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ABSTRACT

EFFECTIVE PROPERTIES OF MAGNETO-ELECTRO-ELASTIC TWO-DIMENSIONAL CELLULAR SOLIDS

Two-dimensional cellular solids composed of magneto-electro-elastic (MEE) materials
were studied using the finite element method (FEM). A MATLAB code was written to implement
field models to determine the effective properties for this cellular solid including elastic,
piezoelectric, piezomagnetic, thermal, pyroelectric and pyromagnetic effective properties as a
function of the relative density. Results obtained for purely elastic properties were compared
with results from other studies and showed good agreement. Varying microstructures of the
cellular solids including square, equilateral triangle and hexagonal systems, were considered and
comparisons between the results of all the geometries were established. The triangular cellular
solid was the stiffest among all shapes, and the regular hexagon cellular solid showed the highest
effective coupling constants for the piezoelectric, piezomagnetic, pyroelectric and pyromagnetic
coefficients. The thermal expansion coefficient was found to be independent from the relative
density and was constant for all the MEE cellular solid shapes. A set of simple equations are

proposed to approximate the effective properties for these low density MEE solids.
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CHAPTER 1: INTRODUCTION

1.1 Introduction:

Cellular solids refer to materials that contain numerous cells where the volume between
the cell walls is filled by air. The shape of these cells can vary from regular shapes to totally
random configurations. Cellular solids are usually classified into two-dimensional cellular solids
that are called honeycombs and three-dimensional and more complex structures that are called

foams. Several examples are shown in Figure 1.1.

Figure 1.1: Natural cellular solids: (a) cork (b) balsa (c) sponge (d) cancellous bone (Gibson, 1989).

The cell walls of the foams can be either open, partially closed, or closed. Cellular solids
can be found in nature and includes material such as wood, cork and bones of the human body
or it can be made artificially by different materials (e.g. polymers, metals, ceramics and glass).

Recently, man-made cellular solids have gained a special interest because of the benefits of such



materials in light weight structure such as sandwich panels. Some of their benefits include having
low densities but relatively high stiffness and strength compared to ordinary solids. They can
also be used as an impact absorbers because of their ability to undergo large compressive strains
compared with regular solids.

Materials that are made from Magneto-Electro-Elastic (MEE) composites have somewhat
different benefits. MEE composites are made from combining piezoelectric materials, which can
induce electric field by applying stresses on it and vice versa, and piezomagnetic material, which
can induce magnetic field by applying stresses on it and vice versa. These materials have potential
product properties that couple these interactions. MEE composites can be used in smart
structures, structural health monitoring, green energy and energy harvesting, sound devices,
biomedical devices and many increasing applications. Such materials are at present relatively
expensive compared to others. Finding some ways to reduce the cost while maintaining its
properties is essential in starting using these materials more widely. The technologies of making
cellular solids from any material is available as mentioned in Gibson and Ashby (1997) so the
benefits of combing the benefits of the two and examine the behavior of cellular solids that are
made from MEE composite could be significant.

In this research, two-dimensional cellular solids that are composed of MEE constituents
will be studied by finding the effective properties of these cellular solids. Of primary interest is
the effect of the cell shapes and the relative density on these properties. These will be studied
using finite element models of the full two-dimensional governing equations of the solid. To the

author’s knowledge, this is the first research to study a MEE cellular solid.



1.2 Objectives:

The objectives of this work are to:

e Determine the effective elastic properties for the three shapes of honeycomb and
compare the results with existing studies.

e Determine the effective piezoelectric, piezomagnetic properties for the three shapes of
honeycomb.

e Determine the effective thermal expansion coefficient for all the shapes.

e Study the temperature effect on the piezoelectric and piezomagnetic properties by
finding the pyroelectric and pyromagnetic properties for the honeycombs.

e Study the effect of the relative density of the honeycomb on all the properties.

e Establish comparisons between the three shapes of the honeycomb and find which shape
will give the highest values for all the effective properties.

e Suggest a set of relatively simple equations to represent all the effective properties of the

MEE cellular solid in terms of the relative density.

1.3 Thesis organization

Chapter 1 of this thesis is an introduction that contains necessary background and brief
definitions of cellular solids and the smart material (MEE composites) that are used in this study.
Chapter 2 gives a review of the literature that has been used to develop a better understanding
on the subjects of cellular solids and the MEE composites. The first part of Chapter 2 will discuss
the literature on cellular solids while the second part will show the history, applications and the
literature on the MEE composites. The third part will mention the existing studies on smart

material cellular solids. Chapter 3 will present all the theoretical developments, governing

3



equations and methods that were used in the study. Chapter 4 contains the results showed in
figures and tables and comparison with existing studies are also shown. Discussions and
explanations of the results are also provided. Suggested equations for the effective properties
can also be found in Chapter 4. Chapter 5 presents the conclusions and all the findings of the
study and also will discuss the possible future work and what can be added to improve this study.
An Appendix is provided that will show the written MATLAB code and will have the elements of

the matrix equations for the Ritz model and other computational details.



CHAPTER 2: LITERATURE REVIEW

2.1 Background

Significant prior work has been published on cellular solids. This is an enormous subject
because of the variability of the constituent materials, cell shapes and cell sizes. Cellular solids
can be found either in nature (e.g. wood, cork and human bone) or those that are artificially
manufactured (e.g. polymeric foams used for impact absorption). There is significant variety in
the studies that depend on how those foams are used or how they are made. In practice, foams
are any solid that have a relative density that is less than (0.3). A solid have a relative density that
is greater than (0.3) can be considered as a solid with isolated pores [Gibson & Ashby, 1997].

One of the most important summaries of cellular solids is that of Gibson and Ashby (1997).
This work has been referenced in for almost every study that has been done on cellular solids. It
covers a vast subjects discussing the mechanical, thermal, electrical and acoustic properties of
cellular solids and foams. Cellular solids are classified into honeycombs, which implies a two
dimensional cellular solid with triangular, square or hexagonal cells, and foams, which refers to
a three dimensional and more complicated version of cellular solids. Foams can be open celled
or partially closed and fully closed, each of which can affect its properties significantly. This
research will focus on two-dimensional cellular materials composed of materials that couple

elastic, electric, and magnetic fields.



Figure 2.1: Cellular solids (a) Honeycomb; (b) open-cell foam; (c) closed-cell foam (Gibson, 1989)

One important property of cellular solids is the relative density. This is easily-calculated
parameter that gives the portion of volume that is occupied by material. It has been shown that

many of the mechanical properties of cellular solids can be related to its relative density in the

form of:

o p_*)"
o C(ps 21

Where:
@*: Any effective mechanical property for the foam.

@s: Any mechanical property for the constituent solid.

e : The relative density of the foam.

Ps

c and p: Constants depend on the microstructure of the foam

Researchers have studied the behavior of cellular solids under the effect of high
temperature and the effect of moisture on foams especially for sandwich panels and wood. The

work on piezoelectric, piezomagnetic and magneto-electro-elastic cellular solids is somewhat

limited.



2.2 Modeling and mechanics of two-dimensional cellular solids

Significant effort has been devoted to the study of cellular solids, and the literature on
cellular solids shows a variety of approaches. Early researchers studied a representative unit cell
assuming that the cellular solid is periodic and generally not taking into account any irregularities
in the cells. Gibson et al. (1982) studied the plane properties of honeycomb when loaded in X;
and X, directions, as can be seen in Figure 2.2, experimentally and theoretically. They found a
relationship between the relative density and the thickness t and the length | of the cell wall for

the regular hexagonal honeycomb (6=30) that can be shown as:

L === 2.2

Gibson and co-workers (1982) carried out an experimental work on honeycomb with different
cell dimensions and found the elastic properties of the honeycomb. Theoretically, they found a
relationships between the elastic properties of the honeycomb and the cell dimensions (t, | and
0), Figure 2.2, by assuming the cell wall will behave as a simple beam where bending of the cell
wall acts as the main deformation mode. The theoretical and the experimental work showed
good agreement. Warren and Kraynik (1987) used a different approach to study the elastic
response of periodic two-dimensional cellular materials by studying different repeating volumes
consisting from three elements connected at a node. They considered axial and shear
deformation in their analyses in addition to bending deformation. They found an expressions for
the elastic properties and found that for low-density honeycomb the effective properties can be

determined by the bending mechanism.



X,

Figure 2.2: Two-dimensional Hexagonal Unit cell (Gibson et al., 1982)

Christensen (2000) studied different shapes of two-dimensional low density cells
(triangular, hexagonal, triangular and hexagonal, hexagonal and stars) and found the expression

for the elastic properties in term of the volume fraction of material (1-c) when cis volume

fraction of the voids and (1-c) is equal to the relative density (Z—*). For the effective modulus of

elasticity, all the cell shapes have the expression of (1 — ¢) 2 because of the bending in the cell

walls. The triangular cells have the expression (1 — ¢) because they act like a truss. For

example:
. E 1
For triangular cell: —=3 (1-0¢) 2.3
m
E 3 3
For hexagonal cell: — =3 (1-20) 2.4
m

Hohe and Becker (2003) studied a periodic two-dimensional hexagonal honeycomb made
from hyperelastic material and found the effective stress-strain when uniaxial, biaxial and shear
loading are applied. They studied a repeating unit cell (RUC) similar to that studied by Warren

and Kraynik (1987). They found that the behavior of cellular solid under infinitesimal strain will



be different from its behavior under finite strain. Cell wall alignment can play a rule in this
behavior since its effect can be neglected for infinitesimal strains and it can cause anisotropies
under large strains even for initially isotropic cellular solid.

