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I. INTRODUCTION

At a time when quality and cost are becoming even more important in the manufac­
turing process, accurate and efficient inspection is critical. However, the complexity
of electrical and mechanical assemblies has reached a point where human inspec­
tion can be fatiguing, unreliable, and expensive. This has prompted many manu­
facturers to implement automated visual inspection systems. Unfortunately, efforts
to achieve the advantages of CAD-driven automatic sensor planning and visual
inspection systems for three-dimensional assemblies have been largely unrealized.

The automated inspection task includes two interrelated components: the setup
and configuration of the inspection cell, including camera and light placement,

Expert Systems, Edited by Cornelius T. Leondes, Volume 3
Copyright © 2002 by Academic Press. All rights of reproduction in any form reserved.
ISBN: 0-12-443883-0/ $35.00 661



662 KHAWAJAETAL.

and the algorithm used to analyze the captured image and to determine whether
assembly errors have occurred. Both of these components can benefit from the use
of intelligent and adaptive systems approaches. In this chapter we design a general
model and structural form for each component and allow the CAD model of a
given assembly to determine the appropriate model parameters and exact structure
to be used when the assembly is inspected. This CAD-driven approach allows our
system to adapt to a wide variety of assemblies automatically with little or no user
interaction.

Sensor planning is used to configure the layout of the inspection cell for the
efficient detection of assembly errors. Sensor planning for computer vision tasks
has received some attention in recent years. One specific area that has been empha­
sized and is closest to this work is that of sensor planning for object feature detec­
tion [1]. For example, in [2] the region of viewpoints that satisfy a set of constraints
is calculated. These constraints are formulated in terms of resolution, focus, field
of view, and visibility requirements for a set of object features like points, lines,
and faces. A function is then formulated that attempts to find an optimal viewpoint
in this region. In [3] constraints are placed on both a camera and a point light
source location for observing object polygons. Each constraint results in a region
of admissible points. For light regions, locations associated with the specular direc­
tion of the inspected faces are excluded. The intersection of these regions yields
the final admissible camera and light location points. Moreover, in [4] the problem
of automatic sensor and light positioning is considered in terms of optimizing a
function that describes edge visibility, where both the camera and light locations
are constrained to lie on a spherical surface with the center of interest lying at the
sphere center. Similarly, in [5] an object point of interest is surrounded by a tes­
sellated sphere on which a camera location is to be determined such that the point
is not occluded. The points that maximize a formulated distance requirement are
selected. Later, the work was extended to planning light source placement for rec­
ognizing objects with Lambertian surfaces [6]. In [7] an illumination planner for
convex Lambertian objects is discussed, where reliable regions around the object
are identified for the placement of several light sources.

Although object inspection is a possible application of these cited works, the
extension of these approaches to assembly inspection has not been considered.
The mere repetition of the inspection algorithms for each component of an assem­
bly would be computationally unreasonable. Ideally, sensor planning for assembly
inspection should be done to optimize the performance of the inspection algo­
rithm being used. In this work we develop new algorithms for automatic camera
and light source placement with this aim in mind. Our algorithms use the CAD
information built into an assembly model along with specialized computer graph­
ics hardware to accomplish this task. Fast rendering techniques are used to acquire
needed data for the camera and light placement automation process. Moreover,
realistic synthetic images are generated and used to run simulations for design and
test purposes. To automate the camera placement, the CAD information for com­
ponents of interest is used to analytically constrain the camera to a small region of
the solution space. A function that measures the quality of a camera view is cre­
ated. Then, once the camera location is known, an algorithm is designed to place
a point light source. A second function is created to evaluate the quality of the
light location. The camera and light quality functions are used in conjunction to
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select an optimal camera-light pair following a generate-and-test approach in the
constrained solution space. One of the main advantages of this approach is that
it uses the fact that an assembly, versus a single component, is being inspected.
Currently, the approach assumes the components are assembled only with the use
of vertical insertion operations.

In addition to the algorithms for determining camera and light placement, we
develop an automated inspection algorithm to detect assembly errors from a single
monochrome image of the object. The algorithm uses a novel multiscale stochastic
image model to describe the appearance of a complex three-dimensional object
in a two-dimensional monochrome image. This formal image model is used in
conjunction with Bayesian estimation techniques to perform automated inspection.
The model is based on a stochastic tree structure in which each node is an important
subassembly of the three-dimensional object. The data associated with each node
or subassembly are modeled in a wavelet domain. We use a fast multiscale search
technique to compute the sequential maximum a posteriori (SMAP) estimate of the
unknown position, scale factor, and two-dimensional rotation for each subassembly.
The search is carried out in a manner similar to that of a sequential likelihood
ratio test, where the process advances in scale rather than time. The results of
this search determine whether the object passes inspection. A similar search is
used in conjunction with the expectation maximization (EM) algorithm to estimate
the model parameters for a given object from realistic training images generated
synthetically from the CAD model of the assembly.

Low-level image models describe the behavior of individual image pixels rel­
ative to one another. Markov random fields and other spatial interaction models
have proved useful for a variety of applications, including image segmentation and
restoration [8, 9]. Bouman and Shapiro [10], along with Willsky, Benveniste, and
their associates [11, 12], have developed multiscale stochastic models for image
data. High-level image models are generally used to describe a more restrictive
class of images. These models describe larger structures in the image explicitly,
rather than describing individual pixel interactions. Grenander and his associates,
for example, propose a model based on deformable templates to describe images of
nonrigid objects [13], whereas Kopec and his colleagues model document images
with the use of a Markov source model for symbol generation in conjunction with
a noisy channel [14, 15]. Our image model is primarily high level, although we do
model individual pixel statistics within the context of larger structures. In addition,
we combine the image model with a fast multiscale search procedure to form an
object detection algorithm for use in the particular application of automated inspec­
tion. Because the detection process is based on a formal model of the image data,
it can be carried out in a consistent manner with the use of well-known stochastic
estimation techniques.

A number of different approaches to the object inspection problem have been
taken in the past. Much of the early work in this area concentrated on special­
purpose algorithms for the inspection of specific objects [16]. More recently,
inspection has often been viewed as only one of a number of related machine
vision tasks, so general object recognition systems are used for inspection. Exam­
ples of this approach include Brooks' ACRONYM system [17], as well as the
systems of Flynn and Jain [18] and Mehrotra and Grosky [19], which perform
three-dimensional pose estimation and use a multiple-object database. Most object
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recognition techniques, however, are not based on a formal probabilistic model of
the data. Instead, they generally extract features of some sort from the data and
match these to corresponding object characteristics. Because our algorithm and
image model were constructed with assembly inspection specifically in mind, we
can take advantage of some of the unique characteristics of such a system, such
as the highly controlled viewing environment and well-defined goal of the system.
For this constrained problem, it is possible to develop an explicit stochastic model
that can be used to guide the design of our algorithm.

Our model uses a stochastic tree structure in which each node is an important
subassembly of the three-dimensional object. The important subassemblies and
linkages between the nodes of the tree are automatically identified from the CAD
information. Thus, the stochastic tree used for a given assembly will automatically
adjust to best take advantage of that object's structure and the common assembly
errors associated with its construction.

As illustrated in Fig. 1, our system components work together synergistically
to form a complete inspection system. By using a well-defined problem structure
(visual inspection of rigid assemblies from a single monochrome image) and

GenerateOb"eetTree Determine Camera and
Light Placement

Train the Inspection
Algorithm

Generate Synthetic
Training Images

fiGURE I The CAD model is used to automatically generate our assembly model and inspection
conditions. The information from the model is used to train the inspection algorithm and adapt it to
the assembly of interest.
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assuming the availability of considerable information about the data (as embod­
ied in CAD models of the assembly components and materials), our system can
automatically adapt to a wide variety of objects with little or no user interaction.
Although the computation required to specify and train the system for a specific
assembly can be considerable, it is largely automatic in nature and only needs to
be performed once for a given assembly. Thus, it can be done offline in parallel
with other manufacturing tasks.

II. THE INSPECTION ALGORITHM

We approach automated inspection as a problem in object detection, where
it is assumed that the inspection algorithm must make decisions based on a
monochrome image of the object. In this section, we develop a model-based inspec­
tion algorithm designed to detect assembly errors in a rigid object from a single
monochrome image of the object. Because the algorithm is designed specifically
for automated inspection, we can take advantage of the highly structured view­
ing conditions typically found in a factory environment. For example, because the
object to be inspected is known in advance, the algorithm is trained to be sensitive
only to this one object; anything else in the field of view is taken to be extraneous
to the inspection task. Furthermore, the regions of the object in which assembly
errors are most likely to be visible are known (derived from the CAD model at an
earlier stage of processing), so the algorithm concentrates most of its attention on
those object regions. Finally, the approximate location and pose of the inspected
part will often be known [20, 21]. The algorithm is therefore designed to be robust
to limited changes in viewing conditions, but it does not allow for arbitrary object
orientation. This algorithm is described in detail in [22].

