. Another

criticism on attack trees is that they tend to become more unwieldy than attack graphs.

Our argument on this criticism is that both attack trees and attack graphs have their own

advantage and disadvantage. In fact, it is merely a different view of the network security

risk model. Therefore, it is not possible to make a sound judgment as to which model is

better. An appropriate model is chosen by the favor and nature of usage.

3.2 Risk Assessment Analysis

The management of IT security risk is a major concern to organizations and govern-

ments worldwide. A lot of efforts are invested to improve the risk management process.

Hence, numbers of risk assessment models have been proposed so far. In addition, we

could see that the government sectors play an important role to develop and standardize

the risk management frameworks. These models include CRAMM, EBIOS, and NIST

[4, 44, 64]. With slight differences in the implementation, most traditional risk analysis

frameworks evaluate the risk level following the classical equation:

Risk = Impact×Likelihood (3.1)

We have also found that all risk assessment frameworks do not specify which method to be

used to mitigate risk. Instead, they encourage security administrators to choose appropri-

ate methodologies to manage their own risks. A numbers of works have been proposed so

far [3, 12, 53, 55, 37, 47, 69]. We can categorize these methodologies into minimization

analysis, maximization analysis, optimization analysis, and simulation-based analysis.

The goal of minimization analysis is to identify the set of elements that, when they

are implemented (or prevented), minimizes the expense. Some known analyses are least-

cost analysis, least-effort analysis and minimal set of preventive measurements. Unlike
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the minimization analysis, security administrators also use maximization analysis to find

the attack scenarios that are most likely to happen. In this case, the probability is used

to assess such a scenario. Note that choosing an appropriate data structure is critical.

Many researchers have found that using the attack graph in the maximization analysis

may suffer from NP-complete as, in many cases, maximizing the values is equivalent to

choosing the longest path in the network. Phillips et al. [50] found that in some cases, we

can transform the maximization to minimization problem by simply negating the assess-

ment values. However, not all maximization problems can be converted to minimization

analysis. Beside the minimization and maximization analysis, more often, the system ad-

ministrator has to work within a given set of budget constraints. Given a set of security

measures, the security administrators have to design a security plan that maximizes the

use of these countermeasures and minimizes the cost of implementation. In its most gen-

eral form, the problem is NP-hard. Phillips et al. [20] try to use bi-criteria shortest-path

algorithms to compute the near-optimal cost-benefit analysis. However, scalability is an

awful disadvantage to this approach.

The last group of risk analysis includes those that do not belong to any of the pre-

vious categories. Simulations are what-if analysis types that have their own specific use.

For example, Dacier et al. [3] compute the Mean Time to Failure (METF) by simulat-

ing the network penetration from an attacker stand point. Jha et al. [37] introduce the

reach ability analysis. Given a set of security controls, the reach ability analysis identifies

whether the network is safe if a chosen set of security controls are implemented. In many

occasions, security administrators may want to simulate the what-if analysis to assess

the consequence of the changes such as network configuration, topology, or application,

firewall technology, etc.

Of all different analysis presented, different models were designed to be used for

each specific method and the performance of the analysis relies heavily on the chosen

meta model. We have seen some attempts regarding the problem transformation but the
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transformation can be implemented in some cases but not all. There is no sufficient re-

search concerning the unified model for generic usages in risk analysis methodologies

and the problem of security optimization tends to be the most challenging problem.

3.3 Intrusion Detection System

Intrusion detection systems can be broadly classified into two groups: knowledge-

based systems and behavior-based systems [28]. Knowledge-based detectors [56, 61, 42]

are the most popular techniques. A numbers of commercially available intrusion detection

tools are knowledge-based detectors. These tools operate by processing system audit

data for signatures of known attacks and/or specific outcomes of interest. The result of

this processing is compared against signatures of specific attacks and vulnerabilities. A

positive match signals an intrusion.

Knowledge-based detectors tend to be fairly accurate in the sense that they have low

rates of false positives. However, they are limited by their inability to detect new attacks

for which there are no known signatures. Any action that is not recognized as an attack

is considered acceptable. Behavior-based detectors, on the other hand, take the paranoid

approach everything that has not been witnessed before is considered dangerous. To op-

erate, these systems compare the observed behavior of the system and/or the users against

a model of normal (or expected) behavior. Any deviation from the normal behavior is

considered an intrusion. Behavior-based systems are often considered complete, that is,

all attacks (even previously not known attacks) can be caught. However, the accuracy of

these systems is often low. Behavior-based systems need to undergo extensive training

sessions to determine what constitutes normal behavior. During this phase these systems

tend to generate false alarms at a very high rate. In addition, such systems require peri-

odic on-line retraining. This results in either unavailability of the system or generation of

false alarms till such time as the system is retrained.

The Intrusion Detection approach is not a perfect solution for security hardening by

at least two concerns. First, it is not possible to make a sound and objective judgment
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as to which type of intrusion detection system is better. In addition, an ideal intrusion

detection system is the most difficult to build because it needs to address a set of rather

tough and often contradictory requirements.

A second concern with intrusion detection systems is that they generate alerts only

after they are able to see misused signatures or some deviations from norm. A malicious

activity may result from a sequence of perfectly innocuous activities. Intrusion detection

systems do not report on these activities mostly to prevent information overload for the

system administrator. Thus the intrusion detection system generates an alarm only after

the cause for alarm has occurred. In many situations however, this may already be too

late.

3.4 Forensic Investigation

Digital forensic investigation is the process of identifying and preserving digital evi-

dences to reveal the fact in computer crime incidences. Works previously done in this area

are related to the development of standard investigation process [14, 49, 51], evidence ex-

traction technology [48, 15, 69], and evidence preservation methods. This dissertation

scopes itself into the area of evidence extraction technology. Following a large scale

computer attack, an investigator often needs to make a reasoned determination of who

is responsible for the attack incidence and how the system is compromised in order to

assess the actual damage and determine how to reinstate back to the last normal state. Ev-

idence extraction and analysis techniques offered by digital forensic tools can be broadly

classified into two groups; pattern-matching-base and statistic-base methodologies.

Pattern matching approaches use tools such as nmap, netcat, memdump, or CERTs

liveview [1, 5, 8, 11] to perform a keywords-search operation on potential evidence

sources including standard operating data or application components for signatures of

known attacks such as specific words, file classifications, images, etc. Even if the speed

of standard operation is increased, the process remains too manual and relies heavily on
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skill and experience of the investigators. In contrast, statistic-based analysis examines the

potential evidence sources to identify the content that is distant away from others (e.g. a

file that has been processed by unaccustomed process [15] or an image that is subjected to

atypical image transformations [48, 69]. However, statistic analysis processes often fail

to produce a satisfactory results and require substantial CPU resources to handle a huge

amount of data. Hence, the data-reduction method and/or process distribution are often

used to reduce case turnaround time.

In summary, much work needs to be done. We can summarize the current state and

challenges facing evidence extraction and analysis as the following.

• There is currently no standard model for evidence analysis. The evidence sources

often contain raw data which is hard for humans to interpret and there is no mini-

mum requirement for information that needs to be analyzed.

• There is currently no established procedure for filtering and retrieving information

from the potential evidence sources other than a sequential backward scan from the

most recent entry. System administrators use ad-hoc regular expression searching

commands to extract information from the log file. The process is too manual and

time-consuming.

• When a security incident occurs, the system administrator does not usually have

any information about what to look for in the system log. Most of the time the in-

vestigator has to rely on his/her experience or intuition for this purpose. Automated

digital forensic tools are needed to release human interventions and give investiga-

tors more time to think.



Chapter 4

PROBLEM ILLUSTRATION

This research is mainly motivated by the dissatisfaction in mission objectives in risk

management. We have found drawbacks in traditional security best-practice. Many se-

curity best-practices have identified methodologies to discover vulnerability so as to dis-

cover the threats. However, merely determining system vulnerabilities is not enough to

help the system administrators reaching appropriate decisions. Security administrators

are more interested in determining the best strategy to strengthen the system. Thus, they

want a richer threat model to help them understand ways in which the system can be

compromised and help them evaluate and manage the risk in a proper manner.

This chapter aims toward three goals. First, we introduce the test-bed network system

to illustrate our problem formulation and solution. We, then, address technical challenges

in designing security hardening strategies. Lastly, we identify the pitfalls found in the

traditional risk management process.

4.1 Test-bed Network

We first analyze the test-bed system for potential security breaches and difficulties

in designing the security hardening plan. Our test-bed network consists of eight hosts

located within two subnets. The DMZ subnet consists of Web server, Mail server, and

DNS server. This subnet is opened to the public. In the second subnet lies the SQL

Server and several local desktops including the root machine. This subnet is the trusted

zone. Hence, accesses from external sources are restricted. A DMZ tri-homed firewall

is installed with policies to ensure that Web server, Mail server, and DNS server are
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Figure 4.1: Example Network Model
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separated from the local network so that if one of these is compromised, the damage will

only be limited to the DMZ zone. The access policies are represented as the connectivity

shown in the inset table in Figure 4.1.

In terms of embedded security, the firewall has a strong set of policies (shown in

the inset table in Figure 4.1) to prevent remote access to internal hosts. In particular, all

machines in DMZ zone passively receive the service requests and only respond to the

sender as needed. However, in order to accommodate the Web service’s transactions,

Web server is allowed to send SQL queries to the SQL server located in the trusted zone.

Local machines are located behind the NAT firewall so that all communications to external

parties are delivered through the Gateway server. In addition, all local desktops including

the administrator machine have remote desktop enabled to facilitate remote operations for

company’s employees who may want to work from remote sites. The remote connections

are monitored by the SSHD installed in the Gateway server.

4.2 Traditional Risk Management and Challenge in Risk Management

The typical risk management process consists of risk assessment, risk mitigation, and

evaluation. Risk assessment is the process of identifying vulnerabilities presents in the

system by the means of network penetration test, vulnerability scanner, security exposure,

white box testing, or historical record. Table 4.1 shows the list of vulnerabilities resulted

from this process. With further investigation, the security administrator can identify eight

possible outcomes. The outcomes are ranked from information leakage to system com-

promised. Obviously, knowing ‘what’ outcome could happen is necessary for the security

hardening but it is not sufficient for determining an effective security hardening plan. Sec-

tion 4.3 addresses more detailed discussion covering this issue so as to give a motivation

to developing a better threat model.

For the control analysis, we identified 13 security controls capable of reducing risk

from initial vulnerabilities. Table 4.2 lists all these controls and their coverage. Since se-

curity controls are different in the cost and coverage they provide. It is a big challenge for
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Host Vulnerability CVE# Outcomes
Local desktops Remote login CA 1996-83 remote-2-user
(10.0.0.1-127) LICQ Buffer Overflow (BOF) CVE 2001-0439 remote-2-user

MS Video ActiveX Stack BOF CVE 2008-0015 remote-2-root
Admin machine RPC Marshalling Engine Vulnerability CVE 2009-0568 local-2-root

(10.0.0.128)
Gateway server OpenSSL uses predicable random CVE 2008-0166 information leakage
(196.216.0.128) Heap corruption in OpenSSH CVE 2003-0693 local-2-root

Improper cookies handler in OpenSSH CVE 2007-4752 authentication bypass
SQL Server SQL Injection CVE 2008-5416 remote-2-root

(196.216.0.130)
Mail Server Remote code execution in SMTP CVE 2004-0840 remote-2-root

(196.216.0.19) Error message information leakage CVE 2008-3060 account information theft
Squid port scan vulnerability CVE 2001-1030 information leakage

DNS Server DNS Cache Poisoning CVE 2008-1447 integrity
(196.216.0.20)

Web Server IIS vulnerability in WebDAV service CVE 2009-1535 remote-2-local
(196.216.0.20) authentication bypass

Table 4.1: Intial List of Vulnerabilities in Test-bed Network.

the security administrator to design the cost-effective security controls. The methodology

the security administrator often uses is to estimate the risk from the individual vulnera-

bility, prioritize risks by their values, and compare the cost and benefit of implementing

a chosen set of security controls. Typically, the level of risk is computed by Impact and

Likelihood.

However, there are some technical challenges in designing the security hardening

plan. First, it is impossible to completely eliminate the risk as some vulnerabilities result

from design flaws. Thus, it is not an easy task to redesign the system without affecting

other business functionalities and there is no guarantee that the new design is not vulner-

able to other attacks. Second, the system administrator has to work within a given set

of budget constraints which may preclude her from implementing all suggested security

controls. Designing a set of security policies for the organizations network safety has

considerable implications on the organizations financial throughput.

Lastly, it is not an easy task to find the minimal security hardening plan since there

is no one-to-one mapping between vulnerabilities and security controls. Some vulnera-

bilities can be eliminated by multiple security controls and some security controls, with

higher costs, can have more coverage on multiple vulnerabilities. Thus, the system ad-

ministrator needs to find a trade-off between the cost of implementing a subset of security
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Vulnerability Risk Control Coverage
(CVSS)

CVE 2009-0568 10.0 digital signature CVE 2008-3060
CVE 2003-0693 10.0 disable WebDAV CVE 2009-1535
CVE 2004-0840 10.0 query restriction CVE 2008-5416
CVE 2008-0015 9.3 apply OpenSSH security patch CVE 2003-0693, CVE 2007-4752
CVE 2008-5416 9.0 use POP3 instead CVE 2008-3060
CVE 2008-0166 7.8 apply MS work around CVE 2008-0015
CVE 2009-1535 7.6 disable portscan CVE 2001-1030
CVE 2001-0439 7.5 apply MS09-004 work around CVE 2008-5416
CVE 2007-4752 7.5 filtering external traffic CA 1996-83, CVE 2004-0840, CVE 2009-1535
CVE 2008-3060 7.5 limit DNS access CVE 2008-1447
CVE 2001-1030 7.5 encryption CVE 2008-1447
CA 1996-0083 7.4 add Network IDS CVE 2001-1030, CVE 2008-3060, CVE 2009-0568
CVE 2008-1447 6.4 add Firewall CVE 2001-0439

Table 4.2: (left)Vulnerability Sorted by CVSS Risk Score. (right)List of Security Controls
and Their Coverages.

hardening measures and the damage that can potentially happen to the system if certain

weak spots are left un-plugged in order to maximize the resource utilization. As such,

this decision is not a trivial task.

4.3 Problem and Research Motivation

We have found many pitfalls in traditional security best-practice including NIST SP

800, ISO/IEC 27001, and BS7799. The major pitfall arises from the level of abstraction

of the standard itself. Most standards define the framework at the abstraction level and

leave out the implementation to field practices. As a result, one can easily misinterpret

and mislead the abstraction. In this article, we categorize the drawbacks into three major

aspects so as to highlight the problem and research motivation.

4.3.1 Pitfalls in Vulnerability Assessment

The major pitfall in traditional risk assessment is found in the process of risk assess-

ment analysis. The threat models resulting from the vulnerability identification process

are not rich enough for the security administrators to estimate the risk as well as conduct-

ing the risk mitigation analysis. Given the complexity of today’s network infrastructure, it

is not enough to consider the presence or absence of vulnerabilities in isolation. We have
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observed that modern day attacks rely on exploiting multiple vulnerabilities in a corre-

lated manner. Materializing a threat strongly requires the combination of multiple attacks

using different vulnerabilities. As such, this requirement is far beyond what typical vul-

nerability scanners can offer.

To make the above critique more concrete, consider Table 4.1. The table identifies

13 vulnerabilities and 8 possible outcomes ranked from information leakage to system

compromise. However, Knowing ‘what’ vulnerability presents in the network does not

always tell tell “how” it is exploited. In fact, more than 20 attacks possible can be derived

from the initial 13 vulnerabilities. Figure 4.2 illustrates these attacks. Hence, we can

see that the true damage assessment is far more complicate than the one obtained from

the traditional vulnerability list and the security mitigation analysis should yield different

results from the one that is solely based on eliminating individual vulnerability.

4.3.2 Pitfalls in Risk Assessment Analysis

Many security best-practices estimate the risk by considering vulnerabilities on an

individual basis. A network security administrator could be fooled in a situation where

individual vulnerability risks are low but can be combined into compromising a critical

resource. In other words, the causal dependency between vulnerabilities has been ignored

in most existing security best-practices.

To illustrate this pitfall, the NIST’s SP 800-30 security best-practice is chosen. The

SP 800 measures level of risk using the Business Impact Analysis (BIA). In particular,

the magnitude of impact is determined by the severity of the adverse outcome and the

criticality of the target resources. Let assume that we want to analyze the impact of the

vulnerability CVE 2003-0693. According to BIA, the magnitude of impact is computed

from the severity of the outcome (in this case, root compromise) and the targeted resource

(which is the Gateway server). Even if BIA impact estimation is flawless, the impact es-

timation of CVE 2003-0693 is underestimated. In fact, there are steps before executing
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Figure 4.2: Unconditional Probability Distribution of the Test-bed Network
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CVE 2003-0693. Fig 4.2 shows three attack scenarios that can compromise the Gateway

server. One way is to compromise the local machine by either bypassing the authentica-

tion (CA 1996-83) or exploiting LICQ’s vulnerability (CVE 2001-0439). Another way is

to exploit the ActiveX vulnerability to compromise the local machine and then exploit the

local connection to take the Gateway server using CVE 2003-0693. As a result there are

several adverse impacts along the path that are overlooked by NIST’s best-practice.

Similarly, there is a flaw in the likelihood estimation as well. The likelihood is meant

to estimate the probability of the vulnerability exploitation given the attacker’s capability,

nature of vulnerability, and level of security controls. We discover that node dependency

inside the system has a strong influence to the probability estimation. For example, the

Remote login (CA 1996-83) execution by its nature is extremely sensitive. Hence, it

is given the highest probability by many vulnerability exposure databases. However, in

our test-bed network, CA 1996-83 can not be executed unless an attacker successfully

bypasses the authentication process. According to the network configuration, the authen-

tication bypass can only be achieved by exploiting CVE 2007-4752. If CVE 2007-4752 is

hard to penetrate then it will greatly affect the attacker’s capability which, in turn, reduces

the attack Likelihood of CA 1996-83. We have not seen such an approach that takes node

dependencies into consideration in the likelihood estimation.

In this study, we propose the threat model in Chapter 5 and Chapter 8. The proposed

model allows us to understand ways in which the system can be compromised given a set

of initial vulnerability, network configuration and initial security measures.

4.3.3 Administrator’s Dilemma

Since the risk mitigation analysis takes the result from the risk assessment analysis

and we already discussed the flaws in the traditional risk assessment analysis. It is clear

that the security administrator will not get the best security hardening plan from a defected

input. Beside, the risk mitigation itself is not a trivial task. Hence, it is important to
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discuss one of the greatest challenges in risk mitigation analysis known as Administrator’s

Dilemma in this subsection.

The problem facing security managers while working on the risk mitigation analysis

is not merely assessing the efficiency given a security plan but rather design the resource-

effective security plan that reduces the system risk down to an acceptable level. It is

important to note that the complete elimination is usually impractical or close to impos-

sible. Hence, in order to defend against the attacks possible, a security administrator (as

a decision maker) has to implement the security hardening plan from a variety of safe-

guard technologies, each has different cost and security coverage. For example, to defend

against the ftp/.rhost exploit, one might choose to apply a security patch, firewall, or

simply disable the FTP service. Each choice of action can have a different cost to spend

with different outcomes. Besides, some measures have multiple coverage, but with higher

costs. A security administrator has to make a decision and assesses the technologies in

order to maximize the resource utilization.

At the same time, system administrator has to minimize the total cost of implement-

ing these hardening measures given the costs for individual measures. Assuming that

the vulnerability assessment analysis and control analysis are done correctly, finding the

cost-effective security plan needs to select a subset of security controls to form a candi-

date plan. For each plan, assess the effectiveness of the plan and find the cheapest plan

that reduces most of the risk. Unfortunately, given N security controls, there are as many

as 2N plans for the security administrator to evaluate. In addition, system administrators

have to work within a fixed budget which may be less than the minimum cost of system

hardening. Hence, the real problem is how to select a subset of security hardening mea-

sures so as to be within the budget and yet minimize the residual damage to the system

caused by not plugging all required security risks.

In this study, we formalize the administrator dilemma problem in Chapter 7 as a

Multi-Objective optimization problem and ropose the systematic approach to solve the
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problem. We develop the heuristic algorithm to reduce the O(2N) complexity yet capable

to give the optimal result. In addition, the proposed methodology also provides a diversity

of solutions for security administrator to choose to meet the budget constraints in real-

world problems.



Chapter 5

ATTACK TREE MODEL

Attack tree represents all possible ways to achieve multi-stage attack in a network

system. Typically, such a model is useful for an enterprise network where the network

administrators wish to know the security risks due to the vulnerabilities present in a multi-

host network. Of course, scanning for each host can reveal such vulnerabilities in the

network, but eliminating all vulnerable software is not always possible. Also, it is not

enough to remove the effects of combining multiple vulnerabilities, as some attacks can

simply exploit the loop holes at the system architecture level to legitimately cause security

violations. Thus, it is important to visualize the big picture of network attack scenarios in

order to analyze vulnerabilities in enterprise networks.

In this chapter, we present a formal definition of an attack tree. All formal definitions

introduced in this chapter serves as basic building blocks to explain vulnerability analy-

sis, risk assessment, risk mitigation analysis, and forensic analysis in the sub sequence

chapters.

5.1 Introduction

We can observe that vulnerabilities present in a network are often exploited in cor-

relation. Given the complexity of today’s network infrastructure, materializing a threat

usually requires the combination of multiple attacks exploiting different vulnerabilities.

Representing different scenarios under which an asset could be damaged thus becomes

important for preventive analysis. Such representations not only provide a picture of the

possible ways to compromise a system, but could also help determine a minimal set of
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preventive actions. Given the normal operational state of a network, including the vul-

nerabilities present, an attack could possibly open up avenues to launch another attack,

thereby taking the attacker a step closer to its goal. The presence of a vulnerability does

not imply that it can always be exploited. A certain state of the network, viz. in terms of

access privileges or machine connectivity, could be a prerequisite to be able to exploit a

vulnerability. Once the vulnerability is exploited, the state of the network can change en-

abling the attacker to launch the next attack in the sequence. Such a pre-thought sequence

of attacks gives rise to an attack scenario.

5.2 Description of an Attack Scenario

It is worth noting that the notion of a progressive attack induces a transitive rela-

tionship between the vulnerabilities present in the network and can be exploited while

deciding on the security measures. Attack graph [12, 38, 47, 62] and attack tree [52, 60]

representations have been proposed in network vulnerability management to demonstrate

such cause-consequence relationships. The nodes in these data structures usually rep-

resent a certain network state of interest to an attacker, with edges connecting them to

indicate the cause-consequence relationship. Although different attack scenarios are eas-

ily perceived in attack graphs, they can potentially suffer from a state space explosion

problem. Ammann et al. [12] identified this problem and proposed an alternative formu-

lation, with the assumption of monotonicity. The monotonicity property states that the

consequence of an attack is always preserved once achieved. In other words, if a network

attribute becomes true as a result of some attack, it remains so during subsequent attacks.

Such an assumption can greatly reduce the number of nodes in the attack graph, although

at the expense of further analysis required to determine the viable attack scenarios. An

exploit-dependency graph [47] can be extracted from their representation to indicate the

various conjunctive and disjunctive relationships between different nodes. For the pur-

pose of this study, we adopt the attack tree representation since it presents a much clearer
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picture of the different hierarchies present between attacker subgoals. The representation

also helps us efficiently calculate the cost factors we are interested in. Different properties

of the network effectuate different ways for an attacker to compromise a system. We first

define an attribute-template that lets us generically categorize these network properties

for further analysis.

Definition 1 ATTRIBUTE-TEMPLATE

An attribute-template is a generic property of the hardware or software configuration of

a network which includes, but not limited to, the following:

• system vulnerabilities (which are often reported in the vulnerability database such

as BugTraq, CERT/CC, or netcat).

• network configuration such as open port, unsafe firewall configuration, etc.

• system configuration such as data accessibility, unsafe default configuration, or

read-write permission in file structures.

• access privilege such as user account, guest account, or root account.

• connectivity

Attribute-template lets us categorize most of the atomic properties of the network that

might be of some use to an attacker. For example, “running SSH1 v1.2.23 on FTP Server”

can be considered as an instance of the system vulnerabilities template. Similarly, “user

access on Terminal” is an instance of the access privilege template. Such templates also

let us specify the properties in propositional logic. We define an attribute with such a

concept in mind.

