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ABSTRACT 

 

 

EFFECTIVE PROPERTIES OF MAGNETO-ELECTRO-ELASTIC TWO-DIMENSIONAL CELLULAR SOLIDS 

 

 

Two-dimensional cellular solids composed of magneto-electro-elastic (MEE) materials 

were studied using the finite element method (FEM). A MATLAB code was written to implement 

field models to determine the effective properties for this cellular solid including elastic, 

piezoelectric, piezomagnetic, thermal, pyroelectric and pyromagnetic effective properties as a 

function of the relative density. Results obtained for purely elastic properties were compared 

with results from other studies and showed good agreement. Varying microstructures of the 

cellular solids including square, equilateral triangle and hexagonal systems, were considered and 

comparisons between the results of all the geometries were established. The triangular cellular 

solid was the stiffest among all shapes, and the regular hexagon cellular solid showed the highest 

effective coupling constants for the piezoelectric, piezomagnetic, pyroelectric and pyromagnetic 

coefficients. The thermal expansion coefficient was found to be independent from the relative 

density and was constant for all the MEE cellular solid shapes. A set of simple equations are 

proposed to approximate the effective properties for these low density MEE solids.   
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Introduction:  

Cellular solids refer to materials that contain numerous cells where the volume between 

the cell walls is filled by air. The shape of these cells can vary from regular shapes to totally 

random configurations. Cellular solids are usually classified into two-dimensional cellular solids 

that are called honeycombs and three-dimensional and more complex structures that are called 

foams. Several examples are shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Natural cellular solids: (a) cork (b) balsa (c) sponge (d) cancellous bone (Gibson, 1989). 

 

The cell walls of the foams can be either open, partially closed, or closed. Cellular solids 

can be found in nature and includes material such as wood, cork and bones of the human body 

or it can be made artificially by different materials (e.g. polymers, metals, ceramics and glass). 

Recently, man-made cellular solids have gained a special interest because of the benefits of such 
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materials in light weight structure such as sandwich panels. Some of their benefits include having 

low densities but relatively high stiffness and strength compared to ordinary solids.  They can 

also be used as an impact absorbers because of their ability to undergo large compressive strains 

compared with regular solids. 

Materials that are made from Magneto-Electro-Elastic (MEE) composites have somewhat 

different benefits. MEE composites are made from combining piezoelectric materials, which can 

induce electric field by applying stresses on it and vice versa, and piezomagnetic material,  which 

can induce magnetic field by applying stresses on it and vice versa. These materials have potential 

product properties that couple these interactions. MEE composites can be used in smart 

structures, structural health monitoring, green energy and energy harvesting, sound devices, 

biomedical devices and many increasing applications. Such materials are at present relatively 

expensive compared to others. Finding some ways to reduce the cost while maintaining its 

properties is essential in starting using these materials more widely. The technologies of making 

cellular solids from any material is available as mentioned in Gibson and Ashby (1997) so the 

benefits of combing the benefits of the two and examine the behavior of  cellular solids that are 

made from MEE composite could be significant. 

In this research, two-dimensional cellular solids that are composed of MEE constituents 

will be studied by finding the effective properties of these cellular solids.  Of primary interest is 

the effect of the cell shapes and the relative density on these properties. These will be studied 

using finite element models of the full two-dimensional governing equations of the solid. To the 

authoƌ͛s knowledge, this is the first research to study a MEE cellular solid. 
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1.2 Objectives: 

             The objectives of this work are to: 

 Determine the effective elastic properties for the three shapes of honeycomb and 

compare the results with existing studies. 

 Determine the effective piezoelectric, piezomagnetic properties for the three shapes of 

honeycomb. 

 Determine the effective thermal expansion coefficient for all the shapes. 

 Study the temperature effect on the piezoelectric and piezomagnetic properties by 

finding the pyroelectric and pyromagnetic properties for the honeycombs. 

 Study the effect of the relative density of the honeycomb on all the properties. 

 Establish comparisons between the three shapes of the honeycomb and find which shape 

will give the highest values for all the effective properties. 

 Suggest a set of relatively simple equations to represent all the effective properties of the 

MEE cellular solid in terms of the relative density. 

1.3 Thesis organization  

Chapter 1 of this thesis is an introduction that contains necessary background and brief 

definitions of cellular solids and the smart material (MEE composites) that are used in this study. 

Chapter 2 gives a review of the literature that has been used to develop a better understanding 

on the subjects of cellular solids and the MEE composites. The first part of Chapter 2 will discuss 

the literature on cellular solids while the second part will show the history, applications and the 

literature on the MEE composites. The third part will mention the existing studies on smart 

material cellular solids. Chapter 3 will present all the theoretical developments, governing 
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equations and methods that were used in the study. Chapter 4 contains the results showed in 

figures and tables and comparison with existing studies are also shown. Discussions and 

explanations of the results are also provided. Suggested equations for the effective properties 

can also be found in Chapter 4. Chapter 5 presents the conclusions and all the findings of the 

study and also will discuss the possible future work and what can be added to improve this study. 

An Appendix is provided that will show the written MATLAB code and will have the elements of 

the matrix equations for the Ritz model and other computational details. 
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CHAPTER 2:  LITERATURE REVIEW 

 

 

 

2.1 Background 

Significant prior work has been published on cellular solids. This is an enormous subject 

because of the variability of the constituent materials, cell shapes and cell sizes. Cellular solids 

can be found either in nature (e.g. wood, cork and human bone) or those that are artificially 

manufactured (e.g. polymeric foams used for impact absorption). There is significant variety in 

the studies that depend on how those foams are used or how they are made. In practice, foams 

are any solid that have a relative density that is less than (0.3). A solid have a relative density that 

is greater than (0.3) can be considered as a solid with isolated pores [Gibson & Ashby, 1997]. 

One of the most important summaries of cellular solids is that of Gibson and Ashby (1997). 

This work has been referenced in for almost every study that has been done on cellular solids. It 

covers a vast subjects discussing the mechanical, thermal, electrical and acoustic properties of 

cellular solids and foams. Cellular solids are classified into honeycombs, which implies a two 

dimensional cellular solid with triangular, square or hexagonal cells, and foams, which refers to 

a three dimensional and more complicated version of cellular solids. Foams can be open celled 

or partially closed and fully closed, each of which can affect its properties significantly. This 

research will focus on two-dimensional cellular materials composed of materials that couple 

elastic, electric, and magnetic fields. 
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Figure 2.1: Cellular solids (a) Honeycomb; (b) open-cell foam; (c) closed-cell foam (Gibson, 1989) 

 

One important property of cellular solids is the relative density. This is easily-calculated 

parameter that gives the portion of volume that is occupied by material. It has been shown that 

many of the mechanical properties of cellular solids can be related to its relative density in the 

form of: 

                                                         
∅∗ ∅� = � ቀ�∗��ቁ�

                                          2.1 

Where: ∅∗: Any effective mechanical property for the foam.  ∅�: Any mechanical property for the constituent solid. 

�∗�� : The relative density of the foam. 

c and p: Constants depend on the microstructure of the foam  

 

Researchers have studied the behavior of cellular solids under the effect of high 

temperature and the effect of moisture on foams especially for sandwich panels and wood. The 

work on piezoelectric, piezomagnetic and magneto-electro-elastic cellular solids is somewhat 

limited. 
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2.2 Modeling and mechanics of two-dimensional cellular solids 

Significant effort has been devoted to the study of cellular solids, and the literature on 

cellular solids shows a variety of approaches. Early researchers studied a representative unit cell 

assuming that the cellular solid is periodic and generally not taking into account any irregularities 

in the cells. Gibson et al. (1982) studied the plane properties of honeycomb when loaded in �ଵ 

and �ଶ directions, as can be seen in Figure 2.2, experimentally and theoretically. They found a 

relationship between the relative density and the thickness t and the length l of the cell wall for 

the regular hexagonal honeycomb (θ=ϯϬͿ that can be shown as: 

�∗�� = ଶ√ଷ ௧௟                           2.2 

 

Gibson and co-workers (1982) carried out an experimental work on honeycomb with different 

cell dimensions and found the elastic properties of the honeycomb. Theoretically, they found a 

relationships between the elastic properties of the honeycomb and the cell dimensions (t, l and 

θͿ, Figure 2.2, by assuming the cell wall will behave as a simple beam where bending of the cell 

wall acts as the main deformation mode. The theoretical and the experimental work showed 

good agreement. Warren and Kraynik (1987) used a different approach to study the elastic 

response of periodic two-dimensional cellular materials by studying different repeating volumes 

consisting from three elements connected at a node. They considered axial and shear 

deformation in their analyses in addition to bending deformation. They found an expressions for 

the elastic properties and found that for low-density honeycomb the effective properties can be 

determined by the bending mechanism.  
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Figure 2.2: Two-dimensional Hexagonal Unit cell (Gibson et al., 1982) 

 

Christensen (2000) studied different shapes of two-dimensional low density cells 

(triangular, hexagonal, triangular and hexagonal, hexagonal and stars) and found the expression 

for the elastic properties in term of the volume fraction of material (1-c)  when c is volume 

fraction of the voids and (1-c) is equal to the relative density (
�∗��). For the effective modulus of 

elasticity, all the cell shapes have the expression of ሺͳ − cሻ ଷ because of the bending in the cell 

walls. The triangular cells have the expression ሺͳ − ܿሻ because they act like a truss. For 

example: 

 For triangular cell:                              
ாா� = ଵଷ  ሺͳ − ܿሻ                                     2.3 

 For hexagonal cell:                              
ாா� = ଷଶ  ሺͳ − ܿሻଷ                                   2.4 

 

Hohe and Becker (2003) studied a periodic two-dimensional hexagonal honeycomb made 

from hyperelastic material and found the effective stress-strain when uniaxial, biaxial and shear 

loading are applied. They studied a repeating unit cell (RUC) similar to that studied by Warren 

and Kraynik (1987). They found that the behavior of cellular solid under infinitesimal strain will 
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be different from its behavior under finite strain. Cell wall alignment can play a rule in this 

behavior since its effect can be neglected for infinitesimal strains and it can cause anisotropies 

under large strains even for initially isotropic cellular solid.     

In practice, it is difficult to find a periodic cellular solid without any defects or 

irregularities. Many manmade or natural foams possess a random microstructure. For this 

reason, the effect of irregularities and defects on the behavior of cellular solids have seen 

significant investigation. Silva et al. (1995) investigated the effect of non-periodicity on the elastic 

properties of foams using the Voronoi method to generate a random cell shapes. The cell walls 

were analyzed as a 3-node beam using Finite Element Method (ABAQUS software). The cell walls 

were assumed to be uniform. Silva and Gibson (1997) studied the effect of non-periodicity on the 

strength of the honeycomb using the same method used in their previous research. Steadman et 

al. (2014) studied the effect of different irregularities and defects of two-dimensional cellular 

solid on the elastic properties. They studied the elongation and the shortening of the cell walls, 

randomly broken cell walls and the effect of thickness variation in the cell walls. They concluded 

that broken cell walls can cause a significant drop in the elastic properties even with low number 

of broken cell walls. They also found that cell wall elongation causes anisotropy and the effect of 

thickness variation can be neglected.  This research will only consider a regular two-dimensional 

cellular solid with no defects or irregularities.  

