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ABSTRACT 

STUDIES ON SELENIUM HYPERACCUMULATOR STANLEYA PINNATA AND 

NONACCUMULATOR STANLEYA ELATA (BRASSICACEAE): FUNCTIONAL 

CHARACTERIZATION OF SELENATE TRANSPORTER SULTR1;2 IN YEAST AND 

DEVELOPMENT OF A MICROPROPAGATION PROTOCOL 

Stanleya pinnata is an herbaceous perennial species in the family Brassicaceae native to 

the western United States. This species is classified as a selenium (Se) hyperaccumulator, and 

can be found thriving on Se-rich soils. Selenium hyperaccumulators are plant species that have 

the capacity to accumulate Se over 1,000 mg kg-1 dry weight in their tissues, concentrations toxic 

to non-accumulator plant species as well as to herbivores and pathogens, which may explain why 

plants hyperaccumulate Se. Due to the chemical similarity of Se to sulfur (S), Se is believed to 

be transported and metabolized by the same proteins and enzymes, including sulfate transporters 

and the sulfate assimilation pathway. Selenate (SeO4
2-), the predominant available form of Se in 

soil, is transported into the roots mainly via the high-affinity membrane transporter SULTR1;2. 

While most plants do not appear to discriminate between selenate and sulfate, and the two 

compounds compete for uptake, selenate uptake in Se hyperaccumulators is less inhibited by 

high sulfate concentrations. Since SULTR1;2 is the main portal of entry for selenate into the 

plant, it may be hypothesized  that SULTR1;2 from the Se hyperaccumulator S. pinnata has 

intrinsic properties that allow this species to discriminate between sulfate and selenate and 

preferentially take up selenate. One of the objectives of this thesis project was to test this 

hypothesis, by means of functional characterization of SULTR1;2 from S. pinnata and from 

control species Stanleya elata, and Arabidopsis thaliana in the YSD1 yeast mutant which lacks 

its native sulfate transporters.  
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 A secondary objective in this thesis project was to develop a micropropagation protocol 

for Stanleya. In order to effectively study Se hyperaccumulation in a laboratory setting, sufficient 

numbers of S. pinnata and S. elata plants need to be available. However, due to low rates of seed 

germination, vernalization requirements, self-incompatibility, and ineffectiveness of propagation 

by cuttings, conventional propagation methods via seed or vegetative cuttings severely limit the 

number of plants that can be cultivated at a time. In order to overcome these limits, a tissue 

culture micropropagation protocol for leaf explants of S. pinnata and S. elata was developed. 

This protocol will allow for the rapid reproduction of both Stanleya species, not only to be used 

in laboratory experiments, but also in industrial applications such as Se phytoremediation 

projects, as well as for horticultural and native landscaping purposes.  

The first chapter of this thesis reviews plant Se uptake and metabolism, offering an 

overview of the current understanding of the Se assimilation pathway in plants, including 

mechanisms of accumulation and tolerance unique to Se hyperaccumulators. This chapter also 

outlines key proteins and enzymes in the Se assimilation pathway that are candidates for future 

experiments to determine the mechanisms of Se hyperaccumulation.  

The second chapter describes the results from yeast studies, characterizing the selenate 

and sulfate transport capabilities of SULTR1;2 from hyperaccumulator S. pinnata and non-

accumulators S. elata, and A. thaliana, and their selenate specificity, as judged from the effects 

of sulfate competition on selenate uptake. Interestingly, yeast transformed with SULTR1;2 from 

S. pinnata (SpSultr1;2) showed less inhibition of selenate uptake by high sulfate concentration, 

indicating that this species’ selenate selectivity may be facilitated by the SULTR1;2 protein. 

While apparently more Se-specific, yeast transformed with SpSultr1;2 overall took up less Se 

when compared to yeast expression SULTR1;2 from non-accumulators. It is feasible that a 
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mutation that changes the substrate specificity of SpSULTR1;2 also reduced its overall activity.  

In S. pinnata, SpSultr1;2 transcript was found in earlier studies to be ~10-fold up-regulated when 

compared to S. elata, which may compensate for decreased activity. Identification of a selenate-

specific transporter has applications for Se phytoremediation and biofortification. Constitutive 

overexpression of a hyperaccumulator selenate transporter in other plant species may increase 

their uptake of Se, even in the presence of high environmental S levels. 

 The third chapter of this thesis outlines the development of a fast and efficient tissue 

culture micropropagation protocol for S. pinnata and S. elata. Through the testing of multiple 

concentrations of hormones on in vitro callus formation, shoot induction and elongation, and root 

formation, followed by ex vitro acclimatization, both species of Stanleya were shown to be very 

amenable to micropropagation. Both exhibited rapid callus, shoot, and root induction under a 

wide range of 1-napthaleneacetic acid (NAA), 6-benzylaminopurine (BAP), and indole-3-butyric 

acid (IBA) concentrations. Future experiments could explore the genetic transformation of S. 

elata plants with genes from S. pinnata to test their importance for Se accumulation and 

tolerance in this related non-accumulating species. This micropropagation protocol also opens up 

the possibility to cultivate the Stanleya species at a large scale for multiple applications including 

biofortification, phytoremediation, and native landscaping.  
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CHAPTER 1: BIOCHEMISTRY OF PLANT SE UPTAKE AND METABOLISM 

1.1 Uptake and Translocation of Selenium 

Plants take up Se primarily in two forms, either as selenate (SeO4
2-) or selenite (SeO3

2), but 

they have the capacity to take up organic Se compounds as well. However, plants are unable to 

take up elemental Se or metal selenide compounds (White & Broadley, 2009). Selenate is the 

most common form of Se taken up by plants and is the predominant bioavailable form in alkaline 

and well-oxidized soils, while selenite is the main identifiable bioavailable form in anaerobic 

soils and wetlands (Mikkelsen et al., 1989; White et al., 2007b; Fordyce, 2012). Due to its 

chemical similarities to sulfur (S), Se in the form of selenate is transported throughout the plant 

via the sulfate transport system. Sulfate transporters were first characterized in Arabidopsis 

thaliana selenate-resistant mutants (Shibagaki, 2002) and can be clustered into 4 main groups. 

Group 1 includes high affinity sulfate transporters, SULTR1;1 and SULTR1;2, which are the 

best-characterized and primarily found in the roots (Buchner, 2004). Group 2 transporters have a 

low affinity for sulfate, are found throughout the plant, and have a role in sulfate loading into the 

vascular systems, and thus in translocation. Two isoforms have been identified in A. thaliana, 

SULTR2:1 and SULTR2:2, both expressed in leaves and roots. AtSULTR2;1  localizes to the 

xylem parenchyma, as well as the phloem cells in leaves and pericycle cells in roots, while 

AtSULTR2;2 is found in the phloem cells in roots and the bundle sheath cells in leaves 

(Takahashi, 2000; Buchner, 2004). Group 3 sulfate transporters are only found in leaves, and do 

not show responsiveness to the sulfur status of the plant (Buchner, 2004). AtSULTR3;1 localizes 

to the chloroplasts, and loss of this transporter greatly reduced the sulfate uptake capacity of 

these organelles (Cao et al., 2013). Group 4 includes sulfate transporters localized in tonoplasts. 

In A. thaliana, AtSULTR4;1 and AtSULTR4;2 have been characterized as low affinity sulfate 
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transporters playing a role in sulfate vacuolar efflux, which may make sulfate more available for 

export via the vasculature;  thus, AtSULTR4;1 and AtSULTR4;2  have been implicated to 

contribute to root-shoot translocation and the delivery of sulfate to developing seeds (Zuber et 

al., 2010).  

Selenate enters the roots through the high affinity sulfate transporters SULTR1;1 and 

SULTR1;2, which are proton-sulfate symporters; for every molecule of selenate that enters the 

roots, 3 protons are also taken up (Lass and Ulrich-Eberius, 1984; Hawkesford et al., 1993) 

(Figure 1.1). The expression of SULTR1;1 and SULTR1;2 is controlled by the sulfur status of 

the plant. SULTR1;1 expression is lower and upregulated under S-deficient conditions, while 

SULTR1;2 is highly expressed under both S-sufficient and S-deficient conditions (White et al., 

2007; El Kassis et al., 2007). Both SULTR1 transporters have the capacity to mediate selenate 

transport from the soil into the root cells, but there is unequal functional redundancy between 

these two transporters (Barberon, 2008). Arabidopsis thaliana sultr1;2 mutants displayed a 

higher tolerance to selenate compared to sultr1;1 mutants and wild-type plants, while sultr1;1-

sultr1;2 double mutants exhibited the greatest tolerance to selenate (Barberon, 2008). This 

suggests that SULTR1;2 is the main portal for selenate entry into the plant, compared to 

SULTR1;1. SULTR1;2 shares 70% amino acid homology with other high-affinity plant sulfate 

transporters, and is localized in the root hairs as well as the root epidermis and cortex 

(Takahashi, 2002). AtSULTR1;2 was found to complement the function of two yeast sulfate 

transporters located in the plasma membrane (Takahashi, 2002).  

Recent research suggests that SULTR1 homologs found in Se hyperaccumulator species may 

have a preference for selenate transport over sulfate, which may explain the high Se/S ratio and 

Se hyperaccumulator status of these plants (White, 2015). SULTR1 sequences isolated from 
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several hyperaccumulator species in the genus Astragalus (Fabaceae) contain an alanine residue 

instead of the glycine found in SULTR1 isoforms of non-accumulating angiosperms, which may 

play a role in the preferential uptake of selenate over sulfate reported in these species (White, 

2015; Cabannes et al., 2011).  

While the high-affinity sulfate transporters are responsible for the transport of selenate into 

the plant, selenite is taken up through a separate pathway. It is believed that selenite uptake is 

mediated by root phosphate transporters. Studies in perennial ryegrass (Lolium perenne L. cv. 

Evening Shade) and strawberry clover (Trifolium fragiferrum L. cv. O'Conner) showed that 

selenite uptake was reduced by up to 50% in response to a 10-fold increase in phosphate 

treatment (Hopper & Parker, 1999). Another study has shown that the Km of selenite influx 

increased in the presence of phosphate in wheat (Triticum aestivum) (Li et al., 2008). These 

results indicate the existence of competition for uptake between selenite and phosphate, 

suggesting the two molecules share a common transporter, as has been reported for yeast (Lazard 

et al., 2010).  

Plants also have the capacity to take up organic forms of Se via amino acid permeases, which 

are plasma membrane-localized transporters mediating the uptake of amino acids in the cell 

(Figure 1.1). Two common forms of organic Se are selenocysteine (SeCys) and 

selenomethionine (SeMet). Normally, these products are formed from inorganic pools of Se 

through the S assimilation pathway, but there is evidence that plants can take up organic 

selenocompounds directly. Studies in durum wheat (Triticum turgidum) and spring canola 

(Brassica napus) showed that organic forms of Se, specifically selenomethionine and 

selenocystine, were taken up at rates over 20-fold higher than selenate or selenite (Zayed, et al., 

1998; Kikkert & Berkelaar, 2013). A broad specificity amino acid permease isolated from A. 
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thaliana complemented proline uptake in yeast mutant strains, with the strongest competitors for 

proline uptake being cysteine and methionine (Frommer et al., 1993). It is conceivable that 

selenocysteine and selenomethionine are taken up by this amino acid transporter as well.  

1.2 Conversion of Inorganic Selenium into Organic Forms: The First Steps of Selenium 

Assimilation 

After uptake into the roots, selenate needs to be converted into a biologically active form for 

assimilation into the plant. This is carried out by the enzyme ATP sulfurylase, which couples 

selenate (or sulfate) to ATP, forming adenosine 5′-phosphoselenate (APSe) or adenosine 5′-

phosphosulfate (APS) (Leustek, 1994; Pilon-Smits et al., 2009; Schiavon et al., 2015) (Figure 

1.1). This step, which was found to be rate limiting in Se assimilation (Pilon-Smits et al., 2009) 

occurs in both the cytosol and plastids (White et al., 2007b; Pilon-Smits & LeDuc, 2009; Pilon-

Smits, 2012).  

 First characterized during studies of S assimilation, ATP sulfurylase was found to be 

derepressed by a selenate concentration 1/10th that of sulfate, indicating it is responsible for the 

assimilation of both molecules (Reuveny, 1977). There have been 4 isoforms of ATP sulfurylase 

identified in A. thaliana (APS1-4), all localizing to the plastids of cells (Anjum et al., 2015), but 

A. thaliana APS2 was found to have dual localization to both the plastids and cytosol (Bohrer et 

al., 2015).  

ATP sulfurylase has been a target for genetic engineering of plants with higher Se uptake 

capacity, with the aim of developing plants for use in phytoremediation. Transgenic Indian 

mustard (Brassica juncea) overexpressing APS1 from A. thaliana showed increased selenate 

reduction, with roots and shoots containing mostly organic Se compounds compared to wild-type 

plants which mostly accumulated selenate (Pilon-Smits, 1999). Greenhouse experiments 
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conducted with B. juncea APS transgenics grown on naturally seleniferous soils demonstrated 

that these plants accumulated Se up to 3-fold higher than wild type plants (Van Huysen et al., 

2004). Field experiments in California on Se-contaminated soil confirmed these findings, with 

APS transgenics accumulating 4-fold more Se than wild type plants (Bañuelos et al., 2005). 

APSe is converted to selenite by the activity of APS reductase (APR) (Figure 1.1). This 

reaction happens exclusively in the plastids. APR is an essential enzyme and is reported to be 

another rate-limiting step in selenate assimilation (Setya et al., 1996; Suter et al., 2000; Sors et 

al., 2005). The reaction equilibrium of ATP sulfurylase favors the reverse direction, and so the 

products of this reaction need to be converted rapidly in order for assimilation to proceed (Sors et 

al., 2005; Saito, 2004). While native expression of APR in several Astragalus species was not 

found to correlate with Se hyperaccumulation, transgenic experiments have shown that 

overexpression of APR enhances selenate reduction into organic forms, thus suggesting a role for 

this enzyme in selenate assimilation (Sors et al., 2005). APR’s role in the Se assimilation 

pathway is also supported by the fact that increased activity of this enzyme contributed to 

increased Se flux through the plant (Sors et al., 2005). Apr2-1 Arabidopsis mutants showed 

enhanced levels of selenate, but decreased levels of selenite, implicating APR2 in converting 

APSe into selenite (Grant et al., 2011). These mutants also had decreased selenate tolerance due 

to decreased levels of glutathione, which helps to prevent the formation of damaging superoxides 

in the cell (Grant et al., 2011).  

The next step in the Se assimilation pathway is the reduction of selenite to selenide, for 

incorporation into organic molecules such as amino acids. The conversion of selenite into 

selenide may occur either enzymatically or non-enzymatically. Sulfite reductase (SiR) is 

responsible for the conversion of sulfite to sulfide during reductive sulfate assimilation 
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(Yarmolinsky et al., 2012), so it is not out of the question for the same enzyme to catalyze the 

reduction of selenite (Pilon-Smits, 2012; White, 2015) (Figure 1.1). There is a single copy of the 

gene coding for SiR in A. thaliana (Khan et al., 2010), and it has been found to localize to 

plastids (Armengaud et al., 1995; Bork et al., 1998). The conversion to selenide may also occur 

non-enzymatically through an interaction between selenite and reduced glutathione (GSH) 

(Anderson, 2001; Terry, 2000; Pilon-Smits, 2012). This conversion takes place in multiple steps, 

with selenite first converted to the organic molecule GSSeSG non-enzymatically, which is then 

converted to GSSeH and finally to selenide through the action of glutathione reductase (GR) 

using NADPH as a reductant (Hsieh & Ganther, 1975) (Figure 1.1). In support of a GR role in Se 

assimilation, yeast glutathione was shown to reduce selenite to selenide (Hsieh & Ganther, 

1975). Thus, while the reduction of selenite may be non-enzymatic, the regeneration of reduced 

glutathione is mediated by the enzyme GR. It belongs to the oxidoreductase family of proteins, 

which require NADP+ or NAD+ to transfer electrons from one molecule to another (Price & 

Stevens, 1999). Glutathione reductase is responsible for converting glutathione from its oxidized 

state back to its reduced form, which is essential in numerous cellular processes such as 

combating oxidative stress, promoting enzyme stability, and the regulation of cell metabolism 

(Jocelyn, 1972; Williams, 1976). In plants, this enzyme is active in chloroplasts and cytosol 

(Foyer and Halliwell, 1976). The reduction of oxidized glutathione by GR in chloroplasts has 

been reported to be coupled to photosynthetic electron transport (Jablonski & Anderson, 1978; 

Schaedle and Bassham, 1977) and may suggest that the reduction of selenite to selenide occurs in 

the chloroplasts as part of a light-dependent reaction (Ng & Anderson, 1978). 

Se toxicity in plants can be attributed to many factors, including oxidative stress, but the 

main cause is considered to be the misincorporation of selenoamino acids into proteins (Pilon-
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Smits, 2012). Selenium can replace sulfur in the amino acids cysteine (Cys) and methionine 

(Met) to produce selenocysteine (SeCys) and selenomethionine (SeMet). The prevention of 

incorporating these selenoamino acids into proteins is a key feature of Se hyperaccumulator 

species, and is instrumental for their high Se tolerance (Brown & Shrift, 1982).  