In practice, it is difficult to find a periodic cellular solid without any defects or
irregularities. Many manmade or natural foams possess a random microstructure. For this
reason, the effect of irregularities and defects on the behavior of cellular solids have seen
significant investigation. Silva et al. (1995) investigated the effect of non-periodicity on the elastic
properties of foams using the Voronoi method to generate a random cell shapes. The cell walls
were analyzed as a 3-node beam using Finite Element Method (ABAQUS software). The cell walls
were assumed to be uniform. Silva and Gibson (1997) studied the effect of non-periodicity on the
strength of the honeycomb using the same method used in their previous research. Steadman et
al. (2014) studied the effect of different irregularities and defects of two-dimensional cellular
solid on the elastic properties. They studied the elongation and the shortening of the cell walls,
randomly broken cell walls and the effect of thickness variation in the cell walls. They concluded
that broken cell walls can cause a significant drop in the elastic properties even with low number
of broken cell walls. They also found that cell wall elongation causes anisotropy and the effect of
thickness variation can be neglected. This research will only consider a regular two-dimensional

cellular solid with no defects or irregularities.
2.3.1 Magneto-Electro effect
The first person to study magnetoelectric (ME) material was the French physicist Pierre

Curie (1894). Landau and Lifshitz (1957) and Astrov (1960) did experimental work confirming that

there can be an electric field generated after applying a magnetic field. All the previous work was



conducted to study a single-phase material like (C1,03). These previous studies indicates that the
ME effect in single phase materials can be found only in very low temperatures and the effect is
weak such that it is challenging to use in any realistic application.

Suchtelen (1972) proposed a new way to have the ME effect by making a product of
composite made from piezoelectric and piezomagnetic materials. This was the first time that MEE
composites had been proposed. According to Sun and Kim (2010), MEE composites are made
from piezoelectric(e.g., barium titanate ,BaTi0O;) and piezomagnetic (e.g., cobalt iron
oxide,CoFe,0,) materials. Individually these have the same properties of its original materials
but together possess ME coupling. By applying a magnetic field to the composite, a change in the
piezomagnetic material dimensions. Because of the interaction of the materials in the
composite, the strain will affect the piezoelectric phase inducing an electric field. The same effect
will occur if an electric field has been applied instead of the magnetic field. Magnetoelectroelastic
(MEE) composites can be made by making one of the materials as a matrix and the other is
embedded in the matrix in the form of particles, fibers or by making a multiple layers of these
materials. The latter is the most common way to construct these solids because of the ease of
fabrication.

Van Run et al. (1974) found the properties of (barium titanate)-(Cobalt ferrite-titanate)
composite by experimental work. Van Boomgaard and Born (1978) conducted a series of
experiments to study the first particulate (0-3, 3-0) ME composite, and they found the optimal
ratio of the composite material that gives the strongest ME coupling. The work that has been

done in the 1970’s and the 1980’s was nearly all experimental.
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Harshe et al. (1993) were the first to develop a theoretical solution for a particulate ME
composite (0-3, 3-0) by modeling the composite with simple small cubes. They compared their
results with earlier experimental work. The numbers (0-3, 3-0) means that one of the materials
is continuous in three directions (3) and the other is in the form of particles (0). For the (1-3), the
number (1) means that the composite is fibrous that one of the materials is continues in one
direction. The (2-2) ME composite means both materials are continuous in 2 directions such as
the multi layered ME composite.

Nan (1994) tried a different approach from Harshe et al. (1993) to study the ME effect by
developing a theoretical approach to find the effective ME coefficients of the (1-3) and (3-1)
composites made from BaTi0O5;-CoFe,0, using Green’s Function method. This method showed

a good agreement with experimental results from previous work.

Figure 2.2: Types of MEE composites (a) (0-3) particulate composite, (b) (2-2) Laminate
composite and (c) (1-3) Fibrous composite (Nan et al., 2008)

11



Li and Dunn (1998) developed a micromechanical method to find the effective MEE
coefficients using the Mori-Tanaka (mean field) method (1973). They found an exact relations for
the effective magneto-elastic moduli.

MEE laminated plate (2-2) composites have seen significant study. Pan (2001) found the
exact solution for displacements, stress, electric potential and magnetic potential in a three-
dimensional multilayered MEE plates under the effect of static surface and internal stress. Pan
and Heyliger (2002) studied the free vibration of MEE plates with simply supported boundary
conditions on all of its edges. By finding the natural frequencies and the mode shapes, they
observed that some of the modes do not produce any electric or magnetic potentials and these
modes are purely elastic. Ramirez et al. (2006) have developed an approximate method to find
the solution for the free vibration of MEE laminates and compared the results to the exact
solution and to the result obtained from FE analysis using ABAQUS. The results showed a good
agreement. Additional literature surveys can be found in the review papers of Nan et al. (2008)

and Kambale et al. (2012).

2.3.2 Multi-physics of MEE composites

Nan (1994) was among the first researchers to study the Thermo-Electro-Elastic coupling
of a piezoelectric composite. A (0-3) composite made from epoxy as the matrix and reinforced
by BaTiO5 particles. The product pyroelectricity coefficient, the coupled coefficient of thermal
expansion and piezoelectricity, of the composite were all found but the pyroelectricity of

the BaTi0O5 was ignored and only the generated electrical polarization in the piezoelectric phase

12



due to stress caused by the difference in thermal coefficients of the two phases when the
temperature is increased in the matrix material was studied.

Aboudi (2001) studied Electro-Magneto-Thermo-Elastic (1-3) composite and
predicted the effective elastic, thermal expansion, piezoelectric, piezmagnetic, pyroelectric and
pyromagnetic coefficients using a homogenization micromechanical method. A repeating unit
cell assuming that the composite is periodic. Results were compared to the Mori-Tanaka method
and showed a good agreement.

Zhang and Wang (2015) studied Magneto-Electro-Thermo-elastic coupling of fibrous (1-
3) composites using the Finite Element Method. They also found the effective properties of the
product composite by taking a representative Volume Element (RVE) and apply the
homogenization approximation. They compared some of the results with the Mori-Tanaka
Method to validate their results.

Adding more fields to the ME coupling was the point of interest in the last two decades.
Smittakorn and Heyliger (2000) studied the effect of temperature and moisture on the steady-
state and transient behavior of laminated piezoelectric plates by applying the boundary
conditions on the top and the bottom of the plate. Recently, there was a significant increase of
work completed on the multi-physics of functionally graded materials (FGM) like the work done
by Akbarzadeh and Chen (2012) and the work by Zenkour (2014). Akbarzadeh and Pasini (2014)
were the first to study all the fields coupled together. They studied the hygro-thermo-magneto-
electro-elastic coupling of multilayered and functionally graded with hollow or solid cross-section

and infinitely long cylinders, finding the exact solution for every field in the layers of FG cylinders.
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2.4 Smart material cellular solids

Most of the work that has been done on cellular solids focused on the mechanical
behavior. Moreover, the mechanical, thermal, electrical, and the acoustic properties have been
found for different types of cellular solids. However, little work has been completed on the foams
that are made from smart materials (piezoelectric or piezomagnetic materials).

Dunn and Taya (1993) were the first to study a piezoelectric material with pores. They
studied the effect of porosity volume fraction on the elastic, dielectric and the electro-elastic
moduli for different types of piezoelectric ceramics. A closer look at the results indicates that a
decrease in these moduli with the increase of the porosity volume fraction. lyer and Venkatesh
(2014) performed an analysis on a periodic (0-3) and (1-3) piezoelectric composite that contains
pores using the homogenization method. They found the electromechanical properties and the
effect of the pores sizes and the shape. Their results showed a good agreement with the results
form Dunn and Taya (1993). The dielectric and the piezoelectric constants decreased when the
porosity volume fraction was increased. These solids are not honeycombs or foams but do have
the likelihood of relatively low density.

Huang et al. (2009) studied the effect of ellipsoidal voids on the effective properties of
the Magnetoelectroelastic (MEE) composites. Finding the effect of the void volume fraction and
the orientation of the voids on the effective piezomagnetic, piezoelectric and magneoelectric
properties of the composite.

Challagulla and Venkatesh (2012) conducted a research to study a foam made from
piezoelectric material (PZT-7A). They found the elastic, piezoelectric and acoustic properties as a

function of the relative density of the foam for a different shapes of unit cells and compared the
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results of these different cell shapes using Finite Element modeling software (ABAQUS). Finally,
lyer et al. (2014) studied a honeycomb foam made from piezoelectric material. Again, they found
the elastic, dielectric and piezoelectric constants for longitudinally and transversely porous foams
for a different shapes of unit cells (rectangular and Hexagonal) in terms of the relative density of
the foam. The unit cell analysis was carried by the finite element analysis software (ABAQUS).
There is no work that has been done on adding more fields to the piezoelectric cellular solids nor

any work on a cellular solid made from MEE composite.

2.5 Significance of this research

Two-dimensional cellular solids made from MEE composite are considered to find the
effective properties including the elastic and the thermal coefficients and the effective coupled
coefficients including the thermal expansion, pyroelectric and the pyromagnetic coefficients for
different shapes of unit cell of the cellular solid and compare the results. The Finite Element
Method (FEM) will be used in this study by a program written in MATLAB. Results will be
compared with existing studies, and new results will be presented for several new configurations

or loadings.
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CHAPTER 3: METHOD

This chapter will present all the governing equations, theoretical developments and

methods that were used in the study.