2.3.1    Magneto-Electro effect 

The first person to study magnetoelectric (ME) material was the French physicist Pierre 

Curie (1894). Landau and Lifshitz (1957) and Astrov (1960) did experimental work confirming that 

there can be an electric field generated after applying a magnetic field. All the previous work was 
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conducted to study a single-phase material like (ݎܥଶܱଷ). These previous studies indicates that the 

ME effect in single phase materials can be found only in very low temperatures and the effect is 

weak such that it is challenging to use in any realistic application.  

Suchtelen (1972) proposed a new way to have the ME effect by making a product of 

composite made from piezoelectric and piezomagnetic materials. This was the first time that MEE 

composites had been proposed. According to Sun and Kim (2010), MEE composites are made 

from piezoelectric(e.g.,  barium titanate ,ܤ�ܱܶ݅ଷ) and piezomagnetic (e.g., cobalt iron 

oxide,݁ܨ݋ܥଶ ସܱ) materials. Individually these have the same properties of its original materials 

but together possess ME coupling. By applying a magnetic field to the composite, a change in the 

piezomagnetic material dimensions.  Because of the interaction of the materials in the 

composite, the strain will affect the piezoelectric phase inducing an electric field. The same effect 

will occur if an electric field has been applied instead of the magnetic field. Magnetoelectroelastic 

(MEE) composites can be made by making one of the materials as a matrix and the other is 

embedded in the matrix in the form of particles, fibers or by making a multiple layers of these 

materials. The latter is the most common way to construct these solids because of the ease of 

fabrication. 

Van Run et al. (1974) found the properties of (barium titanate)-(Cobalt ferrite-titanate) 

composite by experimental work. Van Boomgaard and Born (1978) conducted a series of 

experiments to study the first particulate (0-3, 3-0) ME composite, and they found the optimal 

ratio of the composite material that gives the strongest ME coupling. The work that has been 

doŶe iŶ the ϭϵϳϬ͛s aŶd the ϭϵϴϬ͛s ǁas ŶeaƌlǇ all eǆpeƌiŵeŶtal.  
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Harshe et al. (1993) were the first to develop a theoretical solution for a particulate ME 

composite (0-3, 3-0) by modeling the composite with simple small cubes. They compared their 

results with earlier experimental work. The numbers (0-3, 3-0) means that one of the materials 

is continuous in three directions (3) and the other is in the form of particles (0). For the (1-3), the 

number (1) means that the composite is fibrous that one of the materials is continues in one 

direction. The (2-2) ME composite means both materials are continuous in 2 directions such as 

the multi layered ME composite. 

Nan (1994) tried a different approach from Harshe et al. (1993) to study the ME effect by 

developing a theoretical approach to find the effective ME coefficients of the (1-3) and (3-1) 

composites made from ܤ�ܱܶ݅ଷ-݁ܨ݋ܥଶ ସܱ usiŶg GƌeeŶ͛s FuŶĐtioŶ ŵethod. This method showed 

a good agreement with experimental results from previous work. 

 

 

 

 

Figure 2.2: Types of MEE composites (a) (0-3) particulate composite, (b) (2-2) Laminate 

composite and (c) (1-3) Fibrous composite (Nan et al., 2008) 
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Li and Dunn (1998) developed a micromechanical method to find the effective MEE 

coefficients using the Mori-Tanaka (mean field) method (1973). They found an exact relations for 

the effective magneto-elastic moduli. 

MEE laminated plate (2-2) composites have seen significant study. Pan (2001) found the 

exact solution for displacements, stress, electric potential and magnetic potential in a three- 

dimensional multilayered MEE plates under the effect of static surface and internal stress. Pan 

and Heyliger (2002) studied the free vibration of MEE plates with simply supported boundary 

conditions on all of its edges. By finding the natural frequencies and the mode shapes, they 

observed that some of the modes do not produce any electric or magnetic potentials and these 

modes are purely elastic. Ramirez et al. (2006) have developed an approximate method to find 

the solution for the free vibration of MEE laminates and compared the results to the exact 

solution and to the result obtained from FE analysis using ABAQUS. The results showed a good 

agreement. Additional literature surveys can be found in the review papers of Nan et al. (2008) 

and Kambale et al. (2012). 

 

2.3.2 Multi-physics of MEE composites 

 Nan (1994) was among the first researchers to study the Thermo-Electro-Elastic coupling 

of a piezoelectric composite. A (0-3) composite made from epoxy as the matrix and reinforced 

by ܤ�ܱܶ݅ଷ particles. The product pyroelectricity coefficient, the coupled coefficient of thermal 

expansion and piezoelectricity, of the composite were all found but the pyroelectricity of 

the ܤ�ܱܶ݅ଷ was ignored and only the generated electrical polarization in the piezoelectric phase 
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due to stress caused by the difference in thermal coefficients of the two phases when the 

temperature is increased in the matrix material was studied. 

        Aboudi (2001) studied Electro-Magneto-Thermo-Elastic (1-3) composite and 

predicted the effective elastic, thermal expansion, piezoelectric, piezmagnetic, pyroelectric and 

pyromagnetic coefficients using a homogenization micromechanical method. A repeating unit 

cell assuming that the composite is periodic. Results were compared to the Mori-Tanaka method 

and showed a good agreement. 

Zhang and Wang (2015) studied Magneto-Electro-Thermo-elastic coupling of fibrous (1-

3) composites using the Finite Element Method. They also found the effective properties of the 

product composite by taking a representative Volume Element (RVE) and apply the 

homogenization approximation. They compared some of the results with the Mori-Tanaka 

Method to validate their results. 

Adding more fields to the ME coupling was the point of interest in the last two decades. 

Smittakorn and Heyliger (2000) studied the effect of temperature and moisture on the steady-

state and transient behavior of laminated piezoelectric plates by applying the boundary 

conditions on the top and the bottom of the plate. Recently, there was a significant increase of 

work completed on the multi-physics of functionally graded materials (FGM) like the work done 

by Akbarzadeh and Chen (2012) and the work by Zenkour (2014).  Akbarzadeh and Pasini (2014) 

were the first to study all the fields coupled together. They studied the hygro-thermo-magneto-

electro-elastic coupling of multilayered and functionally graded with hollow or solid cross-section 

and infinitely long cylinders, finding the exact solution for every field in the layers of FG cylinders. 
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2.4 Smart material cellular solids 

Most of the work that has been done on cellular solids focused on the mechanical 

behavior. Moreover, the mechanical, thermal, electrical, and the acoustic properties have been 

found for different types of cellular solids. However, little work has been completed on the foams 

that are made from smart materials (piezoelectric or piezomagnetic materials).  

Dunn and Taya (1993) were the first to study a piezoelectric material with pores. They 

studied the effect of porosity volume fraction on the elastic, dielectric and the electro-elastic 

moduli for different types of piezoelectric ceramics. A closer look at the results indicates that a 

decrease in these moduli with the increase of the porosity volume fraction. Iyer and Venkatesh 

(2014) performed an analysis on a periodic (0-3) and (1-3) piezoelectric composite that contains 

pores using the homogenization method. They found the electromechanical properties and the 

effect of the pores sizes and the shape. Their results showed a good agreement with the results 

form Dunn and Taya (1993). The dielectric and the piezoelectric constants decreased when the 

porosity volume fraction was increased. These solids are not honeycombs or foams but do have 

the likelihood of relatively low density.  

Huang et al. (2009) studied the effect of ellipsoidal voids on the effective properties of 

the Magnetoelectroelastic (MEE) composites. Finding the effect of the void volume fraction and 

the orientation of the voids on the effective piezomagnetic, piezoelectric and magneoelectric 

properties of the composite. 

Challagulla and Venkatesh (2012) conducted a research to study a foam made from 

piezoelectric material (PZT-7A). They found the elastic, piezoelectric and acoustic properties as a 

function of the relative density of the foam for a different shapes of unit cells and compared the 
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results of these different cell shapes using Finite Element modeling software (ABAQUS). Finally, 

Iyer et al. (2014) studied a honeycomb foam made from piezoelectric material. Again, they found 

the elastic, dielectric and piezoelectric constants for longitudinally and transversely porous foams 

for a different shapes of unit cells (rectangular and Hexagonal) in terms of the relative density of 

the foam. The unit cell analysis was carried by the finite element analysis software (ABAQUS). 

There is no work that has been done on adding more fields to the piezoelectric cellular solids nor 

any work on a cellular solid made from MEE composite. 

 

2.5 Significance of this research 

 Two-dimensional cellular solids made from MEE composite are considered to find the 

effective properties including the elastic and the thermal coefficients and the effective coupled 

coefficients including the thermal expansion, pyroelectric and the pyromagnetic coefficients for 

different shapes of unit cell of the cellular solid and compare the results. The Finite Element 

Method (FEM) will be used in this study by a program written in MATLAB.   Results will be 

compared with existing studies, and new results will be presented for several new configurations 

or loadings.    
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CHAPTER 3:  METHOD 

 

 
 

This chapter will present all the governing equations, theoretical developments and 

methods that were used in the study.  

3.1 Governing Equations: 

The equations of equilibrium in rectangular Cartesian coordinates can be expressed in 

indicial form as:  

                                                      

                                                   σij,j+fi=0                                                    (3.1) 

Here σij are the components of stress and fi are the body forces 

 i,j refer to the directions �ଵ and �ଶ 

 

The quasi-static Maxwell equations in the absence of electric and magnetic sources are 

given in terms of the components of electric displacement Di and magnetic induction Bi as 

 

                                                        Di,i=0                                                             (3.2) 

 

                                                       Bi,i=0                                                              (3.3) 

 

The constitutive equations for the class of solid considered in this study are given by: 
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        �݆݅ = ௜௝௞௟݈ܵ݇ܥ − ݁�݆݅�� − �ܪ݆݅�݀ − �௜௝ߚ −  ௜௝�       (3.4) 

             Dm =  e௠௜௝Sij +  ε௠௡En + g௠௡݊ܪ +  ௠� + �௠�                           (3.5) ܤ௠ = ݀௠௜௝Sij + g௠௡En +  ௠௡݊ܪ +  ௠� + �௠�                                  (3.6) 

 

Where: ��, ,݊ܪ , ௜௝௞௟ܥ ݁௠௜௝,݀௠௜௝ , ε௠௡, g௠௡,  ௠௡,  ߚ௜௝ ,   ௜௝,   ௠, �௠,  ௠ �݊݀ �௠ are the 

electric field, magnetic field and elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic, 

magnetic permeability, thermal stress, and hygroscopic stress coefficient tensors and 

pyroelectric, hygroelectric, pyromagnetic, and hygromagnetic coefficients vectors respectively. 

Here � and m represents the change in temperature and change in moisture content respectively. 

 

The strain-displacement relations can be written in RCC assuming small displacement 

theory as: 

Sxx=
x

u




    

                                                  Syy=
y

v




                                          (3.7) 

Sxy=
x

v




+
y

u




 

Here Sxx and Syy are the components of the linear normal strain tensor, and Sxy are the 

engineering shear strain. Here x, y refer to directions �ଵ and �ଶ  . The electric field components 

Ei are related to the electrostatic potential ɸ (ݔଵ,   :ଶ) using the relationsݔ
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                                                  �௜=
ix


                                             (3.8) 

 

Similarly, the magnetic induction components Bi are related to the magnetic potential Ψ 

,ଵݔ)  :ଶ) using the relationsݔ

=௜ܤ                                                   
ix


                                             (3.9) 

3.2 Homogenization 

              The method of homogenization have been extensively used for composites. The 

main idea of the homogenization is that to divide total solid into small elements such as the 

repeating unit cell (RUC) elements or the representative volume element (RVE) and find the 

effective properties, the product properties of the composite, for the RUC or the RVE and apply 

it to the whole material assuming that the composite material is a homogenous material with 

effective properties that have been found for the small element. 

