Introduction

Past research has demonstrated dififerences in visual processing between
dominant. or prefereded eyy, and the non-dominant, or less priferred eye.
Researchers have accounted for these differences according to either ph Researchers save accuonied tor these diiferences according to either physiologica
mechanisms (Porac \& Coren, 1976) or behavioral preferences (Mapp, Ono, \& mechanisms (Por
Barbeito, 2003).
The behavioral preferences account can be eliminated by examining ho
processav visual illusions which are not expected to te infuenced by prio
experiences. One particular illusion the Fecchner-Benham Color Illsion
 disks featuring black and white designs which, when rotated, produce the illusion of
various subjective colors within the disks (Rosenblum, Anderson, \& Purple, 1981). It was hypothesized that when viewing the Fechner-Benham Illusion with the non-
dominant eye, partichants would exhibit longer latencies for the onset of color and
 would report few.
binocular vision.
The underlying physiological mechanisms that are often regarded in subjective color
percention perception are either described high in the visual information hierarchy, in a
neturonter
 Robinson, 1896). Or, antagonistically, they ere described as askekn place within th
retina in terms of an uneven distribution of photoreceptor cells (Javivis, 1977).

Andomo of the Retion
General Method
Paricipants $(n=29$ were verbally presented with a Questionnaire in order to
idenify normal versus corrected vision
 Paricicipants' ocular dominance was determined using the average of three tests: 1) Participants' ocular dominance was determined using the average of three lests: 1 ,
a test of Mooric Efficiency, 2) a test for visual accuity using an eye chart, and 3) a
test of ocular preference in tasks. test of ocular preference in tasks.

Desion
Participants were first presented with a control disk, in which objective colors could
be obsenved. be observed. The disk was observed at $1 / 2$ and 3 3/ full speed, under the three
conditions, Non-Dominat, Dominant, and Binocular, which were randomized.
Paricipants then viewed the Fechner-Benham disks (2) at $1 / 2$ and $3 /$ speeds, and
under all three eve condtions.
Paricipants hen viewed the
under all three eye conditions.

Control Disk
Number of Colors Reported

- There were no significant differences in the
across the eye conditions for the control disk
- Significantly more colors were reported under hali-speed compared to three-
quarter speed viewing conditions for the dominant and binocular conditions

Fechner-Benham Disks
Number of Colors Reported

Significantly more colors were reported across
halit-speed than three-quarter speed conditions
Significantly less colors were reported under non-dominant eye viewing conditions tha
$-3.31, \mathrm{p}<.05)$

Significantly less colors were repored unate noner threequater vieweed conditions than binocular v
conditions ($\mathrm{t}=-1.86, \mathrm{p}<.05$)

Are there differences in the speed of onset of
subjective colors across the eye conditions?

- Speed of color onset was siginificanty faster for the hali-speed compared
the three-quarter speed conditions for the dominant $(t=-2.01, \mathrm{p}<.05)$ and the thre--quarter speed conditions for the d
binocular $(t=-3.03, p<.05)$ eye conditions - The onset of color in the non-dominant eye condition was significantly
slower than the onset of color in the dominant eye condition in the hall-speed
condition ($\mathrm{t}=3.78, \mathrm{p}<.05$) condition ($\mathrm{t}=3.78, \mathrm{p}<.05$)

The onset of color in the non-dominant eye condition was significantly
slower than the onset of color in the binocular eye condition in the hall-spee condition ($\mathrm{t}=2.62, \mathrm{p}<.05$)

How sensitive are the eye conditions to the spectral colors?

Control Condition Results: Wavelength Detection at 3/4 Speed

How does color sensitivity change for subjective color perception?
Results For Experimental Conditions Wavelength Detection at 3/4 Speed

overall, sensitivity to color is reduc
disks compared to the control disks

- The non-dominant eye is more sensitive to shorter wavelengths such a
blue compared to the dominant eye
- The non-dominant eye condrition is less sensitive to longer wavelengths

Conclusions

- When viewing the Fechner-Benham Color Illusion, the non-dom
reports significantly fewer colors compared to binocular vision - When viewing the Fechner-Benham Color Illusion, the non-dominant ey requires significantly longer time for color onset compared to both the
dominant eye and binocular vision
- When viewing the Fechner-Benham Color Illuision, the performance of the
dominant eye in color perception is near equal to that of binocular vision - No o ignificant differences were found for the control condititons, thus
suggesting that visual processing dififerences among the eye conditions suggesting that visual porcessing pocessing
unique to subjective color proce
- Sensitivity
conditions

References

Javis, J.R. (1977). On Fechner-Benham subjective color. Vision Research, 17,445
Mapp, A.P., Ono, H. \& Barbeito, R. (2003). What does the dominant eye dominate?
Perception and Psychophysics, 65, 310-317.
Porac, C.. \& Coren, S. (1976) The dominant eye. Psychological Bulletin, 83. 880-
807.
Robinson, T.R. (1896). Light intensity and depth perception. American Journal of Psychology, 7, 518-53
Rohellec, J.L., \& Viénot, F. (1999). Interaction of luminance and spectral adaptation
upon Benham subjective colors. Color Research and Application, 26, 174-179. upon Benham subjective colorss. Color Research and Application, 26, $174-179$.
Rosenblum, K., Anderson, M.L., \& Purple, R. (1981). Normal and color defective perception of Fechner-Benham colors: Implications for color vision theory. Vision