Definition 2 ATTRIBUTE

An attribute is a propositional instance of an attribute-template. It can take either a true

or false value.
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The success or failure of an attacker reaching his goal depends mostly on what truth

values the attributes in a network take. It also lays the foundations for a security manager

to analyze the effects of falsifying some of the attributes by using some security policies.

We formally define an attack tree model based on such attributes. Since we consider an

attribute as an atomic property of a network taking either a true or false value, most of the

definitions are written using propositional logic involving these attributes.

Definition 3 ATTACK

Let S be a set of attributes. We define Att to be a mapping Att : S× S→ {true, f alse}

and Att(spre,spost) = truth value of spost .

• a = Att(spre,spost) is an attack if spre 6= spost ∧ a ≡ spre↔ spost . spre and spost are

then respectively called a precondition and postcondition of the attack, denoted by

pre(a) and post(a) respectively.

• Att(spre,spost) is a φ–attack if ∃non-empty S′⊂ S|Att(spre,spost)≡
∧
i
si∧spre↔ spost

where si(6= spre) ∈ S′.

An attack relates the truth values of two different attributes so as to embed a cause-

consequence relationship between the two. For example (see Figure 5.1), for the attributes

spre =“vulnerable to MATU FTP attack on machine A” and spost =“root compromise on

machine A”, Att(spre,spost) is an attack – the FTP buffer overflow attack. We would like

to clarify here that the bi-conditional logical connective “↔” between spre and spost does

not imply that spost can be set to true only by using Att(spre,spost); rather it means that

given the FTP BOF attack, the only way to make spost true is by having spre true. In fact,

Att(“vulnerable to ssh BOF attack on machine A”,spost) is also a potential attack. The

φ–attack is included to account for attributes whose truth values do not have any direct re-

lationship. However, an indirect relationship can be established collectively. For example,

the attributes spre1 = “running FTP prior to V.1.23 on machine A” and spre2 = “connectiv-

ity(machine B, machine A)” cannot individually influence the truth value of spre, but can
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Figure 5.1: Example Attack Tree

collectively make “vulnerable to MATU FTP attack on machine A” true, given they are

individually true. In such a case, Att(spre1,spre) and Att(spre2,spre) are φ–attacks.

5.3 The Formal Definition of an Attack Tree

Attack trees have been previously proposed in [25, 43, 52, 60] as a systematic method

to specify system security based on varying attacks. They help organize intrusion and/or

misuse scenarios by

1. utilizing known vulnerabilities and/or weak spots in the system, and

2. analyzing system dependencies and weak links and representing these dependen-

cies in the form of an And-Or tree.

For every system that needs to be defended, there is a different attack tree. The nodes of

the tree are used to represent the stages towards an attack. The root node of the tree rep-

resents the attacker’s ultimate goal, namely, to cause damage to the system. The interior

nodes, including leaf-nodes, represent possible system states (that is subgoals) during the

execution of an attack. Following is the formal definition of an attack tree.

Definition 4 ATTACK TREE

Let A be the set of attacks, including the φ–attack. An attack tree is a tuple AT =

(sroot ,S,τ,ε), where
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1. sroot is an attribute which the attacker wants to become true.

2. S = Ninternal ∪Nexternal ∪{sroot} is a multi-set of attributes. Nexternal denotes the multi-

set of attributes si for which @a ∈ A| si ∈ post(a). Ninternal denotes the multi-set of at-

tributes s j for which ∃a1,a2 ∈ A| [s j ∈ pre(a1) ∧ s j ∈ post(a2)].

3. τ⊆ S×S. An ordered pair (spre,spost) ∈ τ if ∃a ∈ A|[spre ∈ pre(a) ∧ spost ∈ post(a)].

Further, if si ∈ S and has multiplicity n, then ∃s1,s2, . . . ,sn ∈ S| (si,s1),(si,s2), . . . ,(si,sn)∈

τ, and

4. ε is a set of decomposition tuples of the form 〈s j,d j〉 defined for all s j ∈ Ninternal ∪

{sroot} and d j ∈ {AND,OR}. d j is AND when
∧
i
[si ∧ (si,s j) ∈ τ]↔ s j is true, and OR

when
∨
i
[si∧ (si,s j) ∈ τ]↔ s j is true.

Fig. 5.2 shows a simple attack tree for a hypothetical system. In this figure, the goal G0

is the attacker’s ultimate objective, namely to breach the system security. Each internal

node is a sub-goal state that takes the attacker towards the ultimate goal. The leaf nodes

(represented by double rectangles) are the initial vulnerabilities present in the system and

constitute stepping stones for the attacks. Branches represent a change of state caused

by one or more actions taken by the attacker. Change in state is represented by either

AND-branches or OR-branches. Nodes may be decomposed as

1. a sequence of events (attacks), all of which must be achieved for this sub-goal to

succeed; this is represented by the events being combined by AND branches at the

node; or

2. a set of events (attacks), any one of which occurring will result in the sub-goal

succeeding; this is represented by the events being combined by OR branches at

the node.

In Definition 4, the set of ordered pairs, τ, reflect the edges in the tree. The existence of

an edge between two nodes implies that there is a direct or indirect relationship between

their truth values, signified by the decomposition at each node. The AND decomposition
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Figure 5.2: Simple Attack Tree Corresponding to a Hypothetical System

at a node requires all child nodes to have a truth value of true for it to be true. The

OR decomposition at a node requires only one child node to have a truth value of true

for it to be true. In risk analysis, the attack tree can be augmented to provide a better

quantitative representation. In particular, nodes in the attack tree can be assigned with

different metrics of interest signifying the amount of value which the analyst wishes to

assess. For example, any Boolean value, such as possible or impossible, easy or difficult,

detectable or undetectable, etc. can be assigned to the nodes and yields Boolean result

to the analysis. Assigning Boolean expression is not the only way an attack tree can be

used. It is possible to assign nodes in the tree with a quantitative value such as cost or

chance of success. Such kinds of trees help the analyst to determine the cheapest attack
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Figure 5.3: Illustration of the Combination of Quantitative and Qualitative Applications
on an Attack Tree

scenarios or can answer other what-if analyses. In addition, nodes can be assigned with

many different values corresponding to many different variables, with both Boolean and

quantitative values. These combinations can answer even ad hoc queries. Figure 5.3

shows an example of an attack tree with various assigned values. These values are used in

combination to answer the ad hoc questions such as what are the cheapest ways to attack

with no special equipment required (NSE), or what is the most likely undetectable attack

etc. We will illustrate these qualitative and quantitative applications of the attack tree

model in the subsequent chapters.



Chapter 6

CONSTRUCTION OF ATTACK TREE MODEL

Understanding the big picture of network attack scenarios is an important process

for analyzing vulnerabilities in enterprise networks. Such a model is useful for enterprise

networks where the network administrators wish to know the security risks due to the

vulnerabilities present in the multi-host network.

Constructing attack models by hand, however, is tedious, error-prone, and imprac-

tical for attack scenarios larger than a hundred nodes. Previous work on attack tree and

attack graph models has not provided an account of the scalability of the graph generat-

ing process, and there is often a lack of logical formalism in the representation of attack

models. This results in the attack model being difficult to use and be understanded by the

users.

We implemented a comprehensive attack tree analysis tool that discovers all pos-

sible paths in which the system can be compromised. This is a custom tool written in

Java programming language with full-featured user interface and attack tree visualiza-

tion capabilities. In this chapter, we demonstrate how to prepare the trace information in

generating an attack scenario, and how to use the trace to generate a logical attack tree in

polynomial time. We generate an attack tree for the test-bed network given in the previous

chapter and prove that our attack graph generation algorithm is efficient.

6.1 Introduction

Many researchers in this area [12, 25, 38, 43, 50, 60, 62, 65] have found that there

are potentially strong connections between series of attacks in that the consequence of
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Figure 6.1: Database Architecture of the Attack Tree Risk Analysis Tool

one attack enables the execution of another attack. This relationship is known as pre-

requisite and consequence relation [12, 38, 46, 50, 53]. Hence, an infinite number of

sophisticated attacks can be generated from chaining individual vulnerability exploita-

tions through these relations as one (atomic) attack serves as a prerequisite for another.

Figure 6.1 presents the data diagram showing the flow of information during the

generation of an attack tree. The chapter also describes the algorithm to generate an

attack tree from the list of vulnerabilities and network topology. The vulnerability list

represents facts about flaws in the system design and specifications. This list is prepared

by vulnerabilities scanner tools such as saint [70], snort [54], nessus [29], etc. Instances

of Vulnerability will be extracted from the report and stored in the SQL database table

vulnerabilities.
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For the Network topology, we can obtain the information from a variety of network

topology scanner tools such as TraceRoute [32], Nmap [8], nttlscan [45], etc. Thus the

connectivity information between machines in the network of interest can be identified.

Once the facts of the system vulnerabilities and network topology have been estab-

lished, the tool binds these facts with the relationship information from the knowledge

base repository. The knowledge base repository stores information relating to the de-

pendencies between vulnerabilities and their exploitations. This information is readily

available from many different sources such as the CERT Coordination Center Knowl-

edge base (http://www.cert.org/kb/), the (US) National Vulnerability Database (formerly

known as the ICAT database –http://nvd.nist.gov), or the SANS Institute. Based on this

information, we can build the inter connection from the characteristics of vulnerability

exploitation (e.g., local buffer overflow attack, remote-to-user attack, network sniffing

attack, etc.). In particular, the dependencies between vulnerability exploitation and at-

tack pattern (attack category) can be drawn directly from the outsourcing databases. The

remaining challenge is how to establish the prerequisite relationship. Section 6.2.1 de-

scribes this methodology in more detail.

6.2 Implementation

In this section, we describe the system architecture of the Attack tree risk analysis

tool. The system architecture consists of the software architecture and the database archi-

tecture. Due to the complexity of the design, Figure 6.3 can only illustrate the software

architecture of the tool. The database architecture is shown in detail by Figure 6.2. Note

that we shall assume that the readers of this article are already familiar with the terms

vulnerability, exploitation, and attack. These terms, however, are described in Chapter

12.

This section is organized as follows. We begin with the descriptive design of the

database meta model. This consists of the data schema of the Fact module and Knowledge
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module. We, then, describe the application architecture which interacts with the database

and describe how the attack tree model is generated from a list of initial vulnerabilities

and network topology information.

Before moving to the detailed description of meta data design, let’s begin with the

tuple’s convention, as it is the base structure of all elements in this SQL database. A

tuple consists of data fields which describe the type of information stored in the data

record. Each record has a unique identifier field. The identifier field is written in an

underlined italic font. In the case of table association, combination of foreign keys is

used to uniquely identify the tuple. The foreign key is identified by italic font. Figure

6.2 shows the data model in the design of the attack visualization tool. The data model

is implemented as tables in a regular SQL database. In this model, an attribute is a

basic building block of vulnerability: a prerequisite, and a consequence of attack. In this

model, attribute serves as the primitive data type to describe states in attack tree. Specific

vulnerability exploitation requires certain conditions for an attacker to execute an attack;

this relationship is known as a prerequisite. Similarly, an execution of an exploit produce

specific outcomes; this relation is called the consequence.

Next we describe tables and table associations in the design of the SQL database. The

database repository is composed of the Fact Module and Knowledge-base Module. We

begin with the design of the Fact Module which comprises of three tables: vulnerabilities,

hosts, and connectivity followed by the design of Knowledge-base Module.

6.2.1 The Design of Fact Module

We design the Fact Module to represent information that can be drawn directly from

the design specification of the evaluated network system. The data module consists of

hosts, vulnerabilities, and connectivity tables.

Definition 5 HOST

Host is described by a tuple of { IP, Name } representing the physical machine in the

network. A set of host H is a table that consists of ‘IP’ field and ‘Name’ field.
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Figure 6.2: The Design of the Database Metada

Definition 6 VULNERABILITY

Vulnerability is an attribute denoted by { Re f erenceID, V Name, service name, isrc,

measure 1,2,3... } representing information about the weakness of the host that may allow

an attacker to execute an exploit through a particular input-source isrc. In our current

version, we adopt the CVSS scoring system in our risk measurement. Hence, measures 1,

2, 3... correspond to CVSS security metrics of interest.

Definition 7 CONFIGURATION

System Configuration is an attribute denoted by { Name, Description } describing a

system configuration setting required in order to successfully exploit the vulnerability.
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Definition 8 VULNERABILITY INSTANCE

Vulnerability Instance is a table association defined as { Vulnerability, Host } repre-

senting the facts about local vulnerability present in a specific host machine.

Definition 9 CONFIGURATION INSTANCE (CONFIG INSTANCE)

Configuration Instance is a table association denoted by {Con f iguration, Host } repre-

senting the facts about local configuration in a particular host. These configurations are

either “is required by” or “is a consequence of” a certain vulnerability exploitation.

Definition 10 CONNECTIVITY

Let H be a set of hosts. Network Connectivity is the table association denoted by { host 1,

host 2 }. The connectivity table encodes the connection between host i and host j (i 6= j)

in the network topology.

Note that we impose the strict order in the connectivity tuple, which means that there

exists a process in host 1 capable of sending information to host 2 but this does not

need to have the same capability in the opposite direction. In the attack tree generation

algorithm, we are interested in identifying all entities that can reach a given target. Let H

be the host target of interest, the list of hosts that can inject the stream of information to

H (denoted by CONH ) can be identified by the following SQL statement.

SQL Statement 6.2.1

CONH = SELECT host 1
FROM ConnectivityTable
WHERE host 2 = H

6.2.2 The Design of the Knowledge-base Module

The Knowledge-base Module supports content management of the information about

vulnerability exploitations. To the best of our knowledge, more than 40,000 vulnerabili-

ties have been reported, and such reports are growing at an alarming rate. Thus, it is not
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efficient to gather information for every exploits. We observe that exploits have common

characteristics. Thus, they can be classified by their attack patterns (see Chapter 12).

In this project, we employ Common Attack Pattern Enumeration and Classification

(CAPEC) to define attack patterns. CAPEC [2] is sponsored by the Department of Home-

land Security as part of the Software Assurance strategic initiative of the National Cyber

Security Division. An attack pattern is the mechanism to capture common characteristics

used in exploiting the system. Exploits in the same attack pattern have a set of precondi-

tions and post conditions in common. Since the number of patterns is much less than the

number of exploits, it is more scalable to link dependency among exploits to construct an

attack tree by the pattern of attack rather than by the instances of exploit. The prerequisite

relationships require human intervention but this is the only part of the tool that requires

preparation, and it is more scalable 1 and reusable.

Definition 11 ATTACK PATTERN

Attack pattern is denoted by { P Name, Severity } representing classification of taxonomy

that describes common methods for exploiting the system.

Definition 12 PRECONDITION AND POSTCONDITION

Given a set of attack patterns P and a set of configurations C. Precondition is a table as-

sociation between P and C. Precondition is denoted by a tuple { AttackPattern :: P Name,

CONFIGURATION :: Name as Precondition , JoinType }.

Similarly, Postcondition is a table association between P and C denoted by {

Attackpattern :: P Name, CONFIGURATION :: Name as Postcondition }. The

knowledge about the preconditions and postconditions can be drawn from

1especially if we are only concerned with those attack patterns that are only found in the evaluated
network
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public vulnerability bulletin such as CAPEC (http://capec.mitre.org/), Bug-

traq (http://www.securityfocus.com), the (US) National Vulnerability Database

(http://nvd.nist.gov), etc.

Definition 13 EXPLOITATION

Given a set of vulnerability instance (V I) and configuration instance (CI). The vulnera-

bility exploitation is a table association between V I and CI. Vulnerability Exploitation is

an instantiation that describes an occurrence of state transition between vulnerability and

its post-conditions in a particular host machine. An ordered tuple {V I,CI} is an exploit

if and only if there exists a vulnerability instance v and configuration instance c such that

host(v) = host(c).

Relations between exploits, pre-conditions and post-conditions are key components in

generating an attack tree. Given an instance of post-condition, we can backtrack from the

post-condition table to the vulnerabilities table (through attack pattern) in the Fact Mod-

ule to determine whether there exists such a vulnerability in the system. The following

SQL statement is used by an attack generation Algorithm 1 to identify the vulnerability

instances, denoted by VULNC , given a Configuration Instance C as a post-condition.

SQL Statement 6.2.2

VULNC = SELECT Vulnerability,Host
FROM VulnerabilityInstance JOIN Exploitation

JOIN CONFIG Instance
WHERE [CONFIG Instance].CONFIG = C .CONFIG AND

[CONFIG Instance].Host = C .Host

Similarly, given the vulnerability instance V , the following SQL statement is used to

identify a set of preconditions at the instance level where an attacker can begin launching

an attack from.

SQL Statement 6.2.3
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PRECV = SELECT CONFIG,Host
FROM CONFIG Instance JOIN CONFIGURAT ION

JOIN Pre condition JOIN AT TACK PAT T ERN
JOIN VULNERABILITY JOIN Vulnerability Instance

WHERE [CONFIG Instance].Host = V .Host AND
[CONFIG Instance].Vulnerability = V .Vulnerability

Note that a single vulnerability exploitation can cause multiple outcomes and that there

exist multiple attributes required in executing an exploit. In particular, an exploit may

require multiple conditions to be satisfied or only one of its preconditions to be satisfied

in order to launch an attack. The attack tree encodes such a relation by a logical operator

AND-OR. The field JoinType in the Precondition table association captures this aspect.

We use the logical operator AND to encode the relationship where multiple conditions

are all required in order to execute an exploit and use the logical operator OR to address

the case in which an exploit can be executed if at least one of its preconditions is satisfied.

Note that in the case where both AND and OR operators are needed to launch

an attack, we use the “dummy node” to partially combine preconditions with AND-

decomposition or OR-decomposition as it is appropriate.

6.2.3 Attack Tree Generation Algorithm

We implemented the attack generation tools in Java. The design UML is shown in

Figure 6.3. The tool is comprised of a platform-dependent parser, Database Interface,

Attack Tree Generator, and ViewPanel. A Parser class is used to read the information

about vulnerabilities from public vulnerability bulletin and parse this information to the

database. In this project we implemented NessusParser to read data from the nessus

vulnerability report. A Database Interface class is used to perform queries to the Database.

The Attack Tree Generator class generates a Dependency Graph and the ViewPanel draws

an attack tree from the Dependency Graph. Note that the EventHandler and Risk Analyzer

classes are not relevant to attack tree generation. Their abstractions, however, will be

revisited when we are discussing risk analysis methodologies using the attack tree as the

risk model. The attack tree generation process begins with the ultimate goal. In this step,
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Figure 6.3: The Designed UML Diagram of the Attack Tree Generating Tool

the security analyst selects an ultimate assertion (often “root access privilege”) on the

machine which she wants to protect most as an ultimate goal.

An attack tree generation pseudo code is shown in Algorithm 1. The algorithm

works as follows. First, it executes SQL query 6.2.2 given C = ultimate goal to identify

all vulnerability instances that can cause a security breach allowing attackers to reach the

ultimate goal. Then for each vulnerability n ∈ VULNC , the algorithm searches for the

preconditions by executing the SQL query 6.2.3. All preconditions discovered in this step

are attached to DBStack. In the subsequent iterations, preconditions from the previous it-

eration then become root nodes of the subtrees. The algorithm repeats the previous steps

by executing SQL queries 6.2.2 and 6.2.3 to find vulnerabilities and their preconditions on

each subtree. The preconditions found in this iteration become root nodes of the smaller
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subtrees, and then the algorithm repeats itself until it can not find any preconditions or

vulnerabilities using all available resources. Nodes found in this step become the leaf

nodes. The above paragraph describes the typical routine of the algorithm. There is, how-

ever, one exception in this routine. If the vulnerability exploitation requires connectivity

(see line 21), the algorithm searches the connectivity table (query 6.2.1) to locate ma-

chines that can remotely launch an attack to the victim machine. For each machine, the

procedure looks for any vulnerability exploitation that can cause the system compromise,

puts these exploits in the DBStack, and switches back to the typical search.

6.3 Complexity Analysis

In this subsection, we shall prove that the attack generation algorithm scales with

the number of attributes. To begin the complexity analysis, one explicit assumption Al-

gorithm 1 adopts from [12] is monotonicity. Monotonicity implies that once a particular

state has been reached, it can not be undone. In other words, attack progress never back-

tracks. With this assumption, we assume the existence of a procedure CHAIN that takes a

tree node and returns a set of predecessor nodes by backtracking up to the root node. We

use the procedure CHAIN to enforce monotonicity constraints so that the path in the attack

tree contains no duplication thus it is monotonic. Although Monotonicity may not hold

for some cases such cases can be simplified to monotonicity. For example the attacker

may execute a denial-of-service attack to temporarily disable the local DNS service and

steal sensitive information as described in CVE-2006-0351. The attacker can not deny the

fact that an attack progress has exploited the denial-of-service state of attack in an exploit

model.

We begin the complexity analysis by assuming the set A = {a1,a2, . . . ,an} be the

set of attributes. Set A consists of three compartments: Vulnerability (V ), Configuration

(F), and Connectivity (C) such that for V 6= F 6= C, A = V ∪F ∪C. We observe that SQL

queries 6.2.1, 6.2.2, and 6.2.3 interact with different compartments of A so that we can

safely bound the complexity of SQL executions to O(N) where N = |A|.
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Algorithm 1 Attack Tree Generation Algorithm
{Description:Attack tree generation algorithm generates attack tree from a given ultimate
goal (denoted by sroot), vulnerability instances, configuration instances, and network configu-
ration attributes.
The algorithm assumes the existence of a procedure called CHAIN that takes a node n cor-
responding to the state in attack tree and returns a set of nodes resulting from backtracking
edges in τ from node n back to sroot . }
{Input: sroot , DATABASE VulnerabilitiesDB}
{Output: : The Attack Tree (AT = (sroot ,S,τ,∈))}
BEGIN

5: Let DBStack be a stack that queues nodes in the attack tree that is under exploration.

VULNC ← execute SQL statement 6.2.2 given C ← sroot

for all n ∈ VULNC | n /∈ CHAIN(C ) do
add (n,C ) to τ and add n to S

10: DBStack.put(n)
end for
while DBStack is not Empty do

C ← DBStack.pop()
if C is vulnerability then

15: PRECV ← execute SQL statement 6.2.3 given C
for all n ∈ PRECV | n /∈ CHAIN(C ) do

add (n,C ) to τ and add n to S
DBStack.put(n)

end for
20: else

if C = “Connectivity” then
H ← C .hostIP
CONH ← execute SQL statement 6.2.1 given H
for all h ∈CONH do

25: VULNC ← execute SQL statement 6.2.2 given C ← { root compromise, h.hostIP
} OR { user compromise, h.hostIP }
for all n ∈ VULNC | n /∈ CHAIN(C ) do

add (n,C ) to τ and add n to S
DBStack.put(n)

end for
30: end for

else
VULNC ← execute SQL statement 6.2.2 given C
for all n ∈ VULNC | n /∈ CHAIN(C ) do

add (n,C ) to τ and add n to S
35: DBStack.put(n)

end for
end if

end if
end while

40: END
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Note that the monotonicity constraint plays a critical role in guaranteeing that each

path contains no duplicate nodes. In other words, it guarantees that the search space is

reduced, thus each path has a search complexity of O(N2). Since there are at most n

branches, Algorithm 1 is bounded to O(N3). Another way to view the algorithm is from

the pseudo code. We organize Algorithm 1 into three states: initialization, maintenance,

and termination.

• Initialization: Prior to the first iteration (line 5 - 11), we execute SQL 6.2.2. The

results are stored in DBStack. The overall complexity is O(N).

• Maintenance: In each loop iteration (line 12 to 39), a tree node C is removed from

the DBStack. Node C can be either vulnerability (line 14), precondition (line 32),

or connectivity (line 21). In the cases where C is vulnerability or state condition,

the procedure only executes one SQL query and enforces monotonicity constraints

to prevent cycle (line 16 and line 33). Both executions are bounded to O(N). In the

case where node C is a connectivity, we execute SQL 6.2.1 and then SQL 6.2.2 on

each result returned from 6.2.1. In this case, the procedure is bounded to O(N2).

• Termination: The algorithm is terminated when the DBStack is empty. We use

the DBStack to store attributes discovered by SQL queries. With monotonicity

constraints, the while loop (line 12) which bounds the number of iterations in the

algorithm is bounded to O(N). Since, the maximum bound in the Maintenance state

is O(N2), the the overall complexity of the algorithm is O(N3).