The apparent shape and appearance of an object will alter because of slight
changes in viewing conditions and allowed variations in component sizes and
assembly construction, so the object model must be flexible enough to allow some
degree of distortion. Each of the important features, or subassemblies, of the object
is therefore modeled separately, and their relative positions in the image are per­
mitted to vary randomly to a certain degree. The subassemblies are linked together
in a stochastic tree structure, where the position, or state, of each subassembly is
taken to be a random quantity dependent on the state of the parent subassembly in
the tree. The states thus form a Bayesian network on the object tree [23].

Each subassembly is modeled separately with the use of the structure shown in
Fig. 2, where the arrows indicate conditional dependence. A subassembly's loca­
tion, scale, and orientation in the image are expressed as a random state vector X,
where the component distributions are determined by the allowed viewing con­
ditions. The exact distribution of X is dependent on the deterministic parameter

_ FIGURE 2 General model structure for a subassembly. The state is the (random) location, orien­
tation, and scale factor of the subassembly. The image data are the (random) wavelet transform image.
The parameters are deterministic quantities estimated from training data.
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set ep, which will remain the same for all images. The parameters are estimated
from a set of training images generated from CAD information, allowing the model
to adapt to specific viewing conditions.

The data associated with each subassembly, which is taken to be a multireso­
lution wavelet decomposition of the original grayscale image, is modeled as a mul­
tiscale random field. Data values depend on the deterministic parameter (), which
can be thought of as a multiresolution template describing the appearance of the
subassembly. The multiscale data model was developed with concepts and results
from the theory of multiscale random processes in mind [10-12].

The inspection algorithm locates an object and all of its subassemblies in an
image by estimating the state of each node of the object tree. The states are esti­
mated based on the image data, which is modeled as a set of noisy measurements
dependent on the underlying states. Thus, because the states form a Bayesian net­
work on the object tree, the state estimation procedure is exactly analogous to state
estimation for a hidden Markov model. The state estimation takes the form of a
multiscale search at each node, progressing from the root of the object tree to its
leaves. Each subassembly is inspected in turn, and the estimated state of the par­
ent node is used to guide the multiscale search. The search at each node results
in an approximation to the maximum posteriori state estimate for the associated
subassembly, given the estimated parent state and the image data. The estimation
procedure is therefore the SMAP procedure of Bouman and Shapiro [10]. This
gives a noniterative, computationally efficient formulation for locating and identi­
fying the desired object.

A similar multiscale search procedure is used during the training phase of
the algorithm, where we estimate the model parameters from a set of training
images. The parameter estimates are computed with the use of the iterative EM
algorithm [24].

This inspection algorithm interacts with the rest of the inspection system pri­
marily through two different mechanisms. The system uses the CAD model of the
assembly to guide the construction of the object tree, with important subassem­
blies and linkages among them being identified and constructed automatically. The
CAD model is also used to generate a variety of training images, each of which
represents an "in-spec" assembly. The training images, in turn, are used to estimate
model parameters. Thus, both the model structure and the model parameters adapt
to the assembly through the CAD model.

This section is organized as follows. In Section ILA we define the tree structure
making up the object model and specify the model associated with each subassembly.
This model is then used in Section ILB to develop the multiscale search procedure
for state estimation. Finally, Section ILC discusses our parameter estimation
procedure, which is used to adapt the algorithm to the particular object of interest.

A. TheModel

In this subsection, we will specify a formal stochastic image model that can be
used to describe the appearance of a general class of complex three-dimensional
objects. The model has two distinct levels to its structure: the object tree and the
subassembly. Each node of the object tree will be used to represent the relative
position and orientation of the important object features, called subassemblies.
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Each subassembly will then be modeled with the use of a wavelet transform of the
associated image region.

Figure 3 shows an example of an object tree for a complex three-dimensional
object. Each box represents a subassembly or node of the tree and is drawn around
a feature of interest in the object's image. The boxes are connected by lines into a
tree structure, and the level of each node in the tree is represented by the number
of lines making up the box. In general, the subassemblies will consist of various
object components important for locating the object and for detecting assembly
errors. Typically, nodes near the root of the tree are associated with larger parts of
the object and represent the object's gross structure. These nodes also prove useful
in locating the object in an image. Nodes further down the tree "zoom in" on
smaller features that contain significant fine detail. The object tree is constructed
from the CAD model of the assembly, which can be used to predict which features
will be of the most use in detecting assembly errors.

Figure 4 illustrates the structure and conditional dependencies in an object tree.
Each node is represented by an oval containing four quantities, x(e), ep(e), Y, and
e(e), where c is the index of the node, and arrows indicate conditional dependency.
We will use uppercase letters to denote random quantities and lowercase letters for
nonrandom sample realizations.

The random state x(e) contains the position, orientation, and scale of the sub­
assembly. x(e) is assumed to be random because the geometry of the camera and
object may vary from image to image. In general, however, the position of a sub­
assembly will depend on the position of its parent node in the object tree. This
conditional dependence is indicated by the arrows between nodes. Because the
observed image depends on the location and orientation of the object and its com­
ponents, the image data Y in Fig. 4 depend on each of the states, x(e).

FIGURE 3 An initialization image is used to define the object tree. The boxes indicate the sub­
assemblies associated with the nodes of the tree, and the lines connecting the boxes show the parent­
child links.
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[

OJ - x position
X(O) = °-y position

1 - scale factor°-rotation angle

_ FIGURE 4 Model structure of complete object assembly. At each node, Y is the image data; X(c)

is the state containing the position, orientation, and scale of the subassembly; ()(c) is a set of data
parameters that describes the appearance of the subassembly; and ¢(c) is a state parameter vector
describing the variation in subassembly position.

In addition to random quantities, each node contains two deterministic param­
eter vectors, ¢Ce) and e». These parameter vectors are used to adapt the model to a
wide variety of possible object behaviors and imaging environments. The parame­
ter ¢Ce) determines the mean and variation of a node's state given the parent node's
state, and ()Ce) determines the mean and variation of image pixels given the node's
state. Intuitively, one might think of ()Ce) as containing an image template for the
subassembly, but we will see that ()Ce) actually contains more information than a
simple template.

Because subassemblies only depend on each other through their positions, the
node states XCe) form a Markov chain along any path from the root to a leaf
of the tree. This tree-dependent structure captures the interdependencies among
the subassemblies while remaining amenable to efficient computational schemes
[10, 12, 25]. If we index the nodes from 1 to M, then this Markov relationship
may be stated as

M

p(x(1) , ... ,xCM) I ¢(1), ... ,¢CM») = IIp(xCe) I X Cp) = x Cp), ¢Ce»), (1)
e=1

where p denotes the parent of node c, and the parent state for the root node of
the object tree is the deterministic state vector xCO) . Notice that the state of the
subassembly XCe) depends on both the state parameters ¢Ce) and the state of the
parent node XCp).

The density functions given in (1) must next be defined. The subassembly state
has components xCe) = [S", Z, R]t, where S = [Sv,Sh]t is vertical and horizontal
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position, Z is the scale factor, and R is the angle of rotation in radians. The state
x(c) = x(c) = [(s(c))t, z(c), r(c)]t defines a transformation of the subassembly from
the image coordinate system to a normalized coordinate system with scale factor 1
and rotation angle 0. This normalized coordinate system is essentially used for data
registration; the distortions in a particular image are undone, and the subassembly
data are mapped to a common location. Each image pixel location i at resolution
1will transform to a normalized location i', where

sin r(C)]
cos r(c) .

We will use the matrix T(c) to simplify our model notation.
The state parameter vector c/J(c) has the components

ep(Cl = [ ~~;]

= [(m(C))t m(c) m(c) 'V(c) 'V(c) 'V(C)]t
s ' z' r' Is "z 'Ir '

where m(c) and ')I(c) play the roles of mean and variance vectors, respectively. Given
this notation, the state vector has a Gaussian distribution with the form

(2)

where A is a matrix determined by the parent state x(p) through the transformation
T(p), and B is a matrix determined by c/J(c) and x(p):

°
°1
° Jl

Note that the vertical and horizontal offset means depend on the matrix T(p) , which
is a function of the scale factor z(p) and the rotation r(p). Therefore, the vertical
and horizontal distances between subassemblies will scale with object size and
change as the assembly rotates. For simplicity we assume that the vertical and
horizontal positions have the same variance. This assumption makes the variances
independent of rotation angle. The root node does not have an actual parent node,
so for this node we define the parent state XeD) to be xeD) = [0,0, 1, O]t.

