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ABSTRACT OF DISSERTATION

POSE ESTIMATION OF SPHERICALLY CORRELATED IMAGES USING

EIGENSPACE DECOMPOSITION IN CONJUNCTION WITH SPECTRAL THEORY

Eigenspace decomposition represents one computationally efficient approach for deal-

ing with object recognition and pose estimation, as well as other vision-based problems,

and has been applied to sets of correlated images for this purpose. The general idea behind

eigenspace decomposition is that a large set of highly correlated images can be approxi-

mately represented by a much smaller subspace. Unfortunately, determining the dimension

of the subspace, as well as computing the subspace itself is computationally prohibitive. To

make matters worse, this off-line expense increases drastically as the number of correlated

images becomes large (which is the case when doing fully general three-dimensional pose es-

timation or illumination invariant pose estimation). However, previous work has shown that

for data correlated in one-dimension, Fourier analysis can help reduce the computational

burden of this off-line expense.

The first part of this dissertation extends some of the ideas developed for one-dimensionally

correlated image data to data correlated in two- and three-dimensions making fully general

three-dimensional pose estimation possible (assuming the object is illuminated from a single

distant light source). The first step in this extension is to determine how to capture training

images of the object by sampling the two-sphere (S2), and the rotation group (SO(3)) ap-

propriately. Therefore, a thorough analysis of spherical tessellations is performed as applied

to the problem of pose estimation. An algorithm is then developed for reducing the off-line

computational burden associated with computing the eigenspace by exploiting the spectral

information of this spherical data set. The algorithm is based on the fact that, similar

to Fourier analysis on the line or circle, spherically correlated functions can be expanded

into a finite series using spherical harmonics. It is then shown that the algorithm can be

extended to higher dimensions by applying a proper rotation to each of the samples defined

on the surface of the sphere. Using this sampling technique, a parameterization of SO(3) is
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obtained. It is shown that SO(3) correlated functions can be expanded into a finite series

by applying a rotation to the set of spherical harmonics and expanding the function using

Wigner-D matrices. Experimental results are presented to compare the proposed algorithm

to the true eigenspace decomposition, as well as assess the computational savings.

The second part of this dissertation deals with the problem of pose estimation when

variations in illumination conditions exist. It is shown that the dimensionality of a set of

images of an object under a wide range of illumination conditions and fixed pose can be

significantly reduced by expanding the image data in a series of spherical harmonics. This

expansion results in a reduced dimensional set of “harmonic images”. It is shown that the

set of harmonic images are capable of recovering a significant amount of information from

a set of images captured when both single and multiple illumination sources are present.

An algorithm is then developed to estimate the eigenspace of a set of images that contain

variation in both illumination and pose. The algorithm is based on projecting the set of

harmonic images onto a set of Fourier harmonics by applying Chang’s eigenspace decompo-

sition algorithm. Finally, an analysis of eigenspace manifolds is presented when variations in

both illumination and pose exist. A technique for illumination invariant pose estimation is

developed based on eigenspace partitioning. Experimental results are presented to validate

the proposed algorithm in terms of accuracy in estimating the eigenspace, computational

savings, and the accuracy of determining the pose of three-dimensional objects under a

range of illumination conditions.

Randy C. Hoover
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO 80523

Summer 2009
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CHAPTER I

INTRODUCTION

1.1 Background

Object recognition and pose estimation of three-dimensional (3-D) objects from two-dimensional

(2-D) images has become an important issue in computer vision applications. The recogni-

tion of 3-D objects from 2-D images has been an active research area since the early 1960s

and has seen significant attention in recent years [2–4]. The general idea of object recog-

nition is to discern information about a 3-D scene from a 2-D image. The pose estimation

portion attempts to estimate the 3-D localization of the object in question. In a typical

computer vision system, new incoming data (typically in the form of imaging or sensing de-

vices) goes through a three step process. The first step involves capturing the new incoming

data and converting this data to a digital format. This is typically done with a camera,

range finder, thermal detection device, or any other device that allows certain information

pertaining to the object to be evaluated. The second step deals with pre-processing the new

data to prepare it for the final stage. The pre-processing step could involve edge detection,

feature extraction, filtering, thresholding, or any number of other techniques. The third

and final step of a typical computer vision system is the interpretation of the scene. This

step has also been referred to as image comprehension, in which the information obtained

in the previous step goes through a matching phase in an attempt to interpret information

in the scene [5].

Most of the previous computer vision systems in an industrial setting have been model

based [5]. Model-based object recognition methods can be categorized into three classes
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based on the dimension of the spatial description of objects, i.e., 2-D, 21
2 -D, and 3-D de-

scriptions [5]. A 3-D description gives an object-centered, viewpoint-independent, and vol-

umetric representation of the object, such as with CAD models, while a 2-D description

gives a viewer-centered representation in the image space, e.g., shape features derived from

the image of an object. An object description is considered 21
2 -D if it is a viewer-centered

representation, but depends on local surface properties of the object in each view, such as

range (depth) and surface orientation [6,7].

An alternative approach to model based recognition and pose estimation, is appearance-

based methods. Appearance-based methods are not dependent on features, edges, or sur-

face properties but instead rely only on the appearance of the object in question. Using

appearance-based methods for object recognition and pose estimation is a two step process.

The first step is to acquire training images of the object in question from a large number

of orientations. This step attempts to capture the appearance of the object from nearly all

vantage points. Once the training images have been acquired, an optimal set of images is

calculated to “best” represent the training set. This first step is computed off-line and is

relatively time consuming. The second step involves projecting the new incoming data onto

the optimal set of images and attempting to find the best match. Once a match has been

found, the object in question has been discovered and it’s orientation can be calculated.

The second step of the process, i.e., the on-line phase, consists of computing a matrix vec-

tor product, and then searching a manifold to find the “best” match. This phase of the

object recognition and pose estimation process is very computationally efficient. Because

the content of an image is affected not only by the features of objects in the image but also

by environmental factors such as variation in illumination, appearance-based methods have

the potential to be more robust.

This dissertation considers a class of appearance-based object recognition and pose es-

timation techniques referred to as subspace methods. Subspace methods were originally

introduced as an efficient approach to image compression and image coding [8–10], how-

ever these techniques have also been applied to several different computer vision problems.

Subspace methods have also been referred to as eigenspace methods, principal component
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analysis, or the Karhunen-Loeve transformation methods [11,12]. Eigenspace methods rep-

resent a computationally efficient technique for dealing with complicated computer vision

problems. As a result, eigenspace methods have been applied to several different appli-

cation areas. Specific examples include face characterization and recognition [13–18], lip

reading [19, 20], object recognition and pose estimation [21–31], as well as a host of appli-

cations that arise in industrial automation [32]. These applications take advantage of the

fact that a set of highly correlated images can be approximately represented by a reduced

dimensional set of eigenimages [24,33].

Once the principal eigenimages of an image data set have been determined, using these

eigenimages is very computationally efficient for the on-line classification of 3-D objects.

Unfortunately, the off-line calculation for determining the appropriate subspace dimension,

as well as the principal eigenimages themselves is computationally expensive. This drawback

has been addressed using several different approaches. One approach to calculating the

principal eigenimages is by using iterative techniques such as the power method [34, 35] or

conjugate gradient algorithms [36, 37] that calculate one eigenimage at a time. A second

approach uses the block power method and Lanczos iteration where a set of eigenimages are

calculated simultaneously [38]. Another approach relies on either updating a fixed set of

eigenimages by adding one new image at a time [33], or as in [39] by allowing the subspace

to vary depending on the content of the new image.

A fundamentally different approach was proposed by Chang et al. [26] (refer to Chap-

ter 3) where the authors show that the Fast Fourier Transform (FFT) can be used to

approximate the desired subspace dimension, as well as the principal eigenimages if the

image data set is correlated in one-dimension. Examples of one-dimensionally correlated

image data sets given in [26] were arbitrary video sequences, as well as sequences of ob-

jects rotated through a single axis of rotation (referred to here as S1). A modified version

of Chang’s algorithm has also been applied to images characterized by three parameters

where the images were captured from a spherical patch above the object [40]. In [41] the

computational efficiency of Chang’s algorithm is increased further by exploiting the spatial

coherency of the image data set as well as its spectral information.
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While Chang’s algorithm is the fastest known to date in terms of estimating the desired

subspace dimension and approximating the resulting eigenimages, the algorithm is not di-

rectly applicable when dealing with images spherically correlated in higher dimensions.

Chang’s algorithm does however provide the basis for an extension to spherical correlation

in higher dimensions, which is the motivation for this dissertation.

The first part of this dissertation deals with the problem of object recognition and

pose estimation of 3-D objects assuming a single distant illumination source. In general, if

object recognition and pose estimation of 3-D objects is desired, the training image data

set needs to contain views of the object from many different orientations. A method to

capture images of the object in question from a large number of orientations is presented

by sampling the 2-sphere (S2) and the rotation group (SO(3)) appropriately. Once the

image data set has been constructed using the spherical sampling pattern, one can take

advantage of the spherical correlation by using the spherical harmonic transform (SHT) to

compute the spectral information (if the data is correlated on S2). If the data is correlated

on SO(3), a method for computing the spectral information using spherical harmonics in

conjunction with Wigner-D matrices is presented. It is also shown that pose estimation

from an aerial perspective can be achieved by using a linear shifted version of the spherical

harmonics referred to as hemispherical harmonics.

The second part of this dissertation deals with the problem of pose estimation assuming

variations in illumination from multiple illumination sources. A method to capture images

of objects under variations in both pose and illumination is presented by sampling lines

of constant co-latitude (S1), and moving the illumination sources along S2. It is shown

that the dimensionality of the data due to changes in illumination conditions and fixed

pose can be significantly reduced by projecting the data onto a truncated series of spherical

harmonics, generating a set of “harmonic images” at each pose. The dimensionality of the

image data in the temporal dimension can then be reduced by projecting the set of harmonic

images onto a set of Fourier harmonics.

In the final part of this dissertation, an analysis of eigenspace manifolds is presented

when variations in illumination and pose exist. The analysis provides some insight into
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the structure of eigenspace manifolds when variations in both illumination and pose are

present. An alternate technique is then proposed for performing illumination invariant pose

estimation.

1.2 Organization of this Study

The remainder of this dissertation is organized as follows:

Chapter 2 begins with the mathematical representation of correlated images. Eigenspace

methods are then reviewed to explain how these images can be approximately represented

using a small number of eigenimages. An example of eigenspace methods pertaining to pose

estimation is also given. This chapter then outlines several different quality measures used

in this work to compare different subspaces. A brief review of related work dealing with

the eigenspace decomposition of correlated images is also given along with a summary of

the contributions of the current work.

Chapter 3 gives an overview of images correlated on S1, as well as Chang’s eigenspace

decomposition algorithm [6]. The chapter begins with the analysis of images obtained by

a planar rotation and shows that the eigenimages can be computed in closed form using

the properties of circulant matrices. This analysis is then extended to image data sets

correlated on S1, the results of which motivate the current work. Chang’s algorithm as well

as its computational expense is then summarized.

Chapter 4 discusses three different methods to discretize the surface of the sphere. This

discretization will serve as the basis for a discrete harmonic transform detailed in Chapters 5

and 6. An analysis of the three discretizations for the purpose of pose estimation is also

presented in this chapter.

Chapter 5 outlines harmonic analysis on S2. The chapter begins by discussing harmonic

analysis on S1 and deriving the standard Fourier basis. This derivation is then extended

to S2 by introducing spherical harmonics and the associated Legendre polynomials. Based

on the harmonic analysis on S2, the spherical harmonic transform is introduced. This

transform is the basis for a new algorithm for computing the eigenspace decomposition

of images correlated on S2. This eigenspace decomposition algorithm is developed in this
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chapter and experimental results are presented to evaluate the accuracy of the eigenspace,

the computational savings, and the energy recovered using this method. Finally, the chapter

concludes with an extension to this algorithm for pose detection from an aerial perspective

by replacing the standard spherical harmonic basis with a set of hemispherical harmonics.

Chapter 6 shows how the standard spherical harmonic basis can be extended to the

full rotation group SO(3) using Wigner-D matrices. This extension is necessary for fully

general 3-D pose estimation problems. This chapter details a harmonic transform on SO(3)

referred to as the SO(3) FFT. This development is then used to extend the algorithm

developed in Chapter 5 by replacing the spherical harmonic transform with the SO(3) FFT.

This algorithm is then applied to fully general 3-D data sets, and an analysis is presented

outlining its effectiveness in estimating the eigenspace of arbitrary 3-D objects.

Chapter 7 deals with the problem of pose estimation when variations in illumination

conditions exist from both single and multiple illumination sources. It is shown that the

dimensionality of a set of images of an object under a wide range of illumination conditions

and fixed pose can be significantly reduced by expanding the image data in a series of

spherical harmonics to obtain a set of “harmonic images”. Furthermore, it is shown that

the set of harmonic images are capable of recovering a significant amount of information

from a set of images captured with multiple illumination sources present. An algorithm is

then developed to estimate the eigenspace for a set of images that contain variation in both

illumination and pose. The algorithm is based on projecting the set of harmonic images

onto a set of Fourier harmonics by applying the analysis discussed in Chapter 3.

Chapter 8 proposes a technique to perform illumination invariant pose estimation. The

technique is based on the fact that for most objects, variations due to a change in pose

are typically higher than those due to a change in illumination conditions. Therefore, each

object under a fixed pose and wide range of illumination conditions can be treated as a

“class” and the problem then becomes that of determining which class new input images

belong to. This chapter also provides some significant insight to the structure of eigenspace

manifolds making the proposed technique possible.

Chapter 9 outlines some concluding remarks, and discusses some open research problems.
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CHAPTER II

PRELIMINARIES

2.1 Chapter Overview

In this chapter, some of the fundamentals needed to apply an eigenspace decomposition to a

set of correlated images is reviewed, most of which is outlined in [6,11,26]. In Section 2.2, the

mathematical representation of images and image data sets is presented. The basic concept

of an eigenspace decomposition is presented and the relationship between the eigenspace

decomposition and the singular value decomposition (SVD) is discussed in Section 2.3. An

illustrative example for pose estimation is also presented in this section. In Section 2.6, some

previous work that has addressed the issue of computing the partial SVD of large matrices

is presented. Finally, contributions of the current work are summarized in Section 2.7.

2.2 Mathematical Representation of Images

In this work, a gray-scale image is described by an h×v array of square pixels with intensity

values normalized between 0 and 1. Thus, an image is represented by a matrix X ∈ [0, 1]h×v.

Because sets of related images are considered here, the image vector f of length m = hv is

obtained by “row-scanning” an image into a column vector:

f = vec(X T ). (1)

The image data matrix of a set of images X1, . . . ,Xn is an m × n matrix, denoted X, and

defined as

X = [f1, · · · ,fn] (2)

where typically m > n with fixed n.

Because we will be sampling images on the sphere, it should be noted that n = ab,

where a is the number of samples defined on the sphere’s surface, and b is the number of
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planar rotations captured at each sample. The image vector is then defined as

f = f(ξp, γr), (3)

where ξp, p ∈ {0, . . . , a−1}, is the unit vector pointing at the angle of co-latitude βp ∈ (0, π)

measured down from the upper pole, and the angle of longitude αp ∈ [0, 2π), which is the

parameterization of the sphere in spherical coordinates. In f(ξp, γr), the value γr ∈ [0, 2π)

is the rth planar rotation at sample p where r ∈ {0, . . . , b− 1}.

The average image vector is denoted f̄ and defined as

f̄ = [f1 + f2 + · · ·+ fn] /n. (4)

The corresponding m× n average image data matrix, denoted X̄, is then defined as

X̄ =
[
f̄ , f̄ , · · · , f̄

]
. (5)

Finally, the matrix X − X̄ is computed, which is denoted X̂ and has the interpretation of

an “unbiased” image data matrix.

2.3 The Mathematical Description of an Eigenspace

Eigenspace methods have also been referred to as subspace methods, principle compo-

nent analysis (PCA), or Karhunen-Loeve transformation (KLT) methods. The general idea

behind eigenspace methods is to exploit correlation between images to reduce the dimen-

sionality of the existing space. It has been shown that a set of n highly correlated images

may be approximately represented by a linear combination of a set of k basis vectors, where

k < n [24, 26,39]. This representation then motivates two fundamental questions:

1. Which k-dimensional subspace can best represent a set of n images?

2. Which k-dimensional subspace can best distinguish a set of n images?

The remainder of this section will show that the basis vectors in question (referred to as

the eigenimages) can be defined as either the eigenvectors of the sample covariance matrix

C = 1
nX̂X̂

T [14,24] or the eigenvectors of the sample correlation matrix R = 1
nXX

T [33,39].
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2.3.1 Image Representation

In this subsection, the question of which k-dimensional subspace can best represent a set

of n images is addressed. The assumptions and derivations are summarized as follows (the

details can be found in [6, 11]):

Let the random vector f t have the same statistics as the image vectors f1,f2, . . . ,fn.

Then f t can be exactly represented as a linear combination of orthonormal basis vectors

φj as

f t =
m∑
j=1

(αj)φj (6)

where αj = fTt φj . An approximation of f t, denoted f̃ t, is given by

f̃ t(k) =
k∑
j=1

(αj)φj +
m∑

j=k+1

bjφj (7)

where the bjs are constants. The “best” estimate of f t can then be determined by defining

the φjs and bjs to minimize the mean square error1

ε̄2(k) = E{‖f t − f̃ t(k)‖2}

=
∑m

j=k+1E{(αj − bj)2}.
(8)

The optimal bjs can then be found by setting the derivative of (8) with respect to bj to

zero, which results in

bj = φTj E{f t}, (9)

where E{f t} is the expected value of the random vector f t. The mean square error in (8)

then becomes

ε̄2(k) =
∑m

j=k+1E{(αj − bj)2}

=
∑m

j=k+1φ
T
j E{(f t − E{f t})(f t − E{f t})T }φj

≈
∑m

j=k+1φ
T
j Cφj

(10)

where the covariance matrix E{(f t − E{f t})(f t − E{f t})T } is replaced by the sample

covariance matrix C = 1
nX̂X̂

T .

1Norms in all the equations in this dissertation always represent the 2-norm unless otherwise stated.
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The optimal basis vectors φj , i.e., the eigenimages in this case, can be shown to satisfy

Cφj = λjφj , (11)

which are the eigenvectors of C with the corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥

0 and λi = 0 for i ≥ n. (This is true because the rank of the “unbiased” image data matrix

X̂ is at most n− 1.) The minimum mean-square error then becomes

ε̄2(k)opt =
n∑

j=k+1

λj . (12)

Equation (7) can be re-written in terms of the optimal φjs and bjs as

f̃(k)opt =
∑k

j=1(fTφj)φj +
∑n

j=k+1(f̄Tφj)φj

= f̄ +
∑k

j=1((f − f̄)Tφj)φj .
(13)

The approximation f̃(k)opt is optimal for the objective function defined in (8) with f t ap-

proximated by (7). This result shows that the entire set of image vectors f1,f2, . . . ,fn can

be “condensed” by storing the average image vector f̄ , the first k eigenimages φ1,φ2 . . . ,φk,

and the projections of f̂1, f̂2, . . . , f̂n onto the first k eigenimages, where f̂ i = f i − f̄ . This

results in a storage of k + 1 images versus the n original images that would need to be

stored.

If one prefers to deal with the sample correlation matrix R = 1
nXX

T instead of the

sample covariance matrix C = 1
nX̂X̂

T , a related approximation of f t is given by

f̃ t(k) =
k∑
j=1

(αj)φj (14)

which is simply the summation of the first k terms in (7), or alternatively, setting the bj

terms in (7) to zero. The corresponding mean square error then becomes

ε̄2(k) = E
{
‖f t − f̃ t(k)‖2

}
=

∑m
j=k+1E

{
(fTt φj)

2
}

=
∑m

j=k+1φ
T
j E{f tf

T
t }φj

≈
∑m

j=k+1φ
T
j Rφj

(15)
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where the correlation matrix E{f tfTt } is replaced by the sample correlation matrix R =

1
nXX

T . Following the same argument as that for (11), the optimal basis vectors φjs, satisfy

Rφj = λjφj (16)

which are the eigenvectors of R.

Note that for the same subspace dimension k, equation (7) gives a better approximation

than that of (14), however additional computational expense is required. In particular,

equation (7) requires the additional storage of the average image vector f̄ as well as the

subtraction of the average image vector from each image in the image data set.

2.3.2 Image Distinction

In this subsection, the question of which k-dimensional subspace can best distinguish a set

of n images is addressed. Once again, the assumptions and derivations are summarized in

the following (the details can be found in [6, 11]).

Consider a set of n training images, f1,f2, . . . ,fn, obtained by coarsely sampling the

possible appearances of an object; and a test image f t generated with the same statistics

as the training images. In a typical pose estimation problem, the test image f t is compared

against each of the n training images in an attempt to find the best match. Let the image

vector f q be any of the n training images, then the “distance” between the two images f t

and f q can be measured by ‖f t − f q‖2. Using the eigenspace representation detailed in

the previous section, determining the distance between two images can be performed more

efficiently by measuring ‖f̃ t(k)− f̃ q(k)‖2, where f̃ t(k) and f̃ q(k) are approximations of f t

and f q, respectively, using either (7) or (14).

