THESIS

DIMENSIONALITY REDUCTION AND CLASSIFICATION OF TIME
EMBEDDED EEG SIGNALS

Submitted by
Mohammad Nayeem Teli

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Summer 2007

COLORADO STATE UNIVERSITY

July 05, 2007

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR
SUPERVISION BY MOHAMMAD NAYEEM TELI ENTITLED DIMENSIONAL-
ITY REDUCTION AND CLASSIFICATION OF TIME EMBEDDED EEG SIGNALS
BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE.

Committee on Graduate Work

Committee Member

Committee Member

Adviser

Co-Adviser

Department Head

ABSTRACT OF THESIS

DIMENSIONALITY REDUCTION AND CLASSIFICATION OF TIME
EMBEDDED EEG SIGNALS

Electroencephalogram (EEG) is the measurement of therielgcactivity of the brain
measured by placing electrodes on the scalp. These EEAsgwa the micro-voltage
difference between different parts of the brain in a noragive manner. The brain
activity measured in this way is being currently analyzeddgossible diagnosis of
physiological and psychiatric diseases. These signals &lao found a way into cogni-
tive research. At Colorado State University we are tryingieestigate the use of EEG
as computer input.

In this particular research our goal is to classify two metasks. A subject is asked
to think about a mental task and the EEG signals are measwsiag six electrodes
on his scalp. In order to differentiate between two différeasks, the EEG signals
produced by each task need to be classified. We hypothesiza thottleneck neural
network would help us to classify EEG data much better thassification techniques
like Linear Discriminant Analysis(LDA), Quadratic Disaninant Analysis (QDA), and
Support Vector Machines.

A five layer bottleneck neural network is trained using a tastvergence algorithm
(variation of Levenberg-Marquardt algorithm) and Scaledhf@gate Gradient (SCG).

Classification is compared between a neural network, LDA, QI8 SVM for both

raw EEG data as well as bottleneck layer output. Resultsateithat QDA and SVM
do better classification of raw EEG data without a bottlereevork. QDA and SVM

always achieved higher classification accuracy than theaheatwork with a bottleneck
layer in all our experiments. Neural network was able to eahiits best classification
accuracy of 92% of test samples correctly classified, wise@RA achieved 100% ac-

curacy in classifying the test data.

Mohammad Nayeem Teli
Department of Computer Science
Colorado State University

Fort Collins, CO 80523

Summer 2007

ACKNOWLEDGEMENTS

To begin with | want to thank ALLAH, my creator. After that, lauld like to thank
my adviser Dr. Charles Anderson for his directions, suggestand feedback without
which the completion of this thesis would not have been jbssi would also like to
thank Dr. Michael Kirby for various insights during our réguEEG group meetings.

Additional thanks to Dr. Ross McConnell for accepting a posibn my committee.

DEDICATION

This thesis is dedicated to my family, friends and all thos®Wwelped me complete

Vi

1

11
1.2
1.3
1.4
15

TABLE OF CONTENTS

Introduction

Dimensionality Reduction

EEG research at Colorado State University
Dimensionality Reduction and Classification of EEG Data

Prior Results with Bottleneck Network on EEG Classifmati

Organization of the Restof Thesis

2 Mathematical Background

2.1
2.2

The Gauss-NewtonMethod

The Levenberg-Marquardt Method

2.2.1 Wilamowski et al. Modification of Levenberg-Marquifdgorithm . . .

2.3
2.4
2.5
2.6

Scaled Conjugate Gradient,

Linear Discriminant Analysis

Quadratic Discriminant Analysis

Support Vector Machines o

3 Methods

3.1

3.11
3.1.2 Neural Network

3.2
3.3
3.4

Electroencephalogram (EEG)data

Data Representation

Data Partitioning

Datalagging e

Bottleneck Algorithm Parameters

Vii

OO\lmU'I

10

13
16
18
19
20
20

3.5 Training and Testing Classification Algorithms

4 Results
4.1 Fast Convergence Algorithm

4.2 Scaled Conjugate Gradient

5 Conclusions

References

viii

31
31
36

45

49

11

3.1
3.2

3.3

4.1

4.2

4.3

4.4

LIST OF FIGURES

Bottleneck Neural network.

10-20 system of electrode positions for EEG [KA90].
The figure on the left represents letter composition tagkthe one on the
right is the mental arithmetic task. Each figure shows theskxtrode

outputs and EOG. These output values vary between -50 to +&@ m

RMSE of reconstructed test data vs. the number of bettlkemnits for
differentdatalags..
Classification results of different algorithms for thettdataset. NN repre-
sents the neural network classification of the actual tetst dad algo-
rithms with a prefix R means the classification of the bottténautput
of the neural network. Neural network was trained using tastver-
gence algorithm(modifiedLM).
Classification results of the test data output at thedowtik layer. Classifi-

cation was done using Neural Network. The neural networktveased

using fast convergence algorithm(modified LM).. 35

RMSE of reconstructed test data vs. the number of bettlemnits for

differentdatalags..

4.5

4.6

4.7

4.8

Each figure represents the reconstructed test data atitpet of the bottle-

neck NN versus the input test dataset for an EEG channel.résguf

correspond to channels 1-6, respectively. 38
The figure on the left represents bottleneck outputs ¥#00 samples and

the one on the right shows the same output for only 100 sanugieg

4 bottleneck units. 39
Classification results of the test data output at thedswtik layer. Classifi-

cation was done using Neural Network. The neural networktveased

using Scaled Conjugate Gradient(SCG). 41
Classification results of different algorithms for thettdataset. NN repre-

sents the neural network classification of the actual tdstalad R prefix

implies the classification of the bottleneck output of thamaénetwork

using the corresponding algorithm. Neural network wasgdiusing

Scaled Conjugate Gradient algorithm. 2 4

LIST OF TABLES

4.1 Classification results of various methods. nlags: nurabkgs in the data,
nBottle: number of units in the bottleneck layer of the néngtwork,
nOther: number of units in the hidden layers, LDA Test: Classiion
results of using LDA for test data classification, QDA Testa&3lifica-
tion of test data using QDA, NN Test: Classification of testdaging
neural networks, R-NN Test: Classification of neural netwoaktle-
neck output using neural networks, Svm Test: Classificatidest data
using Support Vector Machines.

4.2 Classification results of various methods. nlags: nurobkgs in the data,
nBottle: number of units in the bottleneck layer of the nénetwork,
nOther: number of units in the hidden layers, LDA Test: Cliassiion
results of using LDA for test data classification, QDA Testas3lifica-
tion of test data using QDA, NN Test: Classification of tesiadaging
neural networks, Svm Test: Classification of Test data usingp8rt
Vector Machines, R prefix to each algorithm: Classificatiomediral

network bottleneck output using the corresponding algorit. 40

Xi

4.3 Classification results of various methods using 62 lagstia@ neural net-
work used by Devulapalli. nlags: number of lags in the daBuottie:
number of units in the bottleneck layer of the neural netwo®ther:
number of units in the hidden layers, LDA Test: Classificatiesults
of using LDA for test data classification, QDA Test: Classtiicga of
test data using QDA, NN Test: Classification of test data usegral
networks, R-NN Test: Classification of neural network botlek out-
put using neural networks, Svm Test: Classification of Tetd daing
Support Vector Machines. oo

4.4 Classification results of various methods using 62 lagstlh@ neural net-
work used by Devulapalli for subject 3. nlags: number of lagthe
data, nBottle: number of units in the bottleneck layer ofniearal net-
work, nOther: number of units in the hidden layers, LDA TeGtas-
sification results of using LDA for test data classificati@A Test:
Classification of test data using QDA, NN Test: Classificatibest
data using neural networks, R-NN Test: Classification of akenet-
work bottleneck output using neural networks, Svm Test: Sifastion

of Test data using Support Vector Machines. 44

Xii

Chapter 1
Introduction

The human brain is a complex organ with approximately 10lobilnerve cells called
neurons. Neurons gather and transmit electrochemicahlsigNo matter what state we
are in, whether asleep, awake or anesthetized, our bragdupes some kind of waves
which can be observed and used for research. One of the midshywised methods of
capturing brain activity is using EEG.

Living brains having some kind of brain activity was knowmbany as early as the
nineteenth century. However a German psychiatrist namets Ba&rger was the first
to record this electrical activity in 1928. Ever since itsaivery EEG has been used
to diagnose many medical conditions like epilepsy, idgritie location of a suspected
brain tumor, or a disease in the brain such as Parkinsorémasés It is a non-invasive
method of measuring electrical activity of the brain. Etedes are placed on the scalp
and the brainwaves recorded.

A large amount of research is underway to interpret theseewawnd find ways to
utilize them. In computer science EEG is being used for arB@omputer Interface
(BCI). This is a technology which can be very beneficial forgeavith motor disabil-
ities. It will provide them with a new powerful communicati@nd control technique.
People severely disabled by amyotrophic lateral scle(@diS), brain stem stroke, cere-
bral palsy, and other neuromuscular disorders would grémthefit by advances in BCI

research and development [bciO6].

The research in this thesis is an attempt to understand tleviEves and to classify
them. The EEG for this study was observed in subjects perf@gymmental tasks. The
results of this research could be integrated with the caiBeain Computer Interface
(BCI) project being undertaken at the Colorado State Unityef€iISU). It could possibly
be used by paralyzed people, or by anyone for rudimentanyinteface actions, like
popping up windows or making menu choices. In order for uddesify and visualize

EEG these signals first need to go through dimensionalityatioh.

1.1 Dimensionality Reduction

Dimensionality reduction is a method of obtaining the infiation from a high dimen-
sional feature space using fewer intrinsic dimensions. &tmmne learning it is very
important to reduce high dimensional data set for bettessifi@ation, regression, pre-
sentation and visualization of data. It is also useful fottdreunderstanding of the
correlations within the data. This enables us to find therisit dimensionality of the
dataset and better generalization.