Having defined the relationship between the nodes of the object tree; we now
need to construct a model for each subassembly or node of the tree. This model
determines the distribution of the image pixels in the region of each subassembly.
The subassembly model is based on a wavelet transform of the image. The wavelet
transform has two important advantages in modeling of the image. First, because
the transform may be thought of as approximately separating the image into dis­
tinct spatial frequency bands, it tends to decorrelate the image data [26]. We will
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a) +1 +1 b) +1 -1
+1 +1 +1 -1

c)
+1 +1 d)

-1 +1
-1 -1 +1 -1

FIGURE 5 Basis functions for the Haar transform. Notice that a is the average, b is the vertical
edge gradient, c is the horizontal edge gradient, and d is only responsive to thin diagonal lines.

see that this decorrelation removes undesirable mismatches caused by small shifts
in the average gray scale. The decorrelation also results in a transformed image
with the natural interpretation of vertical and horizontal edge bands. The second
advantage of using the wavelet transform is the dramatically reduced computation
that results from processing data at multiple scales [27]. The object search will
later be formulated as an optimization problem in a high-dimensional space. The
key to the efficient solution of this optimization will be a structured search that
exploits the multiresolution structure of the wavelet transform.

Our wavelet decomposition uses the Haar basis functions illustrated in Fig. 5.
Figure 6 shows an image resulting from this Haar wavelet decomposition. Notice
that at each resolution, two of the bands are interpreted as the horizontal or vertical
edge gradients. This structure will be used to make the image model sensitive
to both region (average gray scale) and edge (gradient magnitude) information.
Another advantage of the Haar basis functions is the computational simplicity
resulting from coefficients of ± 1.

We will generally assume that Y is the wavelet transformed image. The wavelet
transform is an invertible, orthogonal transformation, so the transformed image con­
tains all of the information in the original data. Furthermore, because the Jacobian

_ FIGURE 6 Wavelet decomposition using the Haar basis functions. The transformation generates
separate vertical and horizontal bands at each resolution.
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(3)

of the transformation is unity, the values of the density functions are equal for the
original and transformed data.

For simplicity, our algorithm uses only the vertical and horizontal gradient
information in the wavelet representation; we do not model the diagonal band
information. This allows us to represent the data at each pixel location as a gradient
vector. At each resolution l, define Yz= [rzv' YZh] where rzv and rzh are the vertical
and horizontal bands of the wavelet transform. Generally, 0 :s l :s L - 1, where
l = 0 is the finest resolution and L - 1 is the coarsest. Each pixel in rz is denoted
by rz(i) = [rzv(i), rzh(i)], where i = [iI' i2]t is a vector index. Intuitively, this index
corresponds to the physical position [v, h] = [i 12

z+ 2z- l , i22
z+2z-I ] .

The pixels Yz(i) are assumed to be conditionally independent, given the state
X(c) and the data parameters 8. This is a reasonable assumption because the wavelet
transform decorrelates the image data. Intuitively, the pixel value yz(i) represents
the local gradient of the image at location i. Because image derivatives are known
to be accurately modeled as Laplacian distributed [28], we choose a density func­
tion similar to the Laplacian density for our data distribution. In particular,

( (.) I (c) _ (c) 8(c») _ 1 { Ilyz(i) - iiz(i) II }
p yz l X - x, - 27T(A(c)iT

z(i))2
exp - A(c)iTz(i) ,

where 11·11 is the Euclidean norm and iiz(i) and iTz(i) are model parameters deter­
mined by x(c) and 8. The redundant parameter A(c), which also depends on the
state x(c) and the resolution l, has been added to explicitly account for local vari­
ation in image brightness. Note that this model differs slightly from the Laplacian
density, which uses a l-norm in place of the 2-norm.

The mean vector iiz(i) of (3) is just the average local gradient at pixel location
i. This characterizes gray-scale behavior, including edge polarity and sharpness.
The variation parameters iTz(i) indicate the areas of greatest uncertainty in the
template, which will generally occur near edges. Thus, the model is sensitive to
both region-based and edge-based information, with the relative importance of
each information type determined by the model parameters. Note that the variation
parameter is common to both the vertical and horizontal wavelet bands. In this
way a rotation of the subassembly can be modeled by simply rotating each mean
vector iiz(i).

To define the relationship between the parameters of (3) and X(c) and 8, we
must first precisely define the components for 8. For node c of the object tree, the
components for 8(c) are 8;c) (i) = [P-z(i), O"z(i)], where P-z(i) = [P-zv(i), P-zh(i)] is the
average gradient at template location i, and i is a vector index that takes values in
W/c

) . The set W?) may be thought of as a window containing the subassembly in
the normalized coordinate system. To eliminate spurious results due to insufficient
data, we define W?) to be empty for resolutions l at which this window contains
fewer than 4 x 4 pixels. In Fig. 3, these windows correspond to the rectangular
boxes.

The effect of the state x(c) = [(s(c»)t, z(c), r(c)]t is to transform and distort the
template of parameters 8(c) and its associated window W(c). Therefore, to compute
the parameters of a pixel we will determine the 8 parameters that transform to the
pixel location. Unfortunately, this coordinate transformation will generally yield
noninteger positions in the coordinates of the template. We solve this problem by
using bilinear interpolation to compute parameter values between grid points. The
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variation parameters form a scalar template that undergoes an affine transformation,
and the mean vectors can be thought of as a local gradient field under the same
transformation. The parameters of (3) are thus given by

flz(i) = fJ-z (T(e) (i - 2- zs(e)))T(e)

Uz(i) = (Tz (T(e) (i - z's(e))),

where the noninteger arguments of fJ-z(·) and (Tz(') are interpreted as bilinear inter­
polation. Of course, (4) is only defined when i transforms to template locations
contained in W/e

) . Therefore, this transformed window is defined to be

w/e) = {i :T(e) (i - 2- zsee)) E W?)}.

Combining these ideas yields the complete data model at each resolution l,

( I (e) - (e) a(e)) - n 1 { Ilyz(i) - flz(i) II}
p yz X - X, - . ~(c) 27T(A(e)Uz(i))2 exp - A(e) Uz(i) .

IEWZ

(5)

We should note that the model presented has a minor inconsistency. If the
windows of the various subassemblies overlap, then there is more than one way
in which the pixel parameters may be computed. Theoretically, this inconsistency
could be eliminated by assigning a priority ordering to the nodes. For example,
nodes closest to leaf nodes could occlude nodes higher in the tree. However, for
computational simplicity we ignore this inconsistency and assume that the overlap
of nodes in space and scale will not have a significant effect.

Also notice that pixels outside of the subassembly windows are not explicitly
modeled. In practice, we will always compute ratios of density functions, so the
contribution due to these unmodeled pixels will cancel out. Kopec and Chou use
this same idea in their model for document images [15].

B. State Estimation

To compare a given image to our model, we must first locate each of the object
subassemblies in the image. This is equivalent to estimating the four-dimensional
state vector associated with each node of the object tree. We estimated the states
with the use of the SMAP procedure of Bouman and Shapiro [10]. This technique
simplifies the estimation problem by allowing the state of each node in the object
tree to be estimated separately.

This section presents a multiscale technique for searching the state space for
the most likely position and orientation of a subassembly. Because the search
algorithm must be performed for every new image, it should be as efficient as
possible. Computational efficiency is achieved by using the log likelihood at coarse
resolutions to guide the search at finer resolutions.

The SMAP method starts at the object tree's root and progresses to its leaves.
At each node of the tree, the maximum a posteriori (MAP) estimate of the state
x(e) is computed, given the image data y and the estimated state at the parent node,
£(p). To simplify computation and avoid a recursive implementation, we modify the
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SMAP algorithm by ignoring data terms from descendants of the node c. Under
these assumptions, the SMAP state estimate for node c is given by

i(e) = argmax{lOgp(y Ix(e) = x(e) , 8(e)) + logp(x(e) IX(p) = i(p) , c/J(e))}.
x(c)

To simplify computation, we use likelihood ratios to compute i(e). Let Po(Y)
be some as yet undefined density function for the data when the subassembly c is
not present. Note that because Po(Y) does not depend on x(e),

{
p(y Ix(e) = x(e) 8(e)) }

i(e) = argmax log , + logp(x(e) IX(p) = i(p), c/J(e)) .
x(c) Po(Y)

(6)

A multiscale search procedure is used to perform the optimization in (6), so we
need to define a multiresolution version of the expression in(6). With this in mind,
the log likelihood ratio for resolutions coarser than 1 is defined to be

(

L - 1 ( I x(e) - x(e) 8(e)))
L(x(e), 1) = log n p Ym - , + logp(x(e) IX(p) = i(p), c/J(e)).

m=Z Po (Ym)

This expression, which we wish to maximize, is the sum of a data term and a
prior term. The data term indicates how well the data at this state and resolution
match the subassembly model. The prior term gives the prior likelihood of the
subassembly appearing at this location and orientation.

