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ABSTRACT 
 
 
 

EXPLORING THE LIMITS OF VARIATIONAL PASSIVE MICROWAVE RETRIEVALS 
 
 
 
Passive microwave observations from satellite platforms constitute one of the most 

important data records of the global observing system. Operational since the late 1970s, passive 

microwave data underpin climate records of precipitation, sea ice extent, water vapor, and more, 

and contribute significantly to numerical weather prediction via data assimilation. Detailed 

understanding of the observation errors in these data is key to maximizing their utility for 

research and operational applications alike. However, the treatment of observation errors in this 

data record has been lacking and somewhat divergent when considering the retrieval and data 

assimilation communities. In this study, some limits of passive microwave imager data are 

considered in light of more holistic treatment of observation errors. 

A variational retrieval, named the CSU 1DVAR, was developed for microwave imagers 

and applied to the GMI and AMSR2 sensors for ocean scenes. Via an innovative method to 

determine forward model error, this retrieval accounts for error covariances across all channels 

used in the iteration. This improves validation in more complex scenes such as high wind speed 

and persistently cloudy regimes. In addition, it validates on par with a benchmark dataset without 

any tuning to in-situ observations. The algorithm yields full posterior error diagnostics and its 

physical forward model is applicable to other sensors, pending intercalibration.  

This retrieval is used to explore the viability of retrieving parameters at the limits of the 

available information content from a typical microwave imager. Retrieval of warm rain, marginal 

sea ice, and falling snow are explored with the variational retrieval. Warm rain retrieval shows 
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some promise, with greater sensitivity than operational GPM algorithms due to leveraging 

CloudSat data and accounting for drop size distribution variability. Marginal sea ice is also 

detected with greater sensitivity than a standard operational retrieval. These studies ultimately 

show that while a variational algorithm maximizes the effective signal to noise ratio of these 

observations, hard limitations exist due to the finite information content afforded by a typical 

microwave imager. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
1.1 Passive microwave inversion 

Space-borne passive microwave remote sensing of planet Earth has a history that goes 

back to the 1960s and has been recognized as an operational priority since the late 1970s (Staelin 

1969, Njoku 1982). The development of passive microwave sensors has been bifurcated since 

the beginning, focusing either on frequencies near oxygen and water vapor absorption bands 

(Staelin et al. 1975), or frequencies in window parts of the spectrum that see the surface of the 

Earth (Wilheit 1977); these sensors became known as microwave sounders and imagers, 

respectively. Microwave sounders and imagers have become an indispensable part of the Earth 

observing system for climate monitoring (Mears et al. 2003), numerical weather prediction 

(Andersson et al. 1994), and research.  

To make use of radiometric observations of the Earth, radiances are inverted to determine 

characteristics of the atmosphere or Earth’s surface that are of interest. Frequencies selected for 

Earth observation are of course chosen because of their sensitivity to specific parameters. 

However, at no frequency does a microwave radiance have a perfect one-to-one relationship with 

any one geophysical parameter. This interdependency of microwave radiances and geophysical 

parameters makes the inversion problem challenging. In addition, nearby frequencies can have 

similar behavior with respect to surface or atmospheric constituents. Thus both the radiometric 

characteristics of retrieved parameters and the radiances themselves can be correlated. 
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Inversion methods have evolved over the decades as inversion theory, spectroscopy, and 

computational power have progressed. Staelin (1977) noted that “the [passive microwave] 

inversion problem is adequately approximated as linear with jointly Gaussian statistics, and, thus, 

a linear retrieval performs well.” However, limitations both computational and relating to 

radiative transfer modeling caused early retrieval algorithms to rely on statistical relationships or 

regressions between microwave brightness temperatures (TB) and geophysical parameters such 

as rainfall (Wilheit et al. 1977, Spencer et al. 1989) or sea ice (Cavalieri et al. 1984) to make the 

problem manageable. Most such techniques attempted to minimize the impact of atmospheric 

effects to better sense the surface parameters, and vice versa for atmospheric parameters. 

Ultimately, early retrievals had a singular focus on retrieval of one parameter and tried to ignore 

other radiometrically significant constituents via channel differencing or regressions. It is argued 

in Chapter 4 that this vestige of decades past still exists for a reason; however, a more holistic 

retrieval approach has many benefits. 

The first problem that demonstrated a need for more codified treatment was retrieval of 

atmospheric profiles of temperature and water vapor from microwave and infrared sounders 

(Rodgers 1976). The Microwave Sounding Unit (MSU), for instance, had four channels sensitive 

to emission from oxygen with weighting functions that peaked at different altitudes. It would be 

folly to treat different parts of the profile as independent, as profiles must be continuous with 

some autocorrelation length. Thus the channels were used together, fitting the observations to 

known atmospheric profile shapes, while taking into account prior knowledge of atmospheric 

profiles as well as instrument errors from MSU itself. By assuming Bayesian statistics and 

Gaussian distributed errors for both the a priori and the observations, the variational technique 
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known as optimal estimation (OE) emerged as a method suited to this type of retrieval problem 

(Rodgers 2000).  

The optimal estimation methodology balances observations and prior knowledge (known 

as the a priori) and iterates to find an optimal solution that balances the two by minimizing the 

cost function below: 

Φ = 𝑦 − 𝑓 𝑥, 𝑏 )𝑆+,- 𝑦 − 𝑓 𝑥, 𝑏 + 𝑥 − 𝑥/ )𝑆/,- 𝑥 − 𝑥/  

In this formulation y is the observation vector, x is the state vector, f is the forward model 

function, b represents all non-retrieved variables assumed in the forward model, xa is the a priori 

vector, and Sy and Sa are error covariance matrices for the observation and a priori vectors, 

respectively. The maximum probability solution of x given measurement y is found where the 

gradient of F with respect to x is zero. This methodology is predicated on Gaussian-distributed 

parameters and errors, and thus works best for moderately linear and Gaussian inversion 

problems (Rodgers 2000).  

The inversion is possible through Bayes’ Theorem (Bayes and Price 1763), which relates 

the conditional probability of a state A given B to the probabilities of A, B, and the conditional 

probability of B given A: 

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)  

In the language of probability distribution functions (PDFs), the inversion uses the measurement 

PDF to update the a priori PDF and calculate a posterior PDF. For the satellite retrieval problem, 

the inversion takes knowledge of the distribution of TBs and a parameter of interest, and their 

conditional probability, to determine the conditional PDF of that parameter from the TB vector 

observed. 
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1.2 Parallel advances in data assimilation 

In parallel to the development of retrieval algorithms, many advances in numerical 

weather prediction (NWP) have come from the use of satellite and other data to anchor the 

analysis state, the initialization upon which NWP models run (English et al. 2000). NWP has 

progressed steadily in concert with the rise in capability of global satellite observations, though 

certainly other advances have contributed to an increase in global NWP skill (Bauer et al. 2015). 

These advances mirror the retrieval problem. The process of establishing an initial state for the 

model requires the assimilation of staggering amounts of data, now an established subfield 

known as data assimilation (DA). Not only are the bulk of these data from satellite platforms, but 

DA relies on the same mathematical framework as an atmospheric profile retrieval.  

Both problems involve prior knowledge and observations, each with their own errors, 

through which an optimal estimate of the current state should be possible. The only real 

differences are the number of dimensions at play and the origin of the a priori state. Retrievals 

that employ variational techniques are usually still one-dimensional (1DVAR), whereas 

variational DA systems take all three spatial dimensions into account (3DVAR) and may even 

include so-called flow-dependence by also accounting for variations in time (4DVAR). 

Throughout this document, variational techniques and optimal estimation are terms used 

interchangeably.  

Since the early 1990s, the data volume of satellite radiances ingested into operational DA 

systems for NWP initialization has increased by orders of magnitude (e.g. Reinecker et al. 2011). 

Passive microwave radiances have constituted a large fraction of the satellite data assimilated 

(Andersson et al. 1994). However, despite movement towards hyperspectral sensors, especially 

for infrared sensors, relatively few microwave frequencies are actually assimilated by operational 
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NWP centers (Geer et al. 2010, Lean et al. 2017). The examples cited are from the European 

Centre for Medium-range Weather Forecasting (ECMWF) and represent the cutting edge; 

American NWP centers assimilate fewer frequencies from microwave sensors, for example. 

Furthermore, in areas of cloud or precipitation—known as ‘all-sky’ to differentiate from clear-

sky conditions—some of the frequencies that are assimilated use assumed errors so large that a 

lot of the information content is lost (Geer and Bauer 2011).  

The main reason for not using available satellite data is that these unassimilated 

frequencies cannot be characterized well enough to have a positive impact on the assimilation. 

Put another way, the models cannot simulate certain microwave frequencies with enough fidelity 

to reliably add information to the analysis state. Assigning large error variances for some 

channels is a workaround method (Geer et al. 2010, Kazumori et al. 2015, Lean et al. 2017) but 

this greatly degrades the weight placed on the observations. Discarding these data or assuming 

very large errors is due to two factors: a lack of physical understanding to underpin the radiative 

transfer modeling, and an inability of the model to represent everything affecting the radiances. 

 

1.3  Retrieval errors  

In contrast to the DA community, the retrieval community has had the opposite 

problem—over-fitting to the observed radiances. This has happened for simple reasons. NWP 

models are penalized for adding bad information as that decreases forecast skill. Conversely, 

retrievals are judged on their ability to yield an answer but are not often penalized for a lack of 

error estimates for a given result, and so tend to use as much information as may be useful.  

Most retrieval algorithms either assume no observation error or uncorrelated errors that 

are simply sensor noise values. Typically, regressions and semi-physically based algorithms 
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neglect observation error entirely (Alishouse et al. 1990, Aonashi et al. 2009, Comiso et al. 2003, 

Greenwald et al. 1993, Wentz 1997) while variational algorithms often assume uncorrelated 

sensor noise to be the only observation error because no better estimate is available (Deblonde 

and English 2003, Liu and Weng 2005, Boukabara et al. 2011, Munchak et al. 2016). Notable 

exceptions exist, such as the WindSat retrieval which included correlated errors (Bettenhausen et 

al. 2006), or Elsaesser and Kummerow (2008) which attempted to quantify observation error 

variances that were caused by forward model parameter error.  