Multiple approaches could be used for dimensionality réidaavhich may be linear
or non-linear. One of the most common linear techniques isstae Principal Compo-
nents Analysis (PCA). Itis also known as the Hotelling [Hdt%8 Karhunen and Loeve
(KL) [Kar47][Loe48] transform. PCA is a linear transformati of a data set from high
dimensional space to its principal components represgittie data set in lower dimen-
sions. It typically exploits the linear relationship betmethe data variables. PCA has
not been very useful where the relationship between thabts is non-linear. For ex-
ample, a helix formed by a sine over a cosine wavi@iwould be represented by PCA
in three dimensions. The real dimensionality of such a hebwld be one [DC93].

In order to avoid such situations when the data have nomilinglationships, we

use non-linear methods of dimensionality reduction. Ong togerform the non-linear

methods of dimensionality reduction is by using neural oeks. A large amount of
research has gone into studying multi-layer neural netaiokcamer [Kra91] proposed
a Non Linear Principal Component Analysis (NLPCA) approaattfaining the feed-
forward neural network to obtain an identity mapping. Thenwek has multiple hidden
layers with a middle "bottleneck” layer. The output of thettbeneck layer represents
the lower dimensional representation of the input dataSeth a neural network with
an identity mapping(x) = z, has been very successful in obtaining a reduced rep-
resentation of the input data. The basic goal is to map thetitgpthe output with
minimal error. The success of this goal means that the sitridimensionality of the
data is equal to the number of units in the bottleneck layga [0ja91] used a five
layer neural network for non-linear dimensionality redant He was able to compute
smooth nonlinear mapping between the inputs and the cdntidén layer, and another
mapping between the central hidden layer and the outputs fu®er further showed
that a sigmoid function in the hidden layer units enablemieg the structure of com-
plex non-linear inputs embedded within a noisy environméisui et al. [UNN91] used
a five layer neural network for dimensionality reductionngsa non-linear approach
as well. They showed that a non-linear representation afiral data can be found
in lower dimensional space with multiple hidden layers. ybaccessfully used their
technique in a color application , which reduces the dinmradity of the color space
of a multi-spectral sensor. Their approach uses the fatttilar measurements form a
manifold of three intrinsic dimensions. Moreover, it hagbdound that the modes of
variation correspond to psychological color attributefiomans.

We have been mentioning the bottleneck layer network bugiaveally explained
it. We think this is the right place to present it. A bottlekdayer network has an
input layer and an output layer with hidden layers betweemth The middle layer

characterized as a bottleneck layer has the lowest numb@ddén units. Figure 1.1

represents one such network. In this figure the input layénesnput data layer, and

Input Mapping Bottleneck Demapping Output
layer layer layer layer layer

P 0
Y1

7 N

Y2 — A < Yz
NV Al

Figure 1.1: Bottleneck Neural network.

the mapping layer reduces the dimensionality to the numbanits in the bottleneck
layer. The bottleneck layer has the least number of unitsemetwork. The demapping
layer changes the lower dimensional output of the bottletegeer to the dimensionality
of the mapping layer and then the output layer finally remapsdimensionality of the
output to that present in the input dataset. Although, teisvork has only three hidden
layers we could have more than that in a neural network depgraa the dimensionality
reduction technique being used. The dots in the input andutput layers indicate that
there are more units in these layers depending on the dioaadgy of the dataset. The
Output of each unit in the hidden layers is used as an inpull tbexunits of the next
layer in this network. The input to each layer from all unifstioe previous layer is
multiplied by the weight of the link between the hidden ungsmmed up and passed
through a transfer function. One of the most widely useddi@nfunction in a non-
linear neural network is a sigmoid function. The sigmoiddtion is a typical non-linear
transfer function that helps make outputs reachable. Theaheetwork output could
be passed through a sigmoid function or not depending updekign of the solution.

While all the above approaches have hidden layers with n@gessenting real num-

4

bers, Kirby et al.[KM96] suggested a circular node représt@m in the bottleneck layer.
This circular node stores and transmits angular infornmatio

One of the earliest approaches in neural network trainirgyldeen the use of back-
propagation algorithm. However, it has been seen to have amvergence. LeCun et
al. [LBOM98] suggested that with an efficient choice of paesens backpropagation
algorithm can be used very efficiently. They further suggeshat for a large and re-
dundant training set stochastic gradient with carefulrgns a good choice or one could
use the Levenberg-Marquardt algorithm. For a small datéhegtsuggested the use of
conjugate gradient.

The Levenberg-Marquardt algorithm [Lev44] [Mar63] is aerdtive algorithm. It
could be referred to as an interpolation of Gauss-Newtortlaadteepest descent meth-
ods. More recently, Hinton et al. [HS06] used a pretrainirgghod to place the weights
near good solutions, followed by a gradient descent finentymnethod for training
multi-layer neural network. They used restricted Boltzmamachine to pretrain their

networks.

1.2 EEG research at Colorado State University

Researchers at CSU have studied various aspects of EEG.t{Kigh3] analyzed eye
movements, eye blinks, muscles, heart beats and otherieéésources affecting EEG
recordings. He investigated approaches based on gemetalizgular value decomposi-
tion. Peterson et al. [PKKD5] indicated that Blind Source Separation(BSS) and featur
selection could be used to improve the performance of evaéreetdingle-session BCI.
They used a modified genetic algorithm wrapped around a stpgctor machine clas-
sifier to search the space of feature subsets. Anderson &R01] found that auto
regressive (AR) models of six channel EEG results in the blassification accuracy.

They were able to identify with 70% accuracy of five cognitigeks a person is doing

for two of four subjects tested, and near 40% for the other #walerson et al. [ASS98]
compared raw data, power spectral densities, Karhunere tngnsforms, and AR mod-
els as signal representations. They found that AR modefenpeed the best. Anderson
et al. [ADS95] compared four representations of EEG sigaatstheir classification by
a two-layer neural network with sigmoid activation functg They concluded that the
frequency-based representation results in significantdyenaccurate classification than

the unprocessed or K-L representations.

1.3 Dimensionality Reduction and Classification of
EEG Data

EEG data also needs some dimensionality reduction befamult be classified. This
dimensionality reduction of EEG data is very important teualization and represen-
tation. Dimensionality reduction also becomes importatause the number of elec-
trodes could vary from 6 to 256. EEG signals are noisy. Theeepossibility of much
correlation because brain electrical activity spreadsugh the brain volume. In addi-
tion there could be correlation among different channelsesg correlations might be
temporally separated. Dimensionality reduction could geensuch correlations. It is
also important because an understanding of EEG data woudd that it could help in
brain computer interface research.

However, it is a difficult problem. The problem of unfoldingetinherent represen-
tation of the brain activity using the EEG signals is comgiiexl. Dimensionality re-
duction and classification of EEG using neural networks leenldone before by many
researchers. The problem that has been tried by reseahies is the classification
of mental tasks. In order to classify the mental tasks, th& Ekgnals corresponding
to them are first fed to a bottleneck network and the bottlemetput fed to a classi-

fier. Keirn et al. [KA90] studied a set of tasks comprised cfddme (no activity), mental

arithmetic, geometric figure rotation, mental letter cosipg and visual counting. Each
task had ten trials. In each trial 2500 samples were obsewexd10 seconds.
Devulapalli [Dev96] used the same data as used by them assifedal mental arith-
metic and mental letter composing tasks. This researchusisd the same dataset and
it is a follow-up to what Devulapalli did. He obtained goodués and our goal would
be to repeat what was done and go beyond by using bettemigaagorithms. In his
conclusion he reported that NLPCA requires a long trainintgetbecause of the sheer
number of weights. We shall use a training algorithm thatnievn to be faster than a
simple conjugate gradient algorithm used by Devulapalle Wil discuss more about
Devulapalli's approach and how the approach of this reserdifferent from his, in

the next section.

1.4 Prior Results with Bottleneck Network on EEG
Classification

Devulapalli [Dev96] used Non-Linear Principal Componentsalysis (NLPCA) for di-
mensionality reduction. In his experiments he used tempeiredows of EEG data.
Each window was 62 samples long (approximately correspanidi a quarter second)
and consecutive windows were overlapped by 31 samplese $axh window consisted
of 62 samples per channel and 6 channels were used, the dimality of the dataset
used was, 62 x 6 = 372. A separate seventh channel (calleg¢hieliek channel) was
used to record eye-blink information. A high potential spik the eye blink channel
(greater than 10@\olts) lasting up to 10 milliseconds was considered as arbdink.
However, sample points corresponding to all six channélmdain the region of eye
blinks were removed from the raw EEG data before being stdyjeo any processing.
Ten sessions were conducted for each task with each sessitamgl for a period

of ten seconds which results in 2500 samples per task papsesthis was followed

by a classification of the mental tasks using a standard bapkpation neural net-
work trained using conjugate gradient algorithm. Devullpeported a classification
accuracy of 86.22% for a 30-dimensional bottleneck layprasentation of the EEG
data over all the trials. This was followed by the 20-dimensi representation with
76.21%, 40-dimensional representation with 65.83% andifr@®nsional representation
with 57.89%.

In the current work our goal is to build upon this previouse@h and to classify
EEG signals using the same approach and data as used ebidwever, we will be
using a variant of Levenberg-Marquardt algorithm [WIKEO&hd Scaled Conjugate
gradient (SCG) [M@l93] as preprocessing steps to train teah@etwork. For classifi-
cation we will try to classify different tasks using neuraltwork, Linear Discriminant
Analysis (LDA), Quadratic discriminant Analysis (QDA) afipport Vector Machine
(SVM). The number of tasks to be classified would depend on Wwellour network
represents the EEG data. We will be training our five layeralenetwork with a hid-
den bottleneck layer. The number of bottleneck units wilvaged to find the correct
number of units in the bottleneck layer for an efficient reygr@ation of the input data.
The number of units will be chosen on the basis of how well tbeléneck network

maps the input to the output data.

1.5 Organization of the Rest of Thesis

The rest of the thesis layout is as follows: Chapter 2 coversththematical background
of steepest descent, Gauss-Newton, Levenberg-Marqugadittm and its variant, fast
convergence algorithm, which is the algorithm being usethis work. The second
neural network training algorithm SCG is also covered. LDAl DA and SVM are
also discussed.

In Chapter 3 the methods for describing the data, the taskshenekperiments are

presented. Chapter 4 contains the results of the experim@htgter 5 is comprised of

conclusions and discussion of the results.

