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TURBULENCE MEASUREilENT WITH A PROPELLER FLOW METER 

By James P. Bennett 

Abstract 

There is a pressing need in much of the current Hydraulic 

Engineering research bei_ng conducted today for an easy, reliable, and 

cheap method for measuring longitudinal turbulent velocity flustuations 

in water flows. Hot-film anemometers can be used in clean water flows, 

however, drift problems, fragileness, and expensiveness sometimes 

prevent their use in sediment and debris laden streams. 

The prope ller flow meter i s a rugged, portable, relatively inex-

pensive flow measuri.ng device which can be used to measure turbulence 

in large scale flmvs . It has two drawbacks when used as a turbulence 

measuri.ng device, however. These are 1) inertial averagi.ng, and 2) 

spatial averaging of the turbulent velocity fluctuations. These 

fac-tors can be corrected for in the pmver spectral density of a par-

ticul ar turbulent flow phenomenon if th~ propeller system function and 

spectral recovery efficiency are known. 

In thi~ ~tudy, a propeller equation of motion is developed which 

describes the inert ial averaging characteris~ics of propellers. A 

correlation function is deve loped which describes the spatial aver.aging 

effect on a particular propeller in a particular flow field, if the 

requ~red statistical p~operties of the flow field are known. 

Due to the comp lexity of the coefficients in the differential 

equation of motion of a propeller, experimenta l means were used in 

determining these coefficients. Similarly , the spatial ave~ag~ng 
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characteris tics had to be determined experi mentally for a particular 

type of turbulent flow, ro_ugh boundary open channel flow. 

The experimental ly determined system f unctions were used to 

correct field turbul ence data for inertial aver_agi_ng. It appears that 

propellers of t he size used .in this study can be used in open ch anne l 

flows of three feet in depth with very little correction required. 
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Chapter I 

INTRODUCTION 

Understanding of the field of open channel hydraulics 

has progressed a great deal since the start of this century 

with only the ability to measure mean flow parameters . It 

is now possible, for example , to predict roughly the flow 

regime and sediment transport of a given river or canal if 

the pertinent mean flow parameters are known. A point has 

been reached, however, where it becomes increasingly desir-

able to be able to measure the fluctuating components of 

s uch flow parameters as velocity and pressure. A knowledge 

o f these quantities would aid greatly in expanding the 

u nderstanding of such current open channel flow research 

p roblems as sediment transport, bed form mechanics, pollutant 

d ispersion , and reaeration of deoxygenated streams . 

In the measurement of air flows, the hot-wire anemometer 

i s " the " accepted instrument for making turbulence measure-

ments . This is because the hot-wire combines such desirable 

measuring instrument characteristics as small size, high 

f requency response, and stability of calibration . Unfortu-

nately , there is no universally acceptable instrument which 

c an be used to measure turbulence in water flows . The hot-

f ilm a nemometer, an instrument quite similar to the hot-wire 

a nemometer , shows considerable promise; however, in flows 

c ontaining suspended sediment or colloidal impurities , 
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unstable calibration problems have been encount ered. In 

additior1, hot-film anemomete r probes are extremely fragile 

and expensive. 

Anothe r instr~1ent which shows considerab le promise 

toward being use ful as a turbulence measuring device, at 

least in l a rge scale flows, is the propeller flow meter. 

Its advantage s are adequate ruggedness for use in field flow 

situa tions, s t ability of calibration , and relative chea pness 

and portability of the associated instrumentation system. 

In addition, concurre nt turbulence and me a n velocity measure-

ments can be made with propell e r flow me ters, a feat which 

cannot be accomplished with presently available hot-film 

anemometers. The propeller flow me ter does, however, have 

some serious faults whe n it is to be used as a turbulence 

sensor. First, the amplitude-frequency response of most 

prope llers is not adequate to follow the higher frequency 

velocity fluctuations present in open channel turbulence. 

Second, the dimensions of the propeller are generally large 

with respect to the dimensions of the fine scale of the open 

channel turbule nce; this causes the propeller to register a 

spatially averaged instantane ous velocity rather than the 

true velocity at a point. 

The main objectives of this study are: a) to evaluate 

the system functio n of prope llers subjected to rapidly 

varying, spatially uniform velocity fields; b) to evaluate 

the spatial averaging cha racteristics of propellers in a 

rough bounda ry ope n channe l flow; and c) to make field flow 
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velocity measurements with a propeller flow meter to deter-

mine the usefulness of the results of the studies of parts 

a and b in evaluating turbulence in a large scale open 

channel flow. 

The system function of the propeller-flow system can be 

determined from the differential equation of motion of the 

propeller when it has been excited using a sinusoidal input, 

however, the flow about the propeller baldes is so complex 

that experimental means must finally be used to obtain the 

system frequency response. The spatial averaging effects 

can be accounted for using a complex correlation function 

derived from the equation of motion of the propeller, 

however, again experimental means must be resorted to in 

determining a spectral recovery efficiency, because the 

evaluation of the correlation function involves a presently 

unavailable knowledge of the statistical properties o~ the 

turbulence field being measured. The system function and 

the spectral recovery efficiency are necessary in order to 

correct experimentally determined power spectral densities 

for propell~r frequency response and spatial averaging. 
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Chapter II 

TURBULENCE MEASUREMENT IN WATER 

There are two classes of methods for making measure-

ments - in turbulent fluid flows. · The first class utilizes a 

tracer or indicator which is injected into the flow to make 

portions of it visible. The second class uses some physical 

device which is inserted into the flow and in which an incre-

mental change in velocity produces a measurable change in 

some property of the transducer. 

The primary instrument for making turbulence measure-

ments in air flows is the hot-wire anemometer. This is be-

cause the hot-wire anemometer is a small , stable device with 

a high frequency response. Unfortunately , because of bubble 

formation, electrolysis effects, dir~ and lint collection, 

and - low strength, the hot-wire anemometer cannot be used to 

obtain good quantitative information on water flows. 

There are several measurement techniques which are used 

in water flows; none of which can, at present, be considered 

entirely satisfactory. These are discussed in the following 

sections. 

A. Hot-Film Anemometer 

The hot-film anemometer is quite similar to the hot-

wire anemometer used in air flows . The sensor generates 

heat which is convected away by the flow, the rate of 

c onvection being proportional to the flow velocity. The 
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circuitry consists es sentially of a self-balancing 

Wheatstone bridge . For work in air flows with the hot-wire 

a nemometer , the consta nt current method is g e nerally used. 

In water, howev er , the constant tempe rature method is used. 

This i s because this me thod ha s high uncompensated frequency 

r esponse , s ensitivity to low frequency fluctuations, simpler 

oreration , and the ability to monitor both the D.C. and A.C. 

l evels of the fluctuations. The ho t-film anemometer is prob-

ably the b e st instrument for u se in relatively clean labora -

tory water flows. 

The pioneering work on the hot-film anemometer was done 

a round 1955 by Ling and Hubbard (19 56 ) . The probe consists 

of a 50 to 100 Angstrom coating of platinum fused to the 

surface of a supporting glass head form. The head form may 

b e a cylinde r, wedge , cone, or strip (for use on a flat 

surface ). The probe is constructed in this way because it 

must be strong for use in water, however, if the entire probe 

were constructed of metal, the resistance would be too low, 

as would the frequency response. For use in water, the 

pl atinum is generally coated with a thin quartz film. 

The early hot film probes were not coated with quartz. 

Researchers using these probes encountered difficulties due 

to dirt con~amination, bubble formation on the probe from 

gases dissolved in the water , chemical reaction with the 

film, electrolysis and conductivity through the water . The 

addition of the quartz film has alleviated the last three 

problems, but the f i rst two still cause stability problems 
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(Raichlen , 1967; McQuivey, 1967) . The collection of dirt or 

gases on the probe causes a decrease in the output voltage 

at a constant mean velocity. 

Richardson and McQuivey (19 68 ) have overcome some o f 

t he drift problems of the hot-film anemometer by cleaning 

the probe before each run . Another procedure used by 

McQuivey was to use a pitot tube a s a mean velocity t rans-

ducer and to assume that drift in the voltag~-velocity 

relationship was equivalent to a c hange in overheat ratio. 

If t he mean velocity and the output voltage are both known, 

the effe ctive overheat rat i o can be found. If the probe 

has been c alibrated at several overheat ratios, the turbu-

lence intensity etc . c an be determined from the correct c ali-

bration curve . The parabolic wedge p robes because of their 

s~ape seem to be t he most drift free for use in dirty water. 

The hot-film anemometer, then , is an i deal turbulence 

s ensing device for use in relatively clean flows. There i s , 

howe ver , some question of its s tability in flows with con-

siderable susp~nded material , and of t he ability of the 

probe to withstand the impact o f sediment particles . 

B. Flow Visualization 

Flow visualization techniques may be u sed in clear-

water laboratory situations. They are most useful for ob-

taining Lagrangian information, and three-dimensional infor-

mation can be obtained if desired. The main disadvantages 

o f these techniques are the tediousness of data reduction and 

the fact that they cannot be ~sed in turbid waters . 
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One flow visualization technique is the use of dis-

crete particles which are insoluble in the flowing fluid. 

These particles may b e injected into the fluid or circu-

lated with it. If they are of the same density as the fluid, 

and small with respect to the microscale , they behave as 

fluid particles. The positions of the particles may be 

recorded with a moving picture camera, or on short-flash 

photographs. Hinze (1959) states that for use in fluids, 

emulsions have been found to yield satisfactory results. 

Mixtures of benzene and carbon tetrachloride or of olive oil 

and ethylene dibromide are especially useful, because their 

density can be adjusted to equal that of water (Kalinske and 

Pien, 1944). If the particle density is not nearly equal to 

that of the fluid, appropriate corrections must be made. 

Quantities which may be measured using this technique are: 

(l) Lagrangian velocities and correlations; (2) Eulerian 

mean and fluctuating velocity components, and (3) Eulerian 

velocity correlations. 

A second flow visualization technique which may be 

used is th~ continuous injection of a substance miscible 

with the flowing fluid, but detectible in it, such as ink or 

fluo rescent dye. In this technique, conclusions about the 

flow properties are made from the dispersion pattern of the 

injected substance downstream of the source. Quantities 

which can be measured using this technique are: (l) lateral 

Lagrangian correlation, (2) eddy diffusion coefficient, (3) 

the Reynolds stresses, and (4) root mean square values of 
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the fluctuating velocity components. It should be pointed 

out that there is considerable uncertainty involved in ob-

taining the last two quantities from the centroid and the 

skewness of the diffusion pattern. 

There are other flow visualization techniques available; 

some of these are mentioned by Hinze (19 59) . The hydrogen 

bubbl e technique used by Kemp and Grass (1967) is particu~ 

larly usefu l in water flows (see also Schraube et al., 1964). 

C. Electrokinetic Transducer 

The electrokinetic transducer consists of two elec-

trodes mounted flush on a surface such as the wall of a 

pipe or the tip or sides of a pitot tube-like probe. The 

electrodes measure the streaming potential fluctuations 

which are due to the turbulent velocity ~luctuations at 

the surface. The component sensed is the one in a plane 

parallel to the surface and along the line of c enters of 

the electrodes. 

Chuang and Cermak (1964) conclude that the spectral 

distributions ef turbulent energies and shearing stress are 

directly proportional to the corresponding energy spectral 

distributions of the electrokinetic-potential fluctuation 

difference . Thi s means that there should be a constant of 

proportionality relating the root mean square values of the 

potential fluctuations and the velocity fluctuations. 

Cermak and Baldwin report that this constant is a function 
, 

of the mean approach velocity. In the work reported so far 

(Chuang and Cermak , 1964j Cermak and Baldwin, 1964; and 
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Chuang and Cermak, 1965) the proportionality constant has 

been determined by equating the output quantity at some 

point on a suitable nondimensional plot to the c orresponding 

output quantity from some published experimental investi-

gation in air . This inability to c alibrate the electro -

k inetic transducer directly limits its usefulness in evalu-

ating the turbulence levels in less well understood flows . 

D. Electromagnetic Induction 

Electromagnetic inductio~ is a method of component 

velocity fluctuation measurement in turbulent liquid flows 

which is based on the induction of an electrical potential 

fi eld in a conducting fluid movi~g relative to a stationary 

u niform magne tic field . The basic principle is Faraday 's 

law of electromagnetic induction , that is, an electromotive 

fo rce is generated which is perpendicular to both the 

instantaneous velocity component and the direction of the 

magnetic field. The magnitude of the electric field 

s trength at a point is directly proportional to the magni-
1 tude of the velocity at that point. The sensor us ed in the 

flow is a pair of electrodes to measure t he voltage dif-

fe rence between two points in the flow field . The frequency 

r esponse is limited o nly by that of the amplifier used, and 

the l ower limit of the size resolution is the gap between 

the electrodes. 

Grossman et al., (1 957 ) report on a study o f turbulence 

in a pipe flow in which the entire flow field passed through 

the magnetic field . A difficulty was encountered here in 
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the interpretation of the voltage signal due to the fact 

that induced currents due to the mean velocity profile 

cannot be differentiated from the voltages due to the local 

velocity fluctuations. The size of the flow field which 

can be investigated in this way is, of course, limited by 

the size of the magnet which can be used. 

A second approach which can be used is pointed out by 

both Grossman et al., (1957) and Hinze (1959) .. This is to 

affix small magnets to the voltage probe and immerse both 

in the flow. This method avoids the induced current problem, 

but the probes are too large to sense all but the largest 

scale turbulence. 

E. Impact Tube 

The impact tube is a sensor which samples the total 

head of the flow at a point. It may consist of a total 

head tube and capacitance transducer as used by Ippen and 

Raichlen (1957) or of a small piezoelectric ceramic pressure 

transducer installed in the tip of a total head tube as 

used by Eagleson and Perkins (1961). The high frequency 
~ 

response of these devices is adequate for water flows, as 

Ippen and Raichlen report a natural frequency of 240 Hz and 

Eagleson and Perkins a high frequency cutoff of 1150 Hz. 

The low frequency cutoff of Eagleson and Perkins device is 

1 Hz, however, and this could be aproblem in some water 

flows. 

This type of sensor is tough enough to be used in 

almost any flow situation. It is, however , sensitive to 
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pressure fluctuat ions as well as to velocity fluctuations, 

and this limits the usefulness of the device, as does the 

fact that it is sensitive only to velocity fluctuation .in 

the direction of the me an flow. 

Je zdinsky et al ., (1967) mention a combination of 

Prandtl and yaw tubes, similar to the above devices, which 

can discern two components of the fluctuating v elocity. 

They claim a natural frequency of 20 Hz for this device. 

F. Miscellaneous Techniques 

Hot thermistor probes are use d like hot film probes, 

but are constructed from a differe nt type of material . The 

thermistor is a semi-conductor with a large resistivity and 

thermal coefficient of resistivity. They are rugged enough 

for use in water, and give good spatial resolution but as 

Lumley (1962) points out, their low thermal conductivity 

limits the ir usefulness. 

Ak soy (1967) used the deflection of a cantilever beam 
I 

with a sensor mounted at the end as an indication of longi-

tu~inal turbulent velocity fluctuations. Hartung and 
.. 

Csallner (1967) used the vibration of a metal strip parallel 

to the main stream as an indication of the magnitude of the 

transverse velocity fluctuations. 

G. Propeller Flow Meter 

There are s e veral factors which must be considered 

when a propeller flow meter is to be used as a turbulence 

and/or mean velocity transducer. These are: ( 1) the 
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effect of the turbulence on the mean velocity registered 

by the meter, (2) the freque ncy response characteristics 
- - -

of the meter , a nd (3) the spatial- averaging effect of the 
-

meter . These factors have all been studie d to some extent 

in the c urrently available literature . 

Plate (1967) has derived an equation of motion for a 

prop~ller-type flow meter. The equation is first o rder 
. -

with mean-velocity and frequency dependent coefficients . 

Using this equation of motion , he has shown that this type 

meter will over-register the mean velocity when the mean 

velocity has a small -amplitude sinusoidal velocity fluctu-

ation_ superimposed on it . This conclusion is confirmed by 

the ~ork of Chaix (1962) ; however, for Chaix ' s propeller 

i f the relative intensity is less than fifteen percent , the 

over-registration is less than one percent . Chaix has also 

done some work on the effect of vertical o scillations on the 

output of current meter . He found that the effect was vari-

able depending on the meter type , some over-register and 

s ome under-register . Here again , the effect is negligible 

i f the intensity is less than fifteen percent . 

J epson (1964) has developed an equation of motion simi-

l ar to Plate's . When applied to a step function input , this 

e quation predicts that the natural frequency (in the sense 

o f a first orde r equation ) will be direct ly proportional to 

t he step height (the final velocity) . He gives experimental 

evidence to indicate that this is true . Iwasa (1967) 

a ccounts for the frequency r esponse of the propeller by 
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defining an averaging time which is due to propeller 

inertia. This averag i ng time is conside r ed to be the 

amount of time over which the propeller averages the 

instantaneous input velocity to yield a "propeller averaged" 

output velocity. He states that a propeller may be used to 

measure turbulent velocity intensities as long as the ratio 

of this averaging time to the Eulerian time scale is less 

than 0.1. 

Schuyf (1966) deduces the spatial averaging effect of a 

prope ller in grid turbulence by comparing the spectra from 

water with those from a similar grid turbulence in air. He 

says that the averaging effect will be negligible for this 

type of turbulence when the ratio of the longitudinal macro-

scale to the propeller diameter is greater than 3.5. This 

figure may be somewhat in error, however, because the 

natural frequency of the propeller used by Schuyf was prob-

ably lower than he thought, and the effect of this is present 

in the spectrum. Ishihara and Yokosi (1967) recognize that 

spatial averaging can be a problem by stating that it is 
~ 

meaningless to record fluctuations with frequencies greater 

than the ratio of the mean velocity to the diameter of the 

sensor. 

Probably one of the earliest attempts to analyze open 

channel flow turbulence with a flow meter was made by 

Kalinske (1943) using a Price meter in the Mississippi River. 

One of the most recent was by Tiffany (1967), again using a 

Price me ter in the Mississippi. 
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Chapter III 

PROPELLER RESPONSE THEORY 

The response of a flow meter propeller to longitudinal 

velocity fluctuations is determined by its inertia and 

spat~al averaging effect. The inertia effect is a function 

of propeller geometry, mean velocity, and the frequency of 

the fluctuations. The inertia effect can be compensated for 

to obtain the input from the measured output if the response 

of the propeller to small amplitude, sinusoidal velocity 

fluctu ations . is known. The spatial averaging effect is a 

function of the propeller g eometry and the structure of the 

turbulence . In order to obtain the input from the measured 

output, it can be compensated for by using an experimentally 

determined efficiency factor for the particular type of 

turbulence present. 

A. Effect of Lateral Veloci ty Components 

As in hot-wire or hot-film anemometry (McQuivey, 1967), 

the effect of the velocity fluctuations perpendicular to 

the axis of the propeller can be shown by an order of magni-

tude analysis . · The instantaneous total flow velocity is 

R = './ (u + u) 2 + v 2 + w2 

where (U + u) is the total velocity in the flow direction 

(U the average velocity and u the fluctuating component ) , 

v is the fluctuating c omponent in the depthwise direction, 
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and w is the fluctuating component in the lateral 

direction. Expanding and dividing by IT, 

l + 2 u + (~)2 + (~)2 
u u u 

Since the values of u/U, v/U, and w/E are seldom greater 

than .1, the values of the squared terms are one order of 

magnitude smaller than the u/U t erm , and the to tal veloc-

ity may be approximated by 

~~ -R = U + 2uU . 

Thus, the sensitivity of the propeller to lateral velocity 

fluctu ations is one order of magnitude less than its sensi-

tivity to longitudinal velocity fluctuations. 