For accurate pose estimation, the approximated measurement ‖f̃ t(k)− f̃ q(k)‖2 should

be as close to ‖f t − f q‖2 as possible, in the least square sense. This requirement can be

cast as an optimization problem with the objective function defined as

ε̄2(k) = E{‖f t − f q‖2 − ‖f̃ t(k)− f̃ q(k)‖2} (17)

where ε̄2(k) is independent of whether or not f t and f q are approximated by (7) or (14).
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Expanding (17) results in

ε̄2(k) = E
{
‖f t − f q‖2 − ‖f̃ t(k)− f̃ q(k)‖2

}
= E

{∑m
j=1(fTt φj − fTq φj)2 −

∑k
j=1(fTt φj − fTq φj)2

}
=

∑m
j=k+1E

{
(fTt φj − fTq φj)2

}
=

∑m
j=k+1φ

T
j E
{

(f t − f q)(f t − f q)T
}
φj

=
∑m

j=k+1φ
T
j E
{
f tf

T
t + f qf

T
q − f tfTq − f qfTt

}
φj

=
∑m

j=k+1φ
T
j

(
2E{f tfTt } − 2ffT

)
φj

≈
∑n

j=k+1 2φTj Cφj .

(18)

where the covariance matrix E
{

(f t − E {f t})(f t − E {f t})T
}

is replaced by the sample

covariance matrix C = 1
nX̂X̂

T . Because (18) is equivalent to (10), the optimal φjs are once

again the eigenvectors C.

Using the above development, the distance between the test images f t and the training

images f q can be estimated by

‖f t − f q‖2 ≈
k∑
j=1

(
fTt φj − fTq φj

)2
, (19)

and finding the best match of f t against the training images can be approximated by

min
q=1,...,n

‖f t − f q‖2 ≈ min
q=1,...,n

k∑
j=1

(
fTt φj − fTq φj

)2
. (20)

Note that in computing (20), the quantity fTq φj is equal toXTΦk where Φk = [φ1,φ2, · · · ,φk]

and can be precomputed. The right-hand side of (20) can be computed in O(km) +O(kn)

flops whereas calculating the left-hand side takes O(mn) flops. In practical applications,

k < m and k < n, thus the minimum distance between the test image f t against the

training images is typically estimated using the right-hand side of (20).

2.3.3 Illustrative Example for Pose Estimation

This section will be concluded with a pose estimation example using the above development.

Consider the image sequence shown in Fig. 1, where the top row shows five of 128 images of

a boat being rotated about a single axis. The curve in the figure shows the corresponding

projection of the image data matrix X̂ onto the first three eigenimages φ1,φ2,φ3, i.e., the
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Figure 1: An example subspace in which an image data set X̂, generated from a one-
dimensional rotation, is projected onto the first three eigenimages φ1,φ2,φ3. The projec-
tion generates a discrete approximation to a one-dimensional manifold embedded in three-
dimensional space. The projection of five images in X̂ onto the first three eigenimages
are also shown, as well as, the projection of a test image f t onto the three-dimensional
eigenspace. The pose of the object in the test image is estimated by the closest matching
point in the eigenspace.

curve shows ΦT
k X̂ where k = 3. In general, the quantity ΦT

k X̂ is a matrix of dimension k×n

where each column represents a point in k-dimensional space. The collection of such points

is an approximation the underlying one-dimensional manifold embedded in k-dimensional

space. The problem of pose estimation then becomes that of projecting the test image

f t onto the eigenspace and determining which of the k-dimensional points is the closest.

The dots in the figure show the projection of five of the original training images onto the

eigenspace. A test image is also shown in the figure, along with it’s projection onto the

three-dimensional eigenspace. Because the test image is not contained in the original image

data matrix X̂, in general, the projection will not lie on the exactly on the approximation to
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the one-dimensional manifold. Instead, the pose of the object in the test image is estimated

by the pose corresponding to the closest point on the approximated manifold.

2.4 The Singular Value Decomposition

In the previous section, it was shown that the eigenimages of an image data matrix X̂ can

be computed by calculating the eigenvectors of the sample covariance matrix C = 1
nX̂X̂

T .

The eigenvectors of C provide an optimal basis in terms of image representation as well as

image distinction. One immediate issue when dealing with the matrix C however, is that

its construction requires multiplication of an m × n matrix with an n ×m matrix. When

dealing with object recognition and pose estimation problems, the value m is equal to the

number of pixels in a given image, while n represents the number of images in the data set.

The number of pixels is directly proportional to the resolution of the images in the data set,

where the highest resolution possible is preferable in order to encapsulate as much detail as

possible. This poses a problem in that even for relatively low resolution images, the number

of pixels m is very large and storing the matrix C requires a large amount of memory space.

For example, consider the case where each of the n images in X̂ are of size 128× 128, this

results in C being of size 16384×16384. If each of the pixels in C is represented by an 8-bit

number (which is typical in gray scale images), the memory requirements would be over 2Gb

just to store the matrix C. Another issue is the computational cost of multiplying X̂ with

X̂T . This computation requires on the order of nm2 flops, which can be computationally

prohibitive.

An alternative method for computing the eigenimages of the image data matrix X̂ is to

use the singular value decomposition (SVD). The SVD of X̂ is given by

X̂ = Û Σ̂V̂ T , (21)

or

X̂ =
n∑
i=1

σ̂iûiv̂Ti (22)

where Û = [û1, û2, . . . , ûm] ∈ Rm×m and û1, û2, . . . , ûm are referred to as the left sin-

gular vectors of X̂. In (21), the matrix V̂ = [v̂1, v̂2, . . . , v̂n] ∈ Rn×n where the vectors
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v̂1, v̂2, . . . , v̂n are referred to as the right singular vectors of X̂. Both Û and V̂ are orthonor-

mal, i.e., Û ÛT = ÛT Û = I and V̂ V̂ T = V̂ T V̂ = I where I is an identity matrix of appropri-

ate size. The matrix Σ̂ ∈ Rm×n, with Σ̂T = [Σ̂d 0n×(m−n)]T , where Σ̂d = diag(σ̂1, . . . , σ̂n)

and σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n ≥ 0 are referred to as the singular values of X̂. Note that the

SVD of X is given by, X = UΣV T , where U and V are orthonormal, and Σ is diagonal.

In (21), theˆnotation is used to distinguish between the SVD of X and X̂, and does not

imply orthonormality.

Using the above development, the sample covariance matrix C = 1
nX̂X̂

T = Û Σ̂V̂ T V̂ Σ̂ÛT =

Û Σ̂2ÛT , i.e., the eigenvectors of C are the left singular vectors of X̂. The full SVD of X̂ can

be performed in mn2 flops, which is computationally cheaper than computing the matrix

C, let alone computing the eigenvectors. Alternatively, the left singular vectors of X̂ can

be obtained by using the relation X̂V̂ = Û Σ̂.

Each part of the SVD of X̂ in (21) can be interpreted as follows: The left singular

vectors (eigenimages) provide an orthonormal basis for the span of the f is, ordered in terms

of importance; the corresponding singular values measure how important the associated

eigenimage is, i.e., ‖ûTi X̂‖ = σ̂i. The components of the ith column of V̂ measure how much

each individual image contributes to the ith eigenimage. The eigenspace decomposition of

the sample covariance matrix C only returns the left singular vectors and singular values of

X̂. While the right singular vectors can be obtained by a simple matrix multiplication, this

added expense is unnecessary when the SVD of X̂ is computed. Although the development

in the previous section only discussed the left singular vectors (eigenimages) of X̂, the right

singular vectors of X̂ also play an important role in eigenspace decomposition algorithms.

Chapter 3 will show that the right singular vectors play an important role in computing the

partial eigenspace decomposition when the image sequence is correlated in one-dimension.

This technique has been extended to computing the eigenspace decomposition of an image

data matrix when the correlation dimensions remain orthogonal [40]. The right singular

vectors are also required when computing the eigenspace decomposition of an image data

matrix using it’s low resolution properties [41].
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2.5 Subspace Quality Measures

In practice, the singular values and the corresponding singular vectors are not known or

computed exactly, and instead their estimates are used. This work addresses one computa-

tionally efficient method to estimate the first k eigenimages of an image data matrix that is

correlated in multiple dimensions. Because the eigenimages are estimated, it is important

to define appropriate comparison criteria that can measure the accuracy of the estimation.

In general, for pose estimation problems, two questions need to be answered:

1. What subspace dimension k is needed to accurately determine the pose of a general

3-D object?

2. What measures are used to evaluate the quality of the eigenspace estimation?

In [6,7], several error measures were discussed relating to a quantitative comparison of one

subspace to another. This section reviews three of these error measures that will be used

throughout this report to address both of these questions.

2.5.1 Rotation of Subspaces

The first measure discussed in this section is a measure of whether or not one subspace may

be rotated into another subspace. Given two matrices of the same dimension, A,B ∈ Rm×k,

it is desirable to know if the matrix B can be rotated into the matrix A, and if not, what

is the closest it can come. This problem is formulated as follows [42]:

minimize: ||A−BQ||F

subject to: QTQ = I ∈ Rk×k,
(23)

where ||·||F represents the Frobenius norm and ∆ = min
Q
||A−BQ||F is the residue. Because

trace(CTC) = ‖C‖2F , if Q is orthogonal then

||A−BQ||2F = trace(ATA) + trace(BTQTQB)− 2trace(QTBTA)

= trace(ATA) + trace(BTB)− 2trace(QTBTA).
(24)

Thus, (23) is equivalent to maximizing trace(QTBTA). The maximizing Q can be found by

calculating the SVD of C = BTA. Thus,

trace(QTC) = trace(QTUcΣcV
T
c ) = trace(ZΣc) =

k∑
i=1

ziiσci ≤
k∑
i=1

σci, (25)
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where Z = V T
c Q

TUc, Uc and Vc are the matrices containing the left and right singular

vectors of C, respectively, while Σc is a diagonal matrix containing the singular values of C

in descending order. Thus, the upper bound is attained by setting Q = UcV
T
c .

The steps for computing the Q that minimizes ||A−BQ||F , or alternatively, maximizes

trace(QTBTA), can be calculated as follows:

• Form the matrix C = BTA.

• Compute the SVD of C, i.e., C = UcΣcV
T
c .

• Compute the orthogonal matrix Q = UcV
T
c .

The residue ∆ after solving (23) using the above Q will satisfy

∆2 = trace(ATA) + trace(BTB)− 2
k∑
i=1

σci. (26)

The smaller the residue ∆, the closer A and B are to representing the same subspace. To

determine the rotation between a set of estimated and true eigenimages, one would set

A = Ûk and

B = ˜̂
Uk,

where Ûk and ˜̂
Uk are the matrices containing the first k true and estimated eigenimages as

their columns, respectively.

The subspaces containing true and estimated right singular vectors can then be com-

pared using (26) and (23). If these two subspaces have orthonormal columns, then trace(ATA) =

trace(BTB) = k and the residue in (26) can be given by

∆2 = 2(k −
k∑
i=1

σci) (27)

where σci is the ith singular value of C. Note that if A and B are orthogonal to each other,

then ∆ achieves a worst case upper bound of
√

2k. Therefore, the residue is sometimes

normalized by this value resulting in a upper bound of one.
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2.5.2 Energy Recovery Ratio

True and estimated eigenimages of X̂ can also be compared in terms of their capability of re-

covering the energy in X̂. If the estimated eigenimages are ordered as per their importance,

the first eigenimage (˜̂u1) will give the following inequality:

‖˜̂uT1 X̂‖
2

= ‖
∑n

j=1

(
σ̂j ˜̂uT1 ûjv̂Tj

)
‖2

=
∑n

j=1(σ̂j ˜̂uT1 ûj)2‖v̂Tj ‖2

=
∑n

j=1(σ̂j ˜̂uT1 ûj)2

≤ σ2
1.

(28)

Note that the maximum of ‖˜̂uT1 X̂‖2 is achieved when ˜̂u1 = û1. This suggests a more general

measure, i.e., the “energy recovery ratio,” for estimated eigenimages of X̂, which is defined

as

ρ(X̂, ˜̂
Uk) =

∑k
i=1 ‖˜̂uTi X̂‖2

‖X̂‖2F
(29)

where ˜̂
Uk denotes the first k estimated eigenimages of X̂ [6]. From the theory of principle

component analysis, the true eigenimages yield the highest energy recovery ratio. Therefore,

for a given energy recovery ratio ρ, the quality of the estimated eigenimages can be obtained

by comparing k−k∗, where k∗ is the subspace dimension obtained by the true eigenimages.

This measure may also be used to determine the required subspace dimension k to achieve

a user specified accuracy, e.g. given a user specified energy recovery ratio µ, determine k

such that ρ(X̂, ˜̂
Uk) ≥ µ.

A related measure used in this report that is useful in determining the subspace dimen-

sion k is the change in ρ, which is defined as

∆ρ(X̂, ˜̂
Uk) = ρ(X̂, ˜̂

Uk)− ρ(X̂, ˜̂
Uk−1). (30)

The change in ρ determines how much additional energy is recovered by adding the kth

estimated eigenimage to the subspace.

2.5.3 Subspace Criterion

The energy recovery ratio defined in (29) achieves a maximum when ˜̂ui = ûi for i = 1, . . . , k.

Therefore for any given energy recovery ratio, it is possible that k ≥ k∗, where k is the
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subspace dimension as computed using the estimated eigenimages and k∗ is the subspace

dimension as computed using the true eigenimages. Hence another measure used in this

study is the degree to which estimated eigenimages span the subspace of the first k∗ true

eigenimages, which will be referred to as the subspace criterion, SC, given by

SC =

√√√√ 1
k∗

k∑
i=1

k∗∑
j=1

(˜̂u
T
i ûj)2. (31)

If Ûk∗ = [û1, û2, · · · , ûk∗ ] is the matrix consisting of the first k∗ true eigenimages, and

˜̂
Uk = [˜̂u1, ˜̂u2, · · · , ˜̂uk] is the matrix consisting of the first k estimated eigenimages, then

SC = 1 when span( ˜̂
Uk) = span(Ûk∗) and is less than 1 otherwise [7].

2.6 Related Work

2.6.1 Introduction

The principal calculation required in eigenspace methods is the precomputation of estimates

of the left singular vectors ˜̂
Uk of the m×n matrix X̂. Once the principal eigenimages of an

image data matrix have been determined, using these eigenimages is very computationally

efficient for the on-line classification of 3-D objects. Unfortunately, the off-line calculation

for determining the appropriate subspace dimension, as well as the principal eigenimages

themselves is computationally expensive. Reducing this computational expense by taking

advantage of the fact that only the principle singular vectors are of interest has been a

major topic of previous research. The remainder of this section outlines some of the more

popular techniques used in computing the partial SVD of large matrices, most of which can

be found in [6, 7].

2.6.2 Iterative Methods

One class of techniques for computing the SVD of X relies on finding the eigenimages

iteratively. One such technique, referred to as the power method, calculates the dominant

singular values and vectors one at a time [34, 42–44]. The algorithm is relatively easy to

implement: starting with a random vector v(0), perform the iteration

u(k+1) =
Xv(k)

‖Xv(k)‖
(32)
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and

v(k+1) =
XTu(k+1)

‖XTu(k+1)‖
(33)

until ‖u(k+1) − u(k)‖ drops below a preset threshold. To obtain the next pair of singular

vectors, the singular vectors calculated in the previous stage are removed from X. That

is, the matrix X is updated as X ′ = X − σ1û1v̂T1 , and the same iteration is repeated with

X ′ to find σ2, û2 and v̂2. In [35], Shlien modified this power algorithm slightly, so that it

will have better convergence properties. The cost of both these methods is on the order of

mnki where k is the desired dimension of the eigenspace and i is the average number of

iterations needed for each pair of singular vectors [7].

There are other iterative methods that work on symmetric matrices [37] that have been

applied to either XTX or XXT . However as mentioned earlier, neither approach is practical

when m and n are large.

2.6.3 Gradient Descent Algorithms

The gradient-type algorithms [36, 37] recast the search for the dominant singular vectors

into an optimization problem. By definition, the left singular vector of X associated with

the largest singular value is the unit vector that maximizes ‖XTe‖, therefore the Rayleigh

quotient F (e), defined as

F (e) =
‖XTe‖2

‖e‖2
, (34)

is maximized when e is colinear with u1. The search for the maximum of F (e) is through

gradient or conjugate gradient methods. The cost of each iteration is on the order of mn,

therefore the total cost is on the order of mnki [6, 7].

2.6.4 Block Power Methods and the Lanczos Algorithm

In [38], Vogel et al. considered the block power method and the Lanczos method to solve

the SVD of ill-posed problems, i.e., large matrices with rapidly decaying singular values.

The block power method, also known as simultaneous iteration, is similar to the power

method except that it iterates with k pairs of singular vectors instead of with one pair at a

time. The computational expense for this method is also on the order of mnki [6].

20



The Lanczos method is a different approach to this problem. Let A be a symmetric

matrix and q0 be an initial unit vector, then each iteration i of the Lanczos method can be

viewed as a projection of the matrix A onto the ith Krylov subspace

Ki(q0) =
〈
q0, Aq0, . . . , A

i−1q0

〉
. (35)

The matrix representing this projection is a symmetric k×k tridiagonal matrix Ti, where the

eigenvalues of Ti converge rapidly to the extremal eigenvalues of A and the corresponding

eigenvectors of Ti can be used to compute approximate eigenvectors of A. For a non-

symmetric matrix X with size m× n, one can apply the Lanczos method to the symmetric

matrix

A =

 0m×m X

XT 0n×n

 . (36)

Note that forming A as given by (36) requires at least twice the memory space of storing

X. The code listed in [38] shows a way of applying the Lanczos method to a non-square

matrix X without forming the matrix A as in (36). The computational expense for this

method is on the order of mnki [6].

2.6.5 Eigenspace Updating

Another class of techniques relies on updating a small set of eigenimages by recursively

adding one image at a time. Murakami et al. [33] illustrated a method for updating a

fixed number of eigenimages. If the total number of images is n and the desired number of

eigenimages is k, then the eigenspace decomposition of the first k + 1 images is calculated

and the first k eigenimages are kept. Then one image is added at a time to update the k

eigenimages. The updating can be done efficiently by taking advantage of the orthogonality

of the eigenimages from the previous stage. The cost of this method is on the order of mnk2

and hence it has an advantage over the direct SVD algorithm when k2 is smaller than n.

Chandrasekaran et al. [39] took a similar approach to that of [33]. The major difference

is that the number of eigenimages calculated is adaptively changed. Instead of keeping only

the first k eigenimages in each iteration, it is suggested to keep the eigenimages with the

corresponding eigenvalues higher than a preset threshold. Also, when adding one image
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that does not change the eigenimages appreciably, the next one or several images may be

skipped. The authors claimed that this method is as efficient as that of [33] when the

required dimension of eigenimages is small.

2.6.6 Spectral Transform Techniques

2.6.6.1 Discrete Cosine Transform

An efficient method for quickly computing an approximate value for XTX was developed

by Murase et al. in [45]. (Recall that the eigenvectors of XTX are the right singular vectors

of X and the left singular vectors of X can be easily computed from the corresponding right

singular vectors.) The discrete cosine transform (DCT) was applied to blocks of each image.

The approximated matrix XTX and its eigenvectors were found in the frequency domain

(DCT), and then the inverse DCT was applied to the eigenvectors to transform them back

to the spatial domain. This method is referred to as the spatial temporal adaptive method

(STA). The number of multiplications required for applying this method to an m×n matrix

to find the first k eigenimages is given by:

NSTA = 1.25mn+ nm(1 + α2)βa + kin2 +mn(1 + kα)βb + 1.25kn, (37)

where i is the average number of iterations, and α, βa and βb are constants. For their

implementation, the authors reported that the speed is 6 to 10 times faster than the direct

SVD algorithm2 for calculating the first 8 eigenimages from a set of 256 images [6, 7].

2.6.6.2 Chang’s Algorithm

The major contribution of this dissertation is motivated by the work of Chang et al. [26]

where a fundamentally different algorithm was proposed. Because this algorithm is the

motivation behind the current work, an overview will be given here, but the details can be

found in Chapter 3. Chang’s algorithm was motivated by the observation that for a set

of planar rotated images, i.e., the ith image of a set of n images is obtained from the first

image by a planar rotation of 360(i−1)/n degrees, the matrix XTX is a “circulant matrix”.

The (unordered) SVD of X for this case is known in closed form, where the right singular

2The authors did not specify which algorithm they used to implement the direct SVD.
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vectors are pure sinusoids and the left singular vectors can be calculated by applying the

FFT to the rows of X. For objects correlated on S1, as well as arbitrary video sequences,

it was found that the first k estimated eigenimages can be found using only a small number

of harmonics, i.e., not much larger than k. The cost of Chang’s algorithm is on the order

of mn log2 n, which compares favorably with most direct SVD algorithms.

In [7,41] Saitwal et al. extended Change’s algorithm to exploit the spatial coherency as

well as the spectral aspects of the right singular vectors. The main contributions of their

work were threefold, 1) the determination of the effect of resolution reduction techniques on

the resulting eigenspace decomposition, 2) the appropriate method to down-sample the data

in the spatial domain, and 3) the appropriate extension to Chang’s algorithm to increase the

computational efficiency. It was shown that random sampling outperformed any low-pass

filtering techniques in reducing the resolution in the spatial domain. It was determined

that using the resulting low-resolution right singular vectors to compute the eigenimages

proved far better than simply “scaling” the low-resolution eigenimages themselves. Because

Saitwal’s algorithm also dealt with right singular vectors as opposed to the eigenimages

themselves, the extension to Chang’s eigenspace decomposition algorithm was immediate.

