
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994 405

A Parallel Algorithm and Architecture for the
Control of Kinematically Redundant Manipulators

Anthony A. Maciejewski, Member, IEEE, and J. Michael Reagin, Member, IEEE

(I)

1. INTRODUCTION

THE VAST MAJORITY of efforts to utilize redundancy in
robotic manipulators have been focused on the resolution

of redundancy at the kinematic level. The kinematics of
manipulators is frequently represented by

where x is an rn-dimensional vector specifying the end­
effector velocity, iJ is an n-dimensional vector denoting the
joint velocities, and .I is the rn by n manipulator Jacobian
matrix. For redundant manipulators n > rn so that the general
solution to (I) is typically presented in the form

(3)

where the subscript S refers to the secondary criterion. The
overall solution is then given by substituting (3) into (2) to
obtain

that have been applied include joint range availability [19],
singularity avoidance [26], [39], various measures of dexterity
[5], [8], [11], [18], [31], [40], [41], and obstacle avoidance
[23], [39]. The homogeneous solution can also be used to
optimize secondary criteria defined in Cartesian space, either
to impose a priority to the manipulation variables [28] or to
avoid obstacles [23], by using

which has been simplified by taking advantage of the fact that
the projection operator is Hermetian and idempotent [23]. An
analogous expression at the acceleration level allows the local
minimization of joint torque [17].

An alternative to the formulations of (2) and (4) that
also utilizes the available redundancy is to include additional
kinematic constraints to the original problem described by (I)
[35]. If the vector x is augmented with n - rn additional
kinematic constraints then the resulting Jacobian will be square
and traditional inverses can be applied when it is nonsingular
[12], [33], [34). Baillieul [4] has shown that the secondary
criterion g(e) can be optimized by including the constraint
that the gradient of this function be orthogonal to the null
space of .I, In both of these cases, the extra constraints
will introduce algorithmic singularities [4] in addition to the
kinematic singularities of the original manipulator.

The issue of dealing with singularities has attracted a great
deal of attention [I], [3], [11], [13], [26]. One effective method
of dealing with singularities, be they kinematic or algorithmic,
is to use the damped least squares formulation that was
independently proposed in [27] and [37], and extended in [24].
The damped least squares solution of an equation such as (I)
will be denoted by iJ(),,) and is defined as the solution that
minimizes the quantity

(2)iJ = J+x + (I - J+.1)z

Abstract- Kinematically redundant manipulators are inher­
ently capable of more dextrous manipulation due to their ad­
ditional degrees of freedom. To achieve this dexterity, however,
one must be able to efficiently calculate the most desirable config­
uration from the infinite number of possible configurations that
satisfy the end-effector constraint. It has been previously shown
that the singular value decomposition (SVD) plays a crucial role
in doing such calculations. In this work, a parallel algorithm
for calculating the SVD is incorporated into a computational
scheme for solving the equations of motion for kinematically
redundant systems. This algorithm, which generalizes the damped
least squares formulation to include solutions that utilize null­
space projections and task prioritization as well as augmented or
extended Jacobians, is then implemented on a simple linear array
of processing elements. By taking advantage of the error bounds
on the perturbation of the SVD, it is shown that an array of only
four AT&T DSP chips can result in control cycle times of less
than 3 ms for a seven degree-of-freedom manipulator.

where + denotes the pseudoinverse and (1 - .1+ J)z is the
projection of an arbitrary vector z in iJ space onto the null space
of .1, The second term in (2) is the homogeneous solution to (I)
since it results in no end-effector velocity and will be denoted
here by iJ H. This homogeneous solution is frequently used to
optimize some secondary criterion under the constraint of the
specified end-effector velocity by choosing z to be the gradient
of some function g(e) [20). Some of the secondary criteria

Manuscript received October 9, 1992; revised August 17, 1993. This work
was supported in part by Sandia National Laboratories under Contract 18­
4379B and in part by the NEC Corporation, the TRW foundation, and General
Motors, This paper was presented in part at The 1992 IEEE International
Conference on Robotics and Automation, Nice, france, May 12-14, 1992.

A. A. Maciejewski is with the School of Electrical Engineering, Purdue
University, West Lafayette, IN 47907 USA.

J. M. Reagin is with the Inland fisher Guide Division of General Motors,
Anderson. IN USA.

IEEE Log Number 9401089.

(5)

where ,\ is a weighting factor, sometimes referred to as the
damping factor, which is used to set the relative importance
of satisfying (I) versus the norm of that solution. It is easy to
show that the damped least squares solution is a generalization
of the pseudoinverse solution since it can be obtained by
setting ,\ = O.Therefore, in the remainder of this work the first

1042-29t>X/94$04.00 © 1994 IEEE

406 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994

Likewise, the determination of the damped least squares
solution which is simply a generalization of (9) is easily
obtained by using

Thus an efficient implementation for generating the SVD of
the Jacobian plays a critical role in the control of redundant
manipulators. While the arguably best general algorithm for
calculating the SVD is the Golub-Reinsch algorithm [14], for
this application one would like to use an algorithm that is
more amenable to parallelization [21]. Thus the algorithm used
here is based on Givens rotations [16], [25], [29] which are
orthogonal transformations of the form

1

and the projection onto the null space by using

(I - J+ J) = 2: ViVT.

i=r+1

(11)

(10)

-sin(q,)cos(6)

r

J (A) _ '" __a_i_ . T- L...t 2 \2 V,lli .
i=1 a i + /\

term in (2) or (4) will always be calculated as a damped least
squares solution. Since the addition of the homogeneous term
will always increase the solution norm, it only makes sense
to add this term when the joint norm is below its physical
constraint thus implying that the damping factor is zero and
the pseudoinverse has been calculated. The advantage of using
this more general technique is that the same algorithm and
architecture can be used for all types of formulations whether
they are described by (2), (4), or by an augmented or extended
Jacobian.