 

 

 

Figure 3.1: Representation of material microstructure. (a) Statistically homogenous material 

characterized by RVE (b) Periodic microstructure characterized by RUC. (Pindera et al., 2009) 
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 This method allows the determination of the responses of the composite to any applied 

loads. According to Pindera et al (2009), the representative volume element (RVE) can be used 

for materials with statistical homogeneity, while the repeating unit cell (RUC) can be used when 

having a material with periodic structure. In the same way, homogenization can be applied to the 

cellular solids considered in this study by assuming that it is made from a solid material with no 

voids that has effective properties as can be seen in Hohe and Becker (2003). In this research the 

idea of homogenization will be applied twice: once for the MEE composite and the second time 

for the cellular solid to get its effective properties. The effective properties for the MEE material 

that are made of 50% ܤ�ܱܶ݅ଷ (piezoelectric material) and 50% ݁ܨ݋ܥଶ ସܱ (piezomagnetic 

material) are taken from Chen et al (2015) and Akbarzadeh and Pasini (2014). They are 

summarized in Table 1.  

 

Table 1. The effective properties for a composite made of 50% ܤ�ܱܶ݅ଷ and 50% ݁ܨ݋ܥଶ ସܱ (ܿ௜௝  in ͳͲଽ 

N/�ଶ, ݁௜௝  in c/�ଶ,  ݀௜௝  in N/Am, , ε௜௝  in ͳͲ−ଽܿଶ/N�ଶ, μ௜௝  in ͳͲ−଺ܰݏଶ/ܿଶ, β௜  in N/�ଶܭ ,ܭ௧ in N/sK). 

properties MEE Properties MEE Properties MEE 

c11 

c12 

cʹʹ 

c66 

e11 

e12 

213 

113 

213 

50 

8.86 

-2.71 

e22 

d11 

d12 

d22 

ε11 

εϮϮ 

8.86 

292 

222 

292 

0.24 

0.24 

μϭϭ 

μϮϮ 

β1 

β2 

Kt 

 

201 

201 

6.105 

6.295 

0.383 
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                Figure 3.2: Homogenization of cellular solids 

 

3.3 Repeating unit cell (RUC) 

The repeating unit cell (RUC) is the smallest element in the periodic material which by 

repeating this element in all directions, the same structure of the material will be obtained. 

‘UC͛s ĐaŶ ďe used foƌ hoŶeǇĐoŵďs that aƌe peƌiodiĐ aŶd ǁithout any defects. Three shapes of 

honeycombs were studied: square honeycombs, equilateral triangular honeycombs and regular 

hexagonal honeycombs. The RUC for all the shapes are shown in figure (3.3). The unit cell for 

the hexagonal is the same unit cell that had been used by Warren and Kraynik (1987) and also 

was used by Chen et al (1999). The equilateral triangular RUC that had been used in this study is 

the same as the RUC that had been used in Taylor et al (2011). 

 

                   (a) 
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  (b) 

 

 

 

 

 

    (c) 

 

 

 

Figure 3.3: RUC for (a) Square (b) Equilateral triangle (c) Regular hexagon 

 

 

 3.3 Finite Element Method  

The Finite Element Method (FEM) is a powerful tool to solve a different types of problems 

including solid mechanics, heat, electric, fluids and much more and has the ability to deal with 

complicated geometries. In this research, finite element approximations were used to solve for 

the coupled differential equations of elasticity, heat, electric, magnetic and moisture to find the 

effective properties of different shapes of two-dimensional honeycombs. The FEM has several 

major steps in order to get the final solution.  
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3.3.1   Discretization                      

The first step is discretization of the body into small elements that are connected by 

nodes and these nodes will have the degrees of freedom, a linear approximation can be 

performed to find any value for any point between the nodes. The type of the elements can 

vary depending on the problem and on the required accuracy of the approximation. Since this 

research is dealing with a two-dimensional problem in plane stress, a four-nodded plane 

elasticity element has been chosen to discretize the unit cell of the honeycombs. Each node will 

have six degrees of freedom represented by displacement in the �ଵ direction (u), displacement 

in the �ଶ direction (v), electric potential (ɸͿ, ŵagŶetiĐ poteŶtial ;ΨͿ, teŵpeƌatuƌe ĐhaŶge ;θͿ 

and moisture concentration change (m). As it can be seen later in this chapter, a range of 

boundary conditions were used to find these degrees of freedom for the different shapes of 

unit cells and then finding the effective properties. A more accurate model can be achieved by 

making the elements smaller to have more nodes in the discretized body. But, this will make 

the problem more complicated and will need higher processing power. This constant trade-off 

between accuracy and computational expense is an issue for all finite element models. 

 

3.3.2 Weak form 

     Finding the weak formulation is one of the most important steps in Finite Element 

that allowing to ease the requirement of continuity and make the differential equations much 

easier to deal with.  Original equation is multiplied by an arbitrary function, integrated over the 

domain and set equal to zero.  
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The FE approximation can be seen bellow: 

 

,ݔሺݑ                                                                         ሻݕ = ∑ ௝ݑ ௝ܰ௨ሺݔ, ሻ௡௝=ଵݕ                                                          (3.16) 

                                                                                      u = ௝ܰ௨                                                                          (3.17) 

,ݔሺݒ                                                                         ሻݕ = ∑ ௝ݒ ௝ܰ௩ሺݔ, ሻ௡௝=ଵݕ                                                          (3.18) 

                                                                                      v = ௝ܰ௩                                                                          (3.19) 

                                                                      ɸሺݔ, ሻݕ = ∑ ɸ௝ ௝ܰɸሺݔ, ሻ௡௝=ଵݕ                                                          (3.20) 

                                                                                     ɸ = ௝ܰɸ                                                                          (3.21) 

                                                                      �ሺݔ, ሻݕ = ∑ �௝ ௝ܰ�ሺݔ, ሻ௡௝=ଵݕ                                                          (3.22) 

                                                                                     � = ௝ܰ�                                                                          (3.23) 

                                                                       �ሺݔ, ሻݕ = ∑ �௝ ௝ܰ�ሺݔ, ሻ௡௝=ଵݕ                                                           (3.24) 

                                                                                    � = ௝ܰ�                                                                            (3.25) 

                                                                    �ሺݔ, ሻݕ = ∑ �௝ ௝ܰ௠ሺݔ, ሻ௡௝=ଵݕ                                                          (3.26) 

                                                                                  m = ௝ܰ௠                                                                          (3.27) 
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3.3.3    Element matrices  

 The element matrices can be shown as follow: 
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     (3.28) 

 

After finding the element matrices, the only thing that is left to solve for the unknowns is 

the assembly in the global matrix and applying the boundary conditions. The elements of the 

matrix equations for the Ritz model are provided in the Appendix. 

 

3.4  Boundary conditions and the effective properties  

Specific boundary conditions must be imposed to find the solution for every loading case 

and to find the effective propertey that is associated with that boundary condition. This section 

will contain the boundary conditions based on the effective property that is required. The 

boundary conditions that have been used will be explained for every case. 

 

3.4.1  Effective elastic properties 

 An overview of effective elastic properties for pure elastic foams has been given in an 

earlier chapter, but the highlights are given here. For the square unit cell and the equilateral 
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triangle unit cell, a presicribed boundary conditions were applied to find the forces and the 

displacement in the unit cell and then are analyzed find the effective elastic properties. The 

procedure from Li et al. (2004) is used in this study to obtain the effective elastic properties. To 

find the effective modulus of elesticity (�ଵ) and PoissoŶ͛s ƌatio ;�ଵଶሻ for the square and the 

triangular unit cells, an arbitary displacemnt was applied in the �ଵ direction at the right boundary 

of the unit cell, constraints at bottom and left boundaries were provided. The magnitude is 

irrelevant since the response is linear. After doing the finite element analysis and finding all the 

forces and displacements in the unit cell, �ଵ and �ଵଶ can be found easily by simple mechanics 

using the following equations  : 

                                                                �ଵ = −ிభ௅మ∗ℎ∗�భ                                                              (3.29) 

 

                                                      

                                                     �ଵଶ = −௨మ�భ∗௅మ                                                                 (3.30) 

 

where: ܨଵ is the total force in the �ଵ direction, h is the thickness of the cell in the out of plane 

direction and can be taken as 1, �ଵ is the strain in the �ଵ direction and ܮଶ is the cell length in �ଶ 

direction. �ଶand �ଶଵ can be found using the same method but applying the displacement in the �ଶ direction instead and find them using : 

 

                                                            �ଶ = −ிమ௅భ∗ℎ∗�మ                                                             (3.31) 
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                                                           �ଶଵ = −௨భ�మ∗௅భ                                                                (3.32) 

 

To find the shear modulus ܩଵଶ , a biaxial displacement is applied. A tensile displacement 

is imposed in the �ଵ direction and a compressive displacement is imposed in the �ଶ is applied. 

The elastic constant ܩଵଶ can then be found by: 

 

ଵଶܩ                                                     = ிభ ௅మ⁄ −ிమ ௅భ⁄ଶℎሺ�భ−�మሻ                                                          (3.33) 

 

After finding all the effetive properties, the constitutive relation that relates the strains 

to the stresses by the compliance tensors  ௜ܵ௝௞௟ where: 

 

                                                            �௜௝ = ௜ܵ௝௞௟�௞௟                                                   (3.34) 

                                                                ܵଵଵଵଵ = ଵ�ͳ                                                            (3.35)      

                                                               ܵଵଵଵଵ = ଵ�ͳ                                                             (3.36)      

                                                         ܵଵଵଶଶ = − �ʹͳ�ͳ                                                              (3.37)      

                                                             ܵଶଶଵଵ = − �ͳʹ�ͳ                                                              (3.38)      

                                                              ܵଶଶଶଶ = ଵ�ͳ                                                             (3.39)  

                                                            ܵଷଷଷଷ = ଵܩͳʹ                                                             (3.40)          
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The same way, the stresses can be related to the strains by the stiffnesses tensors ܥ௜௝௞௟ : 
                                                    �௜௝ =  ௜௝௞௟�௞௟                                                          (3.41)ܥ

ଵଵଵଵܥ                                             = ாభሺଵ−�భమ�మభሻ                                                                (3.42) 

ଵଵଶଶܥ                                             = �మభாభሺଵ−�భమ�మభሻ                                                                (3.43) 

ଶଶଵଵܥ                                             = �భమாమሺଵ−�భమ�మభሻ                                                                (3.44) 

ଶଶଶଶܥ                                              = ாమሺଵ−�భమ�మభሻ                                                              (3.45) 

ଷଷଷଷܥ                                                   =  ଵଶ                                                                    (3.46)ܩ

                                

Reduced stiffnesses were obtained since this research is dealing with plane stresses only. The 

relation between the compliances and the stiffnesses can be computed using: 

 

                                                        [ܵ] =   ଵ                                                                (3.47)−[ܥ]

 

Figure 3.4: The boundary conditions used to find the effective properties of the square and the 

triangular unit cells. 
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For the hexagonal honeycombs, because a displacement in only one direction cannot be 

applied due to the inclined boundaries, the procedure was a bit different. Affine motion, as used 

by Heyliger and McMeeking (2001), was applied to the boudary nodes using the same procedure 

that been used in Chen et al.(1999)  and also by Steadman et al. (2014). An arbitrary strain in the �ଵ direction was imposed and  the average stress was found. The same strain value in the �ଶdirection was applied and the average stress was found. The applied nodal displacements were 

applied as: 

 

                                                  jiji xSu                                                    (3.48) 

 

Where: iu are the nodal displacements, ijS  are the components of strain and jx are the nodal 

coordinates. 