3.1 Governing Equations:
The equations of equilibrium in rectangular Cartesian coordinates can be expressed in

indicial form as:

oij,j+fi=0 (3.1)

Here ojj are the components of stress and fi are the body forces

i,j refer to the directions X; and X,

The quasi-static Maxwell equations in the absence of electric and magnetic sources are

given in terms of the components of electric displacement Dj and magnetic induction Bjas

Di,i=0 (3.2)

Bi,i=0 (3.3)

The constitutive equations for the class of solid considered in this study are given by:

16



Oij = CijSkl — emijEm — dmijHm — B;;60 — ¢ M (34)
Dm = ey;;Sij + €mnEn + gpnfin + y 6+ Xpm (3.5)

By = dp;jSij + gmnEn + yman +7.,0+vym (3.6)

Where: Em, Hn, Cijkt » €mij,dumijs €mns 8mn» 4 » Bij» & . v » Xm, T and vy, are the
mn ij m m

electric field, magnetic field and elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic,
magnetic permeability, thermal stress, and hygroscopic stress coefficient tensors and
pyroelectric, hygroelectric, pyromagnetic, and hygromagnetic coefficients vectors respectively.

Here 8 and m represents the change in temperature and change in moisture content respectively.

The strain-displacement relations can be written in RCC assuming small displacement

theory as:

Syy=— (3.7)

Here Sxx and Syy are the components of the linear normal strain tensor, and Sxy are the
engineering shear strain. Here x, y refer to directions X; and X, . The electric field components

Ei are related to the electrostatic potential ¢ (x4, x,) using the relations:

17



E=2¢ (3.8)
ox

Similarly, the magnetic induction components Bi are related to the magnetic potential W

(%1, x,) using the relations:

B=Y (3.9)

3.2 Homogenization

The method of homogenization have been extensively used for composites. The
main idea of the homogenization is that to divide total solid into small elements such as the
repeating unit cell (RUC) elements or the representative volume element (RVE) and find the
effective properties, the product properties of the composite, for the RUC or the RVE and apply
it to the whole material assuming that the composite material is a homogenous material with

effective properties that have been found for the small element.

a b
(% 08,8 8eetse,

®®§ e S 6 oo S §

%®.& ® o ‘%® S \ @ §
&@@ § S ®®®® @ S \

S © v

Figure 3.1: Representation of material microstructure. (a) Statistically homogenous material
characterized by RVE (b) Periodic microstructure characterized by RUC. (Pindera et al., 2009)
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This method allows the determination of the responses of the composite to any applied
loads. According to Pindera et al (2009), the representative volume element (RVE) can be used
for materials with statistical homogeneity, while the repeating unit cell (RUC) can be used when
having a material with periodic structure. In the same way, homogenization can be applied to the
cellular solids considered in this study by assuming that it is made from a solid material with no
voids that has effective properties as can be seen in Hohe and Becker (2003). In this research the
idea of homogenization will be applied twice: once for the MEE composite and the second time
for the cellular solid to get its effective properties. The effective properties for the MEE material
that are made of 50% BaTiO; (piezoelectric material) and 50% CoFe,0, (piezomagnetic
material) are taken from Chen et al (2015) and Akbarzadeh and Pasini (2014). They are

summarized in Table 1.

Table 1. The effective properties for a composite made of 50% BaTiO; and 50% CoFe;0, (c;; in 10°
N/m?, e;; inc/m?, d;jin N/Am, , g;; in 107°c/Nm?, py; in 107°Ns?/c?, B, in N/m*K, K* in N/sK).

properties MEE Properties MEE Properties MEE
cl1 213 e22 8.86 pil 201
c12 113 di1 292 p22 201
c22 213 di12 222 B1 6.105
c66 50 d22 292 B2 6.295
ell 8.86 €11 0.24 Kt 0.383
el2 -2.71 €22 0.24
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Figure 3.2: Homogenization of cellular solids

3.3 Repeating unit cell (RUC)

The repeating unit cell (RUC) is the smallest element in the periodic material which by
repeating this element in all directions, the same structure of the material will be obtained.
RUC’s can be used for honeycombs that are periodic and without any defects. Three shapes of
honeycombs were studied: square honeycombs, equilateral triangular honeycombs and regular
hexagonal honeycombs. The RUC for all the shapes are shown in figure (3.3). The unit cell for
the hexagonal is the same unit cell that had been used by Warren and Kraynik (1987) and also
was used by Chen et al (1999). The equilateral triangular RUC that had been used in this study is

the same as the RUC that had been used in Taylor et al (2011).

(a)

Ll o
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(b) N

Figure 3.3: RUC for (a) Square (b) Equilateral triangle (c) Regular hexagon

3.3 Finite Element Method

The Finite Element Method (FEM) is a powerful tool to solve a different types of problems
including solid mechanics, heat, electric, fluids and much more and has the ability to deal with
complicated geometries. In this research, finite element approximations were used to solve for
the coupled differential equations of elasticity, heat, electric, magnetic and moisture to find the
effective properties of different shapes of two-dimensional honeycombs. The FEM has several

major steps in order to get the final solution.
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3.3.1 Discretization

The first step is discretization of the body into small elements that are connected by
nodes and these nodes will have the degrees of freedom, a linear approximation can be
performed to find any value for any point between the nodes. The type of the elements can
vary depending on the problem and on the required accuracy of the approximation. Since this
research is dealing with a two-dimensional problem in plane stress, a four-nodded plane
elasticity element has been chosen to discretize the unit cell of the honeycombs. Each node will
have six degrees of freedom represented by displacement in the X; direction (u), displacement
in the X, direction (v), electric potential (¢), magnetic potential (W), temperature change (0)
and moisture concentration change (m). As it can be seen later in this chapter, a range of
boundary conditions were used to find these degrees of freedom for the different shapes of
unit cells and then finding the effective properties. A more accurate model can be achieved by
making the elements smaller to have more nodes in the discretized body. But, this will make
the problem more complicated and will need higher processing power. This constant trade-off

between accuracy and computational expense is an issue for all finite element models.

3.3.2 Weak form

Finding the weak formulation is one of the most important steps in Finite Element
that allowing to ease the requirement of continuity and make the differential equations much
easier to deal with. Original equation is multiplied by an arbitrary function, integrated over the

domain and set equal to zero.
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The FE approximation can be seen bellow:

u(x,y) = Sy N (x,y)

du= N/
v(x,y) = Iy vN (x,9)
ov = Nj”
b(x,y) = 20y &N (x,y)
0 =N?
Y(x,y) = X BN (x,9)
_ y
oY = NJ
0(x,y) = X1, ;N (x,y)

— N9
06 = N;

m(x,y) = Y- mN™(x,y)

6m=ij
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3.3.3 Element matrices

The element matrices can be shown as follow:

(K] [K®] [K®] (K] [K®] [K*T]() ) [(FY
(K™ [K®] [K®] [K*] [K®] [K®]]|0d | [(F?
[K7] [K¥] [K®) (K] IK®T K¥1E8 | JFy | oo
(K [K®] [K®) [K*] [K“] [K*][w} [ [(FY
O O [ [0 K" [ |{& | [{F}
o O o o o kelm ][Ry

After finding the element matrices, the only thing that is left to solve for the unknowns is
the assembly in the global matrix and applying the boundary conditions. The elements of the

matrix equations for the Ritz model are provided in the Appendix.

3.4 Boundary conditions and the effective properties

Specific boundary conditions must be imposed to find the solution for every loading case
and to find the effective propertey that is associated with that boundary condition. This section
will contain the boundary conditions based on the effective property that is required. The

boundary conditions that have been wused will be explained for every case.

3.4.1 Effective elastic properties
An overview of effective elastic properties for pure elastic foams has been given in an
earlier chapter, but the highlights are given here. For the square unit cell and the equilateral
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triangle unit cell, a presicribed boundary conditions were applied to find the forces and the
displacement in the unit cell and then are analyzed find the effective elastic properties. The
procedure from Li et al. (2004) is used in this study to obtain the effective elastic properties. To
find the effective modulus of elesticity (E;) and Poisson’s ratio (v,,) for the square and the
triangular unit cells, an arbitary displacemnt was applied in the X; direction at the right boundary
of the unit cell, constraints at bottom and left boundaries were provided. The magnitude is
irrelevant since the response is linear. After doing the finite element analysis and finding all the
forces and displacements in the unit cell, E; and v4, can be found easily by simple mechanics

using the following equations :

—_—h
Ey = o (3.29)
—uy
vip = o F (3.30)

where: F; is the total force in the X; direction, h is the thickness of the cell in the out of plane
direction and can be taken as 1, g; is the strain in the X; direction and L, is the cell length in X,
direction. E,and v,; can be found using the same method but applying the displacement in the

X, direction instead and find them using :

E, = (3.31)
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P (3.32)

E2%Lq

To find the shear modulus G, , a biaxial displacement is applied. A tensile displacement
is imposed in the X; direction and a compressive displacement is imposed in the X, is applied.