The prior term of the log likelihood ratio is computed with the use of the prior
state density function in (2), but the data term must still be precisely defined. For
pixels i tJ iV/e), the presence or absence of the subassembly is irrelevant. Therefore,
for all i tJ iV/e), Po(yz(i)) = p(yz(i) IX(e) = x, 8). If subassembly c is not present at
state x(e), we have no a priori expectations for the pixel values in the window n1/e).
We therefore assume that these pixels are independent and identically distributed.
Because yz is a bandpass signal with no DC component, we assume the values are
zero mean with distribution

n 1 {llyz(i) II }
Po(Yz) = ()2 exp -~ ,

, w~(c) 2"'" \ (c) 1\0
IE I II 1\'0

(7)

where A6e
) is the local average variation of the image data. Putting this model

together with (5) yields the result

=~ ~ (210 A6
c
) _IIYm(i)-itm(i)II+IIYm(i)II). (8)

c: c: g A(e)jj (i) i\(e)jj (i) A(c)
m=Z iEW,~c) m m 0

We estimate the unknown parameter A6e
) by maximizing (7) with respect to this

parameter, and the value of A(c) is estimated by maximizing (5). This gives the
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final expression,

__ A(e) L-1

L(x(e), I) =2Nlog~ - L L 2Iogum(i)+logp(x(e) IX(p) = x(p) , c/>(e)) , (9)
A(e) m=l. ~(c)

lEWm

where

L-1

N=LLl.

Note that the estimates A6e
) and A(e) depend on the resolution I and the subassembly

state x(e), which determines the windows W~e). The log likelihood ratio in (9) can
now be computed at any candidate state x(e) = x(e) and resolution l.

We next devise a procedure for searching the states, x(e), and resolutions, I, in
an efficient manner. The possible subassembly positions, x(e), must be sampled at
discrete points, and computation is saved by sampling x(e) more coarsely for large
values of I corresponding to coarse resolution. Rotation and scale changes should
also be sampled more finely for large templates. To do this, define the constant
d(e) to be the diameter of the smallest circle containing the template at scale factor
z(e) = 1 and resolution 1=0. Then the sampling period of z(e) and r(e) should be
inversely proportional to d(e). Using this approach, define k = [k1 , k2 , k3 , k4 ]t to be
a vector of integer indices, and let x(k, I) be the vector function

[
k 2l +2l

-
1 k 2l +2l

-
1 ]t

(k I) = k 2l - 1 +2l - 2 k 2l- 1 +2l - 2 3 _4-,--....,.....,...._x, 1 , 2 'd(e)' d(e) .

The function x(k, I) gives the candidate states at each resolution I, which we link
to those at the next finer resolution by defining the neighbors of (k, I) to be

next(k, I) = {(n, I-I) I ni = Zk, or ni = Zk,+ I}.

The state indices k1, k2 , k3 , and k4 correspond to vertical and horizontal position,
scale factor, and rotation angle, respectively. The index k3 must therefore be non­
negative because only positive scale factors are possible, and the rotation angle
must be between -7T and 7T, setting limits on the possible values of k4 at each
resolution I. The vertical and horizontal positions are nominally unconstrained,
although in practice indices k 1 and k2 are limited such that the position falls within
the image boundaries. Figure 7 illustrates this sampling scheme for a single state
component. Note that the candidate states form a binary tree that densely samples
the space of possible states.

The multiscale search procedure is defined on this tree structure, and it pro­
ceeds based on the log likelihood ratio LAk, I) == L(x(k, I), I) associated with each
sampling index k and resolution l. We initialize the search for a subassembly c by
computing the log likelihood ratios over all vector indices k E ~(e) (a, I), where

~(e)(a, I) = {k : logp(x(k, I) IX(p) = x(p) , c/>(e)) > a},



AUTOMATEDVISUAL ASSEMBLY INSPECTION 675

Fine

Coarse

i
Resolution

Level

!

[=0

Multiscale [= 1

Search Path
[=2

0
[=3

Candidate States

fiGURE 7 Multiscale sampling for a one-dimensional state space. The index k associated with each
sample is as labeled. A multiscale search procedure is carried out on these samples to compute the
state estimate,

and a is a user-defined rejection threshold. The initialization takes place at res­
olution I = max(lMo' l~c)), where IMo is equal to the coarsest resolution at which
~Cc) ( a, .) contains at least Mo elements, and l~c) is the finest resolution at which
the search is permitted to proceed. The constant Mo is used to make sure the search
is initialized with a reasonable number of points, and the finest resolution l~c) is
set during training with the use of a heuristic procedure described in [22].

The initial candidate states and their associated log likelihood ratios are stored
in a data structure known as a heap. This structure allows efficient insertion of new
values and extraction of the pairs (k, I) with the largest log likelihood ratios.

After initialization, the search locates the M most promising search paths and
expands them to the next finer resolution by computing the log likelihood ratios
LA·) associated with their neighbors. If any of these log likelihood ratios fall below
a rejection threshold a, the algorithm discards the corresponding state, thereby
pruning the search space. If any of the log likelihood ratios exceed an acceptance
threshold {3, the corresponding state is returned as the state estimate iCc). Candidate
states with L d ( · ) between a and {3 are stored on the heap. The algorithm then
extracts the M best states from the updated heap and the process repeats. Because
the best candidate states can occur at any resolution, the multiscale search can
backtrack to coarser resolutions if necessary to investigate additional search paths.
We improve robustness by choosing M > 1 and investigating multiple search paths
simultaneously.

As illustrated in Fig. 8, the search takes the form of a sequential likelihood
ratio test in which {3 and a represent acceptance and rejection thresholds. If these

Multiscale Search Procedure
//////////////////////

/ / / .: Decide obiect is resent / / / /

/ / / // Decide object is not oresent / / / /////// / / / / / / / / /} / / / ///

'~ en 40

"g ~
o ~ 20

~ ..... Multiscale search;=:] 0 +------,\----i---t--l/--+---I--+--+-- iteration
bIJ l-<3 <8 -20 +-----,-----;-T"/------~--....,..___;~~

fiGURE 8 An example search procedure for M = 4. The search terminates when it encounters
a candidate state whose log likelihood ratio exceeds {3 or when the heap has been exhausted (all
remaining candidate states have log likelihood ratios less than a),
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6.

7.

8.

9.

10.

II.

12.

13.

14.

15. else

16. store (k(i) , lei)) on the heap

17. stop with no match

1. set l = max (l l(c))
Mo' 0

2. for all k E x(c)(a, l)

3. compute L (k, l) and store (k, l) on the heap

4. while the heap is nonempty

5. extract the M largest likelihood ratios L(k(I)' lei))' .. L(k(M), l(M)) from

the heap

if for all i, lei) == lbc)

if L(k(I)' l(1)) > f30 stop with match (k(I)' l(1))

else stop with no match

for i = 1 to M

if l l(C)
1 (i) > 0

for all (k, l) E next (k(i), lei))

compute L (k, l)

if L(k, l) > f3, stop with match (k, l)

if L(k, l) > a, store (k, l) on the heap

_ FIGURE 9 Multiscale search algorithm for inspection. Lines 1-3 initialize the heap data structure.
Lines 6-8 check to see if all candidate nodes are at the finest resolution and, if they are, compare the
maximum ratio to f3o. Lines 10-16 search children of candidate nodes.

thresholds are not exceeded, the search process continues to finer resolutions, where
more data are obtained. If the search reaches a point at which all M candidate
states are at the finest resolution, then a decision is made by comparing the log
likelihood to a third threshold, f3o.

The search is implemented as described in Fig. 9. For our experiments we use
the values a = -15, f3 = 100, f30 = 20, M = 16, and Mo = 100. If the search for
a particular subassembly terminates in a rejection (no match), that subassembly is
declared missing, and the SMAP procedure is terminated for descendents of that
node.

In some cases this search procedure will terminate with a match at a resolution
l(p) > lbP) for node p. The resulting coarse state estimate X(p) can be viewed as a
quantized version of the actual state, which we take to be at resolution l6P) , so

X(p) = X(p) + Q.

This quantization error will increase the uncertainty in the location of subassembly
C, a child node of p. This increased uncertainty is accounted for by changing the
covariance matrix of (2) to

B = B +" B (X(p) A-.(C) l(p) l(p))
Q ,\{J' '0 '
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where BQ ( . ) is a diagonal matrix computed in [22].