Chapter 2
Mathematical Background

In this chapter we describe the background of the algoritwensised for this work. For
training the multi-layer neural network we used two difigr@lgorithms: a Fast Con-
vergence Algorithm Based on Levenberg-Marquardt (FCALM) REO1] and Scaled
Conjugate Gradient algorithm (SCG) [M@l93]. For classificatiwe used Linear Dis-
criminant Analysis (LDA), Quadratic Discriminant AnalgsiQDA) and Support Vector
Machines (SVM). The following sections describe the baststhe mathematics behind
the algorithms.

The training of a bottleneck multi-layer neural networkohxes a search for an opti-
mized set of weights between the units of different layerthenetwork. An optimized
set of weights is such that the squared residual error betweeinput and the output is
minimal. It would vary from one problem set to another but whiee output is nearly
equal to the input, it means we have reached close to thesitrdimensionality at the
bottleneck layer and the weights are optimized. So our elbgtunction is the squared
error between the input and the output and we want to minimiZeénis requires that we
find a good set of weights. In order to find this set of good wsigifie training algorithm
has to traverse through a complex residual error landscHpe goal is to find a global

minima of this landscape. Typically, the problem is reduttedchinimizing a function

10

F(w), which is a sum of squares of nonlinear functions

Zfz =—||f (w)]f? (2.1)

Thei-th component of the m-vectdfw) is the functionf;(w), and|| f(w) | is termed
the residual atv. The fraction; has been included to avoid the appearance of a factor
of two in the derivatives [GMW81].
In order to solve the least squares problem of (2.1) we wéldte find the derivatives
of F [GMWO04].! Provided thaf has continuous second partial derivatives, we can write

its Taylor expansioas
flw+h) = f(w) + J(w)h + O[], (2.2)

whereJeR™" is theJacobian This is a matrix containing the first partial derivatives of

the function components,

f;

()i = Zo-(w). (23)
As regards FR™ — R, it follows from the first formulation in (2.1), that
OF (w) B af;
Fur —;f(w) D,) (2.4)
Thus, the gradient is
F'(w) = J(w)" f(w). (2.5)

We also need the HessianlefFrom (2.4) we see the element in positigR)(is

0*F 8f1 afz anz
Qw;Owy, Z(aw]<)awk (w) + fi(w)awjﬁwk (w), (2.6)
showing that
F'(w) = J(w)" J(w) + Z Filw) f (w). 2.7)

IMost of the equations here are based on [GMWO04]

11

2.1 The Gauss-Newton Method

The Gauss-Newton method is the basis of the Levenberg-Madtjalgorithm and its
variation. It is based on a linear approximation to the congmts off (a linear model
of f) in the neighborhood ofv: For small|h|| we see from the Taylor expansion (2.2)
that

flw+h) = £(h) = f(w) + J(w)h. (2.8)

Inserting this in the definition (2.1) ¢f we see that

F(w+h) ~ L(h) = =£(h)"4(h)

[NSRE NN

1
fPf+nTJrf+ 5hTJTJh

I
T

(w) +hTJTf + %hTJTJh (2.9)
(with f = f(w) andJ = J(w)). The Gauss-Newton stefp,, minimizes L(h),
hg, = argmin,{L(h)}.
It is easily seen that the gradient and the Hessian of L are
L'(h)y=J"f+J%Jh, L"(h)=J"J. (2.10)

Comparison with (2.5) shows that(0) = F’(w). Further, we see that the matix (h)
is independent of. Itis symmetric and if/ has full rank, i.e., if the columns are linearly
independent, the”(h) is also positive definite. This implies tha{h) has a unique

minimizer, which can be found by solving
(J' D hgy = —JT f. (2.11)
This is a descent direction for F since
hinF'(w) = B}, (JTf) = —=hd (JTT)hg, < 0. (2.12)

12

The typical step is

Solve (J'J)hg, = —JT f

w = w + ahg, (2.13)

where« is found by line search. The classical Gauss-Newton metisedaw= 1 in

all steps. The method with line search can be shown to havegieed convergence,
provided that{w|F'(w) < F(wg)} is bounded, wherey is the previous position, and
the Jacobian/(w) has full rank in all steps. Unlike Newton’s method, Gaussvide
does not have quadratic convergence. One shortcoming @dhes-Newton method is
that the matrix/(w)” .J(w) may not be positive definite. This could be avoided by using

Levenberg [Lev44] and Marquardt [Mar63] modification délsed in the next section.

2.2 The Levenberg-Marquardt Method

For continuity we will explain this method based on [GMWO04tdallow it by the defi-

nition provided by [WIKEO1] and their modification. LevenbdLev44] and later Mar-
quardt [Mar63] suggested to use a damping term in the Gaesddw method which
modifies (2.11) to

(J'J + pD)hy, = —g with g=J'f and p>0. (2.14)

Here,J = J(w) andf = f(w). The damping parametgrhas several effects:

1. For all > 0 the coefficient matrix{.J7J + uI), is positive definite, and this

ensures that,,, is a descent direction,

2. For large values gt we get
1

1
hlm = ——9= ——F/(’LU),
7 7

13

i.e., a short step in the steepest descent direction. Thy®asl if the current

iterate is far from the solution.

3. If pis very small, therk,,, ~ hg,, which is a good step in the final stages of the
iteration, when w is close to*, wherew* is the minima. IfF'(w*) = 0 (or very

small), then we can get (almost) quadratic final convergence

Thus, the damping parameter influences both the directidrttansize of the step, and
this leads us to make a method without a specific line searbk.choice of initialu-
value should be related to the size of the elemezﬁé,Ao = J(wo)T J(wyo), for example
by letting

fo = T mgX{GE? 1, (2.15)
where 7 is chosen by the user. During iteration the sizeuofan be updated. The
updating is controlled by the gain ratio

F(w) — F(w+ hyy)
L(0) — L(hum)

p =
where the denominator is the gain predicted by the linearahod

1
L(0) — L(hy) = —hL JV f — 5hZ;nJTJmm

1
= —5him(29 + (7T + pl = pl)hm)
1

T2
Note that both:! h;,, and 4] ¢ are positive, sa.(0) — L(hy,,) is guaranteed to be
positive.
A large value ofp indicates that_(h;,,) is a good approximation t&'(w + hy,,),
and we can decreageso that the next Levenberg-Marquardt step is closer to thes&a

Newton step. If» is small (maybe even negative), thefv,,,) is a poor approximation,

14

and we should increagsewith the twofold aim of getting closer to the steepest descen
direction and reducing the step length.
The stopping criteria for the algorithm is such that at gloménimum we have

F'(w*) = g(w*) = 0, SO we can use
lg(w)[loe < €1, (2.16)

whereg; is a small, positive number, chosen by the user. Anothevaelscriterion is to

stop if the change i is small,
Hwnew - wH < EQ(HU]” + 62)- (217)

This expression gives a gradual change from relative stepesiwhen ||w|| is large to
absolute size3 if w is close to 0. In the above equatier).., is the new position.

The above description is a more general representation\anleerg-Marquardt al-
gorithm. Below, we will reproduce how [WIKEO1] presented tlgorithm and their
modifications. The variable will represent the weights of the links between the units
of different layers of the neural network. Wilamowski et BWIKEOQ1] presented the
optimization as a performance index in the form

P K
F(w)=)_ [Z (dyp — ok,,)2] (2.18)
p=1 Lk=1
wherew = [wjw,...wy]T consists of all weights of the netword,, is the desired value
of the k' output and the'™ pattern,o, is the actual value of the’” output and the'
pattern,NV is the number of weights? is the number of patterns, arid is the number

of the network outputs. Equation (2.18) can be written as
F(w)=E"E (2.19)

where

T
FE = [611 ... €K1 €19 ... €2 ... €e1p ... eKP]

15

ekp:dkp—okp, k?:l,...,K, pzl,...,P

where E' is the cumulative error vector (for all patterns). From epra (2.19) the

Jacobian matrix is defined as

- Oei Oe11 Oeir
0 19 T o]
besr Deor Dear
Owy Ows T own
86]{1 8eK1 86}(1
Owy Ows T own

J = : : : (2.20)

deip Oerp Oei1p
ow ow Tt dw
Deap Deap Deap
Owy Ows T own
Oexp Oekp Oexp

L Ow; Ows e own

and the weights are calculated using the following equation
Wip1 = Wt — (JtTJt + ,Ut[)_l JtTEt (2.21)

wherel is identity unit matrix, . is a learning parameter antlis a Jacobian ofn
output errors with respect to weights of the neural network. Jacobiadims calculated
at each iteration step and so is the inversioo bf square matrix with dimensiofy x
N. In order to reduce this dimensionality Wilamowski et al. KHH01] suggested a

modification which is described in the section below.

2.2.1 Wilamowski et al. Modification of Levenberg-Marquardt Al-
gorithm

Wilamowski et al. [WIKEO1] changed the performance indexagun (2.18) to

K [P 2
F(w) = [(dip — okpf] (2.22)

k=1
This represents the global error and reduces the dimergion&the matrix to be in-

verted at each iteration step. Equation (2.22) can also hteweas:

F(w)=E"E (2.23)

where
P

E=la é - ekl and é=) (dy—0rp)°

p=1
with & = 1,..., K. The modified Jacobian matri% as reported by Wilamowski et

al. [WIKEOQ1] is represented as

0€l € 0€l
ow ow T dw
8621 86}2 3EJ2V
7 o 1o} G
A o (2.24)
dex Oek dek
w1 owe 7 Owpn

Using the modified Jacobian matrix equation (2.21) can tésvrias
ap 2 -1
Weyy = Wy — (Jt g+ uJ) JTE, (2.25)

Wilamowski et al. [WIKEO1] report that the advantage of thiedification is that/, is
now K by N matrix. However, since the above equation still needs teriman/N by N

matrix they used Matrix Inversion Lemma, according to whidmatrix A satisfies
A=B'4+cD7'c” (2.26)

then

AT'=B-BC(D+CTBC) ' CTB. (2.27)

Applying this lemma to the term within the parentheses ofatign (2.25) we get,
ST 3 -1 1 L o L oo s
(Jt J+ utl) B [1 g] J, (2.28)
Mt M Mt
Now the right side of equation (2.28) reduces to the size K byA&cording to Wil-
amowski et al. [WIKEO1], this significantly reduces the congbwnal complexity of
the weight adaptation problem. Therefore, with this chathgeneight update equation
becomes
1

I 1) b el s
Wiy = Wy — [—I - =J! [I + —JtJtT] Jt] JLE, (2.29)
et M et

17

2.3 Scaled Conjugate Gradient

Scaled conjugate gradient (SCG) [Mgl93] method belongsdeldiss of conjugate gra-
dient methods. It uses second order information from theatexetwork but requires
only O(N) memory usage, wher¥ is the number of weights in the network. It avoids
time consuming line search of other conjugate gradient austland finds good solu-
tions even in an error landscape with ravines.