6.4 Tool Illustration

We conducted the experiment on the test-bed network as described in Chapter 4.

The test-bed network has 14 vulnerabilities as shown in Table 4.1. In this test, Nessus

vulnerability scanner is chosen to produce a proof-of-concept vulnerability report to be

parsed to the tool. A sample Nessus report is provided in Figure 6.4. The first step in this
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Figure 6.4: The Nessus Report

experiment is to parse the Vulnerability report into the Database and construct the Fact

Database. We implemented the NessusParser in Java to read the Nessus Report and parse

all vulnerabilities and exploits reported in this document to the Database.

The next step is to build a Precondition and Postcondition table. In this step, National

Vulnerability Database (CVE) is chosen as the Nessus report refers to CVE. Since CVE

stores data in XML format, we implemented XMLparser using a Java standard XML li-

brary. Note that although the information about host machines can be gathered during this

process, the connectivity among those hosts is not reported by the Nessus report. There-

fore, we had to enter the connectivity information manually. We hope to integrate this tool

with the topology scanner and successfully parse the connectivity in an automatic manner

in the future. Figure 6.5 shows the screen capture of four major database components:

precondition, postcondition, VulnerabilityInstance, and Connectivity tables at the end of

this stage. Once the database is prepared, we execute an attack tree generation algorithm.

In this test, we picked host 10.0.0.128 as the root machine. Algorithm 1 identifies 4 attack
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Figure 6.5: The screen capture of the system vulnerabilities database being parsed from
the Nessus Report
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scenarios in which the root machine can be compromised. Figure 6.6 simplified the risk

model of the test-bed network. Note that the actual attack tree model is shown in the

upper-left corner.

The original attack tree consists of 33 nodes covering four distinctive attack scenarios

targeting the root machine. From the model, the attacker takes advantage of public access

of the web server (1296.216.0.21) and exploits the IIS vulnerability (CVE 2009-1535) to

gain user privilege on the server (as illustrated in sub scenario A). After compromising

the Web server, the attacker can either execute stack BOF (ActiveX vulnerability), LICQ

remote-2-user attack, or simply exploit the trust between local machines to bypass the

authentication mechanism. Any of these methods allows attackers to compromise the

local machine. Then the attacker executes a Heap corruption BOF attack to compromise

the Gateway server (196.216.0.128) from the local machine and then uses the Gateway

server to compromise the root machine.

An attack tree model resulting from this stage shows ways in which the target system

can be compromised. The model itself can be augmented to provide a better quantitative

representation and give significant benefit to risk assessment analysis. In the subsequent

chapters, we will illustrate how an attack model can be used in various risk assessment

analyses.

6.5 Chapter Summary

In this chapter, we propose an attack tree analysis tool that discovers ways in which

the system can be compromised and we model network penetration from the attacker’s

prospective. We implemented this tool in Java language, with full-feature user interface

and attack tree visualization capability.

Our attack tree analysis tool models the network topology configuration. This con-

figuration is then subjected to simulated attacks from the exploit database. Exploits are

modeled in terms of preconditions and postconditions. When all preconditions for an
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Figure 6.6: The Simplified Attack Tree of the Test-bed Network
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exploit are met, the vulnerability exploitation is successful, and its postconditions are in-

duced. These postconditions, in turn, provide a stepping stone for other exploits. The

resulting set of exploits, joined by their precondition/postcondition dependencies, form

the graphical attack model. The graphical model reveals dependencies among exploits

and system configurations thus allowing the security administrator to accurately identify

weakness in the network design, predict all possible outcomes, and decide appropriate

defensive measures.



Chapter 7

OPTIMAL SECURITY HARDENING ON ATTACK TREE MODELS OF

NETWORKS

Researchers have previously looked into the problem of determining whether a given

set of security hardening measures can effectively make a networked system secure. Many

of them also addressed the problem of minimizing the total cost of implementing these

hardening measures given costs for individual measures. However, system administrators

are often faced with a more challenging problem since they have to work within a fixed

budget which may be less than the minimum cost of system hardening. Their problem

is how to select a subset of security hardening measures so as to be within the budget

and yet minimize the residual damage to the system caused by not plugging all required

security holes. In this work, we formulate the problem as a multi-objective optimization

problem and develop a systematic approach to solve the problem using non-dominated

sorting genetic algorithm and an attack tree model of the system.

7.1 Introduction

Network-based computer systems form an integral part of any information technol-

ogy infrastructure today. The different levels of connectivity between these systems di-

rectly facilitates the circulation of information within an organization, thereby reducing

invaluable wait time and increasing the overall throughput. As an organizations opera-

tional capacity becomes more and more dependent on networked computing systems, the

need to maintain accessibility to the resources associated with such systems has become
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an important necessity. Any weakness or vulnerability that could result in the break-

down of the network has direct consequence on the amount of yield manageable by the

organization. This in turn requires the organization to not only consider the advantages

of utilizing a networked system, but also consider the costs associated with managing

the system. With cost-effectiveness occurring as a major factor in deciding the extent to

which an organization would secure its network, it is not sufficient to detect the presence

or absence of a vulnerability and implement a security measure to rectify it. Further anal-

ysis is required to understand the contribution of the vulnerabilities towards any possible

damage to the organizations assets. Often, vulnerabilities are not exploited in isolation,

but rather used in groups to compromise a system. Similarly, security policies can have a

coverage for multiple vulnerabilities. Thus, cost-effective security management requires

researchers to evaluate the different scenarios that could lead to the damage of a secured

asset, and then come up with an optimal set of security policies to defend such assets.

Researchers have proposed building security models for networked systems using

paradigms like attack graphs [12, 38, 50, 62, 65]and attack trees [25, 43, 52, 60] and then

finding attack paths in these models to determine scenarios that could lead to damage.

However, merely determining possible attack paths does not help the system administra-

tors much. They are more interested in determining the best possible way of defending

their network in terms of an enumerated set of hardening options [47]. Moreover, the

system administrator has to work within a given set of budget constraints which may pre-

clude her from implementing all possible hardening measures or even measures that cover

all the weak spots. Deciding a set of security policies for the organizations network safety

has considerable implications on the organizations financial throughput. Thus, the sys-

tem administrator needs to find a tradeoff between the cost of implementing a subset of

security hardening measures (from a set of measures that can potentially close all attack

paths), and the damage that can potentially happen to the system if certain weak spots are

left un-plugged. In addition, the system administrator may also want to determine optimal



60

robust solutions. These are sets of security hardening measures that have the property that

even if some of measures within a set fail, the system is still not compromised.

We believe that the problem should be addressed in a more systematic manner, uti-

lizing the different tools of optimization at hand. A decision maker would possibly make

a better choice by successively evaluating different levels of optimization possible, rather

than accepting a solution from an off-the-shelf optimizer. Towards this end, the current

work makes four major contributions. First, we refine and formalize the notion of attack

trees so as to encode the contribution of different security conditions leading to system

compromise. Next, we develop a model to quantify the potential damage that can occur

in a system from the attack modeled by the system attack tree. We also quantify the se-

curity control cost incurred to implement a set of security hardening measures. Third, we

model the system administrators decision problem as three successively refined optimiza-

tion problems. We progressively transform one problem into the next to cater to more

cost-benefit information as may be required by the decision maker. Last but not the least

we discuss our thoughts and observations regarding the solutions, in particular the robust

solutions identified by our optimization process, with a belief that such discussion will

help the system administrator decide what methodology to adopt.

The rest of the chapter is organized as follows. We discuss some of the previous

works related to determining optimum security hardening measures in section 7.2. Sec-

tion 7.3 gives some background information about multi-objective optimization and the

genetic algorithms that we use in this work. In section 7.5, we revisit a test-bed network to

illustrate the problem. Section 7.6 presents the cost model use in this problem. The three

optimization problems are presented in section 7.7 with results and discussion following

in section 7.8. Finally we conclude in section 7.9.

7.2 Related Works
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Network vulnerability management has been previously addressed in a variety of

ways. Noel et al. used exploit dependency graphs in [47] to compute minimum cost-

hardening measures. Given a set of initial conditions in the graph, they computed boolean

assignments to these conditions, enforced by some hardening measure, so as to minimize

the total cost of those measures. As pointed out in their work, these initial conditions

(or leaf nodes in an attack tree) are the only type of network security conditions under

our strict control. Hardening measures applied to internal nodes can potentially be by-

passed by an attacker by adopting a different attack path. Jha et.al [37] did not consider

any cost for the hardening measures. Rather, their approach involved finding the minimal

set of atomic attacks critical for reaching the goal and then finding the minimal set of

security measures that cover the minimal set of atomic attacks. Although such analysis

is meant for providing solutions that guarantee complete network safety, the hardening

measures provided may still not be feasible within the financial limitations of an organi-

zation. Under such circumstances, a decision maker must perform a cost-benefit analysis

to understand the trade-off between hardening costs and network safety. Furthermore,

a minimum cost hardening measure set only means that the root goal is safe, and some

residual damage may still remain in the network. Owing to these real world concerns,

network vulnerability management should not always be considered as a single-objective

optimization problem.

A multi-objective formulation of the problem was presented by Gupta et al. in [34].

They considered a generic set of security policies capable of covering one or more generic

vulnerabilities. A security policy could also create possible vulnerabilities, thereby re-

sulting in some residual vulnerabilities even after the application of security policies.

The multi-objective problem then was to minimize the cost of implementing the security

policies, as well as the weighted residual vulnerabilities. However, the authors finally

scalarized the two objectives into a single objective using relative weights for the objec-

tives.
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7.3 BackGround on Multi-Objective Analysis

In real world scenarios, often a problem is formulated to cater to several criteria or

design objectives, and a decision choice to optimize these objectives is sought for. An

optimum design problem must then be solved with multiple objectives and constraints

taken into consideration. This type of decision making problems falls under the board

category of multi-criteria, multi-objective, or vector optimization problem.

Multi-objective optimization differs from single-objective ones in the cardinality of

the optimal set of solutions. Single objective optimization techniques are aimed towards

finding the global optima; whereas in the case of multi-objective optimization, there is

no such concept of a single optimum solution. This is due to the fact that a solution

that optimizes one of the objectives may not have the desired effect on the others. As

a result, it is not always possible to determine an optimum that corresponds in the same

way to all the objectives under consideration. Decision making under such situations thus

require some domain expertise to choose from multiple trade-off solutions depending on

the feasibility of implementation. Formally, we can state the multi-objective optimization

problem (MOOP) as follows:

Definition 14 GENERAL MOOP

Find the vector
−→
x∗ = [x∗1,x

∗
2, . . . ,x

∗
n]

T which optimizes the M-dimensional vector function

~f (~x) = [ f1(~x), f2(~x), . . . , fM(~x)]T

satisfying p inequality and q equality constraints

gi(~x) ≥ 0 i = 1, . . . , p

hi(~x) = 0 i = 1, . . . ,q

where −→x = [x1,x2, . . . ,xn]T is the vector of decision variables and M is the number of

objectives in the problem.
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Due to the conflicting nature of the objective functions, a simple objective value com-

parison cannot be performed to compare two feasible solutions to this problem. Most

multi-objective algorithms thus use the concept of dominance to compare feasible solu-

tions.

Definition 15 DOMINANCE AND PARETO-OPTIMAL SET

In a minimization problem, a feasible solution vector ~x is said to dominate an-

other feasible solution vector ~y if 1. ∀iε{1,2, . . . ,M} fi(~x) ≤ fi(~y) and 2.

∃ jε{1,2, . . . ,M} f j(~x) < f j(~y) ~y is then said be dominated by ~x. If the two condi-

tions do not hold, ~x and ~y are said to be non-dominated w.r.t. each other. Further, the

set of all non-dominated solutions obtained over the entire feasible region constitutes the

Pareto-optimal set.

In other words, a Pareto-optimal solution is as good as the other feasible solutions in all

the objective functions, and better in at least one of them. Solutions in the Pareto optimal

set have no apparent relationship with each other, except for their membership in the

set. The surface generated by these solutions in the objective space is called the Pareto-

front or Pareto-surface. Fig. 7.1 shows the Pareto front for a hypothetical two-objective

problem, with the dominance relationships between three feasible solutions. The classical

way to solve a multi-objective optimization problem is to follow the preference-based

approach. A relative weight vector for the objectives can help reduce the problem to

a single-objective instance, or impose orderings over the preference given to different

objectives. However, such methods fail to provide a global picture of the choices available

to the decision maker. In fact, the decision of preference has to be made before starting the

optimization process. Relatively newer methods have been proposed to make the decision

process more interactive.

Evolutionary algorithms for multi-objective optimization (EMO) have been exten-

sively studied and applied to a wide spectrum of real-world problems. One of the ma-

jor advantages of using evolutionary algorithms for optimization is their ability to scan
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Figure 7.1: Pareto-front for a Hypothetical Two Objective Problem.

through the global search space simultaneously, instead of restricting to localized regions

of gradient shifts. An EMO works with a population of trial solutions, trying to converge

on to the Pareto-optimal set by filtering out the infeasible or dominated ones. Having

multiple solutions from a single run of an EMO is not only an efficient approach, but

also helps a decision maker obtain an intuitive understanding of the different trade-off

options available at hand. The effectiveness of an EMO is thus characterized by its ability

to converge to the true Pareto-front and maintain a good distribution of solutions on the

front.

A number of algorithms have been proposed in this context [19, 39]. We employ

the Non-dominated Sorting Genetic Algorithm (NSGA-II) [27] for the multi-objective

optimization in this study. NSGA-II has gained a wide popularity in the multi-objective

optimization community, partly because of its efficiency in terms of the convergence and

diversity of solutions obtained, and partly due to its extensive application to solve real-

world problems.
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Figure 7.2: One Generation of NSGA-II.

7.4 Non-dominated Sorting GA (NSGA-II)

Similar to a simple genetic algorithm [33], NSGA-II starts with a population P0 of

N random solutions. A generation index t = 0,1, . . . ,GenMAX keeps track of the number

of iterations of the algorithm. Each generation of NSGA-II then proceeds as follows.

An offspring population Qt is first created from the parent population Pt by applying

the usual genetic operations of selection, crossover and mutation [33]. The parent and

offspring populations are combined to form a population Rt = Pt ∪Qt of size 2N. A non-

dominated sorting is applied to Rt to rank each solution based on the number of solutions

that dominate it. A rank k solution indicates that there are k other solutions that dominate

it. In the presence of constraints, the infeasible solutions are given unique ranks higher

than the highest feasible solution rank. The ranking starts in ascending order from the

infeasible solution with least constraint violation. The population Pt+1 is generated by

selecting N solutions from Rt . The preference of a solution is decided based on its rank:

lower the rank, higher the preference. By combining the parent and offspring population,
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and selecting from them using a non-dominance ranking, NSGA-II implements an elite-

preservation strategy where the best solutions obtained are always passed on to the next

generation. However, since not all solutions from Rt can be accommodated in Pt+1, a

choice is likely to be made when the number of solutions of the currently considered

rank is more than the remaining positions in Pt+1. Instead of making an arbitrary choice,

NSGA-II uses an explicit diversity-preservation mechanism. The mechanism, based on a

crowding distance metric [27], gives more preference to a solution with a lesser density

of solutions surrounding it, thereby enforcing diversity in the population. The NSGA-

II crowding distance metric for a solution is the sum of the average side-lengths of the

cuboid generated by its neighboring solutions. Figure 7.2 depicts a single generation of

the algorithm. For a problem with M objectives, the overall complexity of NSGA-II is

O(MN2).

7.5 A Simple Network Model

In this chapter, we consider the test-bed network as previously discussed in the Chap-

ter 4. The test-bed network consists of eight hosts located with in two subnets. The DMZ

subnet consists of Web server, Mail server, and DNS server. This subnet is opened to the

public. The second subnet lies the SQL Server and several local desktops including the

root machine. This subnet is the trusted zone. Hence, the access from the external are

restricted. A DMZ tri-homed firewall is installed with policies to ensure that Web server,

Mail server, and DNS server located in the DMZ network are separated from local net-

work so that if one of these is compromised, the damage will only be limited to the DMZ

zone. Figure 7.3 simplifies the the attack tree model of the test-bed network. We use an

in-house tool to generate this attack tree. The attack tree consists of 33 nodes covering

four distinctive attack scenarios targeting the administrative machine. From the model,

attacker takes advantage on public access of the web server (129.216.0.21) and exploits

the IIS vulnerability (CVE 2009-1535) to gain user privilege on the server (as illustrate in
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Figure 7.3: The Simplified Attack Tree of the Test-bed Network
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sub scenario A). After compromising Web server, attacker can either execute stack BOF

(ActiveX vulnerability), LICQ remote-2-user attack, or simply exploits trust between lo-

cal machines into bypassing the authentication mechanism. Any of these method allows

attackers to compromise the local machine. Then attacker executes Heap corruption BOF

attack to compromise Gateway server (196.216.0.128) from local machine and then use

the Gateway server to compromise the root machine.

According to the definition of an attack tree (see Definition 4). The multi-set S forms

the nodes of the tree. The multi-set Nexternal represents the leaf nodes of the tree. These

nodes reflect the initial vulnerabilities present in a network and prone to exploits. Since,

an attribute can be a precondition for more than one attack, it might have to be duplicated,

hence forming a multi-set. The attribute “Authentication bypass” in the example is one

such attribute. The set of ordered pairs, τ, reflect the edges in the tree. The existence of

an edge between two nodes imply that there is a direct or indirect relationship between

their truth values, signified by the decomposition at each node. The AND decomposition

at a node requires all child nodes to have a truth value of true for it to be true. The OR

decomposition at a node requires only one child node to have a truth value of true for it to

be true. Using these decompositions, the truth value of an attribute s j ∈ Ninternal ∪{sroot}

can be evaluated after assigning a set of truth values to the attributes si ∈ Nexternal .

7.6 Cost Model

In order to defend against the attacks possible, a security manager (decision maker)

can choose to implement a variety of safeguard technologies, each of which comes with

different cost and coverages. For example, to defend against the ftp/.rhost exploit, one

might choose to apply a security patch, disable the FTP service, or simply tighten the write

protection on the .rhost directory. Each choice of action can have a different cost. Besides,

some measures have multiple coverages, but with higher costs. A security manager has to

make a decision and choose to implement a subset of these policies in order to maximize

the resource utilization.



69

However, this decision is not a trivial task. Security planning begins with risk as-

sessment which determines threats, loss expectancy, potential safeguards and installation

costs. Many researchers have studied risk assessment schemes, including the National

Institute of Standards and Technology (NIST). For simplicity, the security manager can

choose to evaluate the risks by considering a relative magnitude of loss and hardening

costs [16, 40, 64]. However, relative-cost approaches do not provide sufficient infor-

mation to prioritize security measures especially when the organization faces resource

constraints. We implement Butlers multi-attribute risk assessment framework [butler02a,

butler02b] to develop quantitative risk assessments for our security optimization. First we

define the notion of a security control in the context of the attack tree definition.

Definition 16 SECURITY CONTROL

Given an attack tree (sroot ,S,τ,ε), the mapping SC : Nexternal→{true, f alse} is a security

control if ∃ si ∈ Nexternal = f alse.

In other words, a security control is a preventive measure to falsify one or more attributes

so as to stop an attacker from reaching its goal. Further, in the presence of multiple

security controls SCk, the truth value of an attribute si ∈ Nexternal is taken as
∧
k

SCk(si).

Given a security control SC, the set of all si ∈ Nexternal | SC(si = f alse) is called the

coverage of SC. Hence, for a given set of security controls we can define the coverage

matrix specifying the coverage of each control. For a given set of m security controls, we

use the boolean vector ~T = (T1,T2, . . . ,Tm) to indicate if a security control is chosen by a

security manager. Note that the choice of this vector indirectly specifies which attributes

in the attack tree would be false to begin with.

7.6.1 Evaluating Potential Damage

The potential damage, Pj , represents a unitless damage value that an organization

might have to incur in the event that an attribute s j becomes true. Based on Butlers
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framework, we specify below the four steps to calculating the potential damage for an

attribute s j.

1. Identify potential consequences of having a true value for the attribute, induced by

some attack. In our case, we have identified five outcomes lost revenue ($$$), non-

productive downtime (hrs), damage recovery ($$$), public embarrassment (severity

scale) and law penalty (severity scale) denoted by x1 j , x2 j , x3 j , x4 j and x5 j.

2. Estimate the expected number of attack occurrence, Freq j , resulting in the conse-

quences. A security manager can estimate the expected number of attack from the

organization-based historical data or public historical data. 1

3. Assess a single value function, Vi j(xi j), for each possible consequence. The purpose

of this function is to normalize different unit measures so that the values can be

summed together under a single standard scale.

Vi j(xi j) =
xi j

Max jxi j
×100 ,1≤ i≤ 5 (7.1)

4. Assign a preference weight factor, Wi, to each possible consequence. The weight

factor represents an organizations concerns for different outcomes. A security man-

ager can rank each outcome on a scale of 1 to 100. The outcome with the most

concern would receive 100 points. The manager ranks the other attributes relative

to the first. Finally, the ranks are normalized and set as Wi.

The potential damage for the attribute can then be calculated from the following equation.

Pj = Freq j×
5

∑
i=1

Wi Vi j(xi j) (7.2)

When using an attack tree, a better quantitative representation of the cost is obtained by

considering the residual damage once a set of security policies are implemented. Hence,

1Also known as an incident report published annually in many sites such as CERT/CC or SANS.ORG.
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we augment each attribute in the attack tree with a value signifying the amount of potential

damage residing in the subtree rooted at the attribute and the attribute itself.

Definition 17 AUGMENTED-ATTACK TREE

Let AT = (sroot ,S,τ,ε) be an attack tree. An augmented attack tree ATaug = AT | 〈I,V 〉 is

obtained by associating a tuple 〈I,V 〉 to each si ∈ S, where

1. Ii is an indicator variable for the attribute si, where

Ii =
{

0 , i f si is f alse
1 , i f si is true

2. Vi is a value associated with the attribute si.

In this work, all attributes si ∈ Nexternal are given a zero value. The value associated with

s j ∈ Ninternal ∪{sroot} is then computed recursively as follows.

Vj =


∑

k|(sk,s j)∈τ

Vk +I jPj i f d j is AND

Max
k|(sk,s j)∈τ

Vk +I jPj i f d j is OR
(7.3)

Ideally, Pj is same for all identical attributes in the multi-set. We took a “panic approach”

in calculating the value at each node, meaning that given multiple subtrees are rooted

at an attribute with an OR decomposition, we choose the maximum value. The residual

damage of the augmented tree is then defined as follows.

Definition 18 RESIDUAL DAMAGE

Given an augmented-attack tree (sroot ,S,τ,ε) | 〈I,V 〉 and a vector ~T = (Ti),Ti ∈

{0,1};1≤ i≤ m, the residual damage is defined as the value associated with sroot , i.e.,

RD(~T ) = Vroot
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7.6.2 Evaluating Security Cost

Similar to the potential damage, the security manager first lists possible security

costs for the implementation of a security control, assigns the weight factor on them, and

computes the normalized value. The only difference is that there is no expected number

of occurrence needed in the evaluation of security cost. In our case, we have identified

five different costs to implementing a security control installation cost ($$$), operation

cost ($$$), system downtime (hrs), incompatibility cost (scale), and training cost ($$$).

The overall cost C j , for the security control SC j , is then computed in a similar manner

as for potential damage, with an expected frequency of 1. The total security cost for a set

of security controls implemented is then defined as follows.

Definition 19 TOTAL SECURITY CONTROL COST

Given a set of m security controls, each having a cost Ci ; 1≤ i≤m, and a vector ~T = (Ti),

Ti ∈ {0,1}, the total security control cost is defined as

SCC(~T ) =
m

∑
i=1

(TiCi)

7.7 Problem Formulation

The two objectives we consider in this study are the total security control cost and

the residual damage in the attack tree of our example network model. For the attack

tree shown in Figure 7.3, we identified 19 different security controls possible by patching

or disabling of different services, as well as by changing file access permissions. These

controls are listed in Table 7.7.We also tried to maintain some relative order of importance

between the different services in a real world scenario when computing the potential

damage and security control costs.

