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ABSTRACT OF THESIS

DIMENSIONALITY REDUCTION AND CLASSIFICATION OF TIME

EMBEDDED EEG SIGNALS

Electroencephalogram (EEG) is the measurement of the electrical activity of the brain

measured by placing electrodes on the scalp. These EEG signals give the micro-voltage

difference between different parts of the brain in a non-invasive manner. The brain

activity measured in this way is being currently analyzed for a possible diagnosis of

physiological and psychiatric diseases. These signals have also found a way into cogni-

tive research. At Colorado State University we are trying to investigate the use of EEG

as computer input.

In this particular research our goal is to classify two mental tasks. A subject is asked

to think about a mental task and the EEG signals are measured using six electrodes

on his scalp. In order to differentiate between two different tasks, the EEG signals

produced by each task need to be classified. We hypothesize that a bottleneck neural

network would help us to classify EEG data much better than classification techniques

like Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis (QDA), and

Support Vector Machines.

A five layer bottleneck neural network is trained using a fastconvergence algorithm

(variation of Levenberg-Marquardt algorithm) and Scaled Conjugate Gradient (SCG).

Classification is compared between a neural network, LDA, QDAand SVM for both
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raw EEG data as well as bottleneck layer output. Results indicate that QDA and SVM

do better classification of raw EEG data without a bottlenecknetwork. QDA and SVM

always achieved higher classification accuracy than the neural network with a bottleneck

layer in all our experiments. Neural network was able to achieve its best classification

accuracy of 92% of test samples correctly classified, whereas QDA achieved 100% ac-

curacy in classifying the test data.

Mohammad Nayeem Teli
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Summer 2007
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Chapter 1

Introduction

The human brain is a complex organ with approximately 100 billion nerve cells called

neurons. Neurons gather and transmit electrochemical signals. No matter what state we

are in, whether asleep, awake or anesthetized, our brain produces some kind of waves

which can be observed and used for research. One of the most widely used methods of

capturing brain activity is using EEG.

Living brains having some kind of brain activity was known tomany as early as the

nineteenth century. However a German psychiatrist named Hans Berger was the first

to record this electrical activity in 1928. Ever since its discovery EEG has been used

to diagnose many medical conditions like epilepsy, identify the location of a suspected

brain tumor, or a disease in the brain such as Parkinson’s disease. It is a non-invasive

method of measuring electrical activity of the brain. Electrodes are placed on the scalp

and the brainwaves recorded.

A large amount of research is underway to interpret these waves and find ways to

utilize them. In computer science EEG is being used for a Brain Computer Interface

(BCI). This is a technology which can be very beneficial for people with motor disabil-

ities. It will provide them with a new powerful communication and control technique.

People severely disabled by amyotrophic lateral sclerosis(ALS), brain stem stroke, cere-

bral palsy, and other neuromuscular disorders would greatly benefit by advances in BCI

research and development [bci06].
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The research in this thesis is an attempt to understand the EEG waves and to classify

them. The EEG for this study was observed in subjects performing mental tasks. The

results of this research could be integrated with the current Brain Computer Interface

(BCI) project being undertaken at the Colorado State University (CSU). It could possibly

be used by paralyzed people, or by anyone for rudimentary user-interface actions, like

popping up windows or making menu choices. In order for us to classify and visualize

EEG these signals first need to go through dimensionality reduction.

1.1 Dimensionality Reduction

Dimensionality reduction is a method of obtaining the information from a high dimen-

sional feature space using fewer intrinsic dimensions. In machine learning it is very

important to reduce high dimensional data set for better classification, regression, pre-

sentation and visualization of data. It is also useful for better understanding of the

correlations within the data. This enables us to find the intrinsic dimensionality of the

dataset and better generalization.

Multiple approaches could be used for dimensionality reduction which may be linear

or non-linear. One of the most common linear techniques usedis the Principal Compo-

nents Analysis (PCA). It is also known as the Hotelling [Hot53], or Karhunen and Loeve

(KL) [Kar47][Loe48] transform. PCA is a linear transformation of a data set from high

dimensional space to its principal components representing the data set in lower dimen-

sions. It typically exploits the linear relationship between the data variables. PCA has

not been very useful where the relationship between the variables is non-linear. For ex-

ample, a helix formed by a sine over a cosine wave inℜ3 would be represented by PCA

in three dimensions. The real dimensionality of such a helixwould be one [DC93].

In order to avoid such situations when the data have non-linear relationships, we

use non-linear methods of dimensionality reduction. One way to perform the non-linear
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methods of dimensionality reduction is by using neural networks. A large amount of

research has gone into studying multi-layer neural networks. Kramer [Kra91] proposed

a Non Linear Principal Component Analysis (NLPCA) approach for training the feed-

forward neural network to obtain an identity mapping. The network has multiple hidden

layers with a middle ”bottleneck” layer. The output of the bottleneck layer represents

the lower dimensional representation of the input data set.Such a neural network with

an identity mapping,f(x) = x, has been very successful in obtaining a reduced rep-

resentation of the input data. The basic goal is to map the input to the output with

minimal error. The success of this goal means that the intrinsic dimensionality of the

data is equal to the number of units in the bottleneck layer. Oja [Oja91] used a five

layer neural network for non-linear dimensionality reduction. He was able to compute

smooth nonlinear mapping between the inputs and the centralhidden layer, and another

mapping between the central hidden layer and the outputs. Oja further further showed

that a sigmoid function in the hidden layer units enables learning the structure of com-

plex non-linear inputs embedded within a noisy environment. Usui et al. [UNN91] used

a five layer neural network for dimensionality reduction using a non-linear approach

as well. They showed that a non-linear representation of original data can be found

in lower dimensional space with multiple hidden layers. They successfully used their

technique in a color application , which reduces the dimensionality of the color space

of a multi-spectral sensor. Their approach uses the fact that color measurements form a

manifold of three intrinsic dimensions. Moreover, it has been found that the modes of

variation correspond to psychological color attributes ofhumans.

We have been mentioning the bottleneck layer network but haven’t really explained

it. We think this is the right place to present it. A bottleneck layer network has an

input layer and an output layer with hidden layers between them. The middle layer

characterized as a bottleneck layer has the lowest number ofhidden units. Figure 1.1
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represents one such network. In this figure the input layer isthe input data layer, and

Figure 1.1: Bottleneck Neural network.

the mapping layer reduces the dimensionality to the number of units in the bottleneck

layer. The bottleneck layer has the least number of units in the network. The demapping

layer changes the lower dimensional output of the bottleneck layer to the dimensionality

of the mapping layer and then the output layer finally remaps the dimensionality of the

output to that present in the input dataset. Although, this network has only three hidden

layers we could have more than that in a neural network depending on the dimensionality

reduction technique being used. The dots in the input and theoutput layers indicate that

there are more units in these layers depending on the dimensionality of the dataset. The

Output of each unit in the hidden layers is used as an input to all the units of the next

layer in this network. The input to each layer from all units of the previous layer is

multiplied by the weight of the link between the hidden units, summed up and passed

through a transfer function. One of the most widely used transfer function in a non-

linear neural network is a sigmoid function. The sigmoid function is a typical non-linear

transfer function that helps make outputs reachable. The neural network output could

be passed through a sigmoid function or not depending upon the design of the solution.

While all the above approaches have hidden layers with nodes representing real num-
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bers, Kirby et al.[KM96] suggested a circular node representation in the bottleneck layer.

This circular node stores and transmits angular information.

One of the earliest approaches in neural network training has been the use of back-

propagation algorithm. However, it has been seen to have slow convergence. LeCun et

al. [LBOM98] suggested that with an efficient choice of parameters backpropagation

algorithm can be used very efficiently. They further suggested that for a large and re-

dundant training set stochastic gradient with careful tuning is a good choice or one could

use the Levenberg-Marquardt algorithm. For a small data setthey suggested the use of

conjugate gradient.

The Levenberg-Marquardt algorithm [Lev44] [Mar63] is an iterative algorithm. It

could be referred to as an interpolation of Gauss-Newton andthe steepest descent meth-

ods. More recently, Hinton et al. [HS06] used a pretraining method to place the weights

near good solutions, followed by a gradient descent fine tuning method for training

multi-layer neural network. They used restricted Boltzmann machine to pretrain their

networks.

1.2 EEG research at Colorado State University

Researchers at CSU have studied various aspects of EEG. Knight [Kni03] analyzed eye

movements, eye blinks, muscles, heart beats and other electrical sources affecting EEG

recordings. He investigated approaches based on generalized singular value decomposi-

tion. Peterson et al. [PKK+05] indicated that Blind Source Separation(BSS) and feature

selection could be used to improve the performance of even a direct single-session BCI.

They used a modified genetic algorithm wrapped around a support vector machine clas-

sifier to search the space of feature subsets. Anderson et al.[AP01] found that auto

regressive (AR) models of six channel EEG results in the bestclassification accuracy.

They were able to identify with 70% accuracy of five cognitivetasks a person is doing
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for two of four subjects tested, and near 40% for the other two. Anderson et al. [ASS98]

compared raw data, power spectral densities, Karhunen-Loeve transforms, and AR mod-

els as signal representations. They found that AR models performed the best. Anderson

et al. [ADS95] compared four representations of EEG signalsand their classification by

a two-layer neural network with sigmoid activation functions. They concluded that the

frequency-based representation results in significantly more accurate classification than

the unprocessed or K-L representations.

1.3 Dimensionality Reduction and Classification of
EEG Data

EEG data also needs some dimensionality reduction before itcould be classified. This

dimensionality reduction of EEG data is very important to visualization and represen-

tation. Dimensionality reduction also becomes important because the number of elec-

trodes could vary from 6 to 256. EEG signals are noisy. There is a possibility of much

correlation because brain electrical activity spreads through the brain volume. In addi-

tion there could be correlation among different channels. These correlations might be

temporally separated. Dimensionality reduction could remove such correlations. It is

also important because an understanding of EEG data would mean that it could help in

brain computer interface research.

However, it is a difficult problem. The problem of unfolding the inherent represen-

tation of the brain activity using the EEG signals is complicated. Dimensionality re-

duction and classification of EEG using neural networks has been done before by many

researchers. The problem that has been tried by researchersearlier is the classification

of mental tasks. In order to classify the mental tasks, the EEG signals corresponding

to them are first fed to a bottleneck network and the bottleneck output fed to a classi-

fier. Keirn et al. [KA90] studied a set of tasks comprised of baseline (no activity), mental
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arithmetic, geometric figure rotation, mental letter composing and visual counting. Each

task had ten trials. In each trial 2500 samples were observedover 10 seconds.

Devulapalli [Dev96] used the same data as used by them and classified mental arith-

metic and mental letter composing tasks. This research alsoused the same dataset and

it is a follow-up to what Devulapalli did. He obtained good results and our goal would

be to repeat what was done and go beyond by using better training algorithms. In his

conclusion he reported that NLPCA requires a long training time because of the sheer

number of weights. We shall use a training algorithm that is known to be faster than a

simple conjugate gradient algorithm used by Devulapalli. We will discuss more about

Devulapalli’s approach and how the approach of this research is different from his, in

the next section.

1.4 Prior Results with Bottleneck Network on EEG
Classification

Devulapalli [Dev96] used Non-Linear Principal Components Analysis (NLPCA) for di-

mensionality reduction. In his experiments he used temporal windows of EEG data.

Each window was 62 samples long (approximately corresponding to a quarter second)

and consecutive windows were overlapped by 31 samples. Since each window consisted

of 62 samples per channel and 6 channels were used, the dimensionality of the dataset

used was, 62 x 6 = 372. A separate seventh channel (called the eye-blink channel) was

used to record eye-blink information. A high potential spike in the eye blink channel

(greater than 100µVolts) lasting up to 10 milliseconds was considered as an eye-blink.

However, sample points corresponding to all six channels falling in the region of eye

blinks were removed from the raw EEG data before being subjected to any processing.

Ten sessions were conducted for each task with each session lasting for a period

of ten seconds which results in 2500 samples per task per session. This was followed

7



by a classification of the mental tasks using a standard backpropagation neural net-

work trained using conjugate gradient algorithm. Devulapalli reported a classification

accuracy of 86.22% for a 30-dimensional bottleneck layer representation of the EEG

data over all the trials. This was followed by the 20-dimensional representation with

76.21%, 40-dimensional representation with 65.83% and 10-dimensional representation

with 57.89%.

In the current work our goal is to build upon this previous research and to classify

EEG signals using the same approach and data as used earlier.However, we will be

using a variant of Levenberg-Marquardt algorithm [WIKE01],and Scaled Conjugate

gradient (SCG) [Møl93] as preprocessing steps to train the neural network. For classifi-

cation we will try to classify different tasks using neural network, Linear Discriminant

Analysis (LDA), Quadratic discriminant Analysis (QDA) andSupport Vector Machine

(SVM). The number of tasks to be classified would depend on howwell our network

represents the EEG data. We will be training our five layer neural network with a hid-

den bottleneck layer. The number of bottleneck units will bevaried to find the correct

number of units in the bottleneck layer for an efficient representation of the input data.

The number of units will be chosen on the basis of how well the bottleneck network

maps the input to the output data.

1.5 Organization of the Rest of Thesis

The rest of the thesis layout is as follows: Chapter 2 covers the mathematical background

of steepest descent, Gauss-Newton, Levenberg-Marquardt algorithm and its variant, fast

convergence algorithm, which is the algorithm being used inthis work. The second

neural network training algorithm SCG is also covered. LDA and QDA and SVM are

also discussed.

In Chapter 3 the methods for describing the data, the tasks andthe experiments are
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presented. Chapter 4 contains the results of the experiments. Chapter 5 is comprised of

conclusions and discussion of the results.
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Chapter 2

Mathematical Background

In this chapter we describe the background of the algorithmswe used for this work. For

training the multi-layer neural network we used two different algorithms: a Fast Con-

vergence Algorithm Based on Levenberg-Marquardt (FCALM) [WIKE01] and Scaled

Conjugate Gradient algorithm (SCG) [Møl93]. For classification, we used Linear Dis-

criminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector

Machines (SVM). The following sections describe the basis and the mathematics behind

the algorithms.

The training of a bottleneck multi-layer neural network involves a search for an opti-

mized set of weights between the units of different layers inthe network. An optimized

set of weights is such that the squared residual error between the input and the output is

minimal. It would vary from one problem set to another but when the output is nearly

equal to the input, it means we have reached close to the intrinsic dimensionality at the

bottleneck layer and the weights are optimized. So our objective function is the squared

error between the input and the output and we want to minimizeit. This requires that we

find a good set of weights. In order to find this set of good weights the training algorithm

has to traverse through a complex residual error landscape.The goal is to find a global

minima of this landscape. Typically, the problem is reducedto minimizing a function
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F(w), which is a sum of squares of nonlinear functions

F (w) =
1

2

m
∑

i=1

fi(w)2 =
1

2
||f(w)||2 (2.1)

The i-th component of the m-vectorf(w) is the functionfi(w), and‖ f(w) ‖ is termed

the residual atw. The fraction1
2

has been included to avoid the appearance of a factor

of two in the derivatives [GMW81].

In order to solve the least squares problem of (2.1) we will need to find the derivatives

of F [GMW04].1 Provided thatf has continuous second partial derivatives, we can write

its Taylor expansionas

f(w + h) = f(w) + J(w)h + O(||h||2), (2.2)

whereJǫRm∗n is theJacobian. This is a matrix containing the first partial derivatives of

the function components,

(J(w))ij =
∂fi

∂wj

(w). (2.3)

As regards F:Rn → R, it follows from the first formulation in (2.1), that

∂F (w)

∂wj

=
m

∑

i=1

fi(w)
∂fi

∂wj

(w). (2.4)

Thus, the gradient is

F ′(w) = J(w)T f(w). (2.5)

We also need the Hessian ofF. From (2.4) we see the element in position (j,k) is

∂2F

∂wj∂wk

(w) =
m

∑

i=1

(
∂fi

∂wj

(w)
∂fi

∂wk

(w) + fi(w)
∂2fi

∂wj∂wk

(w)), (2.6)

showing that

F ′′(w) = J(w)T J(w) +
m

∑

i=1

fi(w)f ′′
i (w). (2.7)

1Most of the equations here are based on [GMW04]
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2.1 The Gauss-Newton Method

The Gauss-Newton method is the basis of the Levenberg-Marquardt algorithm and its

variation. It is based on a linear approximation to the components off ( a linear model

of f ) in the neighborhood ofw: For small‖h‖ we see from the Taylor expansion (2.2)

that

f(w + h) ≃ ℓ(h) ≡ f(w) + J(w)h. (2.8)

Inserting this in the definition (2.1) ofF we see that

F (w + h) ≃ L(h) ≡
1

2
ℓ(h)T ℓ(h)

=
1

2
fT f + hT JT f +

1

2
hT JT Jh

= F (w) + hT JT f +
1

2
hT JT Jh (2.9)

(with f = f(w) andJ = J(w)). The Gauss-Newton stephgn minimizes L(h),

hgn = argminh{L(h)}.

It is easily seen that the gradient and the Hessian of L are

L′(h) = JT f + JT Jh, L′′(h) = JT J. (2.10)

Comparison with (2.5) shows thatL′(0) = F ′(w). Further, we see that the matrixL′′(h)

is independent ofh. It is symmetric and ifJ has full rank, i.e., if the columns are linearly

independent, thenL′′(h) is also positive definite. This implies thatL(h) has a unique

minimizer, which can be found by solving

(JT J)hgn = −JT f. (2.11)

This is a descent direction for F since

hT
gnF

′(w) = hT
gn(JT f) = −hT

gn(JT J)hgn < 0. (2.12)
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The typical step is

Solve (JT J)hgn = −JT f

w := w + αhgn (2.13)

whereα is found by line search. The classical Gauss-Newton method usesα = 1 in

all steps. The method with line search can be shown to have guaranteed convergence,

provided that{w|F (w) ≤ F (w0)} is bounded, wherew0 is the previous position, and

the JacobianJ(w) has full rank in all steps. Unlike Newton’s method, Gauss-Newton

does not have quadratic convergence. One shortcoming of theGauss-Newton method is

that the matrixJ(w)T J(w) may not be positive definite. This could be avoided by using

Levenberg [Lev44] and Marquardt [Mar63] modification described in the next section.

2.2 The Levenberg-Marquardt Method

For continuity we will explain this method based on [GMW04] and follow it by the defi-

nition provided by [WIKE01] and their modification. Levenberg [Lev44] and later Mar-

quardt [Mar63] suggested to use a damping term in the Gauss-Newton method which

modifies (2.11) to

(JT J + µI)hlm = −g with g = JT f and µ ≥ 0. (2.14)

Here,J = J(w) andf = f(w). The damping parameterµ has several effects:

1. For all µ > 0 the coefficient matrix,(JT J + µI), is positive definite, and this

ensures thathlm is a descent direction,

2. For large values ofµ we get

hlm ≃ −
1

µ
g = −

1

µ
F ′(w),
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i.e., a short step in the steepest descent direction. This isgood if the current

iterate is far from the solution.

3. If µ is very small, thenhlm ≃ hgn, which is a good step in the final stages of the

iteration, when w is close tow∗, wherew∗ is the minima. IfF (w∗) = 0 (or very

small), then we can get (almost) quadratic final convergence.

Thus, the damping parameter influences both the direction and the size of the step, and

this leads us to make a method without a specific line search. The choice of initialµ-

value should be related to the size of the elements,a
(0)
ij , A0 = J(w0)

T J(w0), for example

by letting

µ0 = τ ·max
i

{a
(0)
ii }, (2.15)

whereτ is chosen by the user. During iteration the size ofµ can be updated. The

updating is controlled by the gain ratio

ρ =
F (w) − F (w + hlm)

L(0) − L(hlm)
,

where the denominator is the gain predicted by the linear model

L(0) − L(hlm) = −hT
lmJT f −

1

2
hT

lmJT Jhlm

= −
1

2
hT

lm(2g + (JT J + µI − µI)hlm)

=
1

2
hT

lm(µhlm − g).

Note that bothhT
lmhlm and -hT

lmg are positive, soL(0) − L(hlm) is guaranteed to be

positive.

A large value ofρ indicates thatL(hlm) is a good approximation toF (w + hlm),

and we can decreaseµ so that the next Levenberg-Marquardt step is closer to the Gauss-

Newton step. Ifρ is small (maybe even negative), thenL(hlm) is a poor approximation,

14



and we should increaseµ with the twofold aim of getting closer to the steepest descent

direction and reducing the step length.

The stopping criteria for the algorithm is such that at global minimum we have

F ′(w∗) = g(w∗) = 0, so we can use

‖g(w∗)‖∞ ≤ ǫ1, (2.16)

whereǫ1 is a small, positive number, chosen by the user. Another relevant criterion is to

stop if the change inw is small,

‖wnew − w‖ ≤ ǫ2(‖w‖ + ǫ2). (2.17)

This expression gives a gradual change from relative step size ǫ2 when‖w‖ is large to

absolute sizeǫ2
2 if w is close to 0. In the above equationwnew is the new position.

The above description is a more general representation of Levenberg-Marquardt al-

gorithm. Below, we will reproduce how [WIKE01] presented thealgorithm and their

modifications. The variablew will represent the weights of the links between the units

of different layers of the neural network. Wilamowski et al.[WIKE01] presented the

optimization as a performance index in the form

F (w) =
P

∑

p=1

[

K
∑

k=1

(dkp − okp)
2

]

(2.18)

wherew = [w1w2...wN ]T consists of all weights of the network,dkp is the desired value

of thekth output and thepth pattern,okp is the actual value of thekth output and thepth

pattern,N is the number of weights,P is the number of patterns, andK is the number

of the network outputs. Equation (2.18) can be written as

F (w) = ET E (2.19)

where

E = [e11 ... eK1 e12 ... eK2 ... e1P ... eKP ]T
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ekp = dkp − okp, k = 1, ..., K, p = 1, ..., P

whereE is the cumulative error vector (for all patterns). From equation (2.19) the

Jacobian matrix is defined as

J =



































∂e11

∂w1

∂e11

∂w2

. . . ∂e11

∂wN
∂e21

∂w1

∂e21

∂w2

. . . ∂e21

∂wN

...
...

...
∂eK1

∂w1

∂eK1

∂w2

. . . ∂eK1

∂wN

...
...

...
∂e1P

∂w1

∂e1P

∂w2

. . . ∂e1P

∂wN
∂e2P

∂w1

∂e2P

∂w2

. . . ∂e2P

∂wN

...
...

...
∂eKP

∂w1

∂eKP

∂w2

. . . ∂eKP

∂wN



































(2.20)

and the weights are calculated using the following equation

wt+1 = wt −
(

JT
t Jt + µtI

)−1
JT

t Et (2.21)

where I is identity unit matrix,µ is a learning parameter andJ is a Jacobian ofm

output errors with respect ton weights of the neural network. JacobianJ is calculated

at each iteration step and so is the inversion ofJT J square matrix with dimensionN ×

N . In order to reduce this dimensionality Wilamowski et al. [WIKE01] suggested a

modification which is described in the section below.

2.2.1 Wilamowski et al. Modification of Levenberg-Marquardt Al-
gorithm

Wilamowski et al. [WIKE01] changed the performance index equation (2.18) to

F (w) =
K

∑

k=1

[

P
∑

p=1

(dkp − okp)
2

]2

(2.22)

This represents the global error and reduces the dimensionality of the matrix to be in-

verted at each iteration step. Equation (2.22) can also be written as:

F (w) = ÊT Ê (2.23)
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where

Ê = [ê1 ê2 · · · êK ]T and êk =
P

∑

p=1

(dkp − okp)
2

with k = 1, . . . , K. The modified Jacobian matrix̂Jt as reported by Wilamowski et

al. [WIKE01] is represented as

Ĵt =











∂ê1

∂w1

∂ê1

∂w2

. . . ∂ê1

∂wN
∂ê2

∂w1

∂ê2

∂w2

. . . ∂ê2

∂wN

...
...

...
∂ ˆeK

∂w1

∂ ˆeK

∂w2

. . . ∂ ˆeK

∂wN











(2.24)

Using the modified Jacobian matrix equation (2.21) can rewritten as

wt+1 = wt −
(

ĴT
t Ĵt + µtI

)−1

ĴT
t Êt (2.25)

Wilamowski et al. [WIKE01] report that the advantage of this modification is thatĴt is

nowK by N matrix. However, since the above equation still needs to invert anN by N

matrix they used Matrix Inversion Lemma, according to whichif a matrix A satisfies

A = B−1 + CD−1CT (2.26)

then

A−1 = B − BC
(

D + CT BC
)−1

CT B. (2.27)

Applying this lemma to the term within the parentheses of equation (2.25) we get,

(

ĴT
t Ĵt + µtI

)−1

=
1

µt

I −
1

µ2
t

ĴT
t





I +
1

µt

ĴtĴ
T
t







−1

Ĵt (2.28)

Now the right side of equation (2.28) reduces to the size K by K. According to Wil-

amowski et al. [WIKE01], this significantly reduces the computational complexity of

the weight adaptation problem. Therefore, with this changethe weight update equation

becomes

wt+1 = wt −

[

1

µt

I −
1

µ2
t

ĴT
t





I +
1

µt

ĴtĴ
T
t







−1

Ĵt

]

ĴT
t Êt (2.29)
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2.3 Scaled Conjugate Gradient

Scaled conjugate gradient (SCG) [Møl93] method belongs to the class of conjugate gra-

dient methods. It uses second order information from the neural network but requires

only O(N) memory usage, whereN is the number of weights in the network. It avoids

time consuming line search of other conjugate gradient methods and finds good solu-

tions even in an error landscape with ravines.

Let wi be a vector from the spaceRN , whereN is the sum of the number of weights

and of the number of the biases of the network. LetE be the error function we want

to minimize. This algorithm differs from the other conjugate gradient methods in the

following ways.

• Each iterationk of a conjugate gradient method (CGM) computeswk+1 = wk +

αkpk, wherepk is a new conjugate direction, andαk is the size of the step in this

direction. Actuallyαk is a function ofE ′′(wk), the Hessian matrix of the error

function, namely the matrix of the second derivatives. In contrast to the other

CGMs which avoid the complex computation of the Hessian and approximateαk

with a time consuming line search procedure, SCG makes the following simple

approximation of the termsk, a key component of the computation ofαk:

sk = E ′′(wk)pk ≈
E ′(wk + σkpk) − E ′(wk)

σk

, 0 < σk ≪ 1

• As the Hessian is not always positive definite, which prevents the algorithm from

achieving good performance, SCG uses a scalarλk which is regulates the indefi-

niteness of the Hessian. This is done by a setting:

sk =
E ′(wk + σkpk) − E ′(wk)

σk

+ λkpk

and adjustingλk at each iteration. This is the main contribution of SCG to both

fields of neural learning and optimization theory.
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2.4 Linear Discriminant Analysis

In this section the discussion with be based mostly on [HTF01]. Linear Discriminant

Analysis (LDA) is used to find a linear combination of features to classify two or more

different classes. It assumes that each class is multivariate Gaussian with the distribution

[HTF01]

fk(x) =
1

(2π)
p

2 |Σk|
1

2

e−
1

2
(x−µk)T Σ−1

k
(x−µk), (2.30)

where mean of classk, µk =
∑

gi=k
xi

Nk
, xi represents thei-th observation of classk, Nk

is the number of classk observations,K is the number of classes,N is the total number

of observations, andΣk is the covariance of classk.

For optimal classification we need to find the class posteriorsPr(G|X). Suppose in

classG = k, the class-conditional density ofX be defined byfk in equation (2.30) with
∑K

k=1 πk = 1 whereπk is the mean of class k. An application of Bayes theorem gives

us

Pr(G = k|X = x) =
fk(x)πk

∑K

l=1 fℓ(x)πℓ

. (2.31)

LDA assumes that the classes have a common covariance matrixΣk = Σ,∀k. In order

to compare two classesk andl, we look at the log-ratio

log
Pr(G = k|X = x)

Pr(G = ℓ|X = x)
= log

fk(x)

fl(x)
+ log

πk

πℓ

= log
πk

πl

−
1

2
(µk + µℓ)

T Σ−1(µk − µℓ) + xT Σ−1(µk − µℓ),

(2.32)

which is a linear equation inx. The assumption in linear log odds ratio is that the

decision boundary between classesk andℓ is linear [HTF01]. InR
P the classes will be

separated by hyperplanes. Based on equation (2.32) the linear discriminant functions

δk(x) = xT Σ−1µk −
1

2
µT

k Σ−1µk + log πk (2.33)

are an equivalent description of the decision rule, withG(x) = argmaxkδk(x). The
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parameters of the Gaussian distribution are calculated from the training data, withΣ =
∑K

k=1

∑

gi=k(xi − µk)(xi − µk)
T /(N − K).

2.5 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is a classification technique which separates

two or more classes using a quadratic surface. Unlike LDA, there is no assumption that

the covarianceΣk of different classes is equal. The discriminant function isdefined as

δk(x) = −
1

2
log |Σk| −

1

2
(x − µk)

T Σ−1
k (x − µk) + log πk. (2.34)

The decision boundary between each pair of classesk and ℓ is described by a

quadratic equationx : δk(x) = δℓ(x). For a detailed discussion on LDA and QDA refer

to [HTF01].

2.6 Support Vector Machines

Support Vector Machines (SVM) are classifiers which producenon linear bound-

aries by constructing a linear boundary in a large, transformed version of the feature

space [HTF01]. Here we will present the details as describedby Hastie et al. [HTF01].

For an exhaustive treatment see [Vap95].

Suppose we want to separate two classes,

(x1, y1), . . . , (xl, yl), xǫRn, yǫ{−1, +1}, (2.35)

with a hyperplane

{x : f(x) = xT β + β0 = 0}. (2.36)

Optimal separation requires that the group of vectors be optimally separated without
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error. This implies that

min
β,β0

‖β‖

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N.

The distanced(β, β0; x) of a pointx from the hyperplane(β, β0) is,

d(β, β0; x) =
|β · x + β0|

‖β‖
(2.37)

The optimal hyperplane is obtained by maximizing the margin, ρ(β, β0). The margin is

given by,

ρ(β, β0) = min
{xi:yi=1}

d(β, β0; xi) + min
{xj :yj=−1}

d(β, β0; xj)

= min
{xi:yi=1}

|β · xi + β0|

‖β‖
+ min

{xj :yj=−1}

|β · xj + β0|

‖β‖

=
1

‖β‖








min

{xi:yi=1}
|β · xi + β0| + min

{xj :yj=−1}
|β · xj + β0|









=
2

‖β‖
(2.38)

Therefore, the hyperplane that separates the data is the onethat minimizes

φ(w) =
1

2
‖β‖2. (2.39)

In order to understand how equation (2.39) is equivalent to finding the optimal hyper-

plane, suppose that the following bound holds,

‖β‖ ≤ C. (2.40)

Then,

d(β, β0; x) ≥
1

C
. (2.41)

where C is the gap between the optimized hyperplane and the closest class observation

on either side of the separating hyperplane. Accordingly, the hyperplanes cannot be
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nearer than 1/C to any of the data points. The solution to the optimization problem of

equation (2.39) is given by the saddle point of the Lagrange functional

L(β, β0, α) =
1

2
‖β‖2 −

l
∑

i=1

αi[(xi · β) + β0]yi − 1. (2.42)

whereαi are the Lagrange multipliers. We minimize this Lagrange function w.r.t.β and

β0. Setting the respective derivatives to zero, we get

β =
N

∑

i=1

αiyixi, (2.43)

0 =
N

∑

i=1

αiyi, (2.44)

By substituting (2.43) and (2.44) in (2.42), we obtain the Lagrangian (Wolfe) dual ob-

jective function

LD =
N

∑

i=1

αi −
1

2

N
∑

i=1

N
∑

i′=1

αiαi′yiyi′x
T
i xi′ , (2.45)

and the constraints are

αi ≥ 0, i = 1, . . . , N
N

∑

i=1

αiyi = 0 (2.46)

Solving eq (2.45) with constraints of (2.46) determines theLagrange multipliers, and

the optimal separating hyperplane is given by,

β̂ =
N

∑

i=1

α̂iyixi, β̂0 = −
1

2
β̂· [xr + xs] (2.47)

wherexr andxs are any support vector from each class satisfying,

α̂r, α̂s > 0, yr = 1, ys = −1. (2.48)

The hard classifier is then,

Ĝ(x) = sign[f̂(x)]

= sign[xT β̂ + β̂0]. (2.49)
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Alternatively, a soft classifier may be used which linearly interpolates the margin,

Ĝ(x) = H(β̂·x + β̂0) where H(x) =











−1, x < 1;

x, −1 ≤ x ≤ 1;

1, 1.

(2.50)

This soft classifier produces a real valued output between -1and 1 when the classifier is

queried within the margin, where no training data resides.
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Chapter 3

Methods

In this chapter our main focus will be to describe the variousmethods that were used in

our experiments.

3.1 Electroencephalogram (EEG) data

In this research work we used the data collected by Keirn et al. [KA90]. This data was

collected using the 10-20 system of electrode placement [Jas58]. These positions are

shown in Figure 3.1 This is a a standardized system of measuring EEG based on area

Figure 3.1: 10-20 system of electrode positions for EEG [KA90].

of the cerebral cortex and the position of the electrodes on the scalp. Each letter rep-

resents the location of the brain with the number indicatingthe hemisphere, and z the

mid line. The letters F, T, C, P, and O represent frontal, temporal, central, parietal and
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occipital parts of the brain. The data for this study was measured at six sites: C3, C4,

P3, P4, O1, and O2. The data was stored at a frequency of 250 samples per second. Sets

of ten second trials were recorded for each of five mental tasks: resting task, imagined

letter writing, mental multiplication, visualized counting, and geometric object rotation.

These tasks were chosen to exhibit different spatial patterns for the purpose of classifi-

cation.

In this research we undertake the study of only two tasks: letter writing and mental

arithmetic. For the imagined letter writing task, the subject was asked to compose a

letter without vocalizing it. In subsequent trials the subject was asked to resume the

letter from a previous starting point. In the mental arithmetic task each subject was

asked to multiply two numbers, with the numbers being different in the different trials.

The subjects were asked not to vocalize the numbers and to start each trial in the letter

composition task from where the previous trial had left off [Kni03].

3.1.1 Data Representation

The tasks data could be graphically represented in Figures 3.2. In each figure the letters

with the numbers under the signals represent the electrodesfrom which the brainwaves

were measured. The electrooculograph (EOG) shown in each plot represent the eye

movements.

3.1.2 Neural Network

The neural network we used for this thesis is a five layer network represented in Fig-

ure 3.3. The dots indicate that there could be many more unitsin each one of those

layers. In our research the input is a six dimensional dataset. The number of units in

the hidden layers and the bottleneck layer are chosen through pilot experiments to get

the best configuration. The main focus of the experiments, however, was to find the best

number of the bottleneck units.
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Figure 3.2: The figure on the left represents letter composition task and the one on the
right is the mental arithmetic task. Each figure shows the sixelectrode outputs and EOG.
These output values vary between -50 to +50 micro volts.

Figure 3.3: Neural network.
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3.2 Data Partitioning

In this research we used the data observed on subject 1. A subject is defined as a person

from whom the EEG data is observed. Each task has ten trials. Each trial consists of

2500 observations per session with each session lasting forten seconds. Therefore, one

set of raw EEG data consisted of six dimensions (corresponding to the six channels),

with 2500 samples for each dimension. A separate seventh channel (called the eye-

blink channel) was used to record eye-blink information. A high potential spike in the

eye blink channel (greater than 100µ Volts) lasting up to 10 milliseconds was considered

as an eye-blink. The sample points corresponding to all six channels which fall in the

region of eye blinks were removed from the raw EEG data beforebeing subjected to any

processing.

For our training dataset we used trials 1 to 4 of tasks 3 (mental arithmetic) and 4

( letter-composing). Therefore our training dataset had 20000 observations. The test

dataset comprised of trials 5 for tasks 3 and 4 and therefore,5000 samples. The data

from these two tasks was concatenated in both training and test datasets.

3.3 Data Lagging

EEG data used in this research was collected using 6 electrodes connected to the sub-

ject’s scalp. Each electrode data output represented a dimension in the dataset making

it 6-dimensional. This dataset was preprocessed using lagging.

Lagging was carried out by combining multiple samples together, thereby increasing

the dimensionality of the neural network input dataset. Forexample, a lag of 1 meant

that the dataset retained its dimensionality of 6. A lag of 2 implied that successive

samples were combined, which means, row 1 of the dataset was combined with row 2

making row 1, 12 dimensional, original row 2 was combined with original row 3 making

a new row 2 with 12 dimensions, so on and so forth. Thereby, a lag of 2 means that the

27



dimensionality of the input dataset was changed from 6 to 12,a lag of 3 implies the new

dimensionality of the dataset is 18, and so on. A lag of two also meant that the number

of samples has reduced by 1, a lag of three means the number of samples has reduced

by 2, and so on.

Lagging was done on both training as well as testing datasets. Therefore, lagging

implied that although the data dimensionality was increased, the number of training and

testing samples decreased, however, not at the same rate.

3.4 Bottleneck Algorithm Parameters

In this research we used a five layer neural network with threehidden layers and the

middle one being the bottleneck. Using initial pilot experiments we held the hidden lay-

ers static with 30 hidden units. After this was chosen our main focus was to determine

the number of bottleneck units. In each of our experiments, we varied the number of

bottleneck units from 1 to 6 and also 10 and 20, holding the number of hidden layer

units to be 30 on either side of our bottleneck layer. With these units we ran our final

set of experiments using both SCG and modified LM algorithms. However, some pilot

experiments were run with different combinations of hiddenlayer and bottleneck layer

units as well. We reported the results for the above set of units in this research. The

amount of data that was read for training was also varied using a variable which could

be tuned. Although, pilot experiments were run using a smaller fraction of data, how-

ever, the results reported in this research are for the wholeset of training and test data

described in the previous section.

The default number of iterations for each training algorithm was set to be 1000, how-

ever, pilot experiments determined that 500 iterations yielded equally better results. All

our results reported are for 500 iterations. Some of the parameters used in SCG algo-

rithm were the same as reported in Nabney’s netlab matlab library [Nab07] because our
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SCG algorithm implementation was adapted from the matlab code of this library. The

algorithm was terminated either at the end of the maximum iterations or if the second

derivatives of the location in the weight search space wouldreach the machine precision,

whichever happened sooner. The search direction was updated using Polak-Ribiere for-

mula or we would restart in the direction of negative gradient after a fixed number of

steps determined by pilot experiments. The initial search direction was chosen to be the

negative of the gradient with lower bound on scale to be 1.0e-15 and the upper bound

on scale as 1.0e100.

For modified LM algorithm, the maximum number of iterations was again chosen

through pilot experiments and set to 200. There are not many parameters that required

to be tuned for this algorithm. The algorithm was terminatedeither at the end of the

maximum number of iterations or when the machine precision was reached. The initial

weight multiplication factor was chosen to be 2 after testing some other values in the

pilot experiments. All the parameters were chosen based on values reported by Wilam-

owski et al. If the RMSE increased in an epoch, the learning factor of the algorithm

would be decreased by a tenth and if the error decreased then the learning factor would

be multiplied by a factor of 10 to move faster in that direction of weight change. The

Jacobian was still computed in each iteration, however, theinversion matrix had the

dimension equal to the number of outputs rather than the number of weights.

3.5 Training and Testing Classification Algorithms

Some of the classification algorithms that we used in this research were the neural net-

work, LDA, QDA and SVM. Classification using neural network was done by training it

using SCG and modified LM algorithms followed by classification of the test data. The

classification was done for both raw EEG input data and the reduced data. The reduced

data was the output of the bottleneck layer obtained after first training the whole neu-
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ral network, followed by removing the mapping network (the input layer, hidden layer

and the bottleneck layer) and using the output of the bottleneck layer as input data for

classification using the classification network. The classification network consisted of

a network with only one hidden layer with 50 units. This couldbe represented as a

network like n-p-1, where n is the bottleneck layer output dimensionality representing

the classification network input dimesnionality, and p the hidden layer. There is only

one output with target values 0 and 1 for math and letter writing tasks respectively. The

reduced data for classification was obtained from NN with hidden layer units being 30

units and the number of bottleneck units being varied from 1-6,10, and 20. For each

different value of the number of bottleneck units in the NN, the bottleneck output was

used as an input to the three layer classification network andthe results reported for all

the input datasets.

LDA, QDA and SVM algorithms were also used for classificationof EEG data and

that of the reduced data. In each algorithm the training dataset is first learned and then

the results reported for the test dataset for the classification into letter writing or the math

tasks. Therefore, the training dataset helps in the featureselection and the test dataset is

used for classification. In each algorithm the training and the test dataset is partitioned

as explained in the data partitioning section. The classification was done using these

algorithms for raw EEG data as well as the reduced data obtained from the bottleneck

layer. These classification results are reported for reduced dataset obtained by training

NN with the number of bottleneck layer units varied from 1-6,10 and 20. The number

of units in the other two hidden layers was set at 30 in the training neural network.
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Chapter 4

Results

This chapter reports the results of various experiments carried out in this research. A

number of experiments were carried out to determine the optimal number of bottleneck

units depending upon the output error of the test data set. The 5 layer neural network

was first trained using the fast convergence algorithm [WIKE01] followed by scaled

conjugate gradient algorithm separately [Møl93]. Classification results reported were

obtained using neural network, LDA, QDA and SVM.

4.1 Fast Convergence Algorithm

In order to determine the accuracy with which the data was being replicated at the output

layer, we studied the RMSE of our EEG data set with a lag of 5. The number of units

in the hidden layers was kept static at 30 and the number of units at the bottleneck layer

was varied.

In our pilot experiments the test data RMSE was compared withthe training data

RMSE by varying the number of bottleneck units from 1-100. Our results indicated

that the test RMSE for the number of bottleneck units between10 and 20 was below

the training RMSE. With the increase in the number of bottleneck units between 30

and 100, the test RMSE started showing up above the training RMSE. This observation

encouraged us to use bottleneck units from 1 to 20. In all our subsequent experiments the
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bottleneck units have been varied from 1 to 20. Following these results we trained our

neural network for 10 and 20 lags using fast convergence algorithm. Again, the number

of bottleneck units was varied from 1 to 20. Fast convergencealgorithm because of its

hessian matrix could not handle data with more than 20 lags, so we restricted our results

up to those lags. The RMSE for the reconstructed test data using fast convergence

algorithm is shown in Figure 4.1
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Figure 4.1: RMSE of reconstructed test data vs. the number ofbottleneck units for
different data lags.

Based on Figure 4.1, the least RMSE was obtained with 20 lags for a network con-

taining 20 bottleneck units. This value is 0.239939. This indicates the best layer struc-

ture for our neural network would be a network with 30-20-30 as the hidden layers and

a data lag of 20. It also indicated that higher the number of lags the lower the RMSE. It

could also be noticed that the RMSE kept decreasing with the increase in the number of

bottleneck units. It may be possible that we could achieve better results with more bot-

tleneck units. However, it was not pursued in this research.We were also intrigued by

the decrease in the RMSE with the increase in the number of lags, however, our training
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algorithm could not handle higher lags.

After the RMSE experiments, the test data set was classified using different algo-

rithms and the results reported in Table 4.1. We used LDA, QDAand SVM for clas-

nLags nBottle nOther LDA
Test

QDA
Test

NN
Test

Svm
Test

R-
NN
Test

R-
LDA
Test

R-
QDA
Test

R-
Svm
Test

10 0.48 0.93 0.50 0.73
10 1 30 0.50 0.51 0.51 0.50
10 2 30 0.50 0.51 0.51 0.49
10 3 30 0.50 0.51 0.51 0.51
10 4 30 0.48 0.51 0.51 0.51
10 5 30 0.50 0.51 0.51 0.49
10 6 30 0.50 0.51 0.51 0.54
10 10 30 0.50 0.51 0.51 0.54
10 20 30 0.50 0.51 0.51 0.57
20 0.50 0.97 0.51 0.76
20 1 30 0.50 0.54 0.54 0.52
20 2 30 0.50 0.54 0.54 0.51
20 3 30 0.50 0.54 0.54 0.51
20 4 30 0.50 0.54 0.54 0.46
20 5 30 0.50 0.54 0.54 0.51
20 6 30 0.49 0.54 0.54 0.53
20 10 30 0.52 0.54 0.54 0.52
20 20 30 0.50 0.54 0.54 0.56

Table 4.1: Classification results of various methods. nlags:number of lags in the data,
nBottle: number of units in the bottleneck layer of the neural network, nOther: number
of units in the hidden layers, LDA Test: Classification results of using LDA for test data
classification, QDA Test: Classification of test data using QDA, NN Test: Classification
of test data using neural networks, R-NN Test: Classificationof neural network bottle-
neck output using neural networks, Svm Test: Classification of Test data using Support
Vector Machines.

sifying the test data set. Neural network trained using fastconvergence algorithm was

also used for classification. The table also includes results for the classification of the

bottleneck output. The neural network was first trained and then the first half of the

neural network detached. The test data at the output of the bottleneck layer of the de-
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tached network was used as an input for the classification algorithms for classifications.

These results have been reported in Table 4.1 under the columns with prefix ’R’ before

the algorithm name. The letter ’R’ represents the reduced neural network. The results

indicate that QDA did the best for the raw test data. In this table the classification re-

sults in the NN test column represents the classification results for the neural network

trained using the corresponding bottleneck network and notthe classification network.

The classification network has only one hidden layer with 50 units in it. A box plot com-

parison of these classification results is presented in Figure 4.2. Although, we observed

the least RMSE in the bottleneck network with hidden layers 30-20-30, the best clas-

sification using neural network was obtained for the hidden layers, 30-6-30. The best

data lag is 20. The reduced neural network classification results using neural network

was obtained for the network 30-10-30, although there isn’tany significant difference

between this result and the one obtained for original test dataset using 30-6-30 network.

However, there is a significant difference between the original dataset classification re-

sults using QDA and other algorithms. For the original test dataset SVM was the second

best with significantly better than LDA and the neural network. None of the algorithms

produced encouraging results using the reduced neural network test output. There was

no significant difference between the Reduced LDA (RLDA), Reduced QDA(RQDA)

and Reduced SVM(RSVM) results, but they were still significantly better than Reduced

NN(RNN) results, although the difference wasn’t huge.

In order to visualize the results of the RNN we present the results in Figure 4.3.

This was done so that we have a clear picture of the neural network behavior. This

figure shows the variation of classification results of the test dataset at the output of

the bottleneck units. The classification network was trained using the fast convergence

algorithm (modified LM). The graph indicates that a bottleneck layer with 10 units and a

data lag of 20 was able to obtain the best classification accuracy of the test dataset. This
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Figure 4.2: Classification results of different algorithms for the test dataset. NN rep-
resents the neural network classification of the actual testdata and algorithms with a
prefix R means the classification of the bottleneck output of the neural network. Neural
network was trained using fast convergence algorithm(modified LM).
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Figure 4.3: Classification results of the test data output at the bottleneck layer. Clas-
sification was done using Neural Network. The neural networkwas trained using fast
convergence algorithm(modified LM).
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indicates that a higher lag in the data might have yielded better classification accuracy of

the test dataset, however, the training algorithm was unable to handle dataset with lags

higher than 20. This indicates that with the increase in the number of bottleneck units,

the additional features obtained using those units were making it difficult to differentiate

between the two tasks.

4.2 Scaled Conjugate Gradient

We also trained our neural network using scaled conjugate gradient algorithm using

various combinations of the number of units in the hidden layers. The RMSE of the

reconstructed test data of the neural network trained usingSCG is represented in Fig-

ure 4.4.

5 10 15 20

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Bottleneck Units

T
E

S
T

 R
M

S
E

5 10 15 20

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

5 10 15 20

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

5 10 15 20

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

lags=100
lags=50
lags=20
lags=10

Figure 4.4: RMSE of reconstructed test data vs. the number ofbottleneck units for
different data lags.

These plots indicate that the least RMSE is for a data with lag10 and 20 units in

the bottleneck layer. Therefore, the best performing network has hidden layers with

30-20-30 units. This plot also shows that lower lag and higher number of bottleneck
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units helps in achieving a lower RMSE using SCG. It also leads us to think that a further

reduction in the number of lags or an increase in the number ofbottleneck units would

yield a much lower RMSE. However, a further decrease in the number of lags would

bring the gap, between the number of units in the bottleneck layer and the input data

dimensionality, closer. Another, important observation is that the RMSE in this figure is

lower than that in Figure 4.1. It might be possible that SCG is able to learn the weights

between the hidden layers much better than the fast convergence algorithm (modified

LM). It seems that although both algorithms learn the features equally well initially,

SCG is able to fine tune the weight selection much better than the fast convergence

algorithm (modified LM).

Since, SCG did better in terms of RMSE reduction than fast convergence algorithm

(modified LM), we wanted to investigate how the data was beingreconstructed at the

output of our bottleneck neural network. Figure 4.5 shows the reconstructed data output

compared to the input dataset for each channel. Different plots of this figure indicate

that the reconstruction is fairly well except for channels 3and 5. However, overall the

bottleneck neural network output is able to mimic the input very well. This also indicates

that the bottleneck layer is able to distinguish between thevarious channels input signals.

In order to verify that we investigated the output of the bottleneck units of our bottleneck

network. These outputs are shown in Figure 4.6. These figuresrepresent the outputs at

the bottleneck network, showing only a part of the dataset. In the left plot of Figure 4.6

we are trying to represent a quarter of the input samples to see the covariance of different

channels at the bottleneck layer. In order to further visualize with a smaller sample size,

the plot on the right in the same figure shows the bottleneck output for only 100 samples.

These plots further illustrate that there is at the most either very little or no correlation

between the bottleneck unit outputs. Overall, a no correlation output at the bottleneck

layer indicates that the neural network is learning the dataset quite well. This would

37



0
2

0
4

0
6

0
8

0
1

0
0

−0.4 −0.2 0.0 0.2 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(a)

0
2

0
4

0
6

0
8

0
1

0
0

−0.6 −0.4 −0.2 0.0 0.2 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(b)

0
2

0
4

0
6

0
8

0
1

0
0

−0.4 −0.2 0.0 0.2 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(c)

0
2

0
4

0
6

0
8

0
1

0
0

−0.4 −0.2 0.0 0.2 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(d)

0
2

0
4

0
6

0
8

0
1

0
0

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(e)

0
2

0
4

0
6

0
8

0
1

0
0

−0.4 −0.2 0.0 0.2 0.4

S
a

m
p

le
s

EEG potential (in micro volts)

In
p

u
t

O
u

p
u

t

(f)

F
igure

4.5:
E

ach
figure

represents
the

reconstructed
test

da
ta

at
the

output
of

the
bot-

tleneck
N

N
versus

the
inputtestdatasetfor

an
E

E
G

channel.
F

igures
a-fcorrespond

to
channels

1-6,respectively.

38



0 200 400 600 800 1000

−0
.5

0.
0

0.
5

Samples

Bo
ttl

en
ec

k 
O

ut
pu

t (
in

 m
ic

ro
 v

ol
ts

)

BN Unit 1
BN Unit 2
BN Unit 3
BN Unit 4

(a)

0 20 40 60 80 100

−0
.5

0.
0

0.
5

Samples

Bo
ttl

en
ec

k 
O

ut
pu

t (
in

 m
ic

ro
 v

ol
ts

)

BN Unit 1
BN Unit 2
BN Unit 3
BN Unit 4

(b)

Figure 4.6: The figure on the left represents bottleneck outputs with 1000 samples and
the one on the right shows the same output for only 100 samplesusing 4 bottleneck
units.

mean that classification accuracy of this output should be higher.

These classifications results of the bottleneck output havebeen presented in Fig-

ure 4.7. This plot indicates that reduction in RMSE observedin Figure 4.4 is directly

proportional to the classification results. A neural network with 10 lags and 20 bottle-

neck units had the lowest RMSE and this network obtained the best classification results.

These two figures indicate that SCG performed the best with a 30-20-30 network and

data lag of 10.

We represented various combinations of lags, the number of bottleneck units and

various classification results using neural networks and other algorithms. The results

are represented in Table 4.2.

This table indicates that the neural network performed the best classification for a

data lag of 20 and hidden layers with 30-6-30 units. This is not the same as was seen to

have the least RMSE. LDA performed the best when data lag was 100 and so did QDA

although there wasn’t much difference in the results with the change in the number of

data lags. SVM did the best with data lag of 20. In classification of bottleneck units
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nLags nBottle nOther LDA
Test

QDA
Test

NN
Test

Svm
Test

R-
NN
Test

R-
LDA
Test

R-
QDA
Test

R-
SVM
Test

10 0.46 0.93 0.92 0.87
10 1 30 0.50 0.49 0.50 0.50
10 2 30 0.47 0.45 0.50 0.49
10 3 30 0.49 0.44 0.50 0.49
10 4 30 0.52 0.44 0.47 0.51
10 5 30 0.51 0.45 0.45 0.49
10 6 30 0.54 0.44 0.49 0.51
10 10 30 0.52 0.45 0.48 0.50
10 20 30 0.68 0.45 0.70 0.66
20 0.45 0.99 0.92 0.87
20 1 30 0.49 0.50 0.51 0.50
20 2 30 0.50 0.50 0.51 0.50
20 3 30 0.47 0.46 0.50 0.49
20 4 30 0.52 0.43 0.48 0.52
20 5 30 0.51 0.44 0.46 0.50
20 6 30 0.52 0.45 0.46 0.49
20 10 30 0.51 0.46 0.47 0.53
20 20 30 0.53 0.46 0.52 0.54
50 0.46 0.99 0.74 0.86
50 1 30 0.50 0.51 0.50 0.49
50 2 30 0.50 0.49 0.50 0.49
50 3 30 0.52 0.46 0.50 0.48
50 4 30 0.51 0.47 0.51 0.48
50 5 30 0.51 0.44 0.46 0.51
50 6 30 0.54 0.44 0.46 0.51
50 10 30 0.55 0.46 0.49 0.53
50 20 30 0.53 0.45 0.48 0.51
100 0.48 1.00 0.58 0.77
100 1 30 0.48 0.47 0.48 0.47
100 2 30 0.46 0.48 0.54 0.48
100 3 30 0.46 0.44 0.52 0.47
100 4 30 0.50 0.43 0.54 0.46
100 5 30 0.54 0.44 0.54 0.45
100 6 30 0.53 0.41 0.51 0.52
100 10 30 0.50 0.46 0.51 0.48
100 20 30 0.50 0.46 0.51 0.52

Table 4.2: Classification results of various methods. nlags:number of lags in the data,
nBottle: number of units in the bottleneck layer of the neural network, nOther: number
of units in the hidden layers, LDA Test: Classification results of using LDA for test data
classification, QDA Test: Classification of test data using QDA, NN Test: Classification
of test data using neural networks, Svm Test: Classification of Test data using Support
Vector Machines, R prefix to each algorithm: Classification ofneural network bottleneck
output using the corresponding algorithm
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Figure 4.7: Classification results of the test data output at the bottleneck layer. Classi-
fication was done using Neural Network. The neural network was trained using Scaled
Conjugate Gradient(SCG).

output, neural network with a data lag of 10 and 20 bottleneckunits obtained the best

classification and so did QDA and SVM. LDA obtained the best classification results

on the bottleneck units output with a data lag of 50 and 10 bottleneck units. Although

these results show some variation in the results based on thenumber of hidden layer

units there still appears to be some uniformity. The higher the number of lags the better

an algorithm performs on the data. Classification of bottleneck units output, however,

indicated that a lower number of bottleneck units would obtain better results. Overall,

QDA performed the best again with performance becoming better with the increase in

the number of data lags. The column NN Test in this table has the classification accuracy

values for the neural network trained using the corresponding bottleneck units. These

bottleneck units do not correspond to the classification network, which has only one

hidden layer with 50 units. In order to depict the variation of the classification results,

Figure 4.8 represents the box plots of various algorithms used. These results clearly
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Figure 4.8: Classification results of different algorithms for the test dataset. NN repre-
sents the neural network classification of the actual test data and R prefix implies the
classification of the bottleneck output of the neural network using the corresponding
algorithm. Neural network was trained using Scaled Conjugate Gradient algorithm.

indicate that QDA outperformed the rest of the algorithms and was statistically signifi-

cant. A neural network trained using SCG performed better than the one trained using

fast convergence algorithm. There was no statistical significance between the results

obtained using neural network and SVM. However, both of themperformed better than

the rest of the algorithms. Once again classification of bottleneck unit output was worse

than that of the input data.

In order to have a comparison with Devulapalli’s results we tried to train a neural

network with the same number of lags and the hidden and bottleneck layer units as used

by him. These results were run with a lag of 62 as used by Devulapalli. The number

of bottleneck layer units was held constant at 30 as was used by Devulapalli. Also, the

number of hidden layer units was varied to choose 40,50 and 60units. These results

are reported in Table 4.3. These results have been reported for a neural network trained

using SCG algorithm because it proved to be having higher accuracy in classifying the
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nLags nBottle nOther LDA
Test

QDA
Test

NN
Test

Svm
Test

R-
NN
Test

R-
LDA
Test

R-
QDA
Test

R-
Svm
Test

62 0.47 1 0.58 0.83
62 30 40 0.52 0.47 0.52 0.55
62 30 50 0.52 0.47 0.52 0.53
62 30 60 0.50 0.47 0.49 0.54

Table 4.3: Classification results of various methods using 62lags and the neural network
used by Devulapalli. nlags: number of lags in the data, nBottle: number of units in the
bottleneck layer of the neural network, nOther: number of units in the hidden layers,
LDA Test: Classification results of using LDA for test data classification, QDA Test:
Classification of test data using QDA, NN Test: Classification of test data using neural
networks, R-NN Test: Classification of neural network bottleneck output using neural
networks, Svm Test: Classification of Test data using SupportVector Machines.

test dataset than the fast convergence algorithm (modified LM). However, the results in-

dicate that the training algorithm was unable to achieve classification accuracy as good

as Devulapalli obtained using his training approach. SVM and QDA performed signif-

icantly better again than any other approach whether it be ours or Devulapalli’s. The

neural network again did not provide any advantage for classification accuracy over the

classification of raw EEG data. A poor result using LDA as wellindicates that while

there could be some non-linearity in the dataset, neural network trained using SCG could

not learn those non-linear features as well as Devulapalli’s approach did. A further tun-

ing of our algorithm might help to improve our classificationaccuracy. However, all

these results that have been presented above were obtained by running the experiments

on subject 1 of our EEG dataset. It was observed that Devulapalli used subject 3. There-

fore in order to exactly replicate Devulapalli’s experiment setup we used subject 3 with

his experiment parameters. The set up that was chosen includes; a training dataset with

trials 2-10 of tasks 3 and 4, a test dataset of the first trial for both tasks, these datasets

were lagged by 62, with 30 bottleneck layer units and 40 hidden layer units. The num-

ber of training epochs was chosen to be 200. For the three layer classification network
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the number of hidden units was chosen to be 60 with a sigmoid transfer function in the

output layer. The number of training epochs was again chosento be 200. In addition

the target values were chosen to be -0.9 and 0.9 for the mentalarithmetic and the letter

writing tasks respectively. The classification results forthis setup have been shown in

Table 4.4.

nLags nBottle nOther LDA
Test

QDA
Test

NN
Test

Svm
Test

R-
NN
Test

R-
LDA
Test

R-
QDA
Test

R-
Svm
Test

62 0.59 0.93 0.57 0.73
62 30 40 0.50 0.56 0.80 0.76

Table 4.4: Classification results of various methods using 62lags and the neural network
used by Devulapalli for subject 3. nlags: number of lags in the data, nBottle: number of
units in the bottleneck layer of the neural network, nOther:number of units in the hidden
layers, LDA Test: Classification results of using LDA for testdata classification, QDA
Test: Classification of test data using QDA, NN Test: Classification of test data using
neural networks, R-NN Test: Classification of neural networkbottleneck output using
neural networks, Svm Test: Classification of Test data using Support Vector Machines.

This table shows that classification accuracy for the reduced dataset improved sig-

nificantly from 54%, the best obtained using SVM in table 4.2 for subject 1 using a setup

similar to Devulapalli’s, to the best of 80% for subject 3 using QDA. These results were

obtained for the reduced dataset. We also saw an improvementin the classification ac-

curacy using our approaches on subject 1. Table 4.2 shows that the best we had obtained

using any of our methods for the reduced dataset was 70% classification accuracy using

QDA. However, we still obtained better results on the raw EEGdata using QDA.

The improvement in the accuracy results after dimensionality reduction indicates

the effect of the bottleneck layer. It means that dimensionality reduction would play a

significant role depending on the parameter set chosen. It also demonstrates that dataset

also plays a very significant role in the classification results we obtain. It might be that

subject 1 data are difficult to classify than subject 3 data.
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Chapter 5

Conclusions

This research was based on the hypothesis that a bottleneck neural network would clas-

sify EEG data better than classification techniques like NN,QDA, LDA and SVM with-

out the dimensionality reduction. However, the results indicate that a bottleneck net did

not provide any advantage in classification, in our set up andour algorithm implementa-

tion. However, there was a marked improvement in the classification accuracy when the

test subject was changed from 1 to 3. Overall, in almost all our experiment runs QDA

performed the best followed by SVM for both raw as well as reduced EEG test datasets.

Neural network performed either worst of all or slightly better than LDA.

These results show that for our setup of the neural network and our training algo-

rithms, a bottleneck network would be the right choice for EEG data classification only

after more parameter tuning. Amongst the training algorithms, SCG seems to be better

both in terms of the computation time, the reconstruction RMSE and the classification.

Figures 4.1 and 4.2 show a comparison of reconstruction RMSEusing fast convergence

and SCG training algorithms. Figures 4.1 and 4.8 show how SCG obtained better clas-

sification results than the neural network trained using fast convergence algorithm.

Since this work is built upon the previous research by Devulapalli [Dev96], it would

be worthwhile here to compare our results with his. Devulapalli reported a classification

accuracy of 86.22% for a reduced neural network with 30 bottleneck units and a window

size of 62. This window size would correspond to a lag of 62 in our experiments.
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Although we used a higher lag in our experiments, we did not increase the number

of bottleneck units higher than 20 except while training a neural network similar to

that used by Devulapalli. In general, our classification accuracy of test dataset using

the reduced bottleneck network output data was far less thanDevulapalli’s results. We

achieved a best of 70% classification accuracy using SCG training algorithm while it

did not go beyond 52% using fast convergence algorithm (modified LM). For raw EEG

data, Table 4.2 shows that we obtained a classification accuracy of 92% using 10 lags

and 2 bottleneck units and also with data having 20 lags and, 3and 6 bottleneck units.

These results were also obtained by training a neural network using SCG for raw EEG

data. In addition Table 4.3 presents our results for a data lag of 62. We used a neural

network similar to the one used by Devulapalli with 30 bottleneck units, and trained it

using SCG. However, our results were still worse than Devulapalli’s results. We could

achieve only a best of 58% classification accuracy using neural network while only 52%

using a reduced neural network in comparison to Devulapalli’s 86.22% classification

accuracy for a similar reduced neural network. However, while these results were for

subject 1, our classification accuracy using subject 3 and all the parameters exactly as

Devulapalli’s, achieved improved results. We got a classification accuracy of 80% for

the reduced dataset using QDA against Devulapalli’s 86.22%for a similar network.

This indicates that SCG might need further parameter tuning to achieve better results

than Devulapalli’s results. Further experimentation on the number of bottleneck units

in combination with the total number of input data lags in ourtraining could improve

our test data classification results. In addition, a larger neural network with more hidden

layers could help learn the features of the dataset much better and hence achieve a better

classification accuracy.

The fast convergence algorithm (modified LM) could not achieve classification accu-

racy results better than 51% for neural network with 6 and 10 bottleneck units and data
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lag of 20 for the raw EEG data. Our observations indicate thata data lag of 20 proved to

be a good choice. However, neither our algorithms nor Devulapalli’s approach was able

to beat the classification accuracy results obtained by QDA.QDA was able to achieve

far better test data classification accuracy and always achieved results of more than 90%

with the best being 100% when there was a lag of 100 in the inputdata. SVM also did

better than the rest of the approaches except QDA.

Our hypothesis was based on the intuition that a bottleneck network would be able

to retrieve the features of the dataset much better than any other algorithm which proved

to be difficult. On the other hand QDA was much more efficient insuccessfully dif-

ferentiating between the data features and be able to classify the data much better than

any other method. In training neural network with a further variation in the number of

bottleneck units or the number of hidden layers we might be able to obtain results which

are competitive with those of QDA. It also seems that we mighthave missed some of

the aspects of the approach used by Devulapalli, which mightexplain some of the rea-

sons why his neural network was able to achieve better results than the neural network

trained using our methods. One of the reasons we found was thedataset. Subject 3

dataset was classified with higher accuracy than subject 1. Although, this indicates that

the dimensionality reduction could be effective for classification accuracy, it also raises

some questions. One of the important observations is that classification accuracy is data

dependent and sensitive to parameters in this set up. Further experimentation will be

required to reach a good conclusion as to how these parameters really affect the clas-

sification. Subject 1 seemed to be a very tough dataset, whileour neural network was

able to learn subject 3 features very well. This could mean there are differences between

subjects 1 and 3. However, one other aspect is the parameters. We used a sigmoid trans-

fer function in the output layer for subject 3 classification, and a linear transformation

for subject 1. It is possible that, it could be the reason. We might need to test our meth-
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ods on many more subjects to really draw a more meaningful conclusion regarding the

factors that affect our classification accuracy. Some factors could be extraneous like the

subjects state of mind while the EEG is being recorded.

In our approaches, the inability of the neural network to provide more advantage

in classification indicates that the weights of the neural network might not have been

learned efficiently. It appears that our weight search spacehas a very high concentration

of local minima which make it very difficult to find a global minimum of our objective

function of residual error minimization. As a result of thiswe are unable to find a good

set of weights. This inability influences the dimensionality reduction that we are achiev-

ing. It appears that finding a good set of weights might help design a better performing

neural network. In a recent paper by Hinton et al. [HS06] a pretraining approach was

used to choose an initial set of neural network weights and training algorithms were used

to fine tune these weights for an efficient dimensionality reduction. This indicates that it

could be possible that if we start with a good set of initial weights our algorithms might

be able to fine tune those weights easily. This could enable usto take advantage of the

dimensionality reduction using neural network such that welearn the dataset features

and achieve a higher classification accuracy. However, thiswould be a part of future

research.

Overall, we can still say the dimensionality reduction for classification seems to be a

very promising technique as indicated by ours and Devulapalli’s results. Further inves-

tigation needs to be carried out to fully exploit the potential of dimensionality reduction

using neural networks for a higher classification accuracy.
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