In theory, the addition of information will always improve a retrieval, but only if the 

errors of the measurements are fully understood. Running a radiative transfer model that has 

inherent errors, without quantifying those errors, will necessarily mean that the result is an over-

fit to the observations. For example, consider a static bias for one channel, such as an emissivity 

model bias that causes simulated TB to be too large for one polarization. Such a bias could cause 

high biases in retrieved wind speed and cloud water over ocean if unaccounted for. In fact, it’s 

possible that the retrieval would fare better if run without that channel, depending on the severity 

of the bias. In contrast, if one channel was known to have large emissivity model errors, its 

inclusion would still add information and stability to a variational retrieval if the error is properly 

quantified. Even a sophisticated OE retrieval such as that described by Munchak et al. (2016) 

implicitly assumes a perfect forward model if it assumes uncorrelated sensor noise as the 

observation error and will thus over-fit to the observed radiances. 

One of the goals of this document is to argue that proper treatment of observation 

errors—and their covariances—is not trivial and does in fact lead to better retrievals. This is 

touched on in Sections 2.5, 3.6, and 4.7. Representation of observation errors is necessary to 

maximize the information content of observations that is used, in essence getting the most out of 
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the past and present global observing system. The DA community is beginning to realize the 

importance of treating correlated errors as such (Weston et al. 2014), but treatment of correlated 

observation errors is still largely an area of research. It is similar in the retrieval community, 

where observation errors are often an afterthought if they are considered at all. 

 

1.4 Information content limitations 

 One diagnostic from the variational framework is the averaging kernel, or A-

matrix,essentially the retrieval’s sensitivity to the true state (Rodgers 2000). This diagnostic 

sheds light on the information content available to the retrieval. The trace of this matrix 

represents the degrees of freedom for signal (DFS), a value that conveys the number of 

parameters that can be effectively retrieved. The non-raining retrieval described in Chapter 2 

exhibits 3.5 to 5 DFS, depending mostly on the region and type of scene; the raining retrieval 

described in Chapter 3 exhibits around 3 to 4 DFS for raining pixels. With the caveat that DFS is 

dependent on the forward model, this is a sobering result—it dictates limits to the independent 

pieces of information that can be theoretically retrieved by a microwave imager with a channel 

complement typical of current sensors. 

 The retrieval paradigm for microwave imagers is thus a balancing act between variables 

for which there is signal and variables that impact radiances but cannot be accurately retrieved. 

This engenders a need to decrease the dimensionality of the retrieval problem. Though intelligent 

use of ancillary data can ameliorate this problem to some degree, it does not solve it. Principal 

component analysis can aid in this regard, such as collapsing profile variability to a few 

dimensions. This technique is common in the literature (e.g. Boukabara et al. 2011, Munchak et 

al. 2016) and leveraged in Chapters 2 and 3.  
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 Retrieval of non-raining parameters over ocean, the focus of Chapter 2, is possible with a 

microwave imager channel complement and moderate use of ancillary data. Treatment of a 

priori and observation error covariances is shown to improve retrieval accuracy relative to earlier 

work in the literature (Wentz 1997, Elsaesser and Kummerow 2008), for which so-called 

‘crosstalk’ issues are known to plague downstream data products (Seethala and Horvath 2010, 

Lebsock and Su 2014, Elsaesser et al. in review). In short, the microwave imager retrieval 

problem is tractable over ocean in non-scattering conditions, and a variational retrieval can 

perform well if adequately constrained. 

 With regard to retrieval of precipitation, the limits of information content from typical 

microwave imagers are well known. For example, Petty and Li (2013) collapsed a nine channel 

imager to three ‘pseduochannels’ for precipitation retrieval, implicitly recognizing that there are 

around 3 DFS available. Perhaps the most widely used passive precipitation retrieval, the 

Goddard Profiling algorithm (GPROF; Kummerow et al. 2015), is predicated upon the concept 

of limited information content. Instead of explicitly modeling the radiances to find the maximum 

probability solution, GPROF calculates a Bayesian average precipitation rate because of the 

multiplicity of solutions that can be contained within the sensor noise bounds of an imager’s TB 

vector. This is encapsulated in the first figure from Kummerow et al. (2011), reproduced here as 

Fig. 1.1, showing hydrometeor profiles that exhibit nearly identical top of atmosphere radiances 

but have different surface rain rates.   

The problem of precipitation retrieval from passive microwave sensors is therefore 

underconstrained (Stephens and Kummerow 2007) and can even be described as “notoriously ill-

constrained” (Boukabara et al. 2011). In most cases there are more parameters of interest than 
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DFS with which to retrieve them—a contrast to the non-scattering oceanic scenes mentioned 

above. Reasons for this are discussed in Chapter 3.  

 

 

Figure 1.1 Simulated hydrometeor profiles from a cloud-resolving model with similar radiances at typical 
microwave imager frequencies but different surface rain rates. Reproduced from Kummerow et al. (2011). 

 

The underconstrained nature of the problem is a great challenge for a variational retrieval, 

and indeed only warm rain retrieval is attempted in this work. However, there is motivation to 

attack this problem despite its inherent difficulty. Active sensors are limited in their 

spatiotemporal sampling, much more so than the constellation of passive sensors currently 

available. In addition, active sensors are blind in the lowest altitudes of the troposphere and have 

minimum detectable signals that may miss a significant percentage of precipitation in some 

regions. Especially at high latitudes where light but frequent precipitation dominates, improved 

passive retrievals could be complementary to current efforts that disagree on the magnitude of 

precipitation (Behrangi et al. 2016). As discussed above, variational retrievals that accurately 

account for observation errors maximize the available information content, and thus a variational 

retrieval could theoretically outperform GPROF or other algorithms in this area. 
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1.5 Beyond non-scattering ocean scenes 

 From the early days of microwave remote sensing, sensing of the ocean was recognized 

as a strength (Wilheit 1977). The ocean is radiometrically cold and polarizing, which contrasts 

well with warm hydrometeor emission signals in the atmosphere. Emissivity models for open 

ocean are quite advanced, able to characterize the ocean’s radiometric properties with high 

accuracy from the inputs of temperature, salinity, wind speed, and wind direction (Meissner and 

Wentz 2012, Kazumori and English 2015). While not without errors, modeled emissivities over a 

pure ocean surface are multiple times more accurate than modeled ice, coast, or land surface 

emissivities (Ferraro et al. 2013), though emissivities can also be retrieved with some degree of 

skill (Boukabara et al. 2011, Lee and Sohn 2015). 

 The challenge of modeling sea ice, coast, and land surface emissivities, combined with 

their radiometrically warmer surfaces, are the cause for limited development of variational 

algorithms over non-ocean surfaces (Ferraro et al. 2013). Historically, this caused the different 

retrieval communities to run wholly separate algorithms despite their inherent interdependencies 

on other radiometrically significant species. This separation is discussed and examined in 

Chapter 4. While the work presented in Chapter 4 stops short of a global variational retrieval, 

something already extant (Boukabara et al. 2011), it argues for a more holistic approach to 

microwave imager data in the retrieval community. 

 Chapter 4 investigates a few limits of a variational retrieval over ocean and how it can 

complement other types of retrievals. For instance, sea ice monitoring has long been recognized 

as a strength of passive microwave observations (Wilheit 1977, Comiso and Nishio 2008). The 

emission signal of sea ice is stark against that of the relatively cold and polarized signal from the 

ocean surface, making its identification particularly easy. However, the large footprint of passive 
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microwave sensors and the complex nature of the sea ice edge make marginal ice detection a 

compelling problem—a problem that traditional sea ice algorithms are not suited to study. Such 

research applications are ideal for a variational algorithm to explore, as its higher effective signal 

to noise ratio (SNR) can shed light on complex scenes that are otherwise ignored. 

 Similar to the sea ice retrieval problem, precipitation retrieval can theoretically be 

improved with a variational framework to maximize the available information content. However, 

as with sea ice, there are forward model limitations that have guided algorithm development in 

the past to simpler solutions (e.g. Kummerow et al. 1996, Wentz and Spencer 1998). For sea ice, 

this is driven by the high variability in sea ice emissivity due to snow, ice age, melt ponds, and 

other factors. For precipitation, the high variability in hydrometeors, their radiometric 

characteristics, and largely unknown size distributions have driven algorithm development. The 

drop size distribution (DSD) has a large impact on the resultant rain rate (Comstock et al. 2004) 

though solving for the shape of this distribution typically requires dual-polarization radar (Bringi 

et al. 2003) or a combined radar and radiometer approach (e.g. Munchak and Kummerow 2011). 

From Lebsock and L’Ecuyer (2011): “By far the most troubling assumption that must be made in 

any... algorithm is that of the rain DSD.”  

 The assumption of a rain DSD is so troubling because it impacts the surface rain rate 

estimates but is not well constrained by typical space-borne measurements. This is especially 

true for passive-only retrievals, and is one possible reason why previous passive microwave 

precipitation algorithms forwent explicit forward modeling of rain. Chapter 3 examines the 

forward model errors engendered by DSD assumptions for a passive-only retrieval of warm rain 

without explicitly solving for the DSD itself. 
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 Lastly, the retrieval of falling snow is briefly examined in Chapter 4, comparing GPROF 

with the non-scattering variational algorithm of Chapter 2. This is not examined in much depth 

as the viability of this problem has been investigated elsewhere (Kulie et al. 2010, Skofronick-

Jackson et al. 2013). The scattering properties of snowfall and mixed phase hydrometeors are 

highly variable, making their retrieval from a passive-only sensor very challenging. This 

particular retrieval problem is near or beyond the limit of what is reasonably retrievable from a 

passive microwave imager, a theme which is explored in one way or another throughout this 

document. 