Problem 1 THE SINGLE-OBJECTIVE OPTIMIZATION PROBLEM

Given an augmented-attack tree (sroot ,S,τ,ε) | 〈I,V 〉 and m security controls, find a vector

~T ∗i = (T ∗i ),T ∗i ∈ {0,1};1≤ i≤ m, which minimizes the function
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Security Action Security Action
Control Control
SC1/SC2 Disable/Patch WebDAV @ 196.216.0.21 SC11 Add Gateway Firewall @ 10.0.0.0/8
SC3/SC4 Disable/Patch LICQ @ 10.0.0.0-127 SC12/SC13 Disable/Patch SMTP @ 196.216.0.19

SC5 Patch Marshalling Engine @ 10.0.0.128 SC14/SC15 Disable/Patch OpenSSH @ 196.216.0.128
SC6/SC7 Disable/Patch port scan service @ 196.216.0.19 SC16 Disable remote shell service @ 10.0.0.0-127

SC8 Disconnect Internet @ 196.216.0.128 SC17 Disconnect Internet @ 196.216.0.19
SC9 Change to POP3 protocol @ 196.216.0.19 SC18 Patch Active X @ 10.0.0.0-127
SC10 Enforce digital signature @ 196.216.0.19 SC19 Disconnect Internet @ 196.216.0.21

αRD(~T ∗)+βSCC(~T ∗)

where, α and β are preference weights for the residual damage and the total cost of

security control respectively, 0≤ α, β≤ 1 and α+β = 1.

The single-objective problem is the most likely approach to be taken by a decision maker.

Given only two objectives, a preference based approach might seem to provide a solution

in accordance with general intuition. However, as we find in the case of our example net-

work model, the quality of the solution obtained can be quite sensitive to the assignment

of the weights. To demonstrate this affect, we run multiple instances of the problem using

different combination of values for α and β. α is varied in the range of [0, 1] in steps of

0.05. β is always set to 1−α.

Problem 2 THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Given an augmented-attack tree (sroot ,S,τ,ε) | 〈I,V 〉 and m security controls, find a vector

~T ∗ = (T ∗i ),T ∗i ∈ {0,1};1≤ i≤m, which minimizes the total security control cost and the

residual damage.

The next level of sophistication is added by formulating the minimization as a multi-

objective optimization problem. The multi-objective approach alleviates the requirement

to specify any weight parameters and hence a better global picture of the solutions can be

obtained.

Problem 3 THE MULTI-OBJECTIVE ROBUST OPTIMIZATION PROBLEM

Let ~T = (Ti) be a boolean vector. A perturbed assignment of radius r, ~Tr, is then obtained
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by inverting the value of at most r elements of the vector~(T ). The robust optimization

problem can then be defined as follows.

Given an augmented-attack tree (sroot ,S,τ,ε) | 〈I,V 〉 and m security controls, find a vector

~T ∗ = (T ∗i ),T ∗i ∈ {0,1};1≤ i≤m, which minimizes the total security control cost and the

residual damage, satisfying the constraint

Max
~T ∗r

RD(~T ∗r )−RD(~T ∗)≤ D

where, D is the maximum perturbation allowed in the residual damage.

The third problem is formulated to further strengthen the decision process by determining

robust solutions to the problem. Robust solutions are less sensitive to failures in security

controls and hence subside any repeated requirements to reevaluate solutions in the event

of a security control failure. We use a simple genetic algorithm (SGA) to solve Problem

1. NSGA-II is used to solve Problem 2 and 3.

The algorithm parameters are set as follows: population size = 200, number of gen-

erations = 200, crossover probability = 0.9, and mutation probability = 0.1. We ran each

instance of the algorithms five times to check for any sensitivity of the solutions obtained

from different initial populations. Since the solutions always converged to the same op-

tima, we dismiss the presence of such sensitivity.

7.8 Results and Discussion

We first study the sensitivity of NSGA-II and SGA to their parameters. Increasing

the population size from 200 to 400 gives us a faster convergence rate, although the solu-

tions reported still remains the same. The effect of changing the crossover probability in

the range of 0.7 to 0.9 does not lead to any significant change of the solutions obtained.

Similar results were observed when changing the mutation probability from 0.1 to 0.05.

The solutions also do not change when the number of generations is changed from 150

to 300. Since we did not observe any significant change in the solutions by varying the
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Figure 7.4: SGA Solutions to Problem 1 with α Varied from 0 to 1 in Steps of 0.05.

algorithm parameters, the following results are presented as obtained by setting the pa-

rameters as chosen in the previous section. It is usually suggested that the preference

based approach should normalize the functions before combining them into a single func-

tion. However, we did not see any change in the solutions in the normalized version of

Problem 1. Figure 7.4 shows the solutions obtained from various runs of SGA in Problem

1 with varying α. A decision maker, in general, might want to assign equal weights to

both the objective functions, i.e. set α = 0.5. It is clear from the figure that such as assign-

ment do not necessarily provide the desired balance between the residual damage and the

total security control cost. Furthermore, such balance is also not obtainable by assigning

weight values in the neighborhood of 0.5.
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The solutions obtained are quite sensitive to the weights, and in this case, much

higher preference must be given to the total security control cost to find the other pos-

sible solutions. Since the weights do not always influence the objectives in the desired

manner, understanding their effect is not a trivial task for a decision maker. It is also not

possible to always do an exhaustive analysis of the affect of the weights on the objectives.

Given such situations, the decision maker should consider obtaining a global picture of

the trade-offs possible. With such a requirement in mind, we next consider Problem 2.

The corresponding solutions from Problem 1 are shown in Table 7.8. The two solutions

Table 7.1: Security Controls Obtained for Problem 1 with Different α and β.

α Optimum security controls RD SCC
0 null (31777) 0

0.05, 0.1 SC2, SC13, SC15 (3700) 625
0.2 to 0.35 SC1, SC6,SC13,SC15 (1094) 930
0.4 to 0.5 SC1,SC6, SC9, SC13, SC15 (612) 1135
0.55,1.0 SC1, SC6, SC12, SC15 (566) 1370

corresponding to α = 0.2 and 0.35, including any other solutions in the vicinity, are likely

candidates for a decision makers choice as it reduces risk down to an acceptable level with

a reasonable cost. Unlike the single objective approach, where determining such vicinal

solutions could be difficult, the multi-objective optimization approach clearly revealed

the existence of at least one such solution.

Figure 7.5 shows the solutions obtained from a single run of NSGA-II on Problem

2. NSGA-II reported all the solutions obtained from multiple runs of SGA, as well as

12 more solutions. Interestingly, there exists no solution in the intermediate range of (0,

600] for security control cost. This inclination of solutions towards the extremities of the

residual damage could be indicative of the non-existence of much variety in the security

controls under consideration. Most of the security controls for the example network in-

volve either the disabling or patching of a service, resulting in a sparse coverage matrix.
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Figure 7.5: NSGA-II Solutions to Problem 2 and Sensitivity of a Solution to Optimum
Settings.

For a more “continuous” Pareto-front, it is required to have security controls of compara-

tive costs and capable of covering multiple services. A real-world scenario would likely

have a good mixture of both local and global security controls, in which case, such gaps

in the Pareto-front will be unlikely. Once the decision maker has a better perspective

of the solutions possible, further analysis of the solutions may be carried out in terms

of their sensitivity to security control failures. Such sensitivity analysis is helpful in not

only reducing valuable decision making time, but also to guarantee some level of fault

tolerance in the network. Figure 7.5 shows the sensitivity of the solutions R4 to a failure
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in one of the security controls corresponding to the solution. This solution, with security

controls SC2, SC13 and SC15, will incur a high residual damage in the event of a failure

of SC2. Thus, a decision maker may choose to perform a sensitivity analysis on each of

the solutions and incorporate the results thereof in making the final choice. However, the

decision maker then has no control on how much of additional residual damage would be

incurred in the event of failure. Problem 3 serves the requirements of this decision stage

by allowing the decision maker to specify the maximum allowed perturbation in the resid-

ual damage. It is possible to specify the scope of failure the radius r within which the

decision maker is interested in analyzing the robustness of the solutions. Because of the

sparse nature of the coverage matrix, we set the perturbation radius r to 1. Also, we are

mostly interested in obtaining solutions that are fully robust, meaning the residual damage

should not increase. However, we can not found alternate solution unless we allow the

residual damage tolerance > 500, hence we set D to 1000. Figure 7.6 shows the solutions

obtained for this problem. The solutions to Problem 3 reveals that none of the optimum

solutions, except the trivial zero SCC solution, previously obtained is fully robust, even

for a single security control failure. Such insight could be of much value for a decision

maker when making a final choice. Table 7.8 shows the security controls corresponding

to the selected robust solutions.

Table 7.2: Robust Solutions Obtained by NSGA-II with r = 1.

Robust-optimum security controls RD SCC
R’0 null (31777) 0
R1 SC3,SC6 (30666) 145
R2 SC8, SC9,SC14, SC15 (24992) 460
R3 SC1, SC16 (14428) 730
R4 SC2, SC6, SC14, SC15 (9359) 805
R5 SC2, SC6, SC12, SC13, SC14 (2282) 1275
R6 SC1, SC6, SC12, SC13, SC14 (566) 1515
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Figure 7.6: NSGA-II Solutions to Problem 3 with D = 1000 and r = 1. Problem 2 solutions
are also shown for comparison.
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7.9 Chapter Summary

In this paper, we addressed the system administrators dilemma, namely, how to se-

lect, when needed, a subset of security hardening measures from a given set so that the

total cost of implementing these measures is not only minimized but also within budget

and, at the same time, the cost of residual damage is also minimized. We formulated

the problem as a multi-objective optimization problem and used non-dominated sorting

genetic algorithm to solve it. One important contribution of our solution is the use of an

attack tree model of the network to drive the solution. Without the attack tree modeling,

the optimization problems would be mostly flat in structure. The choice of security con-

trols would then be determined by the number of coverage they provide and the cost to

do so. By using an attack tree in the problem, we were able to better guide the optimiza-

tion process by providing the knowledge about the attributes that make an attack possible.

Quite often, a policy that disables a single attribute is enough to forbid an attack scenario.

Vulnerability management would not be of much practical use without integrating such

attack modeling approaches in the optimization procedures. Further, a systematic analysis

enabled us to approach the problem in a modular fashion, providing added information

to a decision maker to form a concrete opinion about the quality of the different trade-off

solutions possible.

The cost model that we adopted in this paper is somewhat simplistic. We assumed

that from a cost of implementation perspective the security measures are independent

of each other when in real life they may not be so. In addition, we have assumed that

the system administrators decision is in no way influenced by an understanding of the

cost to break the system. Finally, there is a dynamic aspect to the system administrators

dilemma. During run time the system administrator may need to revise her decision based

on emerging security conditions. In future we plan to refine our models to incorporate

these scenarios.



Chapter 8

DYNAMIC SECURITY RISK ASSESSMENT AND MITIGATION USING

BAYESIAN ATTACK GRAPHS

Security risk assessment and mitigation are two vital processes that need to be ex-

ecuted to maintain a productive IT infrastructure. On one hand, models such as attack

graphs and attack trees have been proposed to assess the cause-consequence relation-

ships between various network states, while on the other hand, different decision prob-

lems have been explored to identify the minimum-cost hardening measures. However,

these risk models do not help reason about the causal dependencies between network

states. Further, the optimization formulations ignore the issue of resource availability

while analyzing a risk model. In this paper, we propose a risk assessment framework

using Bayesian networks that enable a system administrator to quantify the chances of

network compromise at various levels, and show how to use this information to develop

a security mitigation and management plan. This risk model lends itself to dynamic anal-

ysis during the deployed phase of the network. A multi-objective optimization platform

provides the administrator with all trade-off information required to make decisions in a

resource constrained environment.

8.1 Introduction

Traditionally, information security planning and management for an organization

begins with risk assessment that determines threats to critical resources and the corre-

sponding loss expectancy. A number of researchers have proposed risk assessment meth-

ods by building security models of network systems, using paradigms like attack graphs
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[12, 38, 50, 62, 65] and attack trees [25, 43, 52, 60], and then finding attack paths in these

models to determine scenarios that could lead to damage. However, a majority of these

models fail to consider the attacker’s capabilities and, consequently, the likelihood of a

particular attack being executed. Without these considerations, threats and their impact

can be easily misjudged.

To alleviate such drawbacks, Dantu et al. [24] propose a probabilistic model to as-

sess network risks. They model network vulnerabilities using attack graphs and applied

Bayesian logic to perform risk analysis. Liu and Man [41] use Bayesian networks to

model potential attack paths in a system, and develop algorithms to compute an optimal

subset of attack paths based on background knowledge of attackers and attack mecha-

nisms. In both Dantu et al.’s and Liu and Man’s works, nodes in the attack graph are

assigned a probability value that describes the likelihood of attack on a node. They com-

pute the likelihood of system compromise by chaining Bayesian belief rules on top of

the assigned probabilities. The organizational risk is then computed as the product of the

likelihood of system compromise and the value of expected loss. The major problem with

both these works is that they do not specify how the conditional probability value of an

attack on each node is computed. Further, these works do not consider the problem of

optimal risk mitigation.

System administrators are often interested in assessing the risk to their systems and

determining the best possible way to defend their network in terms of an enumerated

set of hardening options. Risk assessment methods such as those discussed earlier have

been adopted by researchers to determine a set of potential safeguards, and related se-

curity control installation costs. Noel et al. uses exploit dependency graphs to compute

minimum-cost hardening measures [47]. Given a set of initial conditions in the graph,

they compute boolean assignments to these conditions, enforced by some hardening mea-

sures, to minimize the total cost. Jha et al. [38] determine the minimal set of attacks

critical for reaching a goal and then find the minimal set of security measures that cover

this set of attacks.
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While such cost analysis is useful, they miss out on one major issue. The system ad-

ministrator often has to work within a given set of budget constraints which may preclude

her from implementing all possible hardening measures or even measures that cover all

the weak spots. Thus, the system administrator needs to find a trade-off between the cost

of implementing a subset of security hardening measures (from a set of measures that can

potentially close all attack paths) and the damage that can be potentially inflicted on the

system after the security decision has been made (the residual damage). Dewri et al. [30]

first formulated this so-called “system administrators’ dilemma” (discussed above) as a

series of multi-objective optimization problems. The solutions to these problems allow

one to select a subset of hardening measures so that the total cost of implementing them

is not only minimized but also within a fixed budget and, at the same time, the residual

damage is minimized. One of the significant contributions of this work is the development

of an attack tree model of network risks in order to drive the solution methodology. The

attack tree model is able to better guide the optimization process by providing knowledge

about the attributes that make an attack possible. While this work makes significant con-

tribution towards appreciating the security planning process as something beyond simple

risk assessment, it has one significant shortcoming. The authors’ modeling of the prob-

lem is a static one. There is however a dynamic aspect to the security planning process.

For every attack, there is a certain probability of occurrence that can change during the

life time of a system depending on what the contributing factors for the attack are and

how they are changing. During run time, the system administrator may need to revise

her decision based on such emerging security conditions. Dewri et al.’s attack tree model

does not allow such dynamic security planning. In order to address these limitations, the

current work makes five major contributions.

• We propose an alternative method of security risk assessment that we call Bayesian

Attack Graphs (BAGs). In particular, we adapt the notion of Bayesian belief net-

works so as to encode the contribution of different security conditions during sys-
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tem compromise. Our model incorporates the usual cause-consequence relation-

ships between different network states (as in attack graphs and attack trees) and, in

addition, takes into account the likelihoods of exploiting such relationships.

• We propose a method to estimate an organization’s risk from different vulnerability

exploitations based on the metrics defined in the Common Vulnerability Scoring

System (CVSS) [59]. CVSS is designed to be an open and standardized method to

rate IT vulnerabilities based on their base, temporal and environmental properties.

• We develop a model to quantify the expected return on investment based on a user

specified cost model and likelihoods of system compromise.

• We model the risk mitigation stage as a discrete reasoning problem and propose a

genetic algorithm to solve it. The algorithm can identify optimal mitigation plans

in the context of both single and multi-objective analysis.

• Last, but not the least, we discuss how the above contributions collectively provide

a platform for static and dynamic analysis of risks in networked systems.

The rest of the paper is organized as follows. The test network used to illustrate our

problem is shown in Section 4.1. Section 8.3 presents the formalism for a Bayesian

Attack Graph model. The likelihood estimation method in static and dynamic scenarios

is discussed in Section 8.4. The risk mitigation process along with the expected cost

computations is presented in Section 8.5. Results and discussion are presented in Section

8.6. Finally, we conclude the paper in Section 8.7.

8.2 A Test Network

We revisit the test-bed network previously discussed in the Chapter 4. Figure 8.1

recaptures the test network. The network consists of eight hosts located within two sub-

nets. A DMZ tri-homed firewall is installed with preset policies to ensure that the Web
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Figure 8.1: Test-bed Network Model.



86

server, Mail server and the DNS server, located in the DMZ network, are separated from

the local network so that the damage will only be limited to the DMZ zone if one of these

servers is compromised. The firewall has a strong set of policies (shown in the inset table)

to prevent remote access to the internal hosts. In particular, all machines in the DMZ zone

passively receive service requests and only respond to the sender as needed. However, in

order to accommodate Web service’s transactions, the Web server is allowed to send SQL

queries to the SQL server located in the trusted zone on a designated channel. Local

machines are located behind a NAT firewall so that all communications to external parties

are delivered through the Gateway server. In addition, all local desktops, including the

administrator machine, have remote desktop enabled to facilitate remote operations for

company employees working from remote sites. The remote connections are monitored

by SSHD installed in the Gateway server.

A list of initial vulnerabilities/attack templates in this test network is listed in Table

8.1. Further scrutiny of this initial list using a vulnerability database reveals that eight

malicious outcomes are possible in this network. However, the list of vulnerabilities alone

cannot suggest the course of actions that lead to these outcomes, or accurately assess the

casualty of each outcome as it may have involved other damages along the way. These

vulnerabilities produce more than 20 attack scenarios with different outcomes, ranging

from information leakage to system compromise. Moreover, two of these scenarios use

machines in the DMZ zone to compromise a local machine in the trusted zone.

8.3 Modeling Network Attacks

We use a Bayesian belief network to model network vulnerabilities. We extend the

notion of Bayesian networks as presented by Liu and Man [41] to encode the contri-

butions of different security conditions during a system compromise. We term such a

Bayesian network as a Bayesian Attack Graph (BAG). Different properties of the net-

work effectuate different ways for an attacker to compromise a system. We first define an
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Host Vulnerability CVE# Attack Template
Local desktops Remote login CA 1996-83 remote-2-user
(10.0.0.1-127) LICQ Buffer Overflow (BOF) CVE 2001-0439 remote-2-user

MS Video ActiveX Stack BOF CVE 2009-0015 remote-2-root
Admin machine MS SMV service Stack BOF CVE 2008-4050 local-2-root

(10.0.0.128)
Gateway server OpenSSL uses predicable random CVE 2008-0166 information leakage
(196.216.0.128) Heap corruption in OpenSSH CVE 2003-0693 local-2-root

Improper cookies handler in OpenSSH CVE 2007-4752 authentication bypass
SQL Server SQL Injection CVE 2008-5416 remote-2-root

(196.216.0.130)
Mail Server Remote code execution in SMTP CVE 2004-0840 remote-2-root

(196.216.0.19) Error message information leakage CVE 2008-3060 account information theft
Squid port scan vulnerability CVE 2001-1030 information leakage

DNS Server DNS Cache Poisoning CVE 2008-1447 integrity
(196.216.0.20)

Web Server IIS vulnerability in WebDAV service CVE 2009-1535 remote-2-local
(196.216.0.20) authentication bypass

Table 8.1: Initial List of Vulnerabilities in Test-bed Network

attribute-template that allows us to categorize these network properties for further analy-

sis.

Definition 20 ATTRIBUTE-TEMPLATE

An attribute-template is a generic property of the network which includes, but not limited

to, the following:

1. system vulnerabilities (which are often reported in vulnerability databases such as

BugTraq, CERT/CC, or netcat),

2. (insecure) system properties such as unsafe security policy, corrupted file/memory

access permission, or read-write access in file structure,

3. (insecure) network properties such as unsafe network condition, unsafe firewall

properties, unsafe device/peripheral access permission, and

4. access privilege such as user account, guest account, or root account.
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An attribute-template helps us categorize most of the atomic properties of the network

that may be useful to an attacker. For example, “SSH buffer overflow vulnerability in FTP

server” can be considered as an instance of the system vulnerabilities template. Similarly,

“user access on Local machine” is an instance of the access privilege template. Such

templates also let us specify the properties as random variables. We define an attribute

with such a concept in mind.

Definition 21 ATTRIBUTE

An attribute is a Bernoulli random variable representing the state of an instance of an

attribute-template.

An attribute S is therefore associated with a state – True (S = 1/T ) or False (S = 0/F) –

and a probability Pr(S). The state signifies the truth value of the proposition underlined

by the instance of the attribute template. For example, the instance S :“user access on

Local machine” is an attribute when associated with a truth value signifying whether an

attacker has user access on the local machine. We shall also use the term “compromised”

to indicate the true (or S = 1) state of an attribute. Further, Pr(S) is the probability of the

attribute being in state S = 1. Consequently, Pr(¬S) = 1−Pr(S) is the probability of the

state being S = 0. The success or failure of an attacker reaching its goal depends mostly on

the states of the attributes in a network. It also lays the foundations for a security manager

to analyze the effects of forcing some attributes to the false state using security measures.

We formally define a BAG to capture the cause-consequence relationships between such

attributes.

Definition 22 ATOMIC ATTACK

Let S be a set of attributes. We define A , a conditional dependency between a pair of

attributes, as a mapping A : S×S→ [0,1]. Then, given spre,spost ∈ S, a : spre 7→ spost is

called an atomic attack if

1. spre 6= spost ,
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2. given spre = 1, spost = 1 with probability A(spre,spost) > 0, and

3. @s1, . . . ,s j ∈ S − {spre,spost} such that A(spre,s1) > 0,A(s1,s2) > 0, . . . , and

A(s j,spost) > 0.

Therefore, an atomic attack allows an attacker to compromise the attribute spost from spre

with a non-zero probability of success. Although, given a compromised attribute, another

attribute can be compromised with positive probability using a chain of other attributes;

the third condition in the definition does not allow such instances to be considered as

atomic attacks. Instead, each step in such a chain is an atomic attack. Informally, an

attack is associated with a vulnerability exploitation, denoted by ei, which takes the at-

tacker from one network state (spre) to another (spost). The probability of an exploitation,

Pr(ei), states the ease with which an attacker can perform the exploitation. Hence, we

say that A(spre,spost) = Pr(ei), and spre and spost are respectively called a precondition

and postcondition of the attack a, denoted by pre(a) and post(a) respectively. An attack

relates the states of two different attributes so as to embed a cause-consequence relation-

ship between the two. For example, for the attributes spre =“sshd BOF vulnerability on

machine A” and spost =“root access privilege on machine A”, the attack spre 7→ spost is

associated with the ei =“sshd buffer overflow” exploit. Using this exploit, an attacker can

achieve root privilege on a machine provided the machine has the sshd BOF vulnerability.

A(spre,spost) is the probability of success of the exploit, i.e. A(spre,spost) = Pr(ei).

Definition 23 BAYESIAN ATTACK GRAPH

Let S be a set of attributes and A be the set of atomic attacks defined on S. A Bayesian

Attack Graph is a tuple BAG = (S,τ,ε,P ), where

1. S = Ninternal ∪Nexternal ∪Nterminal . Nexternal denotes the set of attributes si for which

@a ∈ A|si = post(a). Ninternal denotes the set of attributes s j for which ∃a1,a2 ∈

A|[s j = pre(a1) and s j = post(a2)]. Nterminal denotes the set of attributes Sk for

which @a ∈ A|Sk = pre(a).
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2. τ ⊆ S× S. An ordered pair (spre,spost) ∈ τ if spre 7→ spost ∈ A. Further, for si ∈ S,

the set Pa[si] = {s j ∈ S|(s j,si) ∈ τ} is called the parent set of si.

3. ε is a set of decomposition tuples of the form 〈s j,d j〉 defined for all s j ∈ Ninternal ∪

Nterminal and d j ∈ {AND,OR}. d j is AND if s j = 1⇒∀si ∈ Pa[s j],si = 1. d j is OR

if s j = 1⇒∃si ∈ Pa[s j],si = 1.

4. P is a set of discrete conditional probability distribution functions. Each attribute

s j ∈ Ninternal ∪Nterminal has a discrete local conditional probability distribution

(LCPD) representing the values of Pr(s j | Pa[s j]).