The average stress can be calculated by using: 

                                            
V

xF
N

i
k

i
j

jk

 1                                                  (3.49) 

 

Here: jk  is the average stress, 
i
jF  is the reaction force in the j-th direction at the i-th node, N is 

the number of boundary nodes, kx is the nodal coordinate and V is the volume and in this case is 

equal to the area of the unit cell. Then, the effective elastic properties can be found by using 

equations 3.34 to 3.47 as before. 
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3.4.2  The effective electric and magnetic properties 

Very few studies have been published on cellular solids that are made from 

piezoelectric/ piezomagnetic materials and non of them explained or pointed out the boundary 

conditions that have been used. For that reason, a set of boundary conditions that is logically 

consistent with those used for the recovery of effective elastic constants were used to find the 

effective piezoelectric and piezomagnetic coefficients for the honeycombs of the present study. 

To find the piezoelectric coefficient of, for example, 11e , an electric potential was applied on the 

right boundary nodes and a different value on the left boundary nodes with linear increase for 

the boundary nodes between them. Constraints were provided for all the boundaries except the 

right side and the unit cell was free to move in the �ଵ direction. Calculating the strain that is 

caused by applying the electric field in the �ଵdirection will help in finding 11e  by using the 

following equations: 

                                                                     ijS =�௄݈௞௜௝                                                                          (3.50) 

And  

                                                                   ݁௞௜௝= ௝ܿ௞௟௠݈௜௟௠                                                                               (3.51) 

 

Here: ijS  is the strain components, �௄ is the electric field components, ݈௞௜௝are the components of the 

piezoelectric tensor (strain coefficients) and ௝ܿ௞௟௠ are the components of the elastic stiffnesses that are 

calculated from the previous steps. To find 21e , the same procedure was followed except making the unit 

cell free to move in the �ଶ direction instead of �ଵ direction. For the piezomagnetic coefficients ݀ ௞௜௝, 

the same approach was used, since both have the same differential equation, but by applying 

magnetic potential instead and using the following equations: 
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                                                                       ijS       ௞௜௝                                                                  (3.52)ݍ௄ܤ=

And 

                                                                     ݀௞௜௝= ௝ܿ௞௟௠ݍ௜௟௠                                                              (3.53) 

 

This approach is very similar to the method used to recover the effective ܥ௜௝.  

 

3.4.3 The effective thermal expansion and moisture expansion coefficients  

To find the effective thermal expansion coefficicent, a temperature difference of ( +100K) 

was applied on all  the external boundary nodes of the unit cell with constraints imposed on the 

left and bottom boundaries. The increase in the area will be calculated since this research is 

dealing with two-dimensional unit cell. The thermal expansion coefficient for the area can be 

calculated using: 

 

ߙ                                                          = ��ଶ�∗��                                                   (3.54) 

 

where �ܣ is the change in the area due to the change in temerature, A is the original area and �� is the change in the temperature. 

For the moisture expansion coefficient, the same procedure can be used since they both 

have the same differential equation. This property was not considered in this work. 
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3.4.4 The effective pyroelectric and pyromagnetic coefficients 

The change in the temperature will cause the honeycomb to deform and have consistent 

strains. These strains, for the MEE material, in return will generate electric and magnetic 

potentials. The calculation of the pyroelectric coefficients is a relatively simple process and is 

accomplished by multiplying the piezoelectric coefficients by the thermal expansion coefficient. 

The pyromagnetic coefficients can also simply calculated by multiplying piezomagnetic 

coefficients by the thermal expansion coefficient. 

 

3.5 The Relative Density  

The relative density of the foam and honeycombs is an important property and all the 

mechanical properties of the cellular solid have been attached to the relative density (Equation 

2.1). The relative density for honeycombs depends on the (t/l) ratio and can be found for every 

unit cell shape according to the following equation as found in Gibson and Ashby (1997): 

 

For squares:                                       
�∗��=ʹ ௧௟ ሺͳ − ଵଶ ௧௟ሻ                                       (3.55) 

 

For equilateral triangles:                
�∗��=ʹ√͵ ௧௟ ሺͳ − √ଷଶ ௧௟ሻ                                 (3.56) 

 

For regular hexagons:                     
�∗��=

ଶ√ଷ ௧௟                                                        (3.57) 

 



34 

 

3.6 Computational Model 

A finite element program was written using MATLAB to solve for the unknown variables. 

The code will read the input file which contains the number of the elements, number of nodes, 

material poperties , coordinates of the nodes, connectivity array and the numbers and values of 

the essential and the natural baoundary conditions. After reading the input file, the code 

constructs the elements matrices and assemble them immediately in the global matrix in a way 

that half-band width can be obtain. In other words, the code will find every variable in each node 

before jumping to the next one and that will reduce the time of proccesing significantly. Finaly, 

the code will find the values for the wanted variales based on the given boundary conditions. This 

code is capable in dealing with elasticity, electric, magnetic, thermal and moisture problems 

individually or combined together. A copy of the code can be found in the Appendix. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

 

This chapter presents the results obtained according to the method explained extensively 

in the previous chapter. Some of the results will be compared with the results of existing studies 

and some of the new behaviors will be discussed and explained. All the results of this chapter are 

obtained for three different unit cells (square, equilateral triangles and regular hexagons) with 

ratios of (t/l) ranging from (0.02) to (0.1) with an increment of (0.02) that will give a different 

basic effective properties as a function of the relative densities. The analysis is based on plane 

stress. 

4.1 The relative density: 

The results of the relative densities were giving according to equations 3.33, 3.34 and 

3.35 from Chapter 3. These can be found in Table 2. 

 

Table 2. The relative density (  
�∗�� ) for the square, equilateral triangle and the regular hexagon 

unit cells. 

   
�∗�� 

t/l Square Equilateral Triangle Regular Hexagon 

0.02 0.0396 0.068082 0.023094 

0.04 0.0784 0.133764 0.046188 

0.06 0.1164 0.197046 0.069282 

0.08 0.1536 0.257928 0.092376 

0.1 0.19 0.31641 0.11547 
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For the same (t/l) ratio, the equilateral triangle cellular solids shows the highest relative 

density and the hexagonal cellular solids has the lowest relative density compared to the other 

cell shapes.  

 

Figure 4.1: Different (t/l) ratios for the square unit cell (a) t/l =0.02 (b) t/l =0.06 (c) t/l =0.1  

 

Figure 4.2: Different (t/l) ratios for the equilateral triangle unit cell (a) t/l =0.02 (b) t/l =0.06 (c) t/l=0.1 

 

Figure 4.3: Different (t/l) ratios for the regular hexagon unit cell (a) t/l =0.02 (b) t/l =0.06 (c) t/l=0.1 
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4.2 The elastic properties: 

Finding the elastic properties as quantified by the components of the stiffness and 

compliance tensors is an essential task prior to calculating both the piezoelectric and the 

piezomagnetic properties. Also, finding the effective properties, especially the effective modulus 

of elasticity, is very important to validate the computational procedure that has been followed 

in this study by comparing the obtained elastic properties to the existing studies that are done 

by other researchers. 

For the square unit cell, the elastic properties, the stiffness tensors and the compliance 

tensors are shown in Table 3, 4 and 5. The ratio (
ாா�) was obtained so that the results can be 

Đoŵpaƌed to oŶlǇ ǁoƌk that has ďeeŶ fouŶd oŶ sƋuaƌe hoŶeǇĐoŵďs ďǇ Gulati ;ϭϵϳϱͿ. Gulati͛s 

found a linear relationship between (
ாா�ሻ and (t/l) as follows: 

 

                                                     
ாభா�భ = ாమா�మ = ௧௟                                                             4.1 

 

The comparison of the results can be seen in Figure 4.4 and the results showed a very 

good agreement with the results of Gulati (1975) who used one-dimensional elements, with the 

present results giving slightly larger magnitudes. The linear behavior of every elastic property, 

which can be seen clearly in each of the Figures, for the square honeycombs is explained by that 

the square unit cells are only experiencing tension or compression deformations in their cell walls 

and there is no bending in the cell walls during the deformations imposed as part of this analysis. 

Figures 4.5 and 4.6 shows the �ଵ and the ܩଵଶ moduli respectively 



38 

 

 

Figure 4.4: Comparison of results with Gulati (1975) for the square honeycombs 

 

 

Table 3. Elastic properties for the square honeycomb. E and G in (ͳͲଽ N/�ଶ), v is 

dimensionless. 

t/l �ଵ �ଶ �ଵଶ �ଶଵ ܩଵଶ �ଵ/��ଵ �ଶ/��ଶ 

0.02 3.1288 3.1288 0.021 0.021 1.5322 0.02034 0.020337 

0.04 6.35 6.35 0.037 0.037 3.1 0.04127 0.04127 

0.06 9.621 9.621 0.052 0.052 4.6 0.06253 0.062537 

0.08 12.91 12.91 0.065 0.065 6.0682 0.08391 0.083915 

0.1 16.28 16.28 0.079 0.079 7.54 0.10582 0.10582 

 

 

Table 4. Compliance tensors  for the square honeycomb in (ͳͲ−ଽ �ଶ/N) 

t/l 11s  12s  21s  22s  

0.02 0.31961135 0.0067118 0.3196114 0.652656 

0.04 0.15748031 0.0058268 0.1574803 0.322581 

0.06 0.1039393 0.0054048 0.1039393 0.217391 

0.08 0.07745933 0.0050349 0.0774593 0.164794 

0.1 0.06142506 0.0048526 0.0614251 0.132626 
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Table5.  Stiffnesses tensors for the square honeycomb in (ͳͲଽ N/�ଶ) 

t/l 11c  12c  21c  22c  66c  

0.02 3.13018041 0.06573379 0.06573379 3.13018041 1.5322 

0.04 6.35870507 0.23527209 0.23527209 6.35870507 3.1 

0.06 9.64708572 0.50164846 0.50164846 9.64708572 4.6 

0.08 12.9647762 0.84271045 0.84271045 12.9647762 6.0682 

0.1 16.3822416 1.29419708 1.29419708 16.3822416 7.54 

 

 

 

 

 

 

Figure 4.5: Modulus of elasticity �ଵ for the square honeycomb 
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Figure 4.6: The shear modulus ܩଵଶ for the square honeycomb 

 

For the triangular honeycombs, the same linear behavior was observed of the modulus of 

elasticity and other elastic properties. Along with the linear increase with the increase of relative 

density, the triangular honeycombs are stiffer than the square honey combs because the 

behavior of the triangular honeycombs is similar to the behavior of trusses. The modulus of 

elasticity results for the triangular honeycomb were compared to the equation given by Hunt 

(1993), expressed by: 

 

                                                                
ாభா�భ = ாమா�మ = ͳ.ͳͷ ௧௟                                                      4.2 

 

The results were also compared to equation 2.3 by Christensen (2000) which can be 

expressed in terms of the relative density by the relation: 

                                                                       
ாா� = ଵଷ  ቀ�∗��ቁ                                                            4.3 
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Figure 4.7 shows the comparison between the present results and those of the previous two 

equations. The elastic properties and components of the stiffness and compliances tensors for 

the equilateral triangles are shown in tables 6, 7 and 8. 