 Note that Chapter 2 was previously published in a lightly modified form in the Journal of 

Geophysical Research: Atmospheres in June 2016 as Duncan and Kummerow (2016), while a 

lightly modified form of Chapter 4 is currently in review with the IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing.  
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CHAPTER 2 
 
 
 

A 1DVAR RETRIEVAL APPLIED TO GMI:  
 

ALGORITHM DESCRIPTION, VALIDATION, AND SENSITIVITIES 1 
 
 
 

2.1  Introduction 

The coordination of satellite sensors that make up the Global Precipitation Measurement 

(GPM; Hou et al. 2014) constellation represents an unprecedented step forward in the capability 

of the Earth observing system, providing a powerful tool for studying the global hydrologic cycle. 

The GPM Microwave Imager (GMI) on the GPM core satellite is the anchor of this constellation, 

a multispectral passive sensor to which all other constellation members are intercalibrated.  

Precipitation is not, however, the only aspect of the Earth’s hydrologic cycle for which 

GPM can improve our knowledge. GMI also presents an opportunity for development of next 

generation retrievals of so-called ‘non-raining parameters’ because of its channel suite. Previous 

retrievals of oceanic winds, cloud liquid water path (CLWP), and total precipitable water (TPW) 

have typically focused on 5- or 7-channel algorithms (e.g. Wilheit and Chang, 1980; Wentz, 

1997; Kazumori et al., 2012), largely due to the residual influence of the seminal Special Sensor 

Microwave/Imager (SSM/I) series of sensors that spans from the late 1980s through 2016.  

Careful analyses of patterns and trends in global oceanic winds, clouds, and water vapor are of 

great importance for observational climate data records and climate model evaluation (Parkinson, 

2003; Trenberth et al., 2005; Wentz et al., 2007; Hartmann et al., 2013; Manaster et al., 2017).  

An holistic understanding of the Earth’s hydrologic cycle, and how it is changing, demand

1. Previously published in modified form as Duncan and Kummerow (2016)	
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accurate knowledge of water in both liquid and vapor forms over the global ocean; microwave 

imagers are unique in the global observing system in that they can provide near-global coverage 

of these parameters on a daily basis, resolve features that global models currently cannot, and 

retrieve in cloud. Water vapor is the most powerful greenhouse gas and is expected to increase 

with global temperatures (O’Gorman and Muller, 2010), though separating the signal from the 

noise is difficult in the observational record (Sherwood et al., 2010). Similarly, feedbacks 

associated with clouds are still the biggest uncertainty in model projections of future climate 

(Boucher et al., 2013), with cloud water and ice content difficult to determine globally from 

observations (O’Dell et al., 2008; Eliasson et al., 2013).  

While satellites provide the best platform for global analysis of the hydrologic cycle, 

these observations are not without drawbacks. Satellites’ orbits can drift over time, sensors 

degrade, and while the GPM constellation is intercalibrated via methods of relative calibration, 

the absolute calibration of radiometers is an ongoing topic of research. Radiometric observations 

carry inherent uncertainty due to limitations of the sensors themselves, which translates into 

uncertainty in retrieved geophysical parameters. In addition, microwave imager retrievals are 

typically ‘under-constrained,’ in that the information content of the radiometric observations 

alone is insufficient to retrieve a unique solution for all parameters that affect the measurements 

(Stephens and Kummerow, 2007). Some amount of ancillary data is thus required to constrain 

the retrieval, but should be chosen with care so as not to bias the final answer. 

The oceanic parameters of TPW, 10m wind speed, and CLWP are termed ‘non-raining’ 

because, historically, microwave radiative transfer models can quickly and fairly accurately 

model radiances in an absorbing/emitting atmosphere, but the scattering of microwave radiation 

by precipitation is more difficult and remains an ongoing problem (Weng, 2007). In fact, most 
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satellite observations in areas of precipitation, and indeed cloud, are not assimilated into global 

weather models and constitute an active area of research (Bauer et al., 2006; Bennartz and 

Greenwald, 2011). The non-raining parameters are thus geophysical variables retrievable from a 

passive microwave platform in clear-sky or cloudy conditions, but not in precipitating or 

scattering conditions; to retrieve in raining conditions, assumptions have to be made about 

partitioning cloud water and rainwater, as in Hilburn and Wentz (2008), and the radiative transfer 

is more complicated. 

Ability to retrieve the non-raining parameters from passive microwave radiances derives 

from the emission/absorption characteristics of water vapor and liquid water at microwave 

frequencies and the effect of wind speed on the emissivity of the ocean. To first order, the 

emission of the ocean surface at microwave frequencies is dependent on wind speed and 

temperature alone; other factors like ocean salinity and wind direction are second-order effects 

(Meissner and Wentz, 2002). By assuming a vertical profile of water vapor and cloud water, as 

well as a temperature profile, the atmosphere can be adequately modeled at microwave 

frequencies, and thus the non-raining parameters can be retrieved. Highly variable atmospheric 

constituents such as aerosols and ozone are ignored due to their small radiative impacts.  

Retrieval algorithms for microwave imagers have historically relied upon statistical 

methods (Wilheit and Chang, 1980; Alishouse et al., 1990), and semi-physical methods (Liu et 

al., 1992; Greenwald et al., 1993; Wentz, 1997) to determine some or all of the non-raining 

parameters over ocean. Though empirical and semi-physical methods are still widely used, 

retrieval algorithms have generally moved towards simultaneous retrieval of all non-raining 

parameters. In addition to increased computational power, this is due to the interdependence of 

microwave frequencies on surface emissivity and emission from both water vapor and cloud 
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water, and is thus the best way to ensure that the resultant output is consistent with the observed 

radiances. Elsaesser and Kummerow (2008), hereinafter EK08, utilized the mathematical 

framework outlined in Rodgers (2000) to iteratively solve for all parameters simultaneously, and 

it is this approach that is built upon here. 

In the last decade or more, efforts have moved from sensor-specific approaches to an 

emphasis on intercalibration and algorithms that can provide consistent time series of 

geophysical constituents from multiple satellite sensors (Berg et al., 2013; Robertson et al., 2014; 

Hou et al., 2014). The approach detailed here follows previous studies that iteratively solve for 

geophysical parameters by forward modeling the atmosphere and finding a solution that closely 

matches observed radiances, balancing observations with prior knowledge of the state vector 

(Deblonde and English, 2003; Bettenhausen et al., 2006; EK08; Boukabara et al., 2011; 

Munchak et al., 2016).  

The 1D variational (1DVAR) approach is generalizable to other sensors due to its fully 

physical forward model. The process of forward modeling and iterating to find a solution that 

minimizes differences between observed and simulated radiances, while taking prior information 

into account, adds constraints to the under-constrained problem. The forward model must contain 

all atmospheric components to which the radiances are significantly sensitive and simulate the 

atmospheric profile of absorbing/emitting constituents with enough fidelity to satisfy the 

weighting functions of all channels. Any combination of channels may be used in the iteration, 

the radiative transfer and emissivity models may be swapped, and prior information can be 

weighted heavily or not at all, lending the approach great flexibility. 

Alongside increasing complexity in retrieval algorithms, passive microwave instruments 

are increasingly multispectral, with frequencies for both sounding and imaging capabilities. The 



	

 17	

channel suite of GMI provides sensitivity to mid-tropospheric water vapor via high frequency 

channels near the strong water vapor absorption line at 183.31GHz, as well as sensitivity to 

cloud water and the ocean surface from low frequency channels. GMI builds upon the success of 

previous imagers such as the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), which had 

channels from 6.9 GHz through 89 GHz. Since the channels available on GMI are common to 

many other imagers currently in use, such as AMSR2 or SSMIS, the CSU 1DVAR is easily 

adaptable to other sensors. 

The remainder of this paper is organized as follows. Section two lists the data sources 

employed for algorithm development and validation; section three gives a brief overview of 

1DVAR theory, details the CSU 1DVAR’s forward model, and describes calculation of the 

covariance matrices; section four contains results and validation against independent datasets; 

section five discusses sensitivities of the algorithm; and section six contains discussion and some 

conclusions. 

 

2.2  Data sources 

The GMI sensor aboard the GPM satellite is a passive microwave radiometer with 13 

channels of vertical and horizontal polarization between 10.65 GHz and 183±7 GHz (see Table 

2.1), with spatial resolution on the Earth’s surface ranging from 25 km at 10 GHz to 6 km at 183 

GHz (Draper et al., 2015). The GPM satellite was launched on February 27, 2014 into a non-sun-

synchronous orbit at an inclination of 65° and at a nominal altitude of 407 km, giving GMI an 

effective latitudinal range of 68°N-68°S due to its swath width of 885 km. GMI is a conically 
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scanning radiometer, viewing Earth at an average angle of 52.8° for frequencies 10.65 GHz to 

89.0 GHz and 49.1° for higher frequency channels.  

 

Table 2.1. GPM Microwave Imager (GMI) sensor specifications. 
 

Frequency (GHz) 10.65 18.70 23.8 36.5 89.0 166.0 183.31±3 183.31±7 

Polarization V, H V, H V V, H V, H V, H V V 

NEDT (K) 0.78 0.63 0.51 0.42 0.32 0.70 0.56 0.47 
Nominal Earth 

Incidence Angle 52.8° 49.1° 

 
  

The brightness temperature (TB) dataset used in this study is the Level 1C-R version 4 

product (GPM Science Team, 2016). This dataset co-locates the center of each channel’s field of 

view (FOV) and is calibrated according to the guidance of the GPM working group on 

intercalibration. Only pixels that have the highest quality flag, i.e. those determined to be free of 

radio frequency interference (RFI), with good geolocation data, and no sun glint or warm load 

intrusion, are used in the retrieval. 