Saitwal’s algorithm was originally applied to arbitrary video sequences in [41], but it was

shown in [7] that this technique also performs well on objects correlated on S1. Chang’s

eigenspace decomposition algorithm has also been extended to data correlated in higher

dimensions where the image data set was generated by capturing images of objects from

a spherical patch above the object [40]. Capturing images from a spherical patch above

the object allows the sampling dimensions to remain orthogonal and thus an FFT may be

applied to each dimension. Unfortunately, the size of the patch must be limited to maintain

orthogonality resulting in a limited number of views of the object of interest.

2.7 Summary of Current Contributions

Currently Chang’s algorithm with Saitwal’s extension appears to be one of the fastest

known algorithms for estimating the first k eigenimages of an image data set correlated

on S1. Unfortunately, neither technique is directly applicable when dealing with objects
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correlated in higher dimensions such as S2 or SO(3). This is based on the fact that both

algorithms require the right singular vectors of X̂ to be approximately spanned by sinusoids.

For objects correlated on S2 and SO(3) however, this is not the case.

Moving from correlation on S1 to correlation on S2 and finally SO(3) is inherently more

difficult. This difficulty is due to the fact that for fully general 3-D pose estimation, the

objects in question must be sampled from a very large number of orientations in an at-

tempt to capture all possible vantage points. This results in very large image data sets,

where the sampling dimensions are no longer orthogonal. In the first part of this work,

capturing images of object from a large number of orientations using a single distant il-

lumination source is accomplished by sampling the sphere appropriately. Three different

spherical sampling methods are evaluated, namely, the Hierarchical Equal Area isoLatitude

Pixelization (HEALPix) sampling pattern, sampling on an equi-angular grid of Chebychev

nodes, and using a Gauss-Legendre grid. It is shown that for pose estimation problems,

using the HEALPix sampling pattern is superior to the other two.

Once the image data matrix has been constructed using the above mentioned sampling

method, it is shown that for images correlated on S2, the SHT is useful in computing the

harmonic power spectra. An efficient eigenspace decomposition algorithm is then presented

based on the fact that most of the energy of an S2 correlated image data set is concentrated

around the low frequency spherical harmonics. It is also shown that with little modifica-

tion, pose estimation from an aerial perspective can be achieved by sampling the upper

hemisphere of S2. Using this hemispherical sampling pattern the spherical harmonics can

be linearly shifted to compute the frequency information of this hemispherically correlated

image data set. The linear shifted versions of the spherical harmonics are referred to as the

hemispherical harmonics.

Computing the spherical harmonic power spectra for data correlated on S2 gives signifi-

cant insight to the fully general 3-D pose estimation problem. It is shown that if the rotation

group SO(3) is sampled appropriately using the HEALPix sampling pattern, then Wigner-

D matrices can be used in conjunction with spherical harmonics to compute the frequency

information of this SO(3) correlated image data set. Similar to data correlated on S2, most
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of the energy of the SO(3) correlated data is concentrated around the low frequency SO(3)

harmonics. A computationally efficient algorithm for computing the eigenspace decompo-

sition of this data set is then presented based on the spectral information as computed by

the SO(3) FFT.

The second part of this work deals with the problem of illumination invariant pose

estimation. It is shown that images of an object viewed from a fixed pose under a wide range

of illumination conditions arriving from a single illumination source but different directions

can be approximated by a low-dimensional linear subspace. It is shown that this subspace

can be computed by projecting the image data onto a truncated set of spherical harmonics

producing a set of harmonic images. This set of harmonic images (after orthogonalization)

are very close to the true eigenimages as computed using the SVD. Furthermore, it is shown

that a nine-dimensional subspace is sufficient to recover over 95% of the energy for most

objects. It is then shown that the subspace computed assuming a single illumination source

is sufficient to recover a significant amount of energy from images captured with multiple

illumination sources present. It is shown that the major effect multiple illumination sources

have is an increased probability that a local specularity may be illuminated and as such,

the specularity is not well represented by the low-dimensional subspace. Using the reduced

dimensional subspace for objects under a wide range of illumination conditions and fixed

pose, an algorithm is then developed to compute the eigedecomposition when variation

in pose and illumination exist. The algorithm is based on projecting the set of harmonic

images onto a set of Fourier harmonics by applying Chang’s algorithm temporally.

Finally, an analysis of eigenspace manifolds is presented when variations in pose and

illumination are present. This analysis reveals that for most objects, variations due to a

change in pose tend to be much larger than those due to a change in illumination. Based

on this analysis, a technique is presented to perform illumination invariant pose estimation.
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CHAPTER III

CORRELATION ON S1 - CHANG’S ALGORITHM

3.1 Chapter Overview

As indicated earlier, Chang’s eigenspace decomposition algorithm [26] is one of the fastest

known algorithms for computing the first k estimated eigenimages of correlated images to

a user-specified accuracy. This chapter gives an overview of that algorithm, along with

an analysis of its computational efficiency. Section 3.2 outlines how sampling lines of con-

stant latitude results in a one-dimensionally correlated image data set that is correlated on

S1. Section 3.3 discusses a special case where the eigenspace decomposition is known in

closed form. This special case provides the motivation for the extension to computing the

eigenspace decomposition of image data sets correlated on S1. This extension, as well as

Chang’s eigenspace decomposition algorithm, is outlined in Section 3.4.

3.2 Introduction

Consider capturing images on the surface of the sphere where the object is placed at the

sphere’s center, as seen in Fig. 2. Recall that the image vector is then defined as f(ξp, γr),

where ξp, p ∈ {0, . . . , a−1}, is the unit vector pointing at the angle of co-latitude βp ∈ (0, π)

measured down from the upper pole, and the angle of longitude αp ∈ [0, 2π), which is the

parameterization of the sphere in spherical coordinates. In f(ξp, γr), the value γr ∈ [0, 2π)

is the rth planar rotation at sample p where r ∈ {0, . . . , b − 1}. Using this definition, and

setting γr = 0, βp to a constant, and αp ∈ [0, 2π) constrains the sampling of the object to

a line of constant latitude on the sphere. Sampling the object in this manner results in a

one-dimensionally correlated image data matrix that is correlated on S1.
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Figure 2: Sampling an object along a line of constant co-latitude, which results in an image
data matrix correlated on S1. A sample image is captured at each of the black dots that
reside on the sphere.

3.3 Special Case

Before discussing the details of Chang’s algorithm, a special case that motivated the devel-

opment of Chang’s algorithm is outlined. In the above sampling method, if αp and βp are

set to constants, and γr = 2πr/n with r ∈ {0, . . . , n− 1}, then f i+1 may be obtained from

f i by a planar rotation of γ = 2π/n. The correlation matrix XTX is then given by

XTX =



fT1 f1 fT1 f2 · · · fT1 fn

fT2 f1 fT2 f2 · · · fT2 fn
...

...
. . .

...

fTnf1 fTnf2 · · · fTnfn


. (38)
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It can be shown [26] that XTX is a circulant matrix with circularly symmetric rows. For

this special case, the eigenspace decomposition of XTX is given by the Discrete Fourier

Transform (DFT), i.e.,

XTX = HDHT (39)

where D is the n× n matrix given by

D = diag(λ1, λ2, . . . , λn) (40)

and H is the real DFT matrix defined as

H =

√
2
n



1√
2

c0 −s0 c0 −s0 · · ·
1√
2

c1 −s1 c2 −s2 · · ·
...

...
...

...
... · · ·

1√
2

cn−1 −sn−1 c2(n−1) −s2(n−1) · · ·


(41)

with ck = cos(2πk/n) and sk = sin(2πk/n).

Using the above development, an unordered SVD of X can be obtained for this special

case by letting V = H, i.e., the right singular vectors of X in this case are given by

pure sinusoids of frequencies that are multiples of 2π/n radians. The left singular vectors

(eigenimages) are then computed using the relationship XH = UΣ, which can be computed

efficiently using the FFT [26].

3.4 Chang’s Eigenspace Decomposition Algorithm

While the above analysis does not hold for arbitrary image data sets, it has been shown

in [26] that the analytical expressions for planar rotations serve as a good approximation for

the eigenspace decomposition of image data sets correlated on S1. To explore the effects of

moving from planar rotations to correlation on S1, a coffee mug was sampled as mentioned

above, and its eigenspace decomposition was then computed. Fig. 3 shows five of the

n = 128 images that make up the image data matrix X, as well as the singular vectors of

X. In examining the figure, even though the results of planar rotation do not apply here,

the following two properties can be observed [26,41].
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1. The right singular vectors of X are well-approximated by sinusoids of frequencies that

are multiples of 2π/n radians, and the power spectra of the right singular vectors

consist of a narrow band around the corresponding dominant harmonics.

2. The dominant frequencies of the power spectra of the (ordered) singular vectors in-

crease approximately linearly with their index.

These two properties indicate that the right singular vectors of an image data set correlated

in S1 are approximately spanned by the first few low frequency harmonics. Therefore,

by projecting the image data set X onto these first few low frequency harmonics, the

computational expense associated with computing the SVD can be significantly reduced.

Chang’s algorithm makes use of the above two properties to estimate the subspace

dimension k as well as the principle eigenimages Ũk of the image data matrix X. It was

shown in [26] that if the power spectra of the first q right singular vectors of X are restricted

to the band [0, 2πq/n], then for ρ(XT , Hq) ≥ µ, the quantity ρ(X, Ũk) will exceed µ for some

k ≤ q, where Hq contains the first q column of H, and µ is a user specified value. This

inequality shows that the energy recovery ratio as computed using the first few low frequency

harmonics of H provides a lower bound on the energy recovery ratio as computed using the

estimated eigenimages. Furthermore, this bound is shown to be extremely tight in most

cases [26], with a tight upper bound given by the energy recovery ratio as computed by

the “true” eigenimages. In other words, the first k estimated eigenimages Ũk of the matrix

product XHq are shown to be very good estimates of Uk.

The entire algorithm developed in [26] for computing the eigenspace decomposition of

X is now summarized as follows:

1. Form the matrix Y whose ith row is the FFT of the ith row of X.

2. Determine the smallest number q such that ρ(XT , Hq) ≥ µ, where µ is the user

specified energy recovery ratio.

3. Let Zq denote the matrix XHq, compute the SVD of Zp. The key observation here

is that the matrix XHq can be constructed from the first q columns of the matrix
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√
(2/n)[1/

√
2y0 <y1 =y1 <y2 =y2 · · · ], where yi denotes the ith column of Y , and <

and = give the real and imaginary parts respectively.

4. Return Ũk such that ρ(X, Ũk) ≥ µ.

The above algorithm gives the partial SVD of the image data matrix X, the eigenspace

decomposition of X̂ can be calculated with two simple modifications. First, in step 2,

determine q as the smallest number such that
∑q

i=2 ‖XThi‖2 ≥ µ(‖X‖2F − ‖XTh1‖2).

Second, in step 3, the SVD of the matrix comprising the second through q columns of Z

is computed [26]. If q << n, then Chang’s eigenspace decomposition algorithm scales to

approximately O(mnlog2(n)) which compares favorably to the O(mn2) flops required by

most SVD algorithms.

While Chang’s algorithm provides an efficient method to compute the eigenspace decom-

position of an image data set correlated on S1, the algorithm is not directly applicable when

the image data set is correlated in higher dimensions (namely S2 and SO(3)). This results

from the fact that the right singular vectors of these data sets are no longer approximately

spanned by the first few Fourier harmonics. It will be shown however, that the spectral

information of these image data sets can still be efficiently computed by considering the

SHT in place of the FFT [27–29]. Spherical harmonics and the SHT algorithm on S2 are

presented in the next chapter.
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Figure 3: The eigenspace decomposition of the image matrix X obtained from sampling
a coffee mug according to the method described for S1 correlation. The first row shows
five of the 128 images of the image data matrix X. The second row shows the first seven
eigenimages (left singular vectors of X). The third row shows the first seven right singular
vectors of X. The fourth row shows the power spectra of these right singular vectors. It
is apparent that though the right singular vectors of X are not pure sinusoids, their power
spectra are concentrated in a narrow band around frequencies that are harmonics of 2π/n.
The plot on the left in the last row shows the singular values of X, while the plot on the
right shows the frequency at which the power spectra of the corresponding right singular
vectors achieves a maximum (i.e., the “dominant” frequencies). It can be seen that the
dominant frequencies of the power spectra of the right singular vectors corresponding to
nonzero singular values increase approximately linearly with their index.
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CHAPTER IV

SPHERICAL TESSELLATION ANALYSIS

4.1 Chapter Overview

Prior to the development of a discrete SHT, the best tessellation of the sphere to define

the sampling pattern needs to be determined. This chapter outlines three tessellations that

are commonly used to discretize the sphere. Computing the SHT of a function defined on

the sphere will be developed in Chapter 5, however for the discussion at hand, a gener-

alization is outlined in Section 4.2. The three tessellations outlined are then presented in

Sections 4.3, 4.4, and 4.5, with an analysis of all three presented in Section 4.6.

4.2 Introduction

Given a function fi,j discretely sampled on the sphere, where the latitudes are defined by

θi, i = 0, . . . , N and longitudes are defined by φj , j = 0, . . . , 2N − 2, the function can be

represented by the forward harmonic transform as

fi,j =
N−1∑
n=0

n∑
m=0

Pmn (θi)(am,ncos(mφj) + bm,nsin(mφj), (42)

where Pmn (·) is an associated Legendre polynomial. Notice that the co-latitudinal coordinate

does not depend on m, therefore, for each θi, the coefficients for the longitudinal coordinate

are given by

am(θi) = 1
2N−2

2N−2∑
j=1

fi,jcos(mφj)

bm(θi) = 1
2N−2

2N−2∑
j=1

fi,jsin(mφj).

(43)
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The coefficients for the co-latitudinal coordinate can be then computed as

am,n =
N∑
i=1

wiam(θi)Pmn (θi)

bm,n =
N∑
i=1

wibm(θi)Pmn (θi)

(44)

where the wi are quadrature weights that are dependent on the particular tessellation being

employed. Three popular tessellations continually arise in the literature when discussing

spectral analysis on the surface of the sphere, each of which will be discussed in the following

sections [46].

4.3 Gauss-Legendre Grid

In [47,48], Swarztrauber et al. proposed a method for computing the discrete SHT using the

Gauss-Legendre grid, as well as an efficient method for computing the quadrature weights

and points [49]. If the samples are defined by a Gaussian distribution in the co-latitudinal

coordinate, then the harmonic coefficients am,n and bm,n defined in (44) can be developed

as an application of the matrix operator PT
mW where W is the N ×N diagonal matrix of

Gaussian weights wi and Pm is an N × (N −m) matrix

Pm =


Pmm (θ1) · · · PmN−1(θ1)

...
. . .

...

Pmm (θN ) · · · PmN−1(θN )

 (45)

where P ()̇

()̇
(θi) are the associated Legendre functions [48]. The forward transform defined

in (42), can be computed by applying the matrix Pm to the harmonic coefficients defined

in (44). The complete Legendre projection that encapsulates both the forward and inverse

harmonic transform is then defined as

Fm = PmPT
mW. (46)
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Because Fm is a projection, F2
m = Fm = PmPT

mWPmPT
mW, which implies that PT

mWPm =

I(N−m)×(N−m) [48]. Letting m = 0,

PT
0 WP0 = IN×N

=⇒ P0PT
0 WP0 = P0

=⇒ P0PT
0 WP0(P0)−1 = P0(P0)−1

=⇒ P0PT
0 W = IN×N ,

(47)

and the weights can be computed as

W = (P0PT
0 )−1. (48)

To compute the points, consider the elements of P0PT
0 for an arbitrary distribution of

co-latitudes θi,

(P0PT
0 )i,j =

N−1∑
k=0

P 0
k (θi)P 0

k (θj). (49)

It is shown in [49] that P0PT
0 can be written as

(P0PT
0 )i,j =

N√
4N2 − 1

P 0
N (θi)P 0

N−1(θj)− P 0
N−1(θi)P 0

N (θj)
sin(θi)− sin(θj)

, (50)

with the diagonal entries computed as

(P0PT
0 )i,i =

N√
4N2 − 1cos(θi)

[
P 0
N−1(θi)

d

dθ
P 0
N (θi)− P 0

N (θi)
d

dθ
P 0
N−1(θi)

]
. (51)

If the θi are chosen to be the zeros of P 0
N (θi), then the resulting matrix is diagonal and the

θi are Gaussian distributed. The corresponding quadrature weights have the closed form

solution

(W)i,i =
√

4N2 − 1cos(θi)
NP 0

N−1(θi) ddθP
0
N (θi)

. (52)

Using the Gaussian points to define the sampling pattern on the sphere allows for an

exact quadrature approximation to the transform defined in (44) when the corresponding

Gaussian weights are used. An example of the Gauss-Legendre sampling pattern is depicted

in Fig. 4. In the figure, a sample image is taken at each of the black dots on the surface of

the sphere.
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Figure 4: The Gauss-Legendre grid of sample points defined on the sphere. A sample image
is taken at each of the black dots on the sphere.

4.4 Equi-Angular Grid of Chebychev Nodes

An alternate method to the Gauss-Legendre points and weights is to use an equi-angular

grid of Chebychev nodes [50,51]. Driscoll and Healy formulate the problem as follows: Given

a band-limited function with band limit B whose domain is restricted to the sphere, define

the sampling of this function as θi = π(2i+1)
4B as the co-latitudinal component, and φj = 2πj

2B

as the longitudinal component with 0 < i, j < 2B being integers. This sampling pattern

defines an equi-angular grid of Chebychev nodes on the surface of the sphere. The forward

harmonic transform defined in (44) can then be computed with the weights wi defined as

the solution to the system of linear equations

2B−1∑
i=0

wiPm(cosθi) (53)
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Figure 5: The equi-angular grid of Chebychev points defined on the sphere. A sample
image is taken at each of the black dots on the sphere.

where Pm(·) is the Legendre function of order m. The solution to (53) can be computed in

closed form as [50]

wi =
2
B

sin
(
π(2i+ 1)

4B

)B−1∑
k=0

sin
(

(2i+ 1)(2k + 1)
π

4B

)
. (54)

Using the above weights and points, the equi-angular grid also enjoys the benefit of

being weighted orthogonal in the discrete Legendre transform. That is, PT
mWPm =

I(2B−m)×(2B−m), where Pm is defined in (45) and Wi,i = wi is a diagonal matrix. As

in the case of the Gauss-Legendre grid, the quadrature approximation to the transform

defined in (44) is exact when using the equi-angular grid and corresponding weights defined

in (54). An example of the equi-angular sampling pattern is depicted in Fig. 5. In the

figure, a sample image is taken at each of the black dots on the surface of the sphere.
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4.5 HEALPix Grid

In [52], Górski et al. propose the Hierarchical Equal Area isoLatitude Pixelization (HEALPix)

to define the sampling over the sphere. While the above two tessellations have either closed

form representations for computing the sample points (equi-angular) or can be computed by

solving for the roots of an mth order Legendre polynomial (Gauss-Legendre), the HEALPix

tessellation is fundamentally different. Originally developed for fast analysis of data gener-

ated from the cosmic microwave background (CMB) experiments, the HEALPix tessellation

is based on sub-dividing a base tessellation using the parameter Nside.

The construction of the HEALPix sampling pattern is as follows [52]: Nθ is the number of

base resolution sample layers between the north and south poles, and Nφ is the multiplicity

of the equatorial base resolution samples. The total number of base resolution samples is

then given by the product of the two Nbase = NθNφ, with the area of each base resolution

sample given by Ωbase = 4π/(NθNφ) (an example of the base resolution samples used in

this study is shown in Fig. 6). By construction, the tessellation includes two layers of

polar cap samples, and Nθ − 2 layers of equatorial zone samples that form a rhomboidal

grid in the cylindrical projection of the sphere. Because the cylindrical projection on the

sphere is an area preserving operator, all rhomboidal sampling zones in the equatorial region

have equal area weighting. It is desired to have equal area weighting in sample points

distributed over the entire sphere, therefore, constraining the co-latitudinal component to

cos(θ) = (Nθ − 1)/Nθ, the polar samples zones become quadrilaterals that vary in shape

but retain equal area. Therefore, the HEALPix tessellation has the advantage of equal area

weighting in sampling the sphere.

The authors of [52] chose Nθ = 3 and Nφ = 4 (refer to Fig. 6) for the derivation of the

HEALPix grid for three reasons:

1. No more than four samples are at the polar cap.

2. The elongation of the equatorial rhomboidal regions is minimized

3. The 2n multiplicity of rings in the equatorial zone is retained for the fast harmonic

transform.
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Figure 6: The base resolution layers for the HEALPix tessellation using the parameters
Nθ = 3 and Nφ = 4.