Table 6. The elastic properties for the equilateral triangular honeycomb 

t/l �ଵ �ଶ �ଵଶ �ଶଵ 

0.02 4.25 4.25 0.4 0.4 

0.04 8.03 8.03 0.4278 0.4278 

0.06 12.1 12.1 0.4457 0.4457 

0.08 16.2 16.8 0.458 0.458 

0.1 20.3 20.44 0.4642 0.4642 

 

 

 

 

Figure 4.7. Comparison of results with existing studies for the triangular honeycomb 
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Table 7. Compliances tensors for the triangular honeycomb in (ͳͲ−ଽ �ଶ/N) 

t/l 11s  12s  21s  22s  

0.02 0.23529412 0.09411765 0.09411765 0.23529412 

0.04 0.124533 0.05327522 0.05327522 0.124533 

0.06 0.08264463 0.03683471 0.03683471 0.08264463 

0.08 0.0617284 0.0272619 0.0282716 0.05952381 

0.1 0.04926108 0.02271037 0.022867 0.04892368 

 

 

 

Table 8.   Stiffnesses tensors for the triangular honeycomb in (ͳͲଽ N/�ଶ) 

t/l 11c  12c  21c  22c  

0.02 5.059524 2.02381 2.02381 5.059524 

0.04 9.828796 4.204759 4.204759 9.828796 

0.06 15.09949 6.729843 6.729843 15.09949 

0.08 20.50021 9.389094 9.736838 21.25947 

0.1 25.87575 12.01152 12.09436 26.0542 

 

 

For the regular hexagonal honeycomb, the relationship between the elastic modulus and 

the relative density or the ratio (t/l) was not linear. This is primarily because of the bending 

deformations that are experienced in the cell walls even when only compression or tension loads 

were applied. That also is the reason why the hexagonal is the most flexible among the three cell 

shapes considered in this research since loads that are directly axially are typically the stiffest. 

The work on hexagons is enormous but this research will compare the results with only two 

studies. The first is the result of work by Gibson and Ashby (1997) and is expressed by the 

equation below:  
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ாభ ா�భ = ாమா�మ = ସ√ଷ ቀ௧௟ቁଷ

                                                  4.4 

 

The results are also compared with the equation of Steadman et al (2014): 

 

                                                      
ாభ ா�భ = ாమா�మ = ͳ.Ͷͳ͵ͷ ቀ�∗��ቁଶ.ଽ଼ଷ଻

                                     4.5 

 

Figure 4.8 shows the comparison between the obtained results and the two previous 

equations. Tables 9, 10 and 11 have the elastic properties, the compliances and the stiffnesses 

tensors. The present moduli were slightly higher than those obtained by others. The reason for 

this is that FEM for the equations of plane elasticity were used in this research unlike others who 

used simple mechanics or structural analysis approaches. For example, Steadman and co-workers 

(2014) have used the direct stiffness method along with planar frame analysis to get their results. 

The FEM method tends to give higher results for the elastic properties because it makes the solid 

stiffer for many of the deformation modes  

 

Table 9. Elastic properties for the hexagonal honeycomb 

t/l �ଵ �ଶ �ଵଶ �ଶଵ 

0.02 0.003 0.003 1 1 

0.04 0.032 0.032 0.9999 0.9999 

0.06 0.088 0.088 0.9998 0.9998 

0.08 0.22 0.22 0.9996 0.9996 

0.1 0.368 0.368 0.9994 0.9994 
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Table 10. Compliances tensors for the square honeycomb in (ͳͲ−ଽ �ଶ/N) 

t/l 11s  12s  21s  22s  

0.02 333.3333333 333.3 333.3 333.3333 

0.04 31.25 31.24688 31.24688 31.25 

0.06 11.36363636 11.35909 11.35909 11.36364 

0.08 4.545454545 4.543636 4.543636 4.545455 

0.1 2.717391304 2.715761 2.715761 2.717391 

 

Table 11.   Stiffnesses tensors for the hexagonal honeycomb in (ͳͲଽ N/�ଶ) 

t/l 11c  12c  21c  22c  

0.02 29.97003296 29.96704 29.97003 29.97003 

0.04 160.0080004 159.992 159.992 160.008 

0.06 219.9450357 219.8571 219.945 219.945 

0.08 275.055011 274.945 274.945 275.055 

0.1 306.7586943 306.5746 306.5746 306.7587 

 

 

 

Figure 4.8: Comparison of results with existing studies for the hexagonal honeycomb 
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4.3 The effective piezoelectric properties: 

The effective piezoelectric coefficients were also found for all of the unit cell shapes and 

all the (t/l) ratios. For the square honeycombs, the piezoelectric coefficients ݁ଵଵ and ݁ଶଶ showed 

a linear behavior when the relative density was increased while the piezoelectric coefficients ݁ଵଶ 

and ݁ଶଵ showed a polynomial increase when increasing the relative density. This behavior can be 

seen in Figures 4.9 and 4.10. The results of the piezoelectric coefficients provided in Table 12. 

Table 12. Piezoelectric coefficients for the square honeycombs in (C/�ଶ) 

t/l ݁ଵଵ ݁ଵଶ ݁ଶଵ ݁ଶଶ 

0.02 7.59069E-05 3.29E-09 3.29E-09 7.59069E-05 

0.04 0.000154898 5.88E-08 5.88E-08 0.000154898 

0.06 0.000235606 3.88E-07 3.88E-07 0.000235606 

0.08 0.000316989 1.07E-06 1.07E-06 0.000316989 

0.1 0.000409556 2.29E-06 2.29E-06 0.000409556 

 

 

Figure 4.9: The ݁ଵଵ coefficient for the square honeycomb 
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Figure 4.10: The ݁ଶଵ coefficient for the square honeycomb 

 

For the equilateral triangular honeycombs, linear behavior also was obtained for the 

piezoelectric coefficients ݁ଵଵ, ݁ଶଵ and ݁ଶଶ. The piezoelectric coefficients ݁ଵଶ showed a non-linear 

behavior with a negative value that means an increase in the dimension in the other direction 

where the electric potential was applied will occur. Table 13 and Figures 4.11 and 4.12 show the 

results of the equilateral triangular unit cells. 

Table 13.  Piezoelectric coefficients for the triangular honeycombs in (C/�ଶ). 

t/l ݁ଵଵ ݁ଵଶ ݁ଶଵ ݁ଶଶ 

0.02 0.000311 -2.3E-05 -2.3E-05 0.000128 

0.04 0.000601 -2.5E-05 -2.9E-05 0.000227 

0.06 0.000916 -3.3E-05 -3.3E-05 0.000339 

0.08 0.00123 -4.5E-05 -3.5E-05 0.00046 

0.1 0.001547 -5.7E-05 -3.9E-05 0.000579 
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Figure 4.11: The ݁ଵଵ coefficient for the triangular honeycomb 

 

 

 

  

Figure 4.12. The ݁ଵଶ coefficient for the triangular honeycomb 
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For the regular hexagons, a non-linear increase in all the piezoelectric coefficients ݁ଵଵ, ݁ଵଶ, ݁ଶଵ and݁ଶଶ.  was noticed when the relative density was increased. The results for the regular 

hexagons is shown in Table 14, Figure 4.13 and Figure 4.14.  

 

Table 14. Piezoelectric coefficients for the hexagonal honeycomb in (C/�ଶ) 

t/l ݁ଵଵ ݁ଵଶ ݁ଶଵ ݁ଶଶ 

0.02 0.001187 -0.00092 0.001087 0.001664 

0.04 0.006296 -0.00471 0.005796 0.008586 

0.06 0.008579 -0.00615 0.00791 0.011382 

0.08 0.010617 -0.00726 0.009799 0.013688 

0.1 0.011689 -0.00768 0.010796 0.014728 

 

 

 

Figure 4.13. The ݁ଵଵ coefficient for the hexagonal honeycomb 
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Figure 4.14. The ݁ଵଶ coefficient for the hexagonal honeycomb 

 

 

4.4 The effective piezomagnetic properties: 

The effective piezomagnetic coefficients were found for varying (t/l) ratios and for all 

honeycomb shapes. The results were similar to those of the piezoelectric coefficients in how they 

changed with the increase of the relative density because they both have the same differential 

equations. For the square unit cell, the effective piezomagnetic coefficients ݀ଵଵ and  ݀ଶଶ increased linearly while ݀ଵଶ and ݀ଶଵ increased non-linearly with the increase of the relative 

density. Table 15 shows the results for the square unit cell and figure 4.15 and 4.16 shows the 

behavior of the coefficients ݀ଵଵ and ݀ଶଵ. 
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Table 15. Piezomagnetic coefficients for the square honeycombs in (N/Am) 

t/l ݀ଵଵ ݀ଵଶ ݀ଶଵ ݀ଶଶ 

0.02 1.79E-03 7.73E-06 7.73E-06 0.001789 

0.04 0.003642584 2.05E-05 2.05E-05 0.003643 

0.06 0.005527684 4.29E-05 4.29E-05 0.005528 

0.08 0.007422334 7.63E-05 7.63E-05 0.007422 

0.1 0.009361632 0.00012 0.00012 0.009362 

 

 

 

 

Figure 4.15. The ݀ଵଵ coefficient for the square honeycomb 
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Figure 4.16. The ݀ଵଶ coefficient for the square honeycomb 

 

For the equilateral triangular honeycombs, the results are shown in the following table and 

figures. 

 

Table 16. Piezomagnetic coefficients for the triangular honeycombs (N/Am) 

t/l ݀ଵଵ ݀ଵଶ ݀ଶଵ ݀ଶଶ 

0.02 0.005814 0.004363 0.000821 0.010734 

0.04 0.011172 0.005531 0.001521 0.01303 

0.06 0.017148 0.006933 0.002507 0.016225 

0.08 0.023315 0.008492 0.00366 0.020706 

0.1 0.029419 0.009635 0.005107 0.023451 
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Figure 4.17. The ݀ଵଵ coefficient for the triangular honeycomb 

 

 

Figure 4.18 The ݀ଶଵ coefficient for the triangular honeycomb 

 

For the hexagonal unit cells, all the results for the piezoelectric coefficients were non-

linear and can be seen in Table 17 and the Figures 4.19 and 4.20. 
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Table 17. Piezomagnetic coefficients for the hexagonal honeycombs in (N/Am) 

t/l ݀ଵଵ ݀ଵଶ ݀ଶଵ ݀ଶଶ 

0.02 0.020111 -0.00344 0.00322 0.026467 

0.04 0.107548 -0.01781 0.018692 0.139924 

0.06 0.147896 -0.02346 0.027264 0.190579 

0.08 0.184724 -0.02733 0.034942 0.23563 

0.1 0.205444 -0.02813 0.039153 0.260095 

 

 

 

 

 

Figure 4.19:  The ݀ଵଵ coefficient for the hexagonal honeycomb 
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Figure 4.20. The ݀ଵଶ coefficient for the hexagonal honeycomb 

 

 

4.5 The thermal expansion coefficient: 

The thermal expansion coefficient was found for the square, equilateral triangle and the 

regular hexagon unit cells and for the different values of (t/l) ratio. It has been found that the 

thermal expansion coefficient for all the cases has the same value of (1.95*ͳͲ−ହ ଵ௄), concluding 

that the thermal expansion coefficient is independent from the cell shapes and from the ratio of 

(t/l). This finding agrees with what can be found in Gibson and Ashby (1997) which addresses that 

the thermal expansion coefficient is almost the same as the material that the cellular solid is 

made from and it is in the range of (ͳͲ−ହ ଵ௄) for metals and that agrees with what has been found 

in this study. There was no need for any additional plots for this result.  
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4.6 The effective pyroelectric and pyromagnetic properties:  

The effective pyroelectric and pyromagnetic have the same characterization as the 

effective piezoelectric and the effective piezomagnetic coefficients since they are simply 

multiplied by the thermal expansion coefficient. The results are shown in the following figures 

and tables. 