 European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis, 

ERA-Interim (Dee et al., 2011), data are used to construct a priori matrices, to determine channel 

error and covariance values, and as the prior. These are analyses from the 6-hourly, N128 (about 

78km at the Equator) resolution global product, subset in the vertical dimension to match the 

forward model of the retrieval. The Modern-Era Retrospective Analysis for Research and 

Applications, MERRA (Rienecker et al., 2011), was also used to test sensitivity to the prior, and 

is interpolated to the same grid as ERA-Interim for consistency. For sea surface temperatures 

(SST), the retrieval reads in the Optimally Interpolated SST product described in Reynolds et al. 
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(2007), also known as OISST; this is done to avoid potential contamination of SST data with 

other microwave retrievals.  

Validation is based on analysis of matchups between GMI overpasses coincident with a 

few data sources. International Comprehensive Ocean-Atmosphere Data Set, ICOADS 

(Woodruff et al., 2011), Release 2.5 buoys are used for validation of wind speeds. Radiosonde 

observations are used for validation of retrieved TPW. The Remote Sensing Systems (RSS) GMI 

v8.1 product is used for comparison purposes (Hilburn and Wentz, 2008). 

 

2.3  Methods 

 2.3.1  1DVAR 

 At the heart of the retrieval is the mathematical framework known as a one-dimensional 

variational (1DVAR) technique, also known as optimal estimation. While the mathematics of 

this technique is described in detail in numerous places (Rodgers, 2000; Bettenhausen et al., 

2006; EK08; Boukabara et al., 2011), it is critical to the retrieval and thus warrants a quick 

overview.   

 1DVAR is a matrix-based inverse method predicated upon Bayes’ Theorem. It blends 

observations, prior environmental knowledge, and knowledge of the errors in both to invert the 

measurement vector y to determine the state vector x. In this case, y is a vector of brightness 

temperatures from GMI and x is a vector that includes CLWP, wind speed, and atmospheric 

water vapor. The measurements are related to the geophysical state by a forward model, f(x,b), 

that is dependent upon elements in the state vector and also assumed geophysical properties, b. 

In this case, the forward model is described in Section 2.3.2 and b constitutes the atmospheric 

temperature profile, wind direction, surface salinity, and everything else not solved for explicitly.  
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The covariances in the measurement vector are described by matrix Sy, and covariances 

in the a priori vector, xa, that describe prior knowledge of the state vector is given by matrix Sa. 

The inversion is solved iteratively via Newton’s method by assuming Gaussian-distributed errors 

and a moderately linear response of the measurements to changes in the state vector (Rodgers 

2000). To solve the inverse problem, we minimize a cost function that weights both 

measurements and prior knowledge in accordance with their uncertainties: 

Φ = (x-xa)TSa
-1(x-xa) + [y-f(x,b)]TSy

-1[y-f(x,b)].   (Eq. 2.1) 

The minimum gradient of Φ with respect to x describes the maximum probability solution of x 

given measurement y. This formalism produces a posterior probability density function (PDF) of 

the retrieved state, described by  

Sx = (KTSy
-1K + Sa

-1)-1   (Eq. 2.2) 

where K is the weighting function matrix or Jacobian that describes the first derivative of each 

forward modeled element to changes in the state vector. Elements of the Sx matrix describe the 

estimated variances and covariances of errors for retrieved parameters.  

 Convergence is defined by a minimized cost function and simulated TBs that change very 

little between iterations, given as equation 5.33 in Rodgers (2000). Convergence is typically 

reached in two iterations for clear-sky scenes and 3-5 iterations for cloudy scenes. A normalized 

chi-squared metric is used to examine quality of convergence, 

χ2 = [y-f(x,b)]TSy
-1[y-f(x,b)] / Nchan   (Eq. 2.3) 

where Nchan is the number of satellite channels used. The χ2 cost function referred to throughout 

the paper is thus the part of F that signals the fit to the observations and is independent of the 

prior. χ2 is normalized by Nchan to allow greater adaptability to other sensors and channel 

combinations.  
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2.3.2  Forward model 

 The forward model employs the Community Radiative Transfer Model, CRTM (Liu and 

Weng 2013), to compute simulated radiances at the GMI frequencies. Surface emissivities come 

from the FASTEM6 ocean surface emissivity model (Kazumori and English, 2015). The CSU 

1DVAR version described here uses CRTM Release 2.2.3. The forward model has 16 vertical 

layers in pressure, from 100hPa to the surface. The lowest layer’s depth varies in accordance 

with sea level pressure from the analysis data, while the other layers are static.  

 The EOF-based approach of retrieving the water vapor profile is a compromise between 

allowing the channels’ weighting functions to guide the retrieved distribution of water vapor and 

requiring prior information to make the problem viable. This is a common method to reduce 

dimensionality in 1DVAR retrievals (Boukabara et al., 2011; Munchak et al., 2016). To guide 

the retrieval, the a priori profiles are subset by SST. The EOFs are defined as variations around a 

mean profile, calculated offline from ERA-Interim data. The 1DVAR process solves for the 

coefficient of each EOF, which may be positive or negative, yielding a profile that best matches 

the TB vector, 

WVret = WVSST + c1*EOFSST,1 + c2*EOFSST,2 + c3*EOFSST,3. 

An advantage of EOFs is no covariance between the principal components, by definition, setting 

off-diagonal elements of the Sa matrix to zero. According to analysis of ERA-Interim data, the 

first three EOFs of water vapor mixing ratio account for 90-98% of the total variability, 

depending on the SST regime. The number of EOFs employed could be increased or decreased 

for different channel combinations, but for GMI using three EOFs is optimal.  

Both wind direction and the atmospheric temperature profile are taken from ERA-Interim. 

Wind direction has a small but significant effect on TBs that increases with wind speed and 



	

 22	

depends on frequency. Instead of solving for wind direction, which has a weak radiometric signal 

(Wentz, 1992), wind direction is taken from ERA-Interim. Its inclusion removes cross-scan 

artifacts that are present if a static wind direction is assumed. The channel suite of GMI does not 

contain any temperature sounding channels, and therefore the temperature profile is also taken 

from the model. The CSU 1DVAR can be run without this model guidance, but assumed channel 

errors need to be increased if using a climatological lapse rate. Sea surface salinity is taken from 

monthly climatologies derived from Aquarius mission data (Le Vine et al., 2015). 

Other assumptions in the forward model include a fixed cloud layer, no scattering due to 

clouds or aerosols, a fixed cloud drop size distribution, and a plane-parallel atmosphere. The 

significance of the plane-parallel assumption is not assessed here but has been explored 

elsewhere (Rapp et al., 2009; Bennartz and Greenwald, 2011); FOV inhomogeneity is a source 

of retrieval error for TBs that have not been convolved to a common resolution. This is 

potentially a significant source of error for broken cloud fields in particular, given the size 

differential between 36 GHz and 166 GHz FOVs, for example. Placement of the cloud layer has 

little impact on the retrieval due to the increasing emissivity of cloud drops with decreasing 

temperature (Mätzler et al., 2010), causing the effective emission to be somewhat independent of 

cloud height but tied strongly to the total amount of liquid water in the column. Pixels for which 

the non-scattering assumption is invalid typically lead to non-convergence and often signal areas 

of precipitation, explored in Section 2.4. If the cloud is non-precipitating, due to cloud drops 

being in the Rayleigh regime for microwave frequencies, emission is proportional to column 

liquid water mass (Bennartz, 2007), and thus the droplet size assumption is not significant.  
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 2.3.3  Determination of Sy and Sa 

 The matrices Sa and Sy especially have a large impact on the 1DVAR retrieval. Sa 

represents the best estimate of prior knowledge of the state vector, and can thus come from a 

variety of sources. For example, Boukabara et al. (2011) use output from various global and 

mesoscale models, whereas EK08 defines global variances of each retrieved parameter from 

climatology and assumes zero covariances for all. Determination of Sy is much more nuanced.  

Elements of Sy essentially inform the algorithm how much weight each channel should be 

given in the inversion. This includes sensor noise, forward model parameter error, and the error 

introduced by the forward model. In EK08 this was estimated in a piecewise manner, adding 

sensor noise (noise-equivalent differential temperature, NEDT) to estimates of channel 

sensitivity taken from perturbations to parts of the forward model. In contrast, Boukabara et al. 

(2011) model radiances through ECMWF model output and then scale the resultant uncertainties 

by uncertainties in the geophysical input values themselves. This also serves as a method of bias 

correction, essentially forcing the radiances to match the model, a method common in satellite 

data assimilation (Liu and Boukabara, 2014), though variational methods are now common for 

bias correction in data assimilation as well (Auligne et al., 2007). 

 In this study, Sa is largely determined via analysis of 6-hourly ERA-Interim data. For 

wind speed, climatological maps of standard deviations yield location- and month-dependent 

values. These values are calculated at the N128 model grid resolution and then interpolated and 

smoothed to produce a high-resolution global grid. In contrast, the EOFs of water vapor are 

allowed to move more freely, constrained weakly by the variability observed in the reanalysis 

data, but subset only by SST so as not to alias any regional biases of the model into the retrieval. 

Each EOF coefficient has maximum and minimum values so as to limit unphysical behavior. 
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For liquid water there is less constraint, with the prior and variance globally defined in 

logarithm space; this permits the retrieval to solve for a multitude of clear-sky scenes without 

biasing against high CLWP regimes, as the global distribution of CLWP is far from Gaussian but 

is more so in logarithm space. The relatively strong radiometric signal of liquid water thus guides 

the inversion instead of prior information, with no reliance upon model data. Winds and water 

vapor, in contrast, have subtler radiometric signals and therefore benefit from greater constraint. 

The only off-diagonal elements of Sa that are significant, and thus taken into account, are 

covariances between CLWP and the EOFs of water vapor, which come from the reanalysis. The 

results are fairly insensitive to whether xa comes from a model or climatology, but assumed 

errors need to be increased if using climatology and the results are noisier. 