611

c. Training Algorithm (Parameter Estimation)

An iterative procedure based on the EM algorithm is used to estimate the model
parameters () and c/J from a set of training images. The first training image Y (" 0) is
distinct from the rest because the states, X, are assumed to be known. This image,
which we will refer to as the initialization image, defines the regions associated
with each subassembly and will also be used to initialize the model parameters.
A nominal image of this sort can easily be generated from the CAD model of the
assembly.

Ideally, we would like to compute the maximum likelihood estimates of ()
and c/J, given the N training images Y (', 0) ... Y (', N - 1). However, this would
require a joint optimization over the entire object tree, which is too computationally
complex. Instead, the estimates of ()(c) and c/J(c) are computed at each node c with
the use of the N images and x~p), the estimated parent state for image n:

N-I

(8(c), c$(c)) = arg max n p(y(., n) IX~p) = x~p), ()(C) , c/J(c)). (10)
«(j(c),c/J(c)) n=O

As with the SMAP state estimation of the previous subsection, data from descen­
dants of node c are ignored.

Notice that (10) may be implemented as a sequence of optimizations at indi­
vidual nodes. Because each optimization depends on the estimated parent states
x~p), this sequence must proceed in order from root to leaves.

The difficulty in computing (10) is the missing state information X~c). Without
this state at each image, we cannot determine the best state parameters c/J(c) or
the template parameters ()(c). The EM algorithm is specifically formulated to solve
such "missing data" problems.

The EM algorithm works by computing a sequence of parameter estimates that
converge to a local maximum of (10). The EM update equation is given by

where

r - {Y( ) - ( ) X(p) _ "(p) ()"(c) J.(c)}
n - " n - Y " n, n - xn ' old' 'f'old '

and 8~~l and c$~~l are the parameters from the previous iteration. Using Bayes's
rule and noting that data parameters must be estimated for all subassembly
resolutions :::: l~c), we get two separate update equations,
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Consider the state parameter update of (12). The update equations for the
components of epee) = [(m(e)y, (y(e))ty can be computed by using the prior state
density in (2) and then setting the derivative with respect to eP(e) to zero. The
update for the state means is given by

1 N-1
m(e) = A-1_ ""' E[(x(e) - x(p)) Ir ]

new N L..J n n n •
n=O

The EM update equations will all contain expected values over the posterior state
density for node c in each training image. Each of these expectations can be
approximated as a weighted sum over the sampled states at resolution [be), but
the values associated with the most likely state typically dominate this sum by
orders of magnitude. We therefore approximate the expected values by the values
corresponding to the most likely state, which is the state found by the multiscale
search procedure. This same approach is often taken when analogous expressions
in speech and text recognition are being solved [15]. The update equation for the
state means is then given by

1 N-1
A (e) =A-1_ L(A(e) _ A(p))

mnew N n=O X n X n .
(13)

A similar method is used to compute the updates for the variance parameters y(e).
These updates are given by

where

Now we need to compute the update equations for the data parameters from
(11). Recall that a parameter ;\(e) is used in the data model to account for intensity
scaling of image regions, which is necessary for the log likelihood ratio compu­
tations. During training, however, all data variability among the training images
is incorporated into the variability parameter estimates, o-z(·), so ;\(e) becomes an
arbitrary constant, which we set to one.

The template components /Lz(·) and O"z(') can be expressed in terms of the
parameters {Lz(·) and o-z(') of Eq. (5) by performing the inverse of the transfor­
mations in (4). However, the transformations of (4) may not be strictly invertible,
because the size of the transformed window iV/c) may not be the same as the size
of the untransformed window W?). We avoid this problem by using bilinear inter­
polation on the data values to approximate the inverse of the bilinear interpolation
in (4). Because each expectation in (11) is approximated by the value at the most
likely state x~e) = [(s~e))t, z~e), r~e)y for each training image n, the template com­
ponents are computed as

/Lz (i) ~ {Lz ((T~c))-l i+2-zs~e) , n) (T~e))-l

O"z(i) ~ o-z((T~e))-li+2-zs~e), n),
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where [tLz(i, n), ErzCi, n)]' are the parameters corresponding to pixel yz(i, n) of
training image n, and T~e) is the transformation matrix evaluated at x~e).

The image pixel values at the template component locations can be approxi­
mated via the same transformation. Let

Each expectation in (11) can now be approximated by the value at the most likely
state x~e), yielding a sum over the pixels in the window W/e

) . If this sum is thought
of as an approximation to an integral over the window, a simple change of variables
leads to a second approximation as a sum over the untransformed window W?),
Ignoring terms do not depend on 8(e), this gives

(14)

where the invariance of the 2-norm under rotation is used to obtain the final
expression.

Substituting (14) into (11), the EM updates for the template parameters are
given by

N-l

Ilz, new(i) = arg min L (z~e»31IYi(i, n) - fLz(i) II
!LI(l) n=O

(15)

(16)
N-l

2 L (z~e)?
n=O

N-l

L (z~e»31IYz(i, n) - fLz,new(i) II
A (') n=OO'Z,new l = -----------

The computation of (15) would require a recursive implementation, so we
approximate the update by assuming that the scale factors are all near unity and
replacing the 2-norm with a I-norm. This gives the update

Ilz,new(i) = Median {yz(i, 0), ... ,yz(i, N -I)}.

Because the EM algorithm is only guaranteed to converge to a local maximum of
the likelihood equation, the final estimates can vary considerably, depending on
the initial starting point. We have devised a heuristic technique to compute initial
parameter estimates [22].

The EM update scheme for a subassembly proceeds as shown in Fig. 10. We
set NEM = 4. The algorithm tends to converge to a fairly stable set of parameters
by this point. Note that the finest model resolution [be) is set to 0 for leaf nodes.
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1. initialize parameter estimates BCe) and 4>Ce)

2. initialize I~e) = L - 1

3. set EM-iteration = 0

4. while EM-iteration < NEM and (B~~~, 4>~~w) ::I (B~~~, 4>~~~)

5. for n = 1 to N - 1

6. use multiscale search to compute state estimates x~e) at resolution
I < ICc)
n - 0

7. if EM-iteration == 0 and c is a leaf node, set I~e) = 1=0

8. else set I = max In
n>O

9. if I > 0, update BCe) to resolution I-I using EM update equations

10. else update BCe) to resolution I using EM update equations

11. if EM-iteration> 0

12. set I~e) = I

13. update 4> Ce) using EM update equations

14. multiply y!e) , Y2e), and y~e) by (2~~J, (N~J and (N~J, respectively,
to remove bias

15. store BCe) and 4>Ce) as model parameters for this subassembly, with I~e) as the
finest model resolution

fiGURE 10 EM algorithm for training. This procedure adapts the model to the variations seen in
the training set.

These nodes are normally associated with subassemblies that are important for
proper detection, so we force the algorithm to model these subassemblies at the
finest resolution. The finest resolution for other nodes is initialized to L - 1 and is
set in a monotonically nonincreasing fashion during the training procedure.

The multiscale search procedure used during the training phase is similar to
the procedure used when an image is tested, but several changes had to be made to
ensure that the search will terminate in a match, because all training images contain
properly assembled objects by definition. The differences are detailed in [22].

In general, we have found this algorithm to be quite robust, although it can
encounter difficulty in trying to detect small features that, have no sharp edges,
particularly if they lie in areas of high activity in the image. This tendency can be
reduced to some extent by the use of feature-shaped subassembly windows, but for
small features this will reduce the number of pixels in the window even more, and
any occlusion problems will remain. The algorithm also tends to overestimate the
scale factor for small features.

OUf algorithm implicitly assumes that the large majority of test images will
contain correctly assembled objects. For a misassembled object, the search must
discard all candidate search paths before it can terminate with no match. Thus,
the amount of computation required for an object with assembly errors is typically
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much greater than that required for a correctly assembled object. However, we do
not consider this to be a problem because for our application, most of the inspected
objects should be correctly assembled.

III. AUTOMATED CAMERA AND LIGHT PLACEMENT

The previous section illustrated how our multiscale detection algorithm is based on
a stochastic object model, which is tailored to a specific assembly by adjustment of
the model structure and changes in model parameters. The model generation and
parameter estimation are driven by a CAD model of the assembly. The CAD infor­
mation of the assembly, especially that of components of interest where errors are
expected to occur, was used to identify the object tree and set the model param­
eters of the inspection algorithm [29]. Because it is assumed that all components
are assembled only by vertical insertion, the components of interest are usually
the ones being inserted. For example, Fig. 11 shows an exploded view of a typical
mechanical assembly, and Fig. 12 shows an object tree that was calculated for that
assembly. In this section we discuss how CAD information about the components
of interest in the object tree is used to automatically set the camera and light source
parameters to optimize the performance of the inspection algorithm.

This section is organized as follows. The issues related to the rendering tech­
niques that we used are addressed in Section lILA. The camera placement algo­
rithm is then described in Section III.B, followed by a description of the light
placement algorithm in Section Ill.C, Finally, the generate-and-test approach is
outlined in Section III.D.