Let w; be a vector from the spad", whereN is the sum of the number of weights
and of the number of the biases of the network. Edte the error function we want
to minimize. This algorithm differs from the other conjugajradient methods in the

following ways.

e Each iteratiork of a conjugate gradient method (CGM) compuies; = wy +
apr, Wherepy, is a new conjugate direction, amdg is the size of the step in this
direction. Actuallycy is a function of £”(wy), the Hessian matrix of the error
function, namely the matrix of the second derivatives. Intcast to the other
CGMs which avoid the complex computation of the Hessian aptomatec,
with a time consuming line search procedure, SCG makes thaviolg simple

approximation of the term,,, a key component of the computation@f:

E'(wy, + oxpr) — E'(wy,)
O

S = E”(wk)pk =~ O0<or k1

e As the Hessian is not always positive definite, which prevéme algorithm from
achieving good performance, SCG uses a scglarhich is regulates the indefi-

niteness of the Hessian. This is done by a setting:

E’ — F
Sk = (i + kak) () + APk
k

and adjusting\,, at each iteration. This is the main contribution of SCG to both

fields of neural learning and optimization theory.

18

2.4 Linear Discriminant Analysis

In this section the discussion with be based mostly on [HTFQinear Discriminant
Analysis (LDA) is used to find a linear combination of featte classify two or more
different classes. It assumes that each class is multiegBaussian with the distribution

[HTFO1]

1
(2m) 5[5 2
where mean of clags, j;, = Zgi:k jf,—k x; represents thieth observation of classk, N,

fulz) = o i) (2.30)

is the number of clask observationsK is the number of classe8 is the total number
of observations, antl;, is the covariance of clags

For optimal classification we need to find the class postefiorf G| X). Suppose in
classG = k, the class-conditional density &f be defined byf;. in equation (2.30) with
Zle mr = 1 wherer, is the mean of class k. An application of Bayes theorem gives

us
fk(x)ﬂ'k ‘
Sy fol@)me

LDA assumes that the classes have a common covariance matexy, Vk. In order

Pr(G=kX=ux)= (2.31)

to compare two classésand/, we look at the log-ratio

Pr(G=k|X =1) fr(z) Tk
1 =1 log —2%
P G=lX =2 Ef@ %
T 1
= log ;I; - §(Mk +) ST (e — o) + ST (ke — o),

(2.32)

which is a linear equation im. The assumption in linear log odds ratio is that the
decision boundary between classeand/ is linear [HTFO1]. InR” the classes will be

separated by hyperplanes. Based on equation (2.32) ttee tiiecriminant functions
1
Op(z) = a5y, — §/~L£Z_1Mk + log 7y, (2.33)

are an equivalent description of the decision rule, withr) = argmaxd,(z). The

19

parameters of the Gaussian distribution are calculated fhe training data, with: =

Zf:l Zgizk('xi —) (i —)" /(N — K).
2.5 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is a classificati@thnique which separates
two or more classes using a quadratic surface. Unlike LD&rdlis no assumption that

the covarianc&;, of different classes is equal. The discriminant functiodaefined as
1 1 Ty —1
ox(z) = —§log |2k — §(x — i)t Xy (@ —) + log . (2.34)

The decision boundary between each pair of cladgsemnd ¢ is described by a
quadratic equatiom : d,(x) = d,(x). For a detailed discussion on LDA and QDA refer

to [HTFO1].

2.6 Support Vector Machines

Support Vector Machines (SVM) are classifiers which prodaca linear bound-
aries by constructing a linear boundary in a large, tramséat version of the feature
space [HTFO1]. Here we will present the details as desciiyedastie et al. [HTFO1].
For an exhaustive treatment see [Vap95].

Suppose we want to separate two classes,

(xlay1>7"'>(xl7yl)7x€Rnay€{_1>+1}> (235)

with a hyperplane
{z: f(z) =2"3+ o = 0}. (2.36)

Optimal separation requires that the group of vectors benaty separated without

20

error. This implies that

min
i 18]
subject to y;(zI1B3+3)>1, i=1,...,N.

The distancel(, (y; =) of a pointx from the hyperplanég, 5,) is,

|6 - x4 Bol
16]]

The optimal hyperplane is obtained by maximizing the margin, 5,). The margin is

(B, Bo;) = (2.37)

given by,

p(B,Bo) = {HHH d(8, ﬁo,xz)‘ir{ min d(ﬁaﬁo;%’)

TiYi= zjy;j=—1
— min |6 i + Bol 4+ min 13- x5 + B
{551 yi=1} Hﬁ“ {zjy;=—1} Hﬁ“
= — Bz + Po| + mln B-x;+ 3]
HBH [{xl Yi= ‘ 0‘ {zjy=— | ’ 0‘
2
- (2.38)
18]
Therefore, the hyperplane that separates the data is thinaneinimizes
1 2
o(w) = 5181 (2:39)

In order to understand how equation (2.39) is equivalentridiriig the optimal hyper-

plane, suppose that the following bound holds,
18 < C. (2.40)

Then,
d(B3, Bo;z) > é (2.41)

where C is the gap between the optimized hyperplane and dlsestl class observation

on either side of the separating hyperplane. Accordingdlg, yperplanes cannot be

21

nearer than 1/C to any of the data points. The solution to ftienization problem of
equation (2.39) is given by the saddle point of the Lagrangetional

1

l
LB, 8o @) = SI8I* = D eul(i - B) + Bolys — 1. (2.42)

whereq; are the Lagrange multipliers. We minimize this Lagrangectiom w.r.t. 5 and

(y. Setting the respective derivatives to zero, we get

N

b= Z iYLy, (2.43)
i=1
N

0="> au (2.44)
=1

By substituting (2.43) and (2.44) in (2.42), we obtain thgilaamgian (Wolfe) dual ob-

jective function

N 1 N N
Lp = Z Q; — B} Z Z &i@i/yiyi/xzrmi’a (2.45)
i=1

i=1 ¢/=1

and the constraints are
OéiZO, Z:L,N
N
=1

Solving eq (2.45) with constraints of (2.46) determines lthgrange multipliers, and

the optimal separating hyperplane is given by,
al 1
= N Gy, B = —=f- 2, + 2 2.47
3 ;aym’ B = =5 [+] (2.47)
wherez, andzx, are any support vector from each class satisfying,
A, s >0, y. =1, ys=—1. (2.48)
The hard classifier is then,

G(x) = sigr(f(z)]
= signaz" 3 + fo). (2.49)

22

Alternatively, a soft classifier may be used which linearnterpolates the margin,

-1, z<1;
G(z)=H(B-z+) where H(z)={z, -1<z<I; (2.50)
1, 1

This soft classifier produces a real valued output betweaméell when the classifier is

gueried within the margin, where no training data resides.

23

Chapter 3
Methods

In this chapter our main focus will be to describe the varimethods that were used in

our experiments.

3.1 Electroencephalogram (EEG) data

In this research work we used the data collected by Keirn.¢K&l90]. This data was
collected using the 10-20 system of electrode placemesb]a These positions are

shown in Figure 3.1 This is a a standardized system of megs&iEG based on area

Wertex
Fs e 20%— z ~—

Back

Figure 3.1: 10-20 system of electrode positions for EEG [RA9

of the cerebral cortex and the position of the electrodesherstalp. Each letter rep-
resents the location of the brain with the number indicathmghemisphere, and z the

mid line. The letters F, T, C, P, and O represent frontal, terapacentral, parietal and

24

occipital parts of the brain. The data for this study was raes$ at six sites: C3, C4,
P3, P4, O1, and O2. The data was stored at a frequency of 25f)esaper second. Sets
of ten second trials were recorded for each of five mentalstasdsting task, imagined
letter writing, mental multiplication, visualized coungj, and geometric object rotation.
These tasks were chosen to exhibit different spatial pattiar the purpose of classifi-
cation.

In this research we undertake the study of only two taskgeretriting and mental
arithmetic. For the imagined letter writing task, the subjeras asked to compose a
letter without vocalizing it. In subsequent trials the sdbjwas asked to resume the
letter from a previous starting point. In the mental arithiméask each subject was
asked to multiply two numbers, with the numbers being déifeiin the different trials.
The subjects were asked not to vocalize the numbers andrteeatzh trial in the letter

composition task from where the previous trial had left #fh[03].

3.1.1 Data Representation

The tasks data could be graphically represented in FiguBedrBeach figure the letters
with the numbers under the signals represent the electfogi@swhich the brainwaves
were measured. The electrooculograph (EOG) shown in eaithrggpresent the eye

movements.

3.1.2 Neural Network

The neural network we used for this thesis is a five layer ndtwepresented in Fig-
ure 3.3. The dots indicate that there could be many more imigsch one of those
layers. In our research the input is a six dimensional datalee number of units in
the hidden layers and the bottleneck layer are chosen thrpilgt experiments to get
the best configuration. The main focus of the experimentsghier, was to find the best

number of the bottleneck units.