Figure 8.2 shows the BAG for our test network. We have developed an in-house tool to

generate such BAGs. The tool takes as input an initial vulnerability table, generated by

a vulnerability scanner, and the network topology (currently provided manually to the

tool). Using a sequence of SQL queries on a vulnerability exposure database, the tool

creates consequence attributes for the graph until no further implications can be derived.

The BAG in Figure 8.2 depicts a clear picture of 20 different attack scenarios. Each node

is a Bernoulli random variable (si) representing the state variable of the attribute. The

set Nexternal represents the entry points of the graph. These nodes reflect an attacker’s

capability as discovered in a threat-source model. Nterminal resemble the end points in the

graph. These nodes reflect casualty at the end of each attack scenario. The set of ordered

pair, τ, reflects the edges in the graph. The existence of an edge between two nodes imply

that there is a causal dependency between their states, signified by the decomposition at

each node. AND-decomposition signifies that the compromised state of a node implies

that all nodes in its parent set have also been compromised. Similarly, OR-decomposition

signifies that at least one parent node is in the true state. Note that these decompositions

are uni-directional. For instance, under AND-decomposition, compromising all nodes in

the parent set does not necessarily imply the node itself has been compromised. This is

because the attacks relating the node with its parents can have varying levels of difficulty,
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Figure 8.2: BAG of Test-bed Network with Unconditional Probabilities

or in other words, different probabilities of success. Hence, although the preconditions

of the attacks have been met, there can still be a non-zero probability that the attacker

is unable to carry out all the exploits successfully. The existence of this probability is

what primarily differentiates a BAG from a classical attack graph. The probabilities are

captured in the local conditional probability distribution of the node. The LCPD is a set of

probability values specifying the chances of the node being compromised, given different

combination of states of its parents.



92

Definition 24 LOCAL CONDITIONAL PROBABILITY DISTRIBUTION

Let BAG = (S,τ,ε,P ) be a BAG and s j ∈ Ninternal ∪Nterminal . For si ∈ Pa[s j], let ei be the

vulnerability exploitation associated with the attack si 7→ s j. A local conditional proba-

bility distribution (LCPD) function of s j, mathematically equivalent to Pr(s j | Pa[s j]), is

defined as follows.

1. d j = AND

Pr(s j | Pa[s j]) =

0, ∃si ∈ Pa[s j] | si = 0
Pr(

⋂
si=1

ei), otherwise

2. d j = OR

Pr(s j | Pa[s j]) =

0, ∀si ∈ Pa[s j],si = 0
Pr(

⋃
si=1

ei), otherwise

To compute the local conditional probabilities when multiple exploits are involved, we

proceed as follows. For AND-decomposition, each vulnerability exploitation is a distinct

event. The chance of compromising the target node depends on the success of each in-

dividual exploit. Therefore, we use the product rule in probability to derive Pr(
⋂

si=1
ei)

as

Pr(
⋂

si=1

ei) = ∏
si=1

Pr(ei). (8.1)

For OR-decomposition, Liu et al. observed that the joint probability is equivalent to the

noisy-OR operator [41], given as

Pr(
⋃

si=1

ei) = 1−∏
si=1

[1−Pr(ei)] . (8.2)

8.4 Security Risk Assessment with BAG

Security risk management consists of threat analysis, risk assessment, loss ex-

pectancy, potential safeguards and risk mitigation analysis. A BAG positions itself be-

tween threat analysis and risk assessment. Threat sources and the list of initial vulnera-

bilities are used to build the BAG threat model. Once the graph is built, the administrator

can expect better results in risk assessment and risk mitigation analysis as follows.
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1. Static Risk Assessment: Risk assessment begins with the identification of system

characteristics, potential threat sources and attacker capabilities. Threat sources

are represented as the external nodes in a BAGs, along with their impact on other

network attributes. One set of attributes act as preconditions to an exploit, which

when successfully executed by an attacker, can make the network state favorable for

subsequent exploits. Estimating the amount of risk at each node therefore requires

some judgment on attacker capabilities. Often this judgment is indirectly stated

as the system administrator’s subjective belief on the likelihood of a threat source

becoming active and the difficulty of an exploit. The former is represented by the

probabilities Pr(si) for all si ∈ Nexternal , also called the prior probabilities, and is

subjectively assigned by the administrator. The latter is incorporated into an internal

node’s LCPD. Thereafter, given the prior probability values and the LCPDs, we can

compute the unconditional probability Pr(s j) for any node s j ∈ Ninternal ∪Nterminal .

These risk estimates can be used to help locate weak spots in the system design and

operations.

2. Dynamic Risk Assessment: A deployed system may experience first hand attack

incidents during its life cycle. Formally, an attack incident is evidence that an at-

tribute is in the true state. A security administrator may then want to investigate how

these incidents impact the risk estimates initially derived solely based on subjective

beliefs. Knowledge about attack incidents is therefore used to update the probabili-

ties using the Bayesian inference techniques of forward and backward propagation.

Forward propagation updates the probability on successor attributes that are directly

influenced by the evidences. Backward propagation corrects/adjusts the initial hy-

pothesis on all prior attributes. Thereafter, the posterior probabilities (updated un-

conditional probabilities) reflect the likelihoods of other potential outcomes under

the light of detected events.
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CVSS metrics group CVSS attributes category score
base metrics access vector(B AV ) local(L) 0.395

adjacent network(A) 0.646
network(N) 1.0

attack complexity(B AC) high(H) 0.35
medium(M) 0.61

low(L) 0.71
authentication multiple(M) 0.45

instance(B AU) single(S) 0.56
none(N) 0.704

temporal metrics exploitability unproved(U) 0.85
(tools & techniques) proof-of-concept(POC) 0.9

(T E) functional(F) 0.95
high(H) 1.0

remediation level(T RL) official fix(OF) 0.87
temporary fix(TF) 0.90
workaround(W) 0.95
unavailable(U) 1.0

report confidence (T RC) unconfirmed(UC) 0.90
uncorroborative(UR) 0.95

confirmed(C) 1.0

Table 8.2: CVSS Attributes Used for Estimation of Attack Likelihood.

3. Risk Mitigation Analysis: Risk assessment paves the way for efficient decision mak-

ing targeted at countering risks either in a proactive or reactive manner. Given a set

of security measures (e.g. firewall, access control policy, cryptography, etc.), we

can design the security plan which is the most resource efficient in terms of re-

ducing risk levels in the system. This can be done before the deployment (static

mitigation) or in response to attack incidents (dynamic mitigation).

8.4.1 Probability of Vulnerability Exploitation

In order to compute the local conditional probability distribution (LCPD) of an at-

tribute, the administrator needs to estimate the probability of success while an attacker

exploits a known vulnerability exploitation. We propose a method to estimate this at-

tack likelihood using publicly available risk exposure data sources. In particular, we are

interested in deriving attack likelihoods using the metrics defined in NIST’s Common

Vulnerability Scoring System (CVSS) [59]. A CVSS score is a decimal number on a
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scale of 0 to 10. It is composed of three groups – base, temporal and environmental. The

base metrics quantify the intrinsic characteristics of a vulnerability with two sub-scores –

(i) the exploitability sub-score, composed of the access vector (B AV ), access complex-

ity (B AC) and authentication instances (B AU), and (ii) the impact sub-score, expressing

the potential damage on confidentiality (B C), integrity (B I) and availability (B A). The

temporal metrics quantify dynamic aspects of a vulnerability on the environment around

the organization. These metrics take into account the availability of exploitable tools and

techniques (T E), remediation level (T RL) and report confidence (T RC). The envi-

ronmental metrics quantify two aspects of impact that are dependent on the environment

surrounding the organization. More details on CVSS metrics and their scoring computa-

tion can be found in the CVSS guide [59]. In this study, we are interested in likelihood

estimation and hence the impact sub-score and environmental metrics are ignored in the

analysis. A summary of the metrics used here is shown in Table 8.2. We refine Houmb’s

Misuse Frequency model [36] to estimate the probability of success in vulnerability ex-

ploitation. Given the vulnerability exposure information (CVSS attributes), the probabil-

ity of success Pr(ei) while executing a given vulnerability exploitation ei is computed by

the following equations.

Pr(ei) = (1−µ)MFinit +µMFuFac, where (8.3)

0 ≤ µ ≤ 0.5
MFinit = B AV×B AC×B AU

0.49984
MFuFac = T E×T RL×T RC.

The constant µ represents the evaluator’s preference weight on temporal knowledge of the

exploitation. In the case where the vulnerability exploitation is unknown to the evaluator,

the estimation should rely on the base score by setting µ to zero. In the case where

the evaluator or organization has experienced the vulnerability exploitation, or there is

an ongoing concern about the exploitation, the evaluator may set the value of µ to a

specific value. However, we bound µ to a maximum value of 0.5 in order to restrict



96

likelihood estimates based solely on temporal factors. Nonetheless, temporal metrics help

capture the uncertainties in relatively new exploits. For instance, at the time of writing

this article, CVE announced a vulnerability in Acrobat Reader(VU#905281) where the

only workaround is to disable JavaScript in Acrobat Reader. In such a case, temporal

metrics often influence security decisions because of immediate needs. We design µ to

capture such an aspect.

Our empirical estimation in Eq. (8.3) preserves the CVSS design characteristics

and extends the range of possible values in Houmb’s model [36] from [0.53,0.83] to

[0.12,1.00].

8.4.2 Local Conditional Probability Distributions

Refer to the BAG in Figure 8.3. Nodes A:“root/FTP server”, B:“Matu FTP BOF”

and C:“remote BOF on ssh” are internal attributes, while node D:“remote attacker” is

an external attribute. A is the successor of B and C which in turn are successors of D.

The values on the edges reflect the probability of success of the associated vulnerability

exploitation, computed by following the procedure described in the previous section. We

begin by assigning a prior probability of Pr(D) = 0.7 to the external attribute D. This

probability represents the administrator’s subjective belief on the chances of a remote at-

tack. For the nodes A,B and C, we calculate LCPDs by the equations previously defined

in Definition 24. For example, for node A, there are 22 marginal cases given the two par-

ents B and C. The decomposition at the node dictates the rule to follow while computing

the local conditional probability for each case.

8.4.3 Unconditional Probability to Assess Security Risk

Once the LCPDs have been assigned to all attributes in the BAG, we can merge the

marginal cases at each node to obtain the unconditional probability at the node. This is

commonly known as marginalization. Further, given a set of Bernoulli random variables
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S = {s1, ...,sn} in a Bayesian belief network, the joint probability of all the variables is

given by the chain rule as

Pr(s1, ...,sn) =
n

∏
i=1

Pr(si | Pa[si]). (8.4)

In Figure 8.3, the unconditional probability at node A is derived as the joint probability

Figure 8.3: Simple BAG Illustrating Probability Computations.

of A along with all nodes that influence its outcome, which is essentially all ancestors of

A. Hence we have,

Pr(A) = Pr(A,B,C,D)
= Pr(A | B,C)×Pr(B | D)×Pr(C | D)×

Pr(D)
= ∑

B,C,D∈{T,F}
[Pr(A | B,C)×Pr(B | D)×

Pr(C | D)×Pr(D)]
= (1.0×0.85×0.7×0.7)T T T +

(0.65×0.85×0.3×0.7)T FT +
(1.0×0.15×0.7×0.7)FT T

= 0.6060≈ 61%.

Similarly, unconditional probabilities at nodes B and C can be computed by considering

the sub-network rooted at the corresponding nodes. The unconditional probabilities are

shown under the LCPD table of each node. Figure 4.2 shows the unconditional probabil-

ities of the nodes in our test network. It exposes the weak spots of the system where the
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likelihood of attack is higher than others. The security administrator can use this threat

model to prioritize risk and derive an effective security hardening plan so as to reduce

the risk to a certain level (e.g. < 50%) before deploying the system. The model can also

be used to assess what-if scenarios, for e.g. while deploying new machines, services, or

operations of interest.

8.4.4 Posterior Probability with Attack Evidence

The BAG can also be used to address dynamic aspects of the security planning pro-

cess. Every network state has a certain probability of occurrence. This probability can

change during the life time of the system due to emerging security conditions, changes

in contributing factors or the occurrence of attack incidents. The BAG can then be used

to calculate the posterior probabilities in order to evaluate the risk from such emerging

conditions. Let S = {s1, ...,sn} be the set of attributes in a BAG and E = {s′1, ...,s′m} ⊂ S

be a set of attributes where some evidence of exploit have been observed. We can say that

attributes in E are in the true state, i.e. s′i = 1 for all s′i ∈ E. Let s j ∈ S−E be an attribute

whose posterior probability has to be determined. The probability we are interested in is

Pr(s j | E) and can be obtained by using the Bayes Theorem, given as

Pr(s j | E) = Pr(E | s j)×Pr(s j)/Pr(E). (8.5)

Pr(E | s j) is the conditional probability of joint occurrence of s′1, ...,s
′
m given the states of

s j. Pr(E) and Pr(s j) are the prior unconditional probability values of the corresponding

attributes. Since evidence attributes in E are mutually independent, Pr(E | s j) = ∏i Pr(s′i |

s j) and Pr(E) = ∏i Pr(s′i). For example, in Figure 8.3, assume that the system adminis-

trator detects an attack incident on A (attacker compromises FTP server). The posterior
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probability of C is then computed as follows.

Pr(C | A) = Pr(A |C)Pr(C)/Pr(A)
= 0.81 where

Pr(A |C) = ∑B∈{T,F} [Pr(A | B,C = T )Pr(B)]
= (1.0×0.6)T +(1.0×0.4)F
= 1.0

Pr(A) = 0.61
Pr(C) = 0.49

Similarly, the posterior probability at node B can be computed in the same manner. Note

that the unconditional probability of node C was originally 0.49. After taking into account

the attack incident at node A, the posterior probability becomes 0.81. Further, computa-

tion of posterior probabilities for successor nodes of A (forward propagation) remains the

same as described in the previous sub-section, with the change that the LCPDs at those

nodes only account for the A = 1 case while marginalization. In this manner, the secu-

rity administrator can revise the probability of occurrence of every node of the graph in

response to an emerging attack incident. Figure 8.4 shows the posterior probabilities in

response to two hypothetical evidences (denoted by the label E©) in the Mail server of our

test network. Note that the parent (“root access @ 196.216.0.19”) of the evidence node

“squid port scan” has a posterior probability of less than 1.0. Ideally, given the evidence

that the port scan has been executed, the attacker must have had root access on the ma-

chine. Hence, the parent node should also have an updated probability of 1.0. However,

this inference assumes that the squid port scan is only executable after gaining root ac-

cess on the machine. The system administrator may decide to relax such an assumption in

order to account for uncertainties (e.g. zero-day attacks), achieved by replacing the zero

values in Def. 24 with non-zero values. Such a relaxation will reduce the impact of the

evidence nodes on their parents.

As can be seen in Figure 8.4, most of the unconditional probabilities increase after

the attack incidents, but not at the same rate. It is possible to have nodes with decreased

probabilities as well. In this specific scenario, there is a significant increase in the chance
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that the administrator machine is targeted by an attacker. This observation shows that the

attacker is likely to execute an attack to compromise the root machine. Hence, sufficient

measures should be taken to protect it. Moreover, it is also possible that the mitigation

plan designed earlier in static analysis may no longer be appropriate under the light of the

emerging events. We will formally address this problem in the next section.

Figure 8.4: Posterior Probabilities in Test-bed Network After Attack Incidents (marked
by E©).

8.5 Security Risk Mitigation with BAG
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Although many researchers have studied risk assessment schemes, including the

NIST, the methodologies used to estimate loss varies from organization to organization.

Loss can be measured in terms of monetary units, relative magnitudes [13, 16, 40, 64] or

multi-units [17, 18, 30]. In a BAG, the security manager can choose to evaluate the risks

by considering an expected loss/gain quantity. The expected loss/gain is computed from

organization specific factors such as potential loss or gain associated with an attribute’s

states. It usually reflects the impact of attack likelihoods on the economic turnout of an

organization. We will describe this scheme later in the section. We begin with the notion

of a security control in the context of the BAG.

8.5.1 Assessing Security Controls

Definition 25 SECURITY CONTROL

Given a BAG (S,τ,ε,P ), a Bernoulli random variable Mi is a security control if ∃s j ∈

Ninternal ∪Nexternal such that Pr(s j | Pa[s j],Mi = T ) < Pr(s j | Pa[s j],Mi = F) for at least

one assignment of states to Pa[s j]. Further, Pr(Mi) = 1.0 if Mi = T ; otherwise zero.

In other words, a security control is a preventive measure that minimizes or eliminates the

likelihood of attack on one or more attributes so as to prevent an attacker from reaching

its goal. We define the security measure as a Bernoulli random variable with the true

state signifying that the control is enforced and false signifying that the control is known

but not enforced. Enforcement of a control directly influences the LCPD of the asso-

ciated attribute and indirectly impacts the unconditional probabilities of other attributes.

For example, the probability of the node A in Figure 8.3 is initially Pr(A | B,C). As-

sume that a security measure M0:“local access control” can influence the outcome at

A. The probability distribution therefore becomes Pr(A | B,C,M0) and the LCPD of the

node is hypothetically expanded as shown in Table 8.3. The probabilities when M0 = 0

are directly taken from the original LCPD. However, probabilities for M0 = 1 are as-

signed based on certain subjective belief on the security measure’s capacity to prevent
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the attribute’s compromise. The modified LCPDs are used to compute the unconditional

probability of nodes in the graph. It is not difficult to see that the unconditional probabil-

ity of a node (and its successors) influenced by a control will reduce when the control is

enforced. Note that, by definition, the unconditional probability of the control itself is 1.0

if its state is true.

B C Pr(A) Pr(¬A)
1 1 1.00 0.00
1 0 0.65 0.35 −→
0 1 1.00 0.00
0 0 0.00 0.00

B C M0 Pr(A) Pr(¬A)
1 1 1 0.50 0.50
1 1 0 1.00 0.00
1 0 1 0.65 0.35
1 0 0 0.65 0.35
0 1 1 0.75 0.25
0 1 0 1.00 0.00
0 0 1 0.00 1.00
0 0 0 0.00 1.00

Table 8.3: Expanded LCPD of Node A (in Figure 8.3) under the Presence of Security
Control M0.

Definition 26 SECURITY MITIGATION PLAN

Given set M = {M1, . . . ,Mm} of m security controls, a security mitigation plan is repre-

sented by a boolean vector ~T = (T1,T2, . . . ,Tm) where Mi = Ti.

Therefore, the mitigation plan is a specification of which controls have been chosen for

enforcement as part of the hardening process. Further, for a given control Mi, consider the

set I of all s j ∈ Ninternal ∪Nterminal such that Pr(s j | Pa[s j],Mi = T ) < Pr(s j | Pa[s j],Mi =

F) (for some assignment of states to Pa[s j]). Then, the subset {sk ∈ I |Pa[sk]∩ I = φ} is

called the coverage of Mi. With reference to Figure 8.3, a control such as M0:“disconnect

from Internet” directly changes the probability Pr(D) (equal to zero if M0 = 1). This in

effect changes the LCPD tables at nodes B, C and D. Therefore, the set I contains all four

nodes for M0. However, only node D is in the coverage of M0 since, for all other nodes,

one or more parent nodes are also present in I . Intuitively, the coverage nodes are those

whose LCPDs are directly affected by a security control, rather than by indirect inference.

For a given security mitigation plan ~T , we can define the plan coverage by collecting the
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coverage of each enforced control in the plan. Each control Mi also has an associated cost

Ci of implementation, giving us the total plan cost as

SCC(~T ) =
m

∑
i=1

(TiCi). (8.6)

8.5.2 Assessing Security Outcomes

When using a BAG, a better quantitative representation of the loss/gain is obtained

by considering the expected loss/gain once a set of security measures have been imple-

mented. Hence, we augment the BAG with a value signifying the amount of potential

loss/gain at each node, and account for the security decision during evaluation.

Definition 27 AUGMENTED-BAYESIAN ATTACK GRAPH

Let BAG = (S,τ,ε,P ) be a Bayesian attack graph. An augmented-Bayesian attack graph

(augmented-BAG) BAGaug = BAG|(M,γ,V ) is obtained by adding a node set M, edge set

γ and by associating a value Vj to each s j ∈ S, where

1. M is the set of security controls.

2. γ⊆M×S. An ordered pair (Mi,s j) ∈ γ if s j is in the coverage of Mi.

3. Vj is the expected loss/gain associated with the attribute s j ∈ S.

The set M extends the BAG with additional nodes representing hardening measures. The

set γ represents the new edges between the controls and attributes of the graph. A new

edge is inserted if a control directly influences the state of an attribute. In this work,

all external attributes are given a zero cost, i.e. Vj = 0 for all s j ∈ Nexternal . The value

associated with s j ∈ Ninternal ∪Nterminal is computed as

Vj =
[
1−Pr(s j)

]
×G j−Pr(s j)×L j, (8.7)

where L j is the potential loss representing the damage value that an organization might

have to pay when the attribute s j is compromised, G j is the potential gain if s j is not



104

compromised and Pr(s j) is the unconditional probability of s j. If there exists (Mi,s j)∈ γ,

Pr(s j) is computed as a conditional probability Pr(s j |Mi) where the state of Mi depends

on the security plan ~T = (Ti). The expected loss/gain w.r.t. the security plan ~T , denoted

by LG(~T ), is computed as the cumulative sum of all node values, i.e.

LG(~T ) = ∑
s j∈S

Vj. (8.8)

A positive value of LG signifies gain, while a negative value signifies loss. Note that

we do not assume any particular cost model in our formulations, both for control cost

and loss/gain evaluation. The cost model is usually subjective to organizational policies

and hence can differ from one institution to another. The cost factors considered here

(security control cost, potential loss and potential gain) are standard quantities that any

organization must be able to determine in order to perform risk analysis.

8.5.3 Assessing the Security Mitigation Plan

In order to defend against the attacks possible, a security manager (as a decision

maker) can choose to implement a variety of safeguard technologies, each of which comes

with different cost and coverage. For example, to defend against the “ftp/.rhost” exploit,

one might choose to apply a security patch, firewall, or simply disable the FTP service.

Each choice of action has a different cost and different outcome. A security administrator

has to assess the technologies and make a decision towards maximum resource utilization.

The two objectives we consider in this study are the total security control cost and the

expected loss/gain. The single-objective problem is the most likely approach to be taken

by a decision maker. The problem is stated as follows.

Definition 28 THE SINGLE-OBJECTIVE OPTIMIZATION PROBLEM (SOOP)

Given an augmented-BAG (S,τ,ε,P ) | (M,γ,V ), find a vector ~T ∗= (T ∗i ), T ∗i ∈{0,1};1≤

i≤ |M|, which maximizes the function αLG(~T ∗)−βSCC(~T ∗), where α and β are prefer-

ence weights for the expected loss/gain and the total cost of security control respectively,

0≤ α,β≤ 1 and α+β = 1.
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The method for assessing a security plan is as follows. First, the security analyst

chooses a subset of security controls to construct a security plan ~T ∗. She then updates

the unconditional probability of all attributes using the plan coverage information. She

computes the expected loss/gain associated with every attribute s j ∈ S using Eq. (8.7).

Finally, the total expected loss/gain of the entire graph is taken as an assessment of the

security plan’s outcome. The best security plan is the one that maximizes the function

αLG(~T ∗)−βSCC(~T ∗).

Given only two objectives, a preference based single-objective approach might seem

to provide a solution in accordance with general intuition. However, the quality of the so-

lution obtained using this process can be quite sensitive to the assignment of the weights.

In addition, security administrators often have to work within a limited budget that may be

less than the minimum cost of system hardening. The objective in such a case is to design

a security plan that maximizes the organization’s financial throughput. The next level of

sophistication is added by formulating the optimization as a multi-objective problem. The

multi-objective approach alleviates the requirement to specify any weight parameters and

hence a better global picture of the solutions can be obtained.

Definition 29 THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM (MOOP)

Given an augmented-BAG (S,τ,ε,P ) | (M,γ,V ), find a vector ~T ∗ = (T ∗i ), T ∗i ε{0,1};1≤

i≤ |M|, which minimizes SCC and maximizes LG.

Multi-objective optimization differs from single-objective ones in the cardinality of the

optimal set of solutions. Single-objective optimization techniques are aimed towards

finding the global optima; whereas, in the case of multi-objective optimization, there

is no such concept of a single optimum solution. This is due to the fact that a solution that

optimizes one of the objectives may not have the desired effect on the others. Solutions to

a multi-objective problem are therefore characterized by the concept of Pareto-optimality.