FIGURE II An exploded view of a typical mechanical assembly generated from the information
in the CAD model. This view illustrates the order of assembly as well as the single common axis of
insertion for all of the pins.
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fiGURE 12 A synthetic image of a pattern wheel assembly with an object tree ( denoted by the
connected boxes) calculated using the CAD information of the inserted pins. This tree is required by
the inspection algorithm to guide its analysis of the image. The number of boxes around each object
represents the object's level in the tree. The boxes are automatically generated by calculating the visible
portions of the components in the tree, with the first level box including the entire assembly.

A. Synthetic Image Generation

There are two image generation algorithms used to create synthetic images from
the CAD model of the assembly. The first, addressed in Section ill.A.I, is a fast
rendering technique that uses only a simple local illumination model and takes
advantage of special-purpose Very Large Scale Integrated (VLSI) hardware for per­
forming geometrical calculations. This rendering process is important for the auto­
mated camera and light source placement process. The second rendering technique,
addressed in Section III.A.2, is used to create more physically realistic synthetic
images that are required to build the statistical model of what a correctly assem­
bled product should look like. It is also used by the algorithm that determines an
optimal light source location. The image rendering process used for these last two
applications must simulate reality as closely as possible.

I. Fast Rendering Algorithm

Fast rendering algorithms running on special-purpose graphics workstations
are used to create draft images of the assembly. These draft images are used to
accomplish two main tasks. The first is to further refine the object trees used by the
inspection algorithm. This is done by creating a mask for each of the rectangular
object nodes. This mask is used to identify the regions within the node that corre­
spond to related component surfaces, with only this region being used for building
the statistical model of the node. This prevents irrelevant background information
from affecting the sensitivity of the inspection process. The second purpose of
these draft images is to identify the visible faces on the different assembly compo­
nents for use by the algorithms that identify the optimal camera and light source
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location (described in Sections III.B and HI.e). To do this, each of the surfaces of
a main component of interest in the object trees is tagged with a unique ambient
color, with all other surfaces of the other components set to black. The assembly
is then rendered on a graphics workstation equipped with a Z-buffer, using only
the ambient intensity of the polygons. The resulting image contains the number of
visible pixels for each surface of interest, as well as providing information for the
object node mask. Figure 13 illustrates this procedure.
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Masking information of the alignment pin

_ FIGURE 13 The outer rectangle represents the bounding box of the projection of an alignment
pin in the assembly onto the image plane. The inner rectangle is the bounding box of the visible portion
of this alignment pin. This bounding box is passed to the inspection algorithm as an object node along
with the mask that identifies the region that corresponds to the alignment pin. Also, visible faces of
the component are identified along with the amount visible. This information is obtained using Z-buffer
hardware.
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2. Accurate Rendering Algorithm

More accurate graphic rendering techniques are required to generate realistic
synthetic training images of an assembly for building the statistical model of cor­
rectly assembled components. To obtain sufficiently realistic images, light-object
interaction must be modeled. Although graphics workstations that are available
today can generate shaded images at video rates, the illumination models used
to generate these images typically only deal with the very first reflection from
an object's surface. These so-called first-order or local models do not include
light effects caused by light reflecting from several objects or being transmitted
through objects. These global models need to be considered to obtain more real­
istic images that can model different types of materials, particularly those that are
highly reflective, such as polished metals. The only established rendering tech­
niques that attempt to model global lighting effects are ray tracing and radiosity.
Because specular effects are very hard to model with radiosity, metallic parts are
hard to simulate in images that are rendered with radiosity techniques [30]. As a
result, ray tracing is selected as the rendering technique for this application.

Ray tracing as a comprehensive rendering technique was presented in [31].
The algorithm calculates the light reaching the eye from the scene by firing rays
from the eye through each pixel in the image plane and tracing them through the
scene (see Fig. 14). Each fired ray is checked for an intersection with the objects
in the scene, and the intersection point closest to the eye is identified for each ray.
A linear combination of three terms is used to calculate the intensity of the light
reflected from these intersection points;

(17)

where Ilocal is the intensity of light energy reflecting at the intersection point directly
from the light sources; I, is the intensity of light energy arriving along the perfect
specular direction CR) from other surfaces in the environment; It is the intensity
of light energy transmitted through the intersection point in a direction (obeying
Snell's law) from other surfaces in the environment; krg is the global specular
bidirectional reflectance coefficient; and ktg is the global bidirectional transmission
coefficient.

Object

Viewer

FIGURE 14 The raytracing algorithm.
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The intensities If and It are calculated recursively by firing rays in the reflec­
tion and refraction directions from every intersection point. Intersections are again
calculated for these rays, and Eq. (17) is reapplied.

Ilocal involves modeling the reflection of light energy from visible surface
points. In his original paper on raytracing, Whitted used a Lambertian model to
calculate Ilocal' In this work, the Cook-Torrance lighting model [32], a more accu­
rate lighting model based on geometrical optics is used to calculate Ilocal in creating
the desired realistic images. This led to a better match between real and synthetic
images, which improved the training process. In addition, experiments comparing
the inspection algorithm training and testing on real images of an assembly versus
only synthetic images showed a high degree of correspondence.

B. Camera Placement

The CAD information guides the inspection algorithm in the training process by
generating synthetic images that address different possible variations. Many factors
affect the performance of an inspection algorithm. The inspection algorithm used
in this work relies on gray-scale images. As a result, it relies heavily on the visible
surfaces in the areas of interest and the gray-scale intensities associated with these
areas. Therefore, it is essential to consider the effect of the viewing and light
source parameters on the performance of the inspection algorithm. The viewing
parameters considered are the camera's location E (the eye point); the center of
interest C, which is a point along the camera's view direction; and the camera's
field of view a, which is an angle that identifies the region in front of the camera
that will be projected on the image plane. This section will address the issue of
utilizing the CAD model to optimize these parameters.

If the entire assembly is to be tested for errors, then it is essential to have the
entire assembly within the field of view. As a result, an approach similar to the
one taken in [4, 5] is adopted. The assembly is assumed to lie on a planar surface.
The camera and light source locations are restricted to lie within the surface of a
hemisphere that surrounds the assembly, with the circular base of the hemisphere
lying on the planar surface. The center of interest is constrained to the center of
the circular base of the hemisphere. If a unit vector it that specifies a viewing
direction from the eye point to the center of interest is found, then the eye point is
placed such that the entire assembly is guaranteed to be in view. If the radius of
the bounding hemisphere is r and the center of interest is the vector C, then the
eye point location E is chosen to be

2r A

E=C--u.
a

(18)

Next, the viewing direction it is analytically limited to a region satisfying a sepa­
ration requirement among the different assembly components of interest. Then, a
function that evaluates the quality of a camera location is created. This function is
used during the generate-and-test phase of the automation process that is described
in Section m.D.
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I. The Analytical Constraint

The contact information among the different components of the assembly is
used to determine areas of interest within the image [29]. This contact information
is collected for a specified group of components of interest. Maintaining a spatial
separation between these components within the image improves the performance
of the algorithm. Thus, one would like the distances between these components in
the image to be as close as possible to their true lengths. The distances between
the different components is calculated to form a weighted full graph in which each
vertex is represented by. a component. Each edge of the full graph is represented
by the vector of minimum magnitude that separates the two components that are
associated with the vertices of that edge. The magnitude of this vector is considered
as the edge weight in the weighted full graph. So, the task becomes to view the
edges of the full graph as close as possible to their true lengths.

To view the edges of the full graph as close as possible to their true lengths,
singular-value decomposition (SVD) is used. It finds the dominant directions
among all of the different vectors. Emphasis can be placed on smaller distances
by modifying the magnitude of each vector to be the inverse of its original magni­
tude. So, if the full graph has n vertices, then e = (n2

- n)/2 vectors are created.
A real matrix A is formulated as follows:

Xl YI Zl

m2 m2 m2
1 I I

X2 Y2 Z2

A= m2 m2 m2
E Re x 3

,2 2 2 (19)

where m i is the magnitude of vector i. The SVD of A,

is then calculated, where U and V are orthogonal and

(20)

o 0
(J2 0
o (J3

o 0 E Re x 3
, (21)

with (JI > (J2 > (J3' In addition,

o o o

(22)

The resulting v3 forms the view direction from which the full graph edges will
be seen as close as possible to their true lengths. However, this view direction
does not address the occlusion problem. Therefore, it is essential to search off
the v3 direction, yet keeping as much of the gained spread view as possible. This
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FIGURE IS The full graph separating the shaft and the pins of the pattern wheel assembly, shown
to scale.

is accomplished by limiting the camera to lie in the V2 v3 plane. This would
constrain the camera to lie within a semicircle on the hemisphere. A generate-and­
test approach is then used to maximize a function on the semicircle.