25

1000
1000

0
0

EOG
EOG .
§ i, W NP TP A o § | " - A g
02 02
01 01
o o |)
QT e o Pttt g | T i
P4 P4
A S A pr it iyt P S st ny P PO A 08 P IRl
P3 P3
B o e s omd Y o i s oa P N i, 2
< T D AN s e g SN NN o et
& <
ca ca
MWWWMWM AT o B 0 AP s W A FMTIAN S i NN
c3 i c3

T T T T T T T T T T T T
4] 500 1000 1500 2000 2500 0 500 1000 1600 2000 2500

Number of EEG samples Number of EEG samples

Figure 3.2: The figure on the left represents letter commosiask and the one on the
right is the mental arithmetic task. Each figure shows thekagtrode outputs and EOG.
These output values vary between -50 to +50 micro volts.

Input layer Bottleneck Output layer
layer

Figure 3.3: Neural network.

26

3.2 Data Partitioning

In this research we used the data observed on subject 1. Adubdefined as a person
from whom the EEG data is observed. Each task has ten trigsh Eial consists of
2500 observations per session with each session lastingriaeconds. Therefore, one
set of raw EEG data consisted of six dimensions (correspgnidi the six channels),
with 2500 samples for each dimension. A separate seventimehécalled the eye-
blink channel) was used to record eye-blink information. ighhpotential spike in the
eye blink channel (greater than 10Molts) lasting up to 10 milliseconds was considered
as an eye-blink. The sample points corresponding to allls@noels which fall in the
region of eye blinks were removed from the raw EEG data bdfeneg subjected to any
processing.

For our training dataset we used trials 1 to 4 of tasks 3 (nhemilhmetic) and 4
(letter-composing). Therefore our training dataset hadOPOobservations. The test
dataset comprised of trials 5 for tasks 3 and 4 and there&f@) samples. The data

from these two tasks was concatenated in both training atdiédasets.

3.3 Data Lagging

EEG data used in this research was collected using 6 elestroohnected to the sub-
ject’s scalp. Each electrode data output represented andiorein the dataset making
it 6-dimensional. This dataset was preprocessed usingnggg

Lagging was carried out by combining multiple samples tbgetthereby increasing
the dimensionality of the neural network input dataset. &@ample, a lag of 1 meant
that the dataset retained its dimensionality of 6. A lag ofrplied that successive
samples were combined, which means, row 1 of the datasetewaliced with row 2
making row 1, 12 dimensional, original row 2 was combinedwaitiginal row 3 making

a new row 2 with 12 dimensions, so on and so forth. Therebyy al2 means that the

27

dimensionality of the input dataset was changed from 6 t@12g of 3 implies the new
dimensionality of the dataset is 18, and so on. A lag of two aigeant that the number
of samples has reduced by 1, a lag of three means the numbamples has reduced
by 2, and so on.

Lagging was done on both training as well as testing data3étsrefore, lagging
implied that although the data dimensionality was incrdagee number of training and

testing samples decreased, however, not at the same rate.

3.4 Bottleneck Algorithm Parameters

In this research we used a five layer neural network with timidden layers and the
middle one being the bottleneck. Using initial pilot expeents we held the hidden lay-
ers static with 30 hidden units. After this was chosen ounmi@cus was to determine
the number of bottleneck units. In each of our experimentsyaried the number of
bottleneck units from 1 to 6 and also 10 and 20, holding the bemof hidden layer
units to be 30 on either side of our bottleneck layer. Withsthanits we ran our final
set of experiments using both SCG and modified LM algorithmswéter, some pilot
experiments were run with different combinations of hiddeyer and bottleneck layer
units as well. We reported the results for the above set dsunithis research. The
amount of data that was read for training was also variedgusivariable which could
be tuned. Although, pilot experiments were run using a ssndthction of data, how-
ever, the results reported in this research are for the wheti®f training and test data
described in the previous section.

The default number of iterations for each training algamtvas set to be 1000, how-
ever, pilot experiments determined that 500 iteration&lgi@ equally better results. All
our results reported are for 500 iterations. Some of therpaters used in SCG algo-

rithm were the same as reported in Nabney’s netlab matlaénigfNab07] because our

28

SCG algorithm implementation was adapted from the matlale oddhis library. The
algorithm was terminated either at the end of the maximumati@ns or if the second
derivatives of the location in the weight search space woeddh the machine precision,
whichever happened sooner. The search direction was updsiieg Polak-Ribiere for-
mula or we would restart in the direction of negative grati&iter a fixed number of
steps determined by pilot experiments. The initial seamdtton was chosen to be the
negative of the gradient with lower bound on scale to be 1®end the upper bound
on scale as 1.0e100.

For modified LM algorithm, the maximum number of iterationasragain chosen
through pilot experiments and set to 200. There are not mamgnpeters that required
to be tuned for this algorithm. The algorithm was terminaggttier at the end of the
maximum number of iterations or when the machine precisias vgached. The initial
weight multiplication factor was chosen to be 2 after teagome other values in the
pilot experiments. All the parameters were chosen basedles reported by Wilam-
owski et al. If the RMSE increased in an epoch, the learnigpfaof the algorithm
would be decreased by a tenth and if the error decreasedtikdearning factor would
be multiplied by a factor of 10 to move faster in that direntaf weight change. The
Jacobian was still computed in each iteration, however,infiersion matrix had the

dimension equal to the number of outputs rather than the puiweights.

3.5 Training and Testing Classification Algorithms

Some of the classification algorithms that we used in thisassh were the neural net-
work, LDA, QDA and SVM. Classification using neural networksagone by training it

using SCG and modified LM algorithms followed by classificatad the test data. The
classification was done for both raw EEG input data and theaed data. The reduced

data was the output of the bottleneck layer obtained aftstr thiaining the whole neu-

29

ral network, followed by removing the mapping network (theut layer, hidden layer

and the bottleneck layer) and using the output of the battlkrayer as input data for
classification using the classification network. The cfasstion network consisted of
a network with only one hidden layer with 50 units. This coblel represented as a
network like n-p-1, where n is the bottleneck layer outpumelinsionality representing
the classification network input dimesnionality, and p ti¢din layer. There is only

one output with target values 0 and 1 for math and letter mgitasks respectively. The
reduced data for classification was obtained from NN witrdiidlayer units being 30

units and the number of bottleneck units being varied fro8113, and 20. For each
different value of the number of bottleneck units in the Nhg bottleneck output was
used as an input to the three layer classification networklaadesults reported for all

the input datasets.

LDA, QDA and SVM algorithms were also used for classificattdriEEG data and
that of the reduced data. In each algorithm the trainingsdditis first learned and then
the results reported for the test dataset for the classuitaito letter writing or the math
tasks. Therefore, the training dataset helps in the featlertion and the test dataset is
used for classification. In each algorithm the training dreltest dataset is partitioned
as explained in the data partitioning section. The clasgiio was done using these
algorithms for raw EEG data as well as the reduced data aatdnom the bottleneck
layer. These classification results are reported for rediuizgaset obtained by training
NN with the number of bottleneck layer units varied from 116,and 20. The number

of units in the other two hidden layers was set at 30 in thaingineural network.

30

Chapter 4
Results

This chapter reports the results of various experimentsechout in this research. A
number of experiments were carried out to determine ther@thumber of bottleneck
units depending upon the output error of the test data set. STlayer neural network
was first trained using the fast convergence algorithm [WIKHEOIlowed by scaled

conjugate gradient algorithm separately [Mg@l93]. Clasaifan results reported were

obtained using neural network, LDA, QDA and SVM.

4.1 Fast Convergence Algorithm

In order to determine the accuracy with which the data wasgoeiplicated at the output
layer, we studied the RMSE of our EEG data set with a lag of % fitimber of units
in the hidden layers was kept static at 30 and the number ¢ abhthe bottleneck layer
was varied.

In our pilot experiments the test data RMSE was compared thghraining data
RMSE by varying the number of bottleneck units from 1-100.r @sults indicated
that the test RMSE for the number of bottleneck units betwkHgand 20 was below
the training RMSE. With the increase in the number of bo#tnunits between 30
and 100, the test RMSE started showing up above the trainfid§R This observation

encouraged us to use bottleneck units from 1 to 20. In all@lssquent experiments the

31

bottleneck units have been varied from 1 to 20. Followingéheesults we trained our
neural network for 10 and 20 lags using fast convergenceigigo. Again, the number
of bottleneck units was varied from 1 to 20. Fast convergexgerithm because of its
hessian matrix could not handle data with more than 20 lapsgesrestricted our results
up to those lags. The RMSE for the reconstructed test dateg dast convergence

algorithm is shown in Figure 4.1

0.9

08
"

° —e— lags=10

—e— lags=20
~
] \

TEST RMSE
0.5 0.6

03 04
7
\.
I/
_/

0.2

5 10 15 20

Bottleneck Units

Figure 4.1: RMSE of reconstructed test data vs. the numbd&otfeneck units for
different data lags.

Based on Figure 4.1, the least RMSE was obtained with 20 tags fietwork con-
taining 20 bottleneck units. This value is 0.239939. Thdicates the best layer struc-
ture for our neural network would be a network with 30-20-3Clze hidden layers and
a data lag of 20. It also indicated that higher the numbergs the lower the RMSE. It
could also be noticed that the RMSE kept decreasing withiitrease in the number of
bottleneck units. It may be possible that we could achievebeesults with more bot-
tleneck units. However, it was not pursued in this reseavéd.were also intrigued by

the decrease in the RMSE with the increase in the number sf kaggvever, our training

32

algorithm could not handle higher lags.
After the RMSE experiments, the test data set was classifietd) wifferent algo-

rithms and the results reported in Table 4.1. We used LDA, @DA SVM for clas-

nLags nBottle nOther] LDA | QDA | NN | Svm R- | R- R- R-
Test | Test | Test Test NN | LDA | QDA | Svm
Test| Test | Test | Test
10 0.48 | 0.93 | 0.50 0.73
10 1 30 0.50 0.51 | 0.51 | 0.50
10 2 30 0.50 0.51 | 0.51 | 0.49
10 3 30 0.50 0.51 | 0.51 | 0.51
10 4 30 0.48 0.51 | 0.51 | 0.51
10 5 30 0.50 0.51 | 0.51 | 0.49
10 6 30 0.50 0.51 | 0.51 | 0.54
10 10 30 0.50 0.51 | 0.51 | 0.54
10 20 30 0.50 0.51 | 0.51 | 0.57
20 0.50 | 0.97 | 0.51 0.76
20 1 30 0.50 0.54 | 0.54 | 0.52
20 2 30 0.50 0.54 | 0.54 | 0.51
20 3 30 0.50 0.54 | 0.54 | 0.51
20 4 30 0.50 0.54 | 0.54 | 0.46
20 5 30 0.50 0.54 | 0.54 | 0.51
20 6 30 0.49 0.54 | 0.54 | 0.53
20 10 30 0.52 0.54 | 0.54 | 0.52
20 20 30 0.50 0.54 | 0.54 | 0.56