The remainder of this paper is organized as follows: Section
II reviews the properties of the singular value decomposition
(SVD) that are relevant to the control of redundant manip­
ulators and presents an algorithm for computing the SVD
based exclusively on Givens rotations. Section III discusses
the perturbation bounds on the SVD that allow one to avoid
the iterative nature of typical implementations. Section IV
illustrates how this SVD algorithm can be parallelized and
incorporated into a parallel evaluation of solutions described
by (2) or (4). Section V then discusses an actual implemen­
tation of the complete algorithm on an AT&T pixel machine
and presents timing data. The conclusions of this work are
then presented in the final section.

II. REvIEW OF THE SVD

The SVD of the Jacobian is defined as the matrix factor­
ization

J = UDVT (6)

Q=

sin(¢) <os(cb) j

where U is an m by m orthogonal matrix of the output singular
vectors, V is an n by n orthogonal matrix of the input singular
vectors, and D is a diagonal matrix of the form (12)

where all other elements not shown are zero. This transfor­
mation can be geometrically interpreted as a plane rotation of
¢ in the i-j plane. Successive Givens rotations are used to
generate the orthogonal matrix V that will result in

D m x n =
o

o

o 0

o
o
o

o

(7)

JV=B

j

(13)

where the a, are the singular values which are typically
ordered from largest to smallest. The SVD plays a central
role with regard to evaluating the dexterity of manipulator
configurations since most local dexterity measures such as
manipulability [40], [41], isotropy [2], [31], proximity to
singularities [18], fault tolerance [22], compatibility [8], and
others [5], [II] are simple functions of the SVD. An efficient
implementation of the SVD is also critical for the calculation
of (2), (4), and (p.) since they are also easily described in
terms of the SVD. In particular, if (6) is written as

by letting the columns of U be equal to normalized versions
of the columns of B

and defining the diagonal elements of D to be equal to the
norm of the columns of B

where the columns of B are orthogonal. A matrix with
orthogonal columns can be written as the product of the
orthogonal matrix U and the diagonal matrix D

(IS)

(14)B=UD

hi
u, = Ilh;11

(8)
r

.J = 2: aillivT

i=l

thus resulting in the SVD of .I.
The critical step in the above procedure is determining the

orthogonal matrix V which will orthogonalize the columns of
.J. This matrix is formed as a product of Givens rotations, each

where u.; and Vi are the ith columns of U and V respectively,
and T is the rank of J, then the pseudoinverse can be formed
by using

(9)

a, = [b.] (16)

MACIEJEWSKI AND REAGIN: PARALLEL ALGORITHM AND ARCHITECTURE FOR CONTROL OF KINEMATICALLY REDUNDANT MANIPULATORS 407

TABLE I
COMPARISON OF ALGORJTI{M OPERATION COUNTS

of which is designed to orthogonalize two columns. Consider­
ing the current ith and jth columns of J, multiplication by a
Givens rotation results in the new columns, j; and jj given by Algorithm Asymptotic FLOP count

The constraint that these columns be orthogonal results in

j; = Jicos(1)) +Jisin(1))

jj = jj cos(1)) - Jisin(1)).

(17)

(18)

Normal equations (Cholesky)
Householder orthogonalization

Modified Gram-Schmidt

Givens orthogooalization

Golub-Reinsch SVD

mn2/2+n3/6

mn2 _ n 3 /3
mn2

2mn2 - 2n 3/3

2mn2+ ~ 4n3

j?j~ = 0 =j;j)(cos2 (q,) - sin 2(ol)+ Un) -j;J,) sin(Qlcos(q\).
(19)

The terms in the Givens rotation matrix to achieve orthogo­
nality can be computed by using the formulas given in [301
which are based on the quantities

The two sets of formulas are given so that ill-conditioned equa­
tions resulting from the subtraction of nearly equal numbers
can always be avoided.

If the Givens rotation to orthogonalize columns i and j is
denoted by Vij then the matrix V can be computed as the
product of a set of 11,(11, - 1)/2 rotations, referred to as a
sweep [15], so that

While the number of sweeps required to orthogonalize the
columns of J is not generally known a priori, the following
section illustrates that by using information from the SVD of
the previous .J one can typically obtain V in a single sweep.

It is instructive to perform a comparison between the
computational requirements of this proposed algorithm with
other standard efficient matrix techniques for solving equations
in the form of (2) or (4). Solutions to (2) and (4), as well as
damped least squares solutions, are all special cases of the
general class of least squares problems with linear equality
constraints. Thus all of them can be solved by traditional
least squares algorithms applied to an appropriately weighted
augmented Jacobian for which the dimension m is now greater
than '/I. The computational requirements for a number of such

standard techniques are presented in the Table I with a detailed
description of the algorithms available in [15].

As can be seen from the Table I, the most computationally
efficient technique is to apply the Cholesky algorithm to the
normal equations. However, this technique can not be recom­
mended for all situations since the conditioning of the original
problem is squared while forming the normal equations. The
orthogonalization methods are all improvements in terms of
numerical stability, however, they all require additional com­
putational expense. The superiority of the Householder orthog­
onalization algorithm in terms of computational requirements
is somewhat misleading since the Givens orthogonalization
algorithm, like the proposed SVD algorithm based on Givens
rotations, is much more amenable to parallel implementa­
tions. In terms of numerical reliability when dealing with
ill-conditioned equations, the SVD is unequivocally superior
to all other techniques, however, this reliability is obtained
with an increase in the computational expense. The operation
counts for the Golub-Reinsch algorithm are only approximate
due to the iterative nature of the algorithm and are for the case
when only the solution to the least squares problem is desired
and not the actual decomposition. By comparison, the SVD
algorithm presented here requires 311, FLOP's to determine
the rotation angle to orthogonalize two columns and then
another 811, FLOP's to apply these rotations to both J and
V. Thus if one were to perform a single sweep serially on
a single processor the resulting FLOP count would be on
the order of 1111,3/2, which would not compare favorably
with the above techniques. However, in Section IV it will
be shown how the Givens rotations can be done in parallel
using 11,/2 processors so that the operation count becomes
1111,2, which is superior to any serial implementation of the
algorithms shown in Table I. It is important to emphasize,
however, that the primary advantage of this technique is not
necessarily computational efficiency but rather the improved
performance of kinematically redundant manipulators that is
possible when using the insight gleaned from the complete
SVD of the Jacobian.