B. Propeller Equation of Motion 

The two basic methods available for the analysis of a 

propeller are the momentum theory and the blade element 

theory. Glauert (1963) points out that the momentum theory 

is concerned mainly with the motion of the fluid, and that 

the forces acting on the propeller are those necessary to 

impart this motion to the fluid. The propeller is treated 

as an actuator disc, and no information is obtained about 

the forces on the individual blades. 

The blade element theory considers the forces experi-

enced by the individual blades as they move through the 

fluid. The forces experienced by the blade elements are 

computed using standard airfoil theory. 



16 

The blade element the ory is used here to write an 

equation of motion for a propeller turning in a time-varying 

flow. Non-stationary airfoil theory as developed by von 

Karman and Sears (1938) and simplified by Sea rs (~941) has 

been used to determine the lift on a blade element. The 

torque produced by the lift and dr~g on a blade has been 

equated to the inertial torque of the propeller to give an 

equation of motion. 

1. Lift and Drag on a Blade 

The lift on an airfoil in arbitrary motion can be 

divided into four parts. The first, L , is due to the aver-
- - - 0 

age angle of attack as in uniform motion. The other three 

as given by von Karman and Sears (1938) are: 

a. The apparent mass lift, L1 ; 

b. The quasi-steady lift, L 2 ; 

~. The lift due to the vorticity in the wake, L 3 . 

·If the mot-ion of the airfoil is sinusoidal, Sears 
i 

(1941) has expr essed the latter three as 
I 

L = 7T t2 dp 
l 4 p ~ dt (3-l) 

( 3-2) 

(3-3) 

where p is the mass density of the fluid, £ is the chord of 

the airfoil, p is the velocity of the blade perpendicular 

to the flow velocity R, C(v) is a complex function of v the 

reduced frequency of oscillation wt/2R , which contains a 
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phase shift between the vertical velocity p and the lift, 

and w is the angular frequency of the wing oscillations. 

The lift due to the average angle of attack may be written 

(3-4) 

where a is the angle of attack (a must be small). 

The assumptions made in the derivation of equations 3-l 

through 3-3 are: (a) the fluid is incompressible and non-

viscous, (b) the flow is two~dimensional, (c) the amplitude 

of the sinusoidal airfoil oscillations is small enough that 

the wake can be considered to be flat, and (d) the Kutta 

condition applies. When the non-stationary lift equations · 

are applied to a propeller blade, these conditions are not 

met because: (a) the fluid is viscous, (b) the blades are 

of low aspect ratio, and therefore the flow is not two-

dimensional , (c) the wake is not flat, but spiral, and 

furthermor e the wake from one blade can cause interference 

velocities at the one following, changing the lift on it. 

B~cause of these conditions, each of the terms of the lift 

e~uation for a propeller blade is modified by multiplying 

by a coefficient which is assumed to be a function of U and 

w. 

The equation for the lift on a blade at a radial 

position r is 

dL = np£{C 0 (U,w) R 2 a + c1 (U, w) ~ dp + 4 dt 

(3-5) 
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where c 0 (IT, w) , c1 (IT, w), c 2 (IT, w) , and c3 (IT, w) are the modi-

fying coefficients for the corresponding lift equations 

3-1 through 3-4. 

The drag on the blade eleme nt at r is 

- 2 -dO- pR £ C0 (U, w)dr, (3-6) 

where c0 (IT, w) is a mean-velocity and frequency d e pendent 

drag coefficient . 

2. P ropeller Blade Equation of Motion 

A radial element of a flow meter propeller blade may 

be treated as a flat plate subject to mean and fluctuating 

flow velocity components parallel to the propeller axis, and 

a mean and a fluctuating motion perpendicular to the axis. 

Figure 1 shows this situation from outside the flow field 

while Figure 2 shows the flow situation with a v~J~city of 

(-2nn r) superimposed perpendicular to the axis, where n 
0 0 

is the rotational speed of the propeller corresponding to 

a mean velocity IT. 

The effective instantaneous velocity at an angle e to 

IT is 

R = IT;cos e + u cose + 2nnr sine (3-7) 

where 
-1 2nn r 

tan 0 
6 ------ (3-8) 

IT 

The effective instantaneous velocity of the plate per-

pendicular to R is 

p = - (2 nnr co se - u sine) (3-9) 

(p is positive downward) . 
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The torque on th~ propeller is ba lance d by its 

inertial torque, thus the equation of motion of the pro-

peller may be writte n 

Ro 
s J r ( dL cos 8 - dD sin 8 ) (3-10) 

Ri 

where pm is the mass density of the propeller, J is its 

polar moment of inertia, s is the number of blades, and R· 
l 

and R
0 

are respectively root and tip blade radii. 

Using equations 3-5, 3-6, 3-7, 3-9, and the fact that 

a = (S-8), where S is the blade pitch angle , equation 3-10 

becomes 

where 

m 

u' = 

p ' = 

M1 = 

M2 = 

n-n 
0 

u/U 

Pm 
-p 

du' 
M5(u')2 + M6u' + M7 dt + M8 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

Ro 1 sC1 rr 
~ {2p'J + J ( £r cos8) 2dr} -2- (3-15) 
n tJ2 R. 

0 l 

2rr s R 
f 0 £r2 cos8{c 2 [1-c 3 (1-C~ + 

UM1n
0 

R. 
l 

2C
0 tan 2 8 2C 0 ( S-8) tan8}dr -

Tf 
(3-16) 



~8 = 

20 

c 
D · 2 ( ) · }d -; sln e + c 0 s-e slne cose r 

R0 J 2 ~ 5 I £r 2 cos e{c 2 [1-C3 (1-C) 
Un

0
M1 Ri 

cos2e -

2 sin e [ c 0 ( s-e} cose - c~ sine] }dr 

s 

s 

CD 
cose sin e + 

7T 

Ro £2r f c 1 --4- sine cose dr 
R· l 

R I o 
R. 

l 

CD 
£r {C 0 (s-e) - tane}dr. cose 1r 

(3-17) 

(3-18) 

( 3-19) 

(3-20) 

(3-21) 

(3-22) 

In equations 3-15 through 3-22 the coefficients C, c 0 , c1 , 

c2 , c 3 , and CD are equal to those with the same subscripts 

in equations 3-5 and 3-6, with the IT and w dependency 

understood. Thus, the coefficients M1 through M8 are func-

tions of IT and w, as well as being functions of propeller 

geometry and density. 
I 

If the quantities R0 and l/n
0 

are of the same order of 

magnitude , the coefficients M3 , M4 , and M5 will be of the 
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s ame order of magnitud e as M2 a n M6 , and if u ' and m are 

small with r e spec t to o n e , the t e rms containing rn 2 , (u ') 2 , 

and u ' m may b e d roppe d from the equ a tion o f motion. If thi s 

is done, equation 3- ll b ecomes 

(3 -23) 

Equation 3-23 is a linear first order differential equation 

with the modifying parameters b e ing functions of me a n velo-

c ity and the f req ue ncy of the velocity fluctuat ions. The 

prope ller and its associated flow p attern may be t hc ught of 

as a linear system being excited by a sinusoidally varying 

input quant i t y . The coef ~ ici ent M8 must b e identically 

zero , b e cau s e w_en u ' =O n =n and m= O which in equation 
I 0 I 

3- 2 3 yi e lds M8 ;0 . The coe ffici en t M7 in the second term on 

the right of equation 3 -23 represent s the acceleration sen-

sitivity of the propeller as discussed by Sc huyf (19 6 6). 

Equations of motio n of the s ame type as ?-23 were found by 

Plate (1967) and J epson (1964). 

C. Freque ncy Re s ponse of the Propeller 

As wa s pointed out in section B, the propeller and its 

associated flow system may be thought of a s a linear system . 

The response of a linear system to a time varying signa l is 

d etermined by i ts system function or frequency response 

f unction H( w). As is d emonstrated in the following section , 

the frequency response funct ion c an b e dete rmined analyti-

c ally i f the differential equation of the system is known. 

The r esponse function may be d etermined xperimentally by 
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e xciting the system with a sinusoida l input and measuring 

t he output amplitude and phase shift. 

The uni t i mpulse function is defined by Bracewell 

(19 65 ) as : 

0 ( t ) = 0 t "I 0 
(3 -24 ) 

00 

f a· ( t ) d t ·- 1 • 
- oo 

The response of a linear system at time t to a unit i mpulse 

o ccurring at t = 0 is t he unit i m ulse response function, 

h ( t) . 

Following Lee (1960) , t he sinusoidal input and output 

f l . b . . l (, i u.J t] o a 1near s ystem may e wr1tten respect1v e y Re lEi e . 

and Re fE e i wt] where E . and E are the ~omp. lex input and l 0 l 0 . . 

output amplitudes r espectively , i = ~' and Re signifies 

t h e real component o f the quantity i n brackets . . The system 

function i s then defined as 

H( w) 
I 

E 
0 

E. 
l 

( 3 - 25) 

so tha t Re(E
0
etwt] = Re ~( w ) Eieiwt] . Lee shows (p. 3 29) 

that H(w) is t he Fourier t ransform of h(t), 

00 

H(w) = J h( t } e-iwt dt. (3 - 26) 
- oo 

The deriv at ive theorem for Fourier ·transformation (Bracewell , 

19 65) states that t e ·Fourier transform o f the der ivative 

o f a fu nction is the product of i w and t h e Fourier t ransform 

o f the function itse lf, that is 
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00 • 

J f' (t)e-lwt dt = iw F( w) ( 3- 27) 
- oo 

where 

00 

J f( t ) e-iwt dt F (w) (3 -28 ) 
00 

Using the above definiti6ns and equations 3-26 and 

3~ 27, the system function for th~ system described by 

equation 3-23 can be found quite e~sily~ If the driving 

function u ' i n equation 3-23 is the unit impulse o ( t ), then 

m is the unit i mpulse response func~ion ( t ) ·and equation 

3-23 becomes 

( 3-29 ) 

., 

If both sides o f equation 3-29 are Fourier trans formed , 

equation 3-30 result s . 

00 00 

J ~~ e iwt d t + J M2he iwt dt 
-oo -oo 

f 
00 00 

M6 ~ e -iwt d J do -iwt 
u t + M7 dt e dt (3 - 30) 

-oo -oo 

Since M2 , M6 , and M7 are functions o nly of U and w, they may 

be taken outside the . integral , and using equation 3- 26 and 

3 - 27, equation 3-30 becomes 

(3 -31 ) 

or 

H ( w) = . (3 -32 ) 
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In e uations 3-16 .and 3-20 , the quantities c0 (s 8) and 

c0 / n will be s mall rith respect to the quantity c2 ~-c3 (i-c~ . 
Ignor ' ng the former two quantities and noting from figure 2 

t a tane = 2Ti r n
0
/U.:. nr/15 B , i t is een that M2=M6 . M2 i s 

c omp ex becau~e it contains the coefficient C(v); it may 

b e written 

( 3 -33 ) 

were y is the phase shift and IM2 1 the magnitude of the 

coefficient M2 . Using equation 3 - 33 and rationalizing the 

d enominator , equation 3 - 32 becomes 

1 + 
H(w) 

( . w ) 2 Slny + TM;T 
( 3-34) 

I t is o ften more convenient to h ave the system fu ction 

d ividea into its m gnitude and phase com onents. I n this 

c ase , equation 3 - 34 becomes 

H( w ) = I H(w) I e i ¢ ( 3- 35) 

where H ( w) i~ the a solute value of the system function 

and ¢ is its phase shift. From equation 3 - 34 it is seen 

that 

M d (] !'~I ) 4M1+ ( TM~ I) 32M7 ( l+M7 ) siny+ ( IM~ I) 2 [< l+M ) 2 

+ 2( sin 2 y-cos 2 y ) M7 J + (I M~ I) 2 ( l+M7 ) siny + 1}'> 

I H ( w ) I -- M/{cos 2 y + (siny + ]M;I) 2
} 
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-1 ¢ = t an 
1 + I H~I ( l+M7) siny+ (I M~I ) 2M 7 

If M7-o and y= O, equations 3 - 36 reduce to 

-1 
IH(w) I = l/l l+ ( w/wn ) 2 and cp =tan w/ wn . 

(3-3 6 ) 

( 3 - 3 6a ) 

Equations 3 36a give the system function of an o rdinary 

fi rst order system in which M2 = IM2 1=wn i s r ea l. wn is d e-

f ined as the natural frequency of the first o rder system; 

i t i s the angular frequency at which the amplitude ratio 

h as decreased to 0.707 . 

If M7=0 but y~O, equations 3-36 become 

I H ( w) I = 1 I/ cos 2 y + ( sin y + w I I M 2 I ) 
2 and 

-1 ¢ = t an 
w - m c osy 

1 + IM;I siny 

a nd if Y= O but M7~o, they become 

w 2 
1+ (M7 TM;T) 

j H(w) I = 

a nd 

-1 
¢ = t an 

and 

(3 - 36 b ) 

(3 - 36c) 

From equation 3-36c i t is seen that i f the coefficient M
7 

d ominates the behav ior of the system, the amplitude ratio 

j H ( w) I becomes constant for w/ IM 2 1 l arge, while from 

3 - 36b, if t he coef fic i ent IM2 1 dominates , the amplitude 
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ratio decreases with the first power of w/I M2 1, for l arge 

v alues of this par ameter . 

Although the differential equ a tion of the system was 

derived for sinu so ida lly varying input v e locities , the 

system equation can be used to evaluate the response of the 

propeller to turbulen t velocity fluctuations. This is · 

because tur bulence c a n be thought of as consisting of the 

linear combination of an infinite number of sinu soida l 

v e locity fluctu at ions of infinite sima l amplitude , each 

varying in angular frequency from its neighbor by dw. This 

is the standard Fourier integral spectral analysis approach 

to the study of turbulence. The system equation can be used 

to compute the input spectrum from the output spectrum , 

since as shown by Lee (1960) , 

S ( w) = jH( u_, ) 1 2 S .. ( w ) 
00 ll 

(3 -37 ) 

where S (w) is the spectrum of the output of the system 
0 0 

and S. ·. ( w) is the spectrum of the input. 
ll 

I 

Implicit in 

equation 3-37 is the assumption that the velocity fluctu a-
• tions are unifo rm over the entire width and length o f the 

propeller. The effects o f deviations from this assumption 

, are di scussed in the next section. 

I n summary, equation 3 - 34 is the system equation of a 

flow meter propeller and it s associated flow. The im or-

t ance of the coefficients M2 and M7 in the system function 

can be determined by examining the high frequency asymptote 

of the abso ute value of the system function IH(w) I. The 
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system function must be determined ex er imentally , due to 

the deviations of the actual flow co n itions from those 

a ssumed in the l ift equa tions ( 3~1 through 3-4 ). Fina lly, 

t he ou t ut spectrum can b e corrected for the f requency 

r esponse of the ropellcr if i ts system equation is known , 

a nd if the velocity fluctuations are uniform over t he 

width and length of the propeller . 

D. Spatial Averaging 

Equation 3-23 was derived under the assumption that u ' 

was uniform over the l ength and width of the propeller bl ade . 

I n turbulent flow this is not the case , and the system 

r esponds to a "propeller averaged velocity". The velocity 

we ighting function c an be derived f rom equation 3 -2 0. 

. ' . Using a propeller averaged exci at1on u 1 , a nd assuming 

acceleration sensitivity negligible , equation 3 - 23 b ecomes 

( w > 0) (3 - 3 8 ) 

where from equation 3 20 
I 

R £/ 2 1 s 0 
' ~ 

J ({/2 u 'dx J u l = ---.--- I: rG(U, w , r ) dr~ 
n 2 M i = l R . 

0 1 l 

( 3-39 ) 

I n ~quation 3-39 , 

G (IT , w, r ) = C 2 [ 1-C 3 ( 1-C ~ sin 8 ( 3- 40 ) 

and t he r dependency is indicated because 8 may be found 

fo r a given r and U from the mean v e locity calibration curve 

o f the propeller . 
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Because the out ut s ~ctrum is quite easily corrected 

fo r the f requency respons e of the propeller ( through equa-

t ion 3-3 7), and because the spectrum of axial velocity 

f luctuat ions is of great interest in t.e analysis of turbu-

l ence, the possibility of correcting the s ectrum for the 

s patial averaging effect of the propeller is investigated 

i n this s e ction. 

The time autocorrelation of the propel er average d 

v elocity is 

l im 
T-+oo 

1 T 
2T J u{(t) u{ (t+T)dt 

- T 

where T is the sampling time. 

Using equation 3 - 39, equation 3-41 b ecomes 

s 
R ( T ) = 1 1 

where 

s 
L: 

j = l 

T 

( 3-41 ) 

£/2 
J 

( 3 -42 ) 

lim 1 J • ' T-+oo 2rf uk (x 1 , r 1 , t ) u. (x 2 ,r 2 ,t+T ) dt. 
-T J 

( 3 -43 ) 

Rkj is the autocorrelation between the point velocities at 

t he point (x 1 , r 1 ) on the kth lade and the point (x 2 , r 2 ) o n 

the j th blade. The value of Rkj for x 1 =x 2 and r 1=r 2=0 for 

any two blades is the true autocorrelation of the point 

v elocities at the propeller axis. With the p resent state of 

knowledge of turbu ence , it is impossible to write a general 

expression for Rkj" 
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The spectrum of the propeller averaged velocity s11 ( w) 

i s obtained by Fourier transforming R11 ( T), 

00 

= f 
-oo 

Using equation 3-42, e uat ion 3-44 becomes 

1 

where 

s 
= L: 

k= l 

s 
L: 

j =l 

£/ 2 
f . 

x 1=-t / 2 

(3 -44 ) 

( 3-45) 

00 

f - i wT Rkj ( x 1 , x 2 1 r 1 , r 2 1 T ) e d T • ( 3-4 6 ) 
00 

sk j is the s ectrum of the point velocities at the points 

(x l, rl ) and (x2,r2 ) o n the kth and j th blades , respectively. 

The value of skj for x 1=x 2 and r =r =0 1 2 for any two blades 

i s t he point spectrum of the axial velocity fluctuations at 

t he propeller axis. Since it is the transform of Rk j ' it 

i s impossible at the present time to obtain a general 

e x ression for Sk j. 

Expression 3-45 may be written 

s l l( w) = n, ( w) S ( w) 
~ 

(3 -47 ) 

where S (w) is the point spectrum o f the axial velocity 

f luctuations at the propeller a x is and 



s 

3 0 

s 
L 

j = l 

Ro 
I 

r 1=R. 
] _ 

£/ 2 
I 

x 1 =-£ / 2 

£/2 
I 

X = £/ 2 . 2 

skj _( X 1 1 XL 1 r l 1 r 2 1 W) 
( ) r 1 r 2 G(IT, w ,r ) G(IT , ~r 2 )dr 1 dr 2 . Skj O,O , O,O, w 

( 3-4 8) 

As ectral recovery efficiency ~ ( w ) may b e defined as 

n ( w) ( 3-49 ) 

n( w) ma y e o btained experimentally for a p articular p rope l-

l er and turbulen t flow field f rom com ar i son of the p ro-

peller av~ ruged spectrum to t he s ectrum of a probe which 

i s sma 1 enough to have neglig ibl e spatial averaging p rob-

l ems, such as a hot film anemometer . 

Using equations 3 -4 9 and 3 -47 , equation 3 - 37 becomes 

(b ecause IH( w)l 2 c onta ins the f actor IM6 1 in the numerator ) 

o r 

S ( w) = IH ( w) 1 2 n ( w) S( w) 
0 0 

S( w) = S ( w) IH ( w) 1- 2 n- 1 ( w) 
1 0 0 

(3 - 50 ) 

(3 -51 ) 

Equation 3- 51 is the means by which the point spectrum c an 

b e recovered frpm t he output spectrum o f a p ro e ller meter . 

Both IH (w) I and n( w) will h ave to b e determined experimen-

t ally, the former due to i mperfect knowl edge of the fl ow 

fi eld n ear three-dime nsional airfoils with spiral wa e s , 

a nd the latter because of incom ete knowledge of the space-

t ime correlation of the axia v e locity fluctuations. 
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Ch a ter IV 

XPERIMENTi\L EQUIP MENT AND PROCEDURES 

The go a ls of the exper ime ntal portion o f this study 

a re: ) t o evaluate the system fun c tion H (w) fo r thr.e 

a x ial flow mete prope llers, b ) to determine the spectral 

recovery efficie ncy n ( w) for severa l o en-channe l flow 

situations , for the same prope llers , and c) to use the 

r esults of a and b to evaluate the turbulence in o pen 

c hannel flows in the field. 

The prope lers were mo nted o n a special meter body 

which produced thirty pulses pe r revolution. The pulses 

were converted to an ana og signa l which could b e recorded 

e ither on magne tic t a e or o n a str ip cha r t. The sy stem 

f nction was determined by a x ia ly o sci llating the p r opeller , 

with a known angular f requency and am litude , while towing 

it through s ill water . The out ut signa l was r ecorded on 

a : strip chart so the am litude r at io and phase shift could 

. b ~ determi ned . The spe ctra r ecovery efficiency was 

determined~by dividing the system-function-corre cted ·output 

s pectrum by a hot-film anemometer cpectrum for the same 

o pen channe l flow. Eva luation of n ( w) as a function of the 

r atio of the longitudina l macroscale to prope ller diameter 

and an energy distribution p arameter was atte m ted. 
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A. The Flo\ Me cer n As sociated Electronics 

The ro ellers u sed were standard Ott Minor pro e llers , 

num ers 1, 1 - 3 , and ?-3. The dimens :ons of e rope l l ers 

are: 

No. Diameter Pitch 
( i n ) ( i n ) 

1 1.9 7 1. 97 
1 -3 1.1 8 1. 97 
2-3 1.18 3.9 4 

Pitch , here , indicates t he dvance of t e p r opeller per 

r evolution. The 1 roe er ' s a c omponent p rope ler w ich 

s enses o nly t e corn onent o f t e flow velocity para l el to 

t he axis of t e p r o e l er , up to an angle of deviation of 

3 0° o f t e tota l ve ocity vector from the di rec ion of t e 

p ro e ller axis . 

The meter ody was construe ed for t e u.s . Geologica l 

Survey by the Colora o State nivers ity ngineering esearch 

Cen er ma chine s o . It cons i ts o f a repeller ounting 

aft w ich ides i n t wo stainl ess tee l bearings , a thi r ty -

toot ed ar fi~ed to t e shaft , an n e ectro e oun~ed 

i n he case i rec ly v t a gcnr , ee fi ure igure 

ows t e ro c l ers n the etcr body di s ssem l e . In 

o eration , t e eter case i s f il e with wa ter , nd as the 

· af -urns c nges in csistance e re ro uce between the 

.p ro e an t e gear s he t eet ove y t e r o e . Thi s 

p ro uces hirty pu ses er evo tion o t e s a ft . e 

r esiscance c anges betw e n ec o e end gear m l ' tu e-

o u ate a wen~y kiiz carr i er signa l ro uce by a Mimo sa 
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apparatus which i s manufactured by Waterloopkundig Labora-

t orium, De lft, Holland (Waterloopkundig Laboratori~m , un-

d ated ). The Mimosa con erts the ampl itude modulated signal 

into a square ave with the f ecuency at which the teeth of 

the gear pass the electrode . The amplitude fr equency re-

s onse of the Mimosa i s determined by the time constant of 

the differentiating circuit which is 10- 4 s ec . This provides 

an amplitude-frequenc y r esponse curve which is flat well be-

yond the range of concern of the pro e ller amplitude-

frequency response so that no correction is required for the 

Mimosa am litude-frequency response. 

For all o f the wo rk described herein , except the ste -

velocity experiments , the signa l from the Mimosa as fed to 

a Hewlett-Packard 5212A counter (Hewlett-Packard , 1963). 

The counter has a frequency response range of 2 Hz to 300 

k Hz and the display time is variable down to o ne milli-

s econd . The counter was operated in the one-period sampled 

mode . The response of the out ut of the c ounter to changes 

i n frequency in this mode of operation is limited by the 

period l ength (one to six milliseconds, depending on 

velocity ) and the di splay time (approxima tely two milli-

s e conds ). For this work , the longest time constant would 

b e about eight milliseconds . This i s adequate uncom ensated 

frequency response for use with the prope llers of this study . 

The two parts per million error in t he 1 00 k Hz c rystal 

standard contributes a measuremen er or o f about ± one per-

c ent for the one-period mode , and for the frequencies 

encountered in this study . 
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hen the counter was used , it was us~d i n combinat ion 

with a Hewlett-Packard 580A digita -to-analog converter 

(Hellett-Packar , 196), so the counter output could be 

recorded on a stri chart or magnetic tape recorder . The 

t ime constant of the 580A _·_s . l millisecond, and the accurac 

i s 0. 5% of full scaJ.c or better. 

The stri chart reco rder used was a rush Mark 280. 

I t has a full scale res onse flat to thirty-five Hzr c hart 

s peeds t .o 2 00 mrn per sec, and a sys ·tem accuracy o f 0. 5% of 

fu ll scale (Brush Instruments , undated ). The strip c art 

r ecorder was used in the portion of this study in which 

the system function was determined, and in t he step velocity 

experiments. 

The magnetic t a e r cor er used in the spatial aver-

a ging portion o f this tudy was a Consolidated Electro 

dynamics Co rp. PR-3300. The tape trans ort speed u sed was 

3 0 ip s . The fre uency res onse at this c eed i s flat from 

D. C. to five kHz, t he accuracy i s ± 0.5 db, and the full 
I 

s cale signa l to noise r atio i s 46 db (Consolidated Electro-

dyn amics Corp . , undated ) . Th e analog root mean square 

voltage eter u sed i n this por ion o f the tudy was the 

Disa 55D35. The f requency res onse of this meter is flat 

a ove 2. 5 Hz, and down 3 db at 0. 5 II z. 

In the step i nput ex eriments , the counter and d igita l 

t o analog converter could not be us e due to erratic be-

havior at zero frequency (infinit er iod) . I n thi s phase 

o f the study , the nalog signal was o tained using a 
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Hewlett-Packard SOOB electronic fr e quency me ter. The SOOB 

has a time constant o f five milliseconds , which rovides 

adequate f requency r~ sponse fo r the prope llers of thi s study, 

accuracy is ± 2% of full scale (Hewlett Packard , 19 55 ) 

B. Flow Meter Mean Velocity Calibrat ion 

The p ropellers and U.S. Geo logical Survey meter body 

were c a ibrated to determine t he r e lation between output 

fr e quency in Hz and mean flow velocity by towing them through 

still water . The curves obtained in this fashion for the 

three rope lers are shown in figure 5. The stability o f 

the instrument i s shown by the points obta ' ned from towing 

tests performed after the experi~ents described here . 

C. Determination o . the System Function 

In the case whe re the coeff icient M2 of the first 

o rder differential equation 3-23 is frequency dependent , 

it i s n e cessar y to invest igate bot the amplitude ratio 

l ~ ( w ) I and the phase shift ¢ to completely describe the 

s~stem fu nction . This c an be done by com aring the system 

output to ~ts input when the excitation function is sinus -

aida . The sinusoidal excitation used in this study was 

p roduc ed by oscillating the flow meter sinusoidally as it 

was towed through still water. Prior to he towing experi-

ments , an attempt was made to perform similar experiments 

in which the sine motion genera tor was clampe d to the walls 

o f a flume and the flow meter was o scillated in an on coming 

flow. This type of experimentation p roved unsuccessful due 
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to the i mpossibility of distinguishing the lo frequency 

velocity fluctuations produced by t he sine motion gener tor 

f rom the turbulent v e locity fluctuatioilS o f the flume flow . 

When M2 of equat ion 3-23 is frequency ind e e ndent , the 

s ystem function can be com letely determined by evaluating 

t he response f the propeller to a step input in v e locity . 

Expeiiments of his nature have been performed to com a re 

natural frequcnci s determine d in this a y to those obtained 

f rom the sinus oida l excita ion e xperiments. 

A pro lem related to the determination of t he sy stem 

f unction is the problem of determining mean velocity in he 

presence o f turbulence. The possibility that a propeller 

f low me ter over-registers the me a n flow velocity i n flows 

o f high tur ulent intensity was checked by compar ing t e 

output velocity of a propel ler mete r to the velocity o f a 

t owing c art while the meter was being towed and oscillated 

a t a known fre uency and r a dius . 

1. Sinusoida l Excitation Experiments 

To investigate the system funct ·on of a propeller , a 

f low field must be produced which v ar i es sinusoidally yet 

i s i nstantaneously the same over the entire l ength and 

width of the propeller. This type of flow field i s diffi 

c ult to p roduce in water, so the sinusoidal excitation of 

t he propeller was produced by o scillating the flow meter 

a s it was towed through still water . This is an extension 

o f the usual flow meter calibration technique of towing 

he flow me er at a nown constant velocity through still 
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water. That this procedure is justified can be shown from 

an examination of the basic ideal fluid equations f .rom 

which the differential equation of the system was derived. 

The equations for the lift on a propeller blade were 

derived assuming frictionless, irrotational, incompressible 

flow. The equations which must be satisfied for this type 

of flow are (Sears, 1960): 

(4-1) 

( 4-2) 

where e is the velocity potential, q is the magnitude of 

the velocity vector, p the pressure, p the fluid density, 

and v the body force potential. 

The flow situations which must be considered are: a) 

the velocity of the flow past a propeller which rotates but 

does not translate varies sinusoidally about some mean 

value, and b) the propeller moves through the stationary 

fluid with some mean velocity about which it oscillates 

sinusoidally. 

For these two cases the boundary conditions on e at 

the body surface are identical, therefore, from equation 

4-1 the flow patterns are identical. The instantaneous 

lift on the propeller is the integral over its surface of 

the pressure term on the left of equatio.n 4-2. Since the 

flow patterns are the same, the only difference in the p/p 

terms of the two cases must come from p . Since p is a 
co co 

constant with respect to integration over the propeller 



38 

surface, it drops out of the solution for the lift on the 

propeller, and the lift on a propeller blade is the same in 

both cases. Thus the towing procedure is justified. 

The sine motion generator consists of a circular disc 

tapped to receive a pin at radii variable from 0.109 to 

2.000 inches. The pin drives a slotted yoke which is 

attached to the flow meter support rod. The disc is rotated 

by a shaft driven by a variable speed DC motor. As the disc 

rotates, the pin drives the yoke and meter support rod 

longitudinally in pure sinusoidal motior . The lateral 

motion of the pin is lost in the slot in the yoke. The sine 

motion generator is illustrated schematically in figure 6, 

figure 7 shows the bottom of the disc and yoke, and figure 8 

shows a side view of the entire generator. 

The displacement x of the sine motion generator pin 

in the direction along the meter support rod may be expressed 

as 

( 4-3) 

where r 1 is th~ radius of the center of the pin as measured 

from the center of the disc, w is the angular velocity of 

the disc, and t is time. The velocity v of the meter sup~ 

port rod relative to axes tied to the sine motion generator 

is then 

v = wr1 coswt, ( 4-4) 

and the amplitude of the velocity fluctuation produced by 

the generator is 2wr 1 . 
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From an examination of equations 3-15 and 3-16, it is 

seen that the coe fficient M2 can be expected to be _highly 

mean veloci ty dep ende nt. If the ratio 

sc1 1T 

{2p' J + -2-
~ J (ir cose) 2 dr} 
Ri ( 4-5) 

is insensitive to mean velocity, M2 will be directly pro-

portional t o mean velocity. 

If the coefficient M2 is real, it is called the natural 

frequency of the propeller. Jepson (1964) predicts from an 

equation of moti on similar to 3-23 that the natural fre-

quency of a propeller will be directly proportional to the 

mean velocity. He uses the results of Higson (1964) to 

show that t his i s indeed the case. Higson used step-

velocity exp eriments similar to those described later in 

this chapter. Because of the expected mean velocity de-

pendency of the natural frequency of a propeller, system 

functions were evaluated at four different mean velocities 
• 

for each of the three propellers used in this study. 

Corresponding to the usual definition of the turbulent 

inten~ity u' as the root mean square of the turbulent 

velocity deviations from the mean velocity, a velocity 

fluctuation inten sity v', due to the sine motion generator, 

may be defi ned as the root mean square of v in equation 4-4, 

or 

( 4-6) 
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At large v' to mean velocity ratios, the propeller blades 

can be expected to approach a condition of zero lift, or 

stall. In this case, the lift equations used in the deriva-

tion of chapter three are no longer applicable. When this 

happens, it might be expected that the measured system func-

tion would become, at least in part, a function of the in-

tensity. To evaluate the effect of velocity fluctuation 

intensity on the measured system function, s~stem functions 

were measured for three or four sine motion generator radii 

for each propeller and mean velocity investigated. 

The system function was determined for a particular 

mean velocity and sine motion generator radius by towing the 

flow meter through still water at that mean velocity while 

at the same time oscillating it with the sine motion gener- . 

ator at several known angular frequencies w. As shown in 

figure 9, the towing tank was Colorado State University's 

200 foot long by eight foot wide by four foot deep flume. 

The towing vehicle was the electrically powered instrument 

.carriage of this flume. 

As the flow meter was towed, the signal from it was 

demodulated by the Mimosa apparatus. The demodulated signal 

was fed to the Hewlett-Packard digital-to-analog converter, 

and then to the Brush strip chart recorder. An analog 

velocity trace was, thus, recorded on one channel of the 

Brush recorder. The position of the flow meter was recorded 

on the other channel by recording a voltage puls~ produced 

by a photocell and pulse generator. The photocell was acti-

vated when the drive shaft of the sine motion generator 
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was at one particular point in each revolution. Due to space 

limitations, the tapped pin holes at the various radii were 

located in different angular positions on the sine motion · 

generator disc. Since the disc was fixed to the shaft, the 

position trace generation point was different for each sine 

motion generator radius used. For this reason, the pulse 

generation point was referenced to full forward position of 

the generator for each radius used in this study. The loca-

tion of the position trace with respect to the full forward 

position was determined by calibration. The calibration 

procedure involved simultaneously recording (on the Brush 

recorder} the position trace and a voltage which was con-

trolled by a microswitch which was on only when the genera-

tor was at the full forward position. From this recording, 

the phase angle between the position trace and the full 

forward .position of the generator was easily found. Figure 

10 is a typical velocity-position record. The assymetry 

of the velocity trace is due to the fact that the quantity 

recorded is inversely proportional to the flow meter fre-

quency of revolution, while the velocity is directly pro-

portional to this frequency. 

When the system function is written as in equation 3-35, 

the absolute value of the system function IH(w)l is the 

amplitude ratio, the ratio of the magnitude of the amplitude 

of the output of the system to the magnitude of the input 

amplitude. In this case, the amplitude ratio is the ratio 

of the difference between the maximum and minimum recorded 



42 

velocities to 2wr1 , the input velocity amplitude. The 

maximum and minimum recorded velocities are determined from 

the recorded trace by means of the mean-velocity calibra-

tion curve of the propeller being used. 

The phase shift ¢ of equation 3-35 is determined from 

the relative time positions (lengthwise dimension on the 

strip chart) of the maximum and minimum output velocity 

traces and the flow meter position trace. The time posi-

tions of the actual occurrence of the maximum and minimum 

velocities can be related to the position of the pulse 

trace (meter position trace) if the location of the sine 

motion generator pin at pulse generation and the direction 

of rotation of the generator are known. The phase ~hift ¢ 

in radian is 2TI times the ratio of the time deviation of 

the occurrence of the maximum (or minimum) velocity trace 

in the output from the actual time of occurrence of the 

maximum (or minimum) velocity in the input, to the amount 

of time required for one revolution of the generator. 

The system function H(w) is completely determined when 

the values of the amplitude ratio and phase shift are known 

for all w's in the range of interest. 

2. Step-Input Experiments 

Equation 3-23 describes a first order system in which 

. M2 can be complex. If M2 is complex in a linear equation 

such as 3-23, knowledge of both amplitude response and 

phase shift is required to describe the system response 

function, however, if M2 is real and constant, knowledge of 

only one parameter is required. 
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If M2 is a constant at a given mean velocity, equation 

3-23 may be written 

(4-7) 

if the acceleration sensitivity is assumed to be negligible, 

where 

( 4-8) 

If u' in equation 4-7 is a step function such that 

dn + w n = ~0 for t < 0 
dt n for t 0 . a > -

( 4-9) 

the solution to 4-7 is 

n = (1-e-wnt)n 
f (4-10) 

where nf is the equilibrium value of n corresponding to a 

step input of height a. Equation 4-10 may also be written 

n -n -w t f = e n . 
nf 

(4-11) 

From 4-11 it is clear that w is simply the reciprocal of n 

the time elapsed between the application of the step function 

and the arrival of the meter output frequency n at a value 
. -1 

such that ~nf-n)/nf = e = 0.368. 

It was expected that M2 would be experimentally dis-

covered to be complex, however, since it is much easier to 

perform step input experiments than sine function excitation 

experiments, it was hoped that it would be found that the 

complex component of M2 would be small so that the behavior 

would be esse~tially that of a first order constant parame-

ter system. In such a case, M2~1M2 j~wn and the behavior of 
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the system for a sinusoidal input could be described by 

equations 3-35 and 3-36a with w determined from step input . n 
experiments. For this reason, step-velocity-input experi-

ments were also performed on the propellers for which corn-

plete system functions were available from sinusoidal exci-

tation experiments. 

The step velocity experiments were performed with the 

flow meter mounted on the towing cart as described in the 

previous section. The step inputs were produced by holding 

the propeller immobile with a slender rod until the towing 

cart had reached a uniform speed, then instantaneously re-

leasing the propeller. This procedure effectively produced 

a step input with a height equal to the velocity of t~e 

towing cart. Due to the eratic behavior of the digital to 

analog converter at very large periods (very low frequen~ 

cies), a Hewlett-Packard SOOB frequency meter was used to 

produce an analog voltage output proportional to the fre-

quency of revolution of the flow meter. This output fre-

quency trace was recorded on the Brush strip chart recorder. 

The natu~al frequency was determined as described above by 

measuring the amount of time required for (nf-n)/nf to reach 

a value of 0.368. A typical step velocity output record is 

shown in figure 11 . 

. 3. Effect of Velocity Fluctuations on Output Mean Velocity 

A problem closely related to the one of recovering in-

formation about the structure of turbulence from the flow 

meter output is the one of recovering the true mean .velocity 
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from this output in the presence of a turbulent flow field. 

It is well known that a pitot tube registers a high_er veloc-

ity than the true mean in an intensely turbulent flow field 

(Goldstein, 1965, p. 253). It is reasonable to believe that 

a similar phenomenon occurs when a propeller flow meter is 

used to measure the velocity of such a flow. 

There has been considerable discussion in Civil Engi-

neering literature of the incorrect registra ~ ion of the 

mean velocity by flow meters in turbulent flows. As early 

as 1913, Groat reported on the relationship between flow 

velocity measurements made with cup and screw (propeller) 

type flow meters and pitot tube velocity measurements in a 

power-house tail race. He reported an average of 6% over-

registration by a cup meter and 1% under-registration 

by a screw meter; the maximum over-re~istration of the cup 

meter was 25% and the maximum under-registration of the 

screw meter was 4%. Carter and Anderson (1963) report con-

siderably smaller differences between discharge measurements 

made with the same two types of meters on the Mississippi 

River at Vitksburg. They conclude that the Price (cup) 

current meter is not noticeably affected by naturally 

occurring stream turbulence. 

Two recent French publications show that there is an 

over-registration of the mean velocity by propeller type 

flow meters in high intensity turbulent flows. In the first, 

Castex and Carvounas (1962) report discharges measured at 

various distances behind a grid with 0.13 ft square .bars 
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spaced 0.33 ft o n c enters. The grid was located in an 

open channel flow bout 13 ft wide and 13 ft deep. An . over-

registrat i on as h · ~h as 13.6% was reported. In the second 

publication, Chaix (1962) reports tha t he generated his 

fluctuating veloc it i es by oscillating a meter in an oncoming 

flow. In this f as ion he generated effective turbulent 

inten~ities as h~ h as 40%. According to his results, the 

over-registration ~s less than 1% for intensities as high 

as 20%. At intensAties of 35 to 40%, the over-registration 

is 5 to 6%. dependi g on the flow meter being tested. 

An analytica1 evaluation of the effect that the fluctu-

ating axial velocity components have on the reported mean 

velocity of a prope.ller flow meter has been presented by 

Plate (1967). He eveloped an equation of motion similar 

to the one developed in chapter three of this paper and 

solved it. for a s mall amplitude sinusoida l velocity fluctu-

ation. His results indicate that a propeller flow meter 

should over-register by an amount proportional to the square 

of the ratio of t he amplitude of the velocity fluctuation 
• 

to the mean velocity. 

Tests of the type reported by Chaix (1962) were made 

on two of the propellers used in this study. The equipment 

was the same as i n section one, except that the counter 

was set ta manual c ount mode. To determine the deviation 

of the reported mean velocity from the true mean velocity, 

at a particular i ntensity of velocity fluctuations, the 

total number of r e v olutions of the propeller was obtained 



47 

in two . situations. In the first, the number of revolutions 

in 100 ft was obtained as the meter was towed at a given 

mean velocity but without oscillation. In the second, the 

number of revolutions in the same distance and at the same 

mean velocity was obtained with the meter oscillating axially 

at a known frequency and radius. The difference between the 

number of propeller revolutions in the two cases was taken 

as an indication of the deviation of the indicat~d mean 

velocity from the true mean velocity for the intensity 

corresponding to the known frequency and radius. Two mean 

velocities were checked at three different radii and fer w's 

running to sixteen Hz for each of the two propellers. 

D. Spectral Recovery Efficiency 

Recalling the discussion in section D of chapter three, 

it is impossible to obtain an analytical expression for the 

spectral recovery efficiency n(w). There are two reasons 

for this. First, the present state of knowledge of the 

turbulent flow field is not sufficient to predict the 

values of the autocorrelation of the longitudinal velocity 

fluctuations at the various points on the propeller blades. 

(Indeed, one component of this function is what it is de-

sired to measure.) Second, even if this autocorrelation 

were available1 the flow field in the vicinity of the pro-

peller blades is not well enough understood so that one 

could obtain the lift and drag coefficients necessary to 

compute the spatially averaged autocorrelation. n(w) can 

be obtained, however, for a particular flow field and 
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propeller by dividing the system function-corrected ordi-

nates of a power spectru111 of the propeller angular velocity 

fluctuations by the ordinates of a power spectrum of the 

same flow fie ld obtained from a point velocity sensor. 

That is, f~om equation 3-50 

n (w) = 
S (w) 
00 (4-12) 

(H(w) j 2 s (w) 

Such an approach was used in this study, wherein the point 

velocity sensor was a hot film anemometer. The hot-film 

anemometer may be treated as a point when its dimensions 

are considered relative to those of the significant scale 

parameters of the turbulence and relative to the dimensions 

of a propeller. If the low frequency portion of the spec-

trum of the propeller fluctuations is unaffected by spatial 

averaging, then it is possible to fit an empirical spectrum 

function to this low frequency portion and extend it to 

the higher frequency portion thus avoiding the use of n(w) 

curves. This approach was also used, but again, its 

validity must be judged on the basis of a comparison of the • 
power spectra so obtained with corresponding ones from the 

hot film anemometer. In a particular type of turbulent flow, 

the spectral recovery efficiency would be expected to be a 

function of the ratio of propeller diameter and/or length 

. to one or more of the standard length scales of the turbu-

lence, as well as a function of the angular frequency of 

fluctuations w. The flow in which the spectral recovery 

efficiency was investigated was a large scale rough . boundary 



49 

open channe l f l ow. The propellers used were the three f o r 

which syste m function information was obtained. They are 

described in section A. 

1. The Hot -Film Anemometer 

The s t andard which was used to produce the spectra of 

turbulence for the computation of the spectral recovery 

e~ficiency was the hot-film anemometer. There has been 

considerab le use of the hot-film anemometer recently as a 

tool for t h e e v aluation of turbulence in water flows, see 

for example, Richardson and McQuivey (1968), McQuivey (1967), 

Raichlen (1967), and Dell'Osso (1966). The general advan -

tages and disadv antages of the use of the hot-film anemo~e-

ter in turbulent water flows are discussed in section A c: 

chapter two. 

The ho t -fil m probe used was a Thermo-Systems parabo_~c 

wedge with an equivalent diameter of .004" and a length o= 

.04". The self balancing bridge was the Thermo Systems 

model 1050 Anemometer Module. It was used in conjunction 

with a Thermo Systems 1051-6 Monitor and Power Supply Mod·-le 
.. 

and a 1057 Signal Conditioner Module. The frequency re-

sponse range of the anemometer module is DC to 80 k Hz a nd 

the output noise level corresponds to a 0.05% equivalent 

turbulent int~nsity. The output of the anemometer was 

. recorded on the CEC PR-3300. 

Because the diameter of a hot-wire sensor is small i n 

comparison with i ts length, the only dimension of the wire 

which must be considered when evaluating the spatial 
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averaging effect of the sensor is its length. Frenkiel 

(1954) showed that a hot-wire behaves as a point velocity 

sensor for measuring turbulent intensities if the quantity 

(lwf)y) 2 is small, where lw is the wire length and Ay is 

the lateral microscale of the longitudinal velocity fluctu-

ations. This argument can be extended to the hot-film 

probes used in this study. If local isotropy is assumed, 

Ay can be inferred from the measured power spectrum from 

and 

f f 2 S(f)df 
0 

(4-13) 

(4-14) 

where A is the longitudinal microscale of the longitudinal X 

velocity fluctuations, S(f) is the normalized power spectrum, 

and f is frequency in Hz. It will be shown in chapter five 

that (lwfAy) 2 <<1 for all cases considered, therefore, the 

assumption that the hot-film probe is a point velocity 

sensor! is justified in the cases cited here. 

The quartz•coated hot-film probes h~ve adequate fre-

quency response for use in measuring turbulence in water. 

The manufacturer claims a frequency response to 70 k Hz for 

the probes described above. Richardson et al. (1967) 

showed that the turbulent intensities measured in air by a 

·0.002 inch diameter hot-film were the same as those measured 

with a 0.0002 in hot-wire; while the intensities measured 

with a 0.006 in film were only five to ten percent low. The 

equivalent diameter of the probes used here was 0.004 inches, 
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and the frequencies encountered in water are lower than 

those in air, therefore, the frequency response of the 

probes used is considereo adequate. 

The drift problem mentioned in chapter two, section A, 

was solved here using . the techniques of Richardson and 

McQuivey (1968). 

2. Power Spectral Density Computation 

Digi~al techniques were used in this study for computa-

tion of the power spectral densities of the velocity fluctua-

tions of both the propellers and the hot-film anemometer. 

This was done for two reasons; first, digital techniques · 

make it possible to obtain reliable power spectral densities 

at much lower frequencies than with the available analog 

techniques. Second, digital techniques permit the transfor-

mation of the recorded voltage fluctuations into velocity 

fluctuations before the computation of the power spectral 

density whereas analog techniques do not. 

When using the propeller output data, intermediate com-

putations were necessary before the power sp~ctral densities · 

could be computed, due to the form in which the r~w data was 

received from the digital-to-analog converter. Because the 

counter was operated in single-period-sampled mode (section 

C-1 of this chapter), the output voltage from the digital-

to-analog converter was inversely proportional to velocity. 

Before the power spectral density of the velocity fluctua-

tions could be computed, this voltage had to be converted 

to a velocity using the mean velocity calibration curve of 
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the propeller. That is, the preliminary computation . 

required was 

(4-15) 

where A and B are the calibration constants of the propeller, 

E is the output voltage of the digital-to-analog converter, 

and K is the proportionality constant between E and the 

period of the flow meter pulses. 

The analysis of the autocorrelation and power spectral 

density (power spectrum) of the Eulerian velocity time 

series provides much of the background of the turbulence 

literature of today. The autocorrelation of the time 

series of output velocities from a flow meter may be written 

R ( T) 
00 = T1!: 12T JT u' (t)u' (t+-r)dt, 

-T o . o 
(4-16) 

where u' (t) = (u (t)-U)/IU'2 and -r is the lag time. The 
0 0 

power spectrum of this series s
00

(w) is the. Fourier trans-

form of R
00

(-r), that is 

IF -iw-r 
S
00

(w) = e R (-r)d-r. 
00 . (4-17) 

-oo 

The one sided physically realizable power spectrum function 

written in terms of frequency in Hz, f, is written 
co 

S (f) = 4 J R (-r)cos 2'!l'fT d-r,O<f<oo • 
00 0 00 (4-18) 

/"">.. The discrete data equivalent of R in equation 4-16 is R 
00 00 

where 
A 1 N-r 
R00 (rh) = N-r L u' 0 (nh) u' 0 ((n+r)h), r=O,l,2, •.. rn, 

n=l (4-19) 
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where N is the total number of points in the time series, r 

is the lag number, m is the maximum number of lags,. and h 

is the time increment between the points in ·the series. The 

discrete equivalent of equation 4-18 then becomes 

"" kf s (~) = oo m 
m-1 

2h(R
00

(0) + 2 ~ R (rh)cos (~rk) + 
r=l oo m 

(-1) ~ (mh)] 
00 

where fc is the cutoff frequency .and k = O,l,2, .•. m. 
"" 

(4-20) 

(Ben.dat and Piersol (1966), · p. 292). S is a raw spectral 00 . 

estimate, it should be smoothed by a procedure called Hanning 

(Bendat and Piersol, p. 293) 

"" "' f = 0. 5 .s
00 

( 0) + 0. 5 s00 ( ~) 

"" "' kf 2 (k-1 ) ( c 0. 5 S - fc + 0. 5 S --) + oo rn oo m 
'V 

0.25 S (k+l f ) k=O 1 2 m 
oo m c ' ' ' • • • 

"' "" ~ (f ) = 0.5 S (m-l fc) + 0.5 S (f ) oo c oo m oo c (4-21) 
• 

where ~ is called the smoothed spectral estimate, or the . 00 

spectrum~ Once soo •( f) I . I H (f) I and s (f) are known I n (f) may 

be ccmputed.: using equation 4-12. In this .study, S(f) has 

been taken to be the power spectrum of the velocity fluctu-
. • . I . -

ations as obtained from the hot-film anemometer. 

The values selected for the parameters, N, m, and H of 

equations 4-19 through 4-21 are based on a compromise 



54 

between the desired degrees of resolution and accuracy of 

the estimate of the spectral density function and the length 

of record which can be processed economically on the avail-

able computer, and on a cutoff frequency fc selected through 

trial and error, or previous knowledge of the highest fre-

quency in the process. Once fc has been selected, the time 

increment between sample points is determined by the require-

rnent that to analyze a periodic function ·one must have at 

least two samples per cycle of the highest frequency corn-

ponent, that is 

1 
h = 2f 

c (4-22) 

The resolution of the estimate is determined by the equiva-

lent band width Be of the digital filter, where 

B = e 
1 

Tmax 
1 

= mh (4-23) 

The accuracy of the estimate is determ{ned by the number of 

degrees of freedom df of the chi-square of the power spectral 

density, at a chosen confidence level. It is customary to 
• 

assume that in the interval 6f=Be the power spectrum is the 

same as that for a band width limited with noise. In this 

case, 

df = 2BeT (4-24) 

where T is the length of record, and 

T = Nh. (4-25) 

Now df controls the accuracy of the estimate, Be the reso-

lution, and T is controlled by economic factors or qomputer 
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storage limitations, and since they are related through 

equation 4-24, it is seen that a compromise must be reached 

in their s e lection. References which give a guide to the · 

selection of these factors are Roesner and Yevdjevich (1966), 
1 

or Bendat and Piersol (1966). As an example, for a confi-

dence level of · 90 percent and df =20, the true value of the 

power spectral ' density can be between 0.54 and 1.57 times 

the computed value. 

The equipment used for conversion of the angular veloc-

ity of the propeller into an analog voltage signal is de-

scribed in section A of this chapter. In addition, an AC 

amplifier with a gain of 100 and a low frequency ·cutoff of 

·. one Hz was necessary to bring the output voltage of the 

digital-to-analog converter up to a level which could be 

recorded by the magnetic tape recorder. The output s 'ignal 

from the hot film anemometer was recorded directly on the 

CEC ·pR-3300. 

For the digital data processing, the recorded analog 

, signals were converted to digital magnetic tape recordings 

using the Ahalog to Digital Data Conversion System ZA-31340 

produced for the National Bureau of Standards of Boulder, 

Colorado by Electronic Engineerin~ - ~~ompany of California. 

The primary components of this system are the EECO 8-1024 . 

_SI Magnetic Core Memory and the EECb 760-10 BS Analog t6 

Digital converter. The data were stored on the digital · 

magnetic tape at six bits per digit, in blocks of 540 

digits, using a format compatible with the Control Data 

/ 
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Corporation 6400 computer belonging to Colorado State 

University. The voltages were read from the analog data 

tapes to three significant figures, thus the CDC 6400 was 

programmed to extract 180 data words from each block of 

digital data information on the digital data tape. 

The data were analyzed on the CDC 6400 computer. In 

processing the flow meter data, the program consisted mainly 

of four parts: 1) read~ng and unpacking the digital data 

tape, 2) conversion of voltages to velocities, 3) standard-

izing, and 4) computation of the autocorrelation and power 

spectral density functions. The hot-film anemometer data 

processing procedure omitted step number two. The sub-

- routine for the computation of the power spectral density 

was built around equations 4-19 through 4-21. Figure 12 

shows a simplified flow chart of the program used. 

3. Computation of Spectral Recove~y _ Efficiency 

Once soo(f), S(f)' and jH(f) I have been obtained, n(f) 

can be obtained through equation 4-12. The approach which 

~ost clearly illustrates the distortion of the spectrum due 

to the spatial averaging is the one in which the ordinates 

. of S (f) are multiplied by jH(f) 1-2 and then divided by 
00 

~ 

S(f). On logarithmically scaled paper, this is a simple 

addition-subtraction procedure, see figure 13 for an example. 

Another approach to obtaining a close approximation to 

the point velocity spectrum from the spatially averaged 

spectrlim which has been corrected for the system function 

is one in which an empirical spectrum function is fit to a 
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portion of the spatially averaged spectrum which is rela-

tively unaffected by this spatial averaging. This . procedure 

must, of course, be justified by comparison of the spectra 

so obtained with point velocity spectra. An inspection of 

the hot-film anemometer spectra obtained ·in this study 

shows the -5/3 slope fairly well establishe9 over the range 

of interest here. This indicates that one should fit a 

spectrum . function of the type suggested ~y von Karman (1948) 

S(f) = 
4L /Ul X OC 

L 
(1+(2.546~---X-) 2 ) 5/ 6 

IT loc 

(4-26) 

where IT is the local mean stream velocity and L is the loc . x 
macro length scale in the flow direction. The macroscale, 

formally defined using Taylor's analogy, is 

however it is more easily obtained from the f = 0 ordinate 

of equations of the type of 4-26 (Raichlen, 1967) . This 

approach eliminates the necessity of computing separate • 
spectral recovery efficiencies. 

4. Flow Parameter Dependency of Spectral Recovery Efficiency 

It is expected that the spectral recovery efficiency 

for a particular propeller is a function of the size and 

shape of the eddies of the flow exciting the ' propeller. For 

a particular shape of eddy, it should be a function of the 

ratio of some characteristic size of the eddies to a 
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characteristic dimension of the propeller. Because the 

longi·tudinal velocity fluctuations are of concern, it would 

seem that the characteristic eddy scale should have some 

relation to the longitudinal velocity fluctuations. Char-

acteristic scales of the longitudinal velocity fluctuations 

are L , L , and L , where L has been defined in equation 
X y Z X 

4-27. L and L are defined as y z 
00 00 

L = I Ru(y) dy and L = I R ( z) dz y z u 
0 0 

(4-28) 

where 

lim 1 T u' (x ,y ,z ,t)u' (x ,y +y,z ,t) 
R (y) I 0 0 0 0 0 0 = 2T u T-+oo -T u' 2 

dt 

and (4-29) 

1 . 1 T u' (x ,y ,z ,t)u' (x ,y ,z ,+z)t) = 1m I o o o o o o 
T-+oo 2T -T u' 2 

wher~ x is the coordinate in the direction of flow, y is in 

the flow depth direction and z is perpendicular to the first 

two. Either the propeller diameter or length is a conveni-

. ent length parameter describing the scale of the propeller. 

Their dimensions are generally of the same order of magnitude. 

Assuming two-dimensional flow, a convenient eddy shape 

, parameter might be the ratio L /L . In an isotropic turbu-y X 

lent flow, this ratio has a value of 0.5. The work of 

Laufer (1951) indicates that this ratio is even smaller than 

0.5 in shear flows of the type in which it is desirable to 

use the propeller flow meter. ~rom this discussion, it 

appears that an important parameter defining the flow 
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dependency of n(f) might be d/L , where d is the prope_:er y 

diameter. 

Unfortunatefy, while a good estimate of Lx is easil J 

obtained from the syste m function corrected power spectr~l 

density of the propeller, Ly must be obtained from a more 

difficult a nd t i me con suming measurement involving two 

sensors for which propellers are not suitable unless L ~s y 

very large. 

Hinze (1959) p. 105 shows that 

R (y) = u 

(e + e )2 - (e - e ) 2 
0 y 0 y 

4e' e' 0 y 

(4-30) 

where e
0 

is t he fluctuating component of the voltage of 

the sensor located at y = 0, e the fluctuating componen~ . y 
at y = y, ·the overbars indicate a time averaging procedu::-e, 

and the primes indicate root mean square values. This t :_: pe 

of measurement has been made in flows similar to the ones 

of interest here by Dell'Osso (1966) and Laufer (1951). 

Their results are presented in the next chapter of this 

study. · j · 

·•' ' / .r 

·Since Ly is difr'icult , tc( measure, it will not often be 

available as a basis ~or the functional behavior of n(f), 

so some more readily available ~caling paramet~r should te 

selected. One such measure is the scale L which is eas~ly 
X 

·obtained from the power spectrum . ./Fortunately, there is 
/ 

already a s ma l l amount of information available about t h e 

relation betwee n Lx and Ly for the flow .of interest here ~ 

Tha use of Lx as a basis for the functional behavior of -( f) 
......... -
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is discussed in the next .chapter. Another parameter which 

might give a basis for the functional behavior of n(f) ·is 

some physical scale of the flow which is known, at least 

approximately, to determine the scale of turbulence. Such 

measures are bar size or spacing in grid generated turbu-

lence, pipe diameter in pipe flow, or channel depth or 

width in open channel flow. Finally, if one is certain 

that the scaling of the flow is such that the low frequency 

portion of the propeller spectrum is undistorted by spatial 

averaging, one can simply fit an empirical curve to this 

portion of the spectrum and avoid entirely the need to use 

a spectral recovery efficiency. 

E. Conversion of Voltage Fluctuations 
. to Velocity Fluctuations 

As explained previously, the angular velocity of the 

propeller rotating in a velocity field is converted by the 

instrument system into an analog voltage inversely propor-
I 

tional to the instantaneous flow velocity. Similarly, the 
I 

hot-film anemometer instrumentation system produces a vol-
• tage which is directly proportional to the instantaneous 

flow velocity. Once this voltage has been recorded, or 

, analyzed, say by a root-mean-square (rms) voltmeter, there 

remains the problem of converting the vol~age fluctuations 

back to velocity fluctuation~. One method of . converting 

voltage fluctuations to velocity fluctuations is to assume 

that the m~an velocity calibration curve applies also to 

the instantaneous voltag~-velocity relation for small 
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fluctuations. This method will not work, however, when the 

voltage fluctuations are analyzed using a rms volt meter. 

In this study, when rms meter analyses or hot-film anemome-

ter power spectrai density computations were made, the 

method presented by Richardson and McQuivey (1968) has been 

used to convert voltage fluctuations into velocity 

fluctuations. 

The use of the method of Richardson and McQuivey (1968) 

for either the hot-film or the flow meter involves five 

assumptions. These are: 

1. The velocity vector U can be expressed by , a mean 

value U and the fluctuating components u, v, and w. 

2. The propeller (hot-film) is sensitive only to · the 

mean value and the fluctuating component of the velocity 

in the mean flow direction. 

3. The relation between mean voltage and mean velocity 

can be used to convert voltage fluctuations to velocity 
' ' 

fluctuations. 

4. The change in the slope dE/dU of the calibration 

. curve is small over the range of the velocity fluctuations 

•encountered during a measurement. 

5. The root-mean-squares of the small vol tag.e flue-

tuations e' and the small velocity fluctuations u' are 

_interchangeable with the differentials dE and dU. 

Richardson and McQuivey (1968) show that all these 

assumptions are justified in hot-film anemometry. The only 

arguments which must be modified for the propeller flow 

-
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meter are those for assumptions two and three. That assump-

tion two is valid f or a propeller flow meter has been proved 

in section A of chapter three. Assumption three implies 

that small velocity fluctuations are followed ideally by 

the propeller. Due to inertial and spatial averaging, this 

is not the case. Thus this procedure is incorrect when 

applied to propeller flow meters to the degree that inertial 

and spatial averaging effects prevent the achievement of 

assumption three. This means that the intensities measured 

using this method will be too small by the fraction of the 

area between the propeller output velocity power spectral 

density and the true power spectral density of the turbulent 

flow phenomenon. As long as this is realized, it is per-

missible to use this method to convert propeller measuring 

system output voltage fluctuations to velocity fluctuations. 

As will be shown later, the loss of turbulent energy due to 

spatial and inertial averaging is relatively constant over a 

wide range in power spectral density energy distribution 

parameters so that correction for the loss of energy in open 
• 

channel turbulence is relatively simple. 

Richardson and McQuivey (1968) show that under the 

above assumptions the relation between vqltage and turbulent 

velocity root-mean-squares may be written 

u' = 
aU 
dE 

(4-31) 

where U and E refer to the mean velocity-mean voltage cali-

bration curve and dU/dE is evaluated at the mean velocity 
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of the measurement. The calibration equation of a propell~r 

in terms of the digital-to-analog converter output voltage 

may be written 

B ·rr = A + 
t p 

= A + B 
KE 

(4-32} 

where £ = 1/f, f is frequenriy of propeller revolution, p 
and K is a proportionality constant between propeller period 

t and voltage E. Differentiating equation 4-32 with re-p 
spect to E, one obtains 

dO -B = (4-33} I 

This is the relation used in equation 4-31 for conversion of 

voltage fluctuations to velocity fluctuations for propeller 

flow meters. The value of dU/dE used for the hot-film ane- · 

rnometer is obta~ned by graphical differentiation of its 

mean velocity versus voltage calibration curve. 

The root-mean-square voltage meter used in this study 

was the Disa 55D35. It has a low frequency cut off point 

of 0.5 Hz, and a high frequency response flat well beyond 

the range of frequencies of interest in this study. 
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Chapter V 

In this chapter is a discussion of the results of exper-

imental measurements made on and with Ott minor propellers 

l, 1-3, and 2-3. One group ~f experiments was designed to: 

1) evaluate the dynamic behavior of the system which con-

sisted of the propeller rotating in a spatially uniform 

velocity field, and 2) evaluate the spatial averaging effect 

of a propeller being used to measure a particular natural 

flow field which was, in this case, a rough boundary open 

channel flow. In the second group of experiments, the re-

sults of the first group were used to interpret the power 

spec~ra and relative inten~ities of the longitudinal veloc-

ity fluctuations in several field situations. 

A. Dynamic Behavior of the Propeller-Flow System 

This subgroup of the first group of experiments was 

designed to evaluate the dynamic behavior of a propeller in 

. a spatially-uniform but time-varying flow field. Sinus-

oidal excitatio~ experiments were used to determine the 

entire system function H(w). Step-input experiments were 

used to see if the results of the sinusoidal excitation 

tests could be reproduced in a simpler fashion. High 

velocity fluctuation intensity experiments were made to 

·check the range of validity of the linearization assumptions 

made in the derivation of the equation of motion. The 

results of the entire subgroup of experiments are discussed 
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with respect to the applic a bility of the model de~cribed by 

equation 3 - 11 , and to t he de sign of propellers wit~ a high 

frequency respons e . 

1. Sinusoidal Excita t io n Expe r im~ nts 

As e xpla i ned in chapte r IV, s e ction C-1, the output 

signal from the f low me ter via the instrumentation system 

was recorded along with a position trace on a strip chart 

as shown i n figure 10. These two traces along with cali-

bration information relating the position trace to the full 

forward position of the sine motion generator contain all 

the informat ion necessary to obtain the system function of 

a propeller if the recorder chart speed and generator radius 

are known. The instantaneous output velocity is determined 

from the flow chart ordinate using the mean velocity cali-

bration curve, that is 

B u = A + KE I ( 5-1) 

where A and B are calibration constants, E is the recorded 

voltage, and K is a proportionality constant between E and 

the flow me~er period. The absolute value of the system 

function I H( w) I is determined from 

u - u . max m1n = --2 wr
1 

I H (w) I 

where r 1 is the sine motion generator radius, and 

s w = 21T -L 

(5-2) 

(5-3) 

in which S i s the chart speed and L is the distance between 

position pulses. The phase shif t s of the occurrence s of 
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the output maximum and minimum velocities ¢ and ¢ . are max mln 
determined from 

L 
~ = max 2 n _ ~ + n 
"'max --L- "' p 2 

q,min = 2n - cp p 
TI 

2 

(5-4) 

where L and L . are the distances from the position max mln 
pulse to the occurrence of the maximum velocity in the out-

put, positive from right to left (in the direction of in-

creasing time, figure 10) and where ¢ is the phase lag p 

between occurrence of the position pulse and full forward of 

the sine motion generator. The true input maximum velocity 

occurred when the generator pin was one-fourth of a revolu-

tion ahead of full forward. This is the reason for the plus 

sign on the n/2 in the first of equations 5-4 anc the minus 

sign in the second. The phase shift used in this study was 

the average of ¢max and q,min· The actual solution of equa-

tions 5-2 and 5-4 was computerized so that the data analysis 

simply required transferring from the chart to IBM cards the 

ordinates of the•maximum and minimum velocities and the 

abscissas of these points and the position trace. I H (w) I 
and q, were taken to be their averages over six or more cycles 

of the generator. Their standard deviations were generally 

of the order of 0.05 for IH(w) I and 0.10 for ¢ . 

To determine the mean velocity dependency of the system 

function, it was evaluated for four mean velocities for each 

of the propellers. To evaluate the intensity effect, three 

or four sine motion generator radii were used for each mean 
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velocity and propeller. The results of the IH(w) I measure-

ments on the 1, 1-3, and 2-3 propellers are presen~ed in 

figures 14, 15, and 16. These same results are given in 

figure 17 as IH (w/w ) I in comparison with the first order n 

model given by e quation 3-36a. In this case, wn has been 

defined to be the w for whi~h the experimental amplitude 

ratio of the propeller-flow system is !H(w) I = IH(wn) I = 
0.707. This is in agreement with the first order system 

definition of w from equation 3-36a. Similarly, figures n 

18, 1g, and 2 0 present the individual ¢ curves for these 

propellers and figure 21 shows the same information in com-

parison with a ¢ defined by equation 3-36a with the wn as 

indicated on t he graphs. 

The natural frequency defined here as the angular fre-

quency at which the experimental amplitude ratio has de-

creased to 0.707 is shown in figure 22 as a function of 

mean velocity. This figure will be discussed at length 

later in this section. 

Examination of figures 17 and 21 shows that the actual 

system equa~ions of the propellers tested here deviate con-

siderably from the first order constant coefficient model 

described by equations 3-36a. 

One factor which is quite noticeable is the systematic 

increase with decreasing mean velocity of the ordinates of 

the jH(w/wn) jcurves of figure 17, at a constant value of 

w/w . This is an over registration of the amplitude ratio n 

curve with respect to the first-order, constant-coefficient 
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model. As shown for s e l e cted points on figure 15a and d, 

the sine motion genera tor relative intensity v'/U at the 

larger generator radii exceeds 0.1 over a large portion of 

the amplitude rat .i o c u rve s. At a constant radius and w, 

the intensity increases as the mean velocity decreases. 

Referring to the work of Plate (1967} (discussed in chapter 

IV) it is tempting to speculate that the apparent over 

registration is due to the fact that v'/U is outside the 

range of validity of the small amplitude assumption made in 

simplifying equation 3-11. If there is to be an effect of 

v'/U on the amplitude response, it must enter through the 

term M5 (u') 2 of equation 3-11. From equations 3-13, 3-15, 

and 3-19 it is seen that M5 (u'} 2 a fr (r1 w) 2 • For w constant, 

it is evident that a change in U from 2.0 to 5.0f/s should 

change M5 (u') 2 to 0.4 times its previous value, while a 

change of r 1 from 0.109 in to 0.969 in should cha~ge this 

quantity to 79 times its previous value. Since the effect 
I 

of varying r 1 at a given w should be much more pronounced 
I 

·than the effect of varying IT, it is clear that if there is 
~ 

no discernible difference between experimental points ob-

tained for different sine motion generator radii r 1 at high 

'v'/U the effect of the term Ms(u') 2 on !HI is ~egligible, 

and the speculation of a significant v'/U dependency of IHI 
is not justified. An examination of figures 14 through 16 

shows that there is no persistent trend in variation of !HI 
which can be attributed to the different radii, thus v'/U 
is not an important factor in determining the behavior of 
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IHI for the ranges of r 1 and w used. Furthermore, the work 

of Plate {1967) predicts a v'/U effect on the mean output 

velocity. As will be discussed later, this effect is 

actually present. The presence of a v'/U effect on mean 

velocity does not, however, necessarily imply that such an 

effect should influence the amplitude response. 

The above described systematic deviations from a first 

order constant parameter model for IHI could also be pro-

duced if the differential equation contained a non-negligible 

acceleration sensitivity inversely proportional to mean 

velocity. Assuming for simplicity that y = 0, the vari-

ation of IH(w) I with w/IM2 1 when the acceleration sensitiv-

ity M7 is significant is given by 

(5-5) 

(equation 3-36c). From figure 2, and from the calibration 

equation of a propeller, and because the calibration con-

stant A is generally small, 

~wn0r tans = • 

Using equation 5-6, equation 3-21 becomes 

s~t 2 c R 2 = (15B) 2 1 f o r dr 
1T 2 Ri [<l~B)2 + r2] 

(5-6) 

(5-8) 

and it is assumed that the virtual mass coefficient c1 and 

the blade chord £ are not functions of radial position on 

the propeller blade. Note that equation 5-7 does not 



70 

predict an inverse mean velocity dependency for the acceler-

ation sensitivity, whereas such a relationship is required 

to produce the variation of the system function with mean 

velocity that is indicated by the experimental results of 

figure 17. 

Using the propeller dimensions given in table I, the 

calibration constants of figure 5, and assuming the virtual 

mass coefficient c1=1, acceleration sensitivities as calcu-

lated by equation 5-7 are: 

Propeller 
1 

1-3 
2-3 

M7=0.704 
M7=0.786 
M7=0.820. {5-9) 

If equation 5-5 governs the behavior of the amplitude ratio 

the M7 values of equation 5-9 are the minimum values to 

which H(w) should asymptote for w/jM2 1 large. As seen 

from figure 17, the experimentally obtained values of IHI 

at high angular frequencies are considerably lower than the 

.values 1 given in equation 5-9. In addition, there is no indi-

cation in the experimental IHI curves of the reverse curva-

ture required for these curves to asymptote to some finite 

constant value. This indicates that the virtual mass coef-

ficient c1 is considerably smaller than the value of one 

assumed in calculation of the coefficients M7 in equations 

5-9 and that insofar as the propellers of this study are 

concerned the acceleration sensitivity is negligible. 

From the above discussion, it is clear that the devi-

ation of the measured system frunction from the first order-
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constant coefficient model must arise from the complex 

nature of M2 . The system function behavior is therefore 

described by equations 3-36b and not equations . 3-36a. The 

system function is, for a given mean velocity, then a func-

tion of w through the phase angle y and the magnitude jM2 !. 
The behavior of these parameters with w and U is not amen-

able to analytical prediction, so they must be determined 

by experimental methods. Once the equations 3-36 have 

been solved for y and 1M2 !, these quantities can be calcu-

lated from the experimentally determined values of !HI and ¢ . 

This was done and these quantities are plotted for the 1-3 

propeller in figures 23 and 24. The mean velocity dependency 

of jM2 1 is seen from figure 23 to follow the same general 

trend as the wn defined by the 0.707 value of the IHI 

curves. The mean velocity dependency of y seems to be 

restricted to the lower angular excitation frequencies. 

The determination of IM2 j and y from the measured IHI 

an~ ¢ curves is purely academic. The real interest here 

li~s with the IHI curves because these are the ones needed 

to correct ~he turbulent velocity - spectrum for the inertia 

effect of the propeller. Before moving on, however, it is 

interesting to discuss the general behavior of the functions 

jHI and ¢· First, the !HI curves do not deviate signifi-

cantly from the first-order model shape until !HI is less 

than 0.707. Second, the ¢ curves do not deviate signifi-

cantly from the shape predicted by this model until ¢ > 0.95 

rad. There is, however, considerable difference between 
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natural frequencies as defined by the IH(wn) I = .707 cri-

terion and as defined by a ~ (w) = .785 criterion (For ·a n .. 
first order-constant parameter system, the natural fre-

quencies so defined should be identical.). The wn defined 

by the first criterion increases systematically and consid-

erably with mean velocity (see figure 22) while that de-

fined by the second increases only slightly with mean 

velocity, and the variation is not as systematic. There 

is, apparently, then a much greate~ mean velocity dependency 

in !HI than in ~-

The failure of the experimental IHI and ~ curves to 

fit the classical first order model makes the possibility 

of prediction of system behavior from the step input be-

havior characteristics appear bleak. The behavior of the 

1M2 ! curves indicates that it will probably not even be 

possible to obtain an indication of the mean velocity be-

havior of a parameter corresponding to the w defined by n 
IH{wn) I = 0.707 from the step velocity experiments. 

2. Step-Input Experiments 

Step input experiments were performed to determine the 

possibility of obtaining a parameter to describe the behavior 

of the system when subjected to periodic excitations, but 

without the necessity of resorting to sinusoidal excitation 

_experiments. As explained in chapter IV, section C-2, a 

constant parameter first order linear system such as the 

one described by equation 4-7 should give the exponential 

response function of equation 4-11 when excited with a step 

input. 
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In this work, the parameter wn of equation 4-11 was 

determined as a function of step height (mean velocity) by 

replotting the experimental results from the strip chart 

(figure 11) on semilog paper with (nf- n)/nf on the _log-

rithmic axis. This should result in a straight line plot 

with the parameter w being the reciprocal of the time n 

intercept at which (nf- n)/nf = e-l Figure 25 displays 

typical experimental records so plotted for the range of 

mean velocities used in this study. It is noticed that the 

linearity of the results is good and without any systematic 

deviation. 

The natural frequencies determined in this fashion have 

been plotted in figure 22 along with those determined from 

the !HI = 0.707 criterion of the preceding section. The 

natural frequencies so defined are seen to be directly pro-

portional to mean velocity, and considerably different from 

those determined in the previous section. This discrepancy 
i 
I 

is due to the complex nature of the coefficient M2 . Unfor-
1 tunately, step input experiments do not provide sufficient 

~ 

output information to evaluate the behavior of such a coef-

ficient when the phase shift is as significant as shown in 

figure 24. 

It is unfortunate that the frequency dependency of the 

propeller and its associated flow system ~s so complex, be-

cause this makes it impossible to predict the behavior of 

the amplitude ratio from one relatively simple step input 

experiment and the standard first-order system amplitude 
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response function 3-36a. Instead, use must be made of sine 

input experiments which are more lengthy both to perform and 

in data reduction. In part four of this section is a dis-

cussion of a method of presentation of data from sine input 

experiments which allows prediction of the amplitude response 

function with a minimum amount of experimental work. 

3. Effect of Velocity Fluctuations on Output Mean Velocity 

The determination of the true point mean flow velocity 

from a current meter output velocity record is a problem of 

considerable importance. Among the factors causing mis-

registration of the mean velocity by a current meter are the 

presence of an appreciable velocity gradient and the presence 

of high intensity turbulent velocity fluctuations. The 

latter effect is evaluated here .by producing an artificial 

turbulence of known intensity using the sine motion generator. 

The experimental setup was as described in chapter IV, sec-

tion C-3. The quantitites measured were: the time elapsed 

in covering a known distance, sine motion generator radius 

and angular velqcity, and the total number of pulses gener-

ated by the flow meter. The propellers used were the Ott 

minor nurr~ers 1 and 1-3. 

Because it was impossible to set the towing cart veloc-

ity at exactly the desired value, the output velocity devi-

ation from the true mean was referenced to the calibration 

curve of the propeller using the true mean velocity as com-

puted from the distance covered and the elapsed time. That 

is, the percent deviation D was computed from 
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n - n 
D 100 0 c = n (5-10) 

c 
where 

u - A cart n = c B (5-11) 

and n is the average flow meter frequency. To correct for 
0 

the small deviation from the calibration curve, the average 

value of the D obtained from the w = 0 runs at a particular 

mean velocity and generator radius was subtracted from the 

results of the rest of the runs at that mean velocity and 

generator radius. In figure 26, percent deviation D has 

been given as a function of the velocity fluctuation inten-

sity to mean velocity ratio v'/U, where the velocity flue-

tuation intensity has been computed using equation 4-6. 

The results have been presented in this form because 

it is in this form that they are ~ost conveniently used for 

correcting the mean output velocity once the turbulent 

velocity intensity is known. 

There is considerable scatter in the results of figure 

26 ! especially for small ~·;U, however, this does not appear 

to be a function of either generator radius or mean flow 

velocity. The significance of this result will be discussed 

later with reference to the work of Plate (1967). 

Considering specific propellers, it is interesting to 

note that both over register the mean velocity when sub-

jected to high relative velocity fluctuation intensities, 

and that the larger-heavier numbe r 1 propeller is consider-

ably less influenced than the number 1-3. The over 
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registration of the 1-3 propeller does not exceed one per-

cent until the relative intensity v'/U exceeds 0.1, that of 

the 1 propeller does not exceed one percent until v'/U ex-

ceeds 0.2. Relative intensities as high as 0.2 should seldom 

be encountered, even in turbine outlets or in supercritical 
I 

open channel flow. 

Chaix (1962) who worked with heavier propellers than 

the ones used here reports equivalent results. As would be 

expected, however, the relative intensities producing an 

over registration of one percent are slightly higher. 

Plate's (1967) _ analysis using an equation of motion 

similar to equation 3-23, except that the squares of infini-

tesirnals were not neglected, indicated that 

fJ 2 
D (=,) = g (w) v (5-12) 

where g(w) is a function characteristic of a particular 

propeller. The analysis involves a double integration of 

the propeller equation of motion, once to obtain the in-

stantaneous valpe of m the nondimensionalized angular fre-

quency of the propeller, and once more to obtain the average 

value of this quantity. A nonzero average value of the 

nondimensionalized angular frequency indicates a misregis-

tration of the mean velocity due to the turbulence. If one 

. performs the same analysis on the equation of motion derived 

here, one finds that no misregistration is predicted, no 

' matter how large the relative intensity v /U becomes. 

Thus, the relative intensity at which the output mean 
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velocity deviates appreciably from the true mean indicates 

the end of the range of validity of the small amplitude 

assumption made in simplifying equation ?-11, at ·least inso-

far as the determination of the mean velocity is concerned. 

Arbitrarily setting a mean velocity misregistration of one 

percent as the lim{t on the range of validity of the small 

amplitude assumption, it is seen from figure 26 that this 

range extends to v'/U = 0.2 for the number 1 propeller and 

to v'/U = 0.1 for the number 1-3. 

Analysis of equation 5-12 indicates that plots of the 

form of figure 26 might be an inappropriate means of pre-

sentation of meter misregistration data. This is due to 

the fact that at the same angular velocity two different 

sine motion generator radii produce different v' values, 

while g(w) is supposedly independent of sine motion genera-

tor radius. This should lead to a multiple valued plot in 

the form of figure 26, unless g(w} is a constant. An exam-
I 

ination of figure 27 shows that g(w) is indeed constant. 
I 

In figure 27, the experimental data used in figure 26 have 

been presented as prescribed by equation 5-12. These plots 

show that for w above about six and ten rad./sec for the 1 

and 1-3 propellers respectively, g(w} is a constant. Below 

these values the behavior of g(w) is uncertain. Thus at 

least for w > 6 and w > 10 rad./sec. for the 1 and 1-3 

propellers respectively, the presentation used in figure 26 

is correct. 
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It is seen, then, that the output mean flow veloci~y of 

a propeller flow meter of the type used in this study is 

probably within one percent of the true value if the turbu-

lent intensity is less than ten percent of the true velocity. 

If the relative intensity is greater than ten percent, it 

may be desirable to correct the mean velocity for the dis-

tortion due to the turbulence. This can easily be done 

using figures of the same type as figure 26, if g(w) is a 

constant, for in this case the correction is independent 

of the amplitude of the velocity fluctuations. If g(w) is 

not a constant, a correction procedure could be worked out 

using the power spectrum to determine the amount of cor-

rection required for the turbulence in a particular band 

width. 

4. Generalized System Description and Propeller Design 

It has been demonstrated in the previous discussion 

that· the parameters of the differential equation describing 

the behavior of a propeller and its associated flow are • 
functions both of mean velocity and of the frequency of the 

exciting function. The complex nature of the coefficient, 

M2 makes it impossible to define system behavior from a 

relatively few, simple to perform, step input experiments. 

A generalized description of system behavior which would 

reduce the amount of the more complex and time consuming 

sine function input experiments which have to be performed 

would be quite welcome. Such a generalized function could 
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become a part of the program for computation of the power 

spectrum to eliminate the necessity for a separate .correc-

tion for system frequency response. 

A comparison of the experimentally evaluated system 

behavior with the values of M2 calculated from equation 3-16 

shows which factors need to be stressed in the design of 

propellers with high frequency response. The ideal would, 

of course, be a propeller with a flat frequency response 

through the frequency range of interest in water, so the 

frequency response of the system would not even have to be 

evaluated. 

Plate and Bennett (1968) found that the magnitude of 

the coefficient M2 can be presented in generalized form if 

the term IM2 1/U~ is plotted as a function of w/U. The 

ratio w/U may be thought of as a Strouhal number or reduced 

frequency from which the length dimension, which is a con-

stant for a particular propeller, has been omitted. The 
I 

observed generalized relation can, for a particular pro-

pe1ller, be written I M2 1 /lfl = n ( v) whereas the relation pre-

dicted by equation 3-16 is roughly IM2 1/U = K!C(v) I, or 

1M2!/~= u~ KIC(v) I. This means that 1) the lift coef-

ficient is inversely proportional to the square root of the 

mean velocity, or b) the virtual mass of the system is 

directly proportional to this quantity. The second alterna-

tive is unlikely, because the virtual mass is simply a volume 

of fluid which must be accelerated when the system oscil-

lates; it is not likely to change with mean velocity. It 
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is possible, however, that at the low blade Reynolds number 

of the flows about the propellers used here that the lift 

coefficient might vary approximately with the inverse of the 

square root of mean velocity (Jacobs, 1963). The relation-

ship jM2 !/~ = m(v) is given for the three propellers in 

figure 28. 

To completely describe the behavior of the system, a 

general relationship for the phase shift y mtlst also be 

found. If instead of y, as in figure 24, the function cosy 

is plotted as a function of w, as in figure 29, the depen-

dency of y on mean velocity d~sappears. This indicates 

that the slight variation of y with mean velocity in figure 

24 is probably more apparent than real. 

The use of the generalized functions jM2 j/~ = m(v) 

and cosy = n(w) makes possible the description of propeller 

system behavior after sine input testing at only one mean 

velocity. If the propeller to be tested differs markedly 

in geometry or size from the ones used here, it might be 

wise to check ·two mean velocities bracketing the velocity • 
range of interest to verify the generality of the functions 

m(v) and n(w). Once m(v) and n(w) are available, the ampli-

tude ratio IH(w) I can be computed using equation 3-36. The 

dotted curve of figure 15b was computed using equation 3-36 

and figures 28b and 29b. It fits well within the scatter of 

the experimentally measured amplitude ratios. It would be a 

simple matter to correct digitally computed power spectral 

densities for output amplitude attenuation by including the 
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experimentally determined m(v) and n( w) curves in the 

program for computing power spectral density. 

In the design of a propeller with the most desirable 

frequency response characteristics, one must maximize the 

complex natural frequency M2 . This coefficient is given 

analytically by equation 3-16 and is presented graphically 

from experimental results in figures 28 and 29 for the Ott 

minor propellers 1, 1-3, and 2-3. 

The solution of equation 3-16 requires an expression 

describing the functional behavior of case with radius r; 

this can be seen from figure 2 to be 

case = 
+ (2nn r) 2lJ; 

0 J 

(5-13) 

Upon insertion of the calibration equation of a particular 

propeller this becomes 

case (15B/n) 

Usfng equation 5-14, equations 3-15 and 3-16 become 

n u2 
0 

2 

Ro 
J 
R. 

l. 

(5-14) 

(5-15) 

( 5-16) 

where in 5-16, the effects of all terms in the brackets of 

3-16 are assumed to be averaged over r and included in C(v). 

The solution of 5-15 and 5-16 gives 
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( 5-17) 

where ~h is the hub length and tb is the blade thickness. 

The magnitudes of the terms appearing in equation 5-17 are 

given for the 1, 1-3, and 2-3 propellers in table 1. 

For a propeller of a given radius and pitch, and at a 

constant mean velocity, equation 5-17 shows that if the 

inertia term dominates in the denominator, the complex 

natural frequency is directly proportional to B; if the vir-

tual mass term dominates, the complex natural frequency is 

inversely proportional to ~B. It is recalled that ~ is the 

blade chord and B is a calibration constant of the propeller, 

determined by the pitch such that B is directly proportional 

to the pitch. If overall propeller length is a constant, ~ 

and B are related such that the product ~B is approximately 

constant. This is because dividing the pitch (advance per 

revolution) of a propeller of a certain length by a particu-

lar factor increases the blade chord of the blades on that 

propeller by approximately the same factor, if the propeller 

length is constant. Because B appears inside the integrals 

of equations 5-15 and 5-16, it is difficult to predict the 

behavior of the calculated M2 if both ~ and B are changed 

while the radius remains approximately constant. This is 

illustrated in table 1 where it is seen that for the 1-3 

and 2-3 propellers the calculated virtual mass term 
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dominates. In this case, one might expect the calculatec 

M2 's to var y from the 1-3 to the 2-3 propeller as ( ~ B) 1 _ 3; 

(~B) 2_ 3 r however, due to the presence of the calibration 

constant B ins ide the integral, the variation is opposite 

this .. 

The above two' criteria provide design guides which can 

be used in speci al cases. For example, if the virtual mass 

dominates, an increase in M2 should be obtained ·at const~~t 

pitch and radius by decreasing ~ and if the inertia term 

dominates, an increase in M2 should result if the pitch is 

increased. When designing a propeller, two other factors 

which must be considered are: 1) the greater the pitch, the 

slower the propeller turns at a given mean velocity; the 

slower a propel l er turns, the less info~mation can be ob-

tained about the flow in a given amount of time. 2) The 

less the balde area and the greater the pitch, the less 

torque is developed, so that a point might be reached wh ere 

bearing torque is important. 

Taking from figure 28 mean values of jM2 I!IT~ to be 

about 11 fo~ the 1 propeller, 11.5 for the 1-3, and 14 f o r 

the 2-3, the ratio of the measured average jM2 1 to the ca l -

culated jM2 j assuming !C( \J ) I= 1 is, as the mean ·velocity 

varies from 2.0 to S.Of/s, 0.731 to 1.160 for the 1 pro-

peller, 0.69 to 1.09 for the 1-3, and 0.68 to 1.08 for t~e 

2.3. These results are very good, considering the uncer~ain-

ties involved i n the fluid mechanics of the finite blade 

rotating system. 
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The natural frequency of a propeller can also be de-

fined as a cutoff frequency, analgous to the cutoff fre-

quency of a first order electronic filter. That is, the 

propeller cut off frequency is the frequency at which the 

amplitude ratio has decreased to 0.707 (The power passed 

by the propeller at the cutoff frequency is then fifty per-

cent of the power in the spectrum at this frequency.). In 

this case, the variation of the cutoff frequency with mean 

velocity is given by figure 22. Thus for the propellers of 

this study, at mean velocities varying from 2.0 to 5.0 ft/ 

sec, the cutoff frequency varies from 2.55 Hz to 5.58 Hz for 

the 1 and 1-3 propellers and from 5.90 Hz to 8.36 Hz for 

the 2-3 propeller. 

From equation 5-7 and the fact that the acceleration 

sensitivity of the propellers used in this study was negli-

gible, it can be concluded that the inertia term determines 

the behavior of the coefficient M1 , for propellers with the 
I 

same general geometry and size as those used in this study. 

· In thrs case, _the natural frequency or cutoff frequency can 
• be greatly increased by simply constructing propellers of a 

less dense material than the aluminum alloy used in the con-

, struction of the propellers used here. For example, if a 

plastic such as Lucite or Plexiglass which has a density 

1.2 times that of water were used to construct propellers 

identical i~ geometry to those of this study, the cutoff 

frequencies . at velocities ranging from 2.0 to 5.0 ft/sec 

should range from 5.73 Hz to 12.58 Hz for the 1 and 1-3 
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propellers and from 13.29 Hz to 18.82 Hz for the 2-3 

propeller. 

B. Correction for Spatial Averaging 

At the present state of understanding of the mechanics 

of turbulent flow, the spectral recovery efficiency as de-

fined in section D of chapter III cannot be determined ana-

lytically. It can be determined experimentally for a par-

ticular flow and propeller by comparing the propeller output 

power spectral density to that from a point velocity sensor. 

If enough of the power spectral density is unaffected by 

spatial averaging, it is possible to avoid entirely the use 

of a spectral recovery efficiency by fitting an empirical 

power spectral density curve to the unaffected portion of 

the propeller output power speqtral density. 

The power spectral densities used in this section were 

computed using the CDC 6400 computer belonging to Colorado 

·State University. The program was built around equations 

4-19 through 4-21. The raw power spectral densities for 

the various.propellers and the hot film anemometer are 

shown in figures 30 through 33. The flow conditions for 

which the power spectral densities were computed were 

established in Colorado State University's 200 foot long by 

eight foot wide by four foot deep tilting-recirculating_ 

flume.. The bed roughness consisted of 1 1/16" high by 1 1/4" 

wide by 6" long wooden blocks glued to the flume floor with 

their long dimension perpendicular to the flow. 
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The blocks were placed at the nodes of two 12" square 

grids, one displaced with respect to the other by six ihches 

along the flume and six inches perpendicular to it, so there 

were staggered rows of blocks every six inches along the 

flume. Flow parameters pertinent to .the various runs are 

listed in table 2. Correction of propeller output power 

spectral densities for propeller frequency response was 

accomplished using equation 3-36 and the generalized plots 

of figures 28 and 29. The curves so obtained are given by 

the dashed lines of figures 30 through 33. 

1. Spectral Recovery Efficiency 

The spectral recovery efficiency n(f) for a particular 

flow and propeller is calculated by means of equation 4-12 

from the output power spectral density of the propeller, 

the magnitude of the system function of the propeller, and 

the power spectral density of an ideally-responding point-

velocity sensor. As has been shown by Richardson et al. 

(1967), the hot film-anemometer has a flat frequency re-

sponse over a w\de enough range to be treated as ideally 

responding in water turbulence. The work of Frenkiel (1954) 

shows . that if (lwfAy) 2 << 1 then a how-wire (-film) anemome-

ter may be treated as a point sensor, at least insofar as 

the measurement of the turbulent intensity (or power spec-

. truro) is concerned. ·Calculating Ax from l/Ax2 =4~2;U10c b f 2 

S(f)df, assuming local isotropy of the energy dissipating 

eddies, and hence calculating Ay from Ax = /2Ay , it is 

found that (lwfAy) 2 varies from about 0.01 for run 12 to 
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0.001 for run 16. This should be sufficiently small to 

insure that the hot-film anemometer behaves as a point . 

sensor. 

The po er s pectral densities of figures 30 through 33 

were computed for a sampling time T of 50 seconds and a max-

imum lag time Tmax of 5 seconds. Using equations 4-23 and 

4-24, these quantities yield an equivalent band width Be of 

0.2 Hz and 2 0 d e grees of freedom df. The 90 percent confi-

dence limits of a power spectral density are defined such 

that 90 percent of the calculated power spectral densities 

can be expe ted to fall within these limits which are estab-

lished with respect to the true power spectral density of 

the phenomenon. Bendat and Piersol (1966), page 139, point 

out that f or df = 20 these limits are defined by curves such 

that the up er one is 1.57 times the true power spectral 

density, and the lower one is 0.54 times this quantity. 

Taking the ot-film anemometer power spectral density as 

the true power spectral density, the 90 percent confidence 

limits for t he runs of figures 30 through 33 have been shown .. 
on figure 34 along with the hot-film anemometer and frequency-

response-correcte d propeller output power spectral .densities. 

For this c omparison the power spectral densities must be 

presented in non-n ormalized form, or in the form of 

(5-18) 

where UT is the root mean square of the output velocity 

fluctuations . 
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It is noted in figure 34 that in all cases except two 

the low frequency portions of the frequency-response- . 

corrected propeller output power spectral densities fall 

within the 90 percent confidence limits on the corresponding 

hot-film anemometer power spectral densities. This indi-

cates that the deviations of the low frequency portions of 

these curves from the corresponding hot-film anemometer 

power spectral densities are probably due only to sampling 

error. For this reason, and because it is difficult to 

imagine the spectral recovery efficiency being greater than 

one, the frequency-response-corrected propeller output 

power spectral densities, before the computation of the 

spectral recovery efficiencies, have been shifted to coin-

cide with the low frequency portions of the corresponding 

hot-film anemometer power spectral densities. 

As mentioned in chapter IV, section D-4, the most 

useful scaling parameter for describing the behavior of the 

spectral recovery efficiency n(f) would probably beL , the y 
depthwise length scale of the longitudinal velocity fluctua-

tions. Unfortuhately, in most cases where propeller turbu-

lence measurements are necessary, it is impossible or at 

least impractical to obtain this parameter. It has, however, 

been measured by at least two investigators for wall shear 

generated turbulence of the type that is of interest here. 

Laufer (1951) made extensive measurements of various turbu-

lence parameters in air flowing in a . rectangular duct; 

Dell'Osso (1966) made measurements of the lateral scale in 
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water flowing in a small rectangular open channel. Some of 

the results of these investigations are presented in figure 

35. From this figure, it is seen that the measured Ly 

values occur in a range from 0.1 to 0.43 times Y the mean 

depth (the half-width of the duct in Laufer's case). If 

these results can be extended to larger scale flows, it 

might be expected that an output velocity power spectral 

density from a propeller which has a diameter d of the 

order 0.05 to 0.1 times Y would be free of spatial averaging 

effects. 

Also given in figure 35 are Laufer's results in terms 

of the eddy shape parameter L /L , where L is the longi-y X X . 

tudinal scale of the longitudinal velocity fluctuations. 

The value of this ratio in homogeneous isotropic turbulent 

flow is 0.5. Laufer's observed values in the wall shear 

generated turbulence of the duct flow varied from 0.24 to 

0.52. Taking the lower limit of this ratio to be 0.25, the 

ou~put velocity power spectral density of a propeller should 

be relatively free of spatial averaging effects if the ratio 
I 

d/L is on tpe order of 0.125 to 0.25. From the measurements X 

listed in table 2, it is seen that the quantities O.lY and 

0.25L are of the same order for the flows of this study. X 

Another parameter which might be useful in describing 

the behavior of the spectral recovery efficiency would be 

an energy distribution parameter. The quantity L ;u1 is 
X OC 

such a parameter. As can be seen from equation 4-26, the 

smaller this parameter, the broader and flatter is the 



90 

power spectral density curve of the flow. The broader and 

flatter the power spectral density, the more energy is ·con-

tained in the high-frequency, small-scale velocity fluctua-

tions. Relatively speaking, the more energy contained in 

the small scale velocity fluctuations; the less efficient 

would one expect a propeller to be, due to a mutual cancel-

lation of torque by different small eddies acting on dif-

ferent propeller blades at the same time. 

In figure 36, the spectral recovery efficiencies have 

been plotted for the Ott minor 1, 1-3, and 2-3 propellers 

in the flows of table 2. The parameters d/L and L ;U1 X X OC 

discussed above have been listed on the figure along with 

the curves to which they apply. Attempts to reduce these 

curves to a more general form using the parameters d/L and X 

L ;u1 were not successful. 
X OC 

Figure 36 shows that, in general, the spectral recovery 

efficiency decreases with increasing d/Lx and with decreasing 

The behavior of n(f) with d/L is qualitatively X 

·as expected, except for run 18 using the 2-3 propeller. For 
• 

this run, n(f) was considerably larger than that for the 1-3 

propeller, which had very nearly the same d/L . This could X 

' be due to any number of reasons that would cause the high 

frequency portion of the raw propeller output power spectral 

density to register high. For example there might have been 

a loose ground on the digital-to-analog-converter which would 

have caused increased 60 Hz interference. Another source 

of high frequency interference was the occasional operation 
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of a fork lift tractor in the vicinity of the flume. The 

dependency of n(f) on the energy distribution coefficient 

L ;u1 is seen to be quite pronounced. This is illus-x oc 
trated by comparison of the n(f) curves obtained for the 1 

propeller from runs 16 and 18. At 25 Hz, there is a four-

fold increase in n(f) with a 35 percent increase in Lx(Uloc' 

while d/L is essentially constant at 0.34. The magnitudes 
X 

obtained here for n (f) show that even ford/Yon the order 

of 0.1 or less, the spatial averaging ef~ect of a propeller 

on open channel flow turbulence can be considerable. In 

fact, at ten Hz, the attenuation factor on the power spec-

tral density varies from 0.32 times that due to inertia for 

run 12 using the 1-3 propeller ·(d/Lx = 0.48 and Lx/Uloc = 
0.163) to 3.11 for run 17 using the 1 propeller (d/Lx = 0.43 

and L ;u1 = 0.110). 
X OC 

In summary, the spectral recovery efficiency n(f) can 

be calculated for a particular flow and propeller by using 

the power spectral densities of the propeller and an ideal 

point-velocity sensor. Probably the best parameter describ-

ing the b~~avior of n(f) would be a late~ai scale factor 

d/L , but this parameter is generally unavailable. In the y 
absence of the parameter d/L , the parameter d/L , along y X 

with an energy distribution parameter L ;u1 , can be used 
X OC 

to describe the behavior of the spectral recovery efficiency. 

2. Empirical Power Spectral Density Curves 

A second approach which can be used for obtaining 

power spectral densities which are undistorted by spatial 
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averaging is the fitting of an empirical power spectral 

density curve to that portion of the propeller output power 

spectral density which is not affected by spatial averaging. 

Inspection of figures 30 through 33 indicates that in the 

frequency range of this study the hot-film anemometer power 

spectral densities of the open channel flows evaluated here 

fit quite well the -5/3 power law postulated by von Karman 

(1948) • An empirical power spectral density equation which 

becomes asymptotic to a -5/3 power law is equation 4-26. 

The easiest method for fitting such a curve to a calcu-

lated power spectral density is to use · the zero frequency 

ordinate of the normalized power spectral density. This is 

because at zero frequency, equation 4-26 becomes 

S(O) = 4L /Ul • X OC (5-19) 

Equation 5-19 gives directly, without the need for a trial 

and error solution, the parameter L ;U1 of the family 
X OC 

of curves described by equation 4-26. 

In the case of this study, however, it is impossible . . to obtain normal~zed power spectral density curves for the 

propeller output power spectral densities, because the 

spectral recovery efficiency is unknown. This difficulty 

can be overcome by using equation 4-26 in a modified form. 

Let a nondimensional frequency P be defined, such that 

p = 4L f/IT1 , X OC (5-20) 

and equation 4-26 becomes 
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s (f) = 1 
5/6 . 

1 + ( 2P) 2 
(5-21) 

4L /Uloc 
X 

This generalized curve represents all members of the family 

of equations given by equation 4-26; it is shown graphically 

in figure 37. All members of this family of curves have 

the same shape on a full logarithmic plot. Because of this, 

it is possible to obtain the parameter Lx/Uloc by matching 

the curvature of the curve· in figure 37 with that of the 

low frequency portion of an experimental, frequency-response-

corrected, propeller output velocity power spectral density. 

The parameter L ;u1 is obtained using equation 5-19 and 
X OC 

the P and f values from a section of the curves where their 

curvatures match. In the use of this procedure on frequency-

response-corrected propeller output velocity power spectral 

densities, it is assumed that the portion of the propeller 

output power spectral density used for curvature matching 

is free from spatial averaging effects. 

In table 3 have been listed the values of P, f, and L 
X 

that were obtained by matching the curvature of the curve of 

figure 37 to that of the one to two Hz range of the frequency-

response-corrected propeller output and the hot-film anemome-

ter power spectral densities of figures 30 through 33. Also 

listed is an L as obtained from the S(O) = 4L ;u1 cri-x X OC 

terion for the hot film anemometer powe~ spectral densities 

_of these figures. The discrepancies between the L 's ob-x 
tained by the curve matching and S(O) techniques as indicated 
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in table 3 for the hot-film anemometer indicate a need to 

extend power spectral densities to frequencies below one Hz 

for open channel turbulence. The fact that the curve match-

ing L 's obtained from the propeller output power spectral 
X 

dens~ti~~ are greater _th~n those obtained by the same 

method from the hot-film anemometer curves indicates that 

spat~al ave~aging has increased the slopes of the propeller 

.curves relative to those of the hot-film anemometer even in 

the one to two Hz range. 

In figure 38, the following normalized power spectral 

densities have been plotted for runs 16 through 18: 1) The 

experimental hot-film anemometer, taken from figures 30 

through 33, 2) The empirical hot-film anemometer, determined 

from S(O) = 4L ;U1 , and 3) The empirical hot-film anemome-x oc 
ter and the three propeller output velocity, determined from 

the ~x/Uloc obtained by the curve fitting procedure. 

The empirical ~urves of figure 38 do not differ markedly 
I 

in shape ~r slo~e from th~ experimentally observed hot-film 
I anemometer power spectral densities in the one to 25 Hz 

• range. However, as can be seen from the figure, in the 

range below one Hz, the empirical curves differ considerably 

, frorn_ each other. This is due to the difficulty of matching 

the curvature of the ~_emP.~~ical power spectral density to that 

of the experimental curve when the change in slope is small, 

and it points out the desirability of working with the 

strongly curved portion of an experimental propeller output 

velocity power spectral density when using the curve fitting 
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.technique to determine the parameter L ;U1 • In water X OC 

flows of the type investigated here, this requires computa-

tion of power spectral densities in the range below one Hz. 

Unfortunately, power spectral densities in this range are 

not available for the flows used here; obtaining them would 

require slightly different instrumentation than that used 

in this study. 

No really firm conclusions can be drawn about the use-

fulness of the curve fitting technique in" determining the 

parameter L ;U1 (and hence the empirical power spectral 
X OC 

density) from an experimentally-measured, frequency-response-

corrected propeller-output-velocity, power spectral density. 

Although this technique provided empirical propeller-output-

velocity power spectral densities with the same general slope 

and shape as those of the hot-film anemometer standard, the 

lower frequency (highly curved) portions of these curves are 

considerably different from each other. Thus, conclusions 

as to the validity -of this approach must await further. in-

vestigation where the lower frequency portions of the pro-

peller outp~t velocity power spectral densities are avail-

able. The technique is worth developing further, because 

its use avoids the necessity for extensive simultaneous 

power spectral density measurement using a flow meter and 

some point velocity sensor such as a hot film anemometer. 

Its use might require trial and error least squares curve 

fitting by a computer as the only practical way to obtain 

reliable values of the parameter L ;U1 . 
X OC 
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C. Turbulent Intensity Recovery 

- In many cases ~n which turbulent flow measurements are 

made, it is only the turbulent intensity u' which is neces-

sary, and not the e ntire power spectral density. It is in-

convenient and costly in these cases to have to compute the 

power spectral density and make inertia and spatial averaging 

corrections to determine only the intensity, but this must 

be done if accurate v alues of this quantity are necessary. 

Because the inertia and spatial averaging have their greatest 

effect at the high frequency end of the spec t rum (where the 

energy is lo.w anyway) it might be accurate enough in certain 

cases to take without correction the turbulent intensity as 

measured by a propeller flow meter to be the true intensity 

of the flow .. 

_ To determine under what conditions it is permissible not 

to correct the prope ler flow meter measured turbulent in-

tensity for inertia and spatial averaging effects equation 

3-50 can be integrated numerically over all f for several 

values of the p~rameter L ;u1 at several different mean .- X OC 

velocities. I n this integration, e xperimental values of the 

system function and spectral averaging efficiency can be 

used along with equation 4-26 for the power spectral density. 

The square root of the numerical value of the integral will 

·be a fraction less than one; this is the fraction e' of the 

true intensity which is output by the flow meter. In the 

case that e• is near u nity, it will usually be permissible 
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to treat the output intensity .as the true intensity ~f the 

turbulent velocity fluctuations. 

In table 4 have been listed the fractions .of turbulent 

intensity output by the flow meter as computed by numerical 

integration of equation 3-50 for several different values of 

Lx/Uloc at several mean velocities. For the L ;u1 and 
X OC 

mean velocity range of this study, the recovery ratios 

range from 0.77 to 0.89. These values are too low to be 

ignored, but it is seen that for the large range in Lx/Uloc · 

and mean velocity, the range of the recovery ratios is small. 

This should allow one to make a reliable estimate of true 

intensity from the propeller output intensity. The impor-

tance of the energy distribution parameter is again seen 

from table 4, where it is noticed that for the 2-3 propeller 

at L ;u1 = 0.17 the recovery ratio is smaller than for 
X OC 

Lx/Uloc = 0.11, even though the spectral recovery efficiency 

is much higher for the former value of this parameter. 

D. Field Measurements of Turbulence 

1. I Power Spectral Densities 
• The primary use for propeller meter measurements of 

turbulence is in field situations where conditions are so 

severe as to damage a hot-film anemometer probe, or where 

water conditions are too dirty for its drift free operation. 

·some preliminary field measurements were made using the pro-

peller flow meter of this study, both for comparison with 

hot-film anememeter measurements, and to evaluate the per-

formance of the flow meter measuring system in the field. 
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The only change in instrumentation from that described for 

the spatial averaging studies was the substitution of a 

portable Lockheed Model 417 magnet_:ic tape recorder for the 

CEC magnetic tape recorder. 

The measurements were made on the Atrisco feeder canal 

on the Rio Grande fifteen miles north of Albuquerque, New 

Mexico. The average flow conditions were: 

Depth = 1.70 ft 

Width = 56 ft 

Mean Velocity = Q/A = 2.13 ft/sec 

Discharge 203 3 = ft /sec 

Slope = 0.00057 

Shear Velocity = .177 ft/sec 

Darcy Weisbach J! = 0.055 ..L 

Mannings n = 0.024 

Bed form = Ripples and Small Dunes 

The vertical at which measurements were taken was twelve 

feet from the channel center line. The mean velocity in 

this vertical w~s 1.59 ft/sec, mean depth was 1.83 ft. 

The field measurements were all made with the Ott minor 

1-3 propeller. The propeller output velocity power spectral 

densities for the flow situation described above are given 

in figure 39. The frequency-response-corrected propeller 

output velocity power spectral densities are ~hown by the 

dashed lines of this figure. Table 5 lists the computations 

for obtaining the frequency response correction of figure 

39a from figures 28 and 29. Hot film anemometer velocity 
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power spectral densities over a relative depth range corre-

sponding to that of figure 39 are given in figure ~0. Table 

6 lists the energy distribution coefficients L ;U1 as X OC 

determined by the curve fitting technique for the runs of 

figures 39 and 40. Also given in this table are the local 

mean velocities and the scale parameter d/Lx where 

applicable. 

In table 5 it is noted that for the field measurements 

the energy distribution parameter L ;U1 of the propeller X OC 

runs varies from 0.172 to 0.248, while d/L varies from 0.26 
X 

to 0.35. Except for run 43, which has L ;u1 = 0.17 and 
X OC 

d/L = 0.35, all the field measurements have energy distri-x 
bution parameters considerably greater than those for any 

of the curves of figure 36, and even for run 43, d/L is 
X 

smaller than the values for the curves of figure 36 which 

have the same L ;u1 . This makes it impossible to estimate X OC 

the spatial averaging correction required, however, observing 

the trend of the variation of the spectral recovery 

e£ficiency with L ;u1 in figure 36, it is expected that, 
X OC 

with the e~ception of run 43, little or no correction for 

spatial averaging should be required for the frequency-

response-corrected propeller output velocity power spectral 

densities. That this is indeed the case can be seen from 

figure 41 where the frequency-response-corrected power 

spectral densities of figure 39 have been plotted along with 

. hot film anemometer velocity power spectral densities from 

the nearest available relative depth. The difference in 
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the vertical positions of these normalized power spectra is 

due to the exclusion of frequencies below one Hz from the 

propeller power spectral density, and not to propeller 

characteristics. For comparison with the spectral recovery 

efficiency curves of figure 36, a reference n(f) can be 

computed from the power spectral densities of figure 41. If 

the one Hz ordinates of the curVes of figure 41 are made 

to coincide, and choosing ten Hz as the reference frequency, 

the reference spectral recovery efficiencies are: 

H.F.A. 1-3 n(10) 
Run Run 

12 36 .97 
12 37 .60 
13 37 .72 
15 38 .48 
15 43 .58 
15 42 .32 
16 42 .46 

In all but one case, the reference n's are larger than 

the n(10) = .41 of the L ;u1 = 0.17, 
X OC d/L = 0.45 curve X 

of figure 36, but it is seen that spatial averaging correc-
1 

tion 1s still required even at these large values of 

L /IT1 . X OC 

Using the values of the energy distribution parameter 

for the propeller runs, as listed in table 6, empirical 

power spectral densities can be plotted as was done in the 

preceding section of this chapter. These curves are given 

in figure 41. The low frequency portions of the empirical 

curves in most cases agree quite well with the measure d 

hot-film anemometer power spectral densities, however, the 
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empirical model seems to have a greater slope at the high 

frequency portions than was measured in the field. It should 

be determined whether this phenomenon is real, or whether 

the field set up of the hot-film anemometer measuring 

system contained noise sources not present in the laboratory 

set up which would cause the high frequency portions of the 

hot-film anemometer power spectral densities to register 

high. If the phenomenon is real, an empirical model can 

easily be designed to fit this slope, however, from the 

mechanics of turbulence, it would be expected that -5/3 or 

higher power on the high frequency portion of the power 

spectral density should be correct. 

The results of the field measurements are encouraging 

in that they indicate that in large scale open channel flows 

it is possible to accurately measure turbulence using pro-

peller flow meters. The large values of the spectral re-

covery efficiency obtained indicate that spatial averaging 

is not a problem in turbulence measurement, using Ott minor 

propellers, over a large part of the flow depth in channels 

on the ordet of three feet deep. The major problem encoun-

tered in making these field measurements was propeller 

stoppage caused by wedging of suspended sediment between 

the propeller and the meter body or between the body and 

the propeller shaft. This problem is solvable by making 

slight meter design changes. 
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2. Turbulent I ntensities 

In addition to t he power spectral density measurements 

of this study, severa l measurements were made in _which only 

longi tudina.l turbu1ent intensities were obtained. The 

measurements were made using the propellers of this study 

and a Disa 55D3 5 root -mean-square voltmeter. In several 

cases; there are avai lable simultaneous hot-film anemometer 

intensity measu reme ts made using the rms meter and also 

digitally computed at-film anemometer intensity measure-

ments. 

The use of a propeller flow meter and an analog rms 

voltmeter to measure turbulent intensities involves two 

factors which cause easured intensities to be lower than 

those which act ual1y occur. The first factor is the reduc-

tion in turbulent energy output by the propeller meter due 

to inertial and spat1al averaging. The second is the energy 

loss due to the ana o g rms meter which has a low frequency 

cutoff of 0.5 Hz. Neither of these factors can be corrected 

for, because the exact shape of the power spectral density 

of the turb.ul.ence be.1.ng measured is unknown. Despite this, 

it is felt that a br1ef presentation of this data is in 

'order, especial ly in light of the scarcity of turbulence 

data on large sca~e rough boundary open channel flows. 

The first case 1 n which turbulent intensities were 

measured was in the eight foot flume in the flows for which 

the spectral recovery efficiencies were measured. The flow 

conditions are descr bed in table 2 and in section B of 
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this chapter. The intensity information on these flows 

has been included in table 7. The voltage root-me~n­

squares were .measured with the Disa rms voltage meter and. 

were converted to turbulent intensities using the method 

of section E of chapter IV. 

Another set of turbulent intensity measurements were 

made, using the 1-3 propeller, in conjunction with the 

Atrisco power spectral density measurements of the first 

part of this section. The average cross-section flow con-

ditions are described there. In addition to the intensities 

obtained from the rms meter, digitally computed intensities 

(which obtain the energy of the fluctuations down to zero 

frequency) have been obtained for the hot-film anemometer 

runs of this set. The mean velocity and longitudinal rela-

tive intensity profiles are presented in figure 42. The 

mean velocity used as a nondimensionalizing parameter for 

the relative intensities was the local mean. 

A second set of natural open channel turbulent inten-

sity measurements was made on the Rio Grande in the Bernardo 

Conveyance ~hannel near Bernardo, New Mexico. The mean 

cross-section flow conditions were as follows: 

Mean depth 2.80 ft 

Mean width 68.0 ft 

Mean velocity 2.46 ft/sec 

Discharge 3 468 ft /sec 

Slope 0.00055 

Shear velocity 0.222 ft/sec 
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Darcy Weisbach f 

Mannings n 

Bed form 

0.066 

0.028 

Dunes and plane with 
sediment motion 

The measurements were made using the 1-3 propeller and the 

hot-film anemometer. Both rms meter and digital intensities 

are reported. The mean velocity and relative intensity pro-

files are given in figure 43. At the measurement cross-

section, the right one-third of the channel was running in 

dunes of a height of approximately eight to twelve inches. 

The rest of the channel was in plane bed with sediment 

motion. 

The last set of experimental field turbulent intensity 

measurements were taken behind a trashrack on the inlet to 

the number one t urbine of the Gavins Point Darn on the 

Missouri River near Yankton, South Dakota. The inlet is 

completely submerged, 37 ft high, and 17 ft wide. The bars 

of the trashrack are 3/4 in. thick and eight _in. long in 

the direction of flow. They are placed parallel to the 

sidewalls of the-inlet and slope back toward the top at 

seven horizontal to 48 vertical. The measurement section 

was 28 ft behind the center of the rack. The measurements 

were taken in a vertical section on the center line of the 

rack and ranging in elevation from the center to the top 

of the inlet. Mean velocity and relative intensity infor-

mation taken with the 1-3 propeller are presented in table 8. 

The information of figures 42b and 43b gives an indi-

cation of how muc h of the turbulent energy is lost in the 



105 

propeller and rms meter, by comparison of the digitally 

computed hot-film anemometer and the rms meter measured 

intensities. The ratio of the rms meter measured to the 

digitally computed hot-film anemometer intensities can be 

defined as an efficiency e" of the propeller-rms meter 

measuring system. From figures 42b and 43b, values of e" 

range from 0.05 at y/Y = 0.7 of the center-line Atrisco run 

to 0.95 at y/Y = 0.2 of the center-line Bernardo run. A 

comparison of the rms meter measured intensities of the hot-

film anemometer and the propeller meter for the runs of 

table 7 and figures 42 and 43 gives an indication of an 

efficiency e''' of the propeller in recovering the turbulent 

energy above one-half Hz (the low frequency cutoff of the 

rms meter). Values of e' ''range from 0.1 at y/Y = 0.7 of 

figure 42b to 1.8 for y/Y = 0.40 of figure 43c. (This dis-

cussion excludes figure 43a where the propeller meter mea-

sured intensities are as large as 3.5 times those measured 

by the hot-film anemometer. This is because at large 

intensities, the peculiarities of the digital-to-analog 

converter cause the rms meter to give voltage readings • 
which are too high.) It should be pointed out that part of 

the difference between propeller and hot-film rms meter 

measured intensities in any of the runs of figures 42 and 

43 could be due to bed· form movement in the period between 

taking the propeller measurements and taking the hot-film 

measurements. This could be the reason for thee''' values 

over the lower part of the flow of figure 43c being greater 
. l 



106 

than one. It is seen that the values of e 1 11 are generally 

smaller than the e 1 calculated in table 4. This is because 

as much as 40 to SO percent of the turbulent energy of this 

type of flow is below one-half Hz where the propeller meter 

is most efficient in energy recovery but below the rms meter 

low frequency cutoff. It is seen from figures 42 and 43 

that the propeller flow meter is considerably more efficient 

in the lower 0.4 of the flow depth than in the upper 0.6. 

This indicates that open channel turbulence structure is 

much coarser in the zero to 0.4 relative depth range. 

Furthermore, the propeller was much more efficient in the 

deeper flow of the Bernardo measurements, indicating an 

increase in open channel turbulence coarseness with flaw 

depth. 

A matter open to considerable discussion in Hydraulic 

Engineering is the extent of the hydraulic equivalency of 

geometrically similar open channel flows in flumes and in 

the field. A comparison of the flow conditions for run 

·twelve in the flume to the Atrisco reach on the Rio Grande 
• 

and for run 18 in the flume to the Bernardo reach on the 

Rio Grande indicates a rough equivalency in flow depths, 

' velocities, and slopes. Comparison of table 7 with figures 

42 and 43 shows that these flow situations also have roughly 

comparable turbulent relative intensities (8· to 10 percent) 

at the same relative depth. In this case, at least, flume 

and field information are equivalent. 
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As phenomena of interest, with respect to the mechanism 

of flow in movable boundary open channels, the measured 

relative intensities of the Atrisco and Bernardo channels on 

the Rio Grande bear some comment. The bed forms on the 

Atrisco reach were ripples or small dunes (with a height on 

the order of 0.1 times the flow depth). The Bernardo channel 

was running in plane bed over the left two-thirds of the 

channel; the right one-third was in large. dunes (with a 

height on the order of one-third the flow depth) . It is 

seen from figures 42 and 43 that the relative intensities 

over the ripples and over the plane bed are about the same 

order of magnitude (8 to 10 percent) with those over the 

ripples being slightly larger, while the intensities over 

the dunes are about twice as large as either of the other 

two (as high as 16 percent) • This reflects the influence 

of size of bed form in the generation of open channel 

turbulence. 

The intensities measured behind the trashrack and 

reported in table 8 are probably too low. However, without 

• information on the power spectral density energy distribu-

tion of this type of turbulence, it is irn~rssible to say 

how much too low. The measurements were made in conjunction 

with a study to determine the effect of trashrack turbulence 

on the reported mean velocity of large Ott flow meters. 

Even if these intensities are 50 to 75 percent low, the 

work of section A-3 of this chapter indicates ·that the mean 

velocity misregistration should only be on the order of 

o ne percent. 
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In summary, the dynamic behavior of the propeller-flow 

. system in a spatially-uniform but time-varying velocity 

field is descri bed by a system function H(w) which is de-
, 

termined from sinusoidal input velocity experiments. By 

solving equati ons 3-36b for IM2 1 and cosy, a generalized 

system description is developed. · The functions IM2 1/~ = 

m(~) and cosy = n( w) are general for a particular propeller 

in that IHI and ~ need only be measured for one mean veloc-

ity in order that they can be computed for all mean veloci-

ties. The sol ution of equation 3-16 for M2 describes, at 

least qualitatively, the variation of the natural frequency 

of a propeller with U, p', t, and R. and R. The natural 
~ 0 

frequencies or cutoff frequencies of the propellers of this 

study range from 2.55 Hz to 8.36 Hz, depending on propeller 

and mean velocity. The natural frequencies of propellers 

of similar geometry to those of this study could be in-

creased by decreasing the density ratio p'. The spectral 

recovery efficiency of a particular flow is determined 

from equation 4-12, where the point-velocity spectrum is 

measured by a hot-film anemometer. The value of the spec-

tral recovery efficiency is found to depend on a propeller 

~ diameter scale factor, d/L and an energy distribution 
X 

parameter Lx/Uloc· The need for computation of the spectral 

.recovery efficiency is removed if an empirical power spec-

tral density can be fit to the low frequency portions of 

the frequency-response-corrected propeller output velocity 

power spectral density. Using the empirical power spectral 
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density, the experimental system function, and the experi-

mental spectral recovery efficiency, the recovery of the 

turbulent intensity u' is shown to be on the order of 85 

percent for the propellers of this study. For the field 

runs, the frequency-response-corrected propeller output 

velocity power spectral densities compare quite well to 

those measured with the hot-film-anemometer. The energy 

distribution parameters Lx/Uloc are larger in the field 

runs than for the geometrically comparable flume runs (0.20 

sec as compared to 0.12 sec), but the length scales L are 
X 

about the same (0.35 ft). The field relative intensities 

over ripple beds and plane beds with movement are about 

equal to those in the flume runs (eight to ten percent) , 

but those over large dunes are larger (as high as sixteen 

percent) . 

I . 
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Chapter VI 

SUMMARY AND CONCLUSIONS 

As is well known to Hydraulic Engineers, there is cur-

rently a great need for reliable turbulence measurements in 

large scale open channel flows. An instrument which has 

the required ruggedness and portability for making field 

measurements is the propeller flow meter. The limitations 

of the propeller flow meter for making turbulence measure-

ments are its low frequency response and its spatial aver-

aging characteristics. The objectives of this study were 

to evaluate these two characteristics of propeller flow 

meters and to use this knowledge to obtain reliable field 

turbulence measurements. 

A differential equation of motion for propellers was 

developed which gives a qualitative indication of the system 

behavior when subjected to a uniform fluctuating velocity 

field superimposed on a mean flow velocity. A correlation 

function was developed from the equation of motion which 

gives the spatiAl averaging characteristics of a propeller 

in a particular flow field if the statistical properties of 

the turbulence are known. Experimental evaluations of both 

the .system functions and spatial averaging characteristics 

of particular propellers were made, and the results were 

applied to field turbulence measurements with encouraging 

results. 
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Conclusions which can be drawn from this study are: 

1. If a propeller system function H(w), which 

describes the response of the propeller-flow system to a 

spatially-uniform fluctuating velocity field, and its spec-

tral recovery efficiency n(w) for a particular type of 

turbulent flow field, are known, the input power spectral 

density of the turbulent flow field can be found from the 

propeller output power spectral density using 

S 
00 

( w ) = I H ( w ) I 2 n ( w ) S 11 ( w ) • (6-1) 

2. The derived equation of motion 

( 6-2) 

describes the behavior of the propeller-flow system when 

the propeller is subjected to a spatially-uniform, time-

varying flow field. The coefficient M2 is the complex 

natural frequency of the propeller-flow system. Its magni-

~ude is directly proportional to the mean velocity, and ~t 

~s frequency dependent. For the· propellers of this study, 

its behavior is given in figures 28 and 29. The coefficient 

M7 is the acceleration sensitivity of the propeller. 

3. Sinusoidal excitation experiments indicate that· 

the acceleration sensitivity M7 in equation 6-2 is negli-

gible; thus the behavior of the propeller flow system is 

governed by the complex natural frequency M2 . 

4. The sinusoidal excitation experiments yield gener-
--J.: 

alized functions M2/U 2 = m( v ) and cos y = n( w) which can be 
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used through quati ons 3-36b to give the behavior of the 

system function H{w ) with mean velocity IT and angular 

excitation f requen cy w. 

5r Equa i on 3-16 gives an estimate of the variation 

of the quantity IM2 j , which is the magnitude of the complex 

natural frequency o f the propeller, with propeller pitch, 

radius, blade len g th , density, and number of blades. 

6. Prope2ler design for high frequency response 

involves incr asing the magnitude of the complex natural 

frequency 1M2 . This quantity can be increased by de-

creasing p' the prop eller to fluid mass density ratio, and 

by decreasing t he p r oduct £B where £ is the blade chord and 

B is a propel1er calibration constant which is directly 

proportional to propeller pitch. 

7. Propel.ler cutoff frequencies for the propellers of 

this study range from 2.55 Hz for the l and l-3 propellers 

at 2.0 ft/sec o 8.36 Hz for the 2-3 propeller at 5.0 ft/ 

sec. By constructing these propellers of a plastic such as 

Lucite or Plex1glass, with a density ratio p' = 1.2, these 

values could ~ raised to 5.73 Hz for the 1 and 1-3 pro-

pellers at 2. 0 ft/sec and to 18.28 Hz for the 2-3 propeller 

at 5.0 ft/sec . 

a:. Step input experiments, while not capable of giving 

the entire s ys e rn function, do yield a parameter which 

appears to be r elated to mean velocity in the same way as 

the natural f requen cy defined by the IH(w ) I = 0.707 cri-n 

terion of the s inuso i dal input experiments. 
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9. The propellers tested here and those tested .by 

Chaix (1962) over register the mean flow velocity when sub-

jected to turbulent velocity fluctuations. The over regis-

tration is proportional to the square of the relative 

intensity of the turbulence, as predicted by Plate (1967). 

For the propellers tested here, ·the over registration does 

not exceed one percent until v'/U exceeds 0.2 for the number 

1 and 0.1 for the number 1-3 propeller. 

10. The spectral recovery efficiencies of Ott minor 

propellers 1, 1-3, and 2-3 have been found, for a rough 

boundary open channel flow, to be highly dependent on L ;IT1 X OC 

an energy distribution parameter of the power spectral den-

sity, and to a lesser extent on the ratio of the propeller 

diameter to the turbulent length scale L . 
X 

11. The fitting of empirical power spectral density 

curves to the low frequency portions (the portions assumed 

· to be undistorted by spatial averaging) of the frequency-

response-corrected propeller output velocity power spectral 

densities is a promising method for obtaining turbulent 

velocity po~er spectral densities without having to correct 

directly for spatial averaging. 

12. The recovery of the longitudinal intensities 

using propeller flow meters generally exceeds 75 percent in 

the open channel flows encountered in this study, even 

without correcting for the spatial and inertial averaging 

effects in the spectrum. This is due to the tendency of 

open channel flow t u rbulence to concentrate large amounts 

of energy at low frequencies. 
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13. Field measurements of turbulence are relatively 

easily and accurately obtainable from propeller flow meter 

measurements if corrections for inertia and spatial aver-

aging, as developed in this study, are employed. 

The power spectral density runs on the Atrisco Feeder 

Canal above Albuquerque, New Mexico, on the Rio Grande, gave 

relatively larger energy distribution parameters L ;IT1 X OC 

(0.20 sec) than those obtained in a geometrically comparable 

flume run (0.12 sec), however these macro scales L were 
X 

about the same (0.35 ft). The field longitudinal relative 

intensities (Atrisco and in the Bernardo Conveyance Channel 

near Bernardo, New Mexico on the Rio Grande) over ripple 

beds and plane beds with motion were roughly equal to those 

rneasur~d in the flume runs (~'/IT equal to eight to ten per-

cent) _, however those over the large dunes (Bernardo) were 

larger (u'/IT as high as sixteen percent) . 

• 
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Chapter VII 

SUGGESTIONS FOR FURTHER RESEARCH 

1. One fruitful field for further research would be 

in the design of propellers for high frequency response. It 

is suspected that reducing both propeller size and density 

and increasing pitch should increase sensitivity. 

2. It is necessary that the range of the energy dis-

tribution parameter for which spectral recovery efficiencies 

are available be extended. It would ·be interesting to see 

if the spectral recovery efficiency ever becomes unity for 

the entire range of frequencies. 

3. A further development of the curve fitting tech-

nique involving extension of the power spectral densities 

to lower frequencies would probably be profitable. Using 

this approach, it might be possible to avoid using not 

only the spatial averaging correction but also the inertia 

correction for certain propellers at high mean velocities. 

4. Further wo rk could also be done in measuring the 

Reynolds 5tfesses using two propeller flow meters or using 

a rotation technique similar to that used by McQuivey (1967) 

for hot film anemometers. 

5. In really large scale flows, such as the Mississippi 

river, two propeller flow meters could be used to obtain 

lateral scales, or space time correlations as was done by 

Baldwin and Mickelsen (1963), in a turbulent pipe flow using 

hot wire anemometers. 
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6. The extreme dependency of the $pectral recovery 

efficiency on the power spectral density energy distribution 

parameter L ;u1 suggests that it might be interesting to 
X OC 

determine the variation of other turbulent flow quantities 

with this parameter. For example, it is surmised that 

L ;u1 might vary considerably with the bed form of open 
X OC 

channel flow, and that turbulent diffusion and sediment 

transport might be highly dependent on this parameter . 

• 
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. Table 1. Important terms in the calculation of the complex 
natural frequency M2 . 

2p'J 

c1 = 1.0 

R. 
~ 

R 
0 

_g,h 
_g, 

tb 
B 

s 

1 

. 0152 ft 

.0815 ft 

.133 ft 

.294 ft 

.007 ft 

.00608 ft/ 
cycle 

2 

4.08xl0- 6ft 5 

21.30UC(v) 

1-3 2-3 

.0152 ft .0152 ft . 

.0498 ft .0482 ft 

.133 ft .132 ft 

.207 ft .134 ft 

.0062 ft .005 ft 

.00628 ft/ .012 ft/ 
cycle cycle 

3 3 

8.94xl0- 7ft 5 4.55xl0- 7ft 5 

23.55UC(v) 28.90UC{v) 
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Table 2. Flow parameters of spectral recovery runs. 

Depth 
Ulocal U*=lgDS L D Y.. Slope Q/A X 

Run (ft) D s (ft/sec) ( ft/ sec) ( ft/Sec} (ft) 

12 1.33 . 7 .00048 .98 1.26 .144 .22 
16 1.33 . 7 .00457 2.91 3.92 .443 .49 

17 1.33 . 4 .00457 2.91 3.47 .443 .38 
18 2.50 . 7 .00116 2.34 2.62 . 3 04 .46 

Table 3. Length scales from the power spectral densities 
of runs 12, 16, 17, and 18. 

0locp S(O)u1 L L oc = = Run X 4f X 4 
Number Probe Pat £=1.50 (ft) ( ft) 

12 Hot film 1.04 .22 .89 
1 

1-3 

16 Hot film .76 .49 1.10 
1 1.65 1.08 

1-3 1.40 .92 
.2-3 1.12 . 73 

17 Hot film .66 .38 .48 
1 . 98 .57 

1-3 .67 .39 
2-3 1.03 .60 

18 Hot film 1.01 .44 1.26 
1 1.40 .61 

1-3 1.32 .58 
2-3 1.55 .68 
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Table 4. Calculated turbulent intensity recovery ratios. 

Propeller u loc L /U x loc e' 
(ft/sec) ( se_c) 

1 2.0 .11 .77 

1 2.0 .17 .79 

1 3.2 .11 .79 

1 3.2 .17 .80 

1 5.0 .11 .82 

1 5.0 .17 .82 

2-3 2.0 .11 .87 

2-3 2.0 .17 .84 

2-3 5.0 .11 .89 

2-3 5.0 .17 .85 



Table 5. Computation of frequency response correction for iJ=· l.68 ft/sec, 
1-3 propeller. 

f w w/U IM21/U 1M2 I 
(rad) 1 ~ (rad) 

w 1 (Hz) (1/ft)• cos 2y -siny TM;l siny+ w 
sec (ft7sec) sec TM;T IH 12 

1 6.28 3.74 7.87 .979 .145 10.21 .615 .470 1.20 
1.5 9.43 5.61 8.85 .965 .187 11.48 .821 .634 1.37 
2 12.56 7.49 9.45 .946 .232 12.26 1.023 .791 1.58 
3 18.87 11.22 10.28 .890 .332 13.3 2 1.416 1.084 2.08 
5 31.40 18.70 11.62 .786 .462 15.08 2.080 1.618 3.42 
7 44.00 26.20 12.85 .655 .587 16.65 2.642 2.055 4.92 ..... 

N 
......,J 

10 62.80 37.40 14.40 .400 .774 18.67 3.362 2.588 7.16 
12 75.40 44.90 15.60 .208 .884 20.22 3.728 2.844 8.34 
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Table 6. Energy distribution coefficients and propeller 
diameter-length scale ratios for figures 39 and 40. 

Lx/Uloc IT L Run p at loc X d/L No. Probe y/0 f=l. 5 (sec) (ft/sec) (ft) X 

36 1-3 .94 1.06 .18 1.68 .30 .34 
12 H.f.a. .87 1.22 .20 1.66 . 3 4 
37 1-3 .80 1.26 .21 1.63 .34 .29 
13 H.f.a. .77 1.00 .17 1.64 .27 
38 1-3 .67 1.33 .22 1.47 .33 .31 
43 1-3 .66 1. 03 .17 1.68 .29 .35 
15 H.f.a. .65 .62 .10 1.64 .17 
42 1-3 .58 1.49 .25 1.54 . 3 8 .26 
16 H.f.a. .45 1.02 .17 1.56 .27 

Table 7. Turbulent relative intensities from a rms 
voltmeter, flume runs. 

Run Depth IT crt;u 
No. Slope (ft) y/D ( ft/sec) Probe Percent 

12 .00048 1.33 . 7 1.26 H.f.a. 8.1 
1 3.1 

1-3 3.3 

16 .b0457 1.33 . 7 3.92 H.f.a. 7.8 
1 5.0 .. 1-3 5.0 

2-3 4.9 

17 .00457 1.33 . 4 3.47 H.f.a. 12.8 
1 5.9 

1-3 6.9 
2-3 9.2 

18 • 00116 2.50 .7 2.62 H.f.a. 7.2 
1 3.3 

1-3 4.1 
2-3 4.7 
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Table 8. Propeller-rms meter turbulent intensities behind 
a trashrack, Gavins Point Dam. 

IT 
y/~H (ft/sec) u•;u 
0.9 4.89 6.3 

4.89 3.3 

0.86 4.89 1.2 

4.89 3.1 

0.04 5.29 3.2 

5.29 5.1 

4.89 6.7 

0.0 5.08 2.6 

5.08 4.5 

5.53 3.0 

5.29 3.1 
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FIGURES 
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u u 
--------~--=- ~ 

Fig. 1. Flow situation at a propeller blade element. 

Fig. 2. Flow situation at a propeller blade element 
with a transverse velocity of -2nn0 r 
superimposed. 



~--

piece 
section 

Fig. 3. Meter body. 

Screw ( Holds meter on probe) 

Section thru ~ of body 

of teeth on gear 



Figure 4.--Propellers and meter body. 
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Fig. 5. Propeller mean velocity calibration curves. 
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..,.....--t------------~--J ~ 

Fig. 6. Schematic of the sine motion - generator. 



Figure 7.--Bottorn view of sine motion generator. 

Figure 8.--Side view of sine motion generator. 



Figure 9.--Towing tank and instrument cart. 
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,~ 

Chart Speed S = 50 mm/sec 

L 

Em in Em ox Lmin Lmox 

Fig. 10. Typical sine excitation output velocity-
position record. 



> 
E 
l) 

- t (sec) 

Fig. 11. Typical step-input excitation output record. 
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Read tape 

8 
U (I)= A + T + K . X( I) 

U(l) = U(l)-0 
.; U I 2 

A A 
Roo , R by E q. 4 -19 

A A 
500 , S by Eq. 4-20 ,4~21 

Write 
A A 
Roo , Soo 

A /\. 
or R , S 

Bypass in hot film 
anemometer runs 

Fig. 12. Simplified flow chart of computer program for 
spectral recovery efficiency ~ata analysis. 
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10 1 

-------(/) 

lo-3 ~--~----~~~~~--~----~~~~_.~~--~._~ 
.I 10 

f (Hz) 

Fig. 13. Example of graphical construction of n(f). 
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1 10 100 
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Fig. 14. Absolute value of the system function / H( w) I 

as a function of angular frequency w, 
1 propeller. 
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Absolute value of the system function 
as a function of angular frequency w, 
1-3 propeller. 
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(a) Prop. I First 

(b)Prop. 1-3 

0.1 1.0 10 

(c) Prop . 2-3 

Fig. 17. Absolute value of the system function jH( w) I 
as a function of frequency ratio w/ w , 

n all propellers. 
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Fig. 18. Phase shift ~ as a function of angular frequency w, 1 propeller. 
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