 

Table 18. The effective pyroelectric and pyromagnetic for the square honeycomb. ɣ in 

(C/K�ଶ) and � in (N/AmK) 

t/l ɣଵ ɣଶ �ଵ �ଶ 

0.02 1.48018E-09 1.48E-09 3.49E-08 3.49E-08 

0.04 3.02051E-09 3.02E-09 7.1E-08 7.1E-08 

0.06 4.59432E-09 4.59E-09 1.08E-07 1.08E-07 

0.08 6.18128E-09 6.18E-09 1.45E-07 1.45E-07 

0.1 7.98634E-09 7.99E-09 1.83E-07 1.83E-07 

 

 

Table 19. The effective pyroelectric and pyromagnetic for the triangular honeycomb. ɣ 

in (C/K�ଶ) and � in (N/AmK) 

t/l ɣଵ ɣଶ �ଵ �ଶ 

0.02 6.07E-09 2.49E-09 1.13E-07 2.09E-07 

0.04 1.17E-08 4.42E-09 2.18E-07 2.54E-07 

0.06 1.79E-08 6.61E-09 3.34E-07 3.16E-07 

0.08 2.4E-08 8.97E-09 4.55E-07 4.04E-07 

0.1 3.02E-08 1.13E-08 5.74E-07 4.57E-07 
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Table 20. The effective pyroelectric and pyromagnetic for the hexagonal honeycomb.  ɣ in (C/K�ଶ) and � in (N/AmK)  

t/l ɣଵ ɣଶ �ଵ �ଶ 

0.02 2.31E-08 3.24E-08 3.92E-07 5.16E-07 

0.04 1.23E-07 1.67E-07 2.1E-06 2.73E-06 

0.06 1.67E-07 2.22E-07 2.88E-06 3.72E-06 

0.08 2.07E-07 2.67E-07 3.6E-06 4.59E-06 

0.1 2.28E-07 2.87E-07 4.01E-06 5.07E-06 

 

 

 

 

Figure 4.21. The ɣଵ coefficient for the square honeycomb 
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Figure 4.22. The �ଵ coefficient for the square honeycomb 

 

 

 

 

Figure 4.23. The ɣଵ coefficient for the triangular honeycomb 
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Figure 4.24. The �ଵ coefficient for the triangular honeycomb 

 

 

 

 

4.25. The ɣଵ coefficient for the hexagonal honeycomb 

 

 

0

0.0000001

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

0.0000007

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

�1

�∗/��

0

5E-08

0.0000001

1.5E-07

0.0000002

2.5E-07

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

ɣ1

�∗/��



59 

 

 

4.26. The �ଵ coefficient for the hexagonal honeycomb 

 

 

4.7 Suggested equations for the effective properties 

Simple equations are suggested to represent all the effective properties of the MEE 

cellular solid in terms of the relative density found by equations 3.55, 3.56 and 3.57 . The 

equations are shown below: 

 

For the square honeycomb: 

                                                        
௖భభ  ௖భభ� = ௖మమ௖మమ� = Ͳ.Ͷͳ͵͵ ቀ�∗��ቁ                                                           4.6 

 

                                                         
௖భమ ௖భమ� = ௖మభ௖మభ� = Ͳ.ʹ͸ʹ͹ ቀ�∗��ቁଵ.଼ଽହ଼

                                                  4.7 

 

                                                                  
௖66௖66� = Ͳ.ͻͳ ቀ�∗��ቁ                                                                   4.8 
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௘భభ௘భభ� = ௘మమ௘మమ� = Ͳ.ͲͲͲʹ ቀ�∗��ቁ                                                4.9 

 

                          
௘భమ ௘భమ� = ௘మభ௘మభ� = ͷ ∗ ͳͲ−ହ ቀ�∗��ቁଷ − ͵ ∗ ͳͲ−଺ ቀ�∗��ቁଶ −  ͹ ∗ ͳͲ−଼ ቀ�∗��ቁ                       4.10 

 

                                                                    
ௗభభௗభభ� = ௗమమௗమమ� = Ͳ.ͲͲͲʹ ቀ�∗��ቁ                                              4.11 

 

                          
ௗభమௗభమ� = ௗమభௗమభ� = ͳͲ−ହ ቀ�∗��ቁଷ + ͻ ∗ ͳͲ−଺ ቀ�∗��ቁଶ −  ͹ ∗ ͳͲ−଼ ቀ�∗��ቁ                             4.12 

 

                                                            ɣభɣభ� = ɣమɣమ� = −Ͳ.ͲͲͲ͵ ቀ�∗��ቁ                                                      4.13 

 

                                                             
�భ�భ� = �మ�మ� = Ͳ.ͲͲͲʹ ቀ�∗��ቁ                                                         4.14 

 

 

For the triangle honeycomb: 

                                                          
௖భభ௖భభ� = ௖మమ௖మమ� = Ͳ.͵ͻͷͳ ቀ�∗��ቁ                                                        4.15 

 

                                                          
௖భమ௖భమ� = ௖మభ௖మభ� = Ͳ.͵ͷͺʹ ቀ�∗��ቁ                                                        4.16 

 

                                                                 
௘భభ௘భభ� = Ͳ.ͲͲͲ͸ ቀ�∗��ቁ                                                               4.17 

 

                                     
௘భమ௘భమ� = Ͳ.ͲͲͲͳ ቀ�∗��ቁଷ − Ͳ.ͲͲͲͳ ቀ�∗��ቁଶ +  ʹ ∗ ͳͲ−ହ ቀ�∗��ቁ                               4.18 
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௘మభ ௘మభ� = −Ͳ.ͲͲͲͳ ቀ�∗��ቁଷ + ͺ ∗ ͳͲ−ହ ቀ�∗��ቁଶ −  ʹ ∗ ͳͲ−ହ ቀ�∗��ቁ                         4.19 

                                                                 
௘మమ௘మమ� = Ͳ.ͲͲͲʹ ቀ�∗��ቁ                                                 4.20 

 

                                                                 
ௗభభௗభభ� = Ͳ.ͲͲͲ͵ ቀ�∗��ቁ                                                4.21 

 

                                        
ௗభమௗభమ� = −Ͳ.ͲͲͲ͹ ቀ�∗��ቁଷ + Ͳ.ͲͲͲͷ ቀ�∗��ቁଶ −  ͳͲ−ହ ቀ�∗��ቁ                        4.22 

 

                                                        
ௗమభ ௗమభ� = Ͳ.ͲͲͲͳ ቀ�∗��ቁଶ +  ͳͲ−ହ ቀ�∗��ቁ                                        4.23 

 

                                        
ௗమమௗమమ� = −Ͳ.ͲͲ͵ ቀ�∗��ቁଷ + Ͳ.ͲͲͳͻ ቀ�∗��ቁଶ −  Ͳ.ͲͲͲʹ ቀ�∗��ቁ                       4.24 

 

                                                           
ɣభɣభ� = −Ͳ.ͲͲͲ͹ ቀ�∗��ቁ                                                             4.25 

 

                                                          
ɣమɣమ� = −Ͳ.ͲͲͲ͵ ቀ�∗��ቁ                                                              4.26 

 

                                                            
�భ�భ� = Ͳ.ͲͲͲ͵ ቀ�∗��ቁ                                                                4.27 

 

                          
�మ �మ� = −Ͳ.ͲͲʹͺ ቀ�∗��ቁଷ + Ͳ.ͲͲͳͺ ቀ�∗��ቁଶ −  Ͳ.ͲͲͲʹ ቀ�∗��ቁ                                   4.28 

 

For the hexagonal honeycomb: 

 

                       ௖భభ௖భభ� = ௖మమ௖మమ� = ͳͶͺ͵.ʹ ቀ�∗��ቁଷ − Ͷ͵Ͷ.ͻ ቀ�∗��ቁଶ + Ͷͻ.ͺͳ͹ ቀ�∗��ቁ                    4.29 
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௖భమ௖భమ� = ௖మభ௖మభ� = ʹ͹ͻ͸ ቀ�∗��ቁଷ − ͺʹͲ.ʹͷ ቀ�∗��ቁଶ +  ͻ͵.ͻʹͺ ቀ�∗��ቁ                     4.30 

 

 

                                 
௘భభ௘భభ� = ͳ.Ͷʹͳͳ ቀ�∗��ቁଷ + Ͳ.Ͷʹͳͳ ቀ�∗��ቁଶ + Ͳ.ͲͶ͹͹ ቀ�∗��ቁ                              4.31 

 

                             
௘భమ௘భమ� = −ͳ.ʹ͹Ͳͳ ቀ�∗��ቁଷ +  Ͳ.͵͹Ͳͻ ቀ�∗��ቁଶ −  Ͳ.Ͳ͵ͺ͸ ቀ�∗��ቁ                            4.32 

 

                                  ௘మభ௘మభ� = ͳ.͵ ቀ�∗��ቁଷ −  Ͳ.͵ͺͷͺ ቀ�∗��ቁଶ +  Ͳ.ͲͶ͵ͺ ቀ�∗��ቁ                                  4.33 

 

                                
௘మమ௘మమ� = ʹ.ͳͺ͵ͷ ቀ�∗��ቁଷ −  Ͳ.͸͵ͻͳ ቀ�∗��ቁଶ + Ͳ.Ͳ͸ͺͶ ቀ�∗��ቁ                             4.34 

 

                                
ௗభభௗభభ� = Ͳ.͹ͳ͹ͻ ቀ�∗��ቁଷ −  Ͳ.ʹͳʹ ቀ�∗��ቁଶ +  Ͳ.ͲʹͶͶ ቀ�∗��ቁ                               4.35 

 

                                 
ௗభమௗభమ� = −Ͳ.ͳ͵ͳ͵ ቀ�∗��ቁଷ + Ͳ.ͲͶͲ͸ −  Ͳ.ͲͲͶͶ ቀ�∗��ቁ                                    4.36 

 

                               ௗమభௗమభ� = Ͳ.Ͳ͹ͻ͸ ቀ�∗��ቁଷ −  Ͳ.Ͳʹ͹͵ ቀ�∗��ቁଶ +  Ͳ.ͲͲ͵ͺ ቀ�∗��ቁ                              4.37 

 

                                 
ௗమమௗమమ� = Ͳ.ͻ͹ͺʹ ቀ�∗��ቁଷ −   Ͳ.ʹͺ͹ͷ ቀ�∗��ቁଶ + Ͳ.Ͳ͵ʹ͵ ቀ�∗��ቁ                               4.38 

 

                              
ɣభɣభ� = −ͳ.ͺͺͺ͸ ቀ�∗��ቁଷ + Ͳ.ͷͷͻ͹ ቀ�∗��ቁଶ − Ͳ.Ͳ͸͵Ͷ ቀ�∗��ቁ                               4.39 

 

                                
ɣమɣమ� = −ʹ.ͻͲͳͻ ቀ�∗��ቁଷ +  Ͳ.ͺͶͻ͵ ቀ�∗��ቁଶ − Ͳ.ͲͻͲͻ ቀ�∗��ቁ                           4.40 
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�భ�భ� = Ͳ.͸ͺͳ͵ ቀ�∗��ቁଷ −   Ͳ.ʹͲͳʹ ቀ�∗��ቁଶ +  Ͳ.Ͳʹ͵ͳ ቀ�∗��ቁ                           4.41 

 

                                  
�మ�మ� = Ͳ.ͻʹͺ͵ ቀ�∗��ቁଷ −  Ͳ.ʹ͹ʹͻ ቀ�∗��ቁଶ +  Ͳ.Ͳ͵Ͳ͹ ቀ�∗��ቁ                            4.42 
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  CHAPTER 5: SUMMARY AND CONCLUSION 
 

 

A finite element study was conducted to find the effective elastic, piezoelectric, 

piezomagnetic, pyroelectric and pyromagnetic properties for three shapes of two-dimensional 

cellular solid made from MEE material. 