Because of the above three reasons, the HEALPix tessellation provides a very good sampling

method for the problem of pose estimation as well. The first item shows that the polar

regions are not over sampled as they are in the two previous tessellations. This has a direct

effect on the SVD in that the polar images have higher weighting and the SVD is biased

toward them. The second item has no direct effect on the pose estimation problem, however

it provides a sampling pattern in the equatorial region that is evenly distributed (giving

equal weight to the images captured around the equator as well). The third item is directly

related to keeping the SHT as fast as possible in the longitudinal direction. The sample

points for the HEALPix tessellation can be computed as follows [52]:

First compute the sample points for the North polar cap:

p = 0, ph = (p+ 1)/2, and i = b
√
ph −

√
bphcc+ 1

while((i ≥ 1) and (i ≤ Nside))
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j = p+ 1− 2i(i− 1)

while((j ≥ 1) and (j ≤ 4i))

i = b
√
ph −

√
bphcc+ 1

j = p+ 1− 2i(i− 1)

z = 1− i2

3N2
side

θ = acos(z)

φ = π/(2i)(j + 0.5)

p = p+ 1

ph = (p+ 1)/2

end while

i = b
√
ph −

√
bphcc+ 1

end while

Next compute the sample points for the North equatorial belt :

p′ = p− 2Nside(Nside − 1)

i = bp′/(4Nside)c+Nside

while((i ≥ 1) and (i ≤ 2Nside))

j = mod(p′, 4Nside) + 1

while((j ≥ 1) and (j < 4Nside))

i = bp′/(4Nside)c+Nside

j = mod(p′, 4Nside) + 1

z = 4
3 −

2i
3Nside

θ = acos(z)

s = mod((i−Nside + 1), 2)

φ = π/(2Nside)(j − s/2)

p = p+ 1
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p′ = p− 2Nside(Nside − 1)

end while

i = bp′/(4Nside)c+Nside

end while

The sample points in the southern hemisphere are obtained by the mirror symmetry about

the equator of the sphere. Note that in the above algorithm, bxc is the highest integer less

than or equal to x.

While the HEALPix sampling pattern provides equal area weighting over the surface

of the sphere, there is no exact quadrature to make the transform defined in (44) exact.

A numerical quadrature can be calculated by iterative methods, however this is computa-

tionally expensive and needs to be carried out for every order of the Legendre functions.

As a result, numerical errors may exist in the harmonic transform as defined in (44). The

accumulation of error continues to increase as the bandwidth of the function increases. For

pose estimation problems however, relatively low bandwidths are needed and the numerical

error is minimal. An example of the HEALPix tessellation as it applies to pose estimation

is shown in Fig. 7. In the figure, as above, a sample image is taken at each of the black

dots on the surface of the sphere.

4.6 Tessellation Evaluation

In an attempt to determine which of the above tessellations performs the best for this

particular application, the following test was performed. First, several objects were sampled

using the three above mentioned tessellations (examples of which are shown in Fig. 8). Next,

the spherical harmonic transform on S2 described in (44) was computed for each of these

data sets and 256 of the harmonic images with the largest power spectra were kept (refer

to Table 1). Finally, the SVD was performed on the resulting harmonic images to give the

approximate eigenspace. The true eigenspace was also computed by using the direct SVD

of the resulting image data.1

1Note that the image data matrices are different for each of the different tessellations.
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Figure 7: The HEALPix grid of sample points defined on the sphere. A sample image is
taken at each of the black dots on the sphere.

Figure 8: A sample image of the ten different objects that were used in this analysis. Each
of the objects was sampled according to one of the three tessellations mentioned above. The
images were generated by ray-tracing CAD models for each object. The CAD models were
provided courtesy of Kator Legaz [1]
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Table 1: Sample information for each of the three tessellations discussed in this chapter.

Gauss-Legendre Equi-angular HEALPix
# Samples 512 1024 768

# Harmonics 256 256 256

Fig. 9 shows the difference between the subspace dimension as computed by the SVD(X)

and all three tessellations for an energy recovery ratio of µ = 0.9. As can be seen from the

figure, the HEALPix sampling grid gives a very good estimate of the subspace dimension as

compared to the true SVD. This estimate is extremely important in that the on-line com-

putation time is dependent on this being as small as possible. As mentioned in Chapter 2,

the true SVD gives the optimal subspace; therefore, the quality of the estimated subspace

is also important. The quality measures outlined in Chapter 2 were computed for all three

tessellations and averaged over all objects in Fig. 8. The results are depicted in Fig. 10. As

can be seen from the figure, all three tessellations provide a very good estimate of the true

eigenspace decomposition, with the HEALPix tessellation giving the best performance.

Even though the HEALPix tessellation has no exact quadrature, based on the above

analysis, the errors associated with this are minimal. It has been shown in [53] that for

arbitrary functions defined on S2, the performance and computation times in computing

Figure 9: Difference between the subspace dimension computed by the SVD and that
computed for each of the three tessellations. The subspace dimension computed is for a
recovery of over 90% of the energy in the original image data matrix. In the above figure,
GL represents the Gauss-Legendre grid and EA represents the equi-angular grid.
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Figure 10: Quality measures outlined in Chapter 2 computed for all three tessellations and
averaged over all test objects. As can be seen from the figure, the HEALPix tessellation
outperforms the other two in terms of its capability of representing the “true” eigenspace
as computed by the SVD. In the above figure, GL represents the Gauss-Legendre grid and
EA represents the equi-angular grid.

both the forward and inverse transform using the HEALPix tessellation is nearly equivalent

to using the equi-angular tessellation. However, this is a function of the application and

the results presented here suggest that for the pose estimation problem, the HEALPix

tessellation outperforms the other two. This result is based on the fact that for a similar

number of samples, the HEALPix tessellation gives better angular resolution and does not

bias the SVD by oversampling the polar regions. Based on this analysis, the HEALPix

sampling pattern is used to define the sampling over S2 for the remainder of this work.
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CHAPTER V

SPHERICAL HARMONICS AND THE 2-SPHERE

5.1 Chapter Overview

This chapter gives an overview of harmonic analysis on S2. Before developing this analysis

however, harmonic analysis on S1 is developed in Section 5.3, which leads to the standard

Fourier basis. This development is then extended to S2 in Section 5.4 by replacing the

Fourier basis with the standard spherical harmonics leading to the development of the

spherical harmonic transform outlined in Section 5.5. This development is then used to

construct a computationally efficient algorithm for computing the eigenspace decomposition

of image data sets correlated on S2, detailed in Section 5.6. In Section 5.7, experimental

results are presented validating the computational savings and accuracy of estimation, as

well as providing a maximum recoverable energy using the proposed method. Finally, the

chapter is concluded by showing how pose estimation from an aerial perspective can be

achieved by sampling the upper hemisphere of S2 and replacing the spherical harmonic

basis with a set of hemispherical harmonics.

5.2 Introduction

Spherical harmonics have been applied to a variety of problems that arise on the surface of

the unit sphere (denoted as the 2-sphere or S2). They have been used for solving PDE’s

in spherical geometry for weather and climate models [54], geophysics [55, 56], quantum

mechanics [57,58], as well as a host of other related applications [59]. Over the last decade,

spherical harmonics have been gaining popularity in the computer vision and computer

graphics arena. Spherical harmonics have been applied to several computer vision appli-

cations with unknown lighting [30, 60–63], as well as 3-D model retrieval [64, 65], and 3-D
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shape descriptors [66]. Spherical harmonics have also been applied to rotation estimation

and convolution of spherical images [67].

5.3 Harmonic Analysis on S1

Before developing the harmonic analysis on S2 ∈ R3, we first develop the harmonic analysis

on S1 ∈ R2 leading to a standard Fourier series, much of which is discussed in [68–70].

The development of harmonic analysis on S1 shows that the Fourier series basis vectors

have a natural extension to spherical harmonics using the Laplacian operator ∇2. For this

development, our attention is restricted to harmonic homogeneous polynomials [69].

A harmonic homogeneous polynomial pn(x, y) of degree n is one that satisfies∇2
2pn(x, y) =

0 (harmonic), and pn(tx, ty) = tnpn(x, y) where t > 0 (homogeneous). The Laplacian oper-

ator ∇2
2 ∈ R2 is defined as

∇2
2 =

∂2

∂x2
+

∂2

∂y2
, (55)

where the subscript denotes the dimension of the Laplacian.

The representation of a polynomial in spherical coordinates {(r, α) : r ∈ R+, α ∈

[0, 2π)} can be defined as (x = rcos(α), y = rsin(α)). Using spherical coordinates, a

harmonic homogeneous polynomial pn(x, y) can be written as pn(x, y) = rnqn(α) for some

function qn(α). The two-dimensional Laplacian defined in spherical coordinates is

∇2
2 =

1
r2

∂2

∂α2
+

∂2

∂r2
+

1
r

∂

∂r
. (56)

If the polynomial pn(x, y) is homogeneous and harmonic, then it must satisfy

∇2
2pn(x, y) = rn−1

(
∂2

∂α2
qn(α) + n2qn(α)

)
= 0 (57)

where ∇2
2S = ∂2

∂α2 is the circular Laplacian. This shows that the Laplacian operator applied

to a harmonic homogeneous polynomial simply reduces the power by two in the radial

dimension, and restricts the angular dimension to a circle using the circular Laplacian. This

allows us to separate variables and consider the radial dimension and angular dimension

separately in solving for qn(α). In the radial dimension r, there is no qn(α) dependence,

however, in the angular dimension, we have that ∇2
2Sqn(α) = −n2qn(α). In order for (57) to
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hold, qn(α) must be an eigenfunction of∇2
2S . The qn(α) that satisfy the differential equation

∇2
2Sqn(α) = −n2qn(α) are of the form qn(α) = Acos(nα)+Bsin(nα) or equivalently, qn(α) =

Aeinα + Be−inα. Therefore, all possible qn(α) can be generated as a linear combination of

the elements {einα, e−inα}. If the exponentials {einα, e−inα} are normalized and chosen to

be orthogonal, then they form the standard Fourier basis vectors.

5.4 Harmonic Analysis on S2

Extending the analysis of the previous section to S2 is a matter of increasing the dimension

by one. Again, we restrict our attention to harmonic homogeneous polynomials, however

as in the case for S1, this restriction has no direct implications [69]. In R3, we define the

three dimensional Laplacian as

∇2
3 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(58)

and as above, a harmonic homogeneous polynomial pn(x, y, z) of degree n in R3 is one that

satisfies ∇2
3pn(x, y, z) = 0, and pn(tx, ty, tz) = tnpn(x, y, z) where t > 0.

Using spherical coordinates, {(r, α, β) : r ∈ R+, α ∈ [0, 2π), β ∈ [0, π]} the cartesian

coordinates can be defined as (x = rcos(α)sin(β), y = rsin(α)sin(β) z = rcos(β)). Under

this coordinate frame, the Laplacian becomes

∇2
3 =

∂

∂r2
+

2
r

∂

∂r
+

1
r2sin2(β)

∂2

∂α2
+

cos(β)
r2sin(β)

∂

∂β
+

1
r2

∂2

∂β2
, (59)

and again we have that pn(x, y, z) can be written as pn(x, y, z) = rnqn(α, β) for some

qn(α, β). Again, if pn is homogeneous and harmonic, it must satisfy

∇2
3pn =

[
csc2(β)

∂2

∂α2
+

∂2

∂β2
+ cot(β)

∂

∂β

]
qn(α, β) + n(n+ 1)qn(α, β) = 0 (60)

where the spherical Laplacian is now defined by

∇2
3S =

[
csc2(β)

∂2

∂α2
+

∂2

∂β2
+ cot(β)

∂

∂β

]
. (61)

Using this spherical Laplacian, we have that ∇2
3Sqn(α, β) = −n(n+1)qn(α, β) and therefore,

qn(α, β) is an eigenfunction of ∇2
3S . Because the spherical Laplacian is self-adjoint (the

circular Laplacian defined above is also), the eigenspaces of ∇2
3S are orthogonal and rotation
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invariant. These eigenspaces consist of harmonic polynomials of degree l = n and have

dimension 2l + 1. On the surface of the sphere, these harmonic polynomials span the

set of all polynomials in L2, where L2 is the Hilbert space of square integrable functions.

Therefore, if we select a basis within each of the 2l+ 1 eigenspaces, this collection provides

a basis for L2(S2).

For fixed l, the eigenspaces can be constructed as

1√
2π
P̃ml (cos(β))eimα (62)

where the exponential term is a direct result of the longitudinal coordinate α defining circles

at constant co-latitude β, i.e., the basis for the longitudinal coordinate is the standard

Fourier series developed above. Using this construction, we have

∇2
3S

eimα√
2π
P̃ml (cos(β)) =

[
∂2

∂β2 + cot(β) ∂
∂β −

m2

sin2(α)

]
eimα√

2π
P̃ml (cos(β))

= −l(l + 1) e
imα
√

2π
P̃ml (cos(β)),

(63)

where the −m2 comes from explicit differentiation in the longitudinal coordinate. Under the

condition that β ∈ (0, π), the functions P̃ml (cos(β)) are the associated Legendre polynomials

of order m and degree l. The tilde (̃·) denotes the L2 normalized versions of the associated

Legendre polynomials and are related to their un-normalized cousins by

P̃ml (cos(β)) = (−1)m
√

2l + 1
2

(l −m)!
(l +m)!

Pml (cos(β)). (64)

The associated Legendre polynomials may be computed efficiently using the following three

term recurrence relationship

(l −m+ 1)Pml+1(x) = (2l + 1)xPml (x)− (l +m)Pml−1(x), (65)

where x = cos(β). Note that the functions P̃ml (cos(β)) are orthonormal with respect to the

latitudinal angle β and the functions eimα√
2π

are orthonormal with respect to the longitudinal

angle α. Taking the product of the two we get the classical spherical harmonics

Y m
l (α, β) = (−1)m

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos(β))eimα (66)

that satisfy ∫ 2π

0

∫ π

0
Y m1
l1

(Y m2
l2

)∗sin(β)dβdα = δl1l2δm1m2 , (67)
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where ∗ denotes complex conjugation, i.e., they form an orthonormal basis over the surface

of the sphere [58].

The spherical harmonics form a triangular truncation with |m| ≤ l, and l = 0, 1, . . . ,∞.

This triangular truncation is shown in Fig. 11, that depicts the spherical harmonics for

degrees l = 0, 1, 2. Note that the spherical harmonics for negative m are simply phase-

shifted versions of their positive m counterparts. The analytic expressions for the first few

spherical harmonics are given in Table 2.

The spherical harmonics can also be categorized depending on the order m. When

m = 0, their is no longitudinal contribution because the exponentials eimα = 1. Harmonics

evaluated when m = 0 are referred to as the zonal harmonics and simply determine the har-

monic contribution of the function in the co-latitudinal coordinate. Examples of the zonal

harmonics projected onto the sphere, along with their associated Legendre polynomials are

shown in Fig. 12. If on the other hand m = l, then the associated Legendre polynomials

Figure 11: The first few spherical harmonics showing the triangular truncation. For nega-
tive values of m, the harmonics are simply phase-shifted versions of their positive m coun-
terparts.
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Table 2: Analytic expressions for spherical harmonics of degree l = 0, 1, 2 and |m| ≤ l.

m
-2 -1 0 1 2

l
0 NA NA 1

2

√
1
π

NA NA

1 NA 1
2

√
3
2π

sin(β)e−iα 1
2

√
3
2π

cos(β) − 1
2

√
3
2π

sin(β)eiα NA

2 1
4

√
15
2π

sin2(β)e−2iα 1
2
sin(β)cos(β)e−iα 1

4

√
5
π

(
3cos2(β)− 1

)
− 1

2
sin(β)cos(β)eiα 1

4

√
15
2π

sin2(β)e2iα

simply attenuate the polar regions and the harmonics are referred to as the sectoral har-

monics. The sectoral harmonics determine the harmonic contribution of the function in the

longitudinal coordinate. Examples of the sectoral harmonics, along with their associated

Legendre polynomials are shown in Fig. 13. Finally, when m 6= (0, l), the harmonics are

referred to as the tesseral harmonics and they determine the harmonic contribution of the

function in the cross combination of the co-latitudinal and longitudinal coordinate. Exam-

ples of the tesseral harmonics, along with their associated Legendre polynomials are shown

in Fig. 14.

Figure 12: In the definition of the spherical harmonics Y m
l (·), when m = 0 there is no

longitudinal dependence. As a result, only the harmonic frequencies in the co-latitudinal
coordinate are computed. These are referred to as the zonal harmonics shown in the top
figures for several different harmonic degrees l. The bottom figures shows the contribution
of the Legendre polynomials.
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Figure 13: In the definition of the spherical harmonics Y m
l (·), when m = l there is no

latitudinal dependence. As a result, only the harmonic frequencies in the longitudinal
coordinate are computed. These are referred to as the sectoral harmonics shown in the top
figures for several different harmonic degrees l. The bottom figures shows the contribution
of the Legendre polynomials.

Figure 14: In the definition of the spherical harmonics Y m
l (·), when m 6= (0, l) harmonic fre-

quencies in both the longitudinal and the co-latitudinal coordinate are computed. These are
referred to as the tesseral harmonics shown in the top figures for several different harmonic
degrees l. The bottom figures shows the contribution of the Legendre polynomials.
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5.5 Spherical Harmonic Transform

Using the above development allows one to construct a transform for functions defined on

the sphere (S2) in much the same way the Fourier transform is defined for functions on

the circle (S1). Because the spherical harmonics provide an orthonormal basis for S2, any

square integrable function f(α, β) ∈ L2(S2) may be projected onto this basis as

f(α, β) =
∞∑
l=0

∑
|m|≤l

fml Y
m
l (α, β) (68)

with the expansion coefficients computed as

fml =
∫ 2π

0

∫ π

0
f(α, β)Y m

l (α, β)∗sin(β)dβdα, (69)

where once again, ∗ denotes the complex conjugate, and L2 is the Hilbert space of square

integrable functions.

Unfortunately, computing the harmonic coefficients by evaluating the integrals in Eq. (69)

is prohibitively expensive. In order to reduce this computational expense, the integrals

in (69) need to be approximated by finite sums and the development of a discrete spherical

harmonic transform is used. The development of a discrete spherical harmonics transform

is outlined in the following subsection.

5.5.1 Discrete Spherical Harmonic Transform

The discretization of integrals to finite sums has been addressed in various ways dating back

to the 1800’s [71]. The first step in this conversion is to determine the proper discretization

of the sphere. The next step is to determine (if possible) a numerical quadrature in an

attempt to make the discretization exact. Both of these steps were outlined in Chapter 4.

As discussed in that chapter, for this particular application, the HEALPix discretization is

superior and will be used to define a discrete spherical harmonic transform.

As mentioned in Chapter 2, the sphere may be parameterized by the total number of

samples n = ab, where a is the number of samples defined on the sphere’s surface (S2), and

b is the number of planar rotations captured at each sample. Using this parameterization,

a function f(·) can sampled by

f(·) = f(ξp, γr), (70)
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Figure 15: The proposed sampling method used in this dissertation with the parameteri-
zation of the sphere determined by (α, β, γ). Using this parameterization, extensions from
S1 to S2 and finally, SO(3) can be easily made.

where ξp, p ∈ {0, . . . , a−1}, is the unit vector pointing at the angle of co-latitude βp ∈ (0, π)

measured down from the upper pole, and the angle of longitude αp ∈ [0, 2π), which is the

parameterization of the sphere in spherical coordinates. In f(ξp, γr), the value γr ∈ [0, 2π)

is the rth planar rotation at sample p where r ∈ {0, . . . , b − 1}. This parameterization is

chosen so that the extensions from S1 to S2 and finally SO(3) can be easily made.

Using the above parameterization, consider capturing images on the surface of the sphere

where an object is placed at the sphere’s center as shown in Fig. 15. Letting r = γr = 0,

βp ∈ (0, π), and αp ∈ [0, 2π) results in sampling the entire surface of the sphere rather than

lines of constant latitude as in Chapter 3. Sampling the object in this manner results in

a two-dimensionally correlated image data matrix that is correlated on S2. A real valued
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band-limited function f(ξp, 0) whose domain is L2(S2) may be represented by its discrete

spherical harmonic expansion as

f(ξp, 0) =
lmax∑
l=0

∑
|m|≤l

fml Y
m
l (ξp) (71)

where f(ξp, 0) ∈ [0, 1] is a single pixel of the image data vector f(ξp, 0). In the above

equation, it is assumed that the signal power for l > lmax is insignificant, and lmax is chosen

to prevent aliasing. The expansion coefficients are calculated using

fml =
4π
n

n−1∑
p=0

f(ξp, 0)Y m
l (ξp)

∗, (72)

where Y m
l (ξp)∗ is the conjugate of the spherical harmonic of degree l and order m.

Because the functions in this work are real valued images, it is more convenient to use

the real valued spherical harmonics. The real valued spherical harmonics are defined as

Y m
l (ξp) =


√

2κml cos(mαp)Pml (x) if m > 0
√

2κml sin(|m|αp)P |m|l (x) if m < 0

κ0
l P

0
l (cos(βp)) if m = 0

(73)

where P 0
l (cos(βp)) = Pl(cos(βp)) is the Legendre polynomial of degree l, and κml is the

normalization constant

κml =

√
2l + 1

4π
(l −m)!
(l +m)!

. (74)

Using the real valued spherical harmonics, the expansion coefficients fml can be computed

using (72) by replacing Y m
l (ξp)∗ with its real counterpart.

5.6 Eigenspace Decomposition Algorithm on S2

5.6.1 Motivation

In this section, a fast eigenspace decomposition algorithm based on the analysis of Sec-

tion 5.5 is developed. In [26], Chang et al. showed that for image data sets correlated

in one dimension, the right singular vectors are approximately spanned by the first few

Fourier harmonics. While this is not true for image data sets that are spherically correlated

in higher dimensions, most of the energy of these image data sets is concentrated around

the lower frequency spherical harmonics. An example of this is shown in Fig. 16 where
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Figure 16: The spherical harmonic power spectra ||fml ||2 of object (15) from Fig. 17. As
can be seen from the figure, most of the energy is concentrated around the low frequency
harmonics.

the spherical harmonic power spectra of object 15 from Fig. 17 is presented. As can be

observed in the figure, in general, as l increases, the magnitude of the power spectra de-

creases. As a result, the left singular vectors Ũk of the SVD of a relatively small set of the

spherically transformed harmonic images serve as excellent estimates to those of X, but can

be computed at a significant computational savings [28,31].