The elastic constant G, can then be found by:

F F
_ 1/Lz_ 2/L1

Gi2 = p— (3.33)

After finding all the effetive properties, the constitutive relation that relates the strains

to the stresses by the compliance tensors S;j,; where:

&ij = Sijki%k1 (3.34)
1
S1111 = B, (3.35)
1
S1111 = B (3.36)
S1122 = —% (3.37)
S2211 = —% (3.38)
1
S2222 = E_1 (3.39)
1
S3333 = G (3.40)
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The same way, the stresses can be related to the strains by the stiffnesses tensors Cj; :

Oij = Cijkifra (3.41)
Ci111 = U—iﬁ (3.42)
Ci122 = ﬁ (3.43)
Ca211 = % (3.44)

C2222 = ﬁ (3.45)
C3333 = G132 (3.46)

Reduced stiffnesses were obtained since this research is dealing with plane stresses only. The

relation between the compliances and the stiffnesses can be computed using:

[S]=[c]™ (3.47)

— e N
A

Xi

Figure 3.4: The boundary conditions used to find the effective properties of the square and the
triangular unit cells.
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For the hexagonal honeycombs, because a displacement in only one direction cannot be
applied due to the inclined boundaries, the procedure was a bit different. Affine motion, as used
by Heyliger and McMeeking (2001), was applied to the boudary nodes using the same procedure
that been used in Chen et al.(1999) and also by Steadman et al. (2014). An arbitrary strain in the
X, direction was imposed and the average stress was found. The same strain value in the
X,direction was applied and the average stress was found. The applied nodal displacements were

applied as:

u =S x (3.48)

Where: u; are the nodal displacements, S; are the components of strain and x; are the nodal

coordinates.

The average stress can be calculated by using:

N .
> Fix
i=1

op =" (3.49)

Here: o, is the average stress, Fji is the reaction force in the j-th direction at the i-th node, N is

the number of boundary nodes, X, is the nodal coordinate and V is the volume and in this case is

equal to the area of the unit cell. Then, the effective elastic properties can be found by using

equations 3.34 to 3.47 as before.
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3.4.2 The effective electric and magnetic properties

Very few studies have been published on cellular solids that are made from
piezoelectric/ piezomagnetic materials and non of them explained or pointed out the boundary
conditions that have been used. For that reason, a set of boundary conditions that is logically
consistent with those used for the recovery of effective elastic constants were used to find the
effective piezoelectric and piezomagnetic coefficients for the honeycombs of the present study.
To find the piezoelectric coefficient of, for example, €, an electric potential was applied on the
right boundary nodes and a different value on the left boundary nodes with linear increase for
the boundary nodes between them. Constraints were provided for all the boundaries except the
right side and the unit cell was free to move in the X; direction. Calculating the strain that is
caused by applying the electric field in the X direction will help in finding €, by using the
following equations:

S; =Ex lkij (3.50)

And

€kij=Cikimlitm (3.51)

Here: S; is the strain components, Ey is the electric field components, [;;are the components of the

piezoelectric tensor (strain coefficients) and Cjkim are the components of the elastic stiffnesses that are
calculated from the previous steps. To find €,,, the same procedure was followed except making the unit
cell free to move in the X, direction instead of X; direction. For the piezomagnetic coefficients dy;;,
the same approach was used, since both have the same differential equation, but by applying

magnetic potential instead and using the following equations:
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S, =Bk qrij (3.52)
And

Akij=CikimQitm (3.53)

This approach is very similar to the method used to recover the effective C;;.

3.4.3 The effective thermal expansion and moisture expansion coefficients

To find the effective thermal expansion coefficicent, a temperature difference of ( +100K)
was applied on all the external boundary nodes of the unit cell with constraints imposed on the
left and bottom boundaries. The increase in the area will be calculated since this research is
dealing with two-dimensional unit cell. The thermal expansion coefficient for the area can be

calculated using:

Y.
T 2440

(3.54)

where AA is the change in the area due to the change in temerature, A is the original area and
A0 is the change in the temperature.
For the moisture expansion coefficient, the same procedure can be used since they both

have the same differential equation. This property was not considered in this work.
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3.4.4 The effective pyroelectric and pyromagnetic coefficients

The change in the temperature will cause the honeycomb to deform and have consistent
strains. These strains, for the MEE material, in return will generate electric and magnetic
potentials. The calculation of the pyroelectric coefficients is a relatively simple process and is
accomplished by multiplying the piezoelectric coefficients by the thermal expansion coefficient.
The pyromagnetic coefficients can also simply calculated by multiplying piezomagnetic

coefficients by the thermal expansion coefficient.

3.5 The Relative Density

The relative density of the foam and honeycombs is an important property and all the
mechanical properties of the cellular solid have been attached to the relative density (Equation
2.1). The relative density for honeycombs depends on the (t/l) ratio and can be found for every

unit cell shape according to the following equation as found in Gibson and Ashby (1997):

. Pyt 1t
For squares: ps—2 z (1 > z) (3.55)
For equilateral triangles: —2\/_ (1 — ——) (3.56)
For regular hexagons: z—=%§ (3.57)
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3.6 Computational Model

A finite element program was written using MATLAB to solve for the unknown variables.
The code will read the input file which contains the number of the elements, number of nodes,
material poperties , coordinates of the nodes, connectivity array and the numbers and values of
the essential and the natural baoundary conditions. After reading the input file, the code
constructs the elements matrices and assemble them immediately in the global matrix in a way
that half-band width can be obtain. In other words, the code will find every variable in each node
before jumping to the next one and that will reduce the time of proccesing significantly. Finaly,
the code will find the values for the wanted variales based on the given boundary conditions. This
code is capable in dealing with elasticity, electric, magnetic, thermal and moisture problems

individually or combined together. A copy of the code can be found in the Appendix.
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CHAPTER 4: RESULTS AND DISCUSSION

This chapter presents the results obtained according to the method explained extensively
in the previous chapter. Some of the results will be compared with the results of existing studies
and some of the new behaviors will be discussed and explained. All the results of this chapter are
obtained for three different unit cells (square, equilateral triangles and regular hexagons) with
ratios of (t/I) ranging from (0.02) to (0.1) with an increment of (0.02) that will give a different
basic effective properties as a function of the relative densities. The analysis is based on plane

stress.

4.1 The relative density:
The results of the relative densities were giving according to equations 3.33, 3.34 and

3.35 from Chapter 3. These can be found in Table 2.

Table 2. The relative density ( Z— ) for the square, equilateral triangle and the regular hexagon

unit cells.

p

Ps
t/l Square Equilateral Triangle Regular Hexagon
0.02 0.0396 0.068082 0.023094
0.04 0.0784 0.133764 0.046188
0.06 0.1164 0.197046 0.069282
0.08 0.1536 0.257928 0.092376
0.1 0.19 0.31641 0.11547
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For the same (t/l) ratio, the equilateral triangle cellular solids shows the highest relative
density and the hexagonal cellular solids has the lowest relative density compared to the other

cell shapes.

(a) (b) (c)

Figure 4.1: Different (t/l) ratios for the square unit cell (a) t/1=0.02 (b) t/I =0.06 (c) t/I =0.1

(a) (b) (c)

Figure 4.2: Different (t/l) ratios for the equilateral triangle unit cell (a) t/1 =0.02 (b) t/I =0.06 (c) t/I=0.1

Figure 4.3: Different (t/l) ratios for the regular hexagon unit cell (a) t/1 =0.02 (b) t/I =0.06 (c) t/I=0.1
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4.2 The elastic properties:

Finding the elastic properties as quantified by the components of the stiffness and
compliance tensors is an essential task prior to calculating both the piezoelectric and the
piezomagnetic properties. Also, finding the effective properties, especially the effective modulus
of elasticity, is very important to validate the computational procedure that has been followed
in this study by comparing the obtained elastic properties to the existing studies that are done
by other researchers.

For the square unit cell, the elastic properties, the stiffness tensors and the compliance
tensors are shown in Table 3, 4 and 5. The ratio (%) was obtained so that the results can be
compared to only work that has been found on square honeycombs by Gulati (1975). Gulati’s
found a linear relationship between (%) and (t/1) as follows:

B _ B2 _ 4.1

~

Emi  Ema2

The comparison of the results can be seen in Figure 4.4 and the results showed a very
good agreement with the results of Gulati (1975) who used one-dimensional elements, with the
present results giving slightly larger magnitudes. The linear behavior of every elastic property,
which can be seen clearly in each of the Figures, for the square honeycombs is explained by that
the square unit cells are only experiencing tension or compression deformations in their cell walls
and there is no bending in the cell walls during the deformations imposed as part of this analysis.

Figures 4.5 and 4.6 shows the E; and the G, moduli respectively
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current model Gulati 1975

0.12

0.1

0.08

0.06

E1/Em1

0.04

0.02

0 0.05 0.1 0.15 0.2
p*/ps

Figure 4.4: Comparison of results with Gulati (1975) for the square honeycombs

Table 3. Elastic properties for the square honeycomb. E and G in (10° N/m?), vis
dimensionless.

t/l E, E, V12 V21 Gip Ei/Em, E;/Em,
0.02 3.1288 3.1288 0.021 0.021 1.5322 0.02034 0.020337
0.04 6.35 6.35 0.037 0.037 3.1 0.04127 0.04127
0.06 9.621 9.621 0.052 0.052 4.6 0.06253 0.062537
0.08 12.91 12.91 0.065 0.065 6.0682 0.08391 0.083915
0.1 16.28 16.28 0.079 0.079 7.54 0.10582 0.10582

Table 4. Compliance tensors for the square honeycomb in (10~2 m?2/N)

t/l Su S Sx S
0.02 0.31961135 0.0067118 0.3196114 0.652656
0.04 0.15748031 0.0058268 0.1574803 0.322581
0.06 0.1039393 0.0054048 0.1039393 0.217391
0.08 0.07745933 0.0050349 0.0774593 0.164794
0.1 0.06142506 0.0048526 0.0614251 0.132626
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Table5. Stiffnesses tensors for the square honeycomb in (10° N/m?)

t/l Cy Cp, Cy Cy Ces
0.02 3.13018041 0.06573379 0.06573379 3.13018041 1.5322
0.04 6.35870507 0.23527209 0.23527209 6.35870507 3.1
0.06 9.64708572 0.50164846 0.50164846 9.64708572 4.6
0.08 12.9647762 0.84271045 0.84271045 12.9647762 6.0682
0.1 16.3822416 1.29419708 1.29419708 16.3822416 7.54
18
16
14
12
® 10
S
E 8
6
4
2
0
0 002 004 006 0.8 0.1 012 014 016 0.8 0.2
P+/ps

Figure 4.5: Modulus of elasticity E; for the square honeycomb
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Figure 4.6: The shear modulus G, for the square honeycomb

For the triangular honeycombs, the same linear behavior was observed of the modulus of
elasticity and other elastic properties. Along with the linear increase with the increase of relative
density, the triangular honeycombs are stiffer than the square honey combs because the
behavior of the triangular honeycombs is similar to the behavior of trusses. The modulus of
elasticity results for the triangular honeycomb were compared to the equation given by Hunt
(1993), expressed by:

B _ B

= 1.15- 4.2

Emi Emz

The results were also compared to equation 2.3 by Christensen (2000) which can be

expressed in terms of the relative density by the relation:

£
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Figure 4.7 shows the comparison between the present results and those of the previous two
equations. The elastic properties and components of the stiffness and compliances tensors for

the equilateral triangles are shown in tables 6, 7 and 8.