Table 4.1: Classification results of various methods. nlagsnber of lags in the data,
nBottle: number of units in the bottleneck layer of the néaetwork, nOther: number
of units in the hidden layers, LDA Test: Classification resolt using LDA for test data
classification, QDA Test: Classification of test data usingpfQRN Test: Classification

of test data using neural networks, R-NN Test: Classificadfomeural network bottle-

neck output using neural networks, Svm Test: Classificatforest data using Support
Vector Machines.

sifying the test data set. Neural network trained using ¢astvergence algorithm was
also used for classification. The table also includes redaitthe classification of the
bottleneck output. The neural network was first trained drahtthe first half of the

neural network detached. The test data at the output of ttikebeck layer of the de-

33

tached network was used as an input for the classificatiarighgns for classifications.
These results have been reported in Table 4.1 under the oslumth prefix 'R’ before
the algorithm name. The letter 'R’ represents the reducedateetwork. The results
indicate that QDA did the best for the raw test data. In thidgdhe classification re-
sults in the NN test column represents the classificationlt®$or the neural network
trained using the corresponding bottleneck network andhetlassification network.
The classification network has only one hidden layer with ®i@stin it. A box plot com-
parison of these classification results is presented inr€igL2. Although, we observed
the least RMSE in the bottleneck network with hidden layé€rs28-30, the best clas-
sification using neural network was obtained for the hidderets, 30-6-30. The best
data lag is 20. The reduced neural network classificationltsessing neural network
was obtained for the network 30-10-30, although there ianit significant difference
between this result and the one obtained for original tetstsgd using 30-6-30 network.
However, there is a significant difference between the pabiataset classification re-
sults using QDA and other algorithms. For the original tegbdet SVM was the second
best with significantly better than LDA and the neural nekvdone of the algorithms
produced encouraging results using the reduced neurabnietest output. There was
no significant difference between the Reduced LDA (RLDA)d&ed QDA(RQDA)
and Reduced SVM(RSVM) results, but they were still signifibabetter than Reduced
NN(RNN) results, although the difference wasn’t huge.

In order to visualize the results of the RNN we present theltesn Figure 4.3.
This was done so that we have a clear picture of the neuralanktbehavior. This
figure shows the variation of classification results of th& téataset at the output of
the bottleneck units. The classification network was trdinging the fast convergence
algorithm (modified LM). The graph indicates that a bottignkyer with 10 units and a

data lag of 20 was able to obtain the best classification acywf the test dataset. This

34

0.8 0.9
1 1

Classification Result
0.7

S

< —_
o
T

0.5

T T T T T T T
LDA QDA NN SVM RNN RLDA RQDA RSVM

Algorithm

Figure 4.2: Classification results of different algorithnos fhe test dataset. NN rep-
resents the neural network classification of the actualdet and algorithms with a
prefix R means the classification of the bottleneck outputefrteural network. Neural
network was trained using fast convergence algorithm(frextiLM).

0.54
1

—e— lags=10
lags=20

0.52
1

0.50
1

Classification values

0.48
1

0.46
1

T T T T
5 10 15 20

Number of Bottleneck Units

Figure 4.3: Classification results of the test data outpubhatbiottieneck layer. Clas-
sification was done using Neural Network. The neural netweak trained using fast
convergence algorithm(modified LM).

35

indicates that a higher lag in the data might have yieldet&belassification accuracy of
the test dataset, however, the training algorithm was @ntabhandle dataset with lags
higher than 20. This indicates that with the increase in talver of bottleneck units,

the additional features obtained using those units werangaddifficult to differentiate

between the two tasks.

4.2 Scaled Conjugate Gradient

We also trained our neural network using scaled conjugadignt algorithm using
various combinations of the number of units in the hidderetay The RMSE of the
reconstructed test data of the neural network trained uS@@@ is represented in Fig-

ure 4.4.

0.14
]

lags=100

lags=50
—e— lags=20
—e— lags=10

0.12

TEST RMSE

0.08
!

N
\.

T
5 10 15 20

Bottleneck Units

Figure 4.4: RMSE of reconstructed test data vs. the numbdotifeneck units for
different data lags.

These plots indicate that the least RMSE is for a data withLagnd 20 units in
the bottleneck layer. Therefore, the best performing ndtwas hidden layers with
30-20-30 units. This plot also shows that lower lag and highanber of bottleneck

36

units helps in achieving a lower RMSE using SCG. It also leads think that a further
reduction in the number of lags or an increase in the numbbotifeneck units would
yield a much lower RMSE. However, a further decrease in thaber of lags would
bring the gap, between the number of units in the bottlenagkrland the input data
dimensionality, closer. Another, important observati®thiat the RMSE in this figure is
lower than that in Figure 4.1. It might be possible that SCQole #o learn the weights
between the hidden layers much better than the fast conveggalgorithm (modified
LM). It seems that although both algorithms learn the fezgwEqually well initially,
SCG is able to fine tune the weight selection much better tharfast convergence
algorithm (modified LM).

Since, SCG did better in terms of RMSE reduction than fast em@nce algorithm
(modified LM), we wanted to investigate how the data was begognstructed at the
output of our bottleneck neural network. Figure 4.5 shovesrdtonstructed data output
compared to the input dataset for each channel. Differestspf this figure indicate
that the reconstruction is fairly well except for channelarigl 5. However, overall the
bottleneck neural network output is able to mimic the inprymvell. This also indicates
that the bottleneck layer is able to distinguish betweewn#n®us channels input signals.
In order to verify that we investigated the output of the lawieck units of our bottleneck
network. These outputs are shown in Figure 4.6. These figapFesent the outputs at
the bottleneck network, showing only a part of the datasethé¢ left plot of Figure 4.6
we are trying to represent a quarter of the input samplesadhsecovariance of different
channels at the bottleneck layer. In order to further vigealith a smaller sample size,
the plot on the right in the same figure shows the bottlenetgtuadior only 100 samples.
These plots further illustrate that there is at the mostegittery little or no correlation
between the bottleneck unit outputs. Overall, a no colmiabutput at the bottleneck

layer indicates that the neural network is learning the sittguite well. This would

37

8¢

‘Alonnoadsal ‘9-T sjauueyd

01 puodsaui09 J-e spriueyd 933 ue Joj 1aserep 1sal Indul 8yl SNSIaA NN X99udj

(®)
sodwes

)

sojdures

-10q 3y} Jo INdINO SyURPIEP) PL1ONNISU0IBI By} Sluasaldal ainbiy yoeg Gy aunbiq

(74

or

09

08

oot

(74

or

09

08

oot

EEG potential (in micro volts)

o

ndno o
nduy

-04

EEG potential (in micro volts)

-0.2 0.0 02 04
1 1 1 1

o OT—omo
Og‘*o:o;ﬂ% °
O M

0%

-
0 % =L,
o
@O

Q0 o

>

ndno o
ndu;

©)
so|dwes

(P)

(74

or

09

08

oot

(74

ov

09

08

00T

EEG potential (in micro volts)

-04 -02 0.0 02 04

<o

ndu

EEG potential (in micro volts)

02 00 02 04
1 1 1 1
st
=,
o
Lo
%50
6’00%8
Oeio%m:o
g;?zo
e =0
s‘l%o
oxf
988 o
()
o358
oemg 5~
°>
9
OQ\“&«Q\Q
B, o0
O=g _
o2, £3

(e)
sodwes

(@)

oz

or

09

08

oot

oz

or

09

08

oot

EEG potential (in micro volts)

-04 -0.2 0.0 0.2
1 1 1

o

ndno o
nduy

EEG potential (in micro volts)

-0.6 -04 -0.2 0.0 0.2

04

>

ndno o
ndu;

—e— BN Unit1
—e— BN Unit2
—&— BN Unit 3

BN Unit 4

Bottleneck Output (in micro volts)
Bottleneck Output (in micro volts)
0.0
|

0 200 400 600 800 1000 0 20 40 60 80 100

(a) (b)
Figure 4.6: The figure on the left represents bottleneckutstpvith 1000 samples and
the one on the right shows the same output for only 100 samyslieg 4 bottleneck
units.
mean that classification accuracy of this output should gbdri

These classifications results of the bottleneck output leen presented in Fig-
ure 4.7. This plot indicates that reduction in RMSE obserliveBigure 4.4 is directly
proportional to the classification results. A neural netwarth 10 lags and 20 bottle-
neck units had the lowest RMSE and this network obtainedekediassification results.
These two figures indicate that SCG performed the best with-20380 network and
data lag of 10.

We represented various combinations of lags, the numbepibebeck units and
various classification results using neural networks ameroalgorithms. The results
are represented in Table 4.2.