1.3 Formation and Processing of Seleno-Amino Acids: Mechanisms of Preventing Selenium 

Toxicity 

The first step in the formation of selenoamino acids is carried out by the enzyme complex 

Cysteine synthase (CS), which catalyzes the formation of SeCys from O-acetylserine (OAS) and 

selenide (White, 2015; Pilon-Smits, 2012). This process occurs in the chloroplasts of cells, but 

also in the cytosol and mitochondria (Ng & Anderson, 1978; Wirtz et al., 2001) (Figure 1.1). 

During S assimilation, Cys is formed by the reaction between OAS and hydrogen sulfide 

(Giovanelli, 1990). Selenocysteine formation is identical to this reaction, with the substitution of 

hydrogen selenide as a reactant. Cysteine synthase is a complex formed by the association of two 

enzymes, serine acetyltransferase (SAT) and OAS thiol-lyase (OAS-TL) (Bogdanova & Hell, 

1997). SeCys can be incorporated into proteins nonspecifically, which can lead to disruption of 

protein function and thus Se toxicity (Stadtman 1990; Neuhierl & Bock, 1996; Van Huysen et 

al., 2003). The prevention of non-specific incorporation of SeCys into proteins is crucial in 

preventing Se toxicity. The methylation of SeCys to form methyl-SeCys (MeSeCys) is a key 

mechanism used by hyperaccumulator species to reduce the amount of SeCys available for 

incorporation into proteins (Pilon-Smits et al., 2009). The enzyme SeCys methyltransferase 

(SMT) is responsible for this conversion (Neuhierl and Bock 1995).  SMT is homologous to 

other enzymes with similar functions, such as YagD in Escherichia coli, a homocysteine 

methyltransferase (HMT) able to methylate both SeCys and homocysteine, and belongs to a class 
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of methyltransferases involved in the metabolism of S-methylmethionine (Neuhierl et al., 1999; 

Sors et al., 2005). SMT was also found to be highly homologous to HMTs isolated from A. 

thaliana and Oryza sativa (Sors et al., 2005), and is localized in the chloroplasts (Sors et al., 

2009). SMT also shows a preference for the methylation of SeCys over Cys by at least 3 orders 

of magnitude (Neuhierl & Bock, 1996), further solidifying its role in conferring Se tolerance to 

plants (Neuhierl et al., 1999). SMT has been identified in multiple non-accumulator and Se 

hyperaccumulator species of Astragalus but only the isoform from the hyperaccumulators had 

the ability to produce MeSeCys, indicating its essential role in the ability to tolerate and 

accumulate high levels of Se (Sors et al., 2009). In fact, the main form of Se found in the 

hyperaccumulators A. bisulcatus and Stanleya pinnata is MeSeCys, due to the high activity of 

the SMT enzyme (Neuhierl et al., 1999; Birringer et al., 2002; Pickering et al., 2003; Sors et al., 

2005; Freemen et al., 2006, 2010; Lindblom et al., 2013; Alford et al., 2014; White 2015), while 

selenate was the major Se compound found in related non-accumulator species (de Souza et al., 

1998; Freeman et al., 2006; Pilon-Smits 2012). Although SMT is found to be highly expressed 

specifically in hyperaccumulators (Sors et al., 2009), some Se accumulator species, such as 

Brassica oleracea (Broccoli) also have an SMT enzyme, but it is expressed only in the presence 

of Se (Lyi et al., 2005; Pilon-Smits 2012). SMT has been used in transgenic studies to confer 

increased Se accumulation and tolerance in non-accumulating species. SMT isolated from A. 

bisulcatus induced the accumulation of MeSeCys and γ-glutamyl-MeSeCys in A. thaliana, and 

increased Se accumulation and volatilization in B. juncea (LeDuc et al., 2003; Ellis et al., 2004).  

While the production of MeSeCys is critical to Se tolerance in plants, further processing of 

this molecule into volatile compounds serves as another mechanism by which plants tolerate 

high levels of Se. The volatile compound dimethyldiselenide (DMDSe) is formed by oxidation 
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and methylation of MeSeCys (Meija et al., 2002; Sors et al., 2005). First, MeSeCys is converted 

to methylselenocysteineselenideoxide (MeSeCysSeO), whose sulfur analog 

methylcysteinesulfoxide (MeCysSO) is responsible for many Brassica varieties’ characteristic 

flavors (Chin & Lindsay, 1994). This compound is then converted to another key intermediate 

methaneselenol (CH3SeH) via the action of the enzyme Cys sulfoxide lyase (Chin & Lindsay, 

1994; Griffiths et al., 2002; Ellis & Salt, 2003). DMDSe production occurs in the leaves, and has 

been detected in the Se hyperaccumulator Astragalus racemosus (Evans et al., 1967). Volatile Se 

compounds have been hypothesized to aid in defense against herbivory. This is supported not 

only by the fact that the production of these volatiles occurs in the leaves, but that it also occurs 

primarily after tissue injury (Ellis & Salt, 2003).  

The formation of SeMet occurs through the enzymatic conversion of SeCys. There are 

multiple steps involved in the synthesis of SeMet, which include potential targets for transgenic 

phytoremediation efforts. First, SeCys is converted to Se-cystathionine by the enzyme 

cystathionine-γ-synthase (CGS) (Pilon-Smits, 2012). CGS catalyzes the formation of Se-

cystathionine via the condensation of O-phosphohomoserine (OPH) and SeCys (Van Huysen et 

al., 2013; Sors et al., 2005). CGS was shown to be a rate-limiting enzyme in the conversion of 

SeCys to volatile DMSe (Van Huysen et al., 2003). Transgenic B. juncea overexpressing CGS 

had 2-3 fold higher Se volatilization rates and concurrent 20-40% lower shoot and 50-70% lower 

root Se levels compared to wild type plants, highlighting the value of this approach for 

applications in Se phytoremediation (Van Huysen et al., 2003, 2004). Se-cystathionine is 

converted to Se-homocysteine via a reaction between Se-cystathionine and water, mediated by 

the enzyme cystathionine beta-lyase. This enzyme is shared in both the Se and S assimilation 

pathways, evidenced by the fact that cystathionine beta-lyase isolated from both Se 
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hyperaccumulator and non-accumulator plant species had the capacity to cleave both Se-

cystathionine and cystathionine into Se-homocysteine and homocysteine, respectively (Sors et 

al., 2005; McCluskey et al., 1986). Finally, the conversion of Se-homocysteine to SeMet is 

catalyzed by the enzyme Met synthase. Met synthase has been isolated from plants from various 

angiosperm taxa, including A. thaliana, Catharanthus roseus, and Coleus blumei (Eichel et al., 

1995; Petersen et al., 1995; Ravanel et al., 1998). Using methyl-tetrahydrofolate as a carbon 

donor, Met synthase catalyzes the conversion of Se-homocysteine to SeMet (Cossins & Chen, 

1997).  

Like SeCys, SeMet is subject to further processing steps that reduce its incorporation into 

proteins. The volatile Se compound DMSe is synthesized via the S volatilization pathway 

starting from SeMet (Tagmount et al., 2002). Enzymes involved in the S volatilization pathway 

and formation of dimethyl sulfide (DMS) have also been discovered to be involved in the 

production of DMSe (Terry & Zayed, 1994; Tagmount et al., 2002). The production of DMSe in 

plants is important not only as a defense against herbivores, but it also diverts large pools of 

potentially toxic SeMet to the significantly less toxic DMSe. DMSe was found to be almost 600 

times less toxic than inorganic Se compounds (McConnell & Portman, 1952; Wilber, 1980). 

DMSe is the main volatile Se compound isolated from non-accumulator plant species, while 

DMDSe is primarily produced in hyperaccumulators (Pilon-Smits & LeDuc, 2009). The first step 

in the synthesis of DMSe is the methylation of SeMet to form Se-methyl Se-Met (SeMM) by the 

enzyme S-adenosyl-L-Met:Met-S-methyltransferase (MMT) (Tagmount et al., 2002). SeMM can 

be converted to DMSe by one of two pathways. SeMM may first be converted to the 

intermediate molecule 3-dimethylselenoniopropionate (DMSeP) (Kocsis et al., 1998). The sulfur 

analog DMSP is a biologically important molecule, playing important roles in osmoprotection of 
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plants and bacteria (Mason & Blunden, 1989; Paquet et al., 1994; Kocsis et al., 1998). The 

synthesis of DMSP has been detected in members of the family Poaceae, such as Spartina 

alterniflora (Kocsis et al., 1998), as well as members of the Asteraceae including Melanthera 

biflora (syn. = Wollastonia biflora) (Hanson et al., 1994; James et al., 1995) and Ratibida 

pinnata (Paquet et al., 1995). The synthesis of DMSe may also proceed directly from SeMM via 

the enzyme methylmethionine hydrolase (Mudd et al., 1990; Meija et al., 2002; Ellis & Salt, 

2003).  

Aside from volatilization, plants have another mechanism to help prevent Se toxicity. 

Selenocysteine lyase (SL) is an enzyme that breaks down SeCys into elemental Se and alanine, 

reducing the amount of free SeCys available for misincorporation into proteins (Van Hoewyk et 

al., 2005). Selenocysteine lyases are analogous to NifS-like Cys desulfurase proteins 

characterized in Arabidopsis (Ye et al., 2005), whose main role is to generate free S from Cys for 

the formation of FeS clusters (Pilon-Smits et al., 2002). There are two isoforms of SeCys lyase 

found in plants, with different subcellular localization patterns; one isoform localizes to the 

cytosol (Kushnir et al., 2001), and the other to mitochondria and plastids (Pilon-Smits et al., 

2002). Overexpression of a chloroplast-localizing NifS protein from Arabidopsis (AtCpNifS) 

was found to increase Se tolerance by 1.9-fold and increased Se accumulation by 2.2-fold (Van 

Hoewyk, 2005). Similarly, expression of a mouse SL caused a 2-fold reduction in Se 

incorporation into proteins and a 1.5-fold increase in shoot Se concentration in Arabidopsis 

(Pilon, 2003), as well as a 2-fold increase in Se accumulation in Indian mustard in both lab 

(Garifullina et al., 2003) and field (Bañuelos et al., 2007) studies. Selenocysteine lyases not only 

help to reduce Se toxicity in plants, but also appear to be promising enzymes to exploit for 

phytoremediation purposes.  
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The mechanisms by which plants accumulate, assimilate, and tolerate Se mirror aspects of 

the S assimilation pathway, but the roles these two elements play in the plant are very different. 

By better understanding the pathways of Se assimilation, new approaches to developing plants 

for phytoremediation and biofortification can be exploited, and mechanisms that 

hyperaccumulator species exploit in their uptake and assimilation of Se can be further elucidated. 
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Figure 1.1) Schematic model of Se assimilation and metabolism in plant mesophyll cells. Red 

text and arrows indicate Se hyperaccumulator processes. Asterisks indicate enzymes 

overexpressed via genetic engineering. Sultr: sulfate/selenate cotransporters; APSe: adenosine 

phosphoselenate; GSH: glutathione; SAT: serine acetyltransferase; OAS: O-acetylserine; 

(Se)Cys: (seleno)cysteine; OPH: O-phosphohomoserine; (Se)Met: (seleno)methionine; MMT: 

methylmethionine methyltransferase; DMSeP: dimethylselenoproprionate; DM(D)Se: 

dimethyl(di)selenide (volatile); SMT: selenocysteine methyltransferase. Adapted from 

Schiavon & Pilon-Smits, 2016. 



14 

 

REFERENCES 

Alford E R, Lindblom SD, Pittarello M, Freeman JL,Fakra SC, Marcus MA, Broeckling C,  

Pilon-Smits EAH, Paschke MW (2014) Roles of rhizobial symbionts in selenium 

hyperaccumulation in Astragalus (Fabaceae). Amer J Bot 101:1895-1905 

Anderson JW, Mcmahon PJ (2001) The role of glutathione in the uptake and metabolism of 

sulfur and selenium. In: Grill D, Tausz, Michael M, de Kok LJ (eds) Significance of glutathione 

to plant adaptation to the environment. Plant Ecophysiology, vol 2. Springer, Netherlands, pp 57-

99 

Armengaud J, Gaillard J, Forest E, Jouanneau Y (2008) Characterization of a 2[4Fe-4S] 

ferredoxin obtained by chemical insertion of the Fe-S clusters into the apoferredoxin II from 

Rhodobacter capsulatus. Eur J Biochem 231:396-404 

Barberon M, Berthomieu P, Clairotte M, Shibagaki N, Davidian J, Gosti F (2008) Unequal 

functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters 

SULTR1;1 and SULTR1;2. New Phytol 180:608-619 

Bañuelos G, Leduc D, Pilon-Smits EAH, Terry N (2007) Transgenic indian mustard 

overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced 

potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599-605 

Bañuelos G, Terry N, Leduc D, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic 

indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. 

Environ Sci Technol 39:1771-1777 



15 

 

Birringer M, Pilawa S, Flohé L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693-

718 

Bogdanova N, Hell R (1997) Cysteine synthesis in plants: Protein-protein interactions of serine 

acetyltransferase from Arabidopsis thaliana. Plant J 11:251-262 

Bork C, Schwenn JD, Hell R (1998) Isolation and characterization of a gene for assimilatory 

sulfite reductase from Arabidopsis thaliana. Gene 212:147-153 

Brown TA, Shrift A (1982) Selenium: Toxicity and tolerance in higher plants. Biol Rev 57:59-84 

Buchner P (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in 

Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant 

Physiol 136:3396-3408 

Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and 

selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus 

species. Plant Physiol 157:2227-2239 

Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2012) SULTR3;1 is a chloroplast-

localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607-616 

Chin HW, Lindsay RC (1994) Mechanisms of formation of volatile sulfur compounds following 

the action of cysteine sulfoxide lyases. J Agric Food Chem 42:1529-1536 

Cossins EA, Chen L (1997) Folates and one-carbon metabolism in plants and fungi. 

Phytochemistry 45:437-452 



16 

 

Eichel J, Gonzalez JC, Hotze M, Matthews RG, Schroder J (1995) Vitamin-B12-independent 

methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, 

regulation, heterologous expression, and enzyme properties. Eur J Biochem 230:1053-1058 

Ellis DR, Salt DE (2003) Plants, Selenium and Human Health. Curr Opin Plant Biol 6:273-279 

Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering 

IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing 

selenocysteine methyltransferase. BMC Plant Biol 4:1471-2229 

Evans CS, Asher CJ, Johnson CM (1968) Isolation of dimethyl diselenide and other volatile 

selenium compounds from Astragalus racemosus (Pursh.). Aust J BioL Sci 21:13-20 

Fordyce FM (2012) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) 

Essentials of Medical Geology, 3rd edn. Springer, Netherlands, pp 375-416 

Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in 

chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25 

Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus 

MA, Mcgrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium 

tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630-1652.  

Freeman JL (2006) Spatial imaging, speciation, and quantification of selenium in the 

hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124-134. 

Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA 

encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad 

Sci USA 90:5944-5948 



17 

 

Garifullina GF, Owen JD, Lindblom SD, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression 

of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and 

accumulation. Physiol Plant 118:538-544  

Giovanelli J (1990) Regulatory aspects of cysteine and methionine synthesis. In: Rennenberg H, 

et al., (eds.) Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Fundamental 

Environmental and Agricultural Aspects. SPB Academic Pub, The Hague, the Netherlands 

Grant K, Carey NM, Mendoza M, Schulze J, Pilon M, Pilon-Smits EAH, Van Hoewyk D (2011) 

Adenosine 5′-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione 

deficiency in selenate toxicity. Biochem J 438:325-335 

Hanson A, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3-dimethylsulfoniopropionate in 

Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol 

105:103-110 

Hawkesford M, Davidian JC, Grignon C (1993) Sulphate/proton cotransport in plasma-

membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes 

isolated from sulphur-starved plants. Planta 190:297-304 

Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the 

competing ions phosphate and sulfate. Plant Soil 210:199-207 

Hsieh SH, Ganther HE (1975) Acid-volatile selenium formation catalyzed by glutathione 

reductase. Biochem 14:1632-1636 



18 

 

Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential 

of transgenic indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J 

of Phytoremed 6:111-118 

Huysen T, Abdel-Ghany SE, Hale KL, Leduc D, Terry N, Pilon-Smits EAH (2003) 

Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. 

Planta 218:71-78 

Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidized glutathione by 

ruptured chloroplasts. Plant Physiol 61:221-225 

James F, Paquet L, Sparace SA, Gage DA, Hanson AD (1995) Evidence implicating 

dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. 

Plant Physiol 108:1439-1448 

Jocelyn PC (1972) Biochemistry of the SH group; the occurrence, chemical properties, 

metabolism and biological function of thiols and disulphides. London, New York, Academic 

Press 

Kassis E, Cathala, Rouached NH, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007) 

Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for 

selenate toxicity. Plant Physiol 143:1231-1241 

Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of 

selenium. Arch Environ Contam Toxicol 65:458-465 



19 

 

Kocsis MG (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora (L.) 

Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant 

Physiol 117:273-81 

Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, 

Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the 

mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant 

starik. Plant Cell 13:89–100  

Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate cotransport and its kinetics in 

Lemna gibba G1. Planta 161:53-60 

Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by 

Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol 

Chem 285:32029−32037 

Leduc DL, Abdelsamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) 

Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium 

phytoremediation traits in indian mustard. Environ Pollut 144:70-76 

Leustek T (1994) Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by 

functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897-902 

Li HF, Mcgrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat 

supplied with selenate or selenite. New Phytol 178:92-102 



20 

 

Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH 

(2013) Influence of microbial associations on selenium localization and speciation in roots of 

Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33-42 

Lyi SM, Zhou X, Kochian LV, Li L (2007) Biochemical and molecular characterization of the 

homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochem 68: 

1112-1119 

Lyubenova L, Sabodash X, Schröder P, Michalke B (2015) Selenium species in the roots and 

shoots of chickpea plants treated with different concentrations of sodium selenite. Environ Sci 

Pollut Res 22:16978-16986 

Mason TG, Blunden G (1989) Quaternary ammonium and tertiary sulphonium compounds of 

algal origin as alleviators of osmotic stress. Bot Mar 32:313-316 

McCluskey TJ, Scarf AR, Anderson JW (1986) Enzyme catalysed α,β-elimination of 

selenocystathionine and selenocystine and their sulphur isologues by plant extracts. Phytochem 

25: 2063-2068 

McConnell KP, Portman OW (1952) Toxicity of dimethyl selenide in the rat and mouse. Exp 

Biol Med 79: 230-231 

Meija J, Montes-Bayón M, Le Duc D, Terry N, Caruso JA (2002) Simultaneous monitoring of 

volatile selenium and sulfur species from Se accumulating plants (wild type and genetically 

modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. 

Anal Chem 74:5837-5844 



21 

 

Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by 

agricultural crops. In: Jacobs L (ed) Selenium in agriculture and the environment, Soil Science 

Society of America & American Society of Agronomy pp 65-94 

Mudd SH, Datko AH (1990) The S-methylmethionine cycle in Lemna paucicostata. Plant 

Physiol 93:623-630 

Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-

dependent thiol/selenol methyltransferases: Role in selenium tolerance and evolutionary relation. 

J Biol Chem 274: 5407-414 

Neuhierl B, Bock A (1996) On the mechanism of selenium tolerance in selenium-accumulating 

plants. Purification and characterization of a specific selenocysteine methyltransferase from 

cultured cells of Astragalus bisculatus. Eur J Biochem 239:235-238 

Ng B, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into 

selenocysteine and cysteine by isolated pea chloroplasts. Phytochem 18:573-580 

Paquet L, Lafontaine PJ, Saini HS, James F, Hanson AD (1995) Évidence en faveur de la 

présence du 3-diméthylsulfoniopropionate chez une large gamme d'angiospermes. Can J Bot 73: 

1889-1896 

Petersen M, Van Der Straeten D, Bauw G (1995) full-length cDNA clone from Coleus blumei 

(accession No. Z49150) with high similarity to cobalamin-independent methionine synthase. 

Plant Physiol 109:338 

Pickering IJ (2003) Chemical form and distribution of selenium and sulfur in the selenium 

hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460-1467 



22 

 

Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) 

Enhanced Selenium Tolerance and Accumulation in Transgenic Arabidopsis Expressing a Mouse 

Selenocysteine Lyase. Plant Physiol 131:1250–1257 

Pilon-Smits EAH, De Souza MP, Hong G, Amini A, Bravo RC, Payabyab SB, Terry N (1999) 

Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 

28:1011-1018 

Pilon-Smits EAH, Garifullina GF, Abdel-Ghany SE, Kato SI, Mihara H, Hale KL, Burkhead JL, 

Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-Like Chloroplast Protein from 

Arabidopsis . Implications for Its Role in Sulfur and Selenium Metabolism. Plant Phyiol 

130:1309–1318 

Pilon-Smits EAH, Quinn CF (2010) Selenium Metabolism in Plants. In: Hell, Rudiger, Mendel, 

Ralf-Rainer (eds.) Plant Cell Monographs. Cell Biology of Metals and Nutrients, vol 17. 

Springer, The Netherlands, pp 225-241 

Pilon-Smits EAH, Le Duc D (2009) Phytoremediation of selenium using transgenic plants. Curr 

Opin Biotechnol 20:207-212 

Pilon-Smits EAH (2012) Plant selenium metabolism. In: Wong M (ed) Environmental 

contamination: health risks and ecological restoration, CRC Press, USA, pp 295-312 

Price NC, Stevens L (1999) Fundamentals of enzymology: the cell and molecular biology of 

catalytic proteins. Oxford Press 

Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis 

and metabolism in plants. Proc Natl Acad Sci USA 95:7805-7812 



23 

 

Reuveny Z (1977) Derepression of ATP sulfurylase by the sulfate analogs molybdate and 

selenate in cultured tobacco cells. Proc Natl Acad Sci USA 74:619-622 

Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 

136:2443-2450 

Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011-1012 

Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH (2015) Exploring the importance of sulfate 

transporters and ATP sulphurylases for selenium hyperaccumulation: A comparison of Stanleya 

pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:1-13 

Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for 

a novel 5'-adenylylsulfate reductase. Proc Natl Acad Sci USA 93:13383-13388 

Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, and Davies JP, 

(2002) Selenate-resistant mutants of Arabidopsis thaliana identify sultr1;2, a sulfate transporter 

required for efficient transport of sulfate into roots. Plant J 29:475-486 

Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from 

Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110-122 

Sors TG, Ellis DR, Nam Na G, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) 

Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to 

accumulate selenium. Plant J 42:785-797 

Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic 

fate in plants. Photosynth Res 86:373-389 



24 

 

De Souza MP (2000) Selenium assimilation and volatilization from dimethylselenoniopropionate 

by indian mustard Plant Physiol 122:1281-1288 

Stadtman T (1990) Selenium biochemistry. Annu Rev Biochem 59:111-127 

Suter M, Von Ballmoos P, Kopriva S, Den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, 

Brunold C (2000) Adenosine 5'-phosphosulfate sulfotransferase and adenosine 5'-phosphosulfate 

reductase are identical enzymes J Biol Chem 275:930-936 

Tagmount A (2002) An essential role of S-adenosyl-L-methionine:L-methionine S-

methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to 

selenium-methyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiol 

130:847-856 

Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Kazuki S 

(2000) The roles of three functional sulphate transporters involved in uptake and translocation of 

sulphate in Arabidopsis thaliana. Plant J 23:171-182 

Terry N, Zayed MA, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant 

Physiol Plant Mol Biol 51:401-432 

Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress 

both contribute to selenium stress in plants. Ann Bot 112:965-972 

Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama 

K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS 

Enhances Selenium Tolerance and Accumulation in Arabidopsis. Plant Physiol 139:1518–1528 

White PJ (2015) Selenium accumulation by plants. Ann Bot 117.2:217-235 



25 

 

White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often 

lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and Iodine. New 

Phytol 182:49-84 

White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to 

sulfur ratios define 'Se-accumulator' plants." Ann Bot 100:111-118 

White PJ, Broadley MR, Bowen HC, Johnson SE (2007) Selenium and its relationship with 

sulfur. In: Hawkesford Malcolm K., De Kok, Luit J. (eds.) Plant Ecophysiology. Sulfur in Plants: 

An Ecological Perspective, vol 6. Springer, The Netherlands, pp 225-252 

Wilber CG (1980) Toxicology of selenium: A review. Clin Toxicol 17:171-230 

Williams CH (1976) 3 Flavin-containing dehydrogenases. In: Boyer P (ed) The Enzymes, vol 13. 

Elsevier, Netherlands, pp 89-173 

Yarmolinsky D, Brychkova G, Fluhr R, Sagi M (2012) Sulfite reductase protects plants against 

sulfite toxicity. Plant Physiol 161:725-743 

Ye H, Garifullina GF, Abdel-Ghany SE, Lihong Z, Pilon-Smits EAH, Pilon M (2005) The 

chloroplast NifS-like protein of Arabidopsis thaliana is required for iron--sulfur cluster 

formation in ferredoxin. Planta 220:602–608 

Zayed AM, Terry N (1994) Selenium volatilization by plants. Plant Physiol 143:8-14 

Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants 

understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436-

442 



26 

 

Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010) Sultr4;1 

mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome 

suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 

10:78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

CHAPTER 2: CHARACTERIZATION OF SELENATE TRANSPORT OF ROOT 

MEMBRANE TRANSPORTER SULTR1;2 FROM SELENIUM HYPERACCUMULATOR 

STANLEYA PINNATA AND NONACCUMULATORS STANLEYA ELATA AND 

ARABIDOPSIS THALIANA 

2.1 Introduction 

Selenium (Se) is a trace element naturally occurring in soils at concentrations between 

0.1 and 5 parts per million (ppm) (https://mrdata.usgs.gov/geochem/doc/averages/se/usa.html). 

While Se has been found to be an essential microelement for animals and bacteria (Romero et al, 

2005), it has not yet been found to be essential for plants (Schiavon et al, 2017). However, due to 

its chemical similarity to sulfur (S) plants still have the capacity to take up Se via the S 

assimilation pathway. Selenium can be found in soils in various forms, including the inorganic 

forms selenate (Se04
2-) and selenite (SeO3

2-), and organic forms including methyl-selenocysteine 

and methyl-selenomethionine (Pyrzynska, 1996; Bauer, 1997). Selenate is the predominant form 

found in oxidizing conditions, and is the primary form taken up by plants (Bauer, 1997). Some 

plants have the capacity to accumulate and tolerate high levels of Se that would be fatal to other 

plant species. These species occur across different orders and families (Cappa et al, 2014, and are 

known as Se hyperaccumulators.   

Selenium hyperaccumulators are defined as having concentrations of Se of over 1,000 mg 

kg-1 dry weight (El Mehdawi et al, 2012), with some species accumulating up to 10,000 mg kg-1 

(Quinn et al, 2010). These elevated levels of Se can have adverse effects on overall plant health 

(Brown & Shrift, 1982), but hyperaccumulators have multiple mechanisms to circumvent and 

mitigate Se toxicity. They generally accumulate the methylated form of the seleno-amino acid 

selenocysteine (methylselenocysteine). Methylation of selenocysteine prevents its substitution 
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for cysteine in proteins, which likely disrupts proper protein folding due to inhibition of disulfide 

bridge formation (LeDuc et al, 2004). Hyperaccumulators also show different patterns of Se 

localization when compared to nonaccumulators, with hyperaccumulators preferentially 

sequestering Se in the outer margins of the leaves in epidermal cells, segregated from sensitive 

metabolic processes (Cappa et al, 2015). Another key difference observed in Se 

hyperaccumulators is elevated Se: S ratios when compared to nonaccumulators (White et al, 

2007) and compared to their growth substrate, which may suggest that hyperaccumulators have 

the ability to preferentially accumulate Se over S analogues.  

Due to its chemical similarity to S, Se is believed to be transported into plants via S 

transporters, and metabolized through many of the enzymes found in the S assimilation pathway 

(White, 2016). Both sulfate (SO4
2-) and selenate are first transported from the soil into the roots 

via the high-affinity sulfate transporters SULTR1;1 and SULTR1;2, with SULTR1;2 being 

constitutively expressed over a wide range of sulfate concentrations in Arabidopsis and 

SULTR1;1 expressed only under S deficiency (Yoshimoto et al, 2002). Based on experiments 

exploring changes in root length in Arabidopsis knockouts grown on varying concentrations of 

selenate, SULTR1;2 has also been found to be the main portal of entry for selenate into the plant 

(El Kassis et al, 2007). In experiments exploring the effects of sulfate concentrations on selenate 

uptake, it has been shown that selenate concentrations in non-accumulator plants are 

significantly reduced when high sulfate levels are present in the environment (White et al, 2007). 

However, this level of reduction is variable across plant species, with Se hyperaccumulator 

species exhibiting less reduction of selenate uptake in the presence of high sulfate compared to 

nonaccumulator species (White et al, 2004; White et al, 2007). This ability to preferentially 
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transport higher levels of selenate even in the presence of high sulfate may be due to properties 

inherent to the SULTR1;2 homolog found in hyperaccumulators (Cabannes et al, 2011).  

SULTR1;2 is a membrane protein belonging to the sulfate permease (SulP) family, found 

across many kingdoms of life including plants, animals, bacteria, fungi, and archaea (Alper & 

Sharma, 2013). SULTR1;2 is a sulfate/ proton cotransporter, transporting 3 protons across the 

plasma membrane for one sulfate ion (Shibagaki, 2002). This protein is characterized by having 

12 membrane spanning domains, and a C-terminal Sulfate Transporter and Anti-Sigma factor 

antagonist (STAS) domain (Aravind & Koonin, 2000), which is responsible for sulfate transport 

(Rouached et al, 2005) and interactions with other sulfate assimilation enzymes such as cysteine 

synthase (Shibagaki & Grossman, 2010). While enzyme kinetics measurements for sulfate 

transport have been performed on SULTR1;2 isolated from the model plant Arabidopsis thaliana 

(Yoshimoto et al, 2002), and selenate resistance has been found in sultr1;2 Arabidopsis 

knockouts (Shibagaki, 2002), this protein has not been characterized in the Se hyperaccumulator 

Stanleya pinnata. Based on RNA-seq data (Pilon-Smits lab, unpublished), it appears that 

Sultr1;2 from S. pinnata is constitutively expressed under S-deficient and S-sufficient 

conditions, and that its expression is upregulated 10-fold compared to the non-hyperaccumulator 

Stanleya elata.  

Previous studies on the transport activity of SULTR1;2 have utilized radiolabeled sulfate 

in order to effectively determine the kinetics of sulfate transport for this protein (Yoshimoto et al, 

2002). However, no commercial source of radiolabeled selenate is available. In order to 

effectively measure the selenate transport activity of SULTR1;2, inductively coupled plasma 

mass spectrometry (ICP-MS) can be utilized. ICP-MS can potentially detect concentrations of 

elements to 100 parts per trillion (ppt) (Shrivastava & Gupta, 2011), and in conjunction with 
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relatively low background levels of selenium in the environment, serves as a viable platform to 

test for the selenate transport activity of SULTR1;2.  

The goal of this study is to determine if SULTR1;2 from the Se hyperaccumulator S. 

pinnata has altered selenate transport capabilities in the presence of high and low sulfate 

concentrations when compared to the non-hyperaccumulator species S. elata and A. thaliana. To 

explore this hypothesis, the Saccharomyces cerevisiae yeast sulfate uptake mutant YSD1 can be 

used (Yoshimoto et al, 2002). YSD1 is a yeast strain first isolated because of its resistance to 

selenate, and was later characterized by having mutations in the sulfate transporter gene Sul1 

(Smith et al, 1995). The SUL1 protein is one of two sulfate transporters found in S. cerevisiae, 

and is a high affinity sulfate transporter (Km = 7.5 ± 0.6 µM SO4
2-) with 12 membrane domains, 

similar to Sultr1;2 in plants (Smith et al., 1995). This yeast strain and the yeast inducible 

expression vector pYES2 have been previously used to characterize sulfate uptake of plant 

transporters (Yoshimoto et al, 2002). However, the selenate transport activity of plant sulfate 

transporters has not been previously explored using this system. By using YSD1 to study the 

selenate transport activity of SULTR1;2, we can determine if the properties of SULTR1;2 from 

S. pinnata enable the yeast cell to discriminate between selenate and sulfate in high and low 

sulfate growth conditions.  

2.2 Materials and Methods 

2.2.1 Yeast Strains and Growth Conditions 

The strains used for these studies are listed in Table 1. Media components were 

purchased from Difco (Detroit, MI), Sigma-Aldrich (St. Louis, MO), and Thermofisher 

(Waltham, MA). Yeast media types are listed in Table 3. Media for plates was supplemented 
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with 2% agar. All yeast liquid cultures and plates were incubated in an incubator set to 30°C. 

The OD600nm of all cultures was measured using a Beckman DU 530 Spectrophotometer. Selenate 

added to media was from a 0.1 M stock solution prepared by dissolving 9.45 g sodium selenate 

(Acros Organics) in 500 ml of distilled H2O.  

2.2.2 E. coli and Yeast Transformation 

DH5-α competent E. coli cells were used for all bacterial transformations (Taylor et al, 

1993). Vectors were transformed into these cells via CaCl2/ heat shock transformation. Ligated 

vector was added to 200 µL of cells in a 1.5 ml Eppendorf microcentrifuge tube on ice for 45 

minutes. Then, the cells were heat shocked at 42°C on a VWR digital heatblock for 45 seconds, 

and then placed on ice for 5 minutes. 1 ml of liquid LB media was added to the cells, and they 

were incubated at 37°C for 1 hour. The cells were then plated on LB agar media supplemented 

with 100 ug / ml ampicillin. YSD1 yeast cells were used for all yeast transformations, and all 

transformations were carried out via the LiAc-mediated transformation procedure outlined in the 

Clontech Yeast Protocols Handbook (Clontech, 2008).  