 Calculation of Sy is more complex. First, TBs are forward modeled using ERA-Interim 

data at their native vertical resolution, 37 pressure levels, including ice and water clouds as well 

as scattering in the radiative transfer. This is then compared to simulated radiances, again from 

ERA-Interim, but using the simplified forward model of the retrieval—16 vertical pressure levels, 

the EOF-based water vapor profile described in Section 2.3.2, a fixed cloud layer, and no cloud 

ice. To account for forward model parameter error—the uncertainty of prescribed elements (b) in 

the forward model—noise is added to the parameters of SST, salinity, wind direction, and the 

temperature profile when running the simplified forward model. Specifically, the uncertainties 

are taken to be 0.62K for SST, 0.5psu for salinity, 20 degrees for wind direction, and 2K for 

temperature. Around a hundred million points are forward modeled using both sets of 

assumptions to get a large statistical sample.  

The difference in TB, simulated versus simulated, is then a synthetic dataset that speaks to 

forward model error, including forward model parameter error, in an imperfect but tractable way. 
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This method attempts to account for the largest forward model error sources; however, some 

error sources, such as absorption model or FOV inhomogeneity errors, cannot readily be 

quantified. After careful screening for bad matchups and contamination from precipitation or sea 

ice, the covariances of these simulated versus simulated TB differences yield an estimate of the 

forward model errors. This approach also yields forward model biases, typically on order ~0.1K 

for low frequencies and 1-4K for the 183 GHz channels, which are applied to the observed TBs 

prior to processing.  

In order to account for emissivity model errors, a separate analysis compared the TB 

response of FASTEM6 at GMI frequencies against another state-of-the-art emissivity model, 

Meissner and Wentz (2012). Covariances of the difference between the two models are taken as 

a proxy for emissivity model uncertainty. These covariances are added to those from the 

previous analysis. Lastly, NEDT values from Draper et al. (2015) are added to the diagonal 

elements of Sy from the analysis to yield the channel error covariance matrix used in the 

algorithm, shown in Fig. 2.1.  

It should be stressed that small differences in Sy can cause large differences in the 

performance of the retrieval. Decreasing the diagonal elements by say 20% markedly decreases 

the number of pixels that reach convergence, whereas overestimating Sy will cause the retrieval 

to over-weight the prior. Typically, this sensitivity most affects convergence in cloudy scenes, 

consistent with Bormann et al. (2011), whereas convergence can occur in some clear-sky scenes 

when assuming that Sy is simply NEDT. The method described for calculating Sy yields channel 

errors and their covariances related to the forward model, but it does not take every possible 

error source into account and thus may need to be adjusted for different applications and 

especially for other sensors that may not be as well calibrated as GMI. As seen in Fig. 2.2, 



	

 26	

histograms of TB residuals (observed minus simulated TB) for each channel are largely Gaussian 

and exhibit maxima near zero.  

 

Figure 2.1 Channel error covariance matrix, given as the square root of the covariances so as to be in units of Kelvin. 
Negative covariances are shown as -1 times the square root of the absolute value of the covariance so as to aid 
interpretation. This represents the calculated forward model error plus the published NEDT values along the 

diagonal. 
 

 

Figure 2.2 Histograms of TB residuals (observed minus simulated TB) for 13 channels of GMI, comprised of all 
converged pixels over one month. Red signifies V polarization, blue H polarization. 
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2.4  Results 

 The results presented comprise almost two years of the CSU 1DVAR run for GMI, 

spanning March 2014 through January 2016. Fig. 2.3 gives an example of pixel-level data from 

an orbit on November 30th 2014, with retrieved variables, the χ2 cost function, a single channel 

TB residual, and rainfall data from the GMI 2A rainfall product (Kummerow et al., 2015).  

 

Figure 2.3 Panels of swath-level data for TPW, 10m-wind speed, CLWP, GMI 2A rain rate, 36.5H TB residual, and 
the normalized cost function. Black pixels indicate non-convergence. Overpass time is approximately 04Z on Nov. 

30th 2014, orbit granule 004286. 
 

This snapshot contains a few aspects of the retrieval worth highlighting. The range 

extends to high latitudes not observed from GPM’s predecessor TRMM, bringing thicker ice 

clouds more into play. This is possibly the cause of the small area of unsuccessful retrievals off 

the western coast of Alaska that the rain algorithm does not define as precipitating. Clear-sky 

regions have low χ2 values, 0.5 or less, whereas cloudy or high wind regions typically have 

higher χ2 values due to assumptions of the forward model being less valid or the emissivity 

model not being adequate at high wind speeds. The areas of precipitation off California cause 
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non-convergence and are set to missing. Broken cloud fields with light precipitation are a 

challenge for the algorithm, visible northwest of the main precipitation feature by California; 

here, χ2 is higher, CLWP is high but variable, and there is a tendency for the algorithm to trade 

TPW for CLWP in some cases (explored in Section 2.6). 

 

Figure 2.4 Panels showing ascending orbits for 1/21/2015 of TPW, 10m wind speed, CLWP, and TB residual for 
89H. Areas of no data, sea ice, and non-convergence are shown in black. Land is shown in grey. 
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To compute global grids from these data, all pixel-level data that meet the criteria for 

high quality retrievals are averaged on a quarter degree grid. Fig. 2.4 displays the ascending 

orbits from January 21st 2015, showing the non-raining parameters and the TB residual for one 

channel. The grid is limited to 70°N to 70°S due to GPM’s orbit. The low amount of cloud water 

in the Tropics is a consequence of the non-raining nature of the retrieval. The panel showing the 

TB residual for 89H shows fairly consistent agreement and a slight high bias in the forward 

model at this frequency. 

 Figs. 2.5 and 2.6 show validation against buoy and radiosonde observations, respectively. 

For buoys, matches are defined as lying within a space-time window of 30min and 10km. For the 

radiosonde matches, the space-time window is 120min and 50km to allow a larger number of 

matches, driven by the number of coastal radiosonde sites. Vaisala RS92 radiosondes are used 

exclusively, as they have been shown to have a near-zero bias and ≤0.9mm RMS error when 

compared to co-located GPS-based TPW observations (Yu et al., 2015). The matches discussed 

are also required to have a normalized cost function (χ2) of less than 1.0, signaling a high quality 

retrieval.  

Table 2.2 shows the mean bias and root mean squared error (RMSE) of all matches for 

both wind speed and TPW. The CSU 1DVAR is also directly compared to gridded RSS data, 

comparing very well especially for retrievals with low χ2. For the matchups shown here, the RSS 

RMSE values were found to be 2.46mm and 1.12m/s for TPW and wind speed, respectively. 

Interestingly, the difference between retrieval results and the validation data for both wind speed 

and TPW is highly correlated with the difference between RSS results and the validation 

(r≈0.85), true at individual sites and when considered altogether. Considering that the two 

retrievals use independent methodologies, this could be a consequence of the matchup criteria or 
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indicate systematic biases in the validation data, though sensor noise and undiagnosed RFI could 

be factors. 

 

Figure 2.5 Validation of winds against ICOADS buoys. The top panel gives bias relative to all the buoy 
observations at a particular site, and the bottom panel gives the RMS difference. Sites are shown only if they 

represent more than 10 matchups. 
 
 
 
 
Table 2.2 CSU 1DVAR output for GMI matched up with radiosondes and ocean buoys for validation. All matched 
pixels have χ2<1.0. Matchups are within space-time windows of 10km and 30min for buoys, 60km and 120min for 

radiosondes, spanning a twenty-two month period. 
 
 

 CSU 1DVAR CSU 1DVAR (Clear-sky) Prior (ERA-Interim) 
 Bias RMSE Bias RMSE Bias RMSE 

TPW [mm] +0.35 2.61 +0.29 2.75 -0.41 3.46 

# Matches 1730 1092 1730 

Wind [m s-1] +0.04 1.20 -0.14 1.09 -0.36 1.74 

# Matches 9408 5874 9408 
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Figure 2.6 Validation of columnar water vapor against radiosonde observations, limited to sites using Vaisala RS92 
radiosondes. Sites with 10 or more matches are shown. The top panel gives bias relative to all the observations at a 

particular site, and the bottom panel gives the RMS difference. 
 

 A few conclusions can be drawn from Figs. 2.5 and 2.6 regarding the retrieval skill for 

TPW and 10m wind speed at individual sites. This breakdown shows interesting patterns and 

some anomalous sites; many sites have near-zero biases, though some sites do stand out. For 

instance, the wind retrieval appears much worse at one station in the Gulf of Mexico than at two 

other adjacent sites; this buoy sits on a tight SST gradient caused by coastal upwelling and 

OISST errors could cause the bias in the retrieved winds. The TPW retrieval has trouble with a 

few sites in the Pacific warm pool, which may be caused by unscreened land contamination by 

small islands. Matchups less likely to have land influences tend to validate better.  
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 An advantage of the 1DVAR framework is the full description of retrieval errors it 

provides. To test the validity of these posterior errors, the retrieval error relative to the validation 

data is assessed against the posterior error values. Since posterior errors are defined as the ±1σ 

bounds, 68% of the validation data points should lie within the error bounds given by the 

retrieval. For wind speed and TPW the validation data are within the posterior error bounds 58% 

and 64% of the time, respectively. Given that the validation data and the spatiotemporal 

matchups are imperfect, this signals that the posterior errors typically do a good job of describing 

the retrieval’s errors. 

In contrast to TPW and wind speed, validation of CLWP is more problematic. 