This table indicates that the neural network performed #& blassification for a
data lag of 20 and hidden layers with 30-6-30 units. This istine® same as was seen to
have the least RMSE. LDA performed the best when data lag @@sdd so did QDA
although there wasn’t much difference in the results with ¢thange in the number of

data lags. SVM did the best with data lag of 20. In classifcatf bottleneck units

39

nLags nBottle nOther LDA | QDA | NN | Svm R- R- R- R-
Test | Test | Test Test NN | LDA | QDA | SVM
Test| Test | Test | Test
10 0.46 | 0.93 | 0.92 0.87
10 1 30 0.50 049 | 0.50 | 0.50
10 2 30 0.47 045 | 0.50 | 0.49
10 3 30 0.49 044 | 050 | 0.49
10 4 30 0.52 044 | 047 | 051
10 5 30 0.51] 045 | 0.45 | 0.49
10 6 30 0.54 044 | 049 | 051
10 10 30 0.52 045 | 0.48 | 0.50
10 20 30 0.68 045 | 0.70 | 0.66
20 0.45 | 0.99 | 0.92 0.87
20 1 30 0.49 050 | 0.51 | 0.50
20 2 30 0.50 050 | 0.51 | 0.50
20 3 30 0.47 046 | 0.50 | 0.49
20 4 30 0.52 043 | 0.48 | 0.52
20 5 30 0.51 044 | 0.46 | 0.50
20 6 30 0.52 045 | 0.46 | 0.49
20 10 30 0.51] 046 | 0.47 | 0.53
20 20 30 053 046 | 0.52 | 0.54
50 0.46 | 0.99 | 0.74 0.86
50 1 30 0.50 051 | 0.50 | 0.49
50 2 30 0.50 0.49 | 0.50 | 0.49
50 3 30 0.52 046 | 0.50 | 0.48
50 4 30 0.51] 047 | 051 | 0.48
50 5 30 0.51 044 | 0.46 | 0.51
50 6 30 0.54 044 | 0.46 | 051
50 10 30 0.55 046 | 0.49 | 0.53
50 20 30 053 045 | 048 | 051
100 0.48 | 1.00 | 0.58 0.77
100 1 30 0.48 047 | 0.48 | 0.47
100 2 30 0.46 048 | 0.54 | 0.48
100 3 30 0.4 044 | 052 | 047
100 4 30 0.50 043 | 0.54 | 0.46
100 5 30 0.54 044 | 054 | 0.45
100 6 30 053 041 | 051 | 0.52
100 10 30 0.50 046 | 051 | 0.48
100 20 30 0.50 046 | 0.51 | 0.52

Table 4.2: Classification results of various methods. nlagsnber of lags in the data,

nBottle: number of units in the bottleneck layer of the néastwork, nOther: number
of units in the hidden layers, LDA Test: Classification resolt using LDA for test data
classification, QDA Test: Classification of test data usingp®QRN Test: Classification

of test data using neural networks, SviftiOrest: Classificatfofest data using Support
Vector Machines, R prefix to each algorithm: Classificationairal network bottleneck
output using the corresponding algorithm

0.70
1

—— lags=10
—e— lags=20

lags=50
—— lags=100

0.65
1

0.60
1

Classification values
0.55
|

0.50
1

— o

=
S
o\

C=~0

0.45
1

T T T T
5 10 15 20

Number of Bottleneck Units

Figure 4.7: Classification results of the test data outpuhatbttieneck layer. Classi-
fication was done using Neural Network. The neural network tr@ned using Scaled
Conjugate Gradient(SCG).

output, neural network with a data lag of 10 and 20 bottlenguks obtained the best
classification and so did QDA and SVM. LDA obtained the beassification results
on the bottleneck units output with a data lag of 50 and 1Qdywtk units. Although
these results show some variation in the results based onuiméer of hidden layer
units there still appears to be some uniformity. The highemumber of lags the better
an algorithm performs on the data. Classification of botié&nnits output, however,
indicated that a lower number of bottleneck units would obteetter results. Overall,
QDA performed the best again with performance becomingebetith the increase in
the number of data lags. The column NN Test in this table hasl#ssification accuracy
values for the neural network trained using the correspantiottleneck units. These
bottleneck units do not correspond to the classificationvagt, which has only one
hidden layer with 50 units. In order to depict the variatidrthee classification results,

Figure 4.8 represents the box plots of various algorithmedusThese results clearly

41

0.9 1.0
1

0.8

Classification Result
0.7
|

0.6
1

0.5

0.4

LDA QDA NN SVM RNN RLDA RQDA RSVM

Algorithm

Figure 4.8: Classification results of different algorithros the test dataset. NN repre-
sents the neural network classification of the actual tetst dad R prefix implies the
classification of the bottleneck output of the neural nekwasing the corresponding
algorithm. Neural network was trained using Scaled Congi@gatadient algorithm.

indicate that QDA outperformed the rest of the algorithmd aas statistically signifi-
cant. A neural network trained using SCG performed bettan tha one trained using
fast convergence algorithm. There was no statistical Sggmce between the results
obtained using neural network and SVM. However, both of tipemiormed better than
the rest of the algorithms. Once again classification ofiéatick unit output was worse
than that of the input data.

In order to have a comparison with Devulapalli’s results viedt to train a neural
network with the same number of lags and the hidden and bettlelayer units as used
by him. These results were run with a lag of 62 as used by Depuailla The number
of bottleneck layer units was held constant at 30 as was ug&skbulapalli. Also, the
number of hidden layer units was varied to choose 40,50 anan@®. These results
are reported in Table 4.3. These results have been repant@dieural network trained

using SCG algorithm because it proved to be having higherracgun classifying the

42

nLags nBottle nOther, LDA | QDA | NN | Svm R- | R- R- R-
Test | Test | Test| Testf NN | LDA | QDA | Svm
Test Test | Test | Test

62 047 | 1 0.58 0.83

62 30 40 0.52 0.47 | 0.52 | 0.55
62 30 50 0.52 0.47 | 0.52 | 0.53
62 30 60 0.50 0.47 | 0.49 | 0.54

Table 4.3: Classification results of various methods usinigg2 and the neural network
used by Devulapalli. nlags: number of lags in the data, n@ottumber of units in the

bottleneck layer of the neural network, nOther: number afsum the hidden layers,
LDA Test: Classification results of using LDA for test datasd#ication, QDA Test:

Classification of test data using QDA, NN Test: Classificatibtest data using neural
networks, R-NN Test: Classification of neural network bolek output using neural
networks, Svm Test: Classification of Test data using Supyemtor Machines.

test dataset than the fast convergence algorithm (modifi#d However, the results in-
dicate that the training algorithm was unable to achievesifeation accuracy as good
as Devulapalli obtained using his training approach. SV @DA performed signif-
icantly better again than any other approach whether it ie ouDevulapalli's. The
neural network again did not provide any advantage for dlaation accuracy over the
classification of raw EEG data. A poor result using LDA as viretlicates that while
there could be some non-linearity in the dataset, neuralar&ttrained using SCG could
not learn those non-linear features as well as Devulapapproach did. A further tun-
ing of our algorithm might help to improve our classificatiaocuracy. However, all
these results that have been presented above were obtgimedrting the experiments
on subject 1 of our EEG dataset. It was observed that Dewililapad subject 3. There-
fore in order to exactly replicate Devulapalli's experinheatup we used subject 3 with
his experiment parameters. The set up that was chosen @s;ladraining dataset with
trials 2-10 of tasks 3 and 4, a test dataset of the first triabfuih tasks, these datasets
were lagged by 62, with 30 bottleneck layer units and 40 mddger units. The num-

ber of training epochs was chosen to be 200. For the three tdgssification network

43

the number of hidden units was chosen to be 60 with a sigmardter function in the
output layer. The number of training epochs was again chtsée 200. In addition
the target values were chosen to be -0.9 and 0.9 for the manitfainetic and the letter
writing tasks respectively. The classification resultstfos setup have been shown in

Table 4.4.

nLags nBottle nOther] LDA | QDA | NN | Svm R- | R- R- R-
Test | Test | Test| Testt NN | LDA | QDA | Svm
Test Test | Test | Test

62 0.59 | 0.93 | 0.57] 0.73
62 30 40 0.50 0.56 | 0.80 | 0.76

Table 4.4: Classification results of various methods usingg2 and the neural network
used by Devulapalli for subject 3. nlags: number of lags endhta, nBottle: number of
units in the bottleneck layer of the neural network, nOtimemrmber of units in the hidden
layers, LDA Test: Classification results of using LDA for testta classification, QDA
Test: Classification of test data using QDA, NN Test: Clasdificaof test data using
neural networks, R-NN Test: Classification of neural netwooktleneck output using
neural networks, Svm Test: Classification of Test data usupp8rt Vector Machines.

This table shows that classification accuracy for the redutzaset improved sig-
nificantly from 54%, the best obtained using SVM in table 42subject 1 using a setup
similar to Devulapalli’s, to the best of 80% for subject 3ngsQDA. These results were
obtained for the reduced dataset. We also saw an improvemérg classification ac-
curacy using our approaches on subject 1. Table 4.2 showththbest we had obtained
using any of our methods for the reduced dataset was 70%fdatisn accuracy using
QDA. However, we still obtained better results on the raw BB using QDA.

The improvement in the accuracy results after dimensignaiduction indicates
the effect of the bottleneck layer. It means that dimensiynaeduction would play a
significant role depending on the parameter set chosersdtdd@monstrates that dataset
also plays a very significant role in the classification resswle obtain. It might be that

subject 1 data are difficult to classify than subject 3 data.

44

Chapter 5
Conclusions

This research was based on the hypothesis that a bottleeec&l metwork would clas-
sify EEG data better than classification techniques like QRA, LDA and SVM with-
out the dimensionality reduction. However, the resultsdatk that a bottleneck net did
not provide any advantage in classification, in our set upaamalgorithm implementa-
tion. However, there was a marked improvement in the classifin accuracy when the
test subject was changed from 1 to 3. Overall, in almost alleaperiment runs QDA
performed the best followed by SVM for both raw as well as ElUEEG test datasets.
Neural network performed either worst of all or slightly tegtthan LDA.

These results show that for our setup of the neural netwodkaam training algo-
rithms, a bottleneck network would be the right choice foie#ata classification only
after more parameter tuning. Amongst the training algonghSCG seems to be better
both in terms of the computation time, the reconstruction8vand the classification.
Figures 4.1 and 4.2 show a comparison of reconstruction RiEREf fast convergence
and SCG training algorithms. Figures 4.1 and 4.8 show how SCG&red better clas-
sification results than the neural network trained usingdasvergence algorithm.

Since this work is built upon the previous research by Depalla[Dev96], it would
be worthwhile here to compare our results with his. Devulapggported a classification
accuracy of 86.22% for a reduced neural network with 30 bo#tk units and a window

size of 62. This window size would correspond to a lag of 62 um experiments.