In our case, a security plan ~T1 is Pareto-optimal if there is no other plan ~T2 such that
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1. SCC(~T2) < SCC(~T1) and LG(~T2)≥ LG(~T1), or

2. SCC(~T2)≤ SCC(~T1) and LG(~T2) > LG(~T1).

If any of these conditions hold, then ~T2 is said to dominate ~T1. ~T1 and ~T2 are non-

dominated w.r.t. each other if none dominates the other. Pareto-optimal solutions are

non-dominated w.r.t. all other solutions. A multi-objective optimizer identifies (or ap-

proximates) the set of Pareto-optimal solutions and reveals the trade-off relations between

the underlying objectives. Choice of a final solution from this set is at the discretion of the

decision maker, often decided by the cost to benefit ratio. For the BAG shown in Figure

8.6, we have identified that 13 different security controls are possible. These controls are

represented by an ‘eclipse’ in the figure. These security controls produce 213 candidate

security plans. A genetic algorithm based approach is presented next to search through

these candidate plans in an efficient manner.

8.5.4 Genetic Algorithm

Figure 8.5: Schematic of the Genetic Algorithm Used to Solve SOOP and MOOP.
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Figure 8.5 depicts the structure of the genetic algorithm designed for this study. The

algorithm begins with a population P0 of N randomly generated security plans. A gener-

ation index t = 0,1, . . . ,GenMAX keeps track of the number of iterations of the algorithm.

Each iteration proceeds as follows. The SCC and LG values of every plan in Pt are cal-

culated. N/2 plans are then selected from Pt to form a mating pool Mt . The selection

process is different for SOOP and MOOP, and discussed later. An offspring popula-

tion Qt (containing N/2 plans) is generated from the mating pool by using the standard

single-point binary crossover and mutation operators [33]. The process is then repeated

with Pt+1 = Qt ∪Mt until t = GenMAX .

8.5.4.1 Solving SOOP

The selection process to solve SOOP is based on the objective function αLG(~T )−

βSCC(~T ) and uses the process of binary tournament. In this process, two plans are ran-

domly selected (with replacement) from Pt and the one with the higher objective function

value is inserted into the mating pool. This process is repeated until the mating pool is

full. The solution to SOOP is the plan with the highest objective value across all iterations

of the algorithm.

8.5.4.2 Solving MOOP

Simple objective value comparison is not possible in the presence of more than

one objective function. Hence, a different selection scheme is required for MOOP. The

scheme used here is based on non-dominance ranking, a popular concept in evolutionary

multi-objective optimization. Under this process, all non-dominated solutions in Pt (so-

lutions not dominated by any other solution in Pt) are identified and assigned a rank 1.

The rank 1 solutions are then removed from Pt and the non-dominated solutions in the

remaining population form rank 2 solutions. The process is repeated until all solutions

are assigned a rank. Selection of N/2 solutions for the mating pool is then performed

according to increasing rank. A crowding distance metric [26] is used if the number of
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solutions required to fill the mating pool is lower than the available solutions in the rank

being considered. The crowding distance of a solution is the perimeter of the rectangle

formed by its two neighbors of the same rank; the distance is infinite for points having

less than two neighbors (e.g. extreme points). Choice of solutions within a rank is done

in decreasing order of crowding distance, thereby giving preference to solutions that are

not at close proximity to others. The set of solutions to MOOP are the rank 1 solutions of

PGenMAX .

Figure 8.6: Augmented-BAG of Test-bed Network with 13 Security Controls.

8.6 Empirical Results
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In the preparation phase, we conduct risk assessment analysis to initially compute

the static risk. Figure 4.2 shows the unconditional probabilities at the nodes of the test

network. We identify 13 security controls that can be used to reduce the risk. We assign a

security control cost to each individual control and link each control to the attribute(s) in

the BAG that are covered by it. The augmented-BAG resulting from this process is shown

in Figure 8.6. Next, we assign different damage costs and revenue to every attribute in

the graph. Although we do not assume any particular cost model and values are assigned

hypothetically for the purpose of demonstration, we did try to maintain some relative

difference in magnitude to account for the relative importance of different services.

In the first experiment, we assess the expected loss/gain on top of the static risk anal-

ysis results (Figure 4.2) using Eq. (8.7). When using no security control, i.e. a mitigation

plan signified by the zero vector, we have an overall expected gain of 622.0 units. Then

we assess the cost on the dynamic environment where we assume that two attack incidents

have been detected. Figure 8.4 and Figure 8.7 show the posterior probabilities and the ex-

pected loss/gain at the nodes under this situation. Note that these attack incidents quickly

change the business scenario. The total expected loss/gain (LG) changes from 622.0 to

−398.17 units. We also notice a change in the momentum of risk. In particular, the pos-

terior probabilities indicate a significant change in risk level at the Administrative server

owing to the two attack incidents. This change influences the priority of risks identified

earlier during static analysis, and highlights the importance of dynamic risk analysis.

Next, we conduct several tests to assess the outcome of using a security control. The base

case where no individual control is used yields an expected gain of 622.0 units. Table 8.4

shows the net benefit of using each control individually. At this point, the security admin-

istrator may want to rank the security outcomes and build a security mitigation plan from

the top-ranked controls. Such a methodology has two drawbacks.

First, the ranking procedure itself is not straight forward because of reciprocal rela-

tionships between control cost and expected outcome. For example, “disable portscan”
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Figure 8.7: Augmented-BAG of Test-bed Network Under Two Attack Incidents (The
expected loss/gain (Vj) is shown at each node)

and “filtering external traffic” when applied alone raises the expected gain from 622.0

units to 875.44 (an increase of 253 units) and 1208.84 units (an increase of 587 units)

respectively. The combined outcome when applying both is 1351.27 units (less than

622 + 253 + 587). On the other hand, combining “add Firewall” (individual increase

from 622.0 to 881.15 units) and “apply MS work around” (individual increase from 622.0

to 1202.45 units) can raise the outcome to 1735.6 units (greater than 622 + 259 + 580).

The latter two are better choices based on expected outcome, but the former two incurs

a lower cost of implementation. This makes the ranking of controls, based on a specific

cost factor, a difficult process. Second, even if a ranking has been established, greedy
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ID Security Control Cost (A) Outcome (B) Net benefit (B−A−622.0)
SC1 apply OpenSSH security patch 63 1407.89 722.89
SC2 apply MS work around 14 1202.45 566.45
SC3 filtering external traffic 70 1208.84 516.84
SC4 limit DNS access 53 1000.65 325.65
SC5 disable portscan 11 875.44 242.44
SC6 disable WebDAV 250 1095.90 223.90
SC7 apply MS09-004 work around 31 861.10 208.10
SC8 add Network IDS 102 858.91 134.91
SC9 add Firewall 205 881.15 54.15
SC10 encryption 34 681.75 25.75
SC11 digital signature 33 673.28 18.28
SC12 query restriction 84 681.00 −25.00
SC13 use POP3 instead 153 704.67 −70.33

Table 8.4: Security Outcome Assessment for Each Control in Augmented-BAG of Test-
bed Network.

selection can lead to sub-optimal plans. Assume that controls are ranked based on the net

benefit they incur individually. The security controls are ordered in this manner in Table

8.4. Given a control cost constraint of, say, 200.0 units and a selection scheme based on

the ranks, an administrator will choose the first four controls in the table. These controls

have a combined cost of 200.0 units and results in an expected gain of 2673.96 units (a

net benefit of 2473.96 units collectively). However, selecting the 5th and the 7th controls,

instead of the 4th one, effectuates an expected gain of 2809.28 units at the cost of 189.0

units (a net benefit of 2620.28 units). This shows that the security administrator should

not choose the security controls based on their individual outcomes or by greedy selec-

tion. Instead, a more sophisticated decision making platform is required. This motivates

the next three experiments with single and multi-objective optimization.

We conduct three risk mitigation analysis experiments on the test network. The

genetic algorithm discussed in Section 8.5.4 is used for this analysis. The algorithm

parameters are set as follows: population size N = 100, GenMAX = 50, crossover prob-

ability = 0.8, and mutation probability = 0.01. We ran each instance of the algorithm

five times to check for any sensitivity of the solutions obtained from different initial pop-

ulations. We also check if running the algorithm for a higher number of iterations (upto
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200 generations) results in any improved convergence. However, since the solutions al-

ways converged to the same optima (or set of optima), we dismiss the presence of such

sensitivity.

In single-objective cost analysis, we run multiple instances of SOOP using different

combination of values for α and β. α is varied in the range of [0,1] in steps of 0.05. β is

always set to 1−α. Figure 8.8 shows the solutions obtained from this process. In general,

a decision maker may want to assign equal weights (α = 0.5) to both objective functions

– security control cost and total expected loss/gain. It is clear from the figure that such an

assignment does not necessarily provide the desired balance between the two objectives.

Furthermore, the solutions are quite sensitive to the weights and they are not uniformly

distributed across different ranges of α. Since the weights do not always influence the

objectives in the desired manner, understanding their effect is not a trivial task for the ad-

ministrator. It is also not always possible to perform an exhaustive analysis of the affect

of the weights on the objectives. Given such situations, the decision maker should con-

sider obtaining a global picture of the trade-offs possible. With such a problem in mind,

we next consider the multi-objective variant. Figure 8.9 shows the non-dominated solu-

tions (in PGenMAX ) obtained in the multi-objective analysis. Further, all mitigation plans

explored by the genetic algorithm during the iterations are highlighted. The algorithm

reported all solutions generated for SOOP (using multiple α), as well as several others,

specifically solutions in the range where the security control cost is between 200.0 and

700.0 units. These new solutions provide much better flexibility in the decision making

process. Moreover, performing the multi-objective analysis is much faster than solving

SOOP. This is because the security administrator has to solve SOOP with multiple param-

eter settings in order to identify the plan with the desired outcomes, whereas by solving

MOOP, one can generate a good overview of multiple plans in one single run.

We also compare our experiment with the result from minimization analysis [35, 47,

68]. We first derive logic expression out of the Bayesian attack graph model given in
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Figure 8.8: Genetic Algorithm Solutions to Single Objective Problem Obtained by Using
Different Weights

Figure 8.9: Genetic Algorithm Solutions to Multi-Objective Problem with Static Risk
Assessment
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Figure 8.10: Genetic Algorithm Solutions to MOOP with Dynamic Risk Assessment
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figure 8.2. The logic expression derived in this stage represents the critical factors that

accommodate the security violation. This expression then converts into its disjunctive

normal form (DNF) to give the choices of protective measures. To preserve the meaning

of security objective, we derive DNF from all possible outcomes (all terminal nodes in

the graph) and then union the results so as to take into account the whole system like what

multi-objective analysis does. Similarly, we have to adjust the LCPD to take either true

or false so as to have our Bayesian attack graph representing propositional logic like what

Exploit Dependency graph [47] does. Figure 8.11 shows the comparison test with Noel’s

minimal-cost analysis. The result returns from the derivation is thus T = ¬(((Ω∨Γ)∧

ϑ)∨(Ω∨Ψ∨Γ)∨Ξ∨Ψ). The DNF derivation returns the security hardening plan as ¬Ω

∧ ¬Γ ∧ ¬Ψ ∧ ¬Ξ ∧ ¬ ϑ.

Given the security control as shown in the table 8.4, the least-cost security hardening

plan includes SC1, SC2, and SC3 with the total security cost of 147.0 (see table 8.4 and

figure 8.6). The experimental result in Bayesian attack graph is also shown in the inlet

figure. The graph is much steeper than figure 8.9 due to the adjustment in LCPD. As

we expected, the minimum-cost hardening solution is on the Pareto front. In particular,

it locates in the right-most of the graph. However, the graph does not show significant

benefit of using Bayesian attack graph over minimization analysis but there always exists

a condition where minimum-cost analysis gives a solution with the cost higher than the

organization budget. In such a case, system administrator may decide to tolerate some

risks in order to control the expense. This is where our Bayesian attack graph contributes.

Consider the following situation, if node ’G’ represents a much lower security risk than

root compromise. It is tempting to not including SC1 in the plan and manage to tolerate

a slice amount of risk with a cheaper cost. Such solutions can be found in our multi-

objective analysis. In the last experiment, we use the genetic algorithm to assess the

choice of security hardening in a dynamic environment. Figure 8.10 shows the choices of

mitigation plans in response to two emerging attack incidents, previously shown in Figure
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Figure 8.11: BAG Results Compare with Noel’s Minimum-cost Analysis
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8.4. In this plot, we compare the dynamic results with the static ones. Not surprisingly,

the plans in this case effectuate lower gains owing to the damage already caused by the

attacker when (and at which point) the incidents are detected. Despite this difference, the

mitigation plans with similar costs are not so different between the static and dynamic

solutions. The three plans highlighted in the figure are very similar to those shown in

Figure 8.9. Such minimal changes in plan characteristics can be considered a positive

outcome since the security administrator is not required to revise the entire plan chosen

during static analysis. Instead, she can exploit the commonalities for efficient usage of

already invested resources. Results from the dynamic analysis also highlight the require-

ment for pro-active action in security management. Note that although not implementing

any controls still results in a positive gain, the appearance of two attack incidents quickly

transform this into a case with negative expected outcome.

8.7 Chapter Summary

In this paper, we address the system administrators’ dilemma, namely, how to assess

the risk in a network system and select security hardening measures from a given set of

controls so as to maximize resource utilization. One important contribution of our solu-

tion methodology is the use of a BAG model of the network to drive the decision process.

We have provided formal definitions for network characteristics, attacks and security mea-

sures under this model. We also show that by using a BAG, we are able to better under-

stand the causal relationships between preconditions, vulnerability exploitations and post

conditions. This is facilitated by computing the likelihoods of different outcomes possible

as a result of the cause-consequence relationships. We have demonstrated how the BAG

can be used to revise these likelihoods in the event of attack incidents. Using empirical

results on a test network, we show that such a dynamic risk analysis helps the system

administrator identify evolving weak spots in a network. We also provide the necessary

optimization formulations required to build a mitigation plan that reduces the risk lev-

els. Towards this end, we propose a genetic algorithm capable of performing both single
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and multi-objective optimization of the administrator’s objectives. While single objective

analysis uses administrator preferences to identify the optimal plan, multi-objective anal-

ysis provides a complete trade-off information before a final plan is chosen. Results are

shown to demonstrate the effectiveness of the algorithm in both static and dynamic risk

mitigation.

As immediate future work, we shall work on improving the efficiency of our evalu-

ation algorithm. The evaluation algorithm is used to compute the unconditional probabil-

ities and is currently implemented using brute force DFS traversal. Posterior probability

computation is expensive using this implementation and therefore impacts the decision

making time in a dynamic scenario. In particular, we wish to revise the evaluation algo-

rithm to include heuristic based update mechanisms in order to reduce the time required

to complete the mitigation analysis, without scarifying the quality of results obtainable.

Furthermore, the mitigation process in dynamic situations needs to be improved so that a

security administrator can quickly identify the best security response that accounts for all

former investments made as part of the static analysis stage. It is worth mentioning that

some security controls have been found to be commonly included in the optimal solutions.

It is possible that security hardening is more critical in certain areas of the attack graph.

Such areas could be nodes that has multiple fan outs. In other words, these critical areas

are at-risk junctions that can be used by an attacker to cause multiple outcomes. Security

controls that can reduce risk in such areas are likely to be parts of the optimal solutions.

Therefore, it is worth investigating how such controls can be identified efficiently so as to

reduce the search space for the optimization algorithm.



Chapter 9

USING ATTACK TREES IN INTRUSION DETECTION SYSTEM TO DETECT

MALICIOUS INTENT

A major concern for computer systems security is the threat from malicious individ-

uals who can execute perfectly legitimate operations to compromise system security. Un-

fortunately, most currently available intrusion detection systems (which include anomaly

and misuse detection systems) fail to address this problem in a comprehensive manner.

An attack tree has been proposed to identify malicious activities from users. We develop

algorithms to generate minimal forms of attack tree customized for each user such that it

can be used efficiently to monitor the users activities. If the users activities progress suf-

ficiently up along the branches of the attack tree towards the goal of system compromise,

we generate an alarm. Attack tree is not intended to replace existing intrusion detec-

tion and prevention technology, but rather is intended to complement current and future

technology.

9.1 Introduction

Intrusion detection systems can be broadly classified into two groups knowledge-

based systems and behavior-based systems [28]. Knowledge-based detectors [42, 56, 61]

are the most popular techniques. Almost all commercially available intrusion detection

tools are knowledge-based [10]. These tools operate by processing system audit data

for signatures of known attacks and/or specific outcomes of interest. The result of this

processing is compared against a knowledge-base of signatures of specific attacks and

vulnerabilities. A positive match signals an intrusion.



120

Knowledge-based detectors tend to be fairly accurate in the sense that they have

low rates of false positives. However, they are limited by their inability to detect new

attacks for which there are no known signatures. Any action that is not recognized as

an attack is considered acceptable. In addition, knowledge-based detectors are specific

system (operating system, software tools etc.) dependent. Thus their wide adoption is

limited.

Behavior-based detectors, on the other hand, take the paranoid approach everything

that has not been witnessed before is considered dangerous. To operate, these systems

compare the observed behavior of the system and/or the users against a model of normal

(or expected) behavior. Any deviations from the normal behavior is considered an in-

trusion. Behavior-based systems are often considered complete, that is, all attacks (even

previously not known attacks) can be caught. However, the accuracy of these systems are

often low. Behavior-based systems need to undergo extensive training sessions to deter-

mine what constitutes normal behavior. During this phase these systems tend to generate

false alarms at a very high rate. In addition, such systems require periodic on-line retrain-

ing. This results in either unavailability of the system or generation of false alarms till

such times as the system is retrained.

It is not possible to make a sound and objective judgment as to which type of in-

trusion detection system is better. Thus hybrid intrusion detection systems have also

been proposed. They combine knowledge-based detectors with behavior based detectors.

However, they still do not provide an ideal detector. An ideal intrusion detection system

is the most difficult to build because it needs to address a set of rather tough and often

contradictory requirements. It should be deployable in a heterogeneous and distributed

environment. It needs to have a low latency of detection by rapid decision making. It

should have both, a very low false positive rate as well as a very low false negative rate.

It should be able to scale to large environments. Last but not the least, it should provide

strong deterrence to attacks by active real-time monitoring [21].
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Instead of trying to build an ideal intrusion detection system we would like to develop

tools that complement existing systems. We note that existing intrusion detection systems

suffer from two shortcomings. First, not many of them do a good job in handling threats

from malicious insiders. These attacks, which are often considered to cause the majority

of security breaches, can arise in one of two ways: (i) A user uses perfectly legitimate

operations (those that the user is authorized to do) to exploit known system vulnerabilities

and launch an attack. (ii) A user uses information and resources that do not fall directly

under the category of computer system resources, and launches attack. The latter category

is considerably more difficult to prevent, detect or deter than the first category. Addressing

such threats is beyond the scope of this work. We are more interested in addressing the

first line of attack.

A second concern with intrusion detection systems is that they generate alerts only

after they are able to see the misuse signatures or some deviations from norm. A malicious

activity may result from a sequence of perfectly innocuous activities. Intrusion detection

systems do not report on these activities mostly to prevent information overload for the

system administrator. Thus the intrusion detection system generates an alarm only after

the cause for alarm has occurred. In many situations however, this may already be too

late. These two factors lead us to propose a new approach that can be used to predict

attacks arising from user activities. Our work uses Upadhyaya’s intent-analysis system

[21, 66, 57, 67] to extract activities and pass in to our prediction system as an input.

9.2 Dynamic Reasoning Based User Intent Driven (DRUID)

Upadhyaya et al. [66, 57, 67] propose DRUID system, a host-based concurrent intru-

sion detection scheme. The system is based on user work profiling [10]. This technique

assumes that if one can encapsulate the intent of a user in a reasonable manner, then it

is possible to assess intrusions by monitoring the activities on-line. Figure 9.1 shows

the flow diagram of DRUID system. The system works as follows. Sometime prior to
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Figure 9.1: Flow Diagram for the DRUID System

login, a user submits a description of his intended system usage. This forms the users

session scope. The system converts the scope to a “SPRINT” (Signature Powered Re-

vised Instruction Table) plan which is a list (may be ordered) of quadruples of the form

〈sub ject,action,ob ject, period〉. Here “subject” represents a user, “action” is an opera-

tion performed by the subject (such as login, logout, read etc.), “object” is the target of an

action (such as files, programs, messages, printers etc.), and “period” represents the time

interval for the duration of the action. Each quadruple represents a verifiable assertion, a

concept that is a generalization of IDESs [22] specification of user characteristics, and can

be monitored on-line. When a user is active, a monitor process (called the “Watchdog”)

monitors the users commands and checks them against the users SPRINT plan. Devi-

ations beyond a certain tolerance limit are considered potential intrusions and DRUID

generates alerts for such deviations. In short, DRUID ensures that during a particular ses-

sion a user remains reasonably within the scope of a previously declared set of activities.

Any digression beyond this reasonable limit constitutes a misuse of system and steps are

taken to protect against such digressions. However, this approach fails to account for the
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fact that a user may remain completely within the scope of a previously declared set of

activities and still be able to launch attacks. This is where our approach contributes.

9.3 Attack Tree Base User Intent Intrusion Detection

We propose an alternative method of analyzing users intent by applying attack tree

analysis. With this approach, the system only monitors parts of users behaviors which

may conceal vicious intents. The advantage of this technique over DRUID is that the

system needs not be monitored in all the sessions. This saves the time and reduces the

number of resources required by the original SPRINT plan. Our attack prediction system

works as follows.

We begin by developing a model of network risks. We augment the notion of attack

trees as previously described in the Chapter 5 for this purpose. We then assign the quanti-

tative metric “attack probability P” as node property in the attack tree. Next we iteratively

apply each users SPRINT plan to the augmented attack tree, to generate a trimmed attack

tree for each user. We call such an attack tree the minimal cut of an attack tree with respect

to the user intent. Branches of this trimmed attack tree represent, in a concise manner, all

the different ways by which a user can use his assigned job privileges to launch an attack

on the system. In the event such a trimmed attack tree does not exist for a particular

user, we can safely claim that the users current job description does not pose a threat to

the system. This does not necessarily mean, however, that we can cease to monitor this

users activities. If we allow a user to deviate from her/his SPRINT plan as is done in the

original work [21] then we should continue monitoring the user as proposed in that work.

For this work we will assume that the user we are planning to monitor are the ones who,

by virtue of their work definition, are able to launch attacks against the system. In the

following sections we describe each component of our system in details. We begin with

the notion of augmented attack trees to model network risks.
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9.3.1 Augmented Attack Tree

Definition 30 AUGMENTED-ATTACK TREE

Let A be a set of attacks (see Definition 3), including the φ–attack. An Augmented Attack

Tree is a tuple AAT = (sroot ,S,τ,ε,P), where

1. sroot is an attribute which the attacker want to become true. sroot denotes an attribute

sk such that for which @ a ∈ A| sk ∈ pre(a).

2. S = Ninternal∪Nexternal∪{sroot} is a multiset of attributes. Nexternal denotes the multiset

of attributes si for which @a ∈ A| si ∈ post(a). Ninternal denotes the multiset of attributes

s j for which ∃a1,a2 ∈ A| [s j ∈ pre(a1) ∧ s j ∈ post(a2)].

3. τ⊆ S×S. An ordered pair (spre,spost) ∈ τ if ∃ a ∈ A| [spre ∈ pre(a) ∧ spost ∈ post(a)].

Further, if si ∈ S has multiplicity n, then ∃ s1,s2, . . . ,sn ∈ S| (s1,si)

,(s2,si), . . . ,(sn,si) ∈ τ. A set {s1,s2, . . . ,sn} becomes a parent set of si, denoted by

Pa(si).

4. ε is a set of decomposition tuples of the form 〈s j,d j〉 defined for all s j ∈ Ninternal ∪ sroot

and d j ∈ {AND,OR}. d j is AND when ∀a ∈ A, post(a) = s j | Pr(pre(a)) = 1.0 ↔

Pr(s j) = 1.0 and OR when ∃a ∈ A, post(a) = S j | Pr(pre(a)) = 1.0↔ Pr(s j) = 1.0 (a

true state).

5. P is a set of attack probability given by the tuple 〈n,m〉 where m and n are positive

integers greater than 0 with n≤ m. For all si ∈ Ninternal ∪ sroot there exists a set of attack

probability satisfy Pr(si) ∈ P. The value of n for the node si ∈ S can change over a

period of time;however the value of m is fixed for the node si. The item m is termed the

least effort to compromise subgoal si while the item n is termed the number of currently

compromised subgoals under si.