As an example, consider the pattern wheel assembly shown in Fig. 11. One
can identify the shaft and the pins as components that are to be inserted. Figure 15
shows the full graph of the shaft and the pins. After the SVD algorithm described
above was run, v2 was used to look at the shaft and the pins producing Fig. 16a. It
is interesting to note how close the SVD calculation comes to a totally unoccluded
view shown in Fig. 16b.

(a)

I
(b)

FIGURE 16 (a) Viewing the shaft and the pins, using the result from the SVD algorithm. (b) Viewing
the shaft and the pins, using a totally unoccluded view direction.
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2. The Visibility Function (CV)

A visibility function CV is created to evaluate the quality of a camera view.
The function is based on the visibility information of the assembly components of
interest and some of the information already built into the assembly CAD structure.
It is intuitive to desire the visibility of the components of interest. Also, the more
numerous and the larger the faces visible from these components are, the easier
the inspection task should be. As a result, the issue of visibility is addressed in
terms of the number of visible components, the number of visible faces on each
component, and the number of image pixels associated with each face.

n, 0 Nc L~~l (1 - exp-PijP3)
CV=c1Nc+c2L(1-exp-F;F;)+c3L J ,(23)

i=l i=l Fi

where N, is the number of visible components of interest; F, is the number of
visible faces on component i; FP is the distribution of the surface normals of the
visible faces; Pij is the number of pixels associated with face j of component i;
P~ is the importance of face j; and cl' c2 , c3 are the constant coefficients specifying
the contribution of each term.

The exponential function (1 - exp-F;FP) shown in Fig. 17 is used so that the
first few visible faces of a component increase CV more than any additional faces;
i.e., less increase is noticed as more faces of the same component become visible.
As a result, among views with an equal number of visible faces (of components

2 -F1 -F2- e - e 1

F1

F2

FIGURE 17 An exponential function is used to determine the contribution of visible faces from
an assembly component of interest to the visibility function czr. Less increase is noticed as more faces
become visible. The figure shows the case for two components of interest with F? = 1. Views with
more equal distribution of visible faces over the components of interest are preferred. For example,
note that point A, which has two faces visible from each component, is preferred over point B, which
has four faces visible from only one component.
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having equal values of F? ), the view with the most equal distribution of these faces
among the components of interest generates the largest value of '11 (see Fig. 17).
Similarly, the function (1 - exp-PijPB) is used to evaluate the contribution of the
image pixels that are associated with the different visible faces.

The value of F? controls the rate of increase in the value of the exponential
function with respect to F; Lower values of F? lead to lower rates of increase. It
is known that faces whose surface normals span a wide range of orientations result
in wider shading variations. As a result, these faces are easier to find in an image,
and an error in the component of these faces is easier to detect. Therefore, F? is a
measure of the variability of the surface normals of the visible faces on component
i. It is calculated with the use of the singular values of the SVD of a matrix N,
that contains information about the orientation of the visible faces on component i.
If a visible face j is planar with a normal unit vector nj , then nj is placed in N,
to represent face j. On the other hand, if face j is nonplanar then the dominant
orientations of the face are used to represent it in Ni • This is done by using the
~ and V matrices resulting from an SVD performed on a matrix S, that contains
the unit normals of all of the facets composing the face. So, if face j comprises k
facets, then

(24)

is performed, where Sj E Rk x 3
• The matrices ~ and V are given by

0"'1 0 0
0 0"'2 0
0 0 0"'3

~= 0 0 0 E Rk x 3

0 0 0

with 0"'1 2: 0"'2 ~ 0"'3 and

V = [VI V2 V3 ] E R3 X3
•

(25)

(26)

Then face j is represented in N, by the three vectors in V scaled such that
their effect on the singular values of N, is close to the effect of a single vector, i.e.,

(27)

Now, the SVD of N, is performed:

(28)
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where

(Til 0 0
0 (Ti2 0
0 0 (Ti3

E R(F{+3Fnx3 .~i= 0 0 0 (29)

0 0 0

Ff is the number of the planar faces, Fr is the number of nonplanar curved
surfaces, and (Til ~ (Ti2 ~ (Ti3. The quantity F? is then calculated from

FO = (Til + (Ti2 + (Ti3 ,

I 3(Til
(30)

where it is clear that ~ < F? < 1.
In an analogous manner, the coefficient p3 is used to emphasize faces that

provide more information to the inspection algorithm. In this case, the displacement
of faces that are in contact with other components is more likely to result in visible
effects from assembly errors. Therefore, the value of P3 is made dependent on
the contact information of face j of component i. Currently, it is set to a constant
0.1 if the face has any contacts and to a constant 0.05 if it does not. This contact
information is readily available from the generated CAD solid model.

C. light Placement

The effect of lighting conditions on the performance of the inspection algorithm
was studied to design optimal lighting conditions for the assembly inspection work
cell. This was done by performing simulations and then analyzing the algorithm's
reaction to different lighting conditions. The results were used to develop an algo­
rithm that attempts to solve the light source placement problem over a discretized
range of camera locations. A metric ~ is devised to evaluate the quality of the
solution at each camera location. The algorithm also considers the possibility of
using multiple light sources.

I. Effect of light Position on Performance

An experiment based on raytraced synthetic images was used to study the
effect of light on the performance of the inspection algorithm. A simple pin-in-hole
assembly, shown in Fig. 18, was used as a test assembly. A camera was simulated
450 from the top of the pin in the X-Y plane so that both the top face and portions
of the side face are visible. Then different light positions were tested at intervals of
100

, also in the X-Y plane. At each position the inspection algorithm was trained on
the correct assembly and then used to test assemblies with predetermined rotational
and horizontal errors. The log likelihood value, described in Section II.B, that
resulted from these tests is plotted as a function of light position to determine the
effectiveness of the algorithm at detecting different types of errors.

First, the pin was rotated between - 200 and 200 around the X axis centered
at the center of the top surface of the pin. The samples in that region are 40 apart.
Figure 19a shows a quadratic fit among the resulting points. Second, the pin is
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_ fiGURE 18 Experimental setup used to test the effect of light on the performance of the inspection
algorithm. At every light position synthetic images are used to train the algorithm. Then errors are
introduced to the images. The effectiveness of detecting these errors shows the effect of light on
performance.

rotated between 00 and 200 around the Z axis (negative rotations around the Z axis
would generate symmetrical images). The samples are also 40 apart. Figure 19b
shows a quadratic fit among the resulting points. Finally, Fig. 19c shows the results
from horizontal insertion errors. Note that in all three cases the algorithm is most
sensitive to the errors when the light is around 1350

, the perfect specular direction.

2. Light Source Placement Algorithm

The perfect specular direction was found to be most effective in the above
experiment. A detailed analysis of the results from the above experiment leads to
the conclusion that, in general, an assembly error is detected when it does one of
the following in the inspection area:

1. Displaces a visible face such that its intensity due to specular reflection is
increased or decreased

2. Uncovers or covers a face at an intensity different from that of the
surrounding faces

3. Casts or removes a shadow, causing a different intensity.

An example illustrating this characterization is shown in Fig. 20. Part a of
the figure shows the slice from Fig. 19a at light position 1300

• The image of the
pin correctly inserted in its hole is shown in Fig. 20b, and the image with -160

rotational error is shown in Fig. 20d. Fig. 20c plots the contribution of every pixel
in the match area of Fig. 20b to the overall log likelihood match ratio. The darker
the gray scale color of the pixel, the more it contributes to a mismatch. Similarly,
Fig. 20e plots the contribution of every pixel in the match area of Fig. 20d to the
overall log likelihood match ratio. It is clear that areas pointed to by arrows a and
b caused the most mismatch. In area a the pin's side face disappeared, causing the
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(c)

_ FIGURE 19 (a) A quadratic fit among the log likelihood match results from the experiment shown
in Fig. 18 with rotational errors around the X axis. (b) Same as a, with rotational errors around the Z
axis. (c) A quadratic fit among the log likelihood match results from the experiment shown in Fig. 18
with horizontal insertion errors.

change in gray-scale values to proceed from dark to light instead of light to dark
to light again. This causes a mismatch between the Haar wavelet transform of this
image and the error-free image. Similarly, the mismatch in area b was caused by
the hole's side face disappearing. The fact that the pin's top face has a gray-scale
shade different from the error-free case caused a different gray-scale value change
at the side edges, which caused some mismatch, illustrated by the black band of
pixels in area c. Moreover, this variation in the intensity of the top face resulted
in a poor match, which is identified by dark gray-scale values in area d (compare
this to the gray-scale values in Fig. 20c). It is important to remember that this
match is obtained from the inspection algorithm that performs this task based on
the statistic-al model it created during the training stage.