III. PERTURBATION BOUNDS ON THE SVD

If one considers (h to be the current configuration of the
manipulator, then the SVD of J from the previous computation
cycle time is known and is given by

(24)

(25)

(20)

(21)

(22)

(23)

(26)

p
cos(1» = -----:---('~)vsm (I'

if p 2: ()
if p < O'

Sill(1» = ~(A')
Ii cos 'f'

and

V = # h,wep!>s ('h,-1 ,IT Vi
j

) .

/=1,=1 J=,+1

·T·
P = Ji Jj

·T· ·T·q = Ji Ji - Jj Jj

!J = }4p2 + q2

.:cos(1)) = -,-
2'1'

Sgll(p) = {~1

~
Ii - IJ

Sill(1)) = sgll(p) -- and
2v

where

so that for IJ 2: ()

and for IJ < 0

408 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994

If one considers the current manipulator Jacobian to be a
perturbation of the previous Jacobian

Average Error with V = I

(28)
10 .,----------------------,

then the matrix J(Bk)V(fh-d will have nearly orthogo­
nal columns provided that tlJ(fh~d is small compared to
J(Bk - Jl [9], [38]. Therefore, in this work (26) is calculated
using

08

06
1-­
>o
::>

(29)

0'1

Fig. 1. This graph shows the percentage of error in the calculated SVD of the
Jacobian if the proposed algorithm is limited to a single sweep with the value
of V initialized to the identity matrix. Each data point on the graph represents
the average error over an entire randomly selected joint-space trajectory of the
seven degree-of-freedom CESARM manipulator [10]. Data is shown for joint
speeds that result in successive sampled joint configurations ranging from 0.1
to 1.9 rad. There are 300 trajectories calculated for each value of joint speed.

a change of 0.1 rad corresponds to an average angular velocity
of over 33 rad/s. It should be noted that a significant portion of
the 300 random trajectories that are plotted in Fig. 2 naturally
contain configurations in which the resulting Jacobian is
singular and that these configurations pose no special concerns
for the proposed algorithm. The configurations which result in
the largest errors for a given perturbation are those in which
three or more singular values are clustered together resulting in
significant interaction between successive Givens rotations. A
more detailed discussion on the characteristics of manipulator
configurations that result in the largest errors is available in
[25].

2 01 61 280YO
o
o 0

02

IV. A PARALLEL ARCHITECTURE AND ALGORITHM

This section discusses a simple parallel architecture and the
implementation of the above algorithm on that architecture so
that solutions in the form of (2), (4), or iP') can be calcu­
lated in real time. The architecture to solve these kinematic
equations of motion consists of a host processor and a linear
array of n/2 processing elements (PE's). This section and
the one that follows will consider an array that contains four
PE's and which is suitable for manipulators with up to eight
degrees of freedom as an example, however, the results are
completely general. Each PE in the linear array can exchange
data with the PE on its right or left as well as with the
host processor. It should be mentioned that it is possible to
use one of the processors in the linear array to provide the
functions of the host processor, however, for the purposes of

where only a single sweep is performed to update the value
of V(8k-d. While restricting the number of sweeps a priori
has a number of advantages, including the elimination of
convergence tests, it is important to consider the robustness
of such an approximation. A qualitative discussion of the
types of configurations that will introduce errors into this
approximation is found in [25], however, the quantitative effect
of tlJ(fh-d has not been previously presented.

It is instructive to first consider the accuracy of a com­
puted SVD based on a single sweep without using any prior
information. Fig. I presents data on the accuracy to which
the calculated SVD approximates the desired Jacobian when
the algorithm is initialized with V (Bk) equal to the identity
matrix and then halted after a single sweep. Each point on
this graph represents the average error over an entire randomly
selected joint space trajectory for the seven degree-of-freedom
CESARM manipulator [10]. The trajectories are traversed at
different speeds so that with a constant computation cycle
time the change between two consecutive configurations in
a trajectory, i.e. (h - (h-l will vary in magnitude. The range
of this magnitude is varied from 0.1 to 1.9 rad at a resolution
of 0.1 rad with 300 random trajectories calculated for each
value of Iifh - 8k - l ll. From this figure it is clear that a single
sweep of the proposed algorithm, even without using prior
information, provides a reasonable approximation to the SVD
of J. The average errors in this approximation typically lie in
the range of 2-4% with none being greater than 7%. Since the
algorithm is always initialized with the identity matrix there
is no variation with respect to the magnitude of the change
between successive configurations in the trajectory, as would
be expected.