Observations of cloud water content are almost exclusively from other satellite retrieval products, 

with scant field campaigns to provide robust validation (Turner et al., 2007). Thin and warm-

phase clouds are not modeled well (King et al., 2015) and remain a significant source of 

uncertainty in climate projections (Boucher et al., 2013). However, absolute validation for a 

global CLWP product is not currently feasible and is not the focus of this study. In-depth 

comparison studies of CLWP products can be found elsewhere, but can only address relative 

agreement instead of absolute accuracy. For these reasons the examination of CLWP here is 

limited to a comparison of retrieved CLWP against RSS, shown in Fig. 2.7. This was done using 

0.25° gridded data with raining areas (RSS rain rate >2 mm hr-1) screened out. RSS tends to 

underestimate CLWP on the high end due to that algorithm’s cloud/rain partitioning for 

CLWP>180 g m-2 (Hilburn and Wentz, 2008). The CSU 1DVAR is more likely to assign clear 

sky—defined here as CLWP<1 g m-2—than RSS and is biased lower in the range of 25 g m-2 

<CLWP<400 g m-2, also in line with the finding that RSS overestimates CLWP in almost every 

regime when compared to an independent satellite product (Seethala and Horvath, 2010). The 
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mean posterior error for CLWP is around 20 g m-2 for most regimes, so these differences with 

RSS are indeed significant. See Wentz (1997) for why RSS retrieves negative CLWP values.  

 
 

Figure 2.7 2D histogram of CLWP from the CSU 1DVAR applied to GMI and co-located points from RSS v8.1 
GMI gridded data. The solid line represents the one to one line while the dashed lines represent CLWP=0. 

 

Finally, as a validation of the non-raining aspect of the CSU 1DVAR, GMI footprints 

were matched to the GPM Dual-frequency Precipitation Radar, DPR (Hou et al., 2014) to assess 

the performance of the retrieval in light precipitation. Using an effective FOV equal to that of the 

23.8 GHz channel, Ku-only DPR data were averaged within each GMI footprint and compared 

over a month of retrievals. The results are shown in Fig. 2.8. At rain rates above 1 mm hr-1, a 

large majority of retrievals fail, a result expected due to the non-scattering assumption made in 

the forward model. However, the retrieval fails to converge for 1.9% of pixels for which DPR 

observed a rain rate of zero, and it is not until 0.4 mm hr-1 that more pixels fail to converge than 

succeed. This points to the CSU 1DVAR being fairly good at screening out precipitation even 
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though it may converge in very light rain rates. A full 86% of pixels with zero rain rate are 

considered high quality retrievals (χ2 <1.0), dropping to <60% for any nonzero rain rate, 

signifying that χ2 is indeed a good indicator of rain-free conditions, in agreement with EK08. The 

1.9% of non-raining pixels for which the retrieval fails may be scenes with significant cloud ice, 

sea ice within the FOV, unscreened RFI, or any number of things not fully represented in the 

forward model. 

 

Figure 2.8 Histogram from one month (November 2014), contrasting all pixels where convergence was achieved 
(green), not achieved (red), and high quality convergence was achieved (blue) against rain rates from DPR.  

 

2.5 Sensitivities 

 Representation of water vapor’s vertical distribution is one of the subtlest and most 

significant components of the algorithm. The physical reason for this is that signals from wind 

speed and cloud water may be somewhat aliased onto water vapor, whose emission signal may 
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weakly or strongly affect most of GMI’s 13 channels (explored in the following section). Other 

studies have assumed a static water vapor profile (EK08) and relied upon historical radiosonde 

data to inform a single layer atmosphere (Wentz, 1997; Hilburn and Wentz, 2008). Boukabara et 

al. (2011) solve for the whole profile by relying on model guidance and using a reduced 

parameter space by employing EOFs, not dissimilar from this approach. Given the information 

content of a microwave imager and specifically GMI with its water vapor sounding channels, the 

approach of solving for the moisture profile via EOFs is a compromise. Biases on synoptic scales 

driven by the distribution of water vapor in the column, say ahead of versus behind a frontal 

boundary, disappeared after moving to an EOF-based retrieval.  

 A goal of this study was to develop an algorithm that did not require fine-tuning of 

calibration to achieve good validation. Apart from accounting for biases directly attributable to 

the forward model (see Section 2.3.3), no offsets were applied to GMI L1CR TBs for processing, 

a calibration standard based on first principles only (Draper et al., 2015). Addressing the 

sensitivity of the CSU 1DVAR to various calibration changes would necessitate a separate study. 

Crucially, if the calibration is significantly off or the forward model is not adequate at simulating 

the atmosphere and ocean surface, convergence will not be consistently achieved.  

 Development and processing of the CSU 1DVAR relies on ERA-Interim, though any 

global analysis could be used. To test the sensitivity of the retrieval to the prior, MERRA was 

used in place of ERA-Interim. This has a small effect, mainly impacting upper level water vapor 

while winds and CLWP are unaffected. The information content of GMI limits the effect of the 

prior on all but upper level moisture. This translates into a small mean decrease in TPW and a 

worse fit with the forward model for the 183±3 GHz channel, increasing the mean TB residual 

bias from -1.5 K to -2.3 K. We conclude that the CSU 1DVAR performs similarly with MERRA 
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as the prior, showing that the choice of global analysis has a small impact on the retrieval’s 

output.   

Retrieval of SST is also possible with the CSU 1DVAR. However, including SST as a 

variable within the forward model did not conclusively demonstrate skill when compared to 

using OISST. Smaller assumed errors for the 10 GHz channels and better prior information on 

SST covariances would potentially render retrieval of SST more skillful, but that has yet to be 

explored.  

 2.5.1  Diagonal Sy experiment 

 Most 1DVAR microwave retrievals employ diagonal Sy matrices, essentially assuming 

that there is no covariance of errors between the channels (EK08; Boukabara et al., 2011; 

Munchak et al., 2016); the Bettenhausen et al. (2006) retrieval for WindSat is a notable exception. 

While this is a fairly good assumption for instrument errors, it is not necessarily a good 

assumption when considering forward model errors. For instance, if the forward model 

inaccurately models the middle troposphere, errors at the 183 GHz channels will be slightly or 

even strongly correlated. Observation error covariances for hyperspectral infrared sounders have 

recently been included in data assimilation schemes and shown to improve forecast skill (Weston 

et al., 2014), but as yet microwave observations have been assumed to have no error covariance.  

An experiment was run using the same Sy matrix given in Fig. 2.1 but setting all off-

diagonal elements to zero. This caused slightly smaller mean TB residuals, smaller average χ2 

values, and a 6% increase in converged pixels. However, this experiment caused a wind speed 

bias of +0.25 m s-1 and a TPW bias of +0.13 mm when compared to the standard algorithm, with 

a small decrease in CLWP as well. The areas of most significant impact are high latitudes and 

high CLWP or wind speed regimes, where the diagonal Sy yields many more converged pixels 
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but decreased retrieval skill. This result indicates some utility in including observation error 

covariances, in some situations especially, but it does increase computational cost. This result is 

implicitly in line with findings in Bormann et al. (2011), in that forward model error exhibits 

greater covariance in cloudy scenes. 

 2.5.2  Decreased reliance on prior experiment 

 By increasing the assumed errors on the prior, the retrieval is forced to rely more on the 

observations, lending increased weight to the TBs and less weight to the prior. For this 

experiment Sa was quadrupled, effectively doubling the assumed standard deviation of each 

parameter. The retrieval required more iterations on average and converged for fewer pixels. For 

pixels where both the standard retrieval and this experiment converged, the standard retrieval had 

larger mean TB residuals and slightly larger χ2 values, an expected result given the greater weight 

on observations. Mean TPW was 0.13 mm higher while CLWP and winds were unchanged. This 

is an encouraging result, as it speaks to the CSU 1DVAR’s relative independence from model 

guidance and robustness with respect to assumptions of the prior, but also underlines how prior 

information helps guide the retrieval to convergence. 

 2.5.3  Nine channel experiment 

 This experiment limits the GMI channel suite to that of TMI. Running the CSU 1DVAR 

without the high frequency channels of GMI causes it to run faster but also incurs some loss of 

skill. Without the information content to resolve middle tropospheric water vapor, there is 

slightly less convergence while TPW is biased 0.32 mm higher and exhibits slightly less overall 

variability. There is some crosstalk present that causes CLWP to be 16% lower, though winds 

are unaffected in the mean. While these are generally small impacts, it both demonstrates the 
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utility of including the high frequency channels of GMI and reinforces that the 19-89 GHz 

channels contain the greatest information content (Fig. 2.9). This experiment indicates the 

adaptability of the CSU 1DVAR to other microwave imagers that lack high frequency channels 

(TMI, SSMI, AMSR2, etc.) while retaining most of the retrieval’s skill.  

 

2.6  Discussion 

 This paper describes a 1DVAR retrieval applied to GMI that shows significant skill in 

retrieving oceanic wind speeds and columnar water vapor in non-raining scenes. The fully 

physical forward model could be applied to any microwave sensor in the GPM constellation, 

utilizing any combination of channels. No calibration adjustments have been made to achieve the 

results presented; rather, the forward model adequately simulates the geophysical state within the 

error bounds prescribed by Sy to achieve good validation. The inclusion of observation error 

covariances has shown value in scenes where the forward model assumptions are less valid, such 

as scenes with thick cloud, strong winds, and at high latitudes. The CSU 1DVAR is 

demonstrably robust, as changes to the prior, channel suite, and weighting of prior knowledge 

have small effects on retrieved parameters.   

 A poorly understood source of error for microwave retrievals is crosstalk error—

misinterpretation of the radiometric signal causes an error in estimating one variable that can 

affect others (Lin and Rossow, 1994). Crosstalk errors tend to occur when the sensitivity of the 

channel suite is similar for multiple forward model parameters. For instance, Fig. 2.9 shows that 

while the sensitivity of wind in the forward model is largely independent, some EOFs of the 

water vapor profile may be confused with CLWP. The 1DVAR framework provides posterior 
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error estimates not only for individual parameters, but also their covariances, thus yielding a way 

to analyze crosstalk errors.  

 

Figure 2.9. Jacobians for two converged pixels. The top panel shows a tropical pixel (TPW=49 mm, wind=6.1 m s-1, 
CLWP=0 g m-2), while the bottom panel shows a mid-latitude pixel (TPW=26 mm, wind=12.4 m s-1, CLWP=180 g 
m-2). Sensitivities are given as dTB/dx, where x is the retrieved variable in its normal units, however the wind and 

CLWP values are scaled by 10 and 100, to units of K/(10 m s-1) and K/(100 g m-2), respectively, to aid comparison. 
The size of each dot is proportional to the relative sensitivity of each channel to retrieved variables, with the biggest 

dot in each column signifying that channel’s greatest sensitivity. 
 