An instance of an augmented attack tree for a hypothetical system is shown in Figure

9.2. We will use this attack tree as our running example. Note, in the figure we have
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Figure 9.2: Attack Tree Corresponding to a Hypothetical System

shown only some of the labels on the edges to keep the figure simple. In realty, all edges

will have their corresponding attack probability labels. The values m and n in the attack

probability label of the root node sroot are of particular interest to us. The ratio n
m at any

given time provides a measure of how far an attacker has progressed towards the ultimate

goal in terms of the “least effort” along the most advanced attack path that he has been

through. Thus this ratio provides the probability of the system getting compromised at

that time. The values m and n corresponding to the root node are computed based on the

corresponding values for the other nodes. At this time we show how to compute the value

of m for any given node. Note that this is a one time effort that is done during system

initialization.

Let us assume without loss of generality that the attacker uses one unit of effort to

perform one atomic attack that furthers his goal. In other words, each hop along one edge
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of the attack tree takes one unit of effort to get through. The least effort to compromise

a subgoal is the minimum effort the attacker needs to compromise the given subgoal. In

general, if a given goal s has an OR-decomposition, the least effort is computed as the

minimum least efforts of its child nodes plus one unit effort needed to advance to s from

the child node. If the goal s has an AND-decomposition then the least effort is the sum of

the least efforts of the child nodes plus all additional unit efforts, one for each child node

to go to s. These rules apply to all except φ - attacks. For φ - attacks, there is no effort

need to taken in order to advance the progress. The following definition captures the steps

to compute the least effort for a subgoal s.

Definition 31 Given a subgoal s and its parent set Pa(s) (locate below s in the tree), the

least effort to compromise s, ms, is defined as follows.

1. If s is a leaf node of the attack tree, the least effort is 0.

2. if s is some interior node and is an AND-decomposition, then

ms = ∑
si∈Pa(s)

(
msi +

{
0 i f (si,s) is a φ−attack
1 i f otherwise

)
3. if s is some interior node and is an OR-decomposition, then

ms = Min(msi) +
{

0 i f Min(msi) is φ−attack
1 i f otherwise

Henceforth we will use the terms attack tree and augmented attack tree interchangeably

to mean the latter.

9.3.2 Minimal Cut of Attack Trees w.r.t. User Intent

An augmented attack tree can be used to model system vulnerabilities in a very

effective manner. The attack tree describes all possible ways in which a particular attack

can be launched. If there are more than one attack against a system that we are concerned

about, we can generate separate attack trees for each. However, there are a few drawbacks

of the attack tree defined as it is now. First, for a complex system the attack tree can
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become quite deep and spread out. Thus it will become difficult to manage. Second, it is

possible that a number of users are executing the same set of operations albeit at different

paces. In this case, the cumulative effects of these users actions will be reflected on the

attack tree. If the users are not colluding this does not give the true picture of the state of

the attack. For example, let a user has initially launched an attack and has compromised

up to subgoal s1 of S in an attack tree. Another user has compromised unto subgoal s2. If

the node S is an AND-decompostion of s1 and s2, the model will indicate that subgoal S

is compromised. However, if the two users are not co-operating, then this is not the case.

Thus, we want to refine the concept of attack tree so that we are able to monitor each

individual users activities. If we believe there is possibility of collusion among attackers

we will maintain the system-wide attack tree as generated so far in addition to the per-user

attack tree that we are now ready to define.

That a per-user attack tree is relevant is further strengthened by the following ob-

servation. For any attack, we may not always need to know all possible ways the attack

can be launched, but rather the practical ways. In the case of attacks from insiders, for

example, we are interested only in the activities of authorized users in the system. Thus,

we want to determine if the operations that a user executes can lead to an attack. This

implies that for a particular user, only a portion of an attack tree is relevant. This leads us

to propose the notion of a minimal cut of an attack tree with respect to a user intent. We

begin with the following definitions.

Definition 32 Given an augmented attack tree, AAT , an attack scenario, AS of AAT is

defined to be a sub-tree of AAT that is rooted at the root of AAT , and follows one or more

branches through the tree to end at one or more leaf nodes of AAT such that

1. if the subtree has a node that is an AND-decomposition then the subtree must con-

tain all the children of this node, and

2. the sub-tree represents one and only one of the many attacks described by AAT .
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Figure 9.2 also represents one possible attack-scenario corresponding to the attack tree,

with the shaded boxes constituting the nodes in the attack scenario. Referring to Def-

inition 3, attacks are represented as edges (spre,spost) in the tree where spre is the pre-

condition of an attack and spost is post condition of the attack. In this figure, some of

the attacks are pointed to by dashed arrows. Note that, to successfully execute an attack,

the attacker must execute some operations that exploit one or more vulnerabilities in the

system. Once a vulnerability has been exploited the attacker executes a set of “attacking

operations” that achieve the goal of an attack. Thus,

Definition 33 A suspicious operations set, SOa, corresponding to an attack a∈ A, is a set

of operations on specific objects that may potentially lead to the culmination of the attack

a. SOa is a set of tuples of the form 〈action,ob ject〉. If a is φ−attack, SOa is an empty

set.

We can identify two different types of operations in a suspicious operations set, SOa. The

first subset of operations is the set Vul of vulnerable operations. At least one of the op-

erations in the vulnerable set needs to be executed to exploit a vulnerability. An atomic

attack can be launched by exploiting one or more vulnerabilities. Similarly each vulnera-

bility can be exploited by executing one or more vulnerable operations. The second subset

of operations is the set Ao of attacking operations. All of these needs to be executed to

accomplish the atomic attack.

We would like to point out here that we specifically omit the use of the term “se-

quence” from the definition of suspicious operations set. It is quite possible that only a

particular order of execution of the operations will lead to an attack. Since we are in-

terested in estimating the probability of an attack and not just reporting on the attack if

and when it is launched, we are interested in all the operations in the set and not just the

operations in some particular order.

Definition 34 The set of intendedoperations of a particular user, IOs, is a projection of

the SPRINT plan for the user over attributes action and object.
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We need to be worried about a users SPRINT plan if some members of the correspond-

ing intended operations set includes a suspicious operations set. We define the intended

operations to abet an attack subgoal as follows.

Definition 35 Given, an attack subgoal si (that is a node in an attack scenario) decom-

posed as the set of atomic attacks ai, the suspicious operations sets corresponding to each

atomic attack, SOa
i , and a set of intended operations, IOs for a user, we say that the in-

tended operations abet the attack subgoal if and only if one of the following conditions

holds true.

1. If si is an AND-decomposition with m edges then ∀ i, 1 ≤ i ≤ m; SOa
i ⊆ IOs

2. If si is an OR-decomposition with m edges then ∃ i, 1 ≤ i ≤ m; SOa
i ⊆ IOs

The intended operations abet an attack scenario if the intended operations abet all attack

subgoal in that attack scenario. Recall that one of our objectives is to determine if a users

activities in a system can lead to an attack on the system. A related objective is to deter-

mine the exact way in which an attack can be launched with the users intended operations.

Thus, given an attack scenario, AS, consisting of subgoals (s1, s2,. . ., sn), we need to de-

termine for each users intended operations, if the intended operations abet every subgoal

si ∈ AS. If the intended operations do not abet every subgoal si in AS, it implies that this

particular attack scenario cannot arise from the users activities. However, this does not

mean that another attack scenario cannot arise from the same intended operations. What

we need to identity, therefore, is the maximal set of attack scenarios that can arise from a

given set of intended operations.

Definition 36 The minimal cut, MCIOS, of an attack tree, AAT with respect to a particu-

lar user intent, IOs, is the minimal subtree of AAT which is rooted at the root of AAT and

whose leaf nodes are a subset of the leaf nodes of AAT, such that the subtree includes the

maximal set and only the maximal set of attack scenarios that can arise from IOs.
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Algorithm 2 Pruning Algorithm
{Description:This algorithm takes an attack tree and a set of intended operations for a partic-
ular user and generates a confined version of the attack tree. The confined tree includes those
and only those attack scenarios that are in the minimal cut and maybe some more attack sub-
goals. The original attack tree is represented as a tree structure in which each node except the
leaf nodes, contain an array of adjacency lists. Each element in the array represents an attack
subgoal. For each attack subgoal,s, Ad j[s] contains a reference to a pre-condition subgoal.
Each edge in the set τ of edges refer to an atomic attack.
The algorithm assumes the existence of a procedure called OPERATIONS that takes an edge
(si,s j) corresponding to a state transition in the attack tree and returns the set of operations
that result in the state transition. It also assumes a second procedure called PARENT that takes
a node s and returns the parent of s in the tree. The algorithm uses three temporary queues
called Explore-List, τ′ and S′ with operation ENQUEUE and DEQUEUE defined. Finally,
the algorithm assumes a procedure DRAW TREE that builds a tree given a set of nodes and
edges. }
{Input: The attack tree AAT , sroot , and the set of intended operations for the user, IOs}
{Output: The pruned attack tree containing the minimal cut of attack tree with respect to the
user intent.}
BEGIN

5: ENQUEUE(Explore-List, sroot)
τ′ ← φ

S′ ← φ

while Explore-List 6= φ do
s← DEQUEUE(Explore-List)

10: ANY MET← false
for all si ∈ Ad j[s] do

ENQUEUE(Explore-List, si)
if OPERATIONS((si,s)) ⊆ IOs then

ENQUEUE(τ′,(si,s))
15: ANY MET← true

end if
end for
if (Ad j[s] = φ && (PARENT(s),s) ∈ τ′ ) then

ENQUEUE(S′, s)
20: end if

if ANY MET = true then
ENQUEUE(S′, s)

end if
end while

25: DRAW TREE(S′,τ′)
END

We now give two algorithms (Algorithm 2 and Algorithm 3) applying which in sequence

gives us a minimal cut of an attack tree with respect to a given user intent. We call the
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first algorithm the pruning algorithm and the second algorithm the trimming algorithm.

The first algorithm takes an attack tree and generates a subtree rooted at the root of the

attack tree such that the subtree contains the desired minimal cut. It removes from the

original tree any attack scenarios whose attack subgoals are not abetted by the intended

operations. The second algorithm further reduces the subtree produced by the pruning

algorithm to produce the minimal cut.

The following theorems hold on the pruning algorithm.

Theorem 1 Let AAT = (sroot ,S,τ,ε,P) be an augmented attack tree and assume that the

pruning algorithm is executed on ATT starting with the root node sroot ∈ S. If the user’s

actions abet an attack then that attack subgoal will be presented in the pruned attack tree

generated by the pruning algorithm.

Proof: To prove soundness of the algorithm we need to prove that during its execution

the pruning algorithm explores every state s that forms an attack subgoal for the attacker

and includes it in the pruned attack tree. To prove completeness, we must prove that if a

node s is included in the pruned attack tree it must form an attack subgoal for the attacker.

First let assume that at the termination of the pruning algorithm, an attack subgoal

s ∈ S which can lead to the root of the attack tree exists such that it is not enqueued by

the pruning algorithm. The pruning algorithm starts by exploring the roots adjacent nodes

and then iteratively explores the adjacent nodes of these. Thus, if there is an unexplored

subgoal s left at the termination of the pruning algorithm, it must be the case that that

subgoal s is not be reachable from the root. Then according to Definition 30, subgoal

s /∈ S which contradicts the assumption.

We prove completeness of the algorithm as follows. Let us assume that at the termi-

nation of the algorithm there exist a state transition (si,s j)∈ τ such that SO(si,s j)⊆ IOs but

(si,s j) /∈ τ′. Since all states in an attack tree have been explored, then (si,s j) must have

been explored. By Definition 35, if user intent IOs abet an attack which causes the state

transition (si,s j), it must be explored and included in τ′. This results in a contradiction.
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The pruned attack tree generated by the pruning algorithm may include atomic attacks that

however can never materialize from a users activities. This is because the preconditions

to these attacks are never satisfied by the user actions. For example, a users intent may

abet a remote login attack but may not abet the user to perform an ftp/.rhost attack on

the target machine. In this case, the attacker cannot perform these atomic attacks at least

till such time as they are not permitted to modify their intent. The next algorithm called

the trimming algorithm removes these attack scenarios and produces the minimal cut of

attack tree.

Algorithm 3 Trimming Algorithm
{Description:This algorithm takes the pruned attack tree generated by the pruning algorithm,
and removes attack goals that the user can never reach. }
{Input: The set of nodes from the pruned attack tree ordered by traversing the tree in breadth
first order and stored in an array S′, and the corresponding τ′}
{Output: Minimal cut of an attack tree with respect to user intent}
BEGIN

5: K ← SIZEOF(S′)
while K > 0 do

si← S′[K ]
K ← K −1
valid ← f alse

10: if Ad j[si] = φ then
valid ← true

else
for all s j ∈ Ad j[si] do

if s j ∈ S′ then
15: valid ← true

else
remove (si,s j) from τ′

end if
end for

20: end if
if ¬valid then

remove si from τ′
end if

end while
25: DRAW TREE(S′,τ′)

END
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Theorem 2 If the trimmed attack tree generated from a pruned attack tree by the ap-

plication of a users intended operation contains an attack scenario, then the intended

operations abet that particular attack scenario.

Proof: Let assume that there exist subgoal s (which its preconditions are met by the user

intents) mistakenly removed by the trimming algorithm. According to the semantic of

the trimming algorithm, the while loop in the trimming algorithm explores every node

in the input pruned tree and the for loop trying to discover all possible paths from the

leaf nodes to a subgoal currently explored by the while loop s iteration. Then the remove

instruction removes a subgoal if and only if the previous for loop could not find such a

path to the leaf node. We will split subgoal s in 2 cases.

Case 1: If subgoal s ∈ S′ is an initial subgoal, this case could not happened since the

if statement of line 10 in the procedure detect the leaf node. Then the initial subgoal s /∈

Minimal cut if and only if s /∈ S′ which contradicts the previous assumption.

Case 2: If subgoal s ∈ S′ is an intermediate subgoal, s will be removed by the

trimming algorithm if and only if s can not be reached from any initial subgoal. This

mean the preconditions of an intermediate subgoal s are not met which contradict to the

previous assumption.

9.4 Compute Probability of Attack from User Activities

We now use the minimal cut of an attack tree with respect to a user intent to determine

the probability of an attack originating from that user. Algorithm 4 computes the attack

probability label of a subgoal at any given time t. By applying this algorithm on the root

node of the minimal cut of an attack tree for a user, we get the attack probability label
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Algorithm 4 Risk Evaluation Algorithm
{Description:This algorithm takes an attack tree subgoal A and returns the attack probability
label (n,m) for that goal. Here n refers to the number of nodes that have been compromised
on the most advanced attack paths and m refer to the least-effort needed to compromise A on
that path.}
{Input: A subgoal of an attack tree}
{Output:

1. Number of subgoals that have been compromised along the most advanced attack path.

2. Least-effort needed to compromise the subgoal along the most advanced attack path.

}
Let n = number of currently compromised subgoal under A on the most advanced attacking
path.

5: Let m = least-effort needed to compromise A on the most advanced path.

BEGIN
if A is a leaf node then

return (0,0)
10: end if

if A is an AND-Decomposition then
(n,m)← ∑(Risk−Evaluation(Ai) | ∀Ai Childnodes o f A)

k← ∑

{
0 i f Ai is φ−attack
1 i f otherwise

else
15: (n,m)←MAX( n

m) f rom Risk−Evaluation(Ai) | ∀Ai Childnodes o f A)

k←
{

0 i f MAX( n
m) is φ−attack

1 i f otherwise
end if
if A is compromised then

return(n+k,m+k)
20: else

return(n,m+k)
end if
END
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Figure 9.3: Attack Probability on Minimal Cut of an Attack Tree

corresponding to the root at time t. The ratio n
m at time t gives the probability of the users

attack succeeding at time t.

To illustrate this algorithm, Figure 9.3 shows an example trace for Algorithm 4.

Assume that at time t a malicious user compromises two subgoals as shown in the figure.

The algorithm computes the 〈n,m〉 value for the root of the tree as follows. All leaf-

nodes return value (0, 0). Node A.1 and A.3 have the summation equal to (0, 0) since

their immediate child nodes are all leaf nodes. When A.1 is compromised the procedure

returns (2, 2). Similarly for A.3 the procedure returns (0, 2). For B.1 and B.3 the values

are (1, 1) and (0, 1) respectively. At this point the value of (2, 2) tells us that it takes 2 units

effort to compromise A.1. The attacker has already compromised A.1 but no damage has

been done on A.3. Next we calculate value on A. Eventually, since the root is an AND-

decomposition on two branches A and B the least effort is 8 + 2 = 10 and the number of

compromised nodes is 3. This yields a probability of attack value of 3
10 at time t.

9.5 Chapter Summary

In summary, this section applies the augmented attack tree with the quantitative

framework to the user intent. The intent-based intrusion detection has been originally
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proposed by Upadhyaya et al. In DRUID framework, the user declares the intended ac-

tivities prior to the login. Based on the users intention, the system generates the SPRINT

plan. Then the system detects the misbehavior by comparing real-time activities with the

SPRINT plan. The deviation from the SPRINT plan shows the sign of intrusion. However,

an intrusion can be launched from the activities which do not deviate from the SPRINT

plan. Our work addresses this problem.

Our attack prediction takes the users SPRINT plan as an input. This plan is submitted

to the augmented attack tree to generate the trimmed attack tree. We call this the minimal

cut of an attack tree with respect to the user intent. Branches of this minimal cut represent

all the different ways by which an attacker can use his/her assigned jobs to launch an

attack. In the event such a minimal cut does not exist, we can safely claim that the users

jobs do not pose a threat to the system.



Chapter 10

A SYSTEMATIC APPROACH FOR INVESTIGATING COMPUTER ATTACKS

USING ATTACK TREES

System log files play a major role in the investigation of computer attacks. However,

system log files almost always have a flat, sequential structure. They grow very large

in size and contain significant amount of information that are not relevant to the specific

attack. Thus, it is extremely difficult and time consuming to extract evidence of attack

from the log file. In this paper, we propose an automated approach for filtering out irrele-

vant information from a system log file and creating a shorter log that contains sufficient

information about a computer attack.

10.1 Introduction

Following a large scale computer attack an investigator (system administrator or law

enforcement official) often needs to make a reasoned determination of who caused the

attack, when, and what the exact sequence of events were that led to the attack. The

system log that contains records of all events that occur in the system, is used for this

purpose. However, the process of this investigation is almost always manual, frequently

prone to errors and often inconclusive. There are three major contributing factors to this.

1. There is currently no standardized model for log file organization. The log file is

usually a simple, flat structured text file (see Figure 10.1). There is no minimum

requirement for information that needs to be stored in the log file.
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Figure 10.1: Flat Structured System Audit Log

2. There are currently no established procedure for filtering and retrieving informa-

tion from the log file other than a sequential backward scan from the most recent

entry. System administrators use ad-hoc regular expression searching commands to

extract information from the log file.

3. When a security incident occurs, the system administrator does not usually have

any information about what are the things to look for in the system log. Most of the

time the person has to rely on her experience or intuition for this purpose.

To address some these concerns, we propose an attack tree based approach for filtering log

files. An attack tree model is proposed that allows one to capture all the different ways

a particular system can be attacked based on currently available knowledge of system

vulnerabilities and exploits. The filtering approach then selects a set of records from a

log file that are relevant to the current attack being investigated by matching against the
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attack tree. Subsequently, other SQL queries can be used to extract evidence from this

table in an automated manner.

The rest of this paper is organized as follows. In section 10.3 we present the attack

tree model for computer attacks. Section 1.3 describes our approach of filtering log files.

Finally section 1.4 concludes the paper.

10.2 Attack Correlation Modeling

Attack trees have been previously proposed [25, 43, 60] as a systematic method for

specifying system security based on varying attacks. They help organize intrusion and/or

misuse scenarios by

1. utilizing known vulnerabilities and/or weak spots in the system, and

2. analyzing system dependencies and weak links and representing these dependen-

cies in the form of an And-Or tree.

For every system that needs to be defended there is a different attack tree. The nodes of

the tree are used to represent different stages (milestones) of an attack. The root node of

the tree represents the attackers ultimate goal, namely, cause damage to the system. The

interior nodes, including leaf-nodes, represent possible system states during the execution

of an attack. System states can include level of compromise by the attacker (such as

successful access to a web page or successful acquisition of root privileges), altering the

system configuration (such as a modification of trust or access control or escalation of user

privilege) or state changes achieved on specific system components (such as implantation

of Trojan Horses) and other sub-goals that will ultimately lead to the final goal (such as

sequence of vulnerabilities exploited). Branches represent a change of state caused by

one or more action taken by the attacker. Change in state is represented by either AND-

branches or OR-branches. Nodes may be decomposed as:
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1. a sequence of events (exploits) all of which must be achieved for this sub-goal to

succeed. An example of this can be the changing of the file mode of /proc/self/ files

and the execution of suid command that cause the root to be compromised (CVE-

2006-3626). This is represented by the events being combined by AND branches

at the node.

2. a set of events (exploits), any one of which when occurring will result in the sub-

goal succeeding. An example of this is the stack buffer over- flow that exploits the

libtiff library in SUSE v10.0 (CVE-2006-3459) or the SQL injection in Bugzilla

v2.16.3(CVE-2003-1043) which cause the root compromised (assume both service

run in the same machine). This is represented by the events being combined by OR

branches at the node.

The notion of attacks trees is related to the notion of attack graphs that have been proposed

by other researchers [12, 38, 47, 62] for network vulnerability analysis. The difference

is in the representation of states and actions. Attack graphs model system vulnerabilities

in terms of all possible sequence of attack operations. As pointed out by Ritchey and

Ammann [53] a major shortcoming of this approach is its scalability. On the other hand,

attack trees model system vulnerabilities in terms of cause and effect. Sequential ordering

of events does not have to be captured in attack trees. Thus constructing an attack tree

is significantly less complex than attack graphs. An often cited criticism of attack trees

(vis-a-vis attack graphs) is that they are not able to model cycles. However, we believe

that this criticism is valid only in cases where attack trees are used to represent sequence

of operations leading to attacks, not when they are used to represent the dependency

of states reached. A second criticism of using attack tree to model attack scenarios is

that they tend to get unwieldy. We assume that a technique is available to generate an

attack tree corresponding to the network system we are attempting to defend. We use

the following running example to describe how an attack tree is used to represent system
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vulnerabilities. Figure 10.2 shows the configuration of the network for a (hypothetical)

small company. The company has installed a firewall to protect itself from the Internet. In

the de-militarized zone (DMZ) there is the company web server. Other relevant machines

are on the local area network behind the firewall. The companys system administrator has

configured the firewall to block port scans and flooding type attacks. The firewall allows

incoming connections only via port 25 and 80 (for smtp and http respectively). We assume

John Doe, a disgruntled employee plans to attack his own company system. He performs

a vulnerability scan of company network using his insider knowledge and determines that

he needs to obtain “root privilege on the Web server” to achieve this objective.

John Doe identifies that there are two alternative ways to gaining root privilege his

ultimate goal. One way is via launching the FTP/.RHOST attack. In this attack, the .rhost

file on the Web server will be first overwritten by a .rhost file of John Does choosing

(namely the .rhost file on his own machine) by exploiting a known vulnerability. At

this stage the Web server will begin to trust John Does machine. This allows John Doe

to remotely login on the Web server from his machine without providing a password.

Once John Doe is a user on the Web server he will conduct the well known setuid buffer

overflow attack and gain root privilege.

A second way of attacking the Web server is via buffer overflow attack on the local

DNS server. John Doe knows that the system administrator uses an old unpatched ver-

sion of the BIND DNS application program. John can perform the BIND buffer overflow

attack on the local DNS server and takes control of this machine. He can then install a

network sniffer on this DNS server to observe sessions across the entire network. Even-

tually he can hijack the system administrators telnet session to the Web server and gain

root privilege there. The above attacks can be concisely represented in the form of the

simple attack tree shown in Figure 10.3. The interesting feature of the simple attack tree

is that it captures in a precise manner all the possible known ways in which a system can

be breached. While it does not capture unknown or zero day attacks, we believe that the
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Figure 10.2: Small Company Network Being Analyzed

attack tree model can be effectively used for helping log file analysis in a vast majority

of the cases. Following an attack, we just need to look out only for those operations that

lie in sequence along the paths leading to the attack. With the attack tree of Figure 10.3,

for example, if we determine that root privilege at the web server has been compromised

we need to look for just the sequence of operations given by the left branch or the right

branch. Moreover, these operations need to be in the exact temporal order as given by the

nodes going down in the tree. Any other order is not relevant for this particular incident.