Fig. 2 presents data from a simulation identical to that
described for Fig. I, except that now the algorithm initializes
V(8 k) to V'(B k - l) before performing the single sweep. This
approach clearly provides greater accuracy in the computed
SVD even when the distance between successive configura­
tions is as high as I rad. For configurations that are separated
by more than I rad, the accuracies are similar to those in Fig. I
since there is little correlation between V(8 k) and V(8 k - d
so that V(fh-d and the identity matrix are both effectively
random initializations. In most practical implementations it is
easy to show that the change in manipulator configurations
between successive sampling intervals will typically be below
0.1 rad so that the accuracy of the SVD calculation will be well
within I%. In particular, in Section V it will be shown that the
computation cycle time for this algorithm is below 3 ms so that

MACIFJEWSKI AND REAGIN: PARALLEL ALGORITHM AND ARCHITECTURE FOR CONTROL OF KINEMATICALLY REDUNDANT MANIPULATORS 409

9H

9H

PE3

PE3

PE3

II J(9k)

PE2

PE2

PE2

II J(9k)

9p

PEl

PEl

PEl

Calculate the Jacobian at configuration 9k

PEa

PEa

PEa

Calculate the SVD of the manipulator Jacobian

J(9k)~_~----JII J(9k)

Step 3. ~VJ I SP(3,4)] I 9p(5,6) II

~/~

Step 1.
----~~~-

I

:'J ['I ~ :'J :'J
['] I.~ [']

['J ['] 0 IJ'I [']

D 8 BU['] ['J; m Step 2.

88[']
['] [']

m !
W

~ o

10~

08

....,

OS
~-

>
0
:::>

0'1....,

02

~-I-I
CI 0 '10

Average Error with V = V(8)
k-1

Fig. 2. This graph shows the percentage of error in the calculated SVD of
the Jacobian if the proposed algorithm is limited to a single sweep with the
value of F initialized to the value of l' from the previous configuration. Each
data point on the graph represents the average error over an entire randomly
selected joint-space trajectory of the seven degree-of-freedom CESARM
manipulator [10]. Data is shown for joint speeds that result in successive
sampled joint configurations ranging from 0.1 to 1.9 rad. There are 300
trajectories calculated for each value of joint speed.

illustration it will be described as a separate processing entity.
This architecture is quite similar to that proposed in [36] for
the control of redundant manipulators, however, it does not
require the specialized VLSI implementation of a CORDIC
SVD processor [7].

Obtaining solutions in the form of (2) or (4) involves
three distinct steps as shown in Fig. 3. The first step is the
calculation of the end-effector Jacobian, .1, which is computed
locally on each of the PE's with the host sending only the
current manipulator configuration rh, The second step involves
the calculation of the SVD of the Jacobian and the third step
involves forming either (2) or (4) using the SVD to form the
damped least squares inverse of .l , the projection operator
(I - ./+ ./), and for (4), the damped least squares inverse of
[./5(1 - ./+./)]. The parallel execution of these steps will now
be considered in detail.

When the current end-effector Jacobian .1(fh) is being
calculated in the four PE's, the SVD of the previous Jacobian
is available in these PE's with each of the PE's containing
two singular values and the input and output singular vec­
tors associated with these singular values. The first step in
calculating the SVD of the current Jacobian, identified as
step 2.1 in Fig. 4, is to multiply the current Jacobian ./(fh)
by V(fh--Il, the 1.l matrix associated with the SVD of the
previous Jacobian. Assuming that the magnitude of the joint
velocities are physically realistic, ./(ek)V(fh-d will have
nearly orthogonal columns due to the perturbation bounds
discussed in the previous section.

Form solution to the equations of motion

Fig. 3. The three steps required to solve the equations of motion for
kinematically redundant manipulators. The final solution is composed of a
component that satisfies the specified end-effector velocity, denoted eP. and
a component that represents the redundant degrees of freedom. denoted ell.

The second step in calculating the SVD is the performance
of a single sweep of Given's rotations with column shift
ordering as described in [32]. This particular column shift
ordering allows the columns of B and V to be exchanged
between PE's using a series of shifts where all PE's either shift
their left columns to the right or their right columns to the left.
The advantage of using this type of shifting is that it simplifies
the control and only requires a single bi-directional data path
between PE's. The disadvantage, however, is that a PE is idle
during every other step during the sweep. If two data paths are
provided between PE's then the column shift ordering shown
in Fig. 5 can be used to eliminate the idle PE [6]. In this
work the simpler shift ordering is used so that there are eight
steps, denoted 2.2.1 to 2.2.8 in Fig. 4, required to perform
the single sweep. In this figure, Vi denotes the columns of
the V matrix which are a product of all the Givens rotations
performed up to that point and hi denotes the columns of the
current B matrix which is the Jacobian J(fh) multiplied by
the matrix V. The sweep begins at step 2.2.1 with each PE
performing a Given's rotation on its two columns of B. As
discussed before, the angle of the plane rotation is selected to
make these two columns orthogonal. The PE's then shift their
left column of B and V to the processor on the right. Note that
the right-most processor now has three columns of Band V.
Now at step 2.2.2 each PE, with the exception of the left-most
one, performs a Given's rotation on its two columns. Each
processor then shifts its right column of B and V to the PE
on its left. This process of left and right shifts continues until
step 2.2.8 when eight levels of Given's rotations, i.e., a single

410 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994

Fig. 4. Step 2 of the overall algorithm consists of calculating the SVD of
the Jacobian. This is done by first multiplying the Jacobian by the previous
matrix V in step 2.1, then performing a single sweep of Givens rotations in
steps 2.2.1-2.2.8, and finally normalizing the resulting columns of the matrix
B to determine the matrix U and the singular values.

Fig. 5. An alternate method of doing the column shifts to perform a single
sweep of Givens rotations that does not result in any idle PE's. This technique
requires two data paths between PE' s for simultaneous transfers.

V7

va

PE3,._----'PEO PEl PE2,._._.-.,._._.-.,.
2.3' U, 0'1 V, I. U30'3 V3 I. U5 0'5 V5

I. _U2~. '!3. ~ I. _ U4~4. ~. ~ I. _U6 ~6V~ .

} e•.,

}e.

U, O't Vl U3 en V3 Us as Vs V7

, ••~2 _~2 _ ":2. . _. __ ~4_ ~". ,!<4. _ ~ ' __ ':16. ~~ ~6__ ~ • ~B

sweep, have been performed, The last step in determining the
SVD involves calculating the matrix U((h) using (15) and the
singular values using (16).