45

Although we used a higher lag in our experiments, we did notease the number
of bottleneck units higher than 20 except while training araénetwork similar to
that used by Devulapalli. In general, our classificationuagcy of test dataset using
the reduced bottleneck network output data was far lessBeamlapalli’s results. We
achieved a best of 70% classification accuracy using SCGrgaailgorithm while it
did not go beyond 52% using fast convergence algorithm (firemtliLM). For raw EEG
data, Table 4.2 shows that we obtained a classification acgwf 92% using 10 lags
and 2 bottleneck units and also with data having 20 lags aadd3 bottleneck units.
These results were also obtained by training a neural n&twsing SCG for raw EEG
data. In addition Table 4.3 presents our results for a datai®2. We used a neural
network similar to the one used by Devulapalli with 30 batdek units, and trained it
using SCG. However, our results were still worse than De\allegpresults. We could
achieve only a best of 58% classification accuracy usingat@etwork while only 52%
using a reduced neural network in comparison to Devuldpdh.22% classification
accuracy for a similar reduced neural network. However,levthiese results were for
subject 1, our classification accuracy using subject 3 anith@lparameters exactly as
Devulapalli’'s, achieved improved results. We got a classifon accuracy of 80% for
the reduced dataset using QDA against Devulapalli's 86.2@%a similar network.
This indicates that SCG might need further parameter turongchieve better results
than Devulapalli’'s results. Further experimentation oa tlumber of bottleneck units
in combination with the total number of input data lags in tiaring could improve
our test data classification results. In addition, a largemral network with more hidden
layers could help learn the features of the dataset muchrtsett hence achieve a better
classification accuracy.

The fast convergence algorithm (modified LM) could not ag@igassification accu-

racy results better than 51% for neural network with 6 and dfiéneck units and data

46

lag of 20 for the raw EEG data. Our observations indicatedtasdta lag of 20 proved to
be a good choice. However, neither our algorithms nor Depalles approach was able
to beat the classification accuracy results obtained by QRBA was able to achieve
far better test data classification accuracy and alwayseaetliresults of more than 90%
with the best being 100% when there was a lag of 100 in the idata. SVM also did
better than the rest of the approaches except QDA.

Our hypothesis was based on the intuition that a bottlenetkark would be able
to retrieve the features of the dataset much better than ey algorithm which proved
to be difficult. On the other hand QDA was much more efficiensuccessfully dif-
ferentiating between the data features and be able to fyldksi data much better than
any other method. In training neural network with a furthariation in the number of
bottleneck units or the number of hidden layers we might bbe @mhobtain results which
are competitive with those of QDA. It also seems that we migive missed some of
the aspects of the approach used by Devulapalli, which negplain some of the rea-
sons why his neural network was able to achieve better sethdin the neural network
trained using our methods. One of the reasons we found wadataset. Subject 3
dataset was classified with higher accuracy than subjectthoégh, this indicates that
the dimensionality reduction could be effective for cléisation accuracy, it also raises
some questions. One of the important observations is thasification accuracy is data
dependent and sensitive to parameters in this set up. Fuaxperimentation will be
required to reach a good conclusion as to how these pararetaty affect the clas-
sification. Subject 1 seemed to be a very tough dataset, whil@eural network was
able to learn subject 3 features very well. This could meargthre differences between
subjects 1 and 3. However, one other aspect is the param@étenssed a sigmoid trans-
fer function in the output layer for subject 3 classificatiand a linear transformation

for subject 1. It is possible that, it could be the reason. igghtmeed to test our meth-

47

ods on many more subjects to really draw a more meaningfutlusion regarding the
factors that affect our classification accuracy. Some faatould be extraneous like the
subjects state of mind while the EEG is being recorded.

In our approaches, the inability of the neural network tovide more advantage
in classification indicates that the weights of the neurdlvoek might not have been
learned efficiently. It appears that our weight search spase very high concentration
of local minima which make it very difficult to find a global nimum of our objective
function of residual error minimization. As a result of tle are unable to find a good
set of weights. This inability influences the dimensiowyai@duction that we are achiev-
ing. It appears that finding a good set of weights might hekigiea better performing
neural network. In a recent paper by Hinton et al. [HS06] drpieing approach was
used to choose an initial set of neural network weights aaiditrg algorithms were used
to fine tune these weights for an efficient dimensionalityuciton. This indicates that it
could be possible that if we start with a good set of initialgtts our algorithms might
be able to fine tune those weights easily. This could enable take advantage of the
dimensionality reduction using neural network such thatl®an the dataset features
and achieve a higher classification accuracy. However,wbisld be a part of future
research.

Overall, we can still say the dimensionality reduction flassification seems to be a
very promising technique as indicated by ours and Devulispedsults. Further inves-
tigation needs to be carried out to fully exploit the potahtif dimensionality reduction

using neural networks for a higher classification accuracy.

48

REFERENCES

[ADS95]

[APO1]

[ASS98]

[bci0s]

[DCO3]

[Devos]

[GMW81]

[GMWO04]

C. Anderson, S. Devulapalli, and E. Stolz. Eeg sigsassification with
different signal representations. In F. Girosi, J. Makhdtil Manolakos,
and E. Wilson , editordNeural Networks for Signal Processing pages
475-483. IEEE Service Center, Piscataway, NJ, 1995.

C. Anderson and D. Peterson. Recent advances in eegl sigalysis and
classification. In R. Dybowski and V. Gant, edito@jnical Applications

of Artificial Neural Networkspages 175-191. Cambridge University Press,
UK, 2001.

C. Anderson, E. Stolz, and S. Shamsunder. Multit@réatoregressive
models for classification of spontaneous electroencepghao during men-
tal tasks. IEEE Transactions on Biomedical Engineerjp(3):277-286,
1998.

Guest editorial the third international meetinglmain-computer interface
technology: Making a difference. IEEE Transactions on Neural Systems
and Rehabilitation Engineeringolume 14, pages 126-127, 2006.

David DeMers and Garrison Cottrell. Non-linear dimemnslity reduc-
tion. In Stephen J&Hanson, Jack D. Cowan, and C. Lee Giles, editors,
Advances in Neural Information Processing Systemisime 5, pages 580—
587. Morgan Kaufmann, San Mateo, CA, 1993.

Saikumar Devulapalli. Non-linear principal conmgmt analysis and clas-
sification of eeg during mental tasks. Master’s thesis, GalorState Uni-
versity, 1996.

Philip E. Gill, Walter Murray, and Margaret H. WrightPractical Opti-
mization Academic Press Inc., 111 Fifth Avenue New York, NY, USA,
1981.

Philip E. Gill, Walter Murray, and Margaret H. WrighiMethods for non-
linear least squares problems. Technical University ofrDark, 2004.

49

[Hot53]

[HS06]

[HTFO1]

[Jas58]

[KA90]

[Kard7]

[KM96]

[Kni03]

[Kra91]

[LBOMOS]

[Lev44]

[Loe48]

[Mar63]

[M@193]

Harold Hotelling. New light on the correlation cdiefent and its transform.
Journal of The Royal Statistical Sociefy5:193—232, 1953.

Geoff Hinton and Ruslan Salakhutdinov. Reducingdimensionality of
data with neural networksScience313:504-507, 2006.

Trevor Hastie, Robert Tibshirani, and Jerome Fmed. The Elements of
Statistical Learning: Data Mining, Inference, and Predbet Springer,
2001.

H.H. Jasper. The ten-twenty electrode system ohtkenational federa-
tion. Electroencephalography and Cinical Neurophysiolo§)9:371-373,
1958.

Zachary A. Keirn and Jorge |. Aunon. A new mode of commuation
between man and his surrounding&EE Transactions on Biomedical En-
gineering 37(12):1209-1214, December 1990.

K Karhunen. Ueber lineare methoden in der wahrsdlotitskeitsrech-
nung.Annals Acad. Sci. Fennicae Seri&3, 1947.

Michael J. Kirby and Rick Miranda. Circular nodes inural networks.
Neural Computation8(2):390-402, 1996.

James N. Knight. Signal fraction analysis and adifremoval in eeg. Mas-
ter’s thesis, Colorado State University, Fort Collins, CO-83®5December
2003.

Mark A. Kramer. Nonlinear principal component aysé using autoasso-
ciative neural networksAIChE Journa) 37:233-243, 1991.

Yann LeCun, Lean Bottou, Genevieve B. Orr, and Klrabert Muller.
Efficient backprop. In Genevieve B. Orr and Klaus-Robert lelleditors,
Neural Networks: Tricks of the trad8pringer, 1998.

K. Leveberg. A method for the solution of certain plems in least squares.
Quart. Appl. Math,. 2:164-168, 1944.

M. M. Loeve. Fonctions aleatories de seconde ortird?rocess Stochas-
tigues et Movement BrownigHermann, Paris, 1948.

D. Marquardt. An algorithm for least-squares estiion of nonlinear pa-
rameters.SIAM J. Appl. Math.11:431-441, 1963.

Martin F. Mgller. A scaled conjugate gradient algiom for fast supervised
learning.Neural Networks6:525-533, 1993.

50

[Nab07]

[Oja91]

[PKK*05]

[UNNO1]

[Vap95]

[WIKEO1]

lan Nabney. Netlab neural network software.
http://www.ncrg.aston.ac.uk/netlab/, 2007.

Erkki Oja. Data compression, feature extractiong autoassociation in
feedforward neural networks. IArtificial Neural Networks pages 737—
745, 1991.

D. Peterson, J. Knight, M. Kirby, C. Anderson, and M. Thateature
selection and blind source separation in an eeg-based-toanputer in-
terface. EURASIP Journal on Applied Signal Processid§:3128-3140,
2005.

Shiro Usui, Shigeki Nakauchi, and Masae Nakano.ermal color repre-
sentation acquired by a five-layer neural networkAhtficial Neural Net-
works pages 867-872, 1991.

Vladimir N. Vapnik. The nature of statistical learning thearySpringer-
Verlag New York, Inc., New York, NY, USA, 1995.

Bogdan M. Wilamowski, Serdar Iplikci, Okyay Kaynaknd M. Onder Efe.
An algorithm for fast convergence in training neural netkgorin Interna-
tional Joint Conference on Neural Network®lume 3, pages 1778-1782,
2001.

51