5.6.2 Algorithm

The objective is to estimate the desired subspace dimension k, as well as the principal eigen-

images Ũk of X, so that ρ(X, Ũk) ≥ µ, where µ is a user specified energy recovery ratio.

The first step in computing the desired subspace dimension k, as well as the principal eigen-

images, is to construct the image data matrix X. As mentioned previously, the approach

taken here is to consider the object placed at the center of an imaginary unit sphere, and
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Figure 17: Example ray-traced images of CAD models courtesy of Kator Legaz [1]. Each
object is sampled using the HEALPix sampling pattern at a resolution of 128 × 128. Each
of the images are then scale and intensity normalized. The objects are ordered from left to
right, then top to bottom.

then sample S2 by capturing images of the object at every point of the HEALPix sampling

pattern. The objects used in the study for the construction of X are CAD models courtesy

of [1]. Each of the CAD models are ray-traced to generate one sample image, examples of

which are shown in Fig. 17. The images are then both scale and intensity normalized to

generate the image data matrix X.

Once the image data matrix X has been constructed, the matrix F is computed, whose

ith row is the SHT of the ith row of X, denoted from this point forward as SHT(X). This

can be computed quickly using the methods described in [51], however for small bandwidths

the computational savings of this method are slim. Alternatively, the SHT(X) can be cast
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as the matrix multiplication

F = XZ, (75)

where X ∈ Rm×(12N2
side) is the image data matrix with the images ordered in terms of (ξp, 0)

as

X =
[
f(ξ0, 0),f(ξ1, 0), · · · ,f(ξ12N2

side−1, 0)
]
, (76)

and Z ∈ R(12N2
side)×(9N2

side) is the matrix of spherical harmonics ordered in terms of ξp, l,

and m as

Z =



Y 0
0 (ξ0) Y −1

1 (ξ0) Y 0
1 (ξ0) Y 1

1 (ξ0) Y −2
2 (ξ0) · · · Y 3Nside−1

3Nside−1 (ξ0)

Y 0
0 (ξ1) · · · Y 3Nside−1

3Nside−1 (ξ1)
...

...
...

Y 0
0 (ξ12N2

side−1) · · · Y 3Nside−1
3Nside−1 (ξ12N2

side−1)


.

(77)

Note that in computing the SHT(X) the matrix Z may be pre-computed for several different

bandwidths and stored for later use.

An algorithm is now presented for estimating the first k principal eigenimages Ũk of X

such that ρ(X, Ũk) ≥ µ, where µ is the user specified energy recovery ratio.

SHT-Based Eigenspace Decomposition Algorithm

1. Form the matrix F by computing the SHT(X).

2. Form the matrix H whose columns are the ordered columns of F in descending order

according to their norm.

3. Set q = b(3Nside)2[1− (1/2)N+1]c, with N=0 initially.

4. Construct the matrix Hq, i.e., the matrix consisting of the first q columns of H.

5. Compute SVD(Hq) = ŨqS̃qṼ
T
q . (The key observation here is that Hq contains q

columns, which is considerably less than the n columns of X.)
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6. If ρ(X, Ũq) < µ. Let N = N + 1 and repeat Steps 3 through 6. Because the SVD

of Hq is already available, the eigenspace can simply be updated by modifying the

algorithm outlined in [39].

7. Return Ũk such that ρ(X, Ũk) ≥ µ. Note that k ≤ q.

The above algorithm takes advantage of the fact that most SVD algorithms require

mn2 flops to compute the full SVD of X; this is computationally prohibitive when n is

large. Because the SHT(X) is lossy, step one of the algorithm condenses the energy in X

from 12N2
side images to 9N2

side harmonic images ordered in terms of the magnitude of their

power spectra to form the matrix H. Furthermore, because most of the energy of X is

concentrated around the lower frequency spherical harmonics, the matrix Hq is constructed

and the SVD is performed on the first q = b(3Nside)2[1 − (1/2)N+1]c harmonic images

initially, significantly reducing the computational cost. If more harmonics are required,

then half of the remaining harmonic images are concatenated to Hq and the eigenspace is

updated.

It is difficult to evaluate the computational complexity of the above algorithm due to the

binary split used to determine k. However, if only one iteration of steps 3-6 is performed, i.e.,

N = 0, then the complexity is on the order of mq2 flops where q = b(3Nside)2[1−(1/2)N+1]c.

This is the cost of computing the SVD(Hq) in step 5 of the algorithm. It should be noted that

for all of the objects tested over 90% of the energy inX was recovered with a single itteration.

Futhermore, extensive simulation has shown that for pose estimation, a subspace that can

recover between 60% - 70% of the energy in X is typically more than sufficient [27,28].

5.7 Experimental Results

5.7.1 Test Data

The proposed algorithm detailed in Section 5.6 was tested on the objects shown in Fig. 17.

The parameter Nside = 8 was used, resulting in 12N2
side = 768 images per object at an

angular resolution ≈ 7◦. The images were then both scale and intensity normalized to

create the image data matrix X. Finally, the matrix F was computed condensing the
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image data set from 768 images to 576 harmonic images. The true SVD(X) was computed

using Matlab for a comparison.

5.7.2 Quality of Estimation

Fig. 18 shows a plot of the difference between the energy recovery ratio using the true left

singular vectors ρt, and the energy recovery ratio using the proposed left singular vectors

computed using the proposed algorithm ρp, as a function of the subspace dimension k

averaged across all objects in Fig. 17. As can be seen from the figure, there is less than a

0.05% difference in the energy recovered using the proposed algortihm as compared to the

true eigenimages, i.e., the estimated left singular vectors Ũk as computed by the proposed

algorithm are very good estimates of the true left singular vectors as computed by the

SVD(X) in terms of being able to recover the energy in X. Note, this data is for the first

split, i.e., N = 0, in step 3 of the algorithm. and there is less than a 0.05% difference in the

energy recovered using the proposed algortihm.

5.7.3 Computational Savings

Table 3 shows the computation time required to calculate the subspace dimension k, and

estimate the left singular vectors Ũk required to meet the user specified energy recovery ratio

of µ = 0.9. Also depicted in the table is the result as computed by the true SVD(X). As is

apparent from the table, in most cases, the left singular vectors Ũk are very good estimates

Figure 18: Difference between the true and proposed energy recovery ratio vs. subspace
dimension k averaged across all 20 objects in Fig. 17.
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Table 3: The required subspace dimension k, and the time required to estimate the first k
left singular vectors for each object in Fig. 17 to exceed the user specified energy recovery
µ = 0.9. The results are compared against the true SVD using Matlab.

Object no.
Dimension k Time [sec.]

True Proposed True Proposed
1 18 18 24.36 7.03
2 3 3 23.89 6.70
3 21 21 24.71 7.13
4 67 71 25.97 8.34
5 5 5 24.00 6.92
6 3 3 26.38 6.67
7 26 26 24.27 7.20
8 60 61 25.81 8.08
9 22 22 24.77 7.16
10 35 36 29.87 7.48
11 26 26 24.62 7.25
12 47 48 25.12 7.76
13 8 8 23.34 6.77
14 19 20 24.79 7.28
15 47 49 25.31 7.81
16 3 3 23.38 6.69
17 54 56 29.93 7.95
18 11 11 23.82 6.87
19 12 12 31.95 6.94
20 2 2 27.44 6.71

of Uk at a significant computational savings using the proposed algorithm. Again, only the

first split, i.e., N = 0, in step 3 of the algorithm is required to recover over 90% of the

energy as depicted in the table.

5.7.4 Maximum Energy Recovery

Based on the data provided in Table 3 and Fig. 18, it is obvious that the proposed algorithm

is capable of estimating the required subspace dimension and left singular vectors of X at

a significant computational savings. Because the SHT is lossy however, it is important to

quantify the maximum amount of energy recovery possible using this approach. To do this,

all 9N2
side harmonic images were used to estimate the left singular vectors of X. Using these

estimates, the energy recovery ratio ρ(X, Ũ9N2
side

) was computed for each object in Fig. 17.

The top plot in Fig. 19 shows the maximum amount of energy recovered per object. The

bottom plot shows the maximum difference in energy recovery per object if only the first
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Figure 19: The maximum achievable energy recovery ratio ρ for each object in Fig. 17 [top],
and the maximum difference in energy recovery between the first 9N2

side true left singular
vectors as computed by SVD(X) and the estimated left singular vectors Ũ9N2

side
as computed

by the proposed algorithm [bottom].

9N2
side true left singular vectors are used to recover the same energy, i.e., the bottom plot

shows max(ρ(X,Uk) − ρ(X, Ũk)) for all k ≤ 9N2
side for each object. As can be seen from

the figure over 99% of the energy in X is recoverable for all objects using the proposed

algorithm. Furthermore, there is less than a 1% difference between the energy recovered

by the first 9N2
side true left singular vectors and the left singular vectors computed by the

proposed algorithm for all objects in Fig. 17. Finally, using

1
4.5N2

side

4.5N2
side∑

i=2

[ρ(X,Ui)− ρ(X, Ũi)] (78)

the average error in energy recovery is computed for each object in Fig. 17. The results are

depicted in the top plot of Fig. 20, which shows that the average error one could expect to

see for the objects of Fig. 17 is less than 1%. Note that 4.5N2
side is chosen in the summation

of (78) because this is the number of harmonic images resulting in the first split (step 3)
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Figure 20: The average error in energy recovery using the true left singular vectors as
computed by SVD(X), and the approximated left singular vectors calculated using the
proposed algorithm for each object in Fig. 17 across the subspace dimension k [top]. The
bottom plot shows the error in energy recovery averaged across all objects in Fig. 17 using
the approximated left singular vectors calculated by the first four splits (step 3) of the
proposed algorithm.

of the proposed algorithm. The bottom plot in Fig. 20 shows the error as a function of

subspace dimension averaged across all objects in Fig. 17. Note that the first four splits are

shown and that there is less than 0.8% error across all objects regardless of the number of

splits used. Furthermore, adding more harmonic images to Hq usually results in less than

1/1000 less error. This further supports the claim that for most objects, most of the energy

of X is concentrated around the low frequency spherical harmonics.

5.8 Hemispherical Harmonics

As a brief aside, it is shown that with a slight modification to the above development, pose

detection from an aerial perspective can be achieved [27]. This detour is motivated by the
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Figure 21: Image acquisition for the training image data matrix X using hemispherical
sampling for aerial pose estimation. A sample image is taken at each black dot on the
hemisphere.

fact that numerous pose detection applications are only interested in estimating the pose

of three-dimensional objects from an aerial view. Some examples include aerial surveillance

and reconnaissance, remote sensing, and part inspection.

Consider sampling the sphere as discussed in Section 5.6, however restricting the angle

of co-latitude to βp ∈ (0, π/2) (an example of this is depicted in Fig. 21). Applying this

constraint then restricts the sampling to the upper hemisphere of S2. It has been shown

that applying a linear shift of x = cos(βp) to x = 2cos(βp − 1) in the associated Legendre

polynomials, and redefining the normalization constant κml , the spherical harmonics form

an orthonormal basis on the upper hemisphere of S2 [27, 72]. Therefore, a real valued

band-limited function f(ξp, 0) whose domain is the upper hemisphere of L2(S2) can be

represented by its hemispherical harmonic expansion as

f(ξp, 0) =
lmax∑
l=0

∑
|m|≤l

fml H
m
l (ξp). (79)

The expansion coefficients are calculated by

fml =
2π
n

n−1∑
p=0

f(ξp, 0)Hm
l (ξp), (80)
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Figure 22: The real hemispherical harmonics Hm
l (·) for l = 8. The left plot is for m = 0,

the center plot is for m = l/2, and the right plot is for m = l.

where Hm
l (ξp) is the real-valued hemispherical harmonic defined by

Hm
l (ξp) =


√

2κ̄ml cos(mαp)P̄ml (x) if m > 0
√

2κ̄ml sin(|m|αp)P̄ |m|l (x) if m < 0

κ̄0
l P̄

0
l (x) if m = 0

(81)

with P̄ml (x) being a shifted associated Legendre polynomial of degree l and order m, x =

2cos(βp)− 1, and

κ̄ml =

√
2l + 1

2π
(l − |m|)!
(l + |m|)!

(82)

is the normalization constant for the hemispherical transform. Examples of the real hemi-

spherical harmonics projected onto the hemisphere for l = 8 and three different values of

m are shown in Fig. 22. The eigenspace decomposition algorithm developed in 5.6 is eas-

ily extended to computing the eigendecompositon of hemispherically correlated images by

replacing step 1 with “Form the matrix F by computing the HSHT(X)”, and step 3 with

“Set q = b(1.5Nside)2[1− (1/2)N+1]c, with N=0 initially” [27].
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CHAPTER VI

WIGNER-D MATRICES AND THE ROTATION GROUP

6.1 Chapter Overview

In this chapter the spherical harmonic transform developed in Chapter 5 is extended to

the rotation group SO(3) using some of the techniques developed in [73]. This extension is

necessary for the development of a fully general 3-D pose estimation algorithm. Section 6.2

begins by showing how the spherical harmonic transform developed in Chapter 5 can be

extended to the full rotation group SO(3) using Wigner-D matrices. Using this exten-

sion, an SO(3) harmonic transform is developed in Section 6.3. This transform provides

the necessary means to extend the algorithm developed in Chapter 5 from computing the

eigenspace decomposition of an image data set correlated on S2 to an image data set cor-

related on SO(3). The construction of this algorithm is presented in Section 6.4. Finally,

this algorithm is applied to fully general 3-D data sets in Section 6.5, and an analysis is

presented illustrating its effectiveness in estimating the eigenspace of arbitrary 3-D objects.

6.2 Introduction

For the construction of the SO(3) FFT the rotation of a function defined on S2 is computed

using elements of the rotation group. The rotation group is the set of real 3× 3 orthogonal

matrices of determinant +1, which define proper rotations about the origin of R3. In spectral

theory, it is often the convention to define these matrices using standard z − y − z Euler

rotation matrices where the z-axis is the upper pole [57, 58, 74]. Therefore, any rotation

g(α, β, γ) ∈ SO(3) can be written as

g(α, β, γ) = Rz(α)Ry(β)Rz(γ) (83)
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where Rz(α) and Ry(β) represent a rotation about the z-axis by α radians, and a rotation

about the y-axis by β radians respectively. Given any g ∈ SO(3), the linear operator

Λ(α, β, γ) : f(α, β) → f(α′, β′) is defined where (α, β) and (α′, β′) are the coordinates of

the position vector in the original and rotated coordinate frames respectively. The effect

this has on the function in the spectral domain (i.e., the effect on the harmonic coefficient

fml ) can be deduced from the fact that rotated versions of the spherical harmonics are

simply linear combinations of harmonics of the same degree. That is

Λ(α, β, γ)Y m
l (α, β) = Y m

l (α′, β′) =
∑
|m|≤l

Y m
l (α, β)Dl

mm′(α, β, γ) (84)

where Dl
mm′(α, β, γ) is the (2l + 1)× (2l + 1) Wigner-D matrix [57].

6.3 Harmonic Analysis on SO(3)

Using the Peter-Weyl theorem, it can be shown that the D matrices satisfy the condition∫ 2π

0

∫ π

0

∫ 2π

0
Dl1∗
m1m′1

(α, β, γ)Dl2
m2m′2

(α, β, γ)dΩ =
8π2

2l1 + 1
δl1l2δm1m2δm′1m′2 , (85)

where dΩ = dα sin(β)dβ dγ, i.e., they form an orthogonal basis over SO(3) [73]. Therefore,

any function f(α, β, γ) ∈ L2(SO(3)) may be projected onto this basis as

f(α, β, γ) =
∞∑
l=0

∑
|m|≤l

∑
|m′|≤l

f lmm′D
l
mm′(α, β, γ) (86)

with the expansion coefficients computed as

f lmm′ =
2l + 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(α, β, γ)Dl∗

mm′(α, β, γ)dΩ, (87)

where once again, ∗ denotes the complex conjugate and L2 is the Hilbert space of square

integrable functions.

Unfortunately, as in Chapter 5, the integrals in (87) must be approximated by finite sums

and the development of a discrete SO(3) harmonic transform is needed. The development

of a discrete SO(3) harmonic transform is outlined in the following subsection.

6.3.1 Discrete SO(3) Harmonic Transform

Before developing a discrete harmonic transform on SO(3), the reader is reminded that

SO(3) can be discretized by sampling the sphere using the HEALPix sampling pattern.
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This results in capturing n = ab samples, where a is the number of samples defined on

the sphere’s surface (S2), and b is the number of planar rotations captured at each sample.

Using this parameterization, a function f(·) can be sampled by

f(·) = f(ξp, γr), (88)

where ξp, p ∈ {0, . . . , a−1}, is the unit vector pointing at the angle of co-latitude βp ∈ (0, π)

measured down from the upper pole, and the angle of longitude αp ∈ [0, 2π), which is the

parameterization of the sphere in spherical coordinates. In f(ξp, γr), the value γr ∈ [0, 2π)

is the rth planar rotation at sample p where r ∈ {0, . . . , b− 1}.

Using the above parameterization, consider capturing images on the surface of the sphere

where an object is placed at the sphere’s center as shown in Fig. 15. Letting γr ∈ [0, 2π),

βp ∈ (0, π), and αp ∈ [0, 2π) results in sampling SO(3), rather than lines of constant latitude

as in Chapter 3 or the surface of the sphere as in Chapter 5. Sampling the object in this

manner results in a three-dimensionally correlated image data matrix that is correlated on

SO(3).

Using (84) and (85), it can be shown that a function f ∈ L2(SO(3)) can be represented

by its discrete harmonic expansion using Wigner-D matrices [67,73]. That is,

f(ξp, γr) =
lmax∑
l=0

∑
|m|≤l

∑
|m′|≤l

f lmm′D
l
mm′(ξp, γr) (89)

where once again, f(ξp, γr) ∈ [0, 1] is a single pixel of the image data vector f(ξp, γr). The

expansion coefficients f lmm′ are then calculated using

f lmm′ =
4π
a

a−1∑
p=0

b−1∑
r=0

f(ξp, γr)D
l∗
mm′(ξp, γr) (90)

where ∗ denotes complex conjugation. In the above equations, with the unit vector ξp

parameterized by (αp, βp),

Dl
mm′(αp, βp, γr) = e−imαpdlmm′(βp)e

−im′γr (91)

where dlmm′(βp) is known as Wigner’s (small) d-matrix defined by

dlmm′(βp) =

√
(l +m′)!(l −m′)!
(l +m)!(l −m)!

(
sin

βp
2

)m′−m(
cos

βp
2

)m+m′

P
(l−m′)
(m′−m,m+m′)(cosβp) (92)
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and P (·)
(·,·)(x) is a Jacobi polynomial. For computational convenience, the d-matrices may be

computed quickly using a three term recurrence relationship [57,73,75].

Because f(ξp, γr) is a real-valued function, it is more convenient to work with the real-

valued Wigner-D matrices denoted here as ∆l
mm′ . The construction of rotation matrices in

the basis of real spherical harmonics is discussed in [75–77], and can be defined as

∆l
mm′= sign(m′)Φm(αp)Φm′(γr)

dl|m′||m|(βp)+(−1)mdl|m|(−|m′|)(βp)

2

−sign(m)Φ−m(αp)Φ−m′(γr)
dl|m′||m|(βp)−(−1)mdl|m|(−|m′|)(βp)

2

(93)

where

Φm(x) =


√

2cos(mx) if m > 0

1 if m = 0
√

2sin(|m|x) if m < 0

. (94)

The SO(3) FFT may then be computed using (90) by replacingDl∗
mm′(ξp, γr) with ∆l

mm′(ξp, γr).

To show the harmonic extension from S1 to S2 and finally SO(3), the separation of

variables technique discussed in [73] is used along with the definition of the Wigner-D

matrices given in (91). Applying these to the summations of (90), the SO(3) Fourier

coefficients can be computed as

f lmm′ =
4π
a

a−1∑
p=0

dlmm′(βp)
b−1∑
r=0

eim
′γr

a−1∑
p=0

eimαpf(ξp, γr). (95)

Note that the last summation is only concerned with data along lines of constant latitude,

and is equivalent to computing the harmonic coefficients of data correlated on S1 using the

DFT. The second summation is equivalent to the special case discussed in Chapter 3, and

can be computed quickly using FFT techniques. Finally, the first summation computes the

harmonic coefficients of the co-latitudinal coordinate thus completing the full SO(3) FFT.

Notice that if only the first and last summation are computed (or equivalently m′ = 0),

then the transform is equivalent to computing the discrete spherical harmonic transform for

a function correlated on S2. In fact, it can be shown that by setting m′ = 0, the Wigner-D

matrices are equivalent to the spherical harmonics [57].
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6.4 Eigenspace Decomposition Algorithm on SO(3)

6.4.1 Motivation

In this section a fast eigenspace decomposition algorithm is developed based on the analysis

of Section 6.3, and is motivated by Chang’s algorithm, as well as the algorithm developed

in Chapter 5. In [26], Chang et al. showed that for image data sets correlated in one

dimension, the right singular vectors are approximately spanned by the first few Fourier

harmonics. While this is not true for image data sets that are spherically correlated in

higher dimensions, it was shown in Chapter 5 that for image data sets correlated on S2,

most of the energy is concentrated around the lower frequency spherical harmonics. For

objects correlated on SO(3), most of the energy information is concentrated around the low

frequency SO(3) harmonics. This can be observed in Fig. 23, which is the SO(3) power

spectra for object 15 from Fig. 17. As the figure depicts, in general, as l increases the

magnitude of the power spectra decreases. As a result, the left singular vectors ˜̂
Uk of the

SVD of a relatively small set of the SO(3) spherically transformed harmonic images serve

as excellent estimates to those of X̂ at a significant computational savings [29,31].