Once the SVD of J has been computed, the third step, i.e.,
calculation of a solution in the form of (2) or (4), is greatly
simplified. The first term of either equation, denoted by Op, is
considered as a damped least squares solution given by

(30)

Fig. 6. An illustration of how the SVD of J can be used to calculate
solutions in the form of iJ = J+x + (I - J+ J)z.

which is the second term of (2). If the value of the damping
factor was zero then the intermediate terms are summed to
form 0, as defined by (2), in steps 3.2 and 3.3.

The computation of (4) is more difficult than (2) due to the
calculation of the projection

9(5,6,7,8)

3.3

9(1.2,3,4)which is easily computed using the SVD of J by applying (11).
Note once again that this provides the pseudoinverse solution
if A = O. The second term of (2) is also easily computed
once the SVD is available by using (10). Fig. 6 illustrates
the calculation of (2) on the parallel architecture for the case
where m = 6 and n = 8. At the end of step 2.3, each PE has
two columns of the SVD of J. The PE's which have columns
I to 6 of U, D, and V compute their contribution to 0p in
step 3.1 as

while the PE with columns 7 and 8 computes the term
(33)

However, it can be shown that the calculation of the SVD
(32) of A+ is not as expensive as it might first seem. It has been

MACIEJEWSKI AND REAGIN: PARALLEL ALGORITHM AND ARCHITECTURE FOR CONTROL OF KlNEMATICALLY REDUNDANT MANIPULATORS 411

Similarly for a two-dimensional null space, the SVD of A,
given by

3.2'

3."

3.3'

SVDof +.
A=Js(I-J J)

T. T.
UA1XH UA2XH
-vA1 + -vA2
0 ...1 aA2

9H =
3.5

XH1.2

3.4

(37)

(35)

(36)

where Vi describes the null space of J. It is easy to show 3.3

that the only possibly non-zero singular value of A can be
computed by using

so that the range of A+ is known to be a subset of the null
space of .1.Therefore, to compute its SVD the Givens rotations
can be restricted to the (n - r) -dimensional space described
by the singular vectors Vr+l to V n rather than the full n­
dimensional space. As an example, consider the case of a
seven degree-of-freedom manipulator with a one-dimensional
null space so that the SVD of A is given by

previously shown [23] that

(I - J+ J)[Js(I - J+ J)]+ = [Js(I - .1+.1)]+

If (7A, =1= 0 then the singular vector UA, associated with this
singular value is computed using

.1SVi
UA , = --.

(7A ,

can be computed using a greatly simplified procedure. First,
the matrix J5 is multiplied by the singular vectors that form
the null space of .1

bAl = .1SVi

b A z = .1S V 8 .

(38)

(39)

(40)

Fig. 7. An illustration of how the SVD of J can be used to calculate
solutions in the form of e= J+x + [Js(I - J+J)]+(xs - lsl+x).

back to each of the three PE's in step 3.3 so they can each
compute two elements of the intermediate term

(45)

which results in a basis for the range of A+. Next, a single
Givens rotations is performed to orthogonalize these columns
and determine the two input singular vectors

which are then combined in step 3.4. Once XH and A+ are
available the second term of (4) is formed using

(46)

The singular values and output singular vectors of A are then
computed using (15) and (16) on b~4.1 and b~2' For higher
degrees of redundancy the vectors bAI through b A,,_, can be
orthogonalized by using sweeps of Givens rotation that are
restricted to this n - r dimensional subspace, a task for which
this architecture has been optimized.

Fig. 7 illustrates the computations required to obtain a
solution in the form of (4) on the parallel architecture for
the case where tri = 6 and n = 8. As in the computation of
(2), the PE's with columns 1 to 6 compute their contribution
to ep using (11) in step 3.1. The PE with columns 7 and 8 is
responsible for computing the SVD of [.15(I - J+.1)] + using
the method described above. In step 3.2 the results from the
three PE' s are combined to form ep which is then distributed

b~, = bAl cos(¢) + b A 2 sin(¢)

b~4.2 = b A 2 cos(¢) - bAI sin(¢)

VAL = Vi cos(¢) + V8 sin(¢)

V.4.z = V8 cos(¢) - Vi sin(¢).

(41)

(42)

(43)

(44)

The value sent to the joint controller is then obtained by adding
ep and eH .

Note that the benefit of performing the calculation of XH
in parallel for (4) must be weighed against the amount of
communication overhead required. Depending on the ratio
of the computation time to communication time, it may be
desirable to perform the calculation of XH serially. This
decision will be affected by the communication rate and the
size of the n - r dimensional subspace of J. For larger values
of n - r, the time associated with the computation of the SVD
of A will be much larger than the computation time of XH.

V. IMPLEMENTATION

The algorithm described in the previous section was imple­
mented on a linear array of eight DSP32 processors that were
part of an AT&T Pixel machine with a Sun workstation serving
as the host processor. This configuration permits timing eval­
uations for manipulator systems with up to sixteen degrees of
freedom. For the example discussed above only four PE's were

412 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994

TABLE II
TIMING STATISTICS FOR CALCULATING SOLUTIONS IN THE FORM 01­

(2) AND (4). (PARALLEL TIMES REPRESENT FOUR DSP32 PE'S)

(}= J+bj.r + (I ~ 1+1)=

TSVD

TSOLVE
Total

T SVD
TSOLVE
Total

Serial

6.2 ms
0.5 ms

6.7 ms + TJACOBIAN

Serial

6.2 ms
1.4 ms

7.6 ms + TJACOBIAN

Parallel

1.7 ms + 8 T sHIFr
0.2 ms

1.9 ms + TJACOBIA:--J + 8 TSHIFT

Parallel

1.7 ms + 8 T SHIFT
0.7 ms

2.4 ms + T JACOBIAN + 8 T SHII'T

Speedup

3.65
3.31

3.61

Speedup

3.65

1.89

3.17

TABLE III
BREAKDOWN OFTHETIME REQUIRED TO CALCULATE THE
SVD. (PARALLEL TIMES REPRESENT FOUR DSP32 PE's)