Table 6. The elastic properties for the equilateral triangular honeycomb

t/l Ey E, Vi2 V21
0.02 4.25 4.25 0.4 0.4
0.04 8.03 8.03 0.4278 0.4278
0.06 12.1 12.1 0.4457 0.4457
0.08 16.2 16.8 0.458 0.458
0.1 20.3 20.44 0.4642 0.4642
= current model Christensen, 2000 Hunt, 1993
0.14
0.12
0.1
‘é' 0.08
&3]
=
5 0.06
0.04
0.02
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
p*/ps

Figure 4.7. Comparison of results with existing studies for the triangular honeycomb
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Table 7. Compliances tensors for the triangular honeycomb in (10~° m?/N)

t/l Su Sz Sa Sz
0.02 0.23529412 0.09411765 0.09411765 0.23529412
0.04 0.124533 0.05327522 0.05327522 0.124533
0.06 0.08264463 0.03683471 0.03683471 0.08264463
0.08 0.0617284 0.0272619 0.0282716 0.05952381
0.1 0.04926108 0.02271037 0.022867 0.04892368

Table 8. Stiffnesses tensors for the triangular honeycomb in (10° N/m?)

t/l G Cp Cxn Cy
0.02 5.059524 2.02381 2.02381 5.059524
0.04 9.828796 4.204759 4.204759 9.828796
0.06 15.09949 6.729843 6.729843 15.09949
0.08 20.50021 9.389094 9.736838 21.25947
0.1 25.87575 12.01152 12.09436 26.0542

For the regular hexagonal honeycomb, the relationship between the elastic modulus and
the relative density or the ratio (t/l) was not linear. This is primarily because of the bending
deformations that are experienced in the cell walls even when only compression or tension loads
were applied. That also is the reason why the hexagonal is the most flexible among the three cell
shapes considered in this research since loads that are directly axially are typically the stiffest.
The work on hexagons is enormous but this research will compare the results with only two
studies. The first is the result of work by Gibson and Ashby (1997) and is expressed by the

equation below:
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E1_E2_4(t)3 4.4
Emi  Emz V3 \l '

The results are also compared with the equation of Steadman et al (2014):

+\ 2.9837
B B _ 4135 (”—) 4.5
Ema Ema Ps

Figure 4.8 shows the comparison between the obtained results and the two previous
equations. Tables 9, 10 and 11 have the elastic properties, the compliances and the stiffnesses
tensors. The present moduli were slightly higher than those obtained by others. The reason for
this is that FEM for the equations of plane elasticity were used in this research unlike others who
used simple mechanics or structural analysis approaches. For example, Steadman and co-workers
(2014) have used the direct stiffness method along with planar frame analysis to get their results.
The FEM method tends to give higher results for the elastic properties because it makes the solid

stiffer for many of the deformation modes

Table 9. Elastic properties for the hexagonal honeycomb

t/l E, E, V12 V21
0.02 0.003 0.003 1 1
0.04 0.032 0.032 0.9999 0.9999
0.06 0.088 0.088 0.9998 0.9998
0.08 0.22 0.22 0.9996 0.9996
0.1 0.368 0.368 0.9994 0.9994
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E/Em

Table 10. Compliances tensors for the square honeycomb in (10~° m?/N)

t/l Sy Sp Sy Sy
0.02 333.3333333 333.3 333.3 333.3333
0.04 31.25 31.24688 31.24688 31.25
0.06 11.36363636 11.35909 11.35909 11.36364
0.08 4.545454545 4.543636 4.543636 4.545455

0.1 2.717391304 2.715761 2.715761 2.717391

Table 11. Stiffnesses tensors for the hexagonal honeycomb in (10° N/m?)

t/l Gy Cp, Cx Cy
0.02 29.97003296 29.96704 29.97003 29.97003
0.04 160.0080004 159.992 159.992 160.008
0.06 219.9450357 219.8571 219.945 219.945
0.08 275.055011 274.945 274.945 275.055

0.1 306.7586943 306.5746 306.5746 306.7587

current model

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.04 0.06

—— Gibson & Ashby, 1997

0.08
p*/ps

Steadman et al., 2014

0.1

0.12 0.14

Figure 4.8: Comparison of results with existing studies for the hexagonal honeycomb
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4.3 The effective piezoelectric properties:

The effective piezoelectric coefficients were also found for all of the unit cell shapes and
all the (t/l) ratios. For the square honeycombs, the piezoelectric coefficients e;; and e,, showed
a linear behavior when the relative density was increased while the piezoelectric coefficients ey,
and e, showed a polynomial increase when increasing the relative density. This behavior can be

seen in Figures 4.9 and 4.10. The results of the piezoelectric coefficients provided in Table 12.

Table 12. Piezoelectric coefficients for the square honeycombs in (C/m?)

t/l €11 €12 €21 €22
0.02 7.59069E-05 3.29E-09 3.29E-09 7.59069E-05
0.04 0.000154898 5.88E-08 5.88E-08 0.000154898
0.06 0.000235606 3.88E-07 3.88E-07 0.000235606
0.08 0.000316989 1.07E-06 1.07E-06 0.000316989

0.1 0.000409556 2.29E-06 2.29E-06 0.000409556

0.00045

0.0004

0.00035
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_, 0.00025
i
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Figure 4.9: The e, coefficient for the square honeycomb
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Figure 4.10: The ey, coefficient for the square honeycomb

For the equilateral triangular honeycombs, linear behavior also was obtained for the
piezoelectric coefficients e;1, e;1 and e,,. The piezoelectric coefficients e;, showed a non-linear
behavior with a negative value that means an increase in the dimension in the other direction
where the electric potential was applied will occur. Table 13 and Figures 4.11 and 4.12 show the

results of the equilateral triangular unit cells.

Table 13. Piezoelectric coefficients for the triangular honeycombs in (C/m?).

t/l €11 €12 €21 €22
0.02 0.000311 -2.3E-05 -2.3E-05 0.000128
0.04 0.000601 -2.5E-05 -2.9E-05 0.000227
0.06 0.000916 -3.3E-05 -3.3E-05 0.000339
0.08 0.00123 -4.5E-05 -3.5E-05 0.00046

0.1 0.001547 -5.7E-05 -3.9E-05 0.000579
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Figure 4.11: The ey, coefficient for the triangular honeycomb
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Figure 4.12. The e, coefficient for the triangular honeycomb
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For the regular hexagons, a non-linear increase in all the piezoelectric coefficients e; 1,
e12, €21 ande,,. was noticed when the relative density was increased. The results for the regular

hexagons is shown in Table 14, Figure 4.13 and Figure 4.14.

Table 14. Piezoelectric coefficients for the hexagonal honeycomb in (C/m?)

t/l €11 €12 €21 €22
0.02 0.001187 -0.00092 0.001087 0.001664
0.04 0.006296 -0.00471 0.005796 0.008586
0.06 0.008579 -0.00615 0.00791 0.011382
0.08 0.010617 -0.00726 0.009799 0.013688
0.1 0.011689 -0.00768 0.010796 0.014728
0.014
0.012
0.01
< 0.008
0
0.006
0.004
0.002
0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
p*/ps

Figure 4.13. The e, coefficient for the hexagonal honeycomb
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Figure 4.14. The e;, coefficient for the hexagonal honeycomb

4.4 The effective piezomagnetic properties:

The effective piezomagnetic coefficients were found for varying (t/I) ratios and for all
honeycomb shapes. The results were similar to those of the piezoelectric coefficients in how they
changed with the increase of the relative density because they both have the same differential
equations. For the square unit cell, the effective piezomagnetic coefficients d;; and
d,, increased linearly while d;, and d,; increased non-linearly with the increase of the relative
density. Table 15 shows the results for the square unit cell and figure 4.15 and 4.16 shows the

behavior of the coefficients d,; and d,;.
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Table 15. Piezomagnetic coefficients for the square honeycombs in (N/Am)

t/l

d11

d12

d21

d22

0.02
0.04
0.06
0.08
0.1

1.79E-03

0.003642584

0.005527684

0.007422334

0.009361632

7.73E-06

2.05E-05

4.29E-05

7.63E-05

0.00012

7.73E-06

2.05E-05

4.29E-05

7.63E-05

0.00012

0.001789

0.003643

0.005528

0.007422

0.009362

di1

1.00E-02
9.00E-03
8.00E-03
7.00E-03
6.00E-03
5.00E-03
4.00E-03
3.00E-03
2.00E-03
1.00E-03
0.00E+00

0.05

0.1
p*/ps

0.15 0.2

Figure 4.15. The d;, coefficient for the square honeycomb
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Figure 4.16. The d;, coefficient for the square honeycomb

For the equilateral triangular honeycombs, the results are shown in the following table and

figures.