6.4.2 Algorithm

Similar to the algorithm developed in Chapter 5 for images correlated on S2, the objective

is to estimate the first k principal eigenimages ˜̂
Uk of X̂ such that ∆ρ(X̂, ˜̂

Uk) ≤ ε, where ε is

the user specified change in energy. The first step in computing the principal eigenimages is

to construct the image data matrix X̂ by sampling SO(3) appropriately using the HEALPix

sampling pattern for the discretization of the sphere. The mean image is then subtracted

from each sample image to form the image data matrix X̂.

As discussed in Chapter 4, using the HEALPix sampling pattern is based on subdivid-

ing the sphere using the parameter Nside, resulting in a = 12N2
side sample points on the

sphere [52]. At each of the 12N2
side sample points, b planar rotated images of the object are

captured by rotating the camera through an angle γr. The number of planar rotated im-

ages captured depends on the angular resolution of the 12N2
side samples defined on S2. The
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Figure 23: The power spectra ||f lmm′ ||2 of object (15) from Fig. 17 for degrees l = 2, 3, 4, 5.
As can be seen from the figure, most of the energy is concentrated around the lower frequency
harmonics, i.e. those with lower values of l. (l = 0 is omitted as this represents the mean
value and is significantly higher in magnitude.)

angular resolution is denoted θpix and calculated as θpix =
√

3
π

60o

Nside
. To maintain homoge-

neous sampling on SO(3), b = b360/θpixc. Finally, to prevent aliasing, lmax = 3Nside − 1

is used in the forward transform. Because the HEALPix sampling pattern is isolatitudinal,

the computation of the Wigner-d matrices (which is the most computationally expensive

portion of the SO(3) FFT) is minimal.

Once the image data matrix X̂ has been constructed, the matrix F (whose ith row is the

SO(3) FFT of the ith row of X̂) is computed, denoted from this point forward as SOFT (X̂).

This can be computed quickly using the method described in [73], however for small lmax

the computational savings of this method are slim. Alternatively, SOFT (X̂) can be cast
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as the matrix multiplication

F = X̂Z, (96)

where X̂ ∈ Rm×n is the image data matrix with the image mean removed and the images

ordered in terms of (ξp, γr) as

X̂ = [f(ξ0, γ0),f(ξ0, γ1), · · · ,f(ξ0, γb−1),f(ξ1, γ0),f(ξ1, γ1), · · · ,

f(ξ1, γb−1), · · · ,f(ξa−1, γ0),f(ξa−1, γ1), · · · ,f(ξa−1, γb−1)].
(97)

The matrices ∆l
mm′(·) ∈ R(2l+1)×(2l+1) can be row scanned such that each row is concate-

nated to form the row vector δl(·) = vec(∆l
mm′(·)) ∈ R1×(2l+1)2 for any given l. Using this

notation, the matrix Z can be constructed as

Z =



δ0(ξ0, γ0) δ1(ξ0, γ0) · · · δ3Nside−1(ξ0, γ0)

δ0(ξ0, γ1) δ1(ξ0, γ1) · · · δ3Nside−1(ξ0, γ1)
...

...
...

...

δ0(ξ0, γb−1) δ1(ξ0, γb−1) · · · δ3Nside−1(ξ0, γb−1)

δ0(ξ1, γ0) δ1(ξ1, γ0) · · · δ3Nside−1(ξ1, γ0)
...

...
...

...

δ0(ξa−1, γb−1) δ1(ξa−1, γb−1) · · · δ3Nside−1(ξa−1, γb−1)



(98)

where the rows of Z are ordered in terms of (ξp, γr) such that the matrix product F = X̂Z

makes sense. Note that in computing SOFT (X̂) the matrix Z may be pre-computed for

several different values of lmax and stored for later use.

An algorithm for estimating the first k principal eigenimages ˜̂
Uk of X̂ such that ∆ρ(X̂, ˜̂

Uk) ≤

ε, where ε is the user specified change in energy is now presented.

SOFT Eigenspace Decomposition Algorithm

1. Form the matrix F by computing the SOFT (X̂).

2. Form the matrix H whose columns are the ordered columns of F in descending order

according to their norm.

3. Set q = bNside(36N2
side − 1)[1− (1/2)N+1]c, with N=0 initially.
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4. Construct the matrix Hq, i.e., the matrix consisting of the first q columns of H.

5. Compute SVD(Hq) = ˜̂
Uq

˜̂Σq
˜̂
V T
q . (The key observation here is that Hq contains q

columns, which is considerably less than the n columns of X̂.)

6. If ∆ρ(X̂, ˜̂
Uq) > ε then set N = N + 1 and repeat Steps 3 through 6. Because the

SVD of Hq is already available, the eigenspace can simply be updated by modifying

the algorithm outlined in [39].

7. Return ˜̂
Uk such that ∆ρ(X̂, ˜̂

Uk) ≤ ε. Note that k ≤ q.

As with the S2 algorithm, the above algorithm takes advantage of the fact that most

SVD algorithms require mn2 flops to compute the full SVD of X̂; this is computationally

prohibitive when n is large (which is the case for fully general pose estimation). Because

the SO(3) FFT is lossy, step one of the algorithm condenses the energy in X̂ from 12bN2
side

images, where b ≈ 6Nside, to Nside(36N2
side − 1) harmonic images (roughly half) ordered

in terms of the magnitude of their power spectra to form the matrix H. Furthermore,

because most of the energy of X̂ is concentrated around the lower frequency harmonics, the

matrix Hq is constructed and the SVD is performed on the first q = bNside
2 (36N2

side − 1)c

harmonic images initially, significantly reducing the computational cost. If more harmonics

are required, then half of the remaining harmonic images are concatenated to Hq and the

eigenspace is updated.

It is difficult to evaluate the computational complexity of the above algorithm due to the

binary split used to determine k. However, if only one iteration of steps 3-6 is performed,

i.e., N = 0, then the complexity is on the order of mq2 flops where q = bNside
2 (36N2

side−1)c.

This is the cost of computing the SVD(Hq) in step 5 of the algorithm. Similar to the

algorithm developed on S2, for all of the objects tested over 90% of the energy in X̂ was

recovered with a single itteration. (Likewise, ∆ρ(X̂, ˜̂
Uk) < 0.01 when k was obtained from

a single itteration.) Extensive simulation has shown that for fully general pose estimation,

a subspace that can recover between 60% - 70% of the energy in X̂ is typically more than

sufficient [29].
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6.5 Experimental Results

6.5.1 Test Data

The proposed algorithm detailed in Section 6.4 was tested on the objects shown in Fig. 17.

The parameter Nside = 5 was used, resulting in b = 30 and 12bN2
side = 9000 images per

object at an angular resolution θpix ≈ 12◦. The images were then both scale and intensity

normalized to create the image data matrix X. The “unbiased” image data matrix X̂ was

then constructed by subtracting the mean image from the image data matrix X. Finally, the

matrix F was computed, condensing the image data set from 9000 images to 4495 harmonic

images. The true SVD(X̂) was computed using Matlab for a comparison.

6.5.2 Quality of Subspace Estimation

To validate the quality of the estimated eigenimages, the quality measures outlined in

Section 2.5 were used. Fig. 24 shows all three of the quality measures averaged across all

objects in Fig. 17. The top plot shows the difference in energy recovery ratio using the first

50 true eigenimages Û50 and the first 50 estimated eigenimages ˜̂
U50. As can be seen from

the plot, there is less than an 0.8% difference in the energy recovered using the proposed

algortihm as compared to the true eigenimages. The second plot shows the residue ∆ of

the first 50 estimated eigenimages compared to the first 50 true eigenimages. The residue

is normalized by
√

2k resulting in a worst-case bound of one. The third plot shows that,

based on the subspace criterion, the first 50 estimated eigenimages nearly span the same

space spanned by the first 50 true eigenimages. As can be seen from all three measures,

quantitatively, the estimated left singular vectors ˜̂
Uk for the proposed algorithm are very

good estimates of the true left singular vectors as computed by the direct SVD.

To illustrate qualitatively the accuracy of the estimated eigenspace, the first seven eigen-

images of object (8) from Fig. 17 were plotted and are presented in Fig. 25 as an example.

The true eigenimages as computed by the direct SVD are shown in the top row, while

the bottom row presents the eigenimages as computed by the proposed algorithm. As is

apparent from a visual inspection of the figure, the first few eigenimages computed by the

proposed algorithm are nearly identical to those computed by the SVD.
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Figure 24: The quality measures outlined in Chapter 2 averaged across all objects in Fig. 17.
As is apparent from the figure, the estimated left singular vectors ˜̂

Uk for the proposed
algorithm are very good approximations to the true left singular vectors as computed by
the direct SVD.

6.5.3 Computational Savings

Table 4 shows the required subspace dimension k, the amount of energy recovered at this

subspace dimension, and the time required to estimate the first k left singular vectors ˜̂
Uk

for each object depicted in Fig. 17 to meet the user specified change in energy ε = 0.01. The

user specified change in energy ε = 0.01 implies that the kth eigenimage recovers less than

1% additional energy when added to the subspace spanned by the first k − 1 eigenimages.

This result is compared to the true SVD as computed by Matlab. As is apparent from the

table, the proposed algorithm is capable of recovering nearly the same amount of energy

as the direct SVD for the given subpace dimension at a significant computational savings.
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Figure 25: The first seven eigenimages of object (8) from Fig. 17. The true eigenimages
as computed by the SVD using Matlab are shown in the top row, and the eigenimages as
computed by the proposed algorithm are shown in the bottom row. As is apparent from the
figure, the first few eigenimages computed by the proposed algorithm are nearly identical
to those computed by the SVD.

Only the first split N = 0 (step 3) of the algorithm was used to compute this data, resulting

in an average speed-up factor of 40.

6.5.4 Accuracy of Pose Estimation

To validate that the subspace dimension k (given in Table 4) as determined by the proposed

algorithm is sufficient to accurately determine the 3-D pose of arbitrary objects, each of

the objects shown in Fig. 17 was sampled on a different SO(3) grid resulting in 72 images

per object that were not included in the original data matrix X̂. For each of the 72

different poses, the subspace dimension k required to accurately estimate the correct pose

was determined using the estimated eigenimages as computed by the proposed algorithm.

Fig. 26 shows the distribution of the subspace dimension for each of the 20 object in Fig. 17.

The boxes show the inner-quartile region with the horizontal bar representing the median

of the data. The plus signs are the outliers in the data and represent poses that were either

easier or more difficult to determine as compared to the rest of the distribution. The circles

represent the subspace dimension as computed using ∆ρ(X̂, ˜̂
Uk) ≤ 0.01 (given in Table 4).

As is apparent from the figure, with the exception of objects 9, 19, and 20, the subspace

dimension as determined by computing ∆ρ(X̂, ˜̂
Uk) is sufficient to accurately determine all

72 test poses. Furthermore, only one test pose for objects 9, 19, and 20 required a subspace

dimension higher than that determined by ∆ρ(X̂, ˜̂
Uk). These outliers are due to the fact

that these poses lie nearly equi-distant to two adjacent poses in the original image data
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Table 4: The required subspace dimension k, the amount of energy recovered at this
subspace dimension, and the time required to estimate the first k left singular vectors for
each object to meet the user specified change in energy ε = 0.01. The table also outlines
the average subspace dimension k̄min required to determine the pose of 72 test images, as
well as the energy recovered at this dimension. The results are compared against the true
SVD using Matlab.

Object k k̄min
Time [hours] Energy ρ [%]

True Proposed True Proposed At k̄min

1 19 5.9 3.550 0.082 69.14 66.94 37.86
2 17 5.7 3.432 0.076 68.39 68.22 47.96
3 16 6.0 3.544 0.083 64.80 63.42 43.24
4 16 4.9 3.558 0.124 54.68 54.30 29.34
5 14 6.0 3.589 0.076 63.78 62.53 43.87
6 14 6.2 3.322 0.076 76.66 76.33 60.41
7 19 5.1 2.424 0.092 60.40 60.13 33.22
8 16 5.9 3.688 0.101 45.65 39.83 24.20
9 16 5.6 3.678 0.084 60.12 58.83 41.72
10 21 5.9 3.634 0.086 58.05 59.63 33.27
11 20 5.4 3.584 0.083 64.76 64.44 31.33
12 15 5.3 3.598 0.096 57.61 56.21 39.16
13 10 5.9 3.403 0.102 50.65 42.31 29.77
14 15 5.0 3.627 0.091 64.35 64.25 43.20
15 16 5.8 3.393 0.093 66.43 64.62 43.05
16 14 5.7 3.881 0.075 70.77 70.62 56.15
17 17 5.7 3.617 0.095 60.02 59.80 38.47
18 15 5.9 3.599 0.087 68.43 65.72 47.96
19 8 5.3 3.542 0.079 71.32 66.46 54.16
20 9 6.4 4.039 0.077 64.23 57.00 51.24

Mean 3.535 0.088 63.01 61.08 50.04
Min. 2.424 0.075 45.65 39.83 47.25
Max. 4.039 0.124 76.66 76.33 51.24

matrix X̂. Therefore, an interpolation procedure between p of the closest matching poses

would resolve this issue, even with a much smaller subspace dimension k.

Table 4 also shows the average subspace dimension k̄min required to determine the pose

of each of the 72 above mentioned test images, as well as the energy recovered at this

dimension. As shown in the table, the average energy recovered at k̄min is 50.04% with

the min and max being 47.25% and 51.24% respectively. This data supports the claim in

Section 6.4 that a subspace that can recover between 60% - 70% of the energy in X̂ is

typically sufficient for accurate pose estimation.
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Figure 26: Box plots showing the distribution of the subspace dimension k required to
determine 72 different test poses for each object in Fig. 17. The plus signs depict outliers in
the data, and the circles depict the subspace dimension calculated using ∆ρ(X̂, ˜̂

Uk) ≤ 0.01
as shown in Table 4.

6.5.5 Maximum Energy Recovery

Based on the data provided in Table 4, and Figures 24, 25 and 26, it is obvious that

the proposed algorithm is capable of estimating the required subspace dimension and left

singular vectors of X̂ at a significant computational savings for use in pose estimation.

However, because the SO(3) FFT is lossy, it is important to quantify the maximum amount

of energy recovery possible using this approach. To do this, all Nside(36N2
side− 1) harmonic

images were used to estimate the left singular vectors of X̂. Using these estimates, the

energy recovery ratio ρ(X̂, ˜̂
UNside(36N2

side−1)) was computed for each object in Fig. 17. The

top plot in Fig. 27 shows the maximum amount of energy recovered per object. As seen in
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Figure 27: The maximum achievable energy recovery ratio ρ for each object in Fig. 17
[top], and the maximum difference in energy recovery between the first Nside(36N2

side − 1)

true left singular vectors of SVD(X̂) and the estimated left singular vectors ˜̂
UNside(36N2

side−1)

as computed by the proposed algorithm [bottom].

the plot, using the proposed algorithm, over 99.7% of the energy in X̂ is recoverable for all

objects. The bottom plot in Fig. 27 shows the maximum difference in energy recovery per

object if only the firstNside(36N2
side−1) true left singular vectors are used to recover the same

energy, i.e., the bottom plot shows max(ρ(X̂, Ûk)− ρ(X̂, ˜̂
Uk)) for all k ≤ Nside(36N2

side − 1)

for each object. As seen in the plot, the maximum error one could expect to see is less than

3% across the entire subspace for the objects shown in Fig. 17.
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CHAPTER VII

SPHERICAL HARMONICS AND ILLUMINATION

VARIATION

7.1 Chapter Overview

The algorithms outlined in Chapters 3, 5, and 6 all assume the object in question is being

illuminated by a single distant point light source. The remainder of this dissertation fo-

cuses on the problem of pose estimation under variations in illumination conditions when

both single and multiple illumination sources are present. This chapter shows that the

dimensionality of a set of images of an object under a wide range of illumination conditions

and fixed pose can be significantly reduced by using the SHT developed in Chapter 5. An

eigenspace decomposition algorithm is then developed to reduce the expense of computing

the eigenspace decomposition of a set of images containing variations in both pose as well

as illumination conditions. Section 7.2 provides an introduction to the problem of object

recognition and pose estimation when variations in illumination exist. Although this disser-

tation does not consider the recognition phase discussed in Section 7.2, most of the related

work in this area has been in the face recognition domain. Therefore, a brief discussion along

with some seminal works will be presented. Section 7.3 discusses some changes in notation

and function parameterization that is necessary when dealing with variations in both pose

and illumination conditions. In Section 7.4, the problem of reducing the dimensionality of

the image data under a fixed pose but varying illuminations conditions from a single illumi-

nation source is discussed. This analysis is then extended to multiple illumination sources

in Section 7.5. An algorithm is then developed in Section 7.6 to estimate the eigenspace

for a set of images that contain variation in both illumination and pose. The algorithm is

tested in Section 7.7 to validate the accuracy of estimation and assess the computational
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savings. Finally, in Section 7.8 a discussion is presented to outline some of the reasons the

proposed algorithm is useful in terms of memory requirements and computational complex-

ity. This section also details some alternatives to the proposed algorithm and discusses the

advantages and drawbacks of each.

7.2 Introduction

It has been shown that variations among 2-D images of a 3-D object can result from four

different sources, namely, photometric (illumination variability), geometric (location and

pose), content variation (the object’s interaction with surroundings), and non-rigid object

characteristics (deformable objects) [78]. Object classification (recognition and pose esti-

mation) under variations in illumination conditions (photometric variability) has received

considerable attention in recent years. This is partially due to the fact that the same

object viewed from a fixed pose can appear considerably different under different illumina-

tion conditions [78]. Furthermore, because eigenspace methods are appearance based, the

appearance of the object is directly related to the robustness of the recognitions system.

This section discusses both recognition as well as pose estimation simply because the

bulk of the research pertaining to variation in illumination is being conducted in the areas

of facial recognition. When dealing with facial recognition problems, the subject is typically

imaged from a fixed pose with variations in gesture (smiling, frowning, etc.), illumination,

and in some cases, both. There are generally several subjects imaged under similar condi-

tions with the goal being the ability to recognize test images of the subject under arbitrary

conditions. Images of each subject under a variety of conditions are considered a “class”,

and the idea is to find a subspace to maximize the variance between classes [15].

Although the space of all possible illumination conditions is infinite, it has been shown

that the illumination space can be represented by a low-dimensional linear subspace [60,

79–83]. For most 3-D objects however, variation due to a change in pose tends to be

much larger than variation due to a change in illumination. Therefore, for pose estimation

problems when illumination variation exists, the object itself can be treated as a separate

class at each pose under a changes in illumination conditions. The general idea is then
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to determine which class an input image belongs to in order to estimate its pose. This

technique is detailed further in Chapter 8.

When using appearance-based methods for object recognition under photometric vari-

ability, three common approaches appear in the literature. The first approach is to capture

a large set of “training” images of the object under a wide range of illumination conditions.

An eigenspace decomposition is then performed and a low-dimensional subspace is chosen

similar to the previous chapters. This low-dimensional subspace can then be used to classify

the object in real-time [21,24,79,80,84].

If the object is largely diffuse and mostly convex (similar to human faces), a 3-D model

of the object can be obtained (either by modeling it directly or using a range scanner), and

the Lambertian kernel can be represented as a series of spherical harmonic coefficients. It

was shown in [60, 83] that the first nine terms in the series are sufficient to capture 99%

of the energy of the Lambertian kernal. Using this truncated Lambertian expansion, the

principle components can be computed by evaluating the spherical harmonic basis functions

at the surface normals. Unfortunatly, this technique requires the surface normals which are

typically not available for most objects.

A third approach was introduced in [81, 82, 85] where the authors show that the set of

images of an object under different illumination conditions forms a convex polyhedral cone

(referred to as an illumination cone) in m-dimensional space where m is the number of

pixels in the image. Furthermore, if the object is convex and Lambertian, the dimension

of the illumination cone is equal to the number of distinct surface normals. In [86], Lee et

al. extend this concept by showing that rather than attempting to capture the variation

in illumination by varying the light source direction and intensity (either physically or syn-

thetically) over all possible conditions, a set of “key” images can be captured by directing

the light source from distinct locations. The authors refer to these “key” images as extreme

rays and the images resulting from these extreme rays can be used as the low-dimensional

subset themselves. The extreme rays discussed in [86] define the boundary of the illumina-

tion cone discussed in [81,82,85]. Although the idea of extreme rays is theoretically sound,

how to determine the number of extreme rays required for arbitrary objects, as well as the
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direction of the extreme rays is still the subject of ongoing research.

Similar to Chapters 3, 5, and 6 however, one of the key issues with using appearance-

based methods for pose estimation of objects under variations in pose as well as illumination

is the expense required to compute the optimal subspace for performing the estimation.

This issue is especially true when variations in illumination are present because the size

of the training set grows significantly when variations in illumination are considered at

each pose. The remainder of this chapter presents a method to overcome this expense by

using the spherical harmonic transform developed in Chapter 5. In particular, it will be

shown that reducing the dimensionality of the data due to variations in illumination and

a fixed pose can be efficiently done by using a truncated series of spherical harmonics.

It is shown that this low-dimensional set of harmonic images is capable of recovering a

significant amount of information from the original data set. Furthermore, even though

the set of harmonic images are computed assuming a single illumination source, they are

capable of recovering a significant amount of information when multiple illumination sources

are present. Finally, an algorithm is developed to estimate the eigenspace decomposition

of the entire data set (variation in illumination and pose) by applying Chang’s eigenspace

decomposition algorithm to the resulting set of harmonic images.

7.3 Preliminaries

Because the remainder of this dissertation deals with the problem of pose estimation under

variations in illumination, some of the notation discussed in Chapter 2 is redefined to

account for variations in both pose as well as illumination. Furthermore, the remainder of

this dissertation only analyzes variations in pose along S1, however the extensions to S2

and SO(3) will be obvious. To generate sets of images of objects that contain variations

in illumination and pose, the objects are placed at the center of an illumination sphere,

while the camera is moved to discrete locations on a line of constant co-latitude. At each

of the discrete locations, images of the object are captured under a dense but finite set

of illumination directions generated from a single distant point light source. Using this

technique to capture images, the image vector can be parameterized by f = f(ξi, r) where
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r ∈ {0, . . . , a − 1} now represents the rth pose of the object and ξi, i ∈ {0, . . . , b − 1},

is the unit vector pointing at the angle of co-latitude βi ∈ (0, π) measured down from

the upper pole, and the angle of longitude αi ∈ [0, 2π), which is the parameterization of

the ith direction of the point light source at each pose. An example of this procedure

is shown in Fig. 28 where the illumination directions are determined using the HEALPix

sampling pattern [52] discussed in Chapter 4. Using this notation, the image data matrix

Figure 28: A graphical depiction of the proposed method of acquiring images from a
dense set of illumination conditions at each pose. The object is placed at the center of
the illumination sphere with the camera moving along a line of constant co-latitude. The
black dots on the sphere represent different illumination conditions. As the camera moves
along the line of co-latitude, an image of the object is captured under each of the distinct
illumination conditions.
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is constructed as

X = [f(ξ0, 0),f(ξ1, 0), . . .f(ξb−1, 0),f(ξ0, 1),f(ξ1, 1), . . . ,f(ξb−1, 1), . . . ,

f(ξ0, a− 1),f(ξ1, a− 1), . . . ,f(ξb−1, a− 1)],
(99)

where the first b columns of X correspond to a single pose of the object under b different

illumination conditions. The average image vector is then subtracted from the image data

matrix X to generate the zero mean image data matrix X̂, which has the interpretation of

an “unbiased” image data matrix.

Due to the re-parameterization of f(ξi, r), the spherical harmonics, and the SHT are

re-indexed as

f(ξi, r) =
pmax∑
p=0

∑
|q|≤p

f rp,qYp,q(ξi), (100)

with the harmonic coefficients f rp,q computed using

f rp,q =
4π
b

b−1∑
i=0

f(ξi, r)Yp,q(ξi), (101)

and Yp,q(ξi) is the real-valued spherical harmonic.

7.4 Single Illumination Source

Prior to analyzing the effects of multiple illumination sources, the case where the object

in question is illuminated by a single distant point light source is considered. For this

development, notice that f rp,q is the harmonic coefficient for a single pixel in the set of

images due to a change in illumination conditions at the rth pose. If all m pixels of the

set of images due to a change in illumination conditions at the rth pose are expanded

using (101), then f rp,q ∈ Rm×1 represents a “harmonic image” of degree p and order q at

pose r. The goal is to verify that for most objects, orthogonalizing the set of harmonic

images provides a good approximation to the eigenimages as computed by using the SVD

directly.

To illustrate this, images of each of the 20 objects shown in Fig. 17 were captured from

90 different poses and 48 different light source directions at each pose. For each of the 90

poses, the harmonic transform in (101) was used to reduce the dimensionality of the data

from 48 images to 9, 16, 25, and 36 harmonic images, i.e., p =2, 3, 4, and 5, respectively.
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The energy recovery ratio defined in (29) was then used to compute how much energy each

of the four subspaces are capable of recovering at each pose. Fig. 29 shows the distribution

of the energy recovered for each of the four subspaces across all 90 poses. The upper and

lower bars on the boxes represent the maximum and minimum amount of energy recovered,

respective.y. The horizontal lines in the boxes represent the median. Notice that with the

exception of objects 17, 18, and 20, over 95% of the energy is recovered by the 9-dimensional

Figure 29: The minimum amount of energy recovered by 9, 16, 25, and 36 harmonic images
for each object under all 90 test poses. With the exception of objects 17, 18, and 20, over
95% of the energy is recovered by the 9-D linear subspace for all 90 poses.
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subspace (p = 2) for all 90 poses. Furthermore, adding additional harmonic images does

not significantly increase the amount of energy recovered. To evaluate how well the the

low-dimensional set of orthonormalized harmonic images estimate the true eigenimages as

computed by the SVD, the first 9, 16, 25, and 36 true eigenimages were also computed

for each of the 90 different poses. Fig. 30 shows the average difference between the energy

recovered by the true eigenimages and the harmonic images across all 90 poses. As can be

seen from the figure, again with the exception of objects 17, 18, and 20, there is less than

1% difference in energy recovered by the true eigenimages versus the harmonic images as

computed using (101).

Figure 30: The difference in energy recovered by the true 9, 16, 25, and 36 dimensional
subspace as computed using the SVD and the set of harmonic images as computed by the
SHT for each object averaged over all 90 test poses.
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Finally, the quality measures outlined in subsections 2.5.1 and 2.5.3 were used to evaluate

how close the 9-dimensional subspace computed using the orthonormalized harmonic images

is to the first nine eigenimages as computed by the SVD. Fig. 31 shows 1 − SC averaged

across all 90 poses for each of the 20 objects in Fig. 17. As can be seen from the figure,

the harmonic images span over 85% of the same space as the first nine true eigenimages.

Fig. 32 shows the normalized residue ∆ averaged accross each of the 90 poses for each of

the 20 objects in Fig. 17. This figure shows that for most of the objects, the first seven

harmonic images are very close to the first seven true eigenimages. While in some cases

the eigth and ninth harmonic image is not as close to the eigth and ninth true eigenimage,

as discussed in [80], these eigenmodes typically account for sharp specular spikes (high

frequency information) in the image sequence. Because the spherical harmonic transform

has been truncated to order p = 2, the high frequency components have been effectively

Figure 31: Subspace criterion averaged across all 90 test poses for each of the 20 objects
in Fig. 17 using a 9-dimensional subspace.
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Figure 32: Normalized residue averaged across all 90 test poses for each of the 20 objects
in Fig. 17 using a 9-dimensional subspace.

discarded. As such, the low-dimensional subspace can not reproduce the sharp specularities.

However, the effect of this on pose estimation under variations in illumination is minimal,

as will be shown in Chapter 8.

7.5 Multiple Illumination Sources

An investigation of variation due to multiple distant point light sources and fixed pose is

now presented. For this evaluation, images of each of the objects in Fig. 17 were cap-

tured from 10 different poses and 48 different illumination directions at each pose. The

48 different illumination directions first consisted of a single illumination source (SS), then

two illumination sources (DS), and finally three illumination sources (TS). The procedure

for capturing images of the object under different illumination conditions using multiple

illumination sources is as follows: First, three illumination sources were placed at random
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locations around the sphere. With the camera stationary, the first source was illuminated

while the other two were not, and an image of the object was captured. The second illu-

mination source was then also illuminated, and a second image of the object was captured.

Finally, the third illumination source was illuminated and the final image was captured.

This process is repeated 48 times at each of the 10 poses. The sampling procedure de-

picted in Fig. 28 was then used to capture images of each object at each of the 10 poses

and the 9-D subspace was computed using (101). Each set of harmonic images were then

orthonormalized. The goal here is to investigate how effective this subspace is at recovering

information from an image data set of the object from the same pose, but significantly

different illumination directions/conditions. To this end, the energy recovery ratio defined

Figure 33: Distribution of the energy recovery for two [top] and three [bottom] illumination
sources. The box represents the inter quartile region with the bar representing the median
of the data. The plus signs represent outliers in the data, and the circles represent the
median energy recovery when only a single illumination source is considered. The basis
used for recovery was computed from the orthonormalized harmonic images using the first
nine harmonics with a single illumination direction.
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in (29) was used to compute how much of the total energy could be recovered for each of

the three sets of image data (SS, DS, and TS). The results are depicted in Fig. 33. The top

plot in Fig. 33 shows the distributions of the energy recovered for each of the 20 objects

across all ten poses when two illumination sources are present, and the bottom plot shows

the same distribution when three illumination sources are present. The horizontal bars in

the boxes of Fig. 33 represent the median of the data and the circles represent the median

energy recovered when only a single illumination source is present. Note that even though

the median energy recovered for a single source is typically higher than that of multiple

sources, for most of the objects it is only slightly higher. Furthermore, with the exception

of objects 17 and 20, the distributions remain fairly tight across all 10 poses.

Some of the reasons for the drop in energy recovered when there are multiple illumination

sources become clear when examining Fig. 34. The top two rows of Fig. 34 show how well

the low-dimensional subspace computed from a single illumination source can reconstruct

an image of object 1 in Fig. 17 under random illumination directions from three illumination

Figure 34: Reconstruction of a single image of object 1 (a) and object 20 (b) from Fig. 17
under three different illumination sources. The basis images used for reconstruction were
computed using the SHT of the images generated assuming a single illumination source and
the HEALPix distribution. The first image in the top row of each pair is the original image.
The remaining images in the top row show the absolute difference between the reconstructed
image and the image original image. The images in the second row show the reconstruction
as the subspace dimension increases from left to right.
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sources. The first image in the top row shows the image to be reconstructed. The image

sequence in the second row shows how close the reconstruction is as additional harmonic

images are used for the reconstruction. The remaining images in the top row show the

absolute difference between the reconstructed image and the original image. As can be seen

from the figure, the major source of reconstruction error using the 9-D subspace results

from specularities in local regions of the object. Notice that for object 1 under the current

viewing conditions (both viewing direction and illumination), very few local specular spikes

exist. As a result, the reconstruction appears to be fairly accurate. The second sequence of

images is that of object 20 from Fig. 17. The bottom two rows provide the same analysis

as that given for object 1, however as can be seen from the figure, for this object the local

specular regions are much larger. As a result, the low-dimensional subspace has difficulty

recovering the specular spikes. Furthermore, there does not appear to be a significant

improvement in reconstruction when more than a 5-dimensional subspace is used. This

shows that one of the major effects of illuminating object 20 from multiple directions is that

there is an increased probability that several of the local specularities will be illuminated in

a single image. The effect of cast and attached shadows however is reduced due to multiple

illumination sources. This result can be deduced from the fact that the probability that the

shadow from a single illumination source will be illuminated by another illumination source

is significantly increased. This suggests that recognition and pose estimation of largely

diffuse objects with complex geometry may actually benefit when multiple illumination

sources are present, however this is not analyzed in this dissertation.

To evaluate quantitatively how well the 9-D subspace is capable of reconstructing each

of the 480 (10 poses and 48 illumination directions at each pose) test images for each

object in Fig. 17, an alternate metric is used. If each of the row-scanned images f in

X̂ is treated as a single point in m-dimensional space, then the Euclidean norm between

the true image f t and the reconstructed image f r provides a metric for determining how

good the image reconstruction is using the low-dimensional subspace. Fig. 35 shows the

distribution of ‖f t−f r‖2 for all 480 test images under all three illumination conditions (SS,

DS, and TS). One item of interest in Fig. 35 is that the median reconstruction error is very
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Figure 35: Distribution of ‖f t − f r‖2 for all 480 test images of each object using a single
illumination source (SS) [top], two illumination sources (DS) [center], and three illumination
sources (TS) [bottom].

similar regardless of how many illumination sources are present, however, the distributions

of the reconstruction error is much higher when multiple sources are present. This again

implies that there is a higher probability of illuminating a local specular region when more

illumination sources are present.

7.6 Fast Eigenspace Decomposition Algorithm

The objective is to estimate the first k principal eigenimages ˜̂
Uk of X̂ such that ρ(X̂, ˜̂

Uk) ≥ µ,

where µ is the user specified energy recovery ratio. To this end, two observations can be
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made, the first is that reducing the dimensionality of the data in the illumination dimension

can be efficiently done using the analysis provided in Sections 7.4 and 7.5 resulting in a set

of harmonic images f rp,q at each pose. Note that each harmonic image corresponds to a

spherical harmonic of degree p and order q at each of the a poses. Therefore, each set of

harmonic images corresponding to a given value of p and q across all r can be concatenated

to form the matrix

X̂p,q = [f0
p,q,f

1
p,q, · · · ,fa−1

p,q ]. (102)

Furthermore, because the harmonic expansion is truncated, there will be nine such matrices

in total, each of size Rm×a.

Each of the nine matrices in (102) now only contain variations due to a change in pose

for a given spherical harmonic coefficient, and thus are correlated in a single dimension.

Therefore, the second observation that can be made is that the dimensionality of the data

in the pose dimension can be reduced by applying the results observed by Chang et al. (refer

to Chapter 3) to each of the nine matrices X̂p,q [30]. In other words, it can be assumed

that the right singular vectors of X̂p,q are well-approximated by a few low-frequency Fourier

harmonics, and the FFT can be used to determine ρ(X̂T
p,q, Hji) ≥ µt for each of the nine

p, q combinations, where µt is a user specified value for the energy recovery along the pose

dimension for each of the nine harmonics. Notice that ji, i = 1, 2, . . . , 9, corresponds to

the number of Fourier harmonics required for the ith (p, q) combination to achieve the user

specified energy recovery ratio µt. Let Zp,qji denote the matrix X̂p,qHji ∈ Rm×ji for each

(p, q) combination, and construct the reduced order matrix

X̄ = [Z0,0
j1
, Z1,−1

j2
, Z1,0

j3
, Z1,1

j4
, Z2,−2

j5
, · · · , Z2,2

j9
], (103)

that effectively recombines the image data due to variation in both illumination and pose

into a single matrix. Note that the matrix X̄ has considerably fewer columns than that

of X̂. Furthermore, because most SVD algorithms require O(mn2) flops, computing the

dominant left singular vectors ˜̂
Uk of X̄ by means of the SVD results in excellent estimates

of Ûk at a significant computational savings. The entire algorithm is summarized as follows:
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Eigenspace Decomposition Algorithm Summary

1. Use the SHT to compute the matrices

Pr = [f r0,0,f
r
1,−1,f

r
1,0,f

r
1,1,f

r
2,−2, · · · ,f r2,2] for all r.

2. Construct the matrices X̂p,q by concatenating each of the harmonic images f rp,q in Pr

for each r as shown in (102).

3. For each of the nine matrices X̂p,q, determine the smallest number ji such that

ρ(X̂T
p,q, Hji) ≥ µt, where µt is the user specified energy recovery ratio in the pose

dimension, and i = 1, 2, . . . , 9 corresponds to the ith matrix X̂p,q.

4. Let Zp,qji denote the matrix X̂p,qHji and construct the matrix X̄ defined in (103). Note

that the matrices Zp,qji can be efficiently computed using the FFT.

5. Compute the SVD of X̄ = ˜̂
U

˜̂Σ ˜̂
V .

6. Return ρ(X̂, ˜̂
Uk) ≥ µ. Where µ is the user specified energy recovery ratio.

7.7 Experimental Results

7.7.1 Test Data

The proposed algorithm detailed in Section 7.6 was tested on each of the objects in Fig. 17.

Recall that each of the objects was sampled at a resolution of 128 × 128 from 90 different

poses under 48 different light source locations at each pose. To accurately represent real

objects using CAD models, the reflectance model used accounts for material properties such

as surface roughness and surface hardness, and incorporates a mix of diffuse and specular

reflection using the Cook-Torrance reflectance model [87]. The mean image was then sub-

tracted to construct the image data matrix X̂. The parameters used in the algorithm were

µt = 0.95 for the pose reduction and µ = 0.8 for the total energy recovered. The true

SVD of the image data matrix X̂ was also computed using Matlab for comparison. The

quality measures outlined in Section 2.5 were used to evaluate the accuracy of the estimated

subspace.
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7.7.2 Performance and Computational Savings

Table 5 shows the required subspace dimension k and the time required to estimate the

first k left singular vectors ˜̂
Uk for each object in Fig. 17 to meet the user specified energy

recovery ratio µ = 0.8. This result is compared to the true SVD as computed by Matlab.

As is apparent from the table, using the proposed algorithm, the left singular vectors ˜̂
Uk are

very good estimates of Ûk at a significant computational savings. Table 5 also shows the

column dimension of X̄ in step 5 of the proposed algorithm. Note that for the current test

data, the number of columns in X̂ is 4320, whereas for all 20 objects in Fig. 17, the number

of columns in X̄ never exceeds 576, thus resulting in significant computational savings.

Table 5: Subspace dimension k and the time required to estimate the first k left singular
vectors for each object to meet the user specified energy recovery ratio µ = 0.8. The results
are compared against the true SVD using Matlab. The table also shows the column
dimension of X̄.

Object
Dim. k Time [min.]

Col. Dim. of X̄
True Proposed True Proposed

1 17 17 31.3 0.111 378
2 9 9 25.5 0.070 162
3 13 13 32.3 0.116 379
4 15 15 30.0 0.137 474
5 10 10 31.6 0.076 229
6 14 15 31.0 0.181 576
7 16 17 27.9 0.099 239
8 31 31 31.6 0.152 446
9 19 19 30.8 0.162 502
10 14 14 31.6 0.154 448
11 22 22 31.7 0.117 356
12 20 20 31.8 0.188 561
13 8 8 21.1 0.114 254
14 12 12 30.8 0.107 270
15 23 23 30.8 0.153 472
16 27 27 21.3 0.109 249
17 196 217 22.9 0.183 552
18 20 20 15.5 0.093 173
19 25 25 21.5 0.152 439
20 33 46 21.4 0.099 209

Mean 27.6 0.129 368
Min. 15.5 0.070 162
Max. 32.3 0.188 576
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Figure 36: The subspace criterion SC [top] and the normalized residue ∆ [bottom] as a
function of the subspace dimension k averaged across all objects in Fig. 17.

Fig. 36 shows the subspace criterion SC [top] and the normalized residue ∆ [bottom] as

a function of the subspace dimension k averaged across all objects in Fig. 17. As can be seen

from the figure, the estimated left singular vectors ˜̂
Uk computed by the proposed algorithm

are very good approximations to the true left singular vectors as computed by the direct

SVD in terms of spanning the same subspace as X̂. Fig. 37 shows the difference in energy

recovered by the true SVD and the proposed algorithm for all objects in Fig. 17. As can

be seen from the figure, with the exception of objects 17 and 20, there is less than a 0.25%

difference in how much energy the proposed algorithm is capable of recovering compared to

the true SVD. The subspace dimension used for the energy calculation is outlined in column

2 of Table 5. As is apparent from Table 5, and Figs. 36 and 37, the proposed algorithm is

capable of accuratly estimating the left singular vectors ˜̂
Uk at a significant computational

savings.
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Figure 37: The difference in energy recovered by the true SVD and the proposed algorithm
for all objects in Fig. 17. The subspace dimension used for the calculation is listed in column
2 of Table 5

7.8 Discussion

In this subsection, an alternative solution to the current eigenspace decomposition algorithm

is discussed, along with some of the advantages and disadvantages associated with it. Before

this discussion however, note that reducing the dimension of the image data matrix X̂, and

as such reducing the computational expense associated with computing the SVD, is one

key advantage of the proposed algorithm. Another advantage is the reduction in memory

requirements. The naive approach to computing the eigenspace decomposition of X̂ requires

that the m × n matrix be stored in memory before it can be operated on. For the data

provided in Section 7.7, this requires a data structure of size 1282×4320. If each element in

the data structure is represented by 8-bits, the memory requirements for storage exceed 500

Mb. This does not account for memory required to compute on the matrix, i.e., memory

for the SVD, swap space, etc. Furthermore, if the object requires a more dense sampling

in the illumination dimension, the storage requirements rapidly become infeasible. The

proposed algorithm significantly reduces the storage requirements because a reduction in
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the illumination dimension can be computed independently for each pose and using the

SHT only requires individual images of the object under distinct illumination conditions.

Therefore, the storage requirements for each pose are reduced to a data structure of size

1282 × 9. The reduction in the pose dimension depends on object geometry and accuracy,

however the total dimension of X̄ is significantly less than that of X̂ as illustrated in Table 5.