Step Serial Parallel Speedup

TMuL:r 2.1 0.88 ms 0.22 ms 4.0

TSWEEP 2.2 4.50 ms 1.29 ms 3.5

T NORM B 2.3 0.88 ms 0.22 ms 4.0

Table III presents more information on the time required
to calculate the SVD by analyzing its components which are
given by

T SV D = Tl\WLT V + TSWEEP + TNOR:V1 B (48)

required. The DSP32 processors are rated at 5MFLOPS with
a serial transfer rate between processors of 5.25 Mbits/s. This
platform was selected due to its software support tools and
availability despite the fact that the serial transfer rate between
PE's presents a serious drawback, However, the execution time
of the algorithm on this architecture can be extrapolated to
architectures that support a higher bandwidth communication
between PE's. The algorithm was implemented in C and then
compiled for the DSP32 PE's. While there was an effort to
efficiently utilize register variables to improve performance,
the execution times are by no means to be considered optimal.

The time required for the calculation of e, denoted by

TCALCjj, is given by

1C A L C iJ = TJACOBIAN + TSVD + TSOLVE (47)

where TJACOBIA:,< is the time to acquire the joint positions and
calculate the current Jacobian, T SV D is the time to calculate
the SVD of the end-effector Jacobian .1, and TSOLVE is the
time required to form the solution of (2) or (4) using the
SVD of .1. Timing information for both serial and parallel
implementations of (2) and (4) on the AT&T pixel machine
is presented in Table II. Note that the values of TJACOI3IAN

and TSHIF T are left as variable parameters. The value of
TJACOl3IAl\' is not specified in the table since it is manipulator
dependent. The equations for calculating the Jacobian of the
CESAR manipulator [10], which required approximately 0.38
ms, were implemented in order to provide some comparison
with the other execution times. The parameter TSHIFT, which
is the time required to shift a column of B and V to an adjacent
PE, is also given separately since it becomes negligible when
dual-port RAMs are substituted for the serial links between
PE's. Table II shows that once the SVD of the manipulator
Jacobian has been calculated, the solution to either (2) or (4)
can be computed in a relatively short period of time. This is
a major motivation for using the SVD in the computation of
these equations. Since the calculation of the SVD accounts
for the majority of the computation time, approximately 1.7
ms, the speedup ratio (3.65) associated with the SVD has the
greatest effect on the overall performance improvement for
the calculation of (2) or (4).

where T:VWLT v denotes the time required to multiply .1(()k)

by V({h-d on the PE's, TSWEEP is the time to perform a
single sweep of Givens rotations, and T:'<ORM B is the time
required to calculate the singular values and columns of U
from the columns of B at the end of the sweep. From Table III
one can see that there is a factor of four speedup for T:VIULT v
and TN OR M B and a 3.5 times speedup for TSWEEP illustrating
the extremely parallel nature of this particular algorithm, The
theoretical maximum speedup of four could be achieved for
TSvVEEP as well by using the column ordering shown in Fig. 5
thus removing the idle PE in every other step as discussed
previously [6].

The computation of (2) in parallel, which is shown in Fig. 6,
is 3,6 times faster than the calculation of (2) in serial for
the case where ti = 8. The two components involved in
the computation of (2) are TSV D and TSOLVE (2)' The most
important thing to note is the relatively insignificant amount
of time required to solve (2) once the SVD of the manipulator
Jacobian has been calculated. The overall speedup factor for
the component TSOLVE (2) is 3.3. This is mostly due to step
3.1 of the calculations for TSOLVE (2) where there is almost a
factor of four speedup except that there are two fewer divisions
on PE3 since it is calculating eH rather than contributing to ep.

In this timing example z was calculated as the gradient of the
squares of the joints angles in order to utilize the redundancy
for joint range availability [19],

Fig. 7 shows the computation of (4) on the parallel archi­
tecture. In Table IV the time TSOLVE (4) is broken down into
Tl s MULT, which is the time required to multiply .15 times
V7 and vs, T GIV E N, which is the time required to perform the
single Givens rotation, TN OR M B, which is the time required
to find <T.'!.l, <TA2, UAl and UA2 from b~l and b~2' TCALC-xu,

which is the time required to compute the intermediate term
XH, and TCO M M , which is the communication time required
to transfer intermediate terms between the processing elements
in steps 3.1 through 3.5. Table II shows that there is a 3.2
times overall speedup in the calculation of (4) on the parallel
architecture and a 1.9 times speedup for TSOLVE (4)' As
mentioned before, the speedup associated with TSV D has the
largest effect since the computation time associated with the
SVD of the Jacobian is a major portion of the total computation
time. In Fig. 7, steps 3.1' to 3.3', the computation of the
SVD of A, are executed in 0.6 milliseconds. Note that for

MACIEJEWSKI AND REAGIN: PARALLEL ALGORITHM AND ARCHITECTURE FOR CONTROL OF KINEMATrCALLY REDUNDANT MANIPULATORS 413

REFERENCES

[II E. W. Aboaf and R. P. Paul, "Living wiIh Ihe singularity of robot wrists."
in IEEE lnt. Con]. Robotics Autom.. Raleigh, NC, Mar. 3 I-Apr. 3, 1987,
pp. 1713-1717.