5.1 Conclusions: 

The primary conclusions of the present study are as follows: 

1. The results of the elastic properties showed that the equilateral triangular honeycombs 

are the stiffest among all the honeycombs shapes. For the same (t/l) ratio, it has a value 

of the elastic modulus higher than the elastic modulus for the square honeycomb by a 

factor of (1.27) and higher than the hexagonal honeycomb by an average factor of (386) 

and that shows that the hexagonal honeycomb is the most flexible by large difference. 

2. The elastic properties found in this study were slightly higher than those found by other 

studies and this influences and the other properties that have been found in this study. 

In all likelihood, this is caused by the inclusion of the full equations of elasticity rather 

than approximations based on bar or beam theory of several other models.   

3. As originally stated by Gibson and Ashby (reference), the effective thermal expansion 

coefficient is constant and independent from the (t/l) ratio and the relative density for all 

the cell shapes of the honeycombs. 
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4. All the piezoelectric, piezomagnetic, pyroelectric and pyromagnetic increased in 

magnitude with the increase of the relative density according to a fairly simple polynomial 

law. 

5.   The piezoelectric coefficients of the hexagonal honeycombs showed the highest values 

compared to those of other shapes. For example, the piezoelectric coefficient ݁ଵଵ for the 

regular hexagons is higher than ݁ଵଵ for the triangle by an average of (8) times and higher 

than the square coefficient by a factor of (31) 

6. For the square honeycomb, all the piezoelectric coefficients were positive, leading to a 

decrease in both dimensions of the honeycomb when an electric potential is applied. For 

the triangular or the hexagonal honeycombs, negative effective piezoelectric coefficients 

were obtained. 

7. For the piezomagnetic coefficient, the hexagonal honeycombs again showed the highest 

values of the piezomagnetic coefficient between the other shapes. For example, the 

piezmagnetic coefficient ݀ଵଵ for the regular hexagons is higher than ݀ଵଵ for the triangle 

by an average of (7) times and higher than the square coefficient by (22) times. 

8. All the piezomagnetic coefficients for the square and triangular honeycombs were 

positive. The piezomagnetic coefficient ݀ଵଶ for the regular hexagon was the only 

negative coefficient between all the piezomagnetic coefficients. 

9. The pyroelectric and pyromagnetic coefficients have the same behavior as the 

piezoelectric and the piezomagnetic coefficients. The hexagonal honeycomb showed the 

highest values. 
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10. The hexagonal honeycomb is the most flexible of the three configurations studied and 

has the highest values of the effective piezoelectric, piezomagnetic, pyroelectric and 

pyromagnetic properties. 

 

5.2 Future work: 

1. Otheƌ shapes ǁith a Ŷegatiǀe PoissoŶ͛s ƌatio ĐaŶ ďe eǆploƌed iŶĐludiŶg the iŶǀeƌted 

hexagonal honeycomb with (θ= -30). A total different behavior of the other properties 

can be obtained due to the auxetic behavior of these shapes.  

2. Effect of irregularities and defects such as missing cell walls or the effect of thickness 

variations can be investigated. The use of the repeating unit cell is invalid for this case and 

a representative volume element should be used. The size of RVE will affect the properties 

and a new set of equations should be presented. 

3. Three-dimensional cellular solids (foams) made from MEE material can be studied.  A new 

set of equations can be presented by studying the unit cells for the foams used in Gibson 

and Ashby (1997) or any other shapes that have been studied by others.  

4. Dynamic loading and free vibration of the MEE cellular solid can be investigated since 

most of the applications for the MEE materials, such as structural health monitoring and 

energy harvesting, are dealing with dynamic loads.   

5. Non-steady transient problem can be studied where all the variables are time dependent. 

6. Post elastic behavior, buckling of the cell walls and crushing of the honeycomb can be 

considered in the future. 
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APPENDIX A: ELEMENTS OF THE MATRIX EQUATIONS FOR THE RITZ 

MODEL 
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APPENDIX B: MATLAB CODE 

 

% Multi Physics of MEE foam  

% This program was written by Mustafa Khattab 

% Last update 04/21/2015 

% nem : # of elements 

% Nnodes : # of nodes     

% x,y : arrays/vectors of (x,y) pairs of each nodes x(nnodes), y(nnodes) 

% nod : connectivity array (nem,4)  

% nebs : # of EBC's 

% nodebc : array that contains global d.o.f that are known 

% valebc : array that contains values of EBC 

% nnbc : # of NBC's 

% nodnbc : array that contains global d.o.f that are known 

% valnbc : array that contains values of NBC 

clear all; 

clc; 

fem2ddata=xlsread('moisture'); 

nem = fem2ddata(1,1); 

nnodes = fem2ddata(1,2); 

nebc = fem2ddata(1,3); 

nnbc = fem2ddata(1,4); 

c11=fem2ddata(2,1); 

c12=fem2ddata(2,2); 

c22=fem2ddata(2,3); 
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c16=fem2ddata(2,4); 

c26=fem2ddata(2,5); 

c66=fem2ddata(2,6); 

e11=fem2ddata(3,1); 

e12=fem2ddata(3,2); 

e21=fem2ddata(3,3); 

e22=fem2ddata(3,4); 

e16=fem2ddata(3,5); 

e26=fem2ddata(3,6); 

e66=fem2ddata(3,7); 

d11=fem2ddata(4,1); 

d12=fem2ddata(4,2); 

d21=fem2ddata(4,3); 

d22=fem2ddata(4,4); 

d16=fem2ddata(4,5); 

d26=fem2ddata(4,6); 

d66=fem2ddata(4,7); 

beta11=fem2ddata(5,1); 

beta12=fem2ddata(5,2); 

beta22=fem2ddata(5,3); 

eps11=fem2ddata(6,1); 

eps12=fem2ddata(6,2); 

eps22=fem2ddata(6,3); 

mu11=fem2ddata(7,1); 
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mu12=fem2ddata(7,2); 

mu22=fem2ddata(7,3); 

g11=fem2ddata(8,1); 

g12=fem2ddata(8,2); 

g22=fem2ddata(8,3); 

zeta11=fem2ddata(9,1); 

zeta12=fem2ddata(9,2); 

zeta22=fem2ddata(9,3); 

gamma1=fem2ddata(10,1); 

gamma2=fem2ddata(10,2); 

tau1=fem2ddata(11,1); 

tau2=fem2ddata(11,2); 

nu1=fem2ddata(12,1); 

nu2=fem2ddata(12,2); 

kxt=fem2ddata(13,1); 

kyt=fem2ddata(13,2); 

kxm=fem2ddata(14,1); 

kym=fem2ddata(14,2); 

% Read in the (x,y) pairs 

for i = 1: nnodes; 

    x(i)=fem2ddata(i+14,2); 

    y(i)=fem2ddata(i+14,3); 

end 
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% Read in elements of connectivity array 

for i=1:nem; 

    nod(i,1)=fem2ddata(14+nnodes+i,2); 

    nod(i,2)=fem2ddata(14+nnodes+i,3); 

    nod(i,3)=fem2ddata(14+nnodes+i,4); 

    nod(i,4)=fem2ddata(14+nnodes+i,5); 

end 

 

%     % Read in all EBC Data 

    for i=1:nebc; 

        nodebc(i)=fem2ddata(14+nnodes+nem+i,1); 

        valebc(i)=fem2ddata(14+nnodes+nem+i,2); 

    end 

        % Read in the NBC Data 

        for i=1:nnbc; 

            nodnbc(i)=fem2ddata(14+nnodes+nem+nebc+i,1); 

            valnbc(i)=fem2ddata(14+nnodes+nem+nebc+i,2); 

        end 

        % Read in Gauss points and weights 

        gauss=zeros(4,4); 

        weight=zeros(4,4); 

         

        gauss(1,1)=0.0; 
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        gauss(1,2)=0.57735; 

        gauss(2,2)=-0.57735; 

         

        gauss(1,3)=0.77459; 

        gauss(2,3)=0; 

        gauss(3,3)=-0.77459; 

        gauss(1,4)=0.33998; 

        gauss(2,4)=-0.339980; 

        gauss(3,4)=0.861136; 

        gauss(4,4)=-0.861136; 

        weight(1,1)=2; 

        weight(1,2)=1; 

        weight(2,2)=1; 

         weight(1,3)=0.555556; 

        weight(2,3)=0.888889; 

        weight(3,3)=0.555556; 

        weight(1,4)=0.65214; 

        weight(2,4)=0.65214; 

        weight(3,4)=0.3478; 

        weight(4,4)=0.3478; 

        % gauss/weight to start 

        % zero the global matrices 

        globalk=zeros(nnodes*6,nnodes*6); 

        globalrhs=zeros(nnodes*6,1); 
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        % we will build elk and elf and immediately assemble 

        % start the big element loop 

        l=0;            

        %Alingnment Index; 

            for n=1:nem 

            % zero elk and elf 

            elk=zeros(24,24); 

            % find the node numbers for this element 

            i1=nod(n,1); 

            i2=nod(n,2); 

            i3=nod(n,3); 

            i4=nod(n,4); 

            % loop over the gauss points in xi/eta 

            ngp=2; 

            for gloopxi=1:ngp; 

                for gloopeta=1:ngp; 

                    sf=zeros(4,1); 

                    dsf=zeros(4,2); 

                    gdsf=zeros(4,2); 

                    xi=gauss(gloopxi,ngp); 

                    eta=gauss(gloopeta,ngp); 

                     

                    sf(1)=(1.0-xi)*(1.0-eta)/4; 

                    sf(2)=(1.0+xi)*(1.0-eta)/4; 
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                    sf(3)=(1.0+xi)*(1.0+eta)/4; 

                    sf(4)=(1.0-xi)*(1.0+eta)/4; 

                    % compute the xi and eta derives 

                    dsf(1,1)=-1*(1.0-eta)/4.0; 

                    dsf(2,1)=(1.0-eta)/4.0; 

                    dsf(3,1)=(1.0+eta)/4.0; 

                    dsf(4,1)=-1*(1.0+eta)/4.0; 

                    dsf(1,2)=-1*(1.0-xi)/4.0; 

                    dsf(2,2)=-1*(1.0+xi)/4.0; 

                    dsf(3,2)=(1.0+xi)/4.0; 

                    dsf(4,2)=(1.0-xi)/4.0; 

                     

                    % compute [j] at this gauss point; 

                    jacmat=zeros(2,2); 

                    jacmat(1,1)=x(i1).*dsf(1,1)+x(i2).*dsf(2,1)+x(i3).*dsf(3,1)+x(i4).*dsf(4,1); 

                    jacmat(1,2)=x(i1).*dsf(1,2)+x(i2).*dsf(2,2)+x(i3).*dsf(3,2)+x(i4).*dsf(4,2); 

                    jacmat(2,1)=y(i1).*dsf(1,1)+y(i2).*dsf(2,1)+y(i3).*dsf(3,1)+y(i4).*dsf(4,1); 

                    jacmat(2,2)=y(i1).*dsf(1,2)+y(i2).*dsf(2,2)+y(i3).*dsf(3,2)+y(i4).*dsf(4,2); 