For the two example pixels in Fig. 2.9, posterior error covariances for wind and each 

water vapor EOF are near zero, spanning -0.02 to 0.03 m s-1. For both example pixels, crosstalk 

errors between EOF coefficients are small, -0.03 to 0.07. The error covariance of CLWP with 

EOF2, however, is 74 g m-2 for the tropical pixel. The posterior error value given for EOF2, 0.32, 

translates into a large potential error in CLWP, dominating the relatively large posterior error 
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given for CLWP of 18 g m-2  even with a reasonable fit to observed radiances (χ2=0.76) and 

CLWP=0.0. This result is reinforced by analysis of the Jacobian, which shows similar TB 

sensitivities for EOF2 and CLWP. The mid-latitude pixel exhibits less crosstalk and 

consequently a smaller posterior error in CLWP of 15 g m-2, in spite of the significant 184 g m-2  

of cloud water retrieved. We conclude that crosstalk errors are most prevalent between CLWP 

and water vapor, especially in high TPW regimes. Crosstalk errors vary greatly depending on 

regime, and the 1DVAR framework proves useful in their identification; amelioration of 

crosstalk errors should be possible via better representation of a priori error covariances in Sa. 

Dynamic treatment of the vertical distribution of water vapor in the atmospheric column 

is an important aspect of the retrieval. EOF analysis is leveraged to make the problem viable, 

with at most three degrees of freedom from the observations versus 16 vertical levels in the 

forward model. Thus, while total column water vapor is well validated, the vertical structure of 

water vapor from the retrieval is far too coarse to be of use for research purposes. It is reliant 

upon the variability of model data and, with only two channels in GMI’s 183 GHz complex, 

lacks the information content to resolve fine vertical structure. Analysis of clear-sky matchups 

with a sensor that does have the necessary information content, the Atmospheric Infrared 

Scanner, AIRS (Aumann et al., 2003), showed that the CSU 1DVAR has a consistent low bias 

for water vapor in the 700-850 mb levels and a high bias for 300-700 mb and 850-925 mb levels 

relative to AIRS. As the AIRS retrieval has been validated against radiosonde profiles (Dang et 

al., 2012), we conclude that the CSU 1DVAR’s water vapor profiles constitute an area of 

potential improvement.  
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CHAPTER 3 
 
 
 

TOWARDS VARIATIONAL RETRIEVAL OF WARM RAIN  
 

FROM PASSIVE MICROWAVE OBSERVATIONS  
 
 
 

3.1 Introduction 

 Global observation of precipitation depends heavily on passive measurements of 

hydrometeors at microwave wavelengths. Active sensors possess certain advantages relative to 

passive sensors, but a full global picture of precipitation is currently impossible from active 

sensors alone as they yield limited spatial coverage and may miss near-surface precipitation due 

to ground clutter effects. While landmasses may be covered by ground radar networks, a satellite 

platform is effectively required for global observation of rainfall. Accurate observation of the 

hydrologic cycle at a high spatiotemporal resolution is a worthy goal (Hou et al. 2014), and a 

task that realistically requires passive microwave rainfall retrievals.  

Retrieval of precipitation from passive microwave observations is an under-constrained 

problem (Stephens and Kummerow 2007). This is due to many factors, including limitations in 

radiative transfer modeling, beam-filling errors, lack of vertical information, limited channels 

with non-independent information content, and unknown distributions of ice, mixed-phase, and 

liquid hydrometeors, to name a few. In effect, there are more unknowns than pieces of 

independent information, and thus many assumptions are necessary to make the problem 

tractable. This has historically been done via algorithms built on empirical relationships (e.g. 

Wilheit and Chang 1980; Hilburn and Wentz 2008) or algorithms based on Bayesian principles 

with Gaussian-distributed parameters (Iturbide-Sanchez et al. 2011; Kummerow et al. 2015).  
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The patterns and magnitude of precipitation over the tropical oceans are largely agreed 

upon, partly a result of the coordinated study of tropical precipitation from the Tropical Rainfall 

Measuring Mission (TRMM; Kummerow et al. 2000). In contrast, the high latitude oceans 

remain an area of disagreement between different observing platforms and between global 

models (Stephens et al. 2010; Behrangi et al. 2012; Behrangi et al. 2016). The launch of the 

Global Precipitation Measurement (GPM) Core Observatory in 2014 (Hou et al. 2014) increased 

the observational capability of sensing precipitation at higher latitudes, but since the Dual-

frequency Precipitation Radar (DPR) has limited sensitivity to the light precipitation so prevalent 

at high latitudes, a large degree of uncertainty remains (Skofronick-Jackson et al. in press). In 

theory, a variational retrieval is sensitive to rainfall below the detectability threshold of DPR, and 

is also not susceptible to ground clutter that may obscure shallow precipitation. Thus the 

effective detection threshold of a passive-only algorithm may be better suited to retrieval of light 

rain rates characteristic of high latitude oceans. 

GPM’s operational passive algorithm, the Goddard Profiling Algorithm (GPROF; 

Kummerow et al. 2015), leverages the synergy of co-located radar and radiometer observations 

from GPM to calculate a Bayesian average precipitation rate for all GMI observations, and by 

extension all GPM constellation radiometers. The Bayesian scheme uses the TB vector to find an 

average set of atmospheric profiles that match what the radar would have seen, based on the a 

priori database. One weakness of this approach is that hydrometeors below the detectability 

threshold of the radar will necessarily be missed by the passive algorithm, even if the TBs exhibit 

signal where the radar does not. Further, while this type of approach gives a satisfactory average 

answer, it does not explicitly model radiation coming from the surface and atmosphere, blunting 
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the effective signal to noise ratio by including many surface states and cloud types in the 

Bayesian average.  

Warm rain—precipitation driven primarily by collision-coalescence below the freezing 

level—is particularly challenging to sense from satellite platforms. Passive microwave 

algorithms are built to exploit the differential signals of emission from liquid drops and 

scattering from large drops and mixed phase or frozen hydrometeors, but in the absence of very 

significant emission or scattering, the signal may be from cloud alone or a combination of factors 

(Stephens and Kummerow 2007). In spite of these challenges, warm rain is not an insignificant 

player in the global hydrologic cycle. Warm rain constitutes a majority of precipitating clouds in 

some stratocumulus and high latitude regions (Lebsock and L’Ecuyer 2011) and 20% of total 

rainfall over Tropical oceans is from warm clouds (Liu and Zipser 2009). 

The operational data assimilation (DA) community is also invested in passive microwave 

radiances in precipitating conditions. Successful assimilation of ‘all-sky’ radiances from 

microwave radiometers can yield a more accurate analysis state from which numerical weather 

prediction (NWP) models can run (Bauer et al. 2006). However, the same factors that cause the 

retrieval problem to be under-constrained are relevant for DA schemes as well. Thus, microwave 

radiances from raining or cloudy pixels are often not included in the data assimilation. Or, if they 

are included, it is with observation errors as large as 40K (Lean et al. 2017), greatly diminishing 

the information content actually added to the analysis state. Furthermore, errors are assumed 

independent of one another—a poor assumption for nearby microwave frequencies especially. 

The main impediments to retrieval of precipitation over ocean can be distilled down to 

three factors. First, it is difficult to differentiate between cloud water and rainwater from 

radiances alone, necessitating an assumed partition between cloud water and rainwater in the 
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absence of significant scattering. Second, passive radiances contain almost no information on the 

vertical structure of hydrometeors. Third, the TBs do not contain enough information to solve for 

the DSD parameters, but the scattering properties, fall velocity, and resultant rain rate of 

hydrometeors are dependent upon their size distribution; also, the degree to which the 

hydrometeors’ distribution impacts the radiances depends on the concentration of hydrometeors 

in the atmospheric column. 

This study builds upon the ocean algorithm developed for the GMI described by Duncan 

and Kummerow (2016), the CSU 1DVAR, with several augmentations. The satellite instruments 

and datasets used in this study are detailed in Section 3.2. Section 3.3 addresses each of the 

aforementioned impediments to a variational precipitation retrieval. Section 3.4 describes the 

CSU 1DVAR and the algorithm’s innovations that permit retrieval of warm rain. Section 3.5 

presents a few case studies of GMI overpasses at high latitude ocean locations, compared against 

independent rainfall estimates from space-borne and ground radars. The paper closes with 

conclusions and discussion in Section 3.6.  

 

3.2 Data 

The GPM Core Observatory holds two instruments, the GPM Microwave Imager (GMI) 

and the Dual-frequency Precipitation Radar (DPR). GPM is on a non-Sun synchronous orbit at 

an inclination of 65° and was launched in February 2014. Compared to its predecessor, TRMM, 

the higher inclination orbit allows for observation of latitudes well outside the Tropics. GMI is a 

13 channel passive microwave radiometer containing channels from 10 GHz to 183 GHz at 

horizontal and vertical polarizations. DPR is a dual-frequency precipitation profiling radar 
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observing at Ku (13.6 GHz) and Ka (35 GHz) bands with a 12 dBZ sensitivity threshold. This 

study uses GPM V05 brightness temperatures and level 2 products. 

The CloudSat mission’s payload is a 94 GHz cloud profiling radar (Stephens et al. 2002). 

CloudSat was launched in 2007 and flies in the A-Train constellation (L’Ecuyer and Jiang 2010). 

At a higher frequency than DPR, CloudSat has sensitivity to clouds and light rain not seen by 

DPR, though its signal can attenuate in moderate to heavy precipitation. CloudSat’s small 

footprint permits highly limited spatial sampling. For light precipitation, CloudSat provides the 

best observational record currently available from satellite, and is thus complementary to GPM 

observations. CloudSat’s overpasses coincident with GPM were determined using the CloudSat-

GPM Coincidence Dataset version 1C (Turk 2016). 