Table 16. Piezomagnetic coefficients for the triangular honeycombs (N/Am)

t/l dqq dyy dyy dy
0.02 0.005814 0.004363 0.000821 0.010734
0.04 0.011172 0.005531 0.001521 0.01303
0.06 0.017148 0.006933 0.002507 0.016225
0.08 0.023315 0.008492 0.00366 0.020706
0.1 0.029419 0.009635 0.005107 0.023451
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Figure 4.17. The d; coefficient for the triangular honeycomb
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Figure 4.18 The d,, coefficient for the triangular honeycomb

For the hexagonal unit cells, all the results for the piezoelectric coefficients were non-

linear and can be seen in Table 17 and the Figures 4.19 and 4.20.
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Table 17. Piezomagnetic coefficients for the hexagonal honeycombs in (N/Am)

t/l dll d12 d21 d22
0.02 0.020111 -0.00344 0.00322 0.026467
0.04 0.107548 -0.01781 0.018692 0.139924
0.06 0.147896 -0.02346 0.027264 0.190579
0.08 0.184724 -0.02733 0.034942 0.23563

0.1 0.205444 -0.02813 0.039153 0.260095

0.25

0.2

0.15
—
—
©

0.1

0.05

0

0.02 0.04 0.06 0.08 0.1 0.12 0.14
P*/ps

Figure 4.19: The d;; coefficient for the hexagonal honeycomb
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Figure 4.20. The d, coefficient for the hexagonal honeycomb

4.5 The thermal expansion coefficient:
The thermal expansion coefficient was found for the square, equilateral triangle and the

regular hexagon unit cells and for the different values of (t/I) ratio. It has been found that the
thermal expansion coefficient for all the cases has the same value of (1.95*107°> %), concluding

that the thermal expansion coefficient is independent from the cell shapes and from the ratio of
(t/1). This finding agrees with what can be found in Gibson and Ashby (1997) which addresses that

the thermal expansion coefficient is almost the same as the material that the cellular solid is
o gl .
made from and it is in the range of (10~° E) for metals and that agrees with what has been found

in this study. There was no need for any additional plots for this result.
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4.6 The effective pyroelectric and pyromagnetic properties:

The effective pyroelectric and pyromagnetic have the same characterization as the
effective piezoelectric and the effective piezomagnetic coefficients since they are simply
multiplied by the thermal expansion coefficient. The results are shown in the following figures

and tables.

Table 18. The effective pyroelectric and pyromagnetic for the square honeycomb. y in
(C/Km?) and 7 in (N/AmK)

t/l ¥1 Y2 (51 T2
0.02 1.48018E-09 1.48E-09 3.49E-08 3.49E-08
0.04 3.02051E-09 3.02E-09 7.1E-08 7.1E-08
0.06 4.59432E-09 4.59E-09 1.08E-07 1.08E-07
0.08 6.18128E-09 6.18E-09 1.45E-07 1.45E-07

0.1 7.98634E-09 7.99E-09 1.83E-07 1.83E-07

Table 19. The effective pyroelectric and pyromagnetic for the triangular honeycomb. y
in (C/Km?) and 7 in (N/AmK)

t/l ¥1 ¥ T1 T2
0.02 6.07E-09 2.49E-09 1.13E-07 2.09E-07
0.04 1.17E-08 4.42E-09 2.18E-07 2.54E-07
0.06 1.79E-08 6.61E-09 3.34E-07 3.16E-07
0.08 2.4E-08 8.97E-09 4.,55E-07 4.04E-07

0.1 3.02E-08 1.13E-08 5.74E-07 4.57E-07

55



Table 20. The effective pyroelectric and pyromagnetic for the hexagonal honeycomb.
y in (C/Km?) and T in (N/AmK)

t/l Y1 \'¢) (51 (%)
0.02 2.31E-08 3.24E-08 3.92E-07 5.16E-07
0.04 1.23E-07 1.67E-07 2.1E-06 2.73E-06
0.06 1.67E-07 2.22E-07 2.88E-06 3.72E-06
0.08 2.07E-07 2.67E-07 3.6E-06 4 .59E-06

0.1 2.28E-07 2.87E-07 4.01E-06 5.07E-06

9E-09

8E-09

7E-09

6E-09

5E-09
—
So

4E-09

3E-09

2E-09

1E-09

0

0 0.05 0.1 0.15 0.2
pP*/ps

Figure 4.21. The y; coefficient for the square honeycomb
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Figure 4.22. The 7, coefficient for the square honeycomb
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Figure 4.23. The y, coefficient for the triangular honeycomb
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Figure 4.24. The 1, coefficient for the triangular honeycomb
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4.25. The y; coefficient for the hexagonal honeycomb
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4.26. The 4 coefficient for the hexagonal honeycomb

4.7 Suggested equations for the effective properties

Simple equations are suggested to represent all the effective properties of the MEE

cellular solid in terms of the relative density found by equations 3.55, 3.56 and 3.57 . The

equations are shown below:

For the square honeycomb:

L= 2204133 (£) 4.6

Ci1m C22m

xy 1.8958
Gz o 02627 (£) 4.7
C12m C21m Ps
o6 _ P
e = 0.91 (p) 4.8
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e _ @2 _ (0002 (Z—) 4.9

€11m €22m

3 2 .
12 _ €1 _ -5 (P _ -6 (P ) _ -8 (P_
2= 25410 (,,) 3% 10 (,,) 7% 10 (p) 4.10
dll — d22 — 0.0002 (P_*) 4.11
diim  da2zm Ps
dip _ dp1 __ -5 P_*3 -6 P_*Z_ -8 (P
=0 (,,) +9%10 (,,) 7 %10 (,,) 4.12
Y ¥2 _ 00003 (”—) 4.13
Yim Y2m Ps
L= = 0,0002 (£) 4.14
Tim T2m Ps
For the triangle honeycomb:
C11 — C22 — 0.3951 (P_*) 4-15
Ci1m C22m Ps
Gz _ a1 _ (3582 ("—) 4.16
Ci2m C21m Ps
11— 0.0006 (P_*) 4.17
€11m Ps

2 _ 0,001 (£)° - 0.0001 (£)’

€12m

+2x1075 (%) 4.18
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21— 00001 (Z—)3 +8+107° (z—)2 - 2+107° (&) 4.19

€21m

For the hexagonal honeycomb:

20,0002 (Z—) 4.20
L = 0.0003 (£) 4.21
<2 = 0,0001 (”’)—)2 + 1075 (’;—) 4.23
L — ~0.0007 (’;—) 4.25
o= =2 () - 4e9(1) + 10817 (1) 429
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G2 _ 1 _ 9796 (Z_)3 — 820.25 (Z—)2 +93.928 (%)

Ci2m C21m

U= 14211 (’;—)3 +0.4211 (Z—)Z +00477 (%)

€11m

L2 _ 12701 (2—)3 + 0.3709 (Z—)2 — 0.0386 (,’i—)

€12m

¢1 _ 13 (lp)_:)3 — 0.3858 (z—:)z + 0.0438 (z_:)

€21m

22— 21835 (:;—)3 ~ 0.6391 (2—)2 +00684 (%)

€22m

207179 (’P)_)3 ~ 0212 (;’—)2 + 00244 ()

11m

e 91313 (z—)3 +0.0406 — 0.0044 (Z—)

dizm

&L — 0,0796 (2—)3 — 0.0273 (’;—)2 + 0.0038 (Z_)

21m

22— 09782 (l";—)3 — 02875 (Z—)Z +00323 (%)

22m

Y1 _ _ 18886 (2—)3 +0.5597 (z—)z — 0.0634 (,'i—)

Yim

Y2 _ 59019 (I")—)3 + 0.8493 (Z—)2 —0.0909 (Z—)

Y2m
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4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40



71— 0.6813 (2—)3 ~ 0.2012 (Z—)2 + 0.0231 (Z—) 4.41

Tim

Tz _ 0.9283 (2—)3 — 0.2729 (’;—)2 + 0.0307 (Z—) 4.42

T2m
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CHAPTER 5: SUMMARY AND CONCLUSION

A finite element study was conducted to find the effective elastic, piezoelectric,
piezomagnetic, pyroelectric and pyromagnetic properties for three shapes of two-dimensional

cellular solid made from MEE material.

5.1 Conclusions:
The primary conclusions of the present study are as follows:
1. The results of the elastic properties showed that the equilateral triangular honeycombs
are the stiffest among all the honeycombs shapes. For the same (t/l) ratio, it has a value
of the elastic modulus higher than the elastic modulus for the square honeycomb by a
factor of (1.27) and higher than the hexagonal honeycomb by an average factor of (386)
and that shows that the hexagonal honeycomb is the most flexible by large difference.
2. The elastic properties found in this study were slightly higher than those found by other
studies and this influences and the other properties that have been found in this study.
In all likelihood, this is caused by the inclusion of the full equations of elasticity rather
than approximations based on bar or beam theory of several other models.
3. As originally stated by Gibson and Ashby (reference), the effective thermal expansion
coefficient is constant and independent from the (t/l) ratio and the relative density for all

the cell shapes of the honeycombs.

64



All the piezoelectric, piezomagnetic, pyroelectric and pyromagnetic increased in
magnitude with the increase of the relative density according to a fairly simple polynomial
law.