To determine an optimal light source location, it is clear that targeting the
specular direction of the visible faces would enhance the first error detection mech­
anism. In addition, because the specular direction of a face covers a small subset
of 3D space, the probability of uncovering (covering) a face at its specular shade
is low. So, the probability of uncovering (covering) a face at an intensity different
from that of the surrounding faces is high if the other faces have a high degree of
intensity from specular reflection. As a result, an algorithm for placing a point light
source is designed to target the specular direction of the visible faces. Because the
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FIGURE 20 Analysis of the light experiment. (a) A slice from Fig. 19a at a 1300 light position.
(b) An error-free image of the pin in its hole. (c) A plot of the contribution of every pixel in the
match area in b to the log likelihood ratio. Darker pixels contribute less. The black corners contain
background information that is masked out by the algorithm and does not contribute to the match.
(d) A -160 pin rotational error. (e) A plot of the contribution of every pixel in the match area in d to
the log likelihood ratio.
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specular direction of different visible faces will usually cover multiple directions,
a least-squares solution is used to find an optimal light direction. The point light
source is then placed on the bounding hemisphere along that direction.

To accomplish the above task, a pixel from each visible face is selected to
be mapped back to the world coordinate system. If pij is a point mapped back

from face j on component i, then view vector Y;j = E - pij is used to calculate a

vector hij that bisects the angle between Y;j and Mj , where ~j is the face's normal.
A matrix H that consists of the hij vectors of all of the visible faces is created,
and its SVD is used to find the dominant direction h.

Multiple pixels can be selected to be mapped back from each planar face. In
this case the vector hij that represents face j of component i in the H matrix is
calculated by performing an SVD on a matrix Hij of the hij k vectors calculated
from each of the k pixels on face j and using the identified best fit. Furthermore,
a curved face is represented by one hij vector by including all of its facets in
creating the H ij matrix. Using multiple points from each face leads to more accurate
calculations, as will be shown later.

A point p~ that is the average of all Pijk points is used to calculate the view
vector E - p~. If the angle between h and the view vector E - p~ is 8, then
the desired light direction Ris obtained through a clockwise rotation of h around
(E - p~) x hby 38. Then, the light source location L is obtained by

(31)

where c is such that L lies on the bounding hemisphere.
Note that the h vectors are used instead of the specular direction of the visible

faces because the faces' normals Mj are within 900 of E - C. So, hij is guaranteed
to lie in the half-space containing the view vector. This constrains the result of
the SVD to a half-space instead of a full space, had the specular direction of the
visible faces been used directly.

3. Illumination Function (5£)

A function 5£,

N ......p; ......17ij (L W) R ))5£= t (Ft (L.Jj=l L.Jk=l - Pijk . ijk +0.5 ,
i=l Fi 2Finij

(32)

is calculated to evaluate the quality of the light source location, where N; is the
number of visible components of interest; F, is the number of visible faces on
component i; Fiv is the number of F, faces visible to the light; nij is the number

of Pijk points used from face j of component i; and Rkij is the perfect specular
direction for point Pijk.

It measures the effectiveness of the calculated light position by attempting to
measure the portion of the visible faces of an assembly component that is not
shadowed from the light and to measure how close the light direction is to the
perfect specular direction of these faces. Visibility of the Pijk points to the light
source is measured by using the Z-buffer hardware in a manner similar to the
description in Section ilLA.l, with the eye point placed at the light position's
location. Clearly, mapping more visible pixels back to the world coordinate system
leads to a more accurate measure; however, it also requires more computation time.
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4. Multiple light Sources with Image Fusion

The algorithm for finding a light source position described in Section IILC.2
targeted the specular direction of the visible faces. As r:£ decreases because of a
poorer fit to a wider range of different specular directions, the need for additional
light sources increases. Duplicating the training and testing process is unreasonable
because of the increased cost. In this section it is shown that the same number of
images could be used for training and testing, although multiple images are taken
of the assembly, one for every light source. This is done with the results from
image fusion [33].

The experiment on the pin assembly that was described in Section IILC.1 is
revised here to show the improvement accomplished by the use of image fusion.
Training images of two different light source positions are fused together with the
use of a simple pixel averaging scheme. After the inspection algorithm is trained
on these images, inspection images are created with the kind of errors shown in
Section IILC.1. However, for each error case, two images are created, each with one
light turned on, and then fused together before being introduced to the inspection
algorithm. Results have shown improvement in performance. For example, Fig. 21
shows the fusion of the training images of the light at 1000 and 1400

• Inspection
images are generated in a similar fashion. Figure 22 shows the improvement gained
from using the fusion method.

D. Generate-and-Test Analysis

To find an optimal camera-light pair, the region that the camera is constrained to is
first discretized (see Fig. 23). At each discrete camera location, a point light source
position is calculated with the algorithm described in Section IILC.2. A metric .JfIi
given by

JI/I; = C'1fczr + C,:£r:£, (33)

where C'1f and C;e are constant factors, is used to evaluate the effectiveness of the
camera and light source positions. The camera-light pair with the largest value of
.Jl!t is chosen for the assembly inspection task.

IV. RESULTS

The camera and light placement algorithm was initially tested on simple assemblies
to verify its performance. Then it was tested on more complex assemblies. In this
section the results from running the algorithm on the wheel assembly shown in
Fig. 11 are presented.

The pins of the wheel assembly were used as the components of interest.
The camera was constrained to lie on a semicircle as described in Section IILB.1
Then camera samples were evaluated 100 apart, and the different components of
.Jl!t were evaluated at every sample. Figure 24 plots the different components of .JfIi.
Curve a shows the second term of czr (Eq. 23). It shows that the visibility of the
components' faces diminishes at horizontal and vertical views. On the other hand,
plot b, the third term of "l/', shows higher values at these views because equally



696

Light at 100 Degrees Light at 140 Degrees

KHAWAJAETAL.

_ FIGURE 21 The figure shows two training images of the same pin assembly. One is from a light
source at 1000 (refer to Fig. 18), and the other is from a light source at a 1400

• The two images are
fused into one image with the use of a simple averaging method. The fused image is used for training.

large face areas are visible on the different assembly components of interest. Sim­

ilarly, curve c of the ::£ function shows better light positions at horizontal views

because of the better match to the specular direction of the different visible faces.

The combination of these terms in .JI!t leads to a preference for the inclined views.

For example, setting all of the constants to unity (except for c3, which is set to

0.1) leads to selecting the view at 1400 shown in Fig. 12. Testing the real assem­

bly from different views after training on synthetic images showed the advantages

of using the inclined views around 1400
• Figure 25 shows two examples. Figure

25a shows a detected error caused by misplacing the top wheel. This error passes

undetected from a horizontal view. Figure 25b shows a detected pin insertion error

that passes undetected from a vertical view.
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_ FIGURE 22 At the top, the figure shows the results at 1000 and 1400 from graph a in Fig 19.
The dots represent the resulting match with respect to the different errors. The accompanying curve
shows the calculated intensity from the Cook-Torrance model, which further illustrates the sensitivity
of the algorithm to the specular direction. At the bottom, the figure shows the results after fusion of
the two cases. Note that a smoother drop on both sides of the curve is accomplished.

v. CONCLUSIONS

This chapter has discussed an intelligent assembly inspection system that uses a
multiscale algorithm to detect errors in assemblies after the algorithm is trained on
synthetic CAD images of correctly assembled products. It was shown how the CAD
information of an assembly along with fast rendering techniques on specialized
graphics machines can be used for the automation of the work-cell camera and
light placement. The current emphasis in the manufacturing industry on concurrent
engineering will only cause this integration between the CAD model of products
and its manufacturing inspection to grow in value.
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_ FIGURE 23 The figure shows the assembly's bounding hemisphere that the camera is constrained
to lie on. The algorithm described in Section III.B.1 creates the SVD plane as an additional constraint.
The resulting region is sampled at some interval (the figure shows 30°). A metric J1Il is evaluated at
each sample to select the best point possible.
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_ FIGURE 24 This figure plots the value of the components of J1Il, viewing the wheel assembly shown
in Fig. 12 at the different camera samples on the constraining semicircle. The pins in the assembly were
used as the components of interest. The samples are 10° apart. The first term of '11 is ignored because
it is constant at one. (a) The term associated with the number of faces visible on every component
(the second term of '11). (b) The term related to the size of the faces' visible areas on the components
(the third term of '11). (c) The ~ function.



AUTOMATEDVISUAL ASSEMBLY INSPECTION 699

(a) (b)

fiGURE 25 (a) Error in top wheel placement. The location of a mismatch is identified by a rectangle
with an X mark. The tree shown in Fig. 12 is used here. (b) Error in high-density pin insertion.
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