TABLE IV
BREAKDOW~ OFTHE TIME REQUIRED TO SOLVE (4) OI\CE THE SVD IS

AVAILABLE. (PARALLEL TIMES REPRESENT FOUR DSP32 PE's)

VI. CONCLUSION

This work has presented a parallel algorithm and archi­
tecture for solving the equations of motion for kinematically
redundant robotic systems. It has been shown that the various
desirable forms of the solutions to these equations can all be
efficiently obtained when the SVD of the Jacobian is available.
Thus a major portion of the algorithm is devoted to the parallel
computation of the SVD. The implementation of this algorithm
on an array of AT&T DSP32 processors has illustrated that
computation cycle times of less than 3 ms can be obtained even
when using the most complicated form of solution. By using
currently available processors such as the TI TMS320C4x in
the same configuration, control frequencies of well over] kHz
are feasible.

[21 J. Angeles, 'The design of isotropic manipulator architectures in the
presence of redundancies." Int . .l. Robotics Res., vol. II, no. 3, pp.
196-201, June 1992.

[31 H. Asada and J. A. Cro Granito. "Kinematic and static characterization
of wrist joints and their optimal design," in IEEE Int. Conf Robotics
Autom., St. Louis, MO, Mar. 25-28, 1985, pp. 244--250.

[41 J. Baillieul, "Kinematic programming alternatives for redundant manipu­
lators," in IEEE Int. Conf Robotics Autom., St. Louis, MO, Mar. 25-28,
1985, pp. 722-728.

[51 J. Baillieu1, "A constraint oriented approach to inverse problems for
kinematically redundant manipulators," in IEEE Int. Conf Robotics
Autom.. Raleigh, NC, Mar. 31-Apr. 3, 1987, pp. 1827-1833.

[61 R. P. Brent, F. T. Luk, and C. Van Loan, "Computation of the singular
value decomposition using mesh-connected processors," J. IILSI and
Computer Syst., vol. 1. no. 3, pp. 242-27 L 1985.

171 J. R. Cavallaro and F. T. Luk, "CORDIC arithmetic for an SVD
processor," .l. Parallel and Distributed Computing, vol. 5, pp. 271-290,
1988.

[81 S. L. Chiu, "Task compatibility of manipulator postures," lnt .J. Robotics
Res .. vol. 7, no. 5. pp. U-21, 1988.

[91 C. Davis and W. M. Kahan. "The rotation of eigenvectors by a
perturbation," SIAM .l. Numerical Anal.. vol. 7, no. I, pp. 1-46, 1970.

110] R. V. Dubey, J. A. Euler, and S. M. Babcock, "An efficient gradient
projection optimization scheme for a seven-degree-of-freedom redun­
dant robot with spherical wrist," in IEEE Int. Con]. Robotics Autom.,
Philadelphia, PA, Apr. 24-29 1988. pp. 28-36.

[II] R. Dubey and J. Y. S. Luh, "Redundant robot control for higher
flexibility." in IEEE Int. Con]. Robotics Autom., Raleigh, NC, Mar.
31-Apr. 3, 1987, pp. 1066-1072.

112] O. Egeland, "Task-space tracking with redundant manipulators," IEEE
Trans. Robotics Automat., vol. 3. no. 5, pp. 471-475, 1987.

[131 O. Egeland, J. R. Sagli, I. Spangelo, and S. Chiaverini. "A damped least­
square solution to redundancy resolution." in IEEE Int. Con]. Robotics
Automat .. Sacramento, CA, Apr. 9-11,1991, pp. 945-951.

[141 G. H. Golub and C. Reinsch, "Singular value decomposition and least
squares solutions:' Numer. Math, vol. 14, pp. 403-420, 1970.

[151 G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore,
MD: Johns Hopkins University Press, 1983.

1161 M. R. Hestenes, "Inversion of matrices by biorthogonalization and
related results,".I. Soc. Ind. Appl. Math., vol. 6, no. I, pp. 51-90,1958.

117/ M. Hollerbach and K. C. Suh, "Redundancy resolution of manipulators
through torque optimization," IEEE Trans. Robotics Automat., vol. 3,
no. 4, pp. 308-316, 1987.

[181 c. A. Klein and B. E. Blaho, "Dexterity measures for the design and
control of kinematically redundant manipulators," Int . .I. Robotics Res.,
vol. 6, no. 2, pp. 72-83, 1987.

[191 c. A. Klein and C. H. Huang, "Review of pseudoinverse control for use
with kinematically redundant manipulators," IEEE Trans. SySI., Man,
and Cyber.. vol. 13, no. 2, pp. 245-250, 1983.

1201 A. Liegeois, "Automatic supervisory control of the configuration and
behavior of multibody mechanisms," IEEE Trans. Syst .. Man, and
Cvber.. vol. 7, no. 12, pp. 868-871, 1977.

121/ F. T. Luk, "A triangular processor array for computing singular values,"
Linear Algebra and Its Applications, vol. 77, pp. 259-273, 1986.

[221 A. A. Maciejewski, "Fault tolerant properties of kinematically redundant
manipulators," in IEEE Int. COIlj'. Robotics Automat., Cincinnati, OH,
May 13-18 1990. pp. 638-642.

[231 A. A. Maciejewski and C. A. Klein, "Obstacle avoidance for kinemat­
ically redundant manipulators in dynamically varying environments,"
lnt. .I. Robotics Res., vol. 4, no. 3, pp. 109-117, 1985.

[24] A. A. Maciejewski and C. A. Klein, "Numerical filtering for the
operation of robotic manipulators through kinematicalIy singular con­
figurations," .l. Robotic Syst .. vol. 5, no. 6, pp. 527-552, 1988.

[251 A. A. Maciejewski and C. A. Klein, 'The singular value decomposition:
Computation and applications to robotics," Int . .I. Robotics Res.. vol. 8.
no. 6, pp. 63-79, 1989.

[261 R. V. Mayorga. N. Milano. and A. K. C. Wong, "A fast procedure for
manipulator inverse kinematics computation and singularities preven­
tion," .I. Robotic Svst .. vol. 9. no. 8, 1992.