The piezoelectric coefficients of the hexagonal honeycombs showed the highest values
compared to those of other shapes. For example, the piezoelectric coefficient e;; for the
regular hexagons is higher than e;; for the triangle by an average of (8) times and higher
than the square coefficient by a factor of (31)

For the square honeycomb, all the piezoelectric coefficients were positive, leading to a
decrease in both dimensions of the honeycomb when an electric potential is applied. For
the triangular or the hexagonal honeycombs, negative effective piezoelectric coefficients
were obtained.

For the piezomagnetic coefficient, the hexagonal honeycombs again showed the highest
values of the piezomagnetic coefficient between the other shapes. For example, the
piezmagnetic coefficient d,; for the regular hexagons is higher than d;, for the triangle
by an average of (7) times and higher than the square coefficient by (22) times.

All the piezomagnetic coefficients for the square and triangular honeycombs were
positive. The piezomagnetic coefficient d,, for the regular hexagon was the only

negative coefficient between all the piezomagnetic coefficients.

. The pyroelectric and pyromagnetic coefficients have the same behavior as the

piezoelectric and the piezomagnetic coefficients. The hexagonal honeycomb showed the

highest values.
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10. The hexagonal honeycomb is the most flexible of the three configurations studied and
has the highest values of the effective piezoelectric, piezomagnetic, pyroelectric and

pyromagnetic properties.

5.2 Future work:

1. Other shapes with a negative Poisson’s ratio can be explored including the inverted
hexagonal honeycomb with (6= -30). A total different behavior of the other properties
can be obtained due to the auxetic behavior of these shapes.

2. Effect of irregularities and defects such as missing cell walls or the effect of thickness
variations can be investigated. The use of the repeating unit cell is invalid for this case and
a representative volume element should be used. The size of RVE will affect the properties
and a new set of equations should be presented.

3. Three-dimensional cellular solids (foams) made from MEE material can be studied. A new
set of equations can be presented by studying the unit cells for the foams used in Gibson
and Ashby (1997) or any other shapes that have been studied by others.

4. Dynamic loading and free vibration of the MEE cellular solid can be investigated since
most of the applications for the MEE materials, such as structural health monitoring and
energy harvesting, are dealing with dynamic loads.

5. Non-steady transient problem can be studied where all the variables are time dependent.

6. Post elastic behavior, buckling of the cell walls and crushing of the honeycomb can be

considered in the future.
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APPENDIX A: ELEMENTS OF THE MATRIX EQUATIONS FOR THE RITZ

MODEL
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APPENDIX B: MATLAB CODE

% Multi Physics of MEE foam

% This program was written by Mustafa Khattab

% Last update 04/21/2015

% nem : # of elements

% Nnodes : # of nodes

% x,y : arrays/vectors of (x,y) pairs of each nodes x(nnodes), y(nnodes)
% nod : connectivity array (nem,4)

% nebs : # of EBC's

% nodebc : array that contains global d.o.f that are known
% valebc : array that contains values of EBC

% nnbc : # of NBC's

% nodnbc : array that contains global d.o.f that are known
% valnbc : array that contains values of NBC

clear all;

clc;

fem2ddata=xIsread('moisture');

nem = fem2ddata(1,1);

nnodes = fem2ddata(1,2);

nebc = fem2ddata(1,3);

nnbc = fem2ddata(1,4);

cl1l=fem2ddata(2,1);

c12=fem2ddata(2,2);

c22=fem2ddata(2,3);

74



cl6=fem2ddata(2,4);
c26=fem2ddata(2,5);
c66=fem2ddata(2,6);
ell=fem2ddata(3,1);
el2=fem2ddata(3,2);
e21=fem2ddata(3,3);
e22=fem2ddata(3,4);
el6=fem2ddata(3,5);
e26=fem2ddata(3,6);
e66=fem2ddata(3,7);
dl1=fem2ddata(4,1);
d12=fem2ddata(4,2);
d21=fem2ddata(4,3);
d22=fem2ddata(4,4);
d16=fem2ddata(4,5);
d26=fem2ddata(4,6);
d66=fem2ddata(4,7);
betall=fem2ddata(5,1);
betal2=fem2ddata(5,2);
beta22=fem2ddata(5,3);
epsll=fem2ddata(6,1);
epsl2=fem2ddata(6,2);
eps22=fem2ddata(6,3);

mull=fem2ddata(7,1);
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mul2=fem2ddata(7,2);
mu22=fem2ddata(7,3);
gll=fem2ddata(8,1);
gl2=fem2ddata(8,2);
g22=fem2ddata(8,3);
zetall=fem2ddata(9,1);
zetal2=fem2ddata(9,2);
zeta22=fem2ddata(9,3);
gammal=fem2ddata(10,1);
gamma2=fem2ddata(10,2);
taul=fem2ddata(11,1);
tau2=fem2ddata(11,2);
nul=fem2ddata(12,1);
nu2=fem2ddata(12,2);
kxt=fem2ddata(13,1);
kyt=fem2ddata(13,2);
kxm=fem2ddata(14,1);
kym=fem2ddata(14,2);
% Read in the (x,y) pairs
fori=1: nnodes;
x(i)=fem2ddata(i+14,2);
y(i)=fem2ddata(i+14,3);

end
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% Read in elements of connectivity array

for i=1:nem;
nod(i,1)=fem2ddata(14+nnodes+i,2);
nod(i,2)=fem2ddata(14+nnodes+i,3);
nod(i,3)=fem2ddata(14+nnodes+i,4);
nod(i,4)=fem2ddata(14+nnodes+i,5);

end

% % Read in all EBC Data
for i=1:nebc;
nodebc(i)=fem2ddata(14+nnodes+nems+i,1);
valebc(i)=fem2ddata(14+nnodes+nem+i,2);
end
% Read in the NBC Data
for i=1:nnbc;
nodnbc(i)=fem2ddata(14+nnodes+nem+nebc+i,1);
valnbc(i)=fem2ddata(14+nnodes+nem+nebc+i,2);
end
% Read in Gauss points and weights
gauss=zeros(4,4);

weight=zeros(4,4);

gauss(1,1)=0.0;
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gauss(1,2)=0.57735;

gauss(2,2)=-0.57735;

gauss(1,3)=0.77459;
gauss(2,3)=0;
gauss(3,3)=-0.77459;
gauss(1,4)=0.33998;
gauss(2,4)=-0.339980;
gauss(3,4)=0.861136;
gauss(4,4)=-0.861136;
weight(1,1)=2;
weight(1,2)=1;
weight(2,2)=1;
weight(1,3)=0.555556;
weight(2,3)=0.888889;
weight(3,3)=0.555556;
weight(1,4)=0.65214;
weight(2,4)=0.65214;
weight(3,4)=0.3478;
weight(4,4)=0.3478;

% gauss/weight to start

% zero the global matrices
globalk=zeros(nnodes*6,nnodes*6);

globalrhs=zeros(nnodes*6,1);
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% we will build elk and elf and immediately assemble
% start the big element loop
I=0;
%Alingnment Index;
for n=1:nem
% zero elk and elf
elk=zeros(24,24);
% find the node numbers for this element
il=nod(n,1);
i2=nod(n,2);
i3=nod(n,3);
i4=nod(n,4);
% loop over the gauss points in xi/eta
ngp=2;
for gloopxi=1:ngp;
for gloopeta=1:ngp;
sf=zeros(4,1);
dsf=zeros(4,2);
gdsf=zeros(4,2);
xi=gauss(gloopxi,ngp);

eta=gauss(gloopeta,ngp);

sf(1)=(1.0-xi)*(1.0-eta)/4;

sf(2)=(1.0+xi)*(1.0-eta)/4;
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sf(3)=(1.0+xi)*(1.0+eta)/4;
sf(4)=(1.0-xi)*(1.0+eta)/4;

% compute the xi and eta derives
dsf(1,1)=-1*(1.0-eta)/4.0;
dsf(2,1)=(1.0-eta)/4.0;
dsf(3,1)=(1.0+eta)/4.0;
dsf(4,1)=-1*(1.0+eta)/4.0;
dsf(1,2)=-1*(1.0-xi)/4.0;
dsf(2,2)=-1%(1.0+xi)/4.0;
dsf(3,2)=(1.0+xi)/4.0;

dsf(4,2)=(1.0-xi)/4.0;

% compute [j] at this gauss point;

jacmat=zeros(2,2);
jacmat(1,1)=x(i1).*dsf(1,1)+x(i2).*dsf(2,1)+x(i3).*dsf(3,1)+x(i4).*dsf(4,1);
jacmat(1,2)=x(i1).*dsf(1,2)+x(i2).*dsf(2,2)+x(i3).*dsf(3,2)+x(i4).*dsf(4,2);
jacmat(2,1)=y(i1).*dsf(1,1)+y(i2).*dsf(2,1)+y(i3).*dsf(3,1)+y(i4).*dsf(4,1);

jacmat(2,2)=y(i1).*dsf(1,2)+y(i2).*dsf(2,2)+y(i3).*dsf(3,2)+y(i4).*dsf(4,2);