In fact, if the log file filtering and analysis approach discussed next, does not show up a

sequence of events leading to a specific attack, we know that the attack in question is a

zero day attack.

10.3 Signature Embedded Attack Tree

To use an attack tree in forensic investigation, we extend the notion of the attack

tree (Def. 4) discussed in the chapter 5 by associating each branch with a sequence of
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malicious operations that could have been used in the attack. We call such a tree an

signature embedded attack tree. We also formalize additional notions as the following.

Definition 37 An atomic event is an ordered pair 〈operation, target〉.

Definition 38 An atomic event is an incident if it’s execution contributes towards a system

compromise.

Definition 39 An incident-choice is a group of related incidents, the occurrence of any

one of which can contribute towards the state transition in the attack tree.

Definition 40 An attack Signature SIGpre,post is a sequence of incident-choices

(IC) 〈IC1, IC2, . . . , ICn〉 such that the sequence (incidenti ∈ IC1, incident j ∈

IC2, . . . , incidentm ∈ ICn) constitute an attack.

The attack signature corresponding to the attack discussed in CVE-1999-1562 involving

an execution of wuftp in a target machine (let’s call machine A) and resulting in clear

text password disclosure will be represented by: ((ftp, A),(debug, A),(open localhost, A),

(‘’user name root”, A), (‘’password xxx”, A), (quote user root, A),(quote pass root, A)).

Definition 41 SIGNATURE EMBEDDED ATTACK TREE

Let A be a set of attacks (see Definition 3). An Signature Embedded Attack Tree is a

tuple AAT = (sroot ,S,τ,ε,SIG), where

1. sroot is an attribute which the attacker want to become true. sroot denotes an at-

tribute sk such that for which @ a ∈ A| sk ∈ pre(a).

2. S = Ninternal ∪Nexternal ∪ {sroot} is a multi-set of attributes. Nexternal denotes the

multi-set of attributes si for which @ a ∈ A| si ∈ post(a). Ninternal denotes the multi-

set of attributes s j for which ∃ a1,a2 ∈ A| [s j ∈ pre(a1) ∧ s j ∈ post(a2)].
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3. τ ⊆ S× S. An ordered pair (spre,Spost) ∈ τ if ∃ a ∈ A| [spre ∈ pre(a) ∧ spost ∈

post(a)]. Further, if si ∈ S has multiplicity n, then ∃ s1,s2, . . . ,sn ∈ S| (s1,si)

,(s2,si), . . . ,(sn,si) ∈ τ. A set {s1,s2, . . . ,sn} becomes a parent set of si, denoted by

Pa(si).

4. ε is a set of decomposition tuples of the form 〈s j,d j〉 defined for all s j ∈ Ninternal ∪

{sroot} and d j ∈ {AND,OR}. d j is AND when
∧
i
[si∧ (si,s j) ∈ τ]↔ s j is true, and

OR when
∨
i
[si∧ (si,s j) ∈ τ]↔ s j is true.

5. SIGpre,post ∈ SIG is an attack signature associates to the edge (spre,Spost) ∈ τ.

An AND-decomposition node sv, means that each subgoal of sv represented by a child of

sv needs to be reached in order to reach sv. An OR-decomposition means that the goal sv

can be reach only if any one of the subgoals is reached. Note that reaching a child goal is

only a necessary condition for reaching the parent goal and not a sufficient condition.

10.4 Forensic Investigation with a Signature Embedded Attack Tree

We now show how to use an augmented attack tree to support forensic investigation.

The attack tree will be used to simplify the process of looking for activities that could have

potentially caused the attack. The process works briefly as follows. First the augmented

attack tree is used to prepare the set of incidents for all attack signatures. It is then used

to filter out suspicious activities from non-suspicious ones. All suspicious activities from

this stage is next written to a relational database for further investigation. We propose the

following database structure to store the filtered log file. The log file table includes five

fields id, timestamp,source,source−group,operation, target, and duration. The source

field stores the IP address of the connection originator and source-group field contains the

network address of the originator, if available. The target field similarly stores the desti-

nation address of the network connection. (Note that if the investigation policy dictates

using other information from a log file then those can also be included in the table.)
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Figure 10.3: Attack Tree for Network of Figure

Figure 10.4: Log File Investigation Process
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10.4.1 Use of Signature Embedded Attack Tree in Log File Filtering

Algorithm 5 Investigate(Node su, Table systemlog)
{Description:This algorithm begins at the root of an augmented attack tree. It recursively
calls itself during the subtree traversal under a node su in depth-first manner to visit all edges
(exploits). For each edge, the algorithm extract the suspicious incidents from edge visits.
Finally, the algorithm returns a set of evidence from the log file as appearing in an attack
tree.}
{Input: Node su (initial from root), Table Suspected Activities}
{Output: The list of all suspicious activities.}
BEGIN

5: if su is a leaf node then
return φ

else
for all sv ∈ Adj[su] do

SIGsu,sv ← getSignature((su,sv))
10: for all incidenti ∈ SIGsu,sv do

RESULT ← SELECT logRecord
FROM System Log
WHERE (operation,target) = incidenti AND timestamp < u.timestamp

if RESULT 6= φ then
15: INSERT RESULT INTO TABLE Suspected Activities

end if
end for
v.timestamp← the earliest timestamp of all RESULT in the previous loop
Suspected Activities← Investigate(sv,systemlog)

20: Mark (su,sv) if sv is compromised
end for
if su.ε = “AND” && ∀sv ∈ Ad j[su] | (su,sv) is marked then

Mark su.compromised = true
end if

25: if su.ε = “OR” && ∃sv ∈ Ad j[su] | (su,sv) is marked then
Mark su.compromised = true

end if
return Suspected Activities

end if
30: END

The signature embedded attack tree is used to prepare the set of incidents for all

attack signatures. The set of incidents is then used to filter out suspicious activities from

clean activities. The log file filtering algorithm sequentially executes SQL queries to

extract suspicious activities from the original log file database. The results from this

algorithm is written to a separate table called the suspicious activities table for further
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investigation. This table has the same schema as the log file table but the size of these

table is much smaller than the size of whole log file. Algorithm 5 to filter the log file

based on the augmented attack tree.

The algorithm works as follows. It commences the investigation at the root node

of the attack tree. It traverses every edge incident to the root node. For each edge, the

algorithm extracts the attack signature SIGsu,sv given by the label of the edge. As men-

tioned earlier, the attack signature is the sequence of steps where an attacker may, or may

not, have a choice of incidents (operation on a particular machine/target) to execute. For

each step in the attack signature, the algorithm searches the log file for matching opera-

tions. An incident in the table is said to match the signature if the operation is executed

on the particular machine or against the particular target as indicated in the attack signa-

ture. Moreover, only matched incidents that were executed prior to the time that the root

node was compromised are suspected. Next, the suspected incidents are recorded into the

suspicious activities table by the selection procedure. Once the algorithm finishes the ex-

ploration on a particular edge (su,sv), it sets a time threshold for node sv by selecting from

the earliest incidents in (su,sv). This threshold is assumed to be the time instance at which

node sv has been compromised. Thus there is no need to suspect any incidents in the sub-

tree(s) under sv that executed after this time. The next step in the algorithm recursively

calls itself to investigate the subtree under sv from which the edge (su,sv) emerged. All

subtrees under the node are explored in this recursive manner. The recursive calls ensure

that the algorithm has thoroughly explored all subtrees. Once all subtrees under the root

node or any intermediate node su have been explored, the algorithm marks an edge (su,sv)

if it finds evidence that shows that all steps in the attack signature SIGsu,sv have been ex-

ecuted. If node su has an AND-decomposition, node su is considered compromised when

all exploits (represented by edge (su,sv) ) that are incident to su together with the state sv

that the exploit has emerged from, are marked. If node su has OR-decomposition, node

su is compromised when any one of its branch together with the state sv is marked by the
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recursive call. Finally, the algorithm returns the augmented attack tree where nodes have

been marked compromised together with the suspicious activities table. The latter stores

the evidence of attack for the further analysis.

10.4.2 Use of Augmented Attack Tree in Identifying Possible Suspect

Algorithm 6 Investigate(Node su, specific-source, Table suspicious activities)
{Description:This algorithm takes the root of an attack tree as an initial input. It recursively
calls itself during the subtree traversal under su in depth-first manner to visit all edges (ex-
ploits). For each exploit, the algorithm extracts the suspicious incidents from edge visits.
Finally, the algorithm returns the set of evidence as appearing in an attack tree.}
{Input: node su (initial from root), specific-source, suspicious activities table}
{Output: evidence-log-for(specific-source)}
BEGIN

5: if su is a leaf node then
return φ

else
for all sv ∈ Adj[su] do

SIGsu,sv ← getSignature((su,sv))
10: for all incidenti ∈ SIGsu,sv do

RESULT ← SELECT logRecord
FROM specific-source
WHERE (operation,target) = incidenti AND timestamp < su.timestamp

if RESULT 6= φ then
15: INSERT RESULT INTO TABLE evidence-log-for(specific-source)

Mark RESULT with the exploit from edge (su,sv)
end if

end for
sv.timestamp← the earliest timestamp of all RESULT in the previous loop

20: evidence-log-for(specific-source)← Investigate(sv,specific-source,suspicious activities)

Mark (su,sv) if sv is compromised
end for
if su.ε = “AND” && ∀sv ∈ Ad j[su] | (su,sv) is marked then

Mark su.compromised = true
25: end if

if su.ε = “OR” && ∃sv ∈ Ad j[su] | (su,sv) is marked then
Mark su.compromised = true

end if
return evidence-log-for(specific-source)

30: end if
END
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The input to this stage is the suspicious activities table resulting from the log-file

filtering process. Hopefully, this table is more manageable than the original log file. At

this point, if the investigator sorts the suspicious activities table by source aggregated by

source-group, she will have a list of candidate sources for the attack. From this list, we can

conduct further investigation on a per source basis either to reinforce or discard our belief

about the specific source. Algorithm 6 is intended for this purpose. The output of this

algorithm will be a table named evidence-log-for(source) where “source” is the identity

of the source being investigated. This table has almost the same schema as the suspicious

activities table. The only difference is that this table has an extra column called exploit.

This field holds the exploit label corresponding to a relevant edge of the attack tree. If

the algorithm returns a non-empty table it indicates that the source is guilty. On the other

hand, if the algorithm returns an empty table no conclusion can be reached regarding the

guilty verdict of the source. This is because of the possibility of zero-day attacks. Thus,

we would like to emphasize that Algorithm 6 should not influence the decision as it only

marks evidence of activities that were possibly involved in an attack.

This algorithm is similar to the log-file filtering algorithm. The difference is the SQL

queries that are executed on a per source basis for sources in the suspicious activities table.

The algorithm marks the suspected record with the exploit label to accommodate the final

decision. The investigator may use these labels to map the evidences back to an exploit

in attack tree.

The table evidence-log-for(source) holds the activities that are believed to be respon-

sible for an attack against the system. The records are ordered chronologically. Typically

if there exist an internal node that is marked by Algorithm 6, then the suspect is almost

certainly responsible for the attack.

10.5 Chapter Summary
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System log files play a major role in the investigation of computer attacks. If properly

maintained a system log contains complete information about all pertinent events culmi-

nating in an attack. However, these files are difficult and time consuming to process. This

is partly because the files are almost always flat structured; this requires a sequential scan

for extracting information. They grow very large in size thus becoming unmanageable.

Last but not the least they contain an enormous amount of information a major portion of

which is not related to the attack being investigated. For facilitating investigation, an au-

tomated approach to log file filtering is needed. In this paper, we propose such a filtering

approach. Our approach is capable of eliminating irrelevant information from a log file

and creating a shorter file that contains most of the times, sufficient information about a

computer attack.

Our approach is based on the observation that in order to attack a system an attacker

must exploit certain vulnerabilities that exist in the system in a particular sequence. We

can represent these exploits in the form of an attack tree, the root of which gives the final

attacked state of the system. While unknown or zero day attacks cannot be captured in this

manner, a vast majority of attacks are not zero days. Thus this representation of attacks

against a particular system is useful. We propose an algorithm that filters a log file by

correlating it with the attack tree that is relevant for the particular attack in question. The

filtered log is much smaller than the original file as it contains only relevant information.

This filtered log file can form the basis of further investigation. A lot of work remains

to be done. Apart from not being able to capture information about zero day attacks,

our protocol assumes that the log file available is trusted. That is, the attacker has not

tampered with the log file to remove evidence of attack. How to ensure this in real life

is an open challenge. We are currently investigating this problem. We also assume that

a central log file is available that records all events occurring on the network. In reality,

each machine on a network maintains its own log. Thus, there needs to be a protocol

to merge these log files into one comprehensive whole. This remains part of our future

work.



Chapter 11

CONCLUSION AND FUTURE WORKS

The enterprise attack model serves as a basis building block in the risk management,

intrusion detection, and forensic investigation. In conclusion, we pioneer three area of

contributions in the problem domain of information security.

11.1 Contributions to Risk Analysis and Risk Mitigation Analysis

An attack tree can help the security manager analyze the effectiveness of security

controls and prioritize risk. What’s always facing the security risk management is the

difficulty in assessing the risk and selecting security controls to mitigate the risk.

In the first challenge, although there are available methodologies to compute the risk,

but the actual risk is also tied to the factors out of reach by the current assessment meth-

ods. We have not seen an assessment model that takes into account the propagated effect.

That is even a low risk vulnerability can lead to the catastrophic damage to the system

if an attacker can use that risk as an entry point to attack. Beside, the risk is also tied to

its locations and how much it can propagate to make other undesirable events. Without

the knowledge about cause and effect of the possible attacks, the security administrator

cannot truly assess the damage from a given list of vulnerabilities alone. An attack tree

/ attack graph assesses the risk in terms of dependencies between preconditions, attacks,

and outcomes which, in turns, become the part of preconditions of other attacks. As-

sessing the damage on each outcome individually, the security analysts can simulate the

possible outcomes that capture all propagated effects if a given attack is executed. As-
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sessing the risk with an attack tree or attack graph is a systematic method. It provides

more accurate and reasonable results.

The second challenge is even harder, assuming that the risk assessment can be eval-

uated by other means; it is still difficult to assess the security controls the system should

employ given a number of countermeasures currently available. It is a difficult task be-

cause there is no known security control that can address all vulnerabilities. Even worse,

some countermeasures address one problem but worsen or open other vulnerabilities (e.g.

cryptography allows secure communication but weaken the system against the denial-of-

service attack). System administrators have to deal with the trade-off between costs and

benefits of deploying the security controls. An attack model also allows security analysts

to consider many what-if scenarios during the risk mitigation analysis. For example, the

analyst can easily simulate the effects of adding a new Firewall in a certain location in

the network. Similarly, a security administrator can identify potential damage if a cer-

tain control (or even a certain set of controls) is removed. Therefore, evaluating security

controls can be easily made.

11.2 Contributions to Intrusion Detection and Incident Response

In the area of Intrusion Detection System (IDS), we realize that such systems rely

heavily on configuring the sensors sensitivity to detect certain symptoms. Setting up

these sensors usually involves the trade-off between sensitivity and false alarms. When

the sensors are set to report all suspicious events, the sensors frequently issue alerts on

benign events. This often results in annoying and functionality drawbacks. On the other

hand, decreasing the sensitivity reduces the ability to detect malicious events.

System administrators can use attack tree to deal with this problem by having an

attack tree correlates alerts and by applying probabilistic risk analysis on correlated alerts.

Evidencing alerts with an attack tree will also give an ability to predict future attacks,

reduce volume of information to be analyzed, and increase an accuracy of IDS.
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Moreover, an attack tree can help administrating other kinds of analysis in the area of

intrusion detection. For example, marking the paths in the attack tree when an IDS detects

an attack incident allows systematic and real-time intrusion alert, determining where the

new IDS components should be deployed for the best coverage, exploring trade-offs be-

tween different security policies and between different software/hardware configurations,

and identifying the worst-case scenarios and prioritizing the defense accordingly.

11.3 Contributions to Forensic Investigation

After a break-in, forensic analysis is used to find a trace of attackers actions to assess

the actual damage and identify how to reinstate back to the last normal state. In addition,

if a legal action is required, analysts seek evidences to prove that a sequence of certain

activities is, indeed, a comprising of the coherent attacks and not just a series of benign

events. Typical forensic processes involve investigating the system log for the known trace

of attack patterns. This task relies heavily on the analyst’s experience and thoroughness.

The task becomes even harder when intruders obfuscate attack steps by slowing down the

pace of the attack or varying specific steps. An attack tree is proposed to help improving

the accuracy and speed of the forensic process by submitting the data extracted from IDS

logs to a formal reference model based attack tree.

11.4 Future Works

This dissertation innovates an enterprise risk management analysis. In this disser-

tation, we propose a formalism of enterprise risk model to help analyst understand the

enterprise risk model so as to be able to apply the model on different risk analysis meth-

ods. We demonstrate the feasibility by implementing the comprehensive attack tree anal-

ysis tool that discovers all possible paths in which the system can be compromised given

vulnerability and network topology. We also pioneer the works toward risk mitigation

analysis. In particular, the Multi-Objective analysis extends the problem domain so as
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to cover the use of external security controls and discover the optimal security hardening

plan. Thus, it gives a more comprehensive solution than the traditional risk mitigation

analysis.

Our work, however, is still in its early state. There are many works that need to be

done. In the virtue of formalism, more practical studies of attack analysis are needed.

In particular, the attack generation tool needs to have more rigorous tests. The challenge

here is to study the use of the model analysis on different network environments such

as mid-size network, large scale network, virtual network, and network on cloud. The

results from these studies will be used to improve the model formalism, model generation

algorithm, node insertion/deletion, and other maintenance issues.

In the virtue of tool automation, we need to integrate the tool with the vulnerability

parser and topology parser. In the current implementation, we rely on the information

about attack templates, network topology, and vulnerabilities presented in the network

system from external data sources. This information is written in a formatted language

such as Html or XML. Hence, the tool can be significantly improved in terms of perfor-

mance and error reduction by the automatic program that extracts this information and fill

the database for reference.

In terms of the risk management analysis, we have conducted several experiments

on risk mitigation analysis. These experiments cover both the static and dynamic aspects

of the risk mitigation analysis. It is worth mentioning that some security controls have

been found to be commonly included in the optimal solutions. Hence, it is possible that

security hardening is more critical in certain areas of the attack graph. Such areas could be

nodes that have multiple fan outs. In other words, these critical areas are at-risk junctions

that can be used by an attacker to cause multiple outcomes. Security controls that can

reduce risk in such areas are likely to be parts of the optimal solutions. Therefore, it is

worth investigating the “critical path analysis” to understand how such controls can be

identified efficiently so as to reduce the search space for the optimization algorithm.
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Last but not least, risk assessment and risk mitigation analysis are the two instances

of problems where we can use causal dependency model to solve the problem. There

are other instances of problems where the causal dependency model can be used as well.

Chapters 9 and 10 are two small examples of applying an attack tree to solve problems in

intrusion detection and forensic investigation domains.

It is worth to note that there is a key information to determine if a graph-base model

is applicable on the specific problem. That is the analyzer must be able to model the

problem as an acyclic dependency graph. In our case, we successfully apply Monotonic-

ity constraint to prevent a graph cycle. Monotonicity implies that attack progress never

backtracks. This constraint is valid when we view causal dependency as “Why a given

node can be compromised” since backtracking path will become trivial. However, this

constraint may not be applicable to other problem domains.



Chapter 12

GLOSSARY

1. Vulnerability – Vulnerability is a weakness in the system allowing an attacker

to violate the integrity, confidentiality, access control, availability, consistency or

audit mechanism of the system or the data and applications it hosts. Typically,

vulnerabilities often result from the carelessness of a programmer, though they may

have other causes. Vulnerability allows an attacker to misuse an application to cause

it in (for example) bypassing access control checks or executing commands on the

system hosting the application. Some vulnerabilities arise from un-sanitized user

input, often allowing the direct execution of commands or SQL statements (known

as code injection and SQL injection). Others arise from the programmer’s failure

to check the size of data buffers, which can then be overflowed, causing corruption

of the stack or heap areas of memory. The method of disclosing vulnerabilities is a

topic for debate in the computer security community. Some advocate the complete

disclosure of information about vulnerabilities once they are discovered. Others

argue for limiting disclosure to the users placed at greatest risk, and only releasing

full details after those notified have fixed the problem by developing and applying

patches, but may also increase the risk to those not privy to full details. This type

of vulnerability is often called zero day attack [58].

2. Vulnerability Exploitation – Vulnerability exploitation (or simply ’exploit’) is an

execution that takes advantage of a bug, glitch or vulnerability in order to:
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(a) Gain control of a computer system, or

(b) Allow privilege escalation, or

(c) Bypassing the security validation, or

(d) Perform a denial of service attack, or

(e) Reconnoiter for the credential information, or

(f) Change the system configuration in such a way that it prepares for the execu-

tion of future exploit.

As an example, the Buffer overflow in Collaboration Data Objects (CDO) used in

Microsoft Windows and Microsoft Exchange Server (CVE-2005-1987) allows re-

mote attackers execute arbitrary codes when CDOSYS or CDOEX processes an e-

mail message with a large header name. Another example of an exploit that prepare

for another attack is the Denial of Service in MyDNS Server (CVE-2006-0351).

An attacker might executes this exploit to temporary disable the local DNS Server,

redirects DNS requests to an attacker provided address and then fools the user to

get sensitive information such as the login name or password.

3. Attack Pattern – Exploits can also be classified by the characteristic of vulnerabil-

ity they attack. The buffer overflow, heap overflow, integer overflow are attacks that

exploit the vulnerability of the victim program and cause the corruption of the stack

or heap areas of the memory allowing an attacker to execute arbitrary commands on

the behalf of the application’s privilege. The code injection is a technique to intro-

duce (or “inject”) code into a computer program or system by taking advantage of

the unenforced and unchecked assumptions the system makes about its inputs. The

consequence of this type of attack can allow an attacker to compromise the victim

machine. An SQL injection is another code injection type of an attack that occurs

in the database layer of an application. The vulnerability is presented when the user
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input is either incorrectly filtered for string literal escape characters embedded in

SQL statements or the user input is not strongly typed. A cross-site scripting attack

(XSS) is an attack allowing malicious Web server send executable code to a client-

browser. If the client site has an improper input validation, a script from one page

could be allowed to access data from another page or object. As a result, malicious

Web site could steal sensitive information or even bypass the access control.

We employ classification taxonomy and schema to classify attack patterns from the

Common Attack Pattern Enumeration and Classification (CAPEC) [2]. CAPEC is

sponsored by the Department of Homeland Security as part of the Software Assur-

ance strategic initiative of the National Cyber Security Division. The objective of

this effort is to provide a publicly available catalog of attack patterns along with

a comprehensive schema and classification taxonomy. CAPEC defines a standard

schema for representing attack patterns and to describe in adequate detail the mean-

ing and intent of each constituent schema element. An attack pattern is the mech-

anism to capture and communicate the attacker’s perspective. It is a description of

common methods for exploiting software. The CAPEC web site is hosted by the

MITRE Corporation and can be assessed at url:http://capec.mitre.org/.

Based on these available information we can form the inter connection between a

precondition, vulnerability exploitation, and consequence that uniquely identify an

attack. We define an attack template in the following section.

4. Attack Template – An attack template is an atomic transformation between pre-

conditions, exploitation, and post conditions. Both precondition and post conditions

are represented by attributes. Note that an information necessary for establishing

an attack-template model can be obtained from the Vulnerability Bulletin. To il-

lustrate one of these attack-templates, let consider the Microsoft RPC vulnerability

as reported in the Microsoft Security Bulletin (MS03-026). MS03-026 is a buffer
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Figure 12.1: An Attack Template for Microsoft’s RPC Vulnerability

Overflow attack discovered in the Microsoft’s RPC service. The vulnerability exists

in the part of the RPC that deals with message exchange over the TCP/IP. This vul-

nerability affects a Distributed Component Object Model (DCOM) interface with

RPC, which listens on the TCP/IP port 135. The vulnerability allows an attacker

to execute arbitrary code with the system privileges or cause a denial of service.

Judging from this information, we can construct an attack-template model for the

RPC buffer Overflow attack (MS03-026) as shown in Figure 12.1.
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