The warm rain retrieval from CloudSat (Lebsock and L’Ecuyer 2011) is used to construct 

a priori states usable by the CSU 1DVAR. This algorithm and the associated data product, 2C-

Rain-Profile, yields profiles of rain water content, cloud water content, and precipitating ice 

water content as well as surface rain rate. 2C-Rain-Profile uses a variational approach to match 

observed radar reflectivities with a two-stream forward model that includes multiple scattering. It 

employs a variable DSD chosen specifically for its applicability to warm rain scenes that are 

dominated by small drops. CloudSat’s single frequency radar is supplemented by visible optical 

depth information from another A-Train sensor to constrain the retrieval of cloud water path. To 

analyze observed hydrometeor profiles over the global oceans, CloudSat is the best observing 

platform available.  

The GPM Ground Validation team collects data from certain NEXRAD (Next Generation 

Radar) sites matched with GPM overpasses (gpm-gv.gsfc.nasa.gov). NEXRAD operates a dual-

pol radar site on the island of Middleton, Alaska at 59°N. This radar site is ideal for comparisons 
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against GPM observations due to its essentially oceanic location at a high latitude location. This 

ground radar will be referred to as PAIH, its station identifier, hereafter. Ground radar rain rates 

used in the analysis are from the polarimetric Z-R algorithm (Bringi et al. 2004). 

 

3.3 Impediments 

In this section, the key impediments to a successful variational precipitation retrieval are 

enumerated, described, and given solutions. Each is directly tied to an element of the retrieval as 

described in the following section. 

3.3.1 Partitioning non-scattering liquid emission 

At GMI wavelengths, cloud drops are firmly within the Rayleigh scattering regime. 

Liquid clouds interact with microwave radiation as pure emitters if there is any non-negligible 

emission from cloud drops (Bennartz 2007). Mie theory dictates that scattering is proportional to 

the size parameter (X=2πr/l) to the fourth power. For instance, going from a cloud drop of r=10 

µm to a drizzle drop of r=100 µm, scattering can approach the Mie regime at higher microwave 

frequencies. But even an effective radius of 100 µm yields X=0.19 at 89 GHz, just on the verge 

between the Rayleigh and Mie scattering regimes. Thus for many drizzle cases, the GMI 

frequencies will not diverge significantly from a forward model that neglects scattering.  

A simple absorbing/emitting forward model can be run due to the lack of scattering from 

cloud and drizzle drops. In fact, the predominant lack of scattering from drizzle holds for pristine 

and polluted regimes, as cloud top effective radii usually remain less than 30 µm even for 

precipitating clouds (Lebsock et al. 2008). However, because non-raining and raining clouds 

exhibit similar signals, this requires an assumption of partitioning between cloud and rain water 

emission from passive microwave algorithms. In contrast, a radar algorithm such as that used by 
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CloudSat is more skillful at differentiating between cloud and rain drops because radar 

backscatter is very sensitive to drop size. 

 

Figure 3.1 Drizzle onset value, separated by SST and TPW. Regimes with no data were assigned the 
maximum value, 300g m-2. 

 

To calculate regime-dependent values for the onset of drizzle from liquid clouds, 

CloudSat data were used. Fig. 3.1 shows the drizzle onset values of liquid water path (LWP) 

used in this study, separated by total precipitable water (TPW) and sea surface temperature 

(SST). Precipitation frequency observed by CloudSat in all oceanic regimes was analyzed and 

compared to the distribution of LWP as retrieved by the CSU 1DVAR non-raining retrieval. This 

approach implicitly assumes that oceanic warm clouds with higher LWP are more likely to be 

precipitating, an assumption broadly true in studies of A-Train data (Stephens and Haynes 2007; 

L’Ecuyer et al. 2009; Chen et al. 2011). Taking non-convergent retrievals into account and 

assuming them to be precipitating, the precipitation frequency from CloudSat was matched to a 
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LWP value from GMI. These values are in general agreement with some in the literature (Wentz 

and Spencer 1998; Lebsock et al. 2008; Chen et al. 2011) and lower than some others (Kida et al. 

2008; Iturbide-Sanchez et al. 2011), though direct comparison is difficult due to the subdivision 

by environmental regime done here.  

3.3.2 Profiles of hydrometeors 

Profiles of hydrometeor species are required to run a realistic radiative transfer scheme as 

part of the forward model. Further, the surface rain rate depends on the rainwater content in the 

lowest atmospheric level, not a column total. Vertical information is however effectively 

nonexistent in the TB vector, as emissivity is not strongly tied to temperature or pressure. Global 

model data are insufficient to aid in vertical constraints due to the spatiotemporal heterogeneity 

of clouds and precipitation. Principal component (PC) analysis can reduce the dimensionality of 

the problem, simplifying treatment of hydrometeor profiles in the retrieval. 

Two years of data from the CloudSat 2C-Rain-Profile product (Lebsock and L’Ecuyer 

2011) were analyzed to determine the principal components that best describe hydrometeor 

profile variability for warm rain. These are separated by SST and lightly smoothed, with the first 

PC of rain water content (RWC) and precipitating ice water content (PIWC) shown in Fig. 3.2. 

The first PCs of RWC and PIWC describe 63% and 51% of the total variability, respectively. 

Covariances between the PCs of RWC and PIWC are also calculated and used in the a priori 

covariance matrix of the retrieval in raining scenes. It is only the shapes of profiles from the 2C-

Rain-Profile product that are used in the retrieval.  

Attempting to retrieve more than one PC of each species is unproductive and often leads 

to non-convergent retrievals. The second PC of each species is effectively a vertical 

redistribution of the first PC in altitude, i.e. more RWC near the surface and less RWC higher up 
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or vice versa. Since the TB vector is, to first order, sensitive to total columnar liquid, inclusion of 

the second PCs is not useful for a passive retrieval. Sensitivity experiments conducted with 

additional PCs yielded approximately the same number of degrees of freedom for signal (DFS) 

in the retrieval, determined via the trace of the A-matrix (Rodgers 2000), demonstrating that 

retrieval of additional profile parameters is not possible with the information content available. 

Raining pixels typically exhibit 3.0 to 3.5 DFS.  

 

Figure 3.2 First principal components of RWC (top) and PIWC (bottom) from CloudSat for warm rain. 
 

As in Duncan and Kummerow (2016), the liquid cloud layer is fixed in altitude and has a 

set thickness. Results are largely insensitive to the placement of the cloud layer, partly because 

the emissivity of cloud drops increases slightly with decreasing temperature, so emission from a 
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liquid cloud is fairly independent of cloud height or depth. Cloud drops are assumed to have an 

effective radius of 12 µm. 

3.3.3 Drop size distributions 

Variational algorithms require realistic estimates of the errors for both the a priori state 

and observation vector. Estimating the error covariances of the a priori state is more 

straightforward, as shown in the previous subsection. Error covariances for the observation 

vector are more complex, as they should include instrument noise, forward modeling error, and 

also forward model parameter error as explored by Duncan and Kummerow (2016). Radiometer 

sensor noise is measured prior to launch and is smaller than forward model error in most 

conditions for microwave sensors. For a raining retrieval, the assumption of a DSD is likely the 

largest source of error for the forward model but difficult to quantify because the true DSD is 

almost never known. This is effectively a forward model parameter error, assuming that the DSD 

is not somehow retrieved (this topic is explored in the Appendix). 

Retrieval of hydrometeors from passive measurements is “notoriously ill-constrained” 

(Boukabara et al. 2011) largely due to the uncertainty inherent in assuming a DSD. As shown by 

Lebsock and L’Ecuyer (2011), choosing an inappropriate DSD can greatly impact the final 

results of a retrieval, as variations in drizzle rates over ocean are largely explained by variations 

in drop number concentrations (Comstock et al. 2004). Unfortunately, the distribution of drops in 

the forward model significantly affects the resultant rain rate and has an effect on the TB vector, 

but is not readily retrievable—a topic discussed in the conclusions section. In an attempt to 

circumvent this issue while accounting for the inherent forward model uncertainty of assuming a 

DSD, such errors are quantified in a way intended to reduce the dimensionality of the problem 

without ignoring it. 
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For this study, the normalized gamma distribution is used to characterize rain drop 

distributions (Ulbrich 1983). This functional form, given below, approximates DSDs found in 

nature with fidelity (Bringi et al. 2003). The normalized gamma distribution allows comparison 

of DSDs with different rain rates due to the generalized intercept parameter (Nw) and mass-

weighted mean diameter (Dm), with the median volume diameter (D0) related to Dm via the shape 

parameter (µ).  
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Figure 3.3 Disdrometer data from two high latitude field experiments, analyzed per gamma distribution parameters 
(Eqs. 3.1, 3.3). Blue and orange represent data points determined via EOF analysis to be similar, analogous to 

stratiform and convective DSDs, respectively. 
 

In-situ disdrometer measurements from GPM Ground Validation field campaigns were 

used to quantify the error in forward modeled TBs given a range of DSDs. Given the focus on 

high latitude warm rain the sites chosen were near Seattle and Helsinki, from the OLYMPEX 

(Houze et al. 2017) and LPVEx (pmm.nasa.gov/science/ground-validation/lpvex) campaigns, 

respectively. With the parameters that describe a gamma distribution provided along with liquid 
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water content, the disdrometer data were used in a simple radiative transfer model with Mie 

scattering modules. The RT model was run with a fixed atmosphere and 150 g m-2 liquid cloud 

from 925-850 hPa, with the disdrometer data setting how much RWC exists between cloud and 

surface.  

 

Figure 3.4 Correlations of TB at GMI frequencies with the gamma DSD parameters (Eq. 1) as well as rain rate and 
RWC, as derived from disdrometer measurements run through a radiative transfer model. Convective DSDs (top) 

and stratiform DSDs (bottom) are shown. 
 

From the work of Dolan et al. (personