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ABSTRACT 

 
 
 

BUILDING ON SUSTAINABLE DEVELOPMENT GOAL INDICATOR 11.3.1. FOR 

IMPROVED UTILITY AND GUIDANCE 

 
 
 

The increased production of broad-coverage spatial datasets and investigation of 

these datasets by spatial analysis techniques allows for consistent examinations of 

urbanization patterns across the globe. Spatial data and analyses have proven valuable 

for sustainable urban development initiatives, including Sustainable Development Goal 

(SDG) 11 under the United Nation’s 2030 Agenda for Sustainable Development. SDG 

Indicator 11.3.1 is a geospatially measured indicator implemented under SDG 11 for 

monitoring rates of urban expansion and population growth in a specific area over a 

period of time. Current methodological approaches and data inputs may hinder the 

application of SDG Indicator 11.3.1 at certain scales and extents. The overarching goal 

of this research is to build on the utility of SDG Indicator 11.3.1 by enhancing an existing 

urban delineation method for automated function, examining urban change at the urban 

agglomeration level across broad extents, highlighting hotspots of SDG Indicator 11.3.1, 

and evaluating the impacts of the spatial resolution of data inputs on SDG Indicator 

11.3.1 and related outputs. 

In Chapter 1, we advanced an existing urban delineation method for the 

automatic identification of individual urban agglomerations across broad extents. We 

accomplished this by integrating various open-source datasets and tools with spatial 
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analysis techniques. We used this methodology to examine SDG Indicator 11.3.1 and 

additional urban change metrics for urban agglomerations in Ethiopia, Nigeria, and 

South Africa over the 2016 to 2020 period. In Chapter 2, we applied our delineation 

methodology and examined the influence of spatial resolution of land use data on urban 

delineation, urban change metrics, and urban related land use change in Ethiopia over 

the 2016 to 2020 period. The results of Chapter 1 revealed trends of urban change and 

highlighted hotspots of SDG Indicator 11.3.1 at multiple levels across the three African 

countries. Chapter 2 revealed the implications of using varied spatial resolutions of land 

use maps when delineating urban areas, assessing SDG Indicator 11.3.1 and other 

urban change metrics, and examining urbanization-driven land use change. 
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CHAPTER 1 

AUTOMATED SPATIAL APPROACH FOR ASSESSING PATTERNS OF 

URBANIZATION AND IDENTIFYING HOTSPOTS OF URBAN CHANGE IN THREE 

AFRICAN COUNTRIES 

 
 

Introduction 

 
Africa is at the forefront of global urbanization, as many of its developing 

countries experience rapid urban population growth. United Nations projections 

estimate more than half of the global urban population growth from 2019 to 2050 will 

occur in Africa, and 22 percent of the total global urban population will be concentrated 

in the continent by 2050 (UNDESA, 2019). Urbanization is being driven by various 

mechanisms in Africa, predominantly natural increase in the urban population but also 

by the reclassification of growing rural areas to urban and rural-to-urban migration 

(Awumbila, 2017; Heinrigs, 2020; Teye, 2018). An increasing urban population is leading 

to significant social, environmental, and economic changes across Africa’s urban areas 

(African Policy Circle, 2020) and is expected to drastically transform Africa’s 

landscapes, with urban land cover anticipated to expand 12-fold from 2000 to 2050 

(Angel, 2012).   

Moreover, the effects of urbanization in Africa will not be proportionate over the 

coming decades, with most urban population growth in Africa expected to be 

concentrated in smaller to intermediate-sized cities, otherwise referred to as secondary 

cities (UNDESA, 2019). Although secondary cities lack a single, universal definition, 
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they are often identified based on population, size, function, economic status, and other 

characteristics. Roberts (2014) defines secondary cities by functional traits and broadly 

categorizes them into the following three classes: 1) urban centers that are hubs for 

economic, industrial, agricultural, and governmental activities; 2) peripheral cities 

connected to a larger metropolitan area that functionally support the growth and 

development of the metropolitan area; or 3) cities located in economic corridors of trade 

and transportation (Roberts, 2014). Secondary cities have remained essential for 

facilitating national development but are often limited in their resources and 

management capacity (Laituri et al., 2021; Roberts, 2014). These changes and 

limitations further stress the importance of consistent monitoring of urbanization-driven 

changes to guide sustainable development planning.  

Various initiatives seek to aid Africa in managing rapid urban population growth 

and achieving sustainable development, including under the 2030 Agenda for 

Sustainable Development. The agenda was accepted by United Nations’ State 

Members in 2015 and is comprised of 17 Sustainable Development Goals (SDG) and 

169 targets, all aimed at improving various aspects of global welfare, with SDG 11 

confronting challenges of urbanization (United Nations, 2015). SDG 11 specifically 

focuses on making cities and human settlements inclusive, safe, resilient, and 

sustainable, and Target 11.3 under it aims to enhance inclusive and sustainable 

urbanization and capacity for participatory, integrated, and sustainable human 

settlement planning and management in all countries by 2030. SDG Indicator 11.3.1, a 

ratio of the Land Consumption Rate (LCR) and Population Growth Rate (PGR), was 

developed under Target 11.3 as a measure for monitoring rates of urban land 
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development and urban population growth over time. Researchers have used spatial 

measures to examine SDG Indicator 11.3.1 at various scales and extents to examine 

rates of urban change across the globe (Mudau et al., 2020; Schiavina et al., 2019). 

Recent studies have revealed potential limitations associated with the implementation 

and interpretation of SDG Indicator 11.3.1 (Guo et al., 2022; Nicolau et al., 2018; 

Schiavina et al., 2019) and illuminated the need for additional works that enhance 

monitoring efforts for SDG 11. 

One challenge of SDG Indicator 11.3.1 is defining the boundaries of the urban 

areas where change is to be assessed. Urban areas undertake a diversity of physical 

forms and can be defined by different characteristics, making the delineation of them 

nuanced or dissimilar depending on the techniques used (UN-Habitat, 2018b, 2021). To 

improve consistency in urban delineation for the assessment of SDG Indicator 11.3.1, 

the UN-Habitat (2018b) proposed the “functional” definition of a city, which can be 

accomplished using two methods: The Degree of Urbanisation method or the Urban 

Extent method. The former, endorsed by the United Nations Statistical Commission, 

reclassifies gridded population data into clusters based on population size and density 

thresholds (Dijkstra et al., 2021; UN-Habitat, 2018b). The Urban Extent method, 

developed by New York University in conjunction with UN-Habitat, explicitly utilizes built-

up land cover characteristics as input to identify the urban, suburban, and open space 

areas that comprise the extent of an urban area (Angel et al., 2016; UN-Habitat, 2021). 

Both methods produce similar extents for larger cities but may vary in their delineation 

of smaller cities and urban centers (UN-Habitat, 2018b, 2021). 
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Current approaches are suitable for delineating boundaries and investigating 

urban change at a focal scale (e.g., a single city), which typically requires insight on 

local settlement interactions to accurately delineate boundaries, or a more generalized 

scale (e.g., administrative unit boundary), which may not capture the dynamic 

developed spatial form of an urban area. The available urban delineation approaches 

limit the scale and extent for assessments of SDG Indicator 11.3.1, and we highlight the 

need for a methodology that allows for the delineation of multiple, individual urban areas 

across a broad extent that is consistent over time. Detecting approximately the 

complete population of urban areas across an entire country would allow for relative 

comparisons to then highlight urban regions potentially experiencing the greatest 

change as indicated by SDG Indicator 11.3.1. 

The aim of Chapter 1 was to advance the existing Urban Extent method defined 

in the Atlas of Urban Expansion and proposed for use in various SDG 11.3.1 related 

documents (UN-Habitat, 2018b, 2021) by integrating open-source datasets, open-

source tools, and innovative spatial techniques to automate the identification of 

functional urban agglomerations across national extents. Using this automated 

methodology, we could then examine urban population changes, urban land use 

changes, and spatial patterns of development for functionally connected urban 

agglomerations by calculating SDG Indicator 11.3.1 and other relevant metrics. With this 

information, we could examine urban change trends at multiple levels and highlight 

hotspots of SDG Indicator 11.3.1. 
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Objectives 

The specific objectives of Chapter 1 are to: 1) develop an automated urban 

delineation method to facilitate the application of SDG Indicator 11.3.1 at the functional 

urban agglomeration scale across the extents of our three study countries, Ethiopia, 

Nigeria, and South Africa, from 2016 to 2020; 2) quantify rates and spatial patterns of 

urban land use and population change, including SDG Indicator 11.3.1, within urban 

agglomerations to evaluate trends at multiple levels; and 3) use values of SDG Indicator 

11.3.1 to identify hotspots of urban land use expansion across our focal countries for the 

2016 to 2020 study period.  

Methods 

Study Regions 

 We selected Ethiopia, Nigeria, and South Africa as our case study countries as 

we believe they represent a diverse assortment of the political, economic, and societal 

dynamics that exist in Africa. We use open-source datasets and tools to delineate urban 

Figure 1.1: General workflow for delineating urban agglomerations, calculating SDG Indicator 11.3.1, and 
identifying hotspots of SDG Indicator 11.3.1. We examined SDG Indicator 11.3.1 and other metrics for 
Ethiopia, Nigeria, and South Africa for the 2016 to 2020 period using open-source datasets and tools that 
are integrated into the delineation approach we developed. 



6 
 

areas, calculate SDG Indicator 11.3.1 and related metrics, and identify trends and 

hotspots of change for the three study countries (Figure 1.1). 

Nigeria 

Nigeria, located in western Africa, is often recognized as Africa’s natural leader 

due to its size and wealth (Foluke & Pius Olakunle, 2019). As of 2022, Nigeria is Africa’s 

largest economy with a GDP of 477 billion and is the most populous African country at a 

population of 223 million (UNFPA, 2023b; World Bank, 2022a). Projections indicate an 

addition of 189 million people to Nigeria’s urban population from the 2018 population 

estimate by 2050 (UNDESA, 2019). Urbanization in Nigeria is expected to raise a 

myriad of challenges, making long term planning, diverse stakeholder cooperation, and 

consistent management essential for achieving desired sustainability outcomes (Aliyu & 

Amadu, 2017; Momoh et al., 2018).  

Ethiopia  

Ethiopia, located in the Horn of Africa, is one of the world’s oldest settled 

countries known for its ancient history and culture. Ethiopia covers a total of 1.128 

million square kilometers with a population of 126 million in 2023, making it the second 

most populous country in Africa behind Nigeria (UNFPA, 2023a). Ethiopia’s population is 

predominantly rural, and it remains one of the least urbanized countries in Africa but is 

experiencing rapid urban population growth. Ethiopia’s annual compound growth rate of 

the urban population ranged from 4.5% to 5.9% over the 1950-2010 period and jumped 

to 17% during the 2010 to 2015 period (OECD/Sahel and West Africa Club, 2020).  
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South Africa  

South Africa, geographically located in the southernmost portion of Africa, is 

globally recognized for its mining of metals, rich culture, diverse topography, beautiful 

landscapes, and productive natural environments. South Africa covers a total of 1.22 

million square kilometers, with over 2,850 kilometers of coastline, and elevations 

ranging from sea level to Mafadi Peak at 3,450 meters. The country comprises nine 

provinces containing 8 metropolitan municipalities and 44 district municipalities. In 2023, 

the South African population is estimated to be 60 million, with over two-thirds of the 

population estimated to be living in urban areas (UNFPA, 2023c; World Bank, 2022b). 

The population continues to rise, and it is forecasted that eight in ten South Africans will 

live in urban centers by 2030 (UN-Habitat, 2014).   

Definitions and Overview of Methodology 

We developed a methodology to automate the delineation of urban 

agglomerations and facilitate the assessment of SDG Indicator 11.3.1 at the urban 

agglomeration level across national extents (Figure 1.2). We dissect this methodology in 

the following sections, but first define important terminology and provide a general 

overview to clarify the spatial procedures we discuss.  

In regard to terminology, three spatial units are consistently referred to in our 

methods: pixels, clusters, and urban agglomerations. The base of our methodology 

relies on a land cover and/or land use map which is comprised of pixels. Pixels are the 

gridded unit of the map and represent a class of features. In our work, we focus on 

“developed” land use pixels which represent areas of human development as identified 

in the land use maps. Clusters, symbolized as polygons in spatial software, represent 
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patches of urban areas and are primarily comprised of developed land use pixels that 

have certain urban characteristics. Urban agglomerations can be made up of one single 

cluster or numerous clusters and may represent a single contiguous urban settlement or 

multiple fragmented urban settlements that are functionally linked by a transportation 

network. Urban agglomerations, also referred to as agglomerations, are symbolized as 

polygons and SDG 11.3.1 and related urban calculations are carried out at the 

agglomeration level.  

In the following sections, we are going to describe the methodology we 

developed for automating urban delineation, how we apply this methodology to our case 

study countries, and how we calculate urban change metrics and summarize spatial 

patterns of urban land use change for individual agglomerations. We then describe the 

multi-level analyses we conduct after completing these procedures, including examining 

change trends for all agglomerations and by population size class for each country, 

drawing hotspots from the largest size class within each country for focal investigation, 

and detailing how patterns of change are manifesting in one example hotspot city. 

Automated Delineation Approach 

Base Classification 

Our automated delineation methodology builds off the Atlas of Urban Expansion 

method used in the SDG Indicator 11.3.1 training module (UN-Habitat, 2018a). The 

Atlas of Urban Expansion approach employs neighborhood spatial operations using GIS 

software (e.g., ArcGIS Pro) to reclassify developed land use pixels in a land use map 

into urban, suburban, rural, and open space classes (Angel et al., 2016). This pixelwise 

classification is completed by examining the share of developed land use pixels within  



9 
 

 

the walking distance circle of a focal developed land use pixel. The walking distance 

circle is one kilometer in area and approximates a ten-minute walk from the focal pixel 

to circle’s edge. The percentage of developed land use pixels within the walking 

Figure 1.2: Automated workflow for delineating urban agglomerations. A: Developed land use 
raster. B: Developed land use raster pixels reclassified into urban (red), suburban (orange), 
and urbanized open space (green) pixels. C: Urban clusters comprised of urban, suburban, 
and urbanized open space pixels are reclassified as core (red), non-core (orange) and 
clusters not meeting relevant criteria (tan) using population thresholds. D: Isochrone maps 
linking core clusters. E: Isochrone maps linking non-core clusters to core clusters. F: Final 
agglomeration boundaries incorporating all relevant clusters for initial year (light blue) and 
final year (dark blue). 
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distance circle are examined, and the center focal pixel is classified as urban, suburban, 

or rural based on this percentage (Figure 1.2B). The walking distance circle and 

percentage thresholds for determining each class are explained in detail in the Atlas of 

Urban Expansion (Angel et al., 2016). The method also accounts for open spaces within 

and on the edges of an urban area, referred to as urbanized open space. Urbanized 

open space pixels are non-developed pixels that are on the fringe of, or fully 

encapsulated by, the identified urban and suburban pixels. The contiguous urban and 

suburban pixels, as well as urbanized open space pixels, create urban clusters. The 

urban cluster polygons are used as the main input for our automated approach and can 

be obtained by reaching step 18 of the SDG Indicator 11.3.1 training module (UN-

Habitat, 2018a). 

Determining Cluster Types 

 

 The identified urban clusters are then separated into three subgroups: core 

clusters, non-core clusters and clusters that do not meet relevant criteria (Figure 1.2C). 

Under our definition, core clusters are assumed to contain an urban center and could 

act as an urban agglomeration alone. In contrast, non-core clusters are assumed to not 

have an urban center and rely on the linkage to a core cluster for access to the urban 

services and resources of the core cluster. Non-core clusters are meant to represent 

peripheral urban areas including towns, suburbs, and other inhabited human 

developments. In our methodology, core clusters are differentiated from non-core 

clusters by two main criteria: satisfaction of a minimum population threshold and the 

presence of populated place data (i.e., a point location for a city or town) within or in 

proximity to the cluster. Additional criteria are applied to differentiate non-core clusters 
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from clusters not meeting any of the relevant criteria (e.g., population size and density 

thresholds).  

To begin differentiating cluster types, urban clusters are overlaid with a gridded 

population map and population values are extracted within the urban clusters. Any 

gridded population dataset can be used at this step, such as the Global Human 

Settlement Layer (https://ghsl.jrc.ec.europa.eu/) or WorldPop (www.worldpop.org). We 

used WorldPop’s top-down, 100-m² gridded population datasets to gauge population 

count estimates for urban clusters. WorldPop’s top-down models use administrative 

census and projection counts with geospatial datasets to create 1-km² and 100-m² 

spatial resolution gridded datasets (WorldPop, 2018). The WorldPop data is produced 

for Central and South America, Africa, and Asia, the most rapidly urbanizing regions in 

the world, and the unconstrained WorldPop Population Count maps are currently 

available annually for African countries from 2000 to 2020 (WorldPop, 2018). New maps 

are generated when new census or geospatial datasets are produced, indicating the 

likelihood of population count maps being available for years after 2020, permitting 

continued analyses of population dynamics using our proposed methodology.  

Once the clusters have associated population values, a population threshold can 

be applied to separate cluster types. The population threshold to differentiate core from 

non-core clusters should be manipulated to match the context of urbanization in the 

region of interest or to identify specific urban areas of interest. Users can determine 

core cluster thresholds based on expert opinion, past information, or other logical 

reasoning. Using Africa as an example, the 2015 African Urban Dynamics paper 

identified 5,000 as the minimum population size threshold for definitions of urban for 18 

https://ghsl.jrc.ec.europa.eu/
http://www.worldpop.org/
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out of 34 African countries (Mo Ibrahim Foundation, 2015). Africapolis, a recent urban 

agglomeration mapping initiative carried out across Africa, utilized a minimum threshold 

of 10,000 people to identify an urban agglomeration, as they cited authors signifying 

that 10,000 inhabitants are the ‘scale above which new activities and services become 

possible’ (OECD/Sahel and West Africa Club, 2020). Additional criteria can be set to 

identify cores such as a population density threshold. We used a cumulation of sources 

and exploratory analyses to determine our core population threshold value of 5,000 for 

our work in South Africa, Ethiopia, and Nigeria.  

The last step in identifying core clusters is examining the presence of place data 

within, or in proximity to, clusters meeting the minimum population threshold. Various 

global datasets exist that can be used at this step, including geographical databases 

such as GeoNames (https://www.geonames.org/) or OpenStreetMap 

(https://www.openstreetmap.org/). We utilized OpenStreetMap data (OpenStreetMap 

contributors, 2017) to determine the presence of city or town points within potential core 

clusters. OpenStreetMap is an open geographic database that is contributed to by a 

global community and consistently updated and validated by contributors with local 

knowledge (OpenStreetMap Wiki, 2022). OpenStreetMap uses tags to describe map 

elements, with each tag containing a key and a value. The “place” key is used to 

indicate locations known by a particular name. For populated settlements, values exist 

under this key such as city, borough, suburb, town, village, hamlet, and more. 

OpenStreetMap defines a city as a place that is “the largest urban settlement or 

settlements within the territory” and a town as a place that is “an important urban centre, 

between a village and city in size” (OpenStreetMap Wiki, 2023a). Although no 

https://www.geonames.org/
https://www.openstreetmap.org/
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population criteria exist for differentiating between these two places, as of 2019, 95% of 

city points had population values greater than 20,000 and 95% of town points had 

population values between 1,000 and 70,000 (OpenStreetMap Wiki, 2023c, 2023d). 

Contributors are instructed to map city or town nodes, which are point features, at the 

center of the place such as at a central square, central administrative or religious 

building, or a central road junction (OpenStreetMap Wiki, 2023d, 2023c). Since 

OpenStreetMap is an openly contributed to geographic database, the user should be 

aware of limitations that exists, such as inconsistencies in naming, inaccuracies in 

placement of location points, and missing data (OpenStreetMap Wiki, 2023b). The user 

should use best judgement when deciding what geographic data to include from 

OpenStreetMap. We identified core areas by extracting information from place point 

locations within the extent of, or near, clusters meeting the core population threshold. 

Once core clusters were determined, we identified non-core clusters using 

additional threshold criteria. The remaining clusters that were not classified as core 

clusters were considered potential non-core clusters. In preliminary analyses, numerous 

clusters formed as result of misclassified developed land use pixels in the underlying 

land use map. To minimize the inclusion of these areas in analyses, we implemented an 

additional population size and density criterion to differentiate non-core clusters from 

clusters that did not meet the relevant criteria. We conducted exploratory analyses to 

determine an approximate threshold that excluded misclassified clusters in our work in 

Ethiopia, Nigeria, and South Africa, which ended up ranging from 300 to 500 people per 

square kilometer of developed land use area. The remaining clusters that did not meet 

relevant criteria were saved for use in the latter end of the methods. 
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Associating Clusters 

 Categorizing clusters into core clusters and non-core clusters then allowed us to 

gauge connectivity between them to identify functional urban agglomerations. 

Particularly for Africa, we see that rural areas are strongly tied to urban cores (McHale 

et al., 2013) and significantly influences urban growth but may be disregarded or not 

included in urban change assessments. We wanted our approach to capture a more 

nuanced connected urban area than typically defined, and we aimed to include these 

often overlooked peripheral areas that interact with the urban core.  

To accomplish this, we approximated connectivity using tools provided by 

Openrouteservice (Openrouteservice, 2023), including travel distance matrices and 

isochrone mapping. Isochrone mapping uses information such as shortest routes, 

transportation type, and speed limit to determine the reachability of surrounding areas 

from a specific location provided a threshold travel time or distance. We wanted to 

examine connectivity from the edge of clusters to the edge of other clusters using 

isochrone maps. Isochrone mapping from the Openrouteservice tool is conducted using 

a start point location and end point location; therefore, the tool is unable to determine 

the reachability of an area from the edge of a cluster as it is not a point. To work around 

this, we used the travel distance matrix tool from Openrouteservice to calculate the 

average travel distance from the population weighted center of a cluster to numerous 

edge points on the cluster boundary. This average travel distance from a center to the 

edge was added to the isochrone distance threshold we set for each cluster. This 

allowed us to better approximate connectivity between the edge of clusters versus 

approximating connectivity from the center of each cluster. 
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We then generated isochrone maps and used an incremental joining approach to 

determine the connectivity between clusters and define our final agglomerations. Under 

our methodology, the user can specify a threshold travel distance for which they want to 

assess connectivity between clusters. We examined the datasets and tested the best 

distance thresholds for our purposes in Ethiopia, Nigeria, and South Africa. We used a 

5-kilometer base travel distance plus the value of the average travel distance derived 

from the travel distance matrices for each cluster. Any cluster overlapped by an 

isochrone was adjoined with the associated cluster. The adjoined clusters were now 

recognized as a new core area, and this was repeated until there were no non-core 

clusters left or no non-core clusters within the threshold distance of a core area. 

Our methodology uses a combination of spatial analysis techniques to determine 

how urban clusters are connected. Connectivity is first examined between core clusters 

to capture potentially polycentric agglomerations, as some urban areas follow a 

polycentric structure in which the urban region has multiple centers of activity (Anas et 

al., 1998; Kloosterman & Musterd, 2001). If the isochrone generated for a cluster 

overlaps or touches any portion of another cluster, those two clusters are associated. 

This rule applies to our assessment of connectivity between core clusters (e.g., two 

dense urban centers), and core clusters with non-core clusters (e.g., a core city and 

surrounding towns). Core clusters with overlap are associated and given the same 

unique identifier (Figure 1.2D). Isochrone maps are then generated for non-core 

clusters and those with isochrone maps that overlap with a core cluster or poly cores 

are associated (Figure 1.2E). If the isochrone polygon of a non-core cluster overlaps 
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with multiple cores, it is associated with the core in which it has the greatest overlap 

area. 

Finalizing Agglomerations 

The result of the presented operations should be a matching pair of unique 

agglomerations for the initial and final year, but that may not always be the case. The 

physical form and attributes of urban clusters are expected to change over the analysis 

period; therefore, we can expect to observe differences in the classification of 

agglomerations in the initial year versus the final year. For example, we observed 

instances where the classification for the initial year was missing less populated clusters 

that weren’t identified as non-core clusters because they did not meet the set population 

size and density thresholds. These clusters grew in population by the final year and met 

non-core cluster thresholds, thereby changing their classification and inclusion. Clusters 

that did not meet thresholds that had a matching cluster in the initial or final year were 

reincorporated and joined with their relevant agglomeration. We also observed 

instances where the growth of clusters in the final year led to amalgamation of 

agglomerations that were separated and unique in the initial year. In this case, 

applicable agglomerations were combined into a new, single agglomeration to match 

the amalgamated agglomeration of the initial or final year to better facilitate change 

analyses. We used spatial join functions to investigate overlap and ensure the 

agglomerations contained the same relevant clusters in both years to improve 

comparability and accuracy of our change assessment. After this procedure, a matching 

pair of unique agglomerations should exist for the initial year and final year in the study 

period (Figure 1.2F). 
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 Once agglomerations are finalized for both years, the place data associated with 

each agglomeration can be reestablished and all relevant urbanization metrics can be 

calculated. Place data is initially assigned to each cluster if applicable, but place data 

becomes construed as clusters are joined. Spatial join functions are repeated at this 

stage to assign proper place attribute data to each unique agglomeration. Our 

calculated urbanization metrics included land consumption rate, population growth rate, 

land consumption rate to population growth rate ratio, total developed land use area, 

developed land use area per capita, percent change in developed land use area, 

development by infill in areal units and development by extension and leapfrog in areal 

units. These metrics are discussed in detail in the Calculations section. 

For our case study countries, we initially developed the geospatial processes 

presented above using ArcGIS Pro 3.0.1 (ESRI, 2022) and QGIS 3.22 (QGIS.org, 2023) 

to test applicability and appropriateness. We carried out the initial steps in ArcGIS Pro 

3.0.1 as instructed in the SDG Indicator 11.3.1 training module (UN-Habitat, 2018a). 

The remaining developed geospatial workflow was conducted using QGIS 3.22 due to 

its vast library of tools and plug-ins. After determination of appropriate processes, we 

automated the approach using Python 3.9.16 (Van Rossum & Python Development 

Team, 2022) to facilitate the application of this methodology across each study region. 

The completed methods can then presumably be applied to any region of interest 

across any time period, as long as relevant data and tools are available for the given 

spatial extent and temporal range. We developed this methodology with the relevant 

publicly available datasets in mind to ensure wide-ranging accessibility and robust 

performance.  
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Methodology Applied 

To extract the extents of urban agglomerations across our three study regions, 

we applied the automated delineation method outlined in the previous section using a 

land use product developed by Shah Heydari et al. (n.d.). The land use product was 

generated using machine learning approaches, namely Random Forest classifier, with a 

set of optical, synthetic aperture radar, nightlight, and topographic remote sensing data 

inputs. The developed 30-m2 resolution annual land use classification maps followed a 

classification scheme similar to other publicly available land use datasets and were the 

main input of our analyses. The definition of developed land use was mostly specified 

by impervious surfaces but may include other human development or surrounding 

context such as parks, lawn, cemeteries, mines, and connecting roads (either paved or 

wide dirt roads) (Shah Heydari et al., n.d.). The rules used in interpretation for the land 

use model training were mindful of the complex characteristics of developed land use, 

identifying human developments beyond just impervious surfaces.  

Post-delineation, we revised all agglomerations and found lingering outliers 

containing misclassified developed land use areas and signified by lower cumulative 

population densities. We applied an additional density threshold to remove these areas. 

Once this was complete, the following calculations relevant to SDG Indicator 11.3.1 

were integrated into our automated approach and calculated for each identified urban 

agglomeration in the three study regions using QGIS and Python. 
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Calculations 

Land Consumption Rate  

 We calculated the Land Consumption Rate (LCR) for each urban agglomeration 

in all study countries for the 2016 to 2020 analysis period. We took the reclassified land 

use map with a single development class from our workflow above and calculated the 

total developed land use area within each agglomeration to then calculate land 

consumption rate.  The Land Consumption Rate formula is as follows:  

𝑳𝒂𝒏𝒅	𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏	𝑹𝒂𝒕𝒆	(𝑳𝑪𝑹) = 		 3𝑽𝒑𝒓𝒆𝒔𝒆𝒏𝒕	–	𝑽𝒑𝒂𝒔𝒕63𝑽𝒑𝒂𝒔𝒕6 ∗ 	 𝟏(𝒕) 

where Vpresent is the total developed land use area in the current year, Vpast is the total 

developed land use area in the past year and t is the time period or number of years 

between Vpresent and Vpast (UN-Habitat, 2021). 

Population Growth Rate  

We calculated the Population Growth Rate (PGR) for each urban agglomeration 

in all study countries for the 2016 to 2020 analysis period leveraging information from 

the WorldPop 100-m2 resolution gridded population datasets. The PGR is the change in 

total population over a given period within a defined urban agglomeration. It can be 

viewed as a reflection of the births, deaths, emigration, and migration that has 

transpired in an urban region over a period of time (UN-Habitat, 2021). We downloaded 

WorldPop Population Count data for each country (WorldPop, 2018), which was 

reprojected into Africa Albers Equal Area Conic and population values were extracted 

within each agglomeration. This gave us the total population for 2016 and 2020 for each 

agglomeration. We were then able to calculate the Population Growth Rate using the 

following formula:  
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𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑮𝒓𝒐𝒘𝒕𝒉	𝑹𝒂𝒕𝒆	(𝑷𝑮𝑹) 	= 	𝑳𝑵	(𝑷𝒐𝒑𝒕(𝒏	/	𝑷𝒐𝒑𝒕)(𝒚) 		 

where LN is the natural log, Popt+n is the total population in the urban agglomeration in 

the last year of a given time period, Popt is the total population in the urban 

agglomeration in the initial year of the time period and y is the difference between the 

initial year and final year of the time period (UN-Habitat, 2021).   

SDG Indicator 11.3.1 and Supporting Metrics 

SDG Indicator 11.3.1 is calculated as a ratio between the rate of consumption of 

land for urban use and the rate of urban population growth in an urban region over a 

specified period of time and is said to be a measure of land use efficiency (UN-Habitat, 

2021). We argue that SDG Indicator 11.3.1 being referred to as a measure of land use 

efficiency may lead to a misconstrued interpretation, as it is difficult to determine if urban 

land development is being conducted in an efficient or inefficient manner under this 

indicator alone. Still, what the indicator can provide us with is information about how 

urban changes may be transpiring. An SDG Indicator 11.3.1 ratio greater than one likely 

indicates that land is being expended for urban use faster than the population is 

growing, and a ratio less than one may indicate that the population is growing faster 

than land is being expended for urban use. A ratio close to one reflects comparable 

rates of growth in both land consumption and population growth. SDG Indicator 11.3.1 

may also be referred to as the Land Consumption Rate to Population Growth Rate Ratio 

(LCRPGR).  

UN-Habitat (2021) suggests utilizing additional metrics, also referred to as 

secondary indicators, to support the interpretation of the SDG Indicator 11.3.1 ratio. The 



21 
 

two suggested secondary indicators are total change in built-up area and built-up area 

per capita, and are formulated as follows:  

𝑻𝒐𝒕𝒂𝒍	𝒄𝒉𝒂𝒏𝒈𝒆	𝒊𝒏	𝒃𝒖𝒊𝒍𝒕 − 𝒖𝒑	𝒂𝒓𝒆𝒂	(%) = 	 (𝑼𝒓𝑩𝑼𝒕(𝒏 − 	𝑼𝒓𝑩𝑼𝒕)𝑼𝒓𝑩𝑼𝒕 	 

Total change in built up area is the percent change in built-up land within in an 

urban area over a period of time. In the above formula, UrBUt+n is the urban built-up 

area in the final year of the time period and UrBUt is the urban built-up area in the initial 

year of the time period (UN-Habitat, 2021). 

𝑩𝒖𝒊𝒍𝒕 − 𝒖𝒑	𝒂𝒓𝒆𝒂	𝒑𝒆𝒓	𝒄𝒂𝒑𝒊𝒕𝒂	(𝒎𝟐/	𝒑𝒆𝒓𝒔𝒐𝒏) = (𝑼𝒓𝑩𝑼𝒕	/	𝑷𝒐𝒑𝒕) 

Built up area per capita is the built-up area available per person within the urban 

area. In the above formula, UrBUt is the urban built-up area in time t and Popt is the 

population size within the urban area in time t (UN-Habitat, 2021). For our purposes, we 

substituted built-up area with developed land use area in all of the above formulas.  

Spatial Patterns of Development 

Understanding the spatial patterns of development taking place in and 

surrounding urban areas is crucial for informing future development plans and 

managing existing development. The spatial patterns of development we assessed at 

the agglomeration level are infill, and extension and leapfrog. We defined infill as new 

development that occurred within the boundaries of the urban agglomeration of the 

initial year. Extension and leapfrog included all new developments that occurred outside 

of the boundaries of the initial year but within the boundaries of the final year. The area 

for infill and extension and leapfrog were obtained by extracting the new developed land 

use pixels meeting the criteria described above for each agglomeration. 
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Analyses and Hotspots 

We used an SDG 11.3.1 threshold value to identify hotspot agglomerations 

experiencing a rate of urban land consumption that was greater than the rate of urban 

population growth. Generally, an urban area with an SDG Indicator 11.3.1 value greater 

than 1 is thought to be indicative of potentially rapid urban land expansion that may 

warrant further focal investigation (UN-Habitat, 2021). We applied the threshold value of 

1 to filter for hotspots of urban land expansion for all study countries. The 

agglomerations meeting this threshold were considered hotspots and summary metrics 

of urbanization for hotspots were compared between countries. Summaries were also 

initially completed for the entire sample of delineated urban agglomerations to obtain 

country level statistics. 

 We then divided the hotspots into population size classes and compared results 

between the study countries. The population size classes were as follows: less than 

50,000 people, 50,000 to 100,000 people, and more than 100,000 people. The 

population size breaks were strategically selected with the intent of maintaining decent 

sample sizes for each class and separating small urbanizing areas from secondary 

cities and larger metropolitans. The Degree of Urbanization cites various sources and 

uses a minimum population of 50,000 to classify a populated city (Dijkstra et al., 2021), 

so we used that threshold in our smallest class size to capture smaller urban areas. UN-

Habitat and Roberts (2014) define and identify secondary cities as areas with a 

population greater than approximately 100,000 people. The largest size class with more 

than 100,000 people was meant to capture secondary cities and larger metropolitans. 

We divided the population size classes based on this information and created an 

intermediate size class between 50,000 and 100,000 people to capture potentially 
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important and growing urban areas that may emerge as secondary cities in the future. 

Additional focal analyses were conducted for the top ranked SDG Indicator 11.3.1 

hotspot agglomerations in the largest size class in each country and one example city 

was examined for detailed changes in development. 

Results 

Regional Summary Statistics 

 We summarized regional statistics relevant to urbanization for all delineated 

agglomerations in Ethiopia, Nigeria, and South Africa (Table 1.1). Agglomerations in 

Ethiopia endured the greatest relative increase, with approximately a 28% increase in 

the total population and 73% increase in the total developed land use area from 2016 to 

2020. Nigeria’s agglomerations displayed the greatest absolute increase in population, 

adding around 8 million people from 2016 to 2020, which was a 16% increase. Nigeria 

and Ethiopia’s agglomerations had similar absolute increases in developed land use 

area, but Nigeria had a lower relative increase at 13%. Urban agglomerations in South 

Africa, however, experienced the smallest percentage increase in terms of both 

population and urban land expansion. Within South Africa’s urban agglomerations, the 

total population only increased by 3% and the developed land use area only increased 

by 5% from 2016 to 2020.  

We observed SDG Indicator 11.3.1 outliers across the urban agglomerations of 

all three study countries. Major outliers typically manifested negative growth values. We 

filtered outliers by removing agglomerations with negative land consumption rate values 

or negative population growth rate values, as these patterns of change were not the 

focus of our study. Additionally, we filtered out agglomerations that contained a land 
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consumption rate or population growth rate with extremely small values close to 0, as 

these created disproportionately large SDG Indicator 11.3.1 values. After filtering the 

agglomeration dataset, Ethiopia had 192 total urban agglomerations, Nigeria had 323, 

and South Africa had 238. 

Table 1.1: Total agglomerations, population, and developed land use area summary for all urban 
agglomerations identified under our approach in Ethiopia, Nigeria and South Africa. DA is the developed 
land use area. 

 
Total 

Agglomerations 
2016 Population 2020 Population 

2016 DA 
(km²) 

2020 DA 
(km²) 

Ethiopia 193 9,936,671 12,757,304 1,476 2,550 

Nigeria 357 51,112,180 59,306,168 7,557 8,577 

South Africa 369 43,728,813 45,321,001 8,107 8,514 

SDG Indicator 11.3.1 Hotspot Trends at The Country Level 

We identified hotspots of urban land expansion, which were agglomerations with 

an SDG Indicator 11.3.1 value greater than 1, across all three study countries (Figure 

1.3). For the entire country of Ethiopia, we observed a consistently high proportion of 

agglomerations with SDG 11.3.1 values above 1 when compared to Nigeria and South 

Africa. Approximately 99% or 191 of the 192 agglomerations in Ethiopia had an SDG 

Indicator 11.3.1 value greater than 1. For agglomerations meeting the SDG Indicator 

11.3.1 hotspot threshold in Ethiopia, the land consumption rate ranged from 0.024 to 

1.019 and population growth rate ranged from 0.0016 and 0.2204. The average percent 

change in developed land use area in Ethiopia across all hotspot agglomerations was 

104% from 2016 to 2020. Infill development accounted for 33% of the observed growth 

in developed land use area from 2016 to 2020, and extension and leapfrog 

development accounted for 67% of the observed growth in developed land use area 

from 2016 to 2020. 
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Nigeria displayed comparatively lower SDG Indicator 11.3.1 values than other 

countries, with the max value being 2.59. Approximately 33% of 323 agglomerations, or 

105 agglomerations, in Nigeria had an SDG Indicator 11.3.1 value greater than 1. These 

hotspot agglomerations had land consumption rate values ranging from 0.012 to 0.361, 

and population growth rate values ranging from 0.009 to 0.163. The average percent 

change in developed land use area in Nigeria across all hotspot agglomerations was 

48% from 2016 to 2020. Infill development accounted for 66% of the observed growth in 

the developed land use area of these agglomerations from 2016 to 2020, and extension 

and leapfrog development only accounted for 34% of the observed growth in developed 

land use area from 2016 to 2020. 

South Africa displayed a wide range of SDG Indicator 11.3.1 values, ranging as 

low as 0.05 and as high as 20. A total of 173, or about 73%, of 238 agglomerations in 

South Africa met the SDG Indicator 11.3.1 threshold. The land consumption rate values 

Figure 1.3: Map displaying range of SDG Indicator 11.3.1 values for urban agglomerations meeting the 
SDG Indicator 11.3.1 hotspot threshold value of 1 across Ethiopia, Nigeria, and South Africa. 
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ranged from 0.002 to 0.580, and the population growth rate ranged from 0.0005 to 

1.564. Infill development accounted for 65% of the observed growth in the developed 

land use area of these agglomerations from 2016 to 2020, and extension development 

accounted for 35% of the observed growth in developed land use area from 2016 to 

2020.  

Results by Population Size Classes 

  

All three countries displayed varied results when examined by population size 

class (Table 1.2). Ethiopia’s hotspot agglomerations displayed high average SDG 11.3.1 

values in each population size class. Ethiopia’s hotspots with a population greater than 

100,000 had the highest average LCR, lowest average PGR, and highest average SDG 

11.3.1 value among the three population size classes. The hotspot agglomerations in 

Nigeria displayed negligible differences in average SDG 11.3.1 value across population 

size classes, all hovering around a value of 1.3. Although the magnitude of the 

differences was small, the average LCR, PGR, and SDG 11.3.1 values all decreased as 

the population size class increased, indicating that the greatest urban land use 

expansion was taking place in the smallest population size class in Nigeria.  

Similar to Nigeria, South Africa’s average SDG 11.3.1 value for hotspot agglomerations 

decreased as the population size increased, and agglomerations in the smallest size 

class had the highest average SDG 11.3.1 value. South Africa’s agglomerations 

displayed no direct trend in the average LCR values across population size classes, but 

the intermediate size class had the lowest average LCR value, and the largest size 

class had the highest average LCR value. There was a direct positive trend between the 
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population size class and average PGR value, indicating faster population growth in 

more populous urban areas over the 2016 to 2020 period.  

Table 1.2: Urban change metrics by population size class for Ethiopia, Nigeria and South Africa. DA is 
developed land use area, LCR is land consumption rate, PGR is population growth rate, and SDG 11.3.1 
is the land consumption rate to population growth rate ratio. All metrics were calculated at the 
agglomeration level for the 2016 to 2020 period and summarized by population size class for each 
country. 

Hotspot Agglomerations 

Important areas of urban growth and development, particularly secondary cities, 

characteristically fell within the largest population size class of those that met the SDG 

Indicator 11.3.1 hotspot threshold. To narrow our findings, we extracted five focal 

hotspot agglomerations with the highest SDG Indicator 11.3.1 values from the largest 

population size class for each country (Table 1.3).  

In Ethiopia, the five hotspot agglomerations displayed extremely large SDG 

Indicator 11.3.1 values, ranging from 3.63 to 7.33. These agglomerations were 

associated with rapidly growing secondary cities, including Bahir Dar, Mekelle, and 

Kombolcha (Laituri et al., 2021; Maru & Worku, 2022). The SDG Indicator 11.3.1 values 

for Nigeria’s hotspot agglomerations were low in comparison to Ethiopia and South 

Africa, with Benin City having the highest value of 2.6. Unique to Nigeria’s top five 

hotspot agglomerations was the range in population size. The Ikeja agglomeration 

 
Population Size Class Mean Change 

in DA 
(%) 

Mean 
LCR 

Mean 
PGR 

Mean 
SDG 11.3.1 

Ethiopia Population < 50k 104 0.208 0.076 2.940 

Population 50k to 100k 93 0.186 0.065 2.890 

Population > 100k 110 0.219 0.060 3.308 

Nigeria Population < 50k 55 0.110 0.078 1.366 

Population 50k to 100k 45 0.091 0.065 1.360 

Population > 100k 33 0.066 0.049 1.343 

South 
Africa 

Population < 50k 39 0.078 0.032 3.308 

Population 50k to 100k 31 0.063 0.033 2.407 

Population > 100k 41 0.083 0.039 2.054 



28 
 

included major cities such as Lagos and Ikorodu and had a total population greater than 

13 million. Intermediately, Benin City had a population of around 1.3 million and Akura 

had a population of around 500,000. Ondo and Ughelli were much smaller in population 

at around 150,000 people each. South Africa’s top five agglomerations were relatively 

small, with populations ranging from around 225,000 to 560,000. All five South African 

agglomerations differed from the five agglomerations in Ethiopia and Nigeria, as they 

were comprised of numerous clusters of smaller towns, aside from the Polokwane 

agglomeration. All South African agglomerations had SDG Indicator 11.3.1 values above 

2, indicating considerable uptake of urban land over the 5-year period. 

Table 1.3: Top-ranking hotspot agglomerations for SDG Indicator 11.3.1 in Ethiopia, Nigeria, and South 
Africa.  

Ethiopia Nigeria South Africa 

Agglomeration SDG 11.3.1 
Value 

Agglomeration SDG 11.3.1 
Value 

Agglomeration SDG 11.3.1 
Value 

Bahir Dar 7.33 Benin City 2.60 Witsieshoek 3.69 

Durame 6.71 Akure 2.01 Siyabuswa 3.40 

Kombolcha 5.20 Ikeja 1.56 Kwamhlanga 2.58 

Sodo 4.04 Ondo 1.56 Polokwane 2.45 

Mekelle 3.63 Ughelli 1.55 Jeppe’s Reef 2.07 

Focal Hotspots in Each Country (Mekelle, Benin City, and Polokwane) 

 We selected a focal top-ranking hotspot agglomeration for each country to inspect 

urban change metrics and spatial patterns of development (Table A1- A3). Criteria for 

focal hotspot selection included falling within the top five ranked hotspot agglomerations 

and being identified as a secondary city in the literature or having basic characteristics of 

a secondary city. The three focal agglomerations we selected were associated with 

Mekelle, Ethiopia, Benin City, Nigeria, and Polokwane, South Africa. All three hotspot 

agglomerations, hereafter referred to by their associated city name, had SDG Indicator 

11.3.1 values above 2 for the 2016 to 2020 period (Table 1.4). Mekelle displayed a 51% 



29 
 

increase in the developed land use area per capita over the study period, the largest 

increase of the three cities. Benin City and Polokwane displayed comparable increases 

in their developed land use area per capita, 28% and 19%, respectively. Mekelle 

experienced the greatest total change in developed land use area, with a 98% increase 

from 2016 to 2020. Benin City’s total change in developed land use area followed at 61% 

and Polokwane saw the smallest increase at 41%.  

Table 1.4: Development metrics for three focal hotspot agglomerations. DA is developed land use area. 

 

 Each focal hotspot agglomeration displayed varied spatial patterns of 

development (Figure 1.4). Mekelle displayed excessive development outside of the 

initial urban extent over the 5-year period. 80% of Mekelle’s new development was 

attributed to extension or leapfrog growth and 20% was by infill (Figure 1.4E). New 

development patterns in Benin City and Polokwane followed a similar split. New 

development by extension and leapfrog was slightly greater than new development by 

infill in Benin City, at 52% and 48% respectively (Figure 1.4D). Polokwane’s new 

development by infill was slightly greater than new development by extension and 

leapfrog, at 56% and 44%, respectively (Figure 1.4F).   

City SDG 
11.3.1 
Value 

2016 DA 
Per Capita 
(m²/person) 

2020 DA 
Per Capita 
(m²/person) 

Total 
Change 

in DA (%) 

New 
Development 
by Infill (%) 

New Development 
by Extension and 

Leapfrog (%) 

Mekelle 3.63 184 278 98 20 80 

Benin City 2.60 185 237 63 48 52 

Polokwane 2.45 257 306 41 56 44 
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Example Hotspot City (Mekelle) 

We further dissected developmental changes within one of our focal hotspot 

cities to support the inferences drawn from the change metrics. We chose to further 

examine patterns within Mekelle since it exhibited the greatest relative change of the 

Figure 1.4: A-C show urban boundaries for 2016 and 2020 for each focal hotspot 
agglomeration. D-F show spatial patterns of development for each focal hotspot 
agglomeration. 
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three focal hotspots (Figure 1.5). Mekelle’s urban boundary grew drastically over the 

five-year period, connecting previously fragmented urban clusters and extending 

outwards to envelop new land for urban use. The majority of growth occurred in the  

northern and southwestern portions of Mekelle, but growth also occurred throughout 

denser areas of the city and around the airport. Our examination of the high-resolution 

imagery showed expansive residential development, densification of existing residential 

development, new transportation infrastructure such as roads, and new industrial 

developments across Mekelle.  

Figure 1.5: Highlighting new development in southwestern Mekelle. A: Mekelle is located in 
northern Ethiopia B: Urban agglomeration boundaries including Mekelle, Ethiopia in 2016 and 
2020. Red box highlights area of interest. C: High-resolution imagery showing area of interest in 
2016 composed of agricultural lands and sparse development D: High-resolution imagery 
showing area of interest in 2020 composed of dense development.   

A B 

C D 
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Discussion 

 Our approach leveraged openly accessible tools and datasets to automate the 

delineation of functional urban agglomerations across national extents to support the 

assessment of SDG Indicator 11.3.1. By facilitating broad extent assessments of urban 

change within individual urbanizing environments, we anticipate our approach will fulfill 

an array of objectives for urban monitoring initiatives. We illustrated the value of our 

methodology by summarizing rates of change and spatial patterns of development for 

all agglomerations at the country level and when disaggregated by population size 

class. We then highlighted hotspots of urban land expansion through SDG Indicator 

11.3.1 and further investigated focal urban changes through added calculations and 

analyses. This multi-step approach, moving from broad comprehensive urban change 

trends to fine scale examinations of SDG 11.3.1 hotspots, illuminated urbanization and 

associated land use impacts at multiple levels and, most importantly, highlighted 

urbanizing areas likely in need of developmental support. 

Our approach attempts to address the limitations of the suggested delineation 

methods for calculating SDG Indicator 11.3.1: the Atlas of Urban Expansion method and 

Degree of Urbanization method. The Atlas of Urban Expansion method requires local 

knowledge for accurate delineation of the urban area which limits the ability to assess 

SDG 11.3.1 for more than one urban area. Attempts to delineate various urban areas 

would require assembly of a significant amount of local information, arguably making a 

widespread delineation effort time consuming and knowledge intensive, and potentially 

unfeasible for large extent monitoring efforts. In the absence of local knowledge, the 

method applies a proximity inclusion rule to a main city to determine what surrounding 

clusters are associated with it, which is a buffer equal to 25% the area of the main city 
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cluster (Angel et al., 2016). The proximity inclusion rule appeared unsuitable under a 

minimally supervised or automated delineation approach as it did not capture the true 

connectivity of urban centers and associated settlements comprising an urban 

agglomeration and was based on an “as the crow flies” Euclidean distance buffer. It 

particularly became difficult to interpret what urban settlements are connected under 

this rule as buffers had overlapped across multiple larger urban areas or eliminated 

supporting smaller cities or towns that were likely connected to the main urban area. 

Our approach attempts to ameliorate these issues by substituting the proximity inclusion 

rule with travel analyses to determine connectivity and uses a hierarchical assembly 

approach to identify polycentric urban agglomerations and peri-urban areas functionally 

connected to the main urban core.  

Similarly, we observed limitations in the application of the Degree of Urbanization 

method for our intended purposes. This method can be applied automatically and 

identifies three settlement types based on population characteristics: urban centres, 

urban clusters, and rural grid cells. The method can also be applied across large 

extents, but currently does not include an urban agglomeration equivalent under their 

definitions (Dijkstra et al., 2021). Although no urban agglomeration definition exists 

under this method, the initial settlement types can be further classified into cities, towns, 

suburban areas, villages and more at a local unit level (e.g., administrative units). The 

issue with assessing SDG Indicator 11.3.1 at the administrative unit level is that 

administrative boundaries are static. We acknowledge that this population-based 

approach was developed for an array of SDG Indicators and not developed to identify 

urban boundaries from built-up or developed land cover characteristics alone, but these 
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characteristics are essential for accurate assessments of urban land use change. 

Failure to account for built-up or developed characteristics of the land in the delineation 

of urban boundaries will assume differences in boundaries and, therefore, differences in 

outcomes of the land consumption rate value included in the SDG Indicator 11.3.1 

calculation and spatial patterns of development. Additionally, the grid cells under this 

method are at 1km resolution, which is fairly coarse and may not be appropriate for 

small urban areas.  

The Degree of Urbanization does offer an extension to the initial classification 

where a user can define and extract the Functional Urban Area (FUA). The FUA 

consists of a city and the surrounding less dense spatial units which are within the city’s 

commuting zone and labor market. This classification is practically similar to our 

approach, but the issue of static spatial units persists as it uses administrative units, and 

the classification requires commuting data which is not regularly produced or readily 

available in many countries (Bédécarrats et al., 2016; European Union/FAO/UN-

Habitat/OECD/World Bank, 2020). Other sources are mentioned for estimating 

commuting flows such as mobile phone data or employment registers, but we argue that 

these data may be just as difficult to attain or dissect. We attempted to fill these gaps by 

developing an approach that could capture the dynamic boundaries of functional urban 

agglomerations using globally available and accessible datasets and tools. For 

example, we included testing our methodologies on publicly available datasets, such as 

the Copernicus annual 100-m2 spatial resolution global land cover maps (as a proof of 

concept, not included in our presented results) and used the opensource 
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Openrouteservice API to generate isochrone maps, which can act as a proxy for 

commuting data (Buchhorn et al., 2020; Openrouteservice, 2023). 

We assume the discussed limitations are reasons for SDG Indicator 11.3.1 

studies often being conducted at a focal city scale (Laituri et al., 2021; Mudau et al., 

2020)or a more generalized scale (e.g., administrative unit level, country level) 

(Schiavina et al., 2019; Wang et al., 2020). Our automated approach expands the 

spatial scale at which SDG Indicator 11.3.1 is evaluated by examining urban change for 

individual urbanizing environments across national extents. This allows for 

comprehensive analyses, from comparisons among urban agglomerations within a 

country to detection of individual areas displaying suboptimal patterns of development. 

It also enhances the flexibility of the urban areas being delineated by giving the user the 

ability to manipulate thresholds defining the characteristics of urban areas and the 

measures associating the settlements forming an urban agglomeration.   

Although highlighting hotspots of SDG Indicator 11.3.1 proved valuable, 

additional urban change calculations provided important insight on spatial patterns of 

development not illuminated by SDG Indicator 11.3.1. The top-ranking SDG Indicator 

11.3.1 hotspots all exhibited high rates of inefficient land use, but supplementary 

calculations revealed inter and intra-country variability in spatial patterns of 

development among hotspots with similar SDG Indicator 11.3.1 values. For example, 

new development in Benin City in Nigeria was largely caused by extensive and leapfrog 

development, while new development in Akure in Nigeria was by infill development, 

although both agglomerations had similar SDG Indicator 11.3.1 values and the majority 

of agglomerations in Nigeria displayed development by infill. Furthermore, Mekelle in 
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Ethiopia had an SDG Indicator 11.3.1 value of 3.63 with expansive forms of 

development accounting for 80% of new development. The Witsieshoek agglomeration 

in South Africa had a similar SDG Indicator 11.3.1 value of 3.69 but, conversely, 83% of 

new development was by infill. Densifying and sprawling development patterns have 

varying benefits, as well as negative environmental, economic, and social impacts; 

therefore, examining the spatial patterns of development displayed by hotspots of SDG 

Indicator 11.3.1 may expose information imperative for guiding focal analyses and on 

ground planning efforts (Johnson, 2001; Nguyen, 2010; Paull, 2008; US EPA, 2014; 

Yiran et al., 2020). Future work may consider using a combination of metrics including 

SDG Indicator 11.3.1 to extract hotspots of urban change. 

Secondary cities are known to facilitate and harbor considerable urban growth in 

developing countries (Donaldson et al., 2020; Marais & Cloete, 2017) and our findings 

corroborate this as numerous secondary cities, such as Mekelle and Polokwane, 

exhibited drastic change over the short 5-year period. Secondary cities often face 

numerous challenges associated with rapid urbanization due to waning governance, 

economic, and social systems, consequently resulting in poor land management, low 

economic productivity, insufficient provision of basic services, and environmental 

challenges (Pozhidaev, 2020; Roberts, 2014). Secondary cities can play a vital role in 

the development of a nation but are often limited in their capacity, resources, and data 

(Roberts, 2014), making strategic analyses and informed development plans crucial for 

improving existing secondary cities (Al-Jawari et al., 2020; Mokoele, 2023; Tahir & 

Hussain, 2013; US Department of State, 2023) and new secondary cities that are 

emerging (Chan, 202). Our work and approach can support organizations and 
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initiatives, such as the Cities Alliance (https://www.citiesalliance.org/) and Secondary 

Cities Initiative (https://secondarycities.state.gov/), by identifying hotspots of inefficient 

land use and prioritizing the allocation of investment resources for advancing 

sustainable urban development in secondary cities. 

Spatial products covering large extents often have tradeoffs in resolution and 

accuracy which should be considered when employing this methodology. In regard to 

resolution, globally available land cover and land use (LCLU) datasets and gridded 

population datasets are typically produced at more coarse resolutions which may 

influence delineations and calculations. In terms of accuracy, different LCLU maps may 

capture varied degrees of development or built-up areas. The implications of the map 

classifications should be considered when selecting a LCLU product as it will determine 

what characteristics of an urban area are captured by the methodology. False 

classifications are also an inherent characteristic of LCLU maps and may impact 

outcomes of the automated delineation approach. Lastly, gridded population datasets 

are modeled on census data. Regions like Africa have been impacted by infrequent and 

inadequate population censuses, as a result of civil conflict, poor organization or 

capacity, and inadequate participation (Glassman & Ezeh, 2014; Ntozi, 201), so we can 

expect some degree of inaccuracy in the gridded population estimates. These 

limitations emphasize the importance of incorporating local information and data 

whenever possible and understanding what can and can’t be accomplished with spatial 

work. 

 Regardless, continued efforts are needed to build upon our work and improve 

spatial strategies for monitoring urban growth in Africa and other developing regions. 

https://www.citiesalliance.org/
https://secondarycities.state.gov/
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Our presumed next steps are to conduct finer scale spatial assessments within hotspots 

to examine the type of developments occurring (residential, commercial, industrial, etc.), 

and availability of social, health and ecosystem services. We also anticipate applying 

this methodology to countries outside of Africa to examine its flexibility in identifying 

functional urban agglomerations. We hope we can continue building on the 

methodology by integrating additional datasets and spatial techniques to improve its 

performance and utility.  

Conclusions 

This work was conducted with optimism of further building on SDG Indicator 

11.3.1 as an indicator for monitoring urban land use expansion. We developed an 

automated method for delineating functional urban agglomerations to facilitate the 

calculation of SDG Indicator 11.3.1 across national extents. We expect that automating 

delineation efforts will increase the accessibility, utility, and convenience of delineating 

urban areas across larger extents, thereby enabling more continuous, consistent 

monitoring of urbanization patterns and associated land use changes, globally.  

Our work quantified regional trends of urban change and identified hotspots of 

SDG Indicator 11.3.1 in Ethiopia, Nigeria, and South Africa. We acknowledge that the 

outcomes of this work are representative of change only occurring within 

agglomerations of each country over the 2016 to 2020 period and as informed by the 

datasets used. The rise of social unrest, the COVID-19 pandemic, and other pressing 

issues in the countries we have examined have likely altered various aspects of the 

urbanization process (Gizelis et al., 2021; Lone & Ahmad, 2020; Yang et al., 202). We 

propose future monitoring be carried out for the coming years, as well as in hotspot 
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locations we identified to examine fine scale urbanization effects and better guide local 

management and sustainability planning. We also suggest building upon delineation 

methodologies, hotspot identification, and supporting spatial metrics as improved 

datasets, techniques, and services arise to progress the utility of SDG Indicator 11.3.1 

and urban monitoring efforts.  
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CHAPTER 2 

IMPACTS OF SPATIAL RESOLUTION ON AUTOMATED URBAN DELINEATION AND 

CHARACTERIZING URBAN CHANGE 

 
 

Introduction 

 
Urbanization continues to be a leading driver of global land use change (Nuissl 

Henning & Siedentop, 202) and various global and national sustainable development 

initiatives have been established to monitor and address urbanization impacts (UN-

Habitat, 2017; United Nations, 201). The most prominent global initiative, the 2030 

Agenda for Sustainable Development, was adopted in 2015 by United Nations State 

Members with the purpose of tackling the globe’s most pressing issues, including 

urbanization-driven land use transformations. Drawn from the Millennium Development 

Goals and their shortcomings, 17 Sustainable Development Goals (SDG) and 169 

targets shape the 2030 Agenda for Sustainable Development and synergistically 

confront the social, economic, and environmental needs for global sustainable 

development (United Nations, 201). The SDGs and their targets aim to achieve broad 

objectives including eradicating poverty, increasing access to essential resources, 

reducing inequalities, promoting peace, and stimulating sustainable development 

(United Nations, 2015). The SDGs and targets alone are objectives; thus, the United 

Nations Statistical Commission formed and tasked the Inter-Agency and Expert Group 

on Sustainable Development Goal (IAEG-SDG) indicators with developing the Global 

Indicator Framework (United Nations, 202). The indicator framework contains 231 
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unique indicators intended to monitor and measure progress towards the achievement 

of the SDGs and associated targets, but most need more examination to progress their 

operation and utility. 

Finding consistent data sources across global extents to fulfill SDG Indicator 

measurements is challenging (Avendano et al., 2021; Nilashi et al., 2023), but the 

availability of earth observation and other geospatial data allows for practicable, 

consistent, and timely implementation of numerous Sustainable Development Goal 

(SDG) Indicators (Estoque, 2020; United Nations, 201). The IAEG-SDG’s Working 

Group on Geospatial Information emphasizes the importance of geospatial data for 

obtaining pertinent SDG Indicators provided the infrequent production of official census 

statistics (UN-GGIM, 202). A multitude of studies have displayed the viability and value 

of using spatial approaches to examine SDG Indicators, for instance, monitoring SDG 

11.7.1 (share of open urban space) in Greece, SDG 6.4.1 (change in water use 

efficiency) in South and South-East Asia, and SDG 15.3.1 (identification of degraded 

lands) in Ukraine (Giupponi et al., 2018; Kussul et al., 2019; Verde et al., 202). 

Limitations still exist in the spatial assessment of suitable indicators, specifically due to 

data production, resolution and accuracy constraints, and differences in methods for 

their implementation (Giuliani et al., 2021; Han et al., 2022; Qiu et al., 202). Global 

organizations, such as the World Bank and United Nations, are working to improve 

spatial data infrastructures, facilitate improved data production, and develop innovative 

data approaches (UN Global Pulse, 2022; World Bank, 202), but continued work is 

needed to understand the impacts of spatial data inputs on the functionality and 

interpretations of geospatially compatible indicators. 
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Sustainable Development Goal Indicator 11.3.1 is one of the geospatially 

compatible indicators related to urbanization and was developed to monitor urban land 

use expansion and population change under Goal 11 and Target 11.3 (Table 2.1). The 

indicator is a ratio of the land consumption rate to population growth rate and can be 

measured by spatial analysis of earth observation and integrated population data within 

a region of interest (UN-Habitat, 2018a, 2021. SDG Indicator 11.3.1 evaluates whether 

land is being transitioned to urban use at a lesser, greater, or similar rate to which the 

population in the same area is growing. SDG Indicator 11.3.1 is currently classified as a 

Tier 2 indicator, meaning it is a conceptually clear indicator and methods exist for its 

computation, but data is not regularly produced for some regions (UN-Habitat, 2021). 

Global spatial datasets can be used in place of absent local data, but the resolution at 

which global spatial data is available may affect fine scale estimations. 

Table 2.1: Description of Sustainable Development Goal 11, Target 11.3, and SDG Indicator 11.3.1 

Sustainable Development Goal 11 

Make cities and human settlements inclusive, safe, resilient, and sustainable. 

Target 11.3 

Enhance inclusive and sustainable urbanization and capacities for participatory, 

integrated, and sustainable human settlement planning and management in all 

countries by 2030. 

SDG Indicator 11.3.1 

Ratio of land consumption rate to population growth rate 

 

SDG Indicator 11.3.1 has displayed its utility for monitoring urban growth and 

informing sustainable development at varying scales and expanses using geospatial 

analyses (Calka et al., 2022; Mudau et al., 2020; Philip, 2021). Although these works 
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have proven valuable, various limitations regarding the implementation and 

interpretation of SDG Indicator 11.3.1 are known. Nuanced approaches for delineating 

urban areas and limited availability of timely and high-resolution data are a few of the 

limitations for executing SDG Indicator 11.3.1 (Simon et al., 2016; UN-Habitat, 2021).  

Recent SDG Indicator 11.3.1 research has attempted to address limitations 

through innovative, explorative methodologies and analyses. Nicolau et al. (2018) 

compared the performance of two formulations for examining SDG Indicator 11.3.1, the 

UN-Habitat’s proposed land consumption rate to population growth rate and the change 

rate of the built-up area per capita, as well as investigating the influence of thematic 

map resolution on indicator 11.3.1 in mainland Portugal. They found that the change 

rate of the built-up area per capita was more informative than SDG Indicator 11.3.1 for 

monitoring urban change as it was easier to interpret, and higher thematic resolution 

was favored. Schiavina et al. (2019) assessed SDG Indicator 11.3.1 at the global, 

regional and settlement level, revealing the benefit of multi-scale comparisons for 

capturing dynamics of urban change. Guo et al. (2022) proposed an additional indicator, 

the ratio of economic growth rate to land consumption rate, to be applied alongside 

SDG Indicator 11.3.1 to evaluate the relationship between urban economic growth and 

urban land use efficiency. 

To build on this, in Chapter 1, we developed an approach to automate the 

delineation of functional urban agglomerations across national extents to facilitate the 

calculation of SDG Indicator 11.3.1 and other urban change metrics at the 

agglomeration scale across national extents. Our delineation approach is built on the 

Urban Extent method outlined in the SDG Indicator 11.3.1 training module (UN-Habitat, 
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2018a) and utilizes transportation analyses and geolocation data to link urban cores 

with peri-urban areas. Conceptually, our method borrows from the concept of the 

Functional Urban Area, a city and its commuting zone as defined by the Organization for 

Co-Operation and Economic Development (OCED) (Dijkstra et al., 2019). It also follows 

principles outlined in the SDG 11 Monitoring Framework, where urban agglomeration 

delineation accounts for towns and cities functionally dependent on the main city (UN-

Habitat, 2016). Automating this task permits a user to capture urban agglomerations 

composed of multiple non-contiguous but interacting settlements and examine urban 

change within them, thereby increasing the efficiency of monitoring agglomeration level 

change across large extents.  

Nevertheless, geospatial assessments of SDG Indicator 11.3.1 may be 

influenced by the spatial resolution of input land cover and land use data and 

understanding the implications of this connection may help guide future applications of 

SDG Indicator 11.3.1. The work of Chapter 2 aims to evaluate this notion by assessing 

the impacts of input land use data spatial resolution on the delineation of urban areas, 

SDG Indicator 11.3.1 estimates, urban change metrics, and urbanization-driven land 

use change patterns using our methodology. A higher spatial resolution captures finer 

features and increases mapping precision of land cover and land use data (Murtaza & 

Romshoo, 2014), so we hypothesize that details of urban land use and urban boundary 

edges are changed or lost when spatial resolution changes. We postulate that a 

changing urban boundary would greatly influence the delineation of physically smaller 

urban units, change urban metrics and spatial patterns of development values within 

urban units, and influence urbanization-driven land use change assessments. 
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Objectives  

The aim of this chapter is to assess the influence of land use data at two spatial 

resolutions, 30-m2 and 90-m2, on the delineation of functional urban agglomerations and 

their associated characteristics of urban change. This includes observed variations in 

SDG Indicator 11.3.1, urban change metrics, spatial patterns of development, and 

urbanization-driven land use changes. We examine this relationship across urban 

agglomerations likely experiencing rapid urban land use expansion according to SDG 

Indicator 11.3.1 in Ethiopia for the 2016 to 2020 period. 

The main objectives for this study are to: 1) examine the influence of developed 

land use data spatial resolution on the extent of urban agglomeration boundaries when 

using our automated methodology; 2) compare SDG Indicator 11.3.1, supporting 

metrics, and spatial patterns of development across urban agglomerations derived from 

land use data with differing spatial resolutions; and 3) evaluate the influence of land use 

data spatial resolution on urbanization-driven land use change patterns within and 

around urban agglomerations. 

Methods 

Study Region  

Although predominantly rural, Ethiopia is one of Africa’s fastest urbanizing 

countries. Ethiopia’s urban population is anticipated to increase from 22 million people 

in 2018 to 74 million by 2050, thereafter accounting for 39% of the Ethiopia’s total 

population (UNDESA, 2019). Recent estimates show Ethiopia’s urban population 

comprising 22% of the total Ethiopian population in 2022 and the country was estimated 

to be urbanizing at an annual rate of around 4%-5% in 2015 (World Bank, 2015, 2023b). 
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Natural population growth, rural to urban migration, and reclassification of rural 

settlements to urban settlements are driving urbanization in Ethiopia. Although drivers of 

urbanization vary and are contextual, rural to urban migration is expected to account for 

a significant proportion of Ethiopia’s future urban population growth as rural dwellers 

leave rural areas in search of greater livelihood security and opportunity in larger cities 

(Awumbila, 2017; Benti et al., 2022; Jenberu & Admasu, 2020; Mezgebo, 2021). Rapid 

urban population growth in Ethiopia has generated various challenges (Abraha et al., 

2022; Kebbede, 2017; UNICEF, 2022; World Bank, 2015) and underlines the need for 

ongoing monitoring and planning for urban change. 

Although our analysis took place prior to the peak of recent issues, major 

tribulations such as the COVID-19 pandemic, Tigray conflict, and drought situation 

(Abbink, 2021; Harris et al., 2020; UNOCHA, 2023), have likely impacted the process of 

urbanization in Ethiopia and exacerbated the challenges of it. Global and national 

organizations continue to support Ethiopia to address these issues and aid in its journey 

towards sustainable, resilient, and productive urbanization (USAID, 2020; World Bank, 

2020, 2023a). 

Automated Approach for Identifying Urban Agglomerations 

 In Chapter 1, we developed and presented a methodology to automatically 

delineate functional urban agglomerations across national extents to facilitate the 

assessment of SDG Indicator 11.3.1. The methodology incorporates various spatial 

datasets, tools, and techniques to detect functionally connected urban areas. The 

approach builds on the delineation method outlined in the Atlas of Urban Expansion by 

Angel et al. (2016) with a GIS workflow of that method provided in the UN-Habitat’s 
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SDG Indicator 11.3.1 training module (UN-Habitat, 2018a). In our adapted approach, 

the data inputs and tools used for delineation of urban areas include a land use dataset, 

gridded population dataset, OpenStreetMap (OpenStreetMap contributors, 2017), and 

Openrouteservice API (Openrouteservice, 2023). The approach employs various spatial 

analysis techniques, thresholds of population characteristics, and transportation 

analyses from the Openrouteservice API to identify clusters of urban character, 

differentiate urban clusters into classes, assess connectivity between these cluster 

classes, and produce functionally connected urban agglomerations. The automated 

approach was written in the Python (Van Rossum & Python Development Team, 2022) 

language, and primarily utilized the ArcPy (ESRI, 2022) and PyQGIS (QGIS.org, 2023; 

Van Rossum & Python Development Team, 2022) libraries to conduct the spatial 

analysis work. Within Chapter 1, our approach only used 30-m2 resolution land use 

spatial maps, while in Chapter 2, we will compare the outputs of this approach utilizing 

two different spatial resolutions common to land cover and land use products, 30-m2 

and 90-m2. 

Data 

Two data inputs are selected by the user for the automated approach for urban 

delineation and calculation of SDG Indicator 11.3.1 and related metrics: a land use and 

land cover (LCLU) dataset and gridded population dataset. For this work, we selected 

WorldPop’s top-down unconstrained 100-m2 spatial resolution gridded population 

counts and a base 30-m2 gridded land use product developed by Shah Heydari et al.  

(n.d.), which we summarized at two spatial resolutions. WorldPop takes administrative 

censuses and projections and applies modeling approaches with geospatial datasets to 
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disaggregate population count data into 100-meter by 100-meter cells (WorldPop, 

2018). Gridded population counts are available for numerous developing countries from 

2000 to 2020 as of early 2023 and new WorldPop datasets become available as new 

census or geospatial datasets arise (WorldPop, 2018), permitting comprehensive and 

ongoing assessments of SDG Indicator 11.3.1 and other population dynamics. We 

downloaded the WorldPop 100-m2 resolution population count dataset for Ethiopia for 

2016 and 2020 from the WorldPop website (www.worldpop.org/) and the 30-m2 land use 

maps were obtained for Ethiopia for 2016 and 2020 directly from Shah Heydari et al.  

(n.d.) 

The 30-m2 gridded land use map product developed by Shah Heydari et al.  

(n.d.) is central to the delineation of urban agglomerations in the automated approach 

and is the focus of the work in this study. Using machine learning approaches, mainly 

Random Forest modeling, and a variety of remote sensing data inputs, Shah Heydari et 

al. (n.d.) produced 30-m2 spatial resolution land use maps for Ethiopia, Nigeria, and 

South Africa for each year in the 2016 to 2020 period. The product is comprised of 

seven land use classes: Agriculture, Developed, Forest, Rangeland, Bare, Wetland, and 

Water. For urban delineations and calculation of SDG Indicator 11.3.1 and relevant 

metrics, only the Developed land use class is needed. 

To examine the influence of spatial resolution, we resampled the 30-m2 spatial 

resolution developed land use raster to 90-m2 spatial resolution using a majority rule. 

Our goal was to assess the influence of spatial resolution alone, and resampling the 

developed land use raster allowed us to maintain consistency in map production and 

classification methods. The 30-m2 spatial resolution and 90-m2 spatial resolution 

http://www.worldpop.org/
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versions of the land use product were incorporated into the automated urban delineation 

approach using the associated Python scripts written in Chapter 1.  

After delineation, overlap analyses were carried out manually in QGIS to ensure 

the occurrence of corresponding urban agglomerations for both resolution inputs. 

Agglomerations present under one resolution input and not the other were documented 

for discussion and then removed from the dataset undergoing additional analyses. The 

agglomerations present under both resolutions were examined for differences in urban 

delineations, urban change metrics, spatial patterns of development, and urbanization-

driven land use changes. 

SDG Indicator 11.3.1 and Related Metrics 

 After we delineated urban boundaries for the 2016 to 2020 period, SDG Indicator 

11.3.1 and all related metrics were calculated for both resolution land use maps. 

Individual metrics were calculated within the boundaries of each unique agglomeration 

and included land consumption rate, population growth rate, SDG Indicator 11.3.1, 

percent change in developed land use area, developed land use area per capita in 

2016, developed land use area per capita in 2020, development by infill, and 

development by extension and leapfrog. The metrics and corresponding formulas are 

explained in the following section. 

 The Land Consumption Rate examines the change in the developed land use 

area within a unit from the initial year in a period to the final year. The Land 

Consumption Rate formula is: 

𝑳𝒂𝒏𝒅	𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏	𝑹𝒂𝒕𝒆	(𝑳𝑪𝑹) = 		 3𝑽𝒑𝒓𝒆𝒔𝒆𝒏𝒕	–	𝑽𝒑𝒂𝒔𝒕63𝑽𝒑𝒂𝒔𝒕6 ∗ 	 𝟏(𝒕) 
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Vpresent is the total developed land use area in the final year, Vpast is the total developed 

land use area in the initial year and t is the time period or number of years between 

Vpresent and Vpast (UN-Habitat, 2021). 

 The Population Growth Rate evaluates the change in population within a unit 

from the initial year in a period to the final year. The Population Growth Rate formula is: 

𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑮𝒓𝒐𝒘𝒕𝒉	𝑹𝒂𝒕𝒆	(𝑷𝑮𝑹) 	= 	𝑳𝑵	(𝑷𝒐𝒑𝒕(𝒏	/	𝑷𝒐𝒑𝒕)(𝒚)  

LN is the natural log, Popt+n is the total population in the urban agglomeration in the 

final year of a given period, Popt is the total population in the urban agglomeration in 

the initial year of the given period and y is the difference between the initial year and 

final year of the time period (UN-Habitat, 2021). 

 SDG Indicator 11.3.1 is the ratio between the land consumption rate and the 

population growth rate. SDG Indicator 11.3.1 may also be referenced to as LCRPGR 

and the formula is: 

𝑺𝑫𝑮	𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓	𝟏𝟏. 𝟑. 𝟏	(𝑳𝑪𝑹𝑷𝑮𝑹) = 	𝑳𝑪𝑹	/	𝑷𝑮𝑹 

where LCR is land consumption rate and PGR is population growth rate (UN-Habitat, 

2021). 

 Metrics are suggested for supporting the interpretation of SDG Indicator 11.3.1 

and include the total change in built-up area and built-up area per capita (UN-Habitat, 

2021). The first metric inspects the percent change in built-up land within a unit over a 

period. We used developed land use area from our land use product in place of built-up 

area in the total change in built-up area formula. The formula is: 

𝑻𝒐𝒕𝒂𝒍	𝒄𝒉𝒂𝒏𝒈𝒆	𝒊𝒏	𝒃𝒖𝒊𝒍𝒕 − 𝒖𝒑	𝒂𝒓𝒆𝒂	(%) = 	 (𝑼𝒓𝑩𝑼𝒕(𝒏 − 	𝑼𝒓𝑩𝑼𝒕)𝑼𝒓𝑩𝑼𝒕 	 
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where UrBUt+n is the urban built-up area in the final year of the period and UrBUt is the 

urban built-up area in the initial year of the period (UN-Habitat, 2021). 

 We also used developed land use area in place of built-up area in calculating 

built-up area per capita. The formula for this metric is:  

𝑩𝒖𝒊𝒍𝒕 − 𝒖𝒑	𝒂𝒓𝒆𝒂	𝒑𝒆𝒓	𝒄𝒂𝒑𝒊𝒕𝒂	(𝒎𝟐/	𝒑𝒆𝒓𝒔𝒐𝒏) = (𝑼𝒓𝑩𝑼𝒕	/	𝑷𝒐𝒑𝒕) 

where UrBUt is the urban built-up area in time t and Popt is the population size within 

the urban area in time t (UN-Habitat, 2021). 

 Lastly, urban development by infill, extension and leapfrog were calculated for 

each urban agglomeration under both resolution inputs. Infill was defined as the new 

developed land that occurred after the initial year and existed only within the urban 

boundaries of the initial year. Extension and leapfrog were defined as new developed 

land that occurred after the initial year and only existed in the boundaries of the final 

year and not the initial year. Extension and leapfrog were not examined individually, but 

instead included all expansive spatial patterns of development. The value of this metric 

indicates the percentage of new development that was by infill or extension and 

leapfrog. The formulas for the percent development by infill and percent development by 

extension and leapfrog were as follows: 

𝑫𝒆𝒗𝒆𝒍𝒐𝒑𝒎𝒆𝒏𝒕	𝒃𝒚	𝒊𝒏𝒇𝒊𝒍𝒍	(%) = Q 𝑰𝑭
𝑵𝑫𝑳	S ∗ 𝟏𝟎𝟎 

𝑰𝑭 is the infill developed land use area and 𝑵𝑫𝑳 is the new developed land use area. 

𝑫𝒆𝒗𝒆𝒍𝒐𝒑𝒎𝒆𝒏𝒕	𝒃𝒚	𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏	𝒂𝒏𝒅	𝒍𝒆𝒂𝒑𝒇𝒓𝒐𝒈	(%) = Q𝑬𝑿𝑻𝑳𝑭𝑵𝑫𝑳 	S ∗ 𝟏𝟎𝟎 

𝑬𝑿𝑻𝑳𝑭 is the extension and leapfrog developed land use area and 𝑵𝑫𝑳 is the new 

developed land use area. 
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Summary and Statistical Analyses  

We used descriptive statistics and statistical tests to evaluate the differences in 

metrics derived under differing spatial resolutions. We began by converting the attribute 

table containing metrics for the 30-m2 spatial resolution outputs and 90- m2 spatial 

resolution outputs into a CSV. We used R Version 4.2.1 for summary and statistical 

analyses, including the tidyverse library within R to manipulate and prepare the data for 

summarization and use in statistical tests (Wickham et al., 2019). We used the Wilcoxon 

signed rank test to examine the differences using the wilcox.test function in R (R Core 

Team, 2021). 

We tested significant differences between the outputs of the 30-m2 and the 90-m2 

spatial resolution land use data for the entire agglomeration sample and for the 

agglomerations when categorized by population size class. We divided the 

agglomerations into three population size classes: population less than 50,000, 

population between 50,000 to 100,000, and population greater than 100,000. The 

population size classes were intended to separate relatively small urban areas, such as 

less dense towns with less than 50,000 people, from larger urban areas with more than 

100,000 people, such as megacities, larger metropolitans, and secondary cities (Dijkstra 

et al., 2021; Roberts, 2014). The intermediate population size class between 50,000 

and 100,000 people was created to capture emerging urbanizing areas and potential 

future secondary cities. The population size class divisions we selected also yielded a 

more equal distribution of the agglomerations in our sample to allow for more 

appropriate comparison of urban changes between urban agglomeration size classes. 
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Land Use Change Under Different Spatial Resolutions 

 We summarized urbanization-driven land use changes between 2016 and 2020 

within and around focal urban agglomerations at both input resolutions. The initial intent 

of the land use change analysis was to focus on defined hotspot agglomerations, which 

had an SDG Indicator 11.3.1 value above 1, suggesting that urban land is being 

consumed at a greater rate than the population is growing (UN-Habitat, 2021). 

Incidentally, all agglomerations identified under both resolution inputs had SDG 

Indicator 11.3.1 values above 1. We used the land cover change tool from the Semi-

Automatic Classification Plugin in QGIS to examine land use change (Congedo, 2021). 

The tool required two raster inputs to measure change. We used the 2016 seven class 

land use map and the raster containing only new developed land use that occurred by 

2020 as inputs. The output of the tool was a change map with a file explaining the land 

use type that existed in 2016 and was converted to developed land use by 2020. 

To assess the urbanization-driven land use changes around agglomerations 

identified at both resolutions, we needed to first define a shared focal boundary for 

consistency in the spatial analysis area. Focusing on a set of shared urban 

agglomerations, we used the Convex Hull tool to create a boundary geometry around 

each unique set of urban areas for each resolution. We then combined the boundaries 

by dissolving to create one shared analysis area for each focal agglomeration. Each 

boundary was manually validated to ensure the bounding geometries contained the 

correct agglomerations for each resolution. We conducted zonal statistics to summarize 

the area of each land use conversion type under both resolutions within the shared focal 

boundaries.  



54 
 

Results 

 We observed differences in agglomeration boundaries, metrics of urban change, 

and land use change patterns between the 30-m2 and 90-m2 spatial resolution inputs. 

The 30-m2 spatial resolution land use data and 90-m2 spatial resolution land use data 

both identified a similar number of agglomerations when using the automated 

delineation approach. Although both resolutions of land use data inputs captured a 

similar number of agglomerations, there were agglomerations captured under one 

resolution input that were absent in the other. We examined the agglomeration outputs 

and identified 183 agglomerations that were captured under both resolution inputs. 

Differences in Delineation Boundaries 

 Agglomerations smaller in area and, correspondingly, smaller in population size 

were better identified by the 30-m2 spatial resolution land use input data than the 90-m2 

spatial resolution land use input data. We observed eight instances where an 

agglomeration was identified under the 30-m2 input and not under the 90-m2 input. 

These agglomerations were exceptionally small with populations ranging from 

approximately 5,000 people to 10,000 people in 2020 and urban extents ranging from 

an approximated 1 square kilometer to 5 square kilometers in area in 2020 (Table 2.2).  

The 30-m2 spatial resolution land use data input also incorporated smaller 

peripheral urban areas better than the 90-m2 resolution land use data input. There were 

several instances where a peripheral urban area was included in an agglomeration 

under the 30-m2 resolution but did not exist under the 90-m2 resolution. These clusters 

or extensions representing smaller peripheral urban areas typically were comprised of          
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sparse development, only containing a few developed land use pixels under the 90-m2 

spatial resolution version or were linked to the core urban areas by linear developments, 

such as roads, which were scarcely captured under the 90-m2 resolution land use data 

(Figure 2.1). Clusters with these characteristics typically differed in size or contiguity and 

were typically not dense enough in developed land or population to be retained within 

our automated delineation approach.  

 

Figure 2.1: Influence of spatial resolution of the land use data on the delineation of the southern portion of 
the Durame agglomeration. Contiguity of developed land use pixels present under the 30-m2 resolution 
developed land use raster but absent in the 90-m2 developed land use raster led the southern peripheral 
areas to be omitted under the 90-m2 input A: Urban boundary in 2020 derived from 90-m2 spatial 
resolution land use data B: Urban boundary in 2020 derived from 30-m2spatial resolution land use data C: 
90-m2 spatial resolution developed land use raster D: 30-m2spatial resolution developed land use raster 
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Table 2.2: Agglomerations present under 30-m2 spatial resolution inputs but not under 90-m2 spatial 
resolution inputs. The table includes the associated name of the agglomeration, the population of the 
agglomeration in 2020, and the area of the urban boundaries in 2020. 

Agglomeration 2020 Population 
2020 Urban Boundaries 

Area (km²) 

Kobo 7,014 1.17 

Chwahit 9,196 2.51 

Kumbabe 9,339 4.81 

Tis Abay 7,428 1.36 

Wukro Maray 6,373 1.76 

Elias 8,201 5.32 

Deksis 7,841 3.25 

Karamile 5,468 1.60 

Summary and Statistical Results 

 We observed variability in the differences of urban change metrics produced for 

all agglomerations under both resolutions (Table 2.3). The differences in LCR between 

the 30-m2 and 90-m2 ranged from -0.13 to 0.30. The differences in PGR between the 

30-m2 and 90-m2 spatial resolution land use data were minor, with the differences 

ranging from -0.03 to 0.06. SDG Indicator 11.3.1 did convey a substantial difference 

between resolutions, with a minimum difference of -69.9 and max difference of 0.80. 

The developed land use area per capita for 2020 and total change in developed land 

use area for 2020 displayed substantial differences across resolutions. A shift also 

appeared under both metrics measuring the spatial patterns of development.  
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Table 2.3: Summary statistics for differences in outputs between the 30-m2 spatial resolution land use 
data input and 90-m2 spatial resolution land use data input. Min is the minimum difference observed and 
Max is the maximum difference observed from the 30-m2 input to the 90-m2 input. LCR is Land 
Consumption Rate, PGR is Population Growth Rate, and DA is the developed land use area. 

 

Our examination of summary statistics for agglomerations divided by population 

size class revealed variations from the differences we observed across summary 

statistics for all agglomerations (Table 2.3). The agglomerations with less than 50,000 

people appeared to dominate the minimum differences across all metrics as it had the 

same minimum values observed for all agglomerations. Differences in other metrics 

were also quite considerable for this class, with SDG Indicator 11.3.1 values displaying 

a substantial range in differences from -69.9 to 0.69. For agglomerations with 50k to 

100k, the largest differences were also detected for SDG Indicator 11.3.1, with a range 

of -0.14 to 0.46. Larger agglomerations with more than 100,000 people had the greatest 

max difference of 0.30 for LCR and a range of -0.24 to 0.80 for SDG Indicator 11.3.1. 

The minimum and maximum values may not be fully representative of changes as the 

values could be the result of outliers, but our examination of the distributions of the 

differences showed that individual differences for each metric appeared profound 

(Figure B1-B7), thereby motivating statistical testing. 

Differences between 30-m2and 90-m2 resolution data outputs 

 All Less Than 50k 50k to 100k More than 100k 

Metrics Min Max Min Max Min Max Min Max 

LCR -0.13 0.30 -0.13 0.07 -0.02 0.01 -0.01 0.30 

PGR -0.03 0.06 -0.03 0.02 < -0.01 < 0.01 < -0.01 0.06 

SDG Indicator 11.3.1 -69.9 0.80 -69.9 0.69 -0.14 0.46 -0.24 0.80 

2020 DA Per Capita -58.0 52.0 -58.0 52.0 -10.0 8.0 -10.0 13.0 

Total Change in DA (%) -65.0 150.0 -65.0 34.0 -11.0 8.0 -7.0 150.0 

Infill (%) -0.17 0.24 -0.17 0.24 < 0.00 0.04 < -0.01 0.06 

Extension and Leapfrog (%) -0.24 0.17 -0.24 0.17 -0.04 < 0.00 -0.06 < 0.01 
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 Under the Wilcoxon Signed Rank Test, we recorded statistically significant 

differences for SDG Indicator 11.3.1, developed land use area per capita in 2020, infill, 

and extension and leapfrog values between the differing resolution inputs (Table 2.4). 

We detected statistically significant differences in 2020 developed land use area (DA) 

per capita, infill, and extension and leapfrog for agglomerations with less than 50,000 

people between resolution inputs. This was also the case for the agglomerations with 

50,000 to 100,000 people. The largest size class of agglomerations with more than 

100,000 people displayed statistically significant differences for SDG Indicator 11.3.1, 

2020 DA per capita, infill, and extension and leapfrog. While there was statistical 

evidence of a difference, the estimated average magnitude of differences across all of 

the significant results were relatively small. 

Table 2.4: Results of the Wilcoxon Signed Rank Test for the differences between the 30-m2 and 90-m2 
outputs. 

 

Land Use Change Analysis Results 

We summarized developed land use conversions that occurred in the 2016 to 

2020 period within our identified urban agglomerations and their surrounding areas with 

 Wilcoxon Signed Rank Test of the Differences 

 
SDG Indicator 

11.3.1 
2020 DA Per 

Capita 
Infill 

Extension and 
Leapfrog 

 Median p-value Median p-value Median p-value Median p-value 

All 0.02 *0.02 -5.00 *< 0.01 0.03 * <0.01 -0.03 * <0.01 

Less Than 
50k 

0.02 0.14 -7.00 *<0.01 0.03 * <0.01 -0.03 * <0.01 

50k to 100k <0.01 0.27 -4.50 *0.01 0.03 * <0.01 -0.03 * <0.01 

More than 
100k 

0.05 *0.03 -2.00 *0.01 0.03 * <0.01 -0.03 * <0.01 
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both 30-m2 and 90-m2 spatial resolution land use data (Table 2.5). We first summarize 

the land use conversions observed under the 30-m2 spatial resolution land use data to 

then conduct comparisons in differences. Firstly, agricultural land experienced the 

greatest conversion to developed land use at approximately 1,044 km² according to the 

30-m2 spatial resolution land use data. Rangeland was the second most converted land 

use in these areas, with 160 km² of land transformed to developed land use. Forest was 

the next most converted land at 17 km², followed by wetland at 2 km². Less than 2 km² 

of barren land and water was transitioned to developed land within the focal areas from 

2016 to 2020. 

 The land use change analysis conducted under both resolution inputs yielded 

different outcomes. The main types of conversions remained the same between the 30-

m2 and 90-m2 inputs with agricultural land, rangeland, and forest experiencing the 

greatest urbanization-driven changes. Although the main types of conversions remained 

the same, the resulting areas for each conversion type did change between the differing 

resolution inputs. From the 30-m2 input to the 90-m2 input, agricultural conversions 

decreased by 15 km², rangeland conversions decreased by 15 km², and forest 

conversions decreased by 2 km². There was less than a 1 km² difference between both 

resolution inputs for barren, water, and wetland conversions. Although the difference 

was small, water conversions were the only conversion type to increase in total area 

from the 30-m2 resolution input to the 90-m2 resolution input.  
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Table 2.5: Summary of land use conversion area within identified urban boundaries and their immediate 
surroundings under 30-m2 spatial resolution land use data and 90-m2 resolution land use data. 

Land Use Change Type 
30-m2 spatial resolution land 

use data area 
(m²) 

90-m2 spatial resolution land 
use data area 

(m²) 

Agriculture to Developed 
1,044,825,779 

 
1,029,453,382 

 

Barren to Developed 708,924 
554,452 

 

Forest to Developed 
17,039,378 

 
15,493,416 

 

Rangeland to Developed 
160,122,435 

 
145,383,560 

 

Water to Developed 
311,280 

 
429,506 

 

Wetland to Developed 
2,752,031 

 
1,967,914 

 

 

 The following statements reference differences from the 30-m2 spatial resolution 

to the 90-m2 spatial resolution across size classes. Urban areas with less than 50,000 

people and urban areas with a population from 50,000 to 100,000 showed a substantial 

positive difference in agricultural to developed land conversions, whereas urban areas 

with more than 100,000 people displayed an immense negative difference (Table 2.6). 

The difference in rangeland conversions was negative across all population size 

classes. The difference in forest to developed conversions was negative for all 

population size classes and was very similar between the smallest population size 

class. The remaining classes displayed differences, but differences were rather small. 
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Table 2.6: Differences in land use change conversion area between 30-m2 spatial resolution land use data 
and 90-m2 resolution land use data for each conversion type across each population size class.   

Discussion 

 We found the spatial resolution of land use data to be influential on the 

delineation of urban agglomerations, calculations highlighting urban change, metrics for 

spatial patterns of development, and urban related land use change patterns. In our 

analysis, the 30-m2 spatial resolution land use map identified smaller urban areas, 

including individual urban agglomerations and smaller peripheral urban areas 

associated with a denser urban core, better than the 90-m2 spatial resolution land use 

map. Urbanization metrics derived from the 30-m2, and 90-m2 land use maps displayed 

a range of differences. Statistical testing highlighted significant differences, particularly 

differences in SDG Indicator 11.3.1, 2020 developed land use area per capita, and 

spatial patterns of development between the differing resolution maps. The land use 

change analysis conducted within urban agglomerations and their surroundings 

 
Differences between 30-m2 spatial resolution land use data 

and 90-m2 spatial resolution land use data area 
(m²) 

Land Use Change Type Less than 50k 50k to 100k Greater than 100k 

Agriculture to Developed 3,873,626 2,150,645 -21,396,668 

Barren to Developed -39,255 -1,475 -113,742 

Forest to Developed -696,325 -155,762 -693,875 

Rangeland to Developed -2,796,725 -950,391 -10,991,759 

Water to Developed 73 -9,285 127,438 

Wetland to Developed -218,245 -89,242 -476,630 
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revealed differences in the areas of conversion types under each resolution. All 

conversion types experienced a decrease in area from the 30-m2 to 90-m2 land use 

maps, except Water to Developed experienced a slight increase. Differences were 

anticipated given the principles of spatial resolution, but a quantification of the 

differences further emphasized the importance of proper data selection when 

conducting these analyses for multiple urban areas diverse in size and across large 

extents, as well as in the interpretation of urbanization-driven land use change patterns.   

Under the automated delineation approach, the 90-m2 spatial resolution data 

ineffectively captured standalone, smaller urban areas, as well as smaller settlements 

on the peripheries of denser urban cores. For example, the town of Kumbabe 

agglomeration was not captured as a standalone urban area under the 90-m2 resolution 

but was under the 30-m2 resolution (Table 2.2). In 2016, the developed land use 

summarized under the 90-m2 land use product for this area was very small. Due to this, 

we assume it was not big enough to be captured in the first year of the 90-m2 resolution 

input. The automated approach does not retain agglomerations that do not have a pair 

in both years, so was likely removed at this step. These smaller urban areas play an 

important role in the progression and development of urban Africa (Agergaard et al., 

2019; Zimmer et al., 2020) but global land products that are often of coarser resolutions 

(e.g., 100-m2) (Buchhorn et al., 2020) may not be sufficient for accurately identifying and 

spatially analyzing change for them. 

Current global products may also produce biased estimates of SDG Indicator 

11.3.1 for very small urban areas, as we highlighted major differences in LCR and SDG 

Indicator 11.3.1 between the 30-m2 and 90-m2 spatial resolution land use inputs. For 
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example, the town of Gore agglomeration’s SDG Indicator 11.3.1 value jumped from 6 

under the 30-m2 resolution input to 38 under the 90-m2 input. Under both resolutions, 

SDG Indicator 11.3.1 indicated extreme expansion of urban land use, but the magnitude 

of that change varied between. In our examination of the high-resolution imagery, we 

could see that the extent of this town comprised a small area and did not contain a large 

amount of developed land use pixels and did not change significantly over the 5-year 

period. For this small urban agglomeration, the addition of only a few developed land 

use pixels created a rather large LCR value under both resolutions and thereby inflated 

the SDG Indicator 11.3.1 value. Furthermore, we observed inflation of SDG Indicator 

11.3.1 values for larger agglomerations that incorporated peripheral areas under one 

resolution and not the other. Based on these results, we support other works suggesting 

a stronger reliance on metrics outside of SDG Indicator 11.3.1, such as change in built-

up area per capita or change in total built-up area, for evaluating urban change (Nicolau 

et al., 2018), as those metrics appeared more robust to the effects of spatial resolution 

and still illuminate similar urbanization patterns.  

Land use change analyses provide important information for sustainable urban 

development and conservation of priority land use types (Briassoulis, 2020), and our 

findings show that summaries of land use change analyses vary under different spatial 

resolutions and for urban areas of different population sizes. These changes may be 

negligible across broad scale summaries, but finer scale assessments may exhibit 

differences in spatial patterns of land use conversions or shifts in the proportion of land 

use conversions. Our findings are not novel (Momeni et al., 2016; Toure et al., 2018), 

but they further corroborate the importance of considering the influence of spatial 
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resolution on land use change assessments, including calculations of SDG Indicator 

11.3.1, and future work should further test these finer scale effects. 

Studies examining SDG Indicator 11.3.1 and urban characteristics have been 

conducted on small and large urban areas, using spatial products of varying resolutions 

(Calka et al., 2022; Mudau et al., 2020; Philip, 2021; Tuholske et al., 2019; Zimmer et 

al., 2020), but few have evaluated the influence of spatial resolution data inputs on SDG 

Indicator 11.3.1 related assessments. Discrepancies may exist in the results of studies 

like these as the ability to capture specific changes under coarse or moderate resolution 

data varies. Future assessments should be cognizant of the potential effects of spatial 

resolution on delineation, SDG Indicator 11.3.1, and other related metrics and 

acknowledge this limitation. 

Our findings underline an important aspect of geospatial work that may be 

overlooked in SDG Indicator applications: the significance of input spatial data 

characteristics and its implications on outputs and interpretations. Assessments such as 

the one presented in this chapter are important for identifying and better understanding 

the limitations of available data and methods for monitoring urban change, especially for 

data poor areas reliant on geospatial evaluations (e.g., developing countries, particularly 

smaller urban areas within them) (Satterthwaite, 2017). Our findings show that spatial 

assessments using varied resolutions will lead to discrepancies in outputs. Generally, 

the magnitude of the differences we observed between outputs was minor, meaning that 

even coarser resolution datasets, such as 100-m2, may still be valid for conducting 

urbanization-related geospatial assessments across urban areas of all sizes, but users 

should be cautious when interpreting results, especially SDG Indicator 11.3.1.  
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Our work only examined the influence of moderate and coarse resolutions on 

SDG 11.3.1 and related outputs. Land use and land cover datasets at higher 

resolutions, such as 10-m2, would likely be more effective at capturing the true spatial 

form of an urban area and identify developed or built-up land with a higher degree of 

accuracy, leading to more detailed SDG 11 and 11.3.1 related assessments. The 

limitations of spatial data we highlight in our work emphasize the importance of 

continued ground-based efforts and incorporation of higher resolution spatial datasets 

when possible. Future work should evaluate the performance of higher spatial resolution 

datasets (e.g., 10-m2) and the influence of other characteristics of data inputs in the 

assessments of urban change to continue improving urban monitoring efforts for SDG 

11. 

Conclusions 

The purpose of this work was to assess the influence of spatial resolution when 

employing urban delineation methods relying primarily on land use data, such as the 

Urban Extent method or our automated method proposed in Chapter 1, on urban 

agglomeration extents, SDG Indicator 11.3.1, metrics of urban change, spatial 

development patterns, and urbanization-driven land use changes. Our findings revealed 

that the spatial resolution of land use data was indeed influential on urban delineations, 

calculated metrics, and patterns of land use change. We expect that this work will help 

guide more appropriate data selection when addressing SDG Indicator 11.3.1 and 

quantification of appropriate spatial urban change metrics. Consideration of spatial data 

characteristics when conducting geospatial assessments is not only important when 

assessing SDG Indicator 11.3.1 but is applicable to all geospatially compatible 
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indicators. Further work is needed to identify the influences of higher spatial resolutions 

and other characteristics of data inputs to aid monitoring efforts for SDG 11 across 

urban areas of all sizes. 
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APPENDICES 

Table A1. Metrics for top 5 ranking SDG Indicator 11.3.1 urban agglomerations with populations greater 
than 100,000 in Ethiopia.  
 

 Urban Agglomerations 

 Bahir Dar Durame Kombolcha Sodo Mekelle 

2016 Da Per Capita 83 56 96 172 184 

2020 DA Per Capita 144 160 150 312 278 

Total Change in DA (%) 98 510 83 445 98 

LCR 0.200 1.020 0.165 0.889 0.196 

PGR 0.027 0.152 0.032 0.220 0.054 

SDG 11.3.1 7.329 6.707 5.190 4.035 3.63 

Infill (%) 23 12 27 9 20 

Extension and Leapfrog (%) 77 88 73 91 80 

 

Table A2. Metrics for top 5 ranking SDG Indicator 11.3.1 urban agglomerations with populations greater 
than 100,000 in Nigeria. 
 

 Urban Agglomerations 

 Benin City Akure Ikeja Ondo Ughelli 

2016 DA Per Capita 185 206 76 197 236 

2020 DA Per Capita 237 238 80 213 256 

Total Change in DA (%) 63 42 24 39 51 

LCR 0.127 0.084 0.047 0.079 0.101 

PGR 0.049 0.042 0.030 0.050 0.066 

SDG 11.3.1 2.593 2.012 1.564 1.557 1.548 

Infill (%) 48 69 75 67 64 

Extension and Leapfrog (%) 52 31 25 33 36 
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Table A3. Metrics for top 5 ranking SDG Indicator 11.3.1 urban agglomerations with populations greater 
than 100,000 in South Africa. 

 
 Urban Agglomerations 

 Witsieshoek Siyabuswa Kwamhlanga Polokwane 
Jeppe’s 

Reef 

2016 Da Per Capita 205 293 229 257 208 

2020 DA Per Capita 229 396 314 306 256 

Total Change in DA 

(%) 
18 62 111 41 99 

LCR 0.035 0.124 0.222 0.082 0.197 

PGR 0.009 0.037 0.086 0.033 0.096 

SDG 11.3.1 18 3.402 2.576 2.449 2.065 

Infill (%) 83 62 65 56 52 

Extension and 

Leapfrog (%) 
17 38 35 44 48 
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Figure B1. Distribution of land consumption rate differences between 30-m2 resolution and 90-m2 

resolution for all urban agglomerations in Ethiopia. 
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Figure B2. Distribution of population growth rate differences between 30-m2 resolution and 90-m2 

resolution for all urban agglomerations in Ethiopia. 
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Figure B3. Distribution of Sustainable Development Goal Indicator 11.3.1. differences between 30-m2 

resolution and 90-m2 resolution for all urban agglomerations in Ethiopia. 

 



81 
 

 

Figure B4. Distribution of 2020 developed land use area per capita differences between 30-m2 resolution 
and 90-m2 resolution for all urban agglomerations in Ethiopia. 
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Figure B5. Distribution of total change in developed land use area differences between 30-m2 resolution 
and 90-m2 resolution for all urban agglomerations in Ethiopia. 

 



83 
 

  

Figure B6. Distribution of 2020 new development by infill differences between 30-m2 resolution and 90-m2 

resolution for all urban agglomerations in Ethiopia. 
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Figure B7. Distribution of 2020 new development by extension and leapfrog differences between 30-m2 

resolution and 90-m2 resolution for all urban agglomerations in Ethiopia. 

 