1271 Y. Nakamura and H. Hanafusa, "Inverse kinematic solutions with
singularity rohustness for robot manipulator control," ASME J. Dynamic
Svst .. Measurement. and Control, vol. 108, no. 3. pp. 163-171, 1986.

128/ Y. Nakamura. H. Hanafusa, and T. Yoshikawa, 'Task-priority based
redundancy control of robot manipulators," Int . .I. Robotics Res., vol. 6.
no. 2. pp. 3-15, 1987.

[291 J. C. Nash, "A one-sided transformation method for the singular value
decomposition and algebraic cigcnproblern." ComputerL; vol. 18, no.
1. pp. 74-76, 1975.

Serial Parallel Speedup

0.22 ms 0.22 ms

0.16 ms 0.16 rns

0.22 ms 0.22 ms

0.60 ms 0.60 ms

0.38 ms O.U ms 3.0

0.02 ms ms

0.22 ms 0.02 ms 3.0

0.62 ms
0.22 ms

2.8
+TCOM\I

0.14 rns 0.14 ms

1.40 ms 0.74 ms 1.9

TJ,<''' MULT

TCilVE:--J

TNORM B

TSOLVE (4)

T .
CALC bf»II

Step

3.1'

3.2'

3.3'

3.1'-3.3'

3.1

3.2

3.3

3.1-3.4

3.5
3.1-3.4,3.1'-3.3',3.5

the case where n = 8 these calculations are performed on a
single processor which is the reason that there is no speedup
for these individual calculations. However, for manipulators
with higher degrees of redundancy step :3.2' will not be a
single Givens rotation, but will instead be several sweeps of
Givens rotations. This means that the parallel architecture will
be of even greater benefit in the higher order cases since the
processors with columns T + 1 to n will be performing the
sweeps of Givens rotations to compute the SVD of A rather
than a single processor. In steps 3.1 through 3.4 the calculation
of the intermediate term XH is performed. For a manipulator
with one or two degrees of redundancy, the calculation time
for XH on a single processor is greater than the calculation
time for the SVD of A in steps 3.1' to 3.3'. This is the reason
that all three processors are used in steps 3.3 to 3.4 even
though it increases the complexity of the software. However,
for manipulators with higher degrees of redundancy the time
to calculate the SVD of A will be much greater than the
calculation time of XH. This means that the calculation time
for XH will be totally overlapped by steps :U' to :3.:3' allowing
one to simplify the software.

414 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 10, NO.4, AUGUST 1994

Anthony A. Maciejewski (S'82-M'87) received
the B.S.E.E., M.S., and Ph.D. degrees in electri­
cal engineering from The Ohio State University,
Columbus, in 1982, 1984, and 1987, respectively.

Since 1988 he has been with the School of
Electrical Engineering at Purdue University, West
Lafayette, IN, where he is currently an Associate
Professor. His primary research interests center on
the simulation and control of kinematically redun­
dant robotic systems.

J. Michael Reagin (S'87-M'91) received the B.S.
degree in computer and electrical engineering in
1989 and the M.S. degree in electrical engineering
in 1991 from Purdue University, West Lafayette, IN.

He is currently employed by Inland Fisher Guide
Division, General Motors, Anderson, IN as a tool­
room supervisor responsible for CNC programming
and machine operations. His current areas of interest
include automatic cutter path generation, graphical
simulation, and advanced manufacturing technolo­
gies.

Mr. Reagin is a member of Eta Kappa Nu, Tau Beta Pi, and the Society
of Manufacturing Engineers.

[30] J. C. Nash, Compact Numerical Methodsfor Computers: Linear Algebra
and Function Minimisation. Bristol, U.K.: A. Hilger, 1979.

[31] J. K. Salisbury and J. J. Craig, "Articulated hands: Force control and
kinematic issues," Int. J. Robotics Res., vol. I, no. I, pp. 4-12, 1982.

[32] D. E. Schimmel and F. T. Luk, "A new systolic array for the singular
value decomposition," in Adv. Res. in VLSI, C. E. Leiserson, Ed.
Cambridge, MA: MIT Press, 1986, pp. 205-217.

[33] L. Sciavicco and B. Siciliano, "A solution algorithm to the inverse kine­
matic problem for redundant manipulators," IEEE J. Robotics Autom.,
vol. 4, no. 4, pp. 403-410, 1988.

[34] H. Seraji, "Configuration control of redundant manipulators: Theory
and implementation," IEEE Trans. Robotics Autom., vol. 5, no. 4, pp.
472-490,]989.

[35] B. Siciliano, "Kinematic control of redundant robot manipulators: A
tutorial," J. Intell. Robotic Syst., vol. 3, pp. 201-213, 1990.

[36] I. D. Walker and J. R. Cavallaro, "Parallel VLSI architectures for real­
time control of redundant robots," in Robotics and Remote Systems:
Proc. Fourth Amer. Nuclear Soc. Topical Mtg. Robotics and Remote
Syst., Feb. 24-28, 1991, pp. 299-309.

[37] C. W. Wampler II, "Manipulator inverse kinematic solutions based on
vector formulations and damped least-squares methods," IEEE Trans.
Syst., Man, and Cybernetics, vol. 16, pp. 93-101, 1986.

[38] P. A. Wedin, "Perturbation bounds in connection with singular value
decomposition," BIT, vol. 12, pp. 99-111, 1972.

[39] T. Yoshikawa, "Analysis and control of robot manipulators with redun­
dancy," in Robotics Res.: First Int. Symp., M. Brady and R. Paul, Ed.
Cambridge, MA: MIT Press, 1984, pp. 735-747.

[40] T. Yoshikawa, "Dynamic manipulability of robot manipulators," J.
Robotic Syst., vol. 2, no. I, pp. 113-]24,]985.

[41] T. Yoshikawa, "Manipulability of robotic mechanisms," Int. 1. Robotics
Res., vol. 4, no. 2, pp. 3-9, Summer 1985.