                     

                    % we have [j] at gauss point 

                    jdet=jacmat(1,1).*jacmat(2,2)-jacmat(1,2).*jacmat(2,1); 

                    % zero and fill j-inverse 

                    jinv=zeros(2,2); 

                    jinv(1,1)=jacmat(2,2)/jdet; 
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                    jinv(1,2)=-1*jacmat(1,2)/jdet; 

                    jinv(2,1)=-1*jacmat(2,1)/jdet; 

                    jinv(2,2)=jacmat(1,1)/jdet; 

                     

                    gdsf(1,1)=dsf(1,1).*jinv(1,1)+dsf(1,2).*jinv(2,1); 

                    gdsf(2,1)=dsf(2,1).*jinv(1,1)+dsf(2,2).*jinv(2,1); 

                    gdsf(3,1)=dsf(3,1).*jinv(1,1)+dsf(3,2).*jinv(2,1); 

                    gdsf(4,1)=dsf(4,1).*jinv(1,1)+dsf(4,2).*jinv(2,1); 

                    gdsf(1,2)=dsf(1,1).*jinv(1,2)+dsf(1,2).*jinv(2,2); 

                    gdsf(2,2)=dsf(2,1).*jinv(1,2)+dsf(2,2).*jinv(2,2); 

                    gdsf(3,2)=dsf(3,1).*jinv(1,2)+dsf(3,2).*jinv(2,2); 

                    gdsf(4,2)=dsf(4,1).*jinv(1,2)+dsf(4,2).*jinv(2,2); 

                    % at each G.P. add the contribution to  and {elk} 

                    for i=1:4; 

                        const=jdet.*weight(gloopxi,ngp).*weight(gloopeta,ngp); 

                       % elf(i)=elf(i)+sf(i)*const; 

                        for j=1:4; 

                            %k11 

                            

elk(i,j)=elk(i,j)+(c11.*gdsf(i,1).*gdsf(j,1)+c16.*(gdsf(i,1).*gdsf(j,2)+gdsf(i,2).*gdsf(j,1))+c66.*gdsf(i,2).*gds

f(j,2)).*const; 

                           %k12                      

elk(i,j+4)=elk(i,j+4)+(c12.*gdsf(i,1).*gdsf(j,2)+c16.*gdsf(i,1).*gdsf(j,1)+c26.*gdsf(i,2).*gdsf(j,2)+c66.*gdsf

(i,2).*gdsf(j,1)).*const; 
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                            elk(j+4,i)=elk(i,j+4); 

                            %k13 

                            

elk(i,j+8)=elk(i,j+8)+(e11.*gdsf(i,1).*gdsf(j,1)+e21.*gdsf(i,1).*gdsf(j,2)+e16.*gdsf(i,2).*gdsf(j,1)+e26.*gdsf

(i,2).*gdsf(j,2)).*const; 

                            elk(j+8,i)=elk(i,j+8); 

                            %k14 

                            

elk(i,j+12)=elk(i,j+12)+(d11.*gdsf(i,1).*gdsf(j,1)+d21.*gdsf(i,1).*gdsf(j,2)+d16.*gdsf(i,2).*gdsf(j,1)+d26.*g

dsf(i,2).*gdsf(j,2)).*const; 

                            elk(j+12,i)=elk(i,j+12); 

                            %k22 

                            

elk(i+4,j+4)=elk(i+4,j+4)+(c26.*gdsf(i,1).*gdsf(j,2)+c66.*gdsf(i,1).*gdsf(j,1)+c22.*gdsf(i,2).*gdsf(j,2)+c26.

*gdsf(i,2).*gdsf(j,1)).*const; 

                            %k23 

                            

elk(i+4,j+8)=elk(i+4,j+8)+(e16.*gdsf(i,1).*gdsf(j,1)+e26.*gdsf(i,1).*gdsf(j,2)+e12.*gdsf(i,2).*gdsf(j,1)+e22.

*gdsf(i,2).*gdsf(j,2)).*const; 

                            elk(j+8,i+4)= elk(i+4,j+8); 

                            %k24 

                            

elk(i+4,j+12)=elk(i+4,j+12)+(d16.*gdsf(i,1).*gdsf(j,1)+d26.*gdsf(i,1).*gdsf(j,2)+d12.*gdsf(i,2).*gdsf(j,1)+d

22.*gdsf(i,2).*gdsf(j,2)).*const; 
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                            elk(j+12,i+4)= elk(i+4,j+12); 

                            %k33 

                            elk(i+8,j+8)=elk(i+8,j+8)+(-eps11.*gdsf(i,1).*gdsf(j,1)-eps12.*gdsf(i,1).*gdsf(j,2)-

eps12.*gdsf(i,2).*gdsf(j,1)-eps22.*gdsf(i,2).*gdsf(j,2)).*const; 

                            %k34 

                            elk(i+8,j+12)=elk(i+8,j+12)+(-g11.*gdsf(i,1).*gdsf(j,1)-g12.*gdsf(i,1).*gdsf(j,2)-

g12.*gdsf(i,2).*gdsf(j,1)-g22.*gdsf(i,2).*gdsf(j,2)).*const; 

                            elk(i+12,j+8)=elk(i+8,j+12); 

                            %k44 

                            elk(i+12,j+12)=elk(i+12,j+12)+(-mu11.*gdsf(i,1).*gdsf(j,1)-

mu12.*gdsf(i,1).*gdsf(j,2)-mu12.*gdsf(i,2).*gdsf(j,1)-mu22.*gdsf(i,2).*gdsf(j,2)).*const; 

                            %k55 

                            

elk(i+16,j+16)=elk(i+16,j+16)+(kxt.*gdsf(i,1).*gdsf(j,1)+kyt.*gdsf(i,2).*gdsf(j,2)).*const; 

                            %k66 

                            

elk(i+20,j+20)=elk(i+20,j+20)+(kxm.*gdsf(i,1).*gdsf(j,1)+kym.*gdsf(i,2).*gdsf(j,2)).*const; 

                            %k15 

                            elk(i,j+16)=elk(i,j+16)+(-beta11.*gdsf(i,1).*sf(j)-beta12.*gdsf(i,2).*sf(j)).*const; 

                             

                            %k16 

                            elk(i,j+20)=elk(i,j+20)+(-zeta11.*gdsf(i,1).*sf(j)-zeta12.*gdsf(i,2).*sf(j)).*const; 

                             

                            %k25 
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                            elk(i+4,j+16)=elk(i+4,j+16)+(-beta12.*gdsf(i,1).*sf(j)-

beta22.*gdsf(i,2).*sf(j)).*const; 

                             

                            %k26 

                            elk(i+4,j+20)=elk(i+4,j+20)+(-zeta12.*gdsf(i,1).*sf(j)-

zeta22.*gdsf(i,2).*sf(j)).*const; 

                            

                            %k35 

                            

elk(i+8,j+16)=elk(i+8,j+16)+(gamma1.*gdsf(i,1).*sf(j)+gamma2.*gdsf(i,2).*sf(j)).*const; 

                             

                            %k36 

                            

elk(i+8,j+20)=elk(i+8,j+20)+(gamma1.*gdsf(i,1).*sf(j)+gamma2.*gdsf(i,2).*sf(j)).*const; 

                             

                            %k45 

                            elk(i+12,j+16)=elk(i+12,j+16)+(tau1.*gdsf(i,1).*sf(j)+tau2.*gdsf(i,2).*sf(j)).*const; 

                            %k46 

                            elk(i+12,j+20)=elk(i+12,j+20)+(nu1.*gdsf(i,1).*sf(j)+nu2.*gdsf(i,2).*sf(j)).*const; 

                             

                        end 

                    end 

                end 

            end 
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% Rearranging the element matricies  

q=[1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15  19 23 4 8 12 

16 20 24]; 

w=[1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15  19 23 

4 8 12 16 20 24]; 

            elk=elk(w,q); 

 

            %{ 

            for i=1:24 

                for j=1:24 

                    globalk(i+l,j+l)=globalk(i+l,j+l)+elk(i,j); 

                end 

            end 

            l=l+12; 

            %} 

             

            k=1; 

            for j=i1*6-5:i1*6 

               j1(k)=j; 

               k=k+1; 

            end 

 

            k=1; 

            for j=i2*6-5:i2*6 
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               j2(k)=j; 

               k=k+1; 

            end 

            

            k=1; 

            for j=i3*6-5:i3*6 

               j3(k)=j; 

               k=k+1; 

            end 

 

            k=1; 

            for j=i4*6-5:i4*6 

               j4(k)=j; 

               k=k+1; 

            end 

             

            [A1,I]=sort([i1,i2,i4,i3]); 

            x1=[I(1)*6-5:I(1)*6]; 

            x2=[I(2)*6-5:I(2)*6]; 

            x3=[I(3)*6-5:I(3)*6]; 

            x4=[I(4)*6-5:I(4)*6]; 

 

            % we have {f} and {k} for element n 

            % assemble 
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              globalk(j1,j1)=globalk(j1,j1)+elk(x1,x1); 

             globalk(j1,j2)=globalk(j1,j2)+elk(x1,x2); 

             globalk(j1,j3)=globalk(j1,j3)+elk(x1,x3); 

             globalk(j1,j4)=globalk(j1,j4)+elk(x1,x4); 

             globalk(j2,j1)=globalk(j2,j1)+elk(x2,x1); 

             globalk(j2,j2)=globalk(j2,j2)+elk(x2,x2); 

             globalk(j2,j3)=globalk(j2,j3)+elk(x2,x3); 

             globalk(j2,j4)=globalk(j2,j4)+elk(x2,x4); 

             globalk(j3,j1)=globalk(j3,j1)+elk(x3,x1); 

             globalk(j3,j2)=globalk(j3,j2)+elk(x3,x2); 

             globalk(j3,j3)=globalk(j3,j3)+elk(x3,x3); 

             globalk(j3,j4)=globalk(j3,j4)+elk(x3,x4); 

             globalk(j4,j1)=globalk(j4,j1)+elk(x4,x1); 

             globalk(j4,j2)=globalk(j4,j2)+elk(x4,x2); 

             globalk(j4,j3)=globalk(j4,j3)+elk(x4,x3); 

             globalk(j4,j4)=globalk(j4,j4)+elk(x4,x4); 

         

        end 

 

       % save the original [k] to solve for q's 

       oldglobalk=globalk; 

       oldrhs=globalrhs; 
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% For non-zero EBC's           

u=zeros(nnodes*6,1); 

 for k=1:nebc; 

           kk=nodebc(k); 

           u(kk)=valebc(k); 

 end 

 globalrhs=-globalk*u; 

 for k=1:nnbc; 

           kk=nodnbc(k); 

%            globalrhs(kk)=valnbc(k); 

 End 

         

 for k=1:nebc; 

           kk=nodebc(k); 

           for i=1:nnodes*6; 

               globalk(i,kk)=0.0; 

               globalk(kk,i)=0.0; 

           end 

           globalk(kk,kk)=1.0; 

           globalrhs(kk)=valebc(k); 

       end                    

                 u=globalk\globalrhs   

%              q=oldglobalk*u; 

%         Q=round(q*1000)/1000 