% we have [j] at gauss point
jdet=jacmat(1,1).*jacmat(2,2)-jacmat(1,2).*jacmat(2,1);
% zero and fill j-inverse

jinv=zeros(2,2);

jinv(1,1)=jacmat(2,2)/jdet;
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jinv(1,2)=-1*jacmat(1,2)/jdet;
jinv(2,1)=-1*jacmat(2,1)/jdet;

jinv(2,2)=jacmat(1,1)/jdet;

gdsf(1,1)=dsf(1,1).*jinv(1,1)+dsf(1,2).*jinv(2,1);
gdsf(2,1)=dsf(2,1).*jinv(1,1)+dsf(2,2).*jinv(2,1);
gdsf(3,1)=dsf(3,1).*jinv(1,1)+dsf(3,2).*jinv(2,1);
gdsf(4,1)=dsf(4,1).*jinv(1,1)+dsf(4,2).*jinv(2,1);
gdsf(1,2)=dsf(1,1).*jinv(1,2)+dsf(1,2).*jinv(2,2);
gdsf(2,2)=dsf(2,1).*jinv(1,2)+dsf(2,2).*jinv(2,2);
gdsf(3,2)=dsf(3,1).*jinv(1,2)+dsf(3,2).*jinv(2,2);
gdsf(4,2)=dsf(4,1).*jinv(1,2)+dsf(4,2).*jinv(2,2);
% at each G.P. add the contribution to and {elk}
fori=1:4;

const=jdet.*weight(gloopxi,ngp).*weight(gloopeta,ngp);

% elf(i)=elf(i)+sf(i)*const;

forj=1:4;

%k11

elk(i,j)=elk(i,j)+(c11.*gdsf(i,1).*gdsf(j,1)+c16.*(gdsf(i,1). *gdsf(j,2)+gdsf(i,2). *gdsf(j,1))+c66.*gdsf(i,2). *gds
f(j,2)).*const;

%k12
elk(i,j+4)=elk(i,j+4)+(c12.*gdsf(i,1). *gdsf(j,2)+c16.*gdsf(i,1).*gdsf(j,1)+c26.*gdsf(i,2). *gdsf(j,2)+c66.*gdsf

(i,2).*gdsf(j,1)).*const;
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elk(j+4,i)=elk(i,j+4);

%k13

elk(i,j+8)=elk(i,j+8)+(e11.*gdsf(i,1).*gdsf(j,1)+e21.*gdsf(i,1). *gdsf(j,2)+e16.*gdsf(i,2). *gdsf(j,1)+e26.*gdsf
(i,2).*gdsf(j,2)).*const;
elk(j+8,i)=elk(i,j+8);

%k14

elk(i,j+12)=elk(i,j+12)+(d11.*gdsf(i,1). *gdsf(j,1)+d21. *gdsf(i,1). *gdsf(},2) +d16.*gdsf(i,2). *gdsf(j, 1)+d26.*g
dsf(i,2).*gdsf(j,2)). *const;
elk(j+12,i)=elk(i,j+12);

%k22

elk(i+4,j+4)=elk(i+4,j+4)+(c26.*gdsf(i,1).*gdsf(j,2)+c66.*gdsf(i,1). *gdsf(j,1)+c22.*gdsf(i,2).*gdsf(j,2)+c26.
*gdsf(i,2).*gdsf(j,1)).*const;

%k23

elk(i+4,j+8)=elk(i+4,j+8)+(e16.*gdsf(i,1).*gdsf(j,1)+e26.*gdsf(i,1).*gdsf(j,2)+el12.*gdsf(i,2). *gdsf(j,1)+e22.
*gdsf(i,2).*gdsf(j,2)).*const;
elk(j+8,i+4)= elk(i+4,j+8);

%k24

elk(i+4,j+12)=elk(i+4,j+12)+(d16.*gdsf(i,1). *gdsf(j,1)+d26.*gdsf(i,1).*gdsf(j,2)+d12.*gdsf(i,2). *gdsf(j,1)+d

22.*gdsf(i,2).*gdsf(j,2)).*const;
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elk(j+12,i+4)= elk(i+4,j+12);

%k33

elk(i+8,j+8)=elk(i+8,j+8)+(-eps11.*gdsf(i,1).*gdsf(j,1)-eps12.*gdsf(i,1).*gdsf(j,2)-
eps12.*gdsf(i,2).*gdsf(j,1)-eps22.*gdsf(i,2). *gdsf(j,2)).*const;

%k34

elk(i+8,j+12)=elk(i+8,j+12)+(-g11.*gdsf(i,1).*gdsf(j,1)-g12.*gdsf(i,1).*gdsf(j,2)-
gl12.*gdsf(i,2).*gdsf(j,1)-g22.*gdsf(i,2).*gdsf(j,2)).*const;

elk(i+12,j+8)=elk(i+8,j+12);

%k44

elk(i+12,j+12)=elk(i+12,j+12)+(-mull1.*gdsf(i,1).*gdsf(j,1)-
mul2.*gdsf(i,1).*gdsf(j,2)-mul12.*gdsf(i,2).*gdsf(j,1)-mu22.*gdsf(i,2).*gdsf(j,2)).*const;

%Kk55

elk(i+16,j+16)=elk(i+16,j+16)+(kxt.*gdsf(i,1).*gdsf(j,1)+kyt.*gdsf(i,2). *gdsf(j,2)). *const;

%k66

elk(i+20,j+20)=elk(i+20,j+20)+(kxm.*gdsf(i,1). *gdsf(j,1)+kym.*gdsf(i,2).*gdsf(j,2)). *const;
%k15

elk(i,j+16)=elk(i,j+16)+(-betall.*gdsf(i,1).*sf(j)-betal2.*gdsf(i,2).*sf(j)). *const;

%k16

elk(i,j+20)=elk(i,j+20)+(-zetall.*gdsf(i,1).*sf(j)-zetal2.*gdsf(i,2). *sf(j)). *const;

%k25
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elk(i+4,j+16)=elk(i+4,j+16)+(-betal2.*gdsf(i,1).*sf(j)-

beta22.*gdsf(i,2).*sf(j)).*const;

%k26
elk(i+4,j+20)=elk(i+4,j+20)+(-zetal2.*gdsf(i,1).*sf(j)-

zeta22.*gdsf(i,2).*sf(j)). *const;

%k35

elk(i+8,j+16)=elk(i+8,j+16)+(gammal.*gdsf(i,1).*sf(j)+gamma2.*gdsf(i,2).*sf(j)). *const;

%k36

elk(i+8,j+20)=elk(i+8,j+20)+(gammal.*gdsf(i,1).*sf(j)+gamma2.*gdsf(i,2).*sf(j)). *const;

%ka45
elk(i+12,j+16)=elk(i+12,j+16)+(taul.*gdsf(i,1).*sf(j)+tau2.*gdsf(i,2).*sf(j)). *const;
%k46

elk(i+12,j+20)=elk(i+12,j+20)+(nul.*gdsf(i,1).*sf(j)+nu2.*gdsf(i,2).*sf(j)). *const;

end
end
end

end
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% Rearranging the element matricies

g=[15913172126101418223 71115 19234812
16 20 24];
w=[15913172126101418223 71115 1923
81216 20 24];
elk=elk(w,q);
%{
fori=1:24
forj=1:24

globalk(i+l,j+l)=globalk(i+l,j+I)+elk(i,j);
end
end
I=1+12;

%}

k=1;

for j=i1*6-5:i1*%6
jik)=j;
k=k+1;

end

k=1;

for j=i2*6-5:i2*6
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j2(k)=j;
k=k+1;

end

k=1;

for j=i3*6-5:i3*6
3(k)=5;
k=k+1;

end

k=1;

for j=i4*6-5:i4*6
jak)=j;
k=k+1;

end

[A1,1]=sort([i1,i2,i4,i3]);
x1=[I(1)*6-5:1(1)*6];
x2=[1(2)*6-5:1(2)*6];
x3=[1(3)*6-5:1(3)*6];

x4=[1(4)*6-5:1(4)*6];

% we have {f} and {k} for element n

% assemble
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globalk(j1,j1)=globalk(j1,j1)+elk(x1,x1);
globalk(j1,j2)=globalk(j1,j2)+elk(x1,x2);
globalk(j1,j3)=globalk(j1,j3)+elk(x1,x3);
globalk(j1,j4)=globalk(j1,j4)+elk(x1,x4);
globalk(j2,j1)=globalk(j2,j1)+elk(x2,x1);
globalk(j2,j2)=globalk(j2,j2)+elk(x2,x2);
globalk(j2,j3)=globalk(j2,j3)+elk(x2,x3);
globalk(j2,j4)=globalk(j2,j4)+elk(x2,x4);
globalk(j3,j1)=globalk(j3,j1)+elk(x3,x1);
globalk(j3,j2)=globalk(j3,j2)+elk(x3,x2);
globalk(j3,j3)=globalk(j3,j3)+elk(x3,x3);
globalk(j3,j4)=globalk(j3,j4)+elk(x3,x4);
globalk(j4,j1)=globalk(j4,j1)+elk(x4,x1);
globalk(j4,j2)=globalk(j4,j2)+elk(x4,x2);
globalk(j4,j3)=globalk(j4,j3)+elk(x4,x3);

globalk(j4,j4)=globalk(j4,j4)+elk(x4,x4);

end

% save the original [k] to solve for g's

oldglobalk=globalk;

oldrhs=globalrhs;
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% For non-zero EBC's
u=zeros(nnodes*6,1);
for k=1:nebc;
kk=nodebc(k);
u(kk)=valebc(k);
end
globalrhs=-globalk*u;
for k=1:nnbg;
kk=nodnbc(k);
% globalrhs(kk)=valnbc(k);

End

for k=1:nebg;
kk=nodebc(k);
for i=1:nnodes*6;
globalk(i,kk)=0.0;
globalk(kk,i)=0.0;
end
globalk(kk,kk)=1.0;
globalrhs(kk)=valebc(k);
end
u=globalk\globalrhs
% g=oldglobalk*u;

% Q=round(g*1000)/1000
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