It is apparent that first reducing the dimensionality due to variation in illumination and

subsequently reducing the dimensionality of the data due to a change in pose is advantageous

for computational reasons, as well as storage requirements. Therefore, several alternatives

to the proposed algorithm could also be implemented, each of which has advantages as well

as drawbacks. One such alternative would be to perform an SHT at each pose, and then use

the SVD on a subset of the harmonic images to reduce the dimensionality of the data due

to a change in illumination conditions. The results observed by Chang et al. could then be

applied to reduce the dimensionality of the data due to a change in pose. The advantages of

this are that more energy can be captured due to a change in illumination before reducing

the dimensionality of the data in the pose dimension, and the computational savings would

still be significant as compared to the naive approach. The major drawbacks to using this

alternative are two fold, the first is the increased computation time in computing the SVD vs.

the SHT. The SHT can be computed in O(mnlog2(n)) operations whereas the SVD requires

O(mn2) operations. The second is that there is no guarantee that the ordering of the left

singular vectors computed to reduce the dimensionality due to variation in illumination at

each pose will be the same from pose to pose. Therefore, for each pose, the ordering of the

left singular vectors would need to be completed before reducing the dimensionality in the

pose dimension. The only way the author believes this could be done is by ordering them

using a brute force approach which would require a significant increase in computational

expense. Using the SHT on the other hand, the harmonic images at each pose correspond

to a given spherical harmonic Yp,q and as such, no ordering is required. Therefore, the

ordering remains consistent throughout the entire pose dimension. Other variants of this

could also be applied, however, they all have similar advantages and disadvantages.
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CHAPTER VIII

POSE ESTIMATION AND MANIFOLD ANALYSIS

8.1 Chapter Overview

This chapter outlines how the estimated eigenimages ˜̂
Uk can be used for illumination invari-

ant pose estimation. The chapter begins with an introduction to current techniques used

when dealing with manifold analysis and closest point searches in high-dimensional spaces

in Section 8.2. An analysis of eigenspace manifolds when variations in pose along S1 and

illumination exist is presented in Section 8.3. In this section, an alternative to the technique

discussed in subsection 2.3.3 is developed based on the concept of an illumination manifold

and eigenspace partitioning. An evaluation of the technique developed in Section 8.3 is

presented in Section 8.4. The evaluation is based on estimating the pose of the objects in

Fig. 17 from several test images that contain variations in pose as well as illumination from

single and multiple illumination sources. The chapter concludes with a brief discussion on

a variation of the technique developed in Section 8.3 when the illumination directions are

known a priori.

8.2 Introduction

The algorithm developed in Chapter 7 provides an efficient method to compute the prin-

ciple eigenimages of a set of images that contain variations in both pose and illumination.

Once the principle eigenimages have been computed, the question of how to accurately and

efficiently estimate the pose of the object arises.

The naive approach to estimate the pose of the object is to use the method outlined in

subsection 2.3.3 and search the eigenspace manifold using an exhaustive search. However

searching the entire eigenspace becomes prohibitively expensive for real-time applications,
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particularly when the number of images and/or the dimension of the eigenspace increases

from S1 to S2, and finally, SO(3). Other methods include space partitioning algorithms

such as R-tree, k-d tree, and Voronoi polygons [88–91], hashing techniques [92], and random

search methods [93]. The drawback of these techniques is that they are either inaccurate,

require a large amount of storage space, or their computational complexity becomes large as

the dimension of the space increases. In [94], Nene and Nayar propose a method to search

for nearest neighbor points in high dimensions using a space partitioning algorithm that is

based on the projection search paradigm. The algorithm consists of generating hyperplanes

in the eigenspace that ultimately “box-in” the point of interest with a hypercube, each side

of the hypercube having length 2ε. An exhaustive search is then performed within this

hypercube to find the closest matching point. The authors of [94] show that this algorithm

is computationally less expensive than previous search techniques, however its complexity

is still a function of the dimension of the space.

In [95], a fundamentally different approach for estimating the pose of 3-D objects using

eigenspace methods was presented when the object was correlated on S1 with constant

ambient illumination. It was shown that rather than choosing the principle eigenimages as

the optimal set of basis vectors, a linear combination of this basis could be computed so

that the resulting eigenspace manifold has a desirable geometric structure. This geometric

structure allows for the pose of the object to be computed using simple calculations rather

than searching the eigenspace. The advantage of this technique stems from the fact that,

because it requires no search of the eigenspace, its computational expense is constant.

Unfortunately, the robustness of this technique is extremely sensitive to small perturbations

from the original training images. This drawback results in poor estimation accuracy when

variations in both pose and illumination exist.

Another class of techniques for dealing with the complexity of nonlinear manifolds in a

high-dimensional space are referred to as manifold learning. Manifold learning is based on

nonlinear dimensionality reduction and attempts to preserve local regions of the manifold

geometry. The most widely used manifold learning techniques are locally linear embedding

(LLE), and isometric mapping (ISOMAP) [96–98]. Both techniques are based on evaluating
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the structure of k nearest neighbors and embedding that structure into a low-dimensional

manifold. Their differences lie in how the “evaluation” of the k nearest neighbors is per-

formed and how the embedding occurs. The results of both is a low-dimensional repre-

sentation of the high-dimensional manifold that maintains some of the local and global

characteristics. The major pitfall with both techniques for the application of pose estima-

tion however is that there is no efficient method to evaluate new incoming data.

In the remainder of this chapter it will be shown that when dealing with the problem

of pose estimation under a wide range of illumination conditions, the entire eigenspace may

not need to be searched. It will be shown that for most objects, variations due to a change

in pose tend to be much larger than those due to a change in illumination. Based on this

observation, a technique is presented to partition the eigenspace into smaller search regions,

thus reducing the computational expense. This analysis also provides some insight into the

structure of eigenspace manifolds when variations in pose and illumination exist [30].

8.3 Analysis

In this section, a discussion of how the estimated eigenimages ˜̂
Uk can be used for illumination

invariant pose estimation is presented. Table 6 illustrates some definitions that will be

relevant for this discussion.

Pose estimation using eigenspace decomposition consists of first computing the eigenspace

using the algorithm developed in Chapter 7, and then projecting the training images into

the eigenspace by computing M = ˜̂
UTk X̂. The matrix M is a discrete approximation to a

manifold embedded in k-dimensional space consisting of n points. Because variations due to

a change in pose are larger than variations due to a change in illumination for most objects,

there are typically a “clusters” of points with each cluster containing b points. Each of the

a clusters, denoted Ir, is a discrete approximation to the illumination manifold at pose r.

Note that Ir is a set of b points corresponding to the rth pose, each point having dimension

k. An example of this is depicted in Fig. 38. The figure shows the projection of the image

data for object 1 in Fig. 17 onto the first three estimated eigenimages, i.e., the figure shows

M = ˜̂
UT3 X̂. Each of the polygonal meshes represents an “illumination manifold” Ir at
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Table 6: Table of manifold definitions.

Symbol Construction Description
n Definition Total number of images.
a Definition Number of poses.
b Definition Number of illumination directions.
k Definition Subspace dimension.
r r ∈ {0, 1, · · · , a− 1} rth pose of the object.

M∈ Rk×n M = ˜̂
UTk X̂

Approximation to the manifold embedded in
k-dimensional space corresponding to an ob-
ject under all illumination directions and all
changes in pose.

Ir ∈ Rk×b Ir = ˜̂
UTk X̂r

Approximation to the illumination manifold
at pose r.1

cr ∈ Rk×1 1
b

b∑
i=1

I(i)
r Center of mass of illumination manifold Ir.2

C ∈ Rk×a C = [c1, c2, . . . , ca]
Approximation to the manifold through the
center of mass of Ir for all r.

pr+1
r ∈ Rb×1 pr+1

r = ITr (cr+1 − cr)
Orthogonal projection of Ir onto the linear
approximation to the manifold generated from
cr to cr+1.

pr−1
r ∈ Rb×1 pr−1

r = ITr (cr−1 − cr)
Orthogonal projection of Ir onto the linear
approximation to the manifold generated from
cr to cr−1.

∆C ∈ R1×a See 3 Distance between each point in C.
1 Recall that X̂r correspond to the matrix containing images of the object under all illumination directions
at pose r
2(i) corresponds to the ith column of Ir
3∆C = [‖c2 − c1‖, ‖c3 − c2‖, · · · , ‖ca − ca−1‖, ‖c1 − ca‖] where the last term results from the fact that C is
closed

each of the a poses. To estimate the pose of the object in question, an input image f i is

projected into the eigenspace using P = ˜̂
UTk f i, where P is a k-dimensional point in the

eigenspace. The goal is then to determine which of the a clusters is closest to P (in the

Euclidean sense).

Notice that for most poses in Fig. 38, the illumination manifolds do not overlap. This

implies that for object 1, variations due to a change in illumination are significantly less

than, or orthogonal to, those due to a change in pose. The line connecting each of the

a illumination manifolds in Fig. 38 is referred to as the manifold centroid. The manifold

centroid, denoted C, is computed by calculating the center of mass of each cluster, i.e.
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Figure 38: The projection of the image data for object 1 in Fig. 17 onto the first three
estimated eigenimages.

C = [c0, c2, . . . , ca−1], where

cr =
1
b

b∑
i=1

I(i)
r (104)

and (i) corresponds to the ith column of Ir. Note that C has significantly fewer points

than M. The general idea is then to determine which point in C is closest to P. However,

because C is computed using the centroids of the illumination manifolds, simply using the

point in C closest to P to estimate the pose may not be sufficient. The reasons for this

become clear when examining Fig. 39 which is a graphical depiction of three points on the

manifold centroid C, two illumination manifolds corresponding to pose r and r + 1, and

the projection of an input image P. Notice that the point P is actually closer to cr than

cr+1 even though the point is clearly closer to illumination manifold Ir+1. Therefore, to

determine which illumination manifold is closest to P, the two points in C that are closest
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Figure 39: A graphical depiction of three points on the manifold centroid C, two illumination
manifolds corresponding to pose r and r+1, and the projection of an input image P. Notice
that the point P is actually closer to cr than cr+1 even though the point clearly belongs to
illumination manifold Ir+1.

to P are used and the illumination manifolds corresponding to each are searched. For the

example in Fig. 39, this would imply that both Ir and Ir+1 would be searched to determine

which illumination manifold is closest to P.

Although partitioning the eigenspace search in this way is typically sufficient for accurate

pose estimation of most objects (as will be seen in the next section), the illumination

manifolds for some objects may intersect from one pose to the next. This intersection may

cause issues because it is unknown a priori where the point P will lie in the eigenspace. If the

point lies withing the intersection of two (or more) illumination manifolds, determining an

estimate of the pose is an ill-conditioned problem. An example of this behavior is illustrated

in Fig. 40 which shows three illumination manifolds Ir, Ir+1, and Ir+2. The projection of

an input image P is also shown in the figure. Notice that all three of the illumination

manifolds significantly overlap, as a result, it is very difficult to determine which of the
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Figure 40: A graphical depiction of three illumination manifolds Ir, Ir+1, and Ir+2 along
with the projection of an input image P showing the difficulty of pose estimation encoun-
tered when the illumination manifolds intersect one another.

illumination manifolds P belongs to. Fortunately, the structure of the eigenspace manifold

can be analyzed off-line to evaluate whether there is significant overlap between any of the

a illumination manifolds.

To begin this analysis, the vector pr+1
r = ITr (cr+1− cr) is defined. This vector contains

the orthogonal projections of Ir onto a linear approximation of the manifold C from cr to

cr+1. Similarly, the vector pr−1
r = ITr (cr−1 − cr) is constructed to evaluate how close Ir

104



is to Ir−1. The maximum orthogonal projection from Ir to Ir+1 and Ir to Ir−1 is then

computed by evaluating

pr+1
r = max

i
(pr+1

r (i)) and pr−1
r = max

i
(pr−1

r (i)), (105)

respectively, where i is the ith element of pr±1
r . A measure of how much the illumination

manifolds overlap, i.e., how big the intersection of Ir is with Ir−1 and Ir+1, can now be

evaluated by comparing the sum pr+1
r + prr+1 to ∆Cr, where ∆Cr is the rth element in ∆C,

and ∆C = [‖c2 − c1‖, ‖c3 − c2‖, · · · , ‖ca − ca−1‖, ‖c1 − ca‖] is the distance between each

point in C. In particular, if ∆Cr ≥ (pr+1
r + prr+1), then, Ir ∩ Ir+1 is empty. An illustration

of this is depicted in Fig. 41.

To evaluate this technique on real objects, the above analysis was used to evaluate the

eigenspace structure for objects 1 and 13 from Fig. 17. Fig. 42 shows ∆C, pr+1
r , and pr−1

r

for both objects across all 90 poses. As can be seen from the figure, for object 1, ∆C has

good separation from both pr+1
r , and pr−1

r . As a result, the eigenspace structure (dimension

and eigenimages) should allow for accurate pose estimation by simply using the centroid

Figure 41: Illustration of three points on the manifold C showing the illumination cluster
generated by Ir. The projections pr+1

r and pr−1
r are also depicted.
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Figure 42: Plots of ∆C, pr+1
r , and pr−1

r for objects 1 and 13.

manifold C for this object. An evaluation of object 13 however, reveals that accurate pose

estimation for this object is unlikely for any of the 90 poses. This is because for this

particular object, variation due to a change in pose is typically not larger than variation

due to a change in illumination. Therefore, the intersections of the illumination manifolds

Ir are significant across all 90 poses. Some of the reasons behind the multiple illumination

manifold intersections for object 13 are a function of how the object is sampled. Recall that

the camera is being moved along lines of constant co-latitude resulting in variation due to

a change in pose being correlated on S1. This particular object is is an LED that is being

imaged around it’s symmetric axis. As such, the only distinguishing feature in terms of

a change in orientation comes from the leads of the LED. Unfortunately, the leads of the

LED account for a very small percentage of total pixel area. Therefore, even large changes

in orientation result in small changes in the image, i.e., the problem in its current is ill

conditioned. On the other hand, if the object were imaged in it’s stable orientation (laying

flat), then much better results would be obtained.

8.4 Estimation Accuracy

To evaluate the accuracy of estimating the pose of objects using both the direct method

(searching the entire eigenspace), and the proposed centroid manifold method, images of
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the objects in Fig. 17 were captured from 90 random but known poses. The illumination

conditions used for the test images was generated using the procedure outlined in Section 7.5.

The algorithm described in Chapter 7 was then used to calculate ˜̂
Uk and M from a set

of images of each object assuming a single illumination source and the sampling method

depicted in Fig. 28. A test image was then projected onto it’s corresponding eigenspace

generating a new k-dimensional point P. To determine which of the illumination manifolds

Ir lies closest to the point P using traditional methods, a closest point search of the entire

eigenspace manifold was performed. To determine which of the illumination manifolds Ir

lies closest to the point P using the proposed method, the centroid manifold C was searched

to determine which two points in C lie closest to the point P. The entire illumination

manifolds corresponding to these two points was then searched to determine which of the

two manifolds lies closest to P. This process was then repeated for each of the 270 test

images (90 for each of the three illumination conditions). Note that using traditional search

techniques results in an evaluation of n points, versus the a+ 2b points using the proposed

technique. For the data used in this dissertation, this results in 4320 evaluations using

traditional methods versus 186 evaluations using the proposed approach if exhaustive search

techniques are employed.

The accuracy rate at which each search technique is capable of estimating the correct

pose of the object for the 270 test images captured using a single illumination source (SS),

two illumination sources (DS), and three illumination sources (TS) was then calculated,

the results of which are outlined in Table 7. Note that the correct estimation rates for

the proposed search technique are very comparable to the traditional search method. It

is also interesting to note that for most objects, adding multiple illumination sources does

not significantly reduce the accuracy of estimation rate (and in some instances it actually

increases the rate of correct pose estimation). The data in Table 7 was also plotted in

Fig. 43 to make comparing each technique more straightforward.

Because using a single source and searching the entire eigenspace manifold should pro-

duce the best possible result, i.e., the second column in Table 7, this provides a measure

for determining the difficulty of accurate pose estimation for each object when variations
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Table 7: Rate at which both search techniques are capable of estimating the correct pose
of the object for 270 test images captured using a single illumination source (SS), two
illumination sources (DS), and three illumination sources (TS).

Object
Direct [%] Centroid [%]

SS DS TS SS DS TS
1 95.56 92.22 90.00 95.56 92.22 90.00
2 77.78 65.56 62.22 62.22 56.67 55.56
3 88.89 90.00 86.67 86.67 87.78 86.67
4 96.67 92.22 92.22 96.67 92.22 92.22
5 91.11 91.11 87.78 91.11 91.11 87.78
6 94.44 93.33 93.33 94.44 93.33 93.33
7 86.67 76.67 78.89 86.67 75.56 77.78
8 97.78 95.56 91.11 97.78 95.56 91.11
9 96.67 96.67 91.11 96.67 96.67 91.11
10 95.56 95.56 96.67 95.56 95.56 96.67
11 94.44 94.44 92.22 94.44 94.44 92.22
12 90.00 93.33 90.00 90.00 93.33 90.00
13 27.78 22.22 24.44 18.89 18.89 34.44
14 91.11 88.89 84.44 91.11 88.89 84.44
15 95.56 93.33 90.00 95.56 93.33 90.00
16 68.89 65.56 72.22 62.22 63.33 68.89
17 95.56 87.78 92.22 95.56 87.78 91.11
18 90.00 80.00 70.00 87.78 77.78 68.89
19 96.67 90.00 88.89 88.89 84.44 84.44
20 84.44 75.56 71.11 82.22 73.33 65.56

Median 92.78 90.56 89.44 91.11 90.00 88.89
Min 27.78 22.22 24.44 18.89 18.89 34.44
Max 97.78 96.67 96.67 97.78 96.67 96.67

in illumination exist. Therefore, the proposed eigenspace search technique is compared to

this data. The top plot in Fig. 43 shows rate of failure in pose identification for a single

illumination source using the traditional search technique ordered from worst to best. The

bottom plot in Fig. 43 shows the difference between the rate of success using the standard

eigenspace search method and the proposed search method for a single illumination source

(SS), two illumination sources (DS), and three illumination sources (TS). Note that pose

estimation for some objects (13, 16, 2, and 20) is inherently difficult regardless of the search

technique being employed. However, if one excludes such ill-conditioned cases, then the

proposed search technique is very comparable to traditional methods in terms of being able

to successfully identify the correct pose of the object.
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Figure 43: The rate of failure in pose estimation for a single illumination source using
the traditional search technique, sorted from worst to best [top] and the difference between
the rate of success using the standard eigenspace search method and the proposed search
method for a single illumination source (SS), two illumination sources (DS), and three
illumination sources (TS) [bottom].
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CHAPTER IX

CONCLUSIONS

9.1 Summary

The first part of this dissertation presented a computationally efficient algorithm for esti-

mating the subspace of images correlated in multiple dimensions for use in fully general 3-D

pose estimation, assuming a single distant point light source. This required a method of

sampling objects to produce a spherical data set by sampling S2 and SO(3) appropriately. It

was illustrated that for data correlated on S2, the spherical harmonic transform can be used

to calculate the frequency information of this spherical data set. If the data is correlated

on SO(3), then spherical harmonics in conjunction with Wigner-D matrices can be used to

capture the frequency information of this data set. A method to calculate the frequency

information of hemispherically correlated data, which is useful in aerial pose estimation,

was also presented. It was shown that computing the eigenspace decomposition on a subset

of harmonic images in the transform domain can significantly reduce the computational

burden. Experimental results were presented to validate both qualitatively and quanti-

tatively the accuracy of the estimation, as well as the significant computational savings.

Furthermore, the maximum energy recovery when using the spherical harmonic transform

was quantified. It was shown that the errors associated with the proposed algorithm are

minimal with respect to computational savings.

The second part of this dissertation dealt with the problem of pose estimation under

variations in illumination from single and multiple illumination sources. It was illustrated

that the dimensionality of a set of images of an object from a fixed viewpoint and multiple

illumination conditions can be significantly reduced by means of the spherical harmonic
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transform. Furthermore, it was shown that this reduced order subspace is capable of re-

covering a significant amount of information from images of objects where multiple illumi-

nation sources are present. In fact, it was shown that multiple illumination sources affect

the eigenspace decomposition by increasing the probability that local specularities will be

illuminated, thus decreasing the accuracy of the low-dimensional representation. An algo-

rithm was then presented to compute the eigenspace decomposition of a set of images that

contain variations in both pose as well as illumination. Experimental results were presented

to validate the accuracy of the estimation, as well as the significant computational savings.

Finally, an analysis of eigenspace manifolds was presented when variations due to a change

in illumination and pose exist. The analysis showed that for most objects, variations due

to a change in pose tend to be much larger than variations due to a change in illumina-

tion conditions. Based on this analysis, a technique was presented to perform illumination

invariant pose estimation by using the centroid manifold to partition the eigenspace into

smaller search regions. It was shown that using the proposed manifold search technique

produced comparable results to traditional search methods. Furthermore, it was shown

that although adding multiple illumination sources degrades the estimation rate, for most

objects, the degradation is small.

9.2 Future Directions

One obvious future development would be to extend the algorithm developed in Chapter 7

to multiple dimensions. This should be a straight forward extension by using the algorithms

developed in Chapters 5 and 6 to reduce the dimensionality of the data in the temporal

dimension rather than using Chang’s algorithm.

Another interesting future direction would be to evaluate images captured on the special

Euclidean group SE(3) and use a similar spectral decomposition to evaluate the spectral

information. This would essentially produce a set of eigenimages that would have the inter-

pretation of eigentrajectories. This would be extremely useful for target tracking problems.

Finally, the continuation of eigenspace manifold analysis, and manifold analysis in gen-

eral, has the potential for solving several interesting open problems. First, using information
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about the “true” image manifold may give significant insight into how its low-dimensional

counter-part will perform. This information could also provide a more concrete method

for choosing the dimension of the subspace, as well as the subspace itself, i.e., choosing the

“principle” eigenimages may not be the optimal solution for every object/application. Man-

ifold analysis could also provide significant insight into the problem of manifold learning for

eigensystems. In particular, visualizing significant properties (both local and global) of the

manifold embedded in high-dimensional space by means of a low-dimensional embedding.
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