2.2.3 Sultr1;2 Amplification, Cloning, Plasmids, and Plasmid Purification 

Primers used for amplification of Sultr1;2 cDNA from these three species are listed in 

Table 4. Previously generated cDNA from root tissue of S. pinnata (Western Native Seed, 

Coaldale, CO), S. elata (El Mehdawi et al, 2012), and A. thaliana (Genbank AB042322) was 

used for isolation of the Sultr1;2 open reading frame. PCR reactions were prepared and executed 

with the Novagen KOD HotStart DNA Polymerase kit per the manufacturer’s instructions. PCR 

was performed in a Eppendorf Mastercycler gradient thermocycler with these cycling conditions; 

Initial denaturation for 2 minutes at 95°C followed by 30 cycles of denaturation at 95°C for 20 
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seconds, annealing at 55°C for 10 seconds, and extension 70°C for 40 seconds, with a final 

extension at 70°C for 10 minutes. All restriction digestions were performed with Thermofisher 

FastDigest restriction enzymes incubated at 37°C on a Thermolyne Dri-Bath heating block for 15 

minutes. To purify restriction fragments and PCR products, samples were loaded onto a 1% 

agarose TBE gel and run at 90V for 40 minutes. DNA bands were illuminated with a Fotodyne 

FOTO/ UV 26 illuminator, excised with a scalpel, and moved to a 1.5 ml Eppendrof 

microcentrifuge tube. The DNA was purified from the gel piece using a Qiagen Gel Extraction 

kit (Qiagen, Hilden, Germany). All ligations were performed with T4 Ligase (Thermofisher) at 

room temperature for 30 minutes.  

After each ligation, plasmids were initially transformed into E. coli for screening on 

positive transformants and plasmid amplification. Plasmids were purified using the Qiagen 

Plasmid Miniprep kit, and sequence verified via Sanger sequencing through GeneWiz 

(http://www.genewiz.com) using the pYES2_F2, pYES2_R2, SpinSultr1;2_5FW_EcoRI, 

SpinelaSultr1;2_3Rev_EcoRI, AtSultr1;2_5Fw_EcoRI, AtSultr1;2_3Rev_EcoRI, 

SelaSultr1;2_5FW_EcoRI, Spin_Sultr1;2_QuarterFw, Spin_Sultr1;2_QuarterRev, 

SpinelaSultr1;2_centerFw, SpinelaSultr1;2_centralRev, SpinSultr1;2_ThreequarterFw, 

SpinSultr1;2_ThreequarterRev, AtSultr1;2_centF, AtSultr1;2_centR primers (Table 4). After 

verification of the plasmid sequences, plasmids were then cloned into YSD1 yeast cells for 

expression studies.  

Plasmids used in this study are listed in Table 2. Sultr1;2 from S. pinnata was amplified 

using the 5’-SpSultr1;2_EcoRI and 3’-SpSultr1;2_EcoRI primer set, and Sultr1;2 from A. 

thaliana was amplified using the 5’-AtSultr1;2_EcoRI 3’-AtSultr1;2_EcoRI primer set. After gel 

purification of the PCR products and the pYES2 plasmid digested with EcoRI, the 2.1-kb EcoRI 
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fragments containing the Sultr1;2 sequence from S. pinnata or A. thaliana were digested using 

the EcoRI restriction enzyme and cloned into pYES2 (digested with EcoRI and 

dephosphorylated) to produce pEPY1 and pEPY2. To generate variants of these plasmids with a 

Myc/6x His sequence for immunoblotting, the 339bp AvrII-SphI from pET28-At was ligated to 

pEPY2 that was digested with AvrII and SphI to create pEPY21. pEPY1 was used as the starting 

template for a PCR with the 5’-SpSultr1;2_EcoRI and 3’-SpSultr1;2_nostop_PacI primer set to 

generate a copy of Sultr1;2 from S. pinnata without the stop codon. This amplicon and pEPY21 

were digested with the EcoRI and PacI restriction enzymes, and the 2.1kb PCR fragment and 

5.9kb pEPY21 fragment were ligated together to generate pEPY11. pEPY31 was generated by 

first amplifying Sultr1;2 from S. elata cDNA using the 5’-SeSultr1;2_EcoRI/ 3’-

SeSultr1;2_nostop_PacI primer set. The amplicon was purified via gel extraction, and was 

digested with the EcoRI and PacI restriction enzymes along with the pEPY21 vector. The DNA 

fragments from these reactions were separated via gel electrophoresis, purified via gel extraction, 

and the 2.1kb PCR fragment and the 5.9kb pEPY21 fragment were ligated to create pEPY31.  

2.2.4 Sulfate Uptake Complementation  

For the initial assessment of sulfate uptake complementation, single colonies of yeast 

strains SpSultr1;2, AtSultr1;2, and YSD1pY were streaked on SD-S (0.1 mM SO4
2-) plates 

supplemented with a final concentration of 2% glucose or 2% galactose and grown for 5 days at 

30°C. Growth of the cells in the presence of glucose (no expression of plant transporters) and 

galactose (induced expression of plant transporters) was assessed after 3 and 5 days. 

Complementation of sulfate uptake with SpSultr1;2, AtSultr1;2, and YSD1pY was repeated three 

times.  
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After the results of the first sulfate complementation experiment, single colonies of 

strains SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY were streaked on SD-S (0.1 mM SO4
2-

) plates supplemented with a final concentration of 2% galactose and grown for 5 days at 30°C. 

Growth of the cells was assessed after 3 and 5 days. Complementation of sulfate uptake with 

SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY was repeated twice.  

2.2.5 Selenate Tolerance Assay 

The YSD1 yeast strain, lacking sulfate transport activity, and yeast strain 22574d, which 

contains a functional copy of the Sul1 transporter (Jauniaux & Grenson, 1990) were used to 

assess the selenate tolerance of yeast. Cultures of yeast strains YSD1 and 22574d were grown 

overnight in either SD-U or SD-S media (0.1 mM SO4
2-). 10 ul of serial dilutions of the 

overnight cultures were plated on SD-S media (0.1 mM SO4
2-) supplemented with 0 µM, 50 µM, 

100 µM, 500 µM, 1,000 µM, 2,500 µM, 5,000 µM, or 10,000 µM selenate. The cells were 

initially normalized to an OD600nm of 1.0 before 10-fold serial dilutions were prepared to a final 

concentration of 1.0 x 10-5. The cells were incubated at 30°C and growth of the cells was 

assessed after 3 and 5 days. Assessment of selenate tolerance in YSD1 and 22574d was 

conducted once.  

Serial dilutions of strains SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY were 

incubated on SD-S (0.1 mM SO4
2-) plates supplemented with either 0 µM, 10 µM, 25 µM, 50 

µM, or 100 µM selenate. The cells were initially normalized to an OD600nm of 1.0, before being 

diluted 10-fold to a final concentration of 1.0 x 10-5. The cells were incubated at 30°C and 

growth of the cells was assessed after 3 and 5 days. Assessment of selenate tolerance in 

SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY was conducted twice.  



35 

 

2.2.6 Yeast Growth Curve Assay 

To determine the effect of selenate on the growth of yeast cells in liquid culture, strains 

SpSultr1;2, AtSultr1;2, and YSD1pY were grown in the presence or absence of selenate and their 

growth curve was plotted over time. For the first experiment, 250 ml of SD-S (0.1 mM SO4
2-) 

with or without 50 µM selenate was inoculated with SpSultr1;2, AtSultr1;2, or YSD1pY cells to 

a starting average OD600nm of 0.03. The cultures were grown at 30°C in a shaking incubator set to 

180 rpm, and the OD600nm was measured at 15, 24, 39, 47, and 65 hours. For the second 

experiment cultures of SpSultr1;2, AtSultr1;2, or YSD1pY cells were inoculated and grown 

under the same conditions as the previous experiment, and the OD600nm was measured at 22, 27, 

46, 52, and 72 hours. These experiments were used to determine at what OD600nm logarithmic 

growth began for these yeast strains.  

2.2.7 Quantification of Selenate Uptake 

SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY cells were inoculated in 175ml of SD-

S (0.1 mM SO4
2-) or SD-S (1.0 mM SO4

2-) media and grown to log-phase overnight in 500 ml 

Erlenmeyer flasks at 30°C in a shaking incubator set to 180 rpm. After measuring the OD600nm, 

the larger cultures were divided into three 250 ml baffled Nalgene Erlenmeyer flasks so that each 

flask contained 50 ml. Selenate was added to these flasks to a final concentration of 0 µM, 10 

µM, 25 µM, 50 µM, or 100 µM, and the cells were incubated at 30°C in a shaking incubator set 

to 180 rpm for an additional hour. After one hour of incubation, the cultures were transferred to 

50 ml conical tubes, and centrifuged in an Allegra 21R centrifuge at room temperate at 2,500 

rpm for 5 minutes. The supernatant was removed and the cells were washed and re-suspended 

twice in 30ml of ice-cold 25 mM sodium phosphate (Thermofisher) monobasic buffer set to pH 

7.5. The cells were centrifugated at 2,500 rpm for 5 min between each wash, and the supernatant 
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was removed. The pellets were transferred to 1.5 ml Eppendorf microcentrifuge tubes by re-

suspending in 1ml ice-cold 25 mM sodium phosphate monobasic buffer, centrifugated in an 

Eppendorf 5415D centrifuge at 2,500 rpm for 5 minutes, and the supernatant was removed. The 

cell pellets were dried overnight in a Fisher Scientific Isotemp Incubator set to 55°C. The dry 

weight of the cell pellets was measured before acid digestion and ICP-MS elemental analysis. 

Three biological replicates for each yeast strain were analyzed for total Se content. To determine 

the statistical significance of selenate uptake data for the yeast strains tested, a 2-tailed student’s 

T-test was performed. Values that were significantly different (p < 0.05), were indicated by 

different letters and asterisks in figures and tables.  

2.2.8 ICP-MS Analysis 

Elemental analysis was performed following a protocol previously developed for plant 

material (Prins et al, 2011) modified for yeast cells. Dried yeast cells (5-25 mg) were transferred 

to 50 ml glass test tubes and digested in 500 µl of 70% trace metal grade nitric acid 

(Thermofisher) at 60°C for 2 hours, followed by 130°C for 6 hours. The digested samples were 

diluted to 15 mL  with distilled H2O and analyzed for total Se and S via inductively coupled 

plasma mass spectrometry (HP Agilent 4500 ICP-MS) according to the manufacturer’s 

instructions, using appropriate controls and standards.  The detection limit of this machine was 

approximately 0.1 µg L-1 (ppb) in the digest. All values shown in the figures were well above 

this detection limit.  

2.2.9 Protein Extraction, Quantification, and Immunodetection 

The yeast protein extraction protocol was slightly modified from the protocol published 

by Zhang et al, 2011. SpSultr1;2t, SeSultr1;2t, AtSultr1;2t and YSD1pY yeast strains were 
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grown to an OD600nm of 0.8 – 1.0 in 20 ml SD-U media supplemented with 2% galactose to 

induce expression of Sultr1;2. The cultures were centrifugated at 2,500 rpm for 5 minutes, and 

the supernatant was removed. The cell pellets were re-suspended in 5 ml ice-cold 2.0 M lithium 

acetate (ICN Biomedicals) for 5 minutes on ice before centrifugation and decanting of the 

supernatant. The cell pellets were re-suspended in 5 ml ice-cold 0.4 M sodium hydroxide 

(Thermofisher) for 5 minutes on ice, centrifuged, and the supernatant was removed. The cell 

pellets were then re-suspended in 100 l extraction buffer consisting of 50 mM Tris-HCl pH 8.0, 

2% sodium dodecyl sulfate (SDS) (Acros Organics), and 1 tablet of cOmplete protease inhibitor 

cocktail (Roche) (50 mg/ ml antipain, 40 mg/ ml bestatin, 20 mg/ ml chymostatin, 10 mg/ml E64, 

10 mg/ml phosphoramidon, 50 mg/ ml pefabloc SC, and 2 mg/ ml aprotinin) in a total volume of 

50 ml. The samples were then boiled in a water bath for 5 minutes, centrifugated, and the 

supernatant consisting of total yeast protein was moved to a clean 1.5 ml Eppendorf 

microcentrifuge tube. The concentration of total protein was quantified using the PierceTM BCA 

Protein Assay Kit (Thermofisher) with a 5 µl aliquot of the protein extract. The remaining 95 ul 

of protein extract was diluted 2-fold with 95 ul of 2x Laemmli solubilization buffer consisting of 

125 mM Tris-HCl pH 6.8, 50 mM dithiothreitol (DTT) (Sigma-Aldrich), 20% (w/ v) glycerol 

(Sigma-Aldrich), 4% (w/ v) SDS, and bromophenol blue (Bio-Rad). A protein extract of E. coli 

expressing Myc/6xHis tagged ATP sulfurylase 2 (APS2) from S. pinnata was used as a positive 

control for immunodetection.  

20 ug of total protein was separated via SDS-PAGE (10%) (Bio-Rad) set at a constant 

current of 20 mA during the stacking phase, followed by 40 mA during the running phase for a 

total duration of 90 minutes. The proteins on the SDS gel were transferred to a 0.2µM 

nitrocellulose membrane (Bio-Rad) for 2 hours in a TE 22 Mini Tank Transfer Unit (GE) filled 
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with blotting buffer (see Appendix) at a constant voltage of 50 V. After blotting, the 

nitrocellulose membrane was incubated with an Anti-His mouse primary antibody (Sigma-

Aldrich), then with a secondary antibody coupled to alkaline phosphatase (Sigma-Aldrich), 

followed by incubation of the membrane in detection buffer consisting of 1 NBT/BCIP tablet 

(Roche) dissolved in 10 ml distilled H2O for 10 minutes for immunodetection. 

A dot-blost assay was also performed with the protein extracts to determine the detection 

limit and quality of detection for a horseradish peroxidase monoclonal secondary antibody 

(Thermofisher). 10 ug of total protein was pipetted directly onto a nitrocellulose membrane and 

incubated in an Anti-His mouse primary antibody (Thermofisher), followed by incubation with 

the horseradish peroxidase secondary antibody. After incubation the nitrocellulose membrane 

was imaged via a chemiluminescent protocol using a Bio-Rad gel imager.  

2.3 Results 

2.3.1 Sultr1;2 Amplification, Cloning and Polypeptide Alignment 

Initially, the full-length cDNAs of Sultr1;2 from S. pinnata and A. thaliana were 

amplified using the SpinSultr1;2_5FW_EcoRI / SpinelaSultr1;2_3Rev_EcoRI and 

AtSultr1;2_5Fw_EcoRI / AtSultr1;2_3Rev_EcoRI primer sets (Table 4), respectively. The PCR 

products were restriction-digested and cloned into E.coli – yeast shuttle vector pYES2. After 

sequence analysis, the plasmids were transformed into yeast. YSD1 transformed with these 

constructs did not show complementation of sulfate uptake on SD-S (0.1 mM SO4
2-)(results not 

shown). Comparison of these sequences to published sequences of A. thaliana Sultr1;2 in pYES2 

(Yoshimoto et al, 2002)  pointed to the presence of truncated 5’ and 3’ untranslated regions 

(UTR) in the new constructs as a possible reason for the lack of complementation, if they inhibit 
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expression. After determining that these constructs were non-functional in YSD1, new constructs 

were designed, using primers that began at the start and stop codons. Primers 5’-

SpSultr1;2_EcoRI_noUTR / 3’-SpSultr1;2_EcoRI_noUTR and 5’-AtSultr1;2_EcoRI_noUTR / 

3’-AtSultr1;2_EcoRI_noUTR (Table 4) were used to amplify the Sultr1;2 genes from the 

previously cloned S. pinnata and A. thaliana, Sultr1;2 sequences, removing the flanking UTR 

sequences. These new constructs, pEPY1 and pEPY2, served as templates for further 

construction of the tagged constructs pEPY11, pEPY21, and pEPY31. An illustration of the 

pEPY11, pEPY21, and pEPY31 constructs is presented in Figure 2.1. Comparison of the 

polypeptide sequences of SpSULTR1;2, SeSULTR1;2, and AtSULTR1;2 indicates that 

SpSULTR1;2 and SeSULTR1;2 share 96.85% homology, SpSULTR1;2 and AtSULTR1;2 share 

92.78% homology, and AtSULTR1;2 and SeSULTR1;2 share 93.12% homology. SpSULTR1;2 

contains 7 unique amino acid residues when compared to SeSULTR1;2 and AtSULTR1;2, with 1 

unique residue in the third membrane spanning domain, and 3 unique residues in the C-terminal 

STAS domain (Figure 2.2).  

Table 2.1) Strains used for this study 

Strain Genotype Source/ reference  

YSD1 (MATα, his3, leu2, ura3, sul1) Smith et al, 1995, 

Donated from 

Takahashi Lab 

22574d (matα ura3‐1 gap1‐1 put4‐1 uga4‐1) Jauniaux & Grenson, 

1990, Donated from 

Bush Lab 
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SpSultr1;2 Same as YSD1, but with Sultr1;2 from S. 

pinnata 

This study 

AtSultr1;2 Same as YSD1, but with Sultr1;2 from A. 

thaliana 

This study 

SpSultr1;2t Same as SpSultr1;2, but with a 

Myc/6xHis tag added at the C-terminus.  

This study 

SeSultr1;2t Same as YSD1, but with Sultr1;2 from 

S. elata with a Myc/6xHis tag added at 

the C-terminus. 

This study 

AtSultr1;2t Same as AtSultr1;2, but with a 

Myc/6xHis tag added at the C-terminus. 

This study 

 

Table 2.2) Plasmids used for this study  

Plasmid Description Source/ reference 

pYES2 Yeast expression vector Thermofisher 

pET28-At Plasmid containing 339bp DNA 

sequence consisting of the 3’ 

end of Sultr1;2 from A. thaliana 

with the stop codon removed 

and a Myc/6x His sequence at 

the C-terminus.  

Genscript 

pEPY1 pYES2 with Sultr1;2 from S. 

pinnata inserted at the EcoRI 

restriction site.  

This study 
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pEPY2 pYES2 with Sultr1;2 from A. 

thaliana inserted at the EcoRI 

restriction site. 

This study 

pEPY11 pYES2T with Sultr1;2 from S. 

pinnata inserted at the EcoRI / 

PacI restriction sites. 

This study 

pEPY21 pYES2T with Sultr1;2 from 

A. thaliana inserted at the 

EcoRI / PacI restriction sites. 

This study 

pEPY31 pYES2T with Sultr1;2 from 

S. elata inserted at the EcoRI 

/ PacI restriction sites. 

This study 

 

Table 2.3) Yeast media used for this study 

Media Components Source/ reference 

YPD 10 g L-1 yeast extract, 20 g L-1 

peptone, 100 ml 20% w/v 

glucose 

Pilon et al, 1997 

SD-U 1.92 g L-1 Yeast Synthetic Drop-

out Medium Supplements (-ura), 

5.0 g L-1 ammonium sulfate 

(Sigma-Aldrich), 1.7 g L-1 Yeast 

Nitrogen Base without amino 

Guthrie & Fink, 1991 
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acids and ammonium sulfate 

(Difco) 

SD-S (0.1 mM SO4
2-) Appendix 2 Yoshimoto et al, 2002 

SD-S (1.0 mM SO4
2-) Appendix 2 Yoshimoto et al, 2002 

 

Table 2.4) Primers used for this study 

Primer Names Primer Sequence Source/ 

reference 

5’-SpSultr1;2_EcoRI_noUTR 

3’-SpSultr1;2_EcoRI_noUTR 

3’-SpSultr1;2_nostop_PacI 

5’-GAGCGAATTCATGCCCGCGAGAGCTCATCCTATG-3’ 

5’-GAGCGAATTCTCAGACCTCGTCGGAGAGTTTTG-3’ 

5’-GAGCTTAATTAAGACCTCGTCGGAGAGTTTTGG-3’ 

This study 

This study 

This study 

5’-SeSultr1;2_EcoRI_noUTR 

3’-SeSultr1;2_nostop_PacI 

5’-GAGCGAAATCATGCCCGAGAGAGCTCATCCTATG-3’ 

5’-GAGCTTAATTAAGACCTCGTCGGAGAGTTTTGG-3’ 

This study 

This study 

5’-AtSultr1;2_EcoRI_noUTR 

3’-AtSultr1;2_EcoRI_noUTR 

5’-GAGCGAATTCATGTCGTCAAGAGCTCACCC-3’ 

5’-GCGCGAATTCTCAGACCTCGTTGGAGAG-3’ 

Yoshimoto 

et al, 2002 

Yoshimoto 

et al, 2002 

pYES2_F2 5’-AACCCCGGATCGGACTACTA-3’ This study 

pYES2_R2 5’-CTTTTCGGTTAGAGCGGATG-3’ This study 

SpinSultr1;2_5FW_EcoRI 

SpinelaSultr1;2_3Rev_EcoRI 

5’-TGCAGAATTCACATTTAAGTCACCTACAAACCCA-3’ 

5’-TGCAGAATTCATTTCAGACCTCGTCGGAGAG-3’ 

This study 

This study 

AtSultr1;2_5Fw_EcoRI 5’-GAGCGAATTCATGTCGTCAAGAGCTCACCC-3’ This study 
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AtSultr1;2_3Rev_EcoRI 5’-GCGCGAATTCTCAGACCTCGTTGGAGAG-3’ This study 

SelaSultr1;2_5FW_EcoRI 5’-TGCAGAATTCACATTTAAGTCACCTACAAATCCA-3’ This study 

Spin_Sultr1;2_QuarterFw 5’-CGGTTTATATTCGAGTTTTGTTCC-3’ This study 

Spin_Sultr1;2_QuarterRev 5’-GGAACAAAACTCGAATATAAACC-3’ This study 

SpinelaSultr1;2_centerFw 5’-CCTTAACAGAAGCTGTAGCGAT-3’ This study 

SpinelaSultr1;2_centralRev 5’-GAAGAGCAATGTCAAGAGAACG-3’ This study 

SpinSultr1;2_ThreequarterFw 5’-CCTGAAGCCACTATGGTTCCAG-3’ This study 

SpinSultr1;2_ThreequarterRev 5’-CCCTGGAACCATAGTGGCTTC-3’ This study 

AtSultr1;2_centF 5’-GACCTTCCTTCTCACGTCTAAGA-3’ This study 

AtSultr1;2_centR 5’-CCCTTAGCAAGGTTATCACCAG-3’ This study 
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Figure 2.1) Outline of tagged Sultr1;2 constructs in yeast expression vector pYES2. The tagged open 

reading frame of Sultr1;2 was inserted into the EcoRI and SphI restriction sites behind the galactose 

inducible promoter PGAL1. The Myc/6xHis tag is separated from the rest of the Sultr1;2 gene body by a 

PacI restriction site. The URA3 gene codes for uracil production for selection after yeast transformation. 

The Ampicillin gene codes for ampicillin resistance in E. coli. The pUC ori is the origin of replication for 

E. coli, and 2µ ori is the origin of replication for yeast. Adapted from the pYES2 illustration developed by 

Thermofisher.  
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Figure 2.2) Amino acid alignment of the pEPY11, pEPY21, and pEPY31 yeast expression vectors. 

Membrane spanning domains are highlighted in red, C-terminal STAS domains are highlighted in green. 

Amino acid differences in S. pinnata are highlighted in yellow. Conserved arginine residues reported 

earlier to be important for sulfate binding are highlighted in blue.  
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2.3.2 Sulfate Uptake Complementation 

SpSultr1;2, and AtSultr1;2 yeast strains showed complementation of the no-growth 

phenotype of YSD1 and of the negative control cells harboring the pYES2 vector on SD-S (0.1 

mM SO4
2-) plates (Figure 2.3a). Growth in the Sultr1;2 yeast lines was observed after 3 and 5 

days. On SD-S (0.1 mM SO4
2-) plates supplemented with 2% glucose, no growth was observed 

for all of the yeast lines after 3 and 5 days (Figure 2.3b), indicating that the ability to grow on 

SD-S depended on the expression of the Sultr1;2 plant genes.  Similar to the untagged versions 

of the genes, SpSultr1;2t, SeSultr1;2t, and AtSultr1;2t yeast strains also showed 

complementation of the no-growth phenotype after 3 and 5 days on SD-S (0.1 mM SO4
2-) plates 

supplemented with 2% galactose (Figure 2.4). Together these results indicate that the proteins 

are all expressed and have sulfate transport capacity; also, the presence of a 3’ protein 

purification tag does not appear to inhibit sulfate transport capacity. 

2.3.3 Selenate Tolerance Assay 

The 22574d yeast cells (containing a functional Sul1 gene) showed a reduction in growth 

when exposed to selenate concentrations upwards of 50 - 100 µM (Figure 2.5a). The reduction in 

growth was apparent starting at the 1 x 10-2 serial dilution. The YSD1 yeast cells did not grow on 

this medium, due to the lack of a functional SUL1 sulfate transporter (Figure 2.5a). Growth of 

YSD1 strains SpSultr1;2t, SeSultr1;2t, or AtSultr1;2t was reduced at selenate concentrations 

upwards of 50 -100 µM, as evidenced between the 1 x 10-1 and 1 x 10-2 serial dilution (Figure 

2.5b). Based on these results, 50 µM selenate was chosen for future selenate uptake experiments 

as it is the concentration at which growth starts to be impeded in the wildtype yeast.  
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Figure 2.3) Functional complementation of sulfate uptake in SpSultr1;2, AtSultr1;2, and YSD1pY yeast 

cells. a) Complementation of sulfate uptake of SpSultr1;2 (top left sector) and AtSultr1;2 (top right 

sector) yeast cells on SD-S (0.1 mM SO4
2-) media supplemented with 2% galactose to induce Sultr1;2 

gene expression. Growth was documented after 3 days of incubation at 30°C. No growth was observed 

for the YSD1pY cells after 3 days (bottom sector). b) Lack of sulfate uptake complementation of 

SpSultr1;2 (top right sector), AtSultr1;2 (top left sector), and YSD1pY (bottom sector) yeast cells on SD-

S (0.1 mM SO4
2-) media supplemented with 2% glucose. The plate was imaged after 3 days of incubation 

at 30°C.  
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Figure 2.4) Functional complementation of sulfate uptake in SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and 

YSD1pY yeast cells. Complementation of sulfate uptake of SpSultr1;2t (top left sector), SeSultr1;2t (top 

right sector), and AtSultr1;2t (bottom right sector) yeast cells on SD-S (0.1 mM SO4
2-) media 

supplemented with 2% galactose to induce Sultr1;2 gene expression. Growth was documented after 3 and 

5 days of incubation at 30°C. No growth was observed for the YSD1pY cells after 3 and 5 days (bottom 

left sector). 

 

 

Figure 2.5) Selenate tolerance of yeast strains on SD-S (0.1 mM SO4
2-) plates supplemented with varying 

concentrations of selenate. a) Sulfate transport deficient strain YSD1 (top 2 rows) and sulfate transport 

sufficient strain 22574d (bottom two rows) were gown either in sulfate sufficient (SD-U) or sulfate 

deficient (SD-S) media before being plated on SD-S (0.1 mM SO4
2-) media with selenate concentrations 

ranging from 0 µM to 1000 µM. Serial dilutions of yeast cells range from a concentration of OD600nm 1.0 

(farthest left) to 1.0 x 10-5 (farthest right). b) Yeast strains SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and 

YSD1pY were grown on SD-S (0.1 mM SO4
2-) media with selenate concentrations ranging from 0 µM to 

100 µM. Serial dilutions of yeast cells range from a concentration of OD600nm 1.0 to 1.0 x 10-5.  
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2.3.4 Yeast Growth Curve Assay 

Both SpSultr1;2 and AtSultr1;2 strains grew better in the SD-S (0.1 mM SO4
2-) media 

when compared to YSD1pY (Fig. 2.6). In the absence of selenate, AtSultr1;2 yeast cells grew the 

best, compared to SpSultr1;2 and YSD1pY (Fig. 2.6, 2.7). Both SpSultr1;2 and AtSultr1;2 cells 

showed a significant reduction in growth in the presence of selenate, whereas YSD1pY showed 

no reduction in growth (Fig. 2.6, 2.7). The increased growth on SD-S, combined with the 

reduction in growth in the presence of selenate confirm that both SULTR1;2 homologs from S. 

pinnata and A. thaliana have the capability to transport both sulfate and selenate. These 

experiments also were used to estimate at which cell density logarithmic growth was occurring 

for future selenate uptake experiments. From the growth curves illustrated in Figures 2.6 and 2.7, 

it was determined that the logarithmic phase of growth began at an OD600nm between 0.1 and 0.2 
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Figure 2.6) Growth curve of SpSultr1;2, AtSultr1;2, and YSD1pY yeast grown in the presence or absence 

of 50 µM selenate. The cultures were grown in a shaking incubator set to 30°C and 180 rpm for a total 

duration of 65 hours. Growth curves of cells grown in the presence of selenate are denoted with squares. 

Growth curves of cells grown in the absence of selenate are denoted with circles. 
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Figure 2.7) Growth curve of SpSultr1;2, AtSultr1;2, and YSD1pY yeast grown in the presence or absence 

of 50 µM selenate. The cultures were grown in a shaking incubator set to 30°C and 180 rpm for a total 

duration of 72 hours. Growth curves of cells grown in the presence of selenate are denoted with squares. 

Growth curves of cells grown in the absence of selenate are denoted with circles. 

 

2.3.5 Sultr1;2 Immunodetection 

The MycHis tag was added to the constructs so as to be able to compare their expression 

levels using immunoblotting. However, the SULTR1;2 protein from the YSD1 strains 

SpSultr1;2t, SeSultr1;2t, and AtSultr1;2t was not detectable by the alkaline phosphatase 

immunodetection protocol (Fig. 2.8). The positive control consisting of Myc/6x His tagged ATP 

sulfurylase (APS) 2 did produce a visible band on the nitrocellulose membrane after incubation 

of the membrane in AP buffer for 10 minutes. Thus, the relative expression of the plant proteins 

could not be determined using this method, perhaps because expression was low. For the dot-
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blot, incubation with the horseradish peroxidase secondary antibody did result in positive 

detection of the SULTR1;2 proteins (Fig. 2.9). However, due to the varying concentrations of the 

protein extracts, different volumes of the protein extracts were loaded onto the membrane for 

each of the yeast lines. This resulted in diffusion of some of the protein extracts across the 

membrane surface, leading to fainter detection of SULTR1;2 in some of the yeast lines (Fig. 

2.9). In subsequent selenate uptake experiments the strains were normalized on a yeast dry 

weight basis instead. 

 

Figure 2.8) Coomassie Brilliant Blue stain of the protein gel (total protein), Ponceau S stain of the blotted 

proteins (total protein), and Immunodetection using anti-His antibody of protein extracts from yeast lines 

SpSultr1;2t (1), SeSultr1;2t (2), AtSultr1;2t (3), YSD1pY (4), and E. coli cells expressing Myc/6xHis 

tagged APS2 from S. pinnata (5).  The expected Sultr1;2-MycHis protein size is predicted to be 78 kDa.  
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Figure 2.9) Immunodetection of tagged SULTR1;2 proteins from SpSultr1;2t, SeSultr1;2t, 

AtSultr1;2t. and YSD1pY yeast strains. 10 µg of total protein was loaded directly onto the 

nitrocellulose membrane, followed by incubation with an anti-His primary antibody and 

horseradish peroxidase secondary antibody. The membrane was detected via chemiluminescence 

for 5 minutes using a Bio-Rad gel imaging system.  

 

2.3.6 Quantification of Selenate Uptake 

After 1 hour of incubation in low (0.1 mM SO4
2-) or high (1.0 mM SO4

2-) sulfate 

conditions and 50 uM selenate, yeast strains SpSultr1;2t, SeSultr1;2t, and AtSultr1;2t all showed 

a significant (p < 0.05) increase in selenate content when compared to the negative control 

YSD1pY cells at 1.0 mM sulfate (Figure 2.10). SpSultr1;2t cells had significantly lower rates of 

uptake at both the 0.1 mM and 1.0 mM sulfate concentrations when compared to SeSultr1;2t or 

AtSultr1;2t cells (Figure 2.10). AtSultr1;2t, and the YSD1pY cells showed a significant (p < 

0.05) reduction in selenate uptake between the 0.1 mM and 1.0 mM  sulfate treatments, while 
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reduction in selenate uptake in the SeSultr1;2t strain was not significant (p = 0.06). However, 

this reduction in selenate uptake between high and low sulfate treatments was not observed in the 

SpSultr1;2t cells (Fig. 2.10). 

Figure 2.10) Selenate accumulation by yeast strains SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY 

(negative control). Yeast cells were grown to log-phase in either SD-S (0.1 mM SO4
2-) or SD-S (1.0 mM 

SO4
2-) media before incubation for 1 hour with 50 µM selenate at 30°C while shaking at 180 rpm. Total 

Se content of dried yeast pellets was analyzed via ICP-MS. Three biological replicates for each yeast 

strain were analyzed for total Se content. Significant differences (p < 0.05) between the 0.1 mM SO4
2- and 

1.0 mM SO4
2- treatments within each strain are denoted with an asterisk. Significant differences (p < 0.05) 

for Se levels between SpSultr1;2t, SeSultr1;2t, AtSultr1;2t, and YSD1pY at the 0.1 mM SO4
2-  treatment 

are denoted with lowercase letters. Significant differences (p < 0.05) for Se levels between SpSultr1;2t, 

SeSultr1;2t, AtSultr1;2t, and YSD1pY at the 1.0 mM SO4
2-  treatment are denoted with uppercase letters.  
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Table 2.5) Statistical analysis of selenate uptake between yeast lines under 0.1 mM or 1.0 mM 

SO4
2- conditions.  

[SO4
2-] SpSultr1;2t SeSultr1;2t AtSultr1;2t YSD1pY 

0.1 mM SO4
2- 39.32a 116.99b 84.88c 35.97a 

1.0 mM SO4
2- 43.15A 84.12B 60.44AB 21.63C 

 

Table 2.6. Statistical anlysis of selenate uptake under 0.1 mM or 1.0 mM SO4
2- conditions within 

yeast lines.  

Yeast Strain 0.1 mM SO4
- 1.0 mM SO4

2- p < 0.05 

SpSultr1;2t 39.32 43.15   

SeSultr1;2t 116.99 84.12 

 
AtSultr1;2t 84.88 60.44 * 

YSD1pY 35.97 21.63 * 

 

2.4 Discussion 

The results presented in this study indicate that SULTR1;2 from S. pinnata may have 

enhanced selenate to sulfate substrate specificity when compared to SULTR1;2 from S. elata and 

A. thaliana. Based on the data from the selenate uptake experiment, the SpSultr1;2t yeast cells 

had no significant difference in selenate uptake in the presence of both high (1.0 mM SO4
2-) or 

low (0.1 mM SO4
2-) sulfate concentrations, and showed higher Se accumulation than the 
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negative control strain expressing the empty vector (YSD1pY). In contrast, selenate uptake in 

SeSultr1;2t and AtSultr1;2t strains as well as the YSD1pY control yeast strains all showed a 

significant reduction in selenate uptake between low and high sulfate conditions. This tentative 

conclusion is based on one uptake experiment with three biological replicates, and therefore still 

preliminary, yet encouraging.  While SpSULTR1;2 may have enhanced selenate specificity, it is 

not an exclusive selenate transporter: it also transports sulfate, evidenced by its capacity to 

complement growth of YSD1 cells on SD-S media.  

These results help support and explain previous findings of enhanced Se-specific uptake 

in Se hyperaccumulators, as evidenced by higher Se: S tissue ratios when compared to non-

hyperaccumulators (Schiavon et al, 2017).  The observation of a similar selenate-specificity in 

yeast transgenics transformed with SpSultr1;2 suggests that Se specificity in S. pinnata is 

determined during uptake of selenate from the soil via this root membrane transporter, one of the 

first, key steps of the Se assimilation pathway in plants.  

While SpSultr1;2t showed evidence of higher selenate specificity, it also appeared to 

have reduced overall transport activity, as indicated by the observed lower yeast Se accumulation 

of SpSultr1;2t compared to SeSultr1;2t and AtSultr1;2t. These results were also seen in the 

untagged SpSultr1;2 and AtSultr1;2 strains, where SpSultr1;2 grew less well on SD-S (0.1 mM 

SO4
2-) media when compared to AtSultr1;2 (Fig. 2.5, 2.6). It should be noted that it is not certain 

whether all proteins were expressed at the same level; the data are currently normalized based on 

yeast biomass.  However, assuming equal expression of these proteins in yeast, the 

hyperaccumulator SULTR1;2 appears less active as a transporter. The intuitively contradicting 

findings that the hyperaccumulator takes up more selenate, yet has a less active transporter may 

be explained by observations of gene expression in planta. Based on RNA-seq and RT-PCR data 
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generated in the Pilon-Smits lab (unpublished), S. pinnata has at least 10-fold higher expression 

of Sultr1;2 compared to S. elata. The overexpression of Sultr1;2 in the hyperaccumulator may 

have evolved as an adaptation to compensate for a decrease in overall transport activity that co-

occurred with enhanced selenate uptake specificity. The possible presence of multiple copies of 

Sultr1;2 in the S. pinnata genome, with one or more of these copies having higher selenate 

specificity, could also explain the results generated in this study. It is possible that there are 

multiple copies of Sultr1;2 in S. pinnata, with only some conferring selenate specificity due to 

mutations in the amino acid sequence, allowing this species to accumulate high levels of Se 

without sacrificing  sulfate uptake. Gene duplication events of transporters have been previously 

reported for some metal hyperaccumulators (Cappa et al, 2014). 

If indeed SpSULTR1;2 has enhanced selenate specificity but lower overall transport 

capacity,  as compared to SeSULTR1;2 and AtSULTR1;2, the differences in the amino acid 

sequence of SULTR1;2 from S. pinnata as compared to the other two species may explain these 

kinetic differences.  Studies on the structure of the C-terminal STAS domain of A. thaliana 

Sultr1;2 have identified the Thr-587, Cys-645, and Cys-646 amino acid residues as essential for 

sulfate transport and protein-protein interactions (Rouached et al, 2005). However, no studies 

have explored the effects of modifications to the STAS domain on selenate transport activity. 

Amino acid differences in the STAS domain of Sultr1;2 from S. pinnata, specifically His-570 

(proline in S. elata and A. thaliana) and Leu-577 (histidine in S. elata and A. thaliana) (Figure 

2.2) may be responsible for altered selenate transport activity. Comparison of the selenate 

transport capacity of YSD1 expressing with SULTR1;2 from S. pinnata with amino acid 

substitutions at these positions may help to identify the key amino acid residues responsible for 

discriminating between sulfate and selenate in the presence of high sulfate concentrations.  
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Follow up studies may also include expression of the SpSULTR1;2t in transgenic plants,  

and analysis of the effects on  selenate to sulfate  uptake specificity. If the capacity of S. pinnata 

for Se enrichment could be transferred to other plant species, this may hold great promise for 

future phytoremediation and biofortification applications. Previous studies have shown that 

expression of enzymes involved in Se assimilation in crop species can enhance the overall Se 

concentration found in the plants (LeDuc et al, 2004). Since SULTR1;2 is the main portal of 

entry for selenate into the plant (El Kassis et al, 2007), expression of SpSULTR1;2 in other 

species may also increase overall selenate concentrations.  

While functional complementation of sulfate uptake was observed in the tagged and 

untagged Sultr1;2 constructs (Fig. 2.3a,b; Fig. 2.4), it is not known if the C-terminal Myc/6xHis 

tag interferes with protein localization or sulfate transport. The tagged Sultr1;2 constructs should 

be used to confirm equal expression of these proteins in YSD1, but future selenate uptake 

experiments to confirm these results should (also) be done with YSD1 transformed with the 

untagged Sultr1;2 constructs. This would ensure that selenate uptake is not affected by any 

interactions between the Myc/6x His protein tag and the STAS domain. However, it may be 

important to consider that while it has been shown that mutations and deletions in the STAS 

domain affect sulfate transport activity (Rouached et al, 2005) it has not been reported that 

additions to the STAS domain affect sulfate transport. Furthermore, SULTR1;2-GFP fusion 

proteins have been found to function and localize properly in Arabidopsis mutants (Yoshimoto et 

al, 2002).  

In conclusion, this study of sulfate-dependent selenate transport activity of plant 

transporters in a yeast model system provides preliminary evidence for selenate specificity in S. 

pinnata SULTR1;2. This finding is of significance, since selenate specificity in a sulfate 
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transporter has not been reported until now. Furthermore, these findings help to further elucidate 

the mechanisms and evolution of Se hyperaccumulation, and may have applications in future Se 

phytoremediation or biofortification. 
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CHAPTER 3: A TISSUE CULTURE MICROPROPAGATION AND REGENERATION 

PROTOCOL FOR SELENIUM HYPERACCUMULATOR STANLEYA PINNATA AND 

NON-ACCUMULATOR STANLEYA ELATA 

3.1 Introduction 

Stanleya pinnata is in the mustard family Brassicaceae, and is native to the United States 

from the western Plains states to California. Commonly known as Prince’s Plume, it is typically 

found on selenium-rich soils, and has long been characterized as a selenium (Se) 

hyperaccumulator, with the ability to accumulate over 1,000 mg / kg dry weight of this normally 

toxic element (Mehdawi et al, 2011; Galeas et al, 2007). However, not all varieties of S. pinnata 

accumulate high levels of Se, and the hyperaccumulation phenotype is variable among S. pinnata 

accessions (Feist & Parker, 2001; Cappa et al., 2014). By potentially identifying ecotypes of this 

species with high Se accumulation capacity, tissue culture can allow for the large-scale 

production of Se hyperaccumulating plants to be used in experimental studies, as well as 

phytoremediation or biofortification projects. Stanleya elata, commonly known as Panamint 

Prince’s Plume, is a closely related species to S. pinnata native to Nevada, Arizona and 

California in the United States (Cappa et al., 2015). Because S. elata does not accumulate high 

levels of Se, it has been frequently used as a contrasting species for S. pinnata to investigate 

mechanisms of Se hyperaccumulation (El Mehdawi et al, 2012; Cappa et al, 2014; Cappa et al, 

2015). While commercial seed sources are available for S. pinnata, no seed source is available 

for S. elata, making seed collection laborious and difficult, as it is necessary to travel to remote 

desert locations to collect seeds from wild populations. Rates of germination for these two 

species have been found to be relatively low, requiring large quantities of seeds to be sown to 

grow enough plants for research applications. Obtaining more seeds from established plants is 
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also a challenge, due to a long vernalization period needed before flowering, self-incompatibility 

and low seed yields. Vegetative propagation is also difficult, especially in S. pinnata, due to this 

plant’s propensity to form basal rosettes and short internode lengths. Because of difficulties 

surrounding the current cultivation of these two species, tissue culture micropropagation offers a 

potential avenue for the large scale production these plants to be used for research and 

horticultural applications.  

While no protocol for the micropropagation and transformation of Stanleya species has 

yet been reported, there have been many publications on tissue culture in other Brassicaceae 

species, which served as a starting point for the development of this protocol. Many experiments 

have been previously conducted in the crop species Indian mustard (Brassica juncea) showing 

high frequency of callus induction (Glimelius, 1984) and shoot regeneration (Hachey et al, 1991; 

Pua et al, 1993; Guo et al, 2005). Outlined in this manuscript is a rapid and efficient protocol for 

callus induction, shoot regeneration, rooting, and acclimatization of two species in the genus 

Stanleya, the Se hyperaccumulator S. pinnata, and the closely related non-accumulator S. elata.  

3.2 Materials and Methods 

All media were formulated with 4.43 g L-1 Murashige and Skoog (MS) basal salts 

(Sigma-Aldrich, St. Louis, MO) (Murashige & Skoog, 1962) supplemented with 1 mL L-1 

Gamborg’s B5 vitamins (Sigma-Aldrich G1019), 30 g L-1 sucrose (Sigma-Aldrich S0389), and 

6.8 g L-1 Phyto Agar (RPI A20300). This basal medium was diluted to ½ strength for seed 

germination and root induction. The MS medium was supplemented with varying concentrations 

of benzylaminopurine (BAP) (Sigma-Aldrich B3408), 1-Napthaleneaceticacid (NAA) (Sigma-

Aldrich N0640), and Indole-3-butyric acid (IBA) (Sigma-Aldrich I5386) for callus, shoot, and 

root induction experiments. 50 mg / ml stocks of NAA, BAP, and IBA were prepared by first 
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dissolving 50 mg of the salt stocks in 1 -2 ml of 1 N NaOH before being brought up to a final 

volume of 50 ml with distilled H2O in 100 ml Erlenmeyer flasks. The hormone stocks were then 

filter-sterilized using a 50 ml syringe (Thermofisher) and 0.22 µm nylon 25 mm diameter syringe 

filter (Thermofisher) into a 50 ml sterile conical tube (Falcon) Seeds and explants were cultured 

either on 100 x 15 mm petri plates (VWR 25384-088) or Magenta GA-7 vessels (Sigma-Aldrich 

V8505). All explants were grown in a Percival CU36L growth chamber with 4100K 17W T8 

fluorescent bulbs (Sylvania 21770 – FO17/741/ECO) set at 25.1°C on a 16 hour light, 8 hour 

dark light cycle. All explants were cut using #10 Carbon steel blades (Glassvan 2001T-10) 

mounted to a #3 scalpel handle (Glassvan ISO 7740).  

3.2.1 Seed Germination and Callus Induction 

Seeds of S. pinnata were ordered from Western Native Seed while seeds of S. elata were 

collected from wild populations in remote locations between Las Vegas and Reno, Nevada along 

US Route 95. Approximately 100 seeds of S. pinnata and 200 seeds of S. elata were surface 

sterilized in 50 ml conical tubes by washing once with 25 ml 70% v/v ethanol for one minute, 

followed by one wash with 25 ml 10% v/v household bleach (Clorox) for 15 minutes, and 4 

washes with 25 ml sterile distilled H2O for 5 minutes each. Seeds were stratified in the fridge at 

4°C in the dark for 7 days before being sown on ½ strength MS media with 15 g/L sucrose in 

Magenta boxes for 2 weeks. Germination occurred after 5 days for both species. The seedlings 

grew 3 sets of true leaves in the first 2 weeks, which were used to cut 1 cm3 leaf squares. The leaf 

explants were cultivated on full-strength MS medium with 0.5 mg/L NAA and 0.5 mg/L BAP, 

1.0 mg/L NAA and BAP, 1.5 mg/L NAA and BAP, or 2.0 mg/L NAA and BAP. Previous 

protocols published for Brassicaceae species report similar ranges of these plant growth 

regulators (Pua et al, 1993; Guo et al, 2005). The leaf explants were inserted perpendicular to the 
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media, with half of the cut edge exposed to the media and the other half exposed to the air. 15 

explants were cultured on a single 100 x 15 mm petri plate with 4 plates used for each different 

hormone formulation, for a total of 40 explants per treatment or 160 explants total for each 

species. The number of leaf explants that produced visible callus was assessed every 2 days for a 

total duration of 15 days. 

3.2.2 Shoot Initiation and Elongation 

Callus explants produced from the callus induction experiment were excised from the 

initial leaf explant and cultured on full-strength MS media in 100 x 15 mm petri plates 

supplemented with 0.5 mg/L BAP and 0.1 mg/L NAA, 1.0 mg/L BAP and 0.1 mg/L NAA, 1.5 

mg/L BAP and 0.1 mg/L NAA, or 2.0 mg/L BAP and 0.1 mg/L NAA for a total of 50 explants 

per treatment, or 250 explants total for each species. The callus explants were assessed for 

average number of explants that formed shoots, as well as average number of shoots formed 

from each explant every 2 days for a total duration of 15 days. After 15 days, the explants were 

sub-cultured and moved to magenta boxes with the same media formulations to undergo 

elongation for a period of 15 days.  

3.2.3 Root Induction 

After 15 days on the different shoot induction media, the shoots that formed from the 

callus material were excised from the callus and cultured on full-strength MS media in magenta 

vessels with no hormones, or supplemented with 0.5 mg/ L, 1.0 mg/ L, or 2.0 mg/ L IBA, with 3 

shoots per magenta box for a total of 27 shoots per treatment, and 108 shoots for each species. 

The shoot explants were assessed for average number of shoots that formed roots over a total 

period of 30 days.  
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3.2.4 Acclimatization 

Explants that formed roots in vitro were moved to an ex vitro 5 L hydroponic system 

filled with distilled H2O to begin the acclimatization (hardening) process. A total of 12 plants 

were in each hydroponic system, and the plants were covered with a plastic dome to maintain 

high humidity for a week before being opened gradually over a period of 3 weeks to reduce the 

humidity. The plastic dome remained over the plants for a total duration of 3 weeks before being 

removed. After 2 weeks, the distilled H2O in the hydroponics bucket was switched to 1/10 

strength Hoagland’s solution (Hoagland & Arnon, 1938) for 1 week before being switched to 1/5 

strength Hoagland’s solution for the remainder of the experiment. Plants moved to the ex vitro 

hydroponic system were assessed for percent mortality over a total period of 30 days.  

3.3 Results 

3.3.1 Seed germination and callus Induction 

Approximately 11% of S. pinnata seeds and 64% of S. elata seeds had germinated after 

10 days. All of the hormone treatments tested resulted in callus induction after 15 days, for both 

S. pinnata and S. elata (Fig. 3.1a,b). S. elata leaf explants exhibited faster initiation of callus 

induction, with callus being observed after 5 days on the various callus induction media 

formulations. No callus was observed on the S. pinnata leaf explants until 9 days after being 

cultured on the various callus induction media formulations. MS media supplemented with 1.0 

mg/L BAP and NAA or 2.0 mg/L BAP and NAA resulted in 100% of the S. pinnata leaf cuttings 

producing callus after 15 days (Fig. 3.1a). However, the 2.0 mg/L BAP and NAA media 

formulation resulted in a slightly higher percentage of leaf explants forming callus in 7 days 

compared to the 1.0 mg/L BAP and NAA media formulation (Fig. 3.1a). For S. elata, the 0.5 
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mg/L BAP and NAA, 1.5 mg/L BAP and NAA, and 2.0 mg/L BAP and NAA media 

formulations resulted in 100% callus induction after 15 days (Fig. 3.1b). However, the 1.5 mg/L 

BAP and NAA media formulation resulted in the fastest induction of callus from leaf explants, 

with 92% of the leaf explants showing callus formation after 5 days (Fig. 3.1b). 

3.3.2 Shoot Initiation / Elongation 

Stanleya pinnata callus explants responded the best to the 1.5 mg/L BAP 0.1 mg/L NAA 

hormone treatment, with an average of 88% of calli forming shoots after 15 days (Fig. 3.2a). 

This hormone treatment also resulted in the highest number of shoots per callus explant, with an 

average of 3.3 shoots formed from each callus (Fig. 3.2b). Stanleya elata callus explants also 

responded best to the 1.5 mg/L BAP 0.1 mg/L NAA hormone treatment, with 92% of calli 

forming shoots after 15 days (Fig. 3.3a). However, the 0.5 mg/L BAP 0.1 mg/L NAA hormone 

treatment resulted in the most shoots per callus for S. elata, with an average of 3.7 shoots per 

callus formed compared to an average of 2.8 shoots per callus formed on the 1.5 mg/L BAP 0.1 

mg/L NAA hormone treatment (Fig. 3.3b). Overall, S. elata callus explants responded better to 

the shoot induction media formulations, with more of the S. elata calli forming shoots, as well as 

more shoots per callus when compared to S. pinnata callus explants. After being moved to 

Magenta boxes containing the same hormone concentrations for shoot induction, shoots of both 

species elongated at similar rates over 15 days (Fig. 3.4a,b). 
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a)  

b)  

Figure 3.1) Callus induction from leaf explants of S. pinnata (a) and S. elata (b). 40 explants for 

each hormone treatment were grown on petri plates for 15 days. Assessment of callus formation 

was performed every 2 days (N = 160).  
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a)  

b)  

Figure 3.2) Rates of shoot induction (a) and average number of shoots per callus (b) from 

callus explants of S. pinnata. 50 explants for each hormone treatment were initially grown on 

petri plates for 15 days, then moved to Magenta boxes for another 15 days for elongation (N 

= 200). 
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a)  

b)  

Figure 3.3) Rates of shoot induction (a) and average number of shoots per callus (b) from callus 

explants of S. elata. 50 explants for each hormone treatment were initially grown on petri plates 

for 15 days, then moved to Magenta boxes for another 15 days for elongation (N = 200). 
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a)         

b)        

Figure 3.4) Shoot Induction of S. pinnata (a, left) and S. elata (b, left) callus explants after 15 

days on MS media supplemented with 1.0 mg/ L BAP and 0.1 mg/ L NAA (S. pinnata) or 2.0 

mg/ L BAP and 0.1 mg/ L NAA (S. elata). Elongation of shoots of S. pinnata (a, right) and S. 

elata (b, right) was done in Magenta boxes on MS media supplemented with 0.5 – 2.0 mg/L BAP 

and 0.1 mg/L NAA for 15 days.  
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3.3.3 Root Induction 

Shoots of S. pinnata exhibited the highest percentage of root induction on full-strength 

MS supplemented with 0.5 mg/L IBA, with 53% of explants forming roots after a period of 30 

days (Fig. 3.5). Shoots of S. elata showed the highest percentage of root induction on full-

strength MS supplemented with 1.0 mg/L IBA, with 75% of the explants forming roots after 30 

days (Fig. 3.5). Both S. pinnata and S. elata exhibited the lowest percentage of root induction on 

full-strength MS without hormones, at 17% and 13.3% root induction, respectively (Fig. 3.5). 

The number of S. pinnata shoots that formed roots across the various hormone treatments was 

lower compared to S. elata (Fig. 3.5). Based on visual observation, S. pinnata plants generally 

formed longer roots in vitro whereas S. elata roots were shorter with more root hairs (Fig. 3.6).  

 

Figure 3.5) Root Induction of S. pinnata and S. elata shoots. 27 shoots per hormone treatment 

were grown in Magenta boxes for a period of 30 days (N = 216). 
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a)  

b)  

Figure 3.6) Root Induction of S. pinnata (a) and S, elata (b) shoots grown on MS media 

supplemented with 1.0 mg/ L IBA for 30 days.  

 

3.3.4 Acclimatization / Hardening 

Both S. pinnata and S. elata exhibited a high percentage of survivability during the 

acclimatization process, with 83% of S. pinnata and 92% of S. elata plants acclimating to the ex 

vitro environment over a period of 30 days. In general, fully acclimatized S. pinnata and S. elata 

plants produced through the micropropagation protocol exhibited no visible differences when 

compared to plants grown from seed. However, S. pinnata plants produced from tissue culture 
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did seem to have longer internodes when compared to plants grown from seed in the same 

hydroponic system (Fig. 3.7). 

a)  

b)  

Figure 3.7) Full acclimatization of S. pinnata (a) and S. elata (b) plants in the hydroponic system 

after 30 days. 
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Figure 3.8) Flowchart outlining micropropagation protocol for S. pinnata and S. elata. 

Instructions for micropropagation of S. pinnata are on the left side, and instructions for 

micropropagation of S. elata are on the right. Steps in which the process is the same for both 

species are in the middle of the diagram.  

 

 



78 

 

3.4 Discussion 

This study outlines an efficient and effective callus induction and plant regeneration 

protocol for the micropropagation of two Brassicaceae species, the Se hyperaccumulator S. 

pinnata, and related non-hyperaccumulator S. elata. In the case of S. pinnata, this protocol 

allows for the identification and clonal propagation of high Se-accumulating lines, which could 

pave the way for production of clones at a large scale to be used for industrial applications. 

Populations of S. pinnata grown via tissue culture could be planted in areas with high levels of 

Se as a method of phytoremediation to reduce Se levels. Alternatively, large quantities of Se-

laden S. pinnata could be harvested and applied as green manure to agricultural fields to increase 

the Se content in crop species. S. pinnata synthesizes higher levels of Se-methylselenocysteine 

(SeMC) compared to nonaccumulator plant species (Freeman et al, 2010), which is a known anti-

carcinogen and positively affect human health (Yang & Jia, 2014). Because of this, a fertilizer 

consisting of ground up S. pinnata could be applied to crop fields to enhance their nutritive 

qualities. Having a protocol for callus induction and regeneration also provides a first step 

toward developing a genetic transformation protocol for both species. Through such systems, 

novel genes from S. pinnata can be introduced and expressed in S. elata or could be knocked out 

in S. pinnata via CRISPR / Cas9 to further elucidate the mechanisms of Se hyperaccumulation. 

Both species of Stanleya also show extreme drought tolerance and the ability to thrive in poor 

soils, produce large number of flowers, and attract various pollinators, making them excellent 

candidates for use in native landscaping (Kratsch and Hunter, 2009). The use of 

micropropagation for these species may lead to the introduction of Stanleya to the horticultural 

industry.  
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Both S. pinnata and S. elata exhibited equal, high responses in terms of callus induction. 

High rates of callus induction in the presence of a range of BAP and NAA concentrations have 

been previously reported for other Brassicaceae species (Murata & Orton, 1987; Burbulis et al, 

2009), and these rates are similar to the results from callus induction trials of Stanleya presented 

in this study. Previous studies have also shown that callus induction is affected more by different 

plant growth regulators, as opposed to a variation in the concentration of these plant growth 

regulators (Burbulis et al, 2009). The results seen for these species of Stanleya, which showed 

similar rates of callus induction across the ranges of BAP and NAA concentrations tested, is 

similar to results published for micropropagation of other Brassicaceae species (Ravanfar et al, 

2017). S. pinnata had a lower percentage of shoot induction, as well as a lower number of shoots 

per callus when compared to S. elata. A strong genotype influence on shoot induction and 

general amenability to tissue culture has been reported for various Brassicaceae species, which 

may explain this variability in species of Stanleya (Glimelius, 1984; Murata & Orton, 1987; 

Akasaka-Kennedy et al, 2005).  

Stanleya pinnata also displayed a significantly lower rate of root induction compared to 

S. elata. The morphology of the roots formed in culture was also different between the two 

species, with S. pinnata generally forming longer roots with little to no root hairs and S. elata 

generally forming shorter roots with a relatively high density of root hairs. Both species showed 

similar amenability to acclimating to the ex vitro environment, indicating that the physiology of 

the roots did not influence the overall health of the plant. Possible modifications to the rooting 

protocol that may increase the percentage of root induction include reducing the concentration of 

MS salts and sucrose by ½, and supplementing IBA with another auxin, such as NAA. Studies in 

other Brassicaceae species have shown efficient root induction with NAA, but usually in 
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conjunction with other auxins (Prevalek-Kozlina et al, 1997; Kaviani et al, 2011; Massoumi & 

Klerk, 2013). As a whole, the rate of root induction in these species of Stanleya using this 

protocol are comparable to the results from other studies in Brassicaceae species. In general, both 

S. pinnata and S. elata show high amenability to the tissue culture process, as has been reported 

for many species in the mustard family (Poulsen, 1996).  

Both S. pinnata and S. elata are currently considered relatively obscure plants, and have only 

been used for research in an academic setting. However, through the utilization of tissue culture 

micropropagation, the regeneration protocol outlined above paves the way for the large-scale 

production of these species to be used in a variety of applications to benefit human health, and 

the environment.  
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APPENDIX A 

Location of Relevant Plasmids and Glycerol Stocks. List and diagram of location of glycerol 

stocks within the box labelled “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017” stored in the -

80°C freezer, and list and diagram of location of relevant plasmids stored in the -20°C freezer in 

the box labelled “ZG pYES2 plasmids 05/30/2017”. 

SpSultr1;2 in E. coli: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 2-1 

AtSultr1;2 in E. coli: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 3-1 

SpSultr1;2t in yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 4-6 

SeSultr1;2t in yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 5-6 

AtSultr1;2t in yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 6-6 

YSD1pY in yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 7-6 

22574d yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 2-4 

YSD1 yeast: -80°C freezer, “ZG Sultr1;2 strain Glycerol Stocks 05/30/2017”, 3-4 

 1 2 3 4 5 6 7 

1  SpSultr1;2  

#8 no UTR 

E. coli 

AtSultr1;2 

#8 no UTR 

E. coli 

    

2        

3        

4  22574d 

S. cerevisiae 

YSD1 

S. cerevisiae 

    

5        
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6    SpSultr1;2t 

#1 

S. cerevisiae 

SeSultr1;2t 

#1 

S. cerevisiae 

AtSultr1;2t #1 

S. cerevisiae 

YSD1pY  

(pYES2) 

S. cerevisiae 

 

pEPY1 (SpSultr1;2 no tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 2-2 

pEPY2 (AtSultr1;2 no tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 3-2 

pEPY11 (SpSultr1;2 tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 2-4 

pEPY21 (AtSultr1;2 tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 3-4 

pEPY31 (SeSultr1;2 tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 4-4 

pYES2: -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 4-2 

pET28-At (AtSultr1;2 3’ end with tag): -20°C freezer, “ZG pYES2 plasmids 05/30/2017”, 5-4 

 1 2 3 4 5 6 7 8 9 

1          

2  pEPY1 pEPY2 pYES2      

3          

4  pEPY11 pEPY21 pEPY31 pET28-At     

5          

6          

7          

8          

9          
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APPENDIX B 

SD-S Media Components, and instructions for preparation of 1 L of SD-S (0.1 mM SO4
2-) yeast 

media.  

100 X KNP stock   (g/100 mL) 

ammonium chloride NH4Cl 20 

potassium phosphate dibasic K2HPO4 1.25 

potassium phosphtate monobasic KH2PO4 8.75 

   

100 X Ca Na Mg stock   (g/100mL) 

sodium chloride NaCl 1 

calcium chloride dihydrate CaCl2 ·2H2O 1 

magnesium chloride hexahydrate MgCl2 ·6H2O 4 

   

1000 X micro element stock   (mg/100mL) 

boric acid H3BO3 50.0 

copper chloride CuCl2 3.0 

potassium iodide KI 10.0 

manganese chlororide tetrahydrate MnCl2 ·4H2O 35.0 

ammonium molybdate 

tetrahydrate 

(NH4)6 Mo7O24 

·4H2O 15.0 

zinc chloride ZnCl2 20.0 

EDTA ferric sodium salt NaFe EDTA 50.0 

   

1000 X vitamin stock   (mg/100ml) 

biotin  2.0 

calcium pantothenate  200 

folic acid  0.20 

myo-inositol  1000 

nicotinic acid (niacin)  40 

4-aminobenzoic acid  20 

pyridoxine hydrochloride  40 

riboflavin  20 

thiamine hydrochloride   40 
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100 X MgCl2 stock   (g/100mL) 

magensium chloride hexahydrate MgCl2 • 6H2O 4.07 

   

100 X MgSO4 stock   (g/100mL) 

magensium sulfate heptahydrate MgSO4 • 7H2O 4.93 

 

100 X Amino Acids   (mg/100ml) 

isoleucine Ile 300 

valine Val 1500 

adenine hydrochloride Ade 200 

arginine Arg 200 

histidine His 200 

leucine Leu 1000 

lysine Lys 300 

methionine Met 200 

phenylalanine Phe 500 

threonine Thr 2000 

tryptophan Trp 200 

tyrosine Tyr 300 

uracil Ura 200 

 

20% (w/v)  

Galactose   (g/L) 

galactose Galactose 200 

 

Autoclave all stock solutions except 20% (w/v) galactose, which should be filter-sterilized.  
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SD-S (0.1 mM SO4
2-) [1L]: 

 10 ml 100x KNP 

 10 ml 100x Ca Na Mg 

 1 ml 1000x micro elements 

 1 ml 1000x vitamins 

 9.5 ml 100x MgCl2 

 0.5 ml 100x MgSO4 

Bring volume up to 858 ml with distilled H2O, and autoclave. After autoclaving, add: 

 100 ml 20% (w/v) filter-sterilized galactose 

 10 ml 100x Amino Acid stock solution 
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APPENDIX C 

Compiled sequences of tagged and untagged open reading frames of Sultr1;2 from S. pinnata, S. 

elata, and A. thaliana. Raw Sanger sequencing reads and chromatograms are located in the 

Pilon-Smits lab folder on the CSU Biology Pangaea server.  

>AtSULTR1;2 

GAATTCATGTCGTCAAGAGCTCACCCTGTGGACGGAAGTCCGGCGACGGACGGTGGACATGTTCCGATGAAACCTTC

ACCCACTCGGCATAAAGTTGGAATCCCACCAAAGCAAAACATGTTCAAGGATTTCATGTACACATTCAAAGAAACTT

TCTTTCATGATGATCCTCTTAGGGATTTTAAGGATCAGCCTAAGTCTAAGCAGTTTATGCTCGGTCTCCAATCCGTC

TTCCCGGTCTTCGATTGGGGACGTAACTACACTTTCAAGAAGTTCCGAGGTGATCTCATCTCCGGTTTAACCATTGC

AAGTCTCTGCATTCCTCAGGATATTGGATACGCTAAGTTGGCGAATCTTGATCCCAAATACGGTTTATATTCGAGTT

TTGTTCCTCCATTGGTGTATGCTTGTATGGGAAGTTCTAGGGATATAGCAATAGGACCTGTCGCTGTGGTTTCGCTG

TTGCTAGGCACATTGCTTCGAGCTGAGATTGATCCAAACACAAGTCCAGATGAATATCTCCGCCTTGCCTTCACTGC

TACGTTTTTCGCCGGTATAACCGAAGCAGCCCTTGGATTCTTCAGATTAGGATTCTTGATCGATTTCCTTTCCCACG

CGGCTGTGGTTGGCTTCATGGGCGGCGCAGCCATCACTATCGCTCTTCAGCAGCTTAAAGGCTTCCTCGGGATCAAG

AAATTCACCAAGAAAACTGATATTATTTCTGTTCTTGAATCCGTTTTCAAAGCAGCTCATCACGGCTGGAATTGGCA

GACTATACTCATTGGTGCATCATTCTTGACCTTCCTTCTCACGTCTAAGATCATTGGGAAGAAGAGCAAGAAACTA 

TTCTGGGTACCAGCTATTGCGCCATTGATATCAGTTATCGTTTCCACCTTCTTTGTCTACATAACCCGAGCCGACAA

ACAAGGAGTCCAAATCGTGAAACACCTTGACCAAGGAATCAACCCTTCCTCGTTCCATCTAATCTACTTCACTGGTG

ATAACCTTGCTAAGGGCATCCGCATCGGTGTAGTCGCTGGCATGGTCGCTTTAACAGAAGCTGTAGCGATTGGAAGA

ACCTTTGCTGCAATGAAAGACTACCAAATCGACGGTAACAAAGAGATGGTAGCATTAGGTATGATGAACGTAGTTGG

ATCGATGTCTTCTTGCTACGTAGCTACCGGATCTTTCTCAAGATCAGCTGTCAATTTCATGGCTGGATGTCAAACAG

CGGTTTCAAACATCATAATGTCAATTGTTGTTCTCTTGACATTGCTCTTCCTTACTCCTCTCTTCAAGTACACTCCA

AACGCCATCCTCGCAGCTATCATCATCAACGCTGTGATTCCTTTGATCGATATCCAAGCTGCTATTTTGATCTTCAA

GGTTGATAAGCTCGATTTCATCGCCTGTATTGGAGCATTCTTTGGCGTCATCTTTGTTTCTGTTGAGATCGGACTTC

TTATTGCCGTCTCGATCTCGTTTGCTAAGATCCTCTTGCAAGTAACAAGACCTAGAACTGCAGTTCTCGGAAATATT

CCAAGAACTTCGGTTTACAGAAATATTCAACAGTATCCTGAAGCCACTATGGTTCCAGGGGTTCTTACTATTCGTGT 

TGACTCCGCCATTTACTTCTCCAACTCAAATTATGTTAGAGAAAGGATCCAGAGATGGCTACATGAGGAAGAAGAAA

AGGTAAAAGCAGCAAGCCTACCTAGGATTCAGTTTCTCATCATCGAAATGTCACCTGTTACGGACATCGATACAAGT

GGTATTCACGCATTAGAAGACTTATACAAGTCTCTCCAGAAAAGAGACATTCAGTTGATTCTGGCGAATCCTGGACC

GTTGGTGATAGGCAAGCTACACTTGTCGCACTTTGCCGACATGTTAGGACAAGACAATATCTATCTAACGGTGGCTG

ATGCCGTCGAGGCTTGCTGTCCAAAACTCTCCAACGAGGTCTGAGAATTC 

 

>Sp_Sultr1;2 

GAATTCATGCCCGCGAGAGCTCATCCTATGGACGGTGATGCAGCTTCAGCAACGGATGGTGGAGATGTTCCGATCAA

ATCGTCGCCTCACCGACATAAAGTTGGGGTCCCACCGAAGCAAAACATGTTTCATGATTTCATGTACACATTCAAAG

AAACTTTCTTCCACGATGATCCTCTCAGACATTTTAAGGATCAGCCTAAGTCCAAGCAGTTCATGCTCGGTCTCCAG

TCTCTCTTCCCGGTGTTCGACTGGGGACGCAACTATAATCTCAAGAAGTTTCGTGGTGATCTCATTGCCGGTTTAAC

TATAGCCAGCCTTTGTATCCCTCAGGATATTGGATACGCTAAGCTCGCGAATCTGGACCCTAAATACGGTTTATATT

CGAGTTTTGTTCCTCCCTTGGTGTATGCTTGTATGGGGAGTTCTAGGGATATAGCAATCGGACCTGTCGCTGTGGTC

TCTCTGCTGCTAGGTACTCTGCTTCAAGCTGAGATCGATCCAAACACAAATCCTGATGAATATCTCCGTCTTGCCTT

CACCGCCACGTTTTTCGCTGGTGTCACCGAAGCAGCTCTCGGATTCTTCAGATTAGGGTTCTTGATTGATTTCCTTT

CCCACGCGGCTGTGGTTGGATTCATGGGTGGTGCAGCCATCACAATCGCTCTTCAGCAGCTCAAAGGTTTCCTCGGG

ATAAAGCAATTCACCAAGAAAACCGACATCATCGCTGTTCTAGAATCCGTGTTCAGCTCAGCTCATCACGGCTGGAA

TTGGCAGACTATACTCATTGGTGCATCCTTCTTGACCTTCCTTCTCACCTCTAAGATCATTGGGAAAAAGAACAAAA

AACTGTTCTGGATTCCAGCGATCGCGCCATTGATATCAGTTATTATTTCCACATTCTTTGTTTATATAACCCGAGCC

GACAAACAAGGAGTCCAAATCGTGAAACACCTAGACAAAGGCATAAATCCTTCCTCTTTTGATAAAATCTACTTCTC

CGGCGATTACCTTGCAAAGGGTGTCCGCATCGGTGTAGTCGCTGGAATGGTCGCCTTAACAGAAGCTGTAGCGATCG

GAAGAACGTTTGCTGCAATGAAAGACTATCAAATCGATGGTAACAAAGAGATGGTAGCACTAGGTGTTATGAACGTT
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GTTGGGTCGATGTCTTCTTGCTACGTAGCGACTGGATCGTTCTCGAGATCAGCTGTAAATTTCATGGCTGGATGTCA

AACTGCGGTTTCAAACATCATAATGTCAATCGTCGTTCTCTTGACATTGCTCTTCCTCACTCCGCTATTTAAGTACA

CACCAAACGCCATCCTCGCAGCTATTATCATCAATGCGGTGATTCCTTTGATTGATATCCAAGCTG 

CGGTATTGATCTTCAAGGTCGATAAGCTTGATTTCGTCGCTTGTATGGGAGCTTTCTTTGGCGTCATCTTTGTTTCT

GTTGAGATCGGGCTTCTCATTGCCGTATCTATATCATTTGCTAAGATTCTCTTGCAAGTAACAAGACCTAGAACCGC

GGTTCTCGGAAATATTCCTAGAACTTCAGTTTATCGAAATATCCAACAGTATCCTGAAGCTACTATGGTTCCAGGGG

TTCTTATGATTCGTGTTGACTCCGCGATTTACTTCTCCAACTCAAATTACGTCAGAGAAAGGATCCAAAGATGGTTA

CAAGAGGAAGAAGAGAAGGTGAAAGCAGCAAGCCTACATAGGATCCAGTTTTTAATCCTCGAAATGTCACCTGTTAC

GGACATCGATACAAGTGGTATCCACGCCCTAGAAGACTTATACAAATCTCTCCAGAAGAGAGATATTCAGCTGATTC

TTGCGAATCCTGGACCGTTGGTGATAGGCAAGCTACACTTGTCGCACTTTGCTGACATGTTAGGACAAGACAATATC

TTTTTGACGGTGGCTGACGCCGTCGAATCTTGCTGTCCAAAACTCTCCGACGAGGTCTGAGAATTC 

 

>AtSultr1;2t 

GAATTCATGTCGTCAAGAGCTCACCCTGTGGACGGAAGTCCGGCGACGGACGGTGGACATGTTCCGATGAAACCTTC

ACCCACTCGGCATAAAGTTGGAATCCCACCAAAGCAAAACATGTTCAAGGATTTCATGTACACATTCAAAGAAACTT

TCTTTCATGATGATCCTCTTAGGGATTTTAAGGATCAGCCTAAGTCTAAGCAGTTTATGCTCGGTCTCCAATCCGTC

TTCCCGGTCTTCGATTGGGGACGTAACTACACTTTCAAGAAGTTCCGAGGTGATCTCATCTCCGGTTTAACCATTGC

AAGTCTCTGCATTCCTCAGGATATTGGATACGCTAAGTTGGCGAATCTTGATCCCAAATACGGTTTATATTCGAGTT

TTGTTCCTCCATTGGTGTATGCTTGTATGGGAAGTTCTAGGGATATAGCAATAGGACCTGTCGCTGTGGTTTCGCTG

TTGCTAGGCACATTGCTTCGAGCTGAGATTGATCCAAACACAAGTCCAGATGAATATCTCCGCCTTGCCTTCACTGC

TACGTTTTTCGCCGGTATAACCGAAGCAGCCCTTGGATTCTTCAGATTAGGATTCTTGATCGATTTCCTTTCCCACG

CGGCTGTGGTTGGCTTCATGGGCGGCGCAGCCATCACTATCGCTCTTCAGCAGCTTAAAGGCTTCCTCGGGATCAAG

AAATTCACCAAGAAAACTGATATTATTTCTGTTCTTGAATCCGTTTTCAAAGCAGCTCATCACGGCTGGAATTGGCA

GACTATACTCATTGGTGCATCATTCTTGACCTTCCTTCTCACGTCTAAGATCATTGGGAAGAAGAGCAAGAAAC 

TATTCTGGGTACCAGCTATTGCGCCATTGATATCAGTTATCGTTTCCACCTTCTTTGTCTACATAACCCGAGCCGAC

AAACAAGGAGTCCAAATCGTGAAACACCTTGACCAAGGAATCAACCCTTCCTCGTTCCATCTAATCTACTTCACTGG

TGATAACCTTGCTAAGGGCATCCGCATCGGTGTAGTCGCTGGCATGGTCGCTTTAACAGAAGCTGTAGCGATTGGAA

GAACCTTTGCTGCAATGAAAGACTACCAAATCGACGGTAACAAAGAGATGGTAGCATTAGGTATGATGAACGTAGTT

GGATCGATGTCTTCTTGCTACGTAGCTACCGGATCTTTCTCAAGATCAGCTGTCAATTTCATGGCTGGATGTCAAAC

AGCGGTTTCAAACATCATAATGTCAATTGTTGTTCTCTTGACATTGCTCTTCCTTACTCCTCTCTTCAAGTACACTC

CAAACGCCATCCTCGCAGCTATCATCATCAACGCTGTGATTCCTTTGATCGATATCCAAGCTGCTATTTTGATCTTC

AAGGTTGATAAGCTCGATTTCATCGCCTGTATTGGAGCATTCTTTGGCGTCATCTTTGTTTCTGTTGAGATCGGACT

TCTTATTGCCGTCTCGATCTCGTTTGCTAAGATCCTCTTGCAAGTAACAAGACCTAGAACTGCAGTTCTCGGAAATA

TTCCAAGAACTTCGGTTTACAGAAATATTCAACAGTATCCTGAAGCCACTATGGTTCCAGGGGTTCTTACTATTCGT

GTTGACTCCGCCATTTACTTCTCCAACTCAAAATTATGTTAGAGAAAGGATCCAGAGATGGCTACATGAGGAAGAAG

AAAAGGTAAAAGCAGCAAGCCTACCTAGGATTCAGTTTCTCATCATCGAAATGTCACCTGTTACGGACATCGATACA

AGTGGTATTCACGCATTAGAAGACTTATACAAGTCTCTCCAGAAAAGAGACATTCAGTTGATTCTGGCGAATCCTGG

ACCGTTGGTGATAGGCAAGCTACACTTGTCGCACTTTGCCGACATGTTAGGACAAGACAATATCTATCTAACGGTGG

CTGATGCCGTCGAGGCTTGCTGTCCAAAACTCTCCAACGAGGTCTTAATTAAGAACAAAAACTCATCTCAGAAGAGG

ATCTGCATCACCATCACCATCACTGATGCAGATATCCATCACACTGGGCATGC 

 

>SelaSultr1;2t 

GAATTCATGCCCGAGAGAGCTCATCCTATGGACGGTGATGCAGCTTCGGCAACGGATGGTGGAGATGTTCCGATCAA

ATCGTCGCCTCACCGACATAAAGTTGGCGTCCCACCGAAGCAAAACATGTTTCATGATTTCATGTACACATTCAAAG

AAACTTTCTTCCACGATGATCCTCTCAGACATTTTAAGGATCAGCCTAAGTCCAAGCAGTTCATGCTCGGTCTCCAG

TCTGTCTTCCCGGTGTTCGACTGGGGACGCAACTATAATCTCAAGAAGTTTCGTGGTGATCTCATTGCCGGTTTAAC

TATAGCCAGTCTTTGTATCCCTCAGGATATTGGATACGCTAAGCTCGCGAATCTGGACCCTAAATACGGTTTATATT

CGAGTTTTGTTCCTCCCTTGGTGTATGCTTGTATGGGGAGTTCTAGGGATATAGCAATCGGACCTGTCGCTGTGGTT

TCTCTGCTGCTAGGTACTCTGCTTCGTGCTGAGATCGATCCAAACACAAATCCTGACGAATATCTCCGTCTTGCCTT

CACCGCCACGTTTTTCGCTGGTGTCACCGAAGCAGCTCTCGGATTCTTCAGATTAGGGTTCTTGATTGATTTCCTTT

CCCACGCGGCTGTGGTTGGATTCATGGGTGGTGCAGCTATCACAATCGCTCTTCAGCAGCTCAAAGGTTTCCTCGGG
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ATCAAGCAATTCACCAAGAAAACCGATATCATCGCTGTTCTAGATTCCGTGTTCAGCTCAGCTCATCACGGCTGGAA

TTGGCAGACTATACTCATTGGTGCATCCTTCTTGACCTTCCTTCTCATCTCTAAGATCATTGGGAAAAAGAGCAAAA

GACTGTTCTGGATTCCAGCGATCGCGCCATTGATATCAGTTATCATTTCCACCTTCTTTGTTTATATAACCCGAGCC

GACAAACAAGGAGTCCAAATCGTGAAGCACCTAGACAAAGGCATAAATCCTTCCTCTTTTGATAAAATCTACTTCTC

CGGCGATTACCTTGCAAAGGGTGTCCGCATCGGTGTAGTCGCTGGAATGGTCGCCTTAACAGAAGCTGTAGCGATCG

GAAGAACGTTTGCTGCAATGAAAGACTATCAAATCGATGGTAACAAAGAGATGGTAGCACTAGGTGTTATGAACGTT

GTTGGGTCGATGTCTTCTTGCTACGTAGCGACTGGATCGTTCTCGAGATCAGCTGTAAATTTCATGGCTGGATGTCA

AACTGCTGTTTCAAACATCATAATGTCAATCGTCGTTCTCTTGACATTGGTCTTTCTCACTCCGCTATTTAAGTACA

CACCAAACGCTATCCTCGCAGCTATTATCATCAATGCGGTGATTCCTTTGATTGATATCCAAGCTGCGGTATTAATC

TTCAAGGTCGATAAGCTTGATTTCGTCGCTTGTATGGGGGCTTTCTTTGGCGTCATCTTTGTTTCCGTCGAGATCGG

GCTTCTCATTGCCGTATCTATATCATTTGCTAAGATTCTCTTGCAAGTAACAAGACCTAGAACCGCGGTTCTCGGAA

ATATTCCTAGAACTTCAGTTTACCGAAATATCCAACAGTATCCTGAAGCCACTATGGTTCCAGGGGTTCTTATGATT

CGTGTTGACTCCGCCATTTACTTCTCCAACTCAAATTACGTCAGAGAAAGGATCCAAAGATGGTTACTAGAGGAAGA

AGAGAAGGTGAAAGCAGCAAGCCTACCTAGTATCCAGTTTTTGATCATCGAAATGTCACCTGTTACGGACATCGATA

CAAGTGGTATCCACGCCCTAGAAGACTTATACAAATCTCTCCAGAAGAGAGATATTCAGCTGATTCTTGCGAATCCT

GGACCGTTGGTGATAGGCAAGCTACACTTGTCGCACTTTGCTGACATGTTAGGACACGACAATATCTTTCTGACGGT

GGCTGACGCCGTCGAATCTTGCTGTCCAAAACTCTCCGACGAGGTCTTAATTAAGAACAAAAACTCATCTCAGAAGA

GGATCTGCATCACCATCACCATCACTGATGCAGATATCCATCACACTGGGCATGC 

 

>SpinSultr1;2t 

GAATTCATGCCCGCGAGAGCTCATCCTATGGACGGTGATGCAGCTTCAGCAACGGATGGTGGAGATGTTCCGATCAA

ATCGTCGCCTCACCGACATAAAGTTGGGGTCCCACCGAAGCAAAACATGTTTCATGATTTCATGTACACATTCAAAG

AAACTTTCTTCCACGATGATCCTCTCAGACATTTTAAGGATCAGCCTAAGTCCAAGCAGTTCATGCTCGGTCTCCAG

TCTCTCTTCCCGGTGTTCGACTGGGGACGCAACTATAATCTCAAGAAGTTTCGTGGTGATCTCATTGCCGGTTTAAC

TATAGCCAGCCTTTGTATCCCTCAGGATATTGGATACGCTAAGCTCGCGAATCTGGACCCTAAATACGGTTTATATT

CGAGTTTTGTTCCTCCCTTGGTGTATGCTTGTATGGGGAGTTCTAGGGATATAGCAATCGGACCTGTCGCTGTGGTC

TCTCTGCTGCTAGGTACTCTGCTTCAAGCTGAGATCGATCCAAACACAAATCCTGATGAATATCTCCGTCTTGCCTT

CACCGCCACGTTTTTCGCTGGTGTCACCGAAGCAGCTCTCGGATTCTTCAGATTAGGGTTCTTGATTGATTTCCTTT

CCCACGCGGCTGTGGTTGGATTCATGGGTGGTGCAGCCATCACAATCGCTCTTCAGCAGCTCAAAGGTTTCCTCGGG

ATAAAGCAATTCACCAAGAAAACCGACATCATCGCTGTTCTAGAATCCGTGTTCAGCTCAGCTCATCACGGCTGGAA

TTGGCAGACTATACTCATTGGTGCATCCTTCTTGACCTTCCTTCTCACCTCTAAGATCATTGGGAAAAAGAACAAAA

AACTGTTCTGGATTCCAGCGATCGCGCCATTGATATCAGTTATTATTTCCACATTCTTTGTTTATATAACCCGAGCC

GACAAACAAGGAGTCCAAATCGTGAAACACCTAGACAAAGGCATAAATCCTTCCTCTTTTGATAAAATCTACTTCTC

CGGCGATTACCTTGCAAAGGGTGTCCGCATCGGTGTAGTCGCTGGAATGGTCGCCTTAACAGAAGCTGTAGCGATCG

GAAGAACGTTTGCTGCAATGAAAGACTATCAAATCGATGGTAACAAAGAGATGGTAGCACTAGGTGTTATGAACGTT

GTTGGGTCGATGTCTTCTTGCTACGTAGCGACTGGATCGTTCTCGAGATCAGCTGTAAATTTCATGGCTGGATGTCA

AACTGCGGTTTCAAACATCATAATGTCAATCGTCGTTCTCTTGACATTGCTCTTCCTCACTCCGCTATTTAAGTACA

CACCAAACGCCATCCTCGCAGCTATTATCATCAATGCGGTGATTCCTTTGATTGATATCCAAGCTGCGGTATTGATC

TTCAAGGTCGATAAGCTTGATTTCGTCGCTTGTATGGGAGCTTTCTTTGGCGTCATCTTTGTTTCTGTTGAGATCGG

GCTTCTCATTGCCGTATCTATATCATTTGCTAAGATTCTCTTGCAAGTAACAAGACCTAGAACCGCGGTTCTCGGAA

ATATTCCTAGAACTTCAGTTTATCGAAATATCCAACAGTATCCTGAAGCTACTATGGTTCCAGGGGTTCTTATGATT

CGTGTTGACTCCGCGATTTACTTCTCCAACTCAAATTACGTCAGAGAAAGGATCCAAAGATGGTTACAAGAGGAAGA

AGAGAAGGTGAAAGCAGCAAGCCTACATAGGATCCAGTTTTTAATCCTCGAAATGTCACCTGTTACGGACATCGATA

CAAGTGGTATCCACGCCCTAGAAGACTTATACAAATCTCTCCAGAAGAGAGATATTCAGCTGATTCTTGCGAATCCT

GGACCGTTGGTGATAGGCAAGCTACACTTGTCGCACTTTGCTGACATGTTAGGACAAGACAATATCTTTTTGACGGT

GGCTGACGCCGTCGAATCTTGCTGTCCAAAACTCTCCGACGAGGTCTTAATTAAGAACAAAAACTCATCTCAGAAGA

GGATCTGCATCACCATCACCATCACTGATGCAGATATCCATCACACTGGGCATGC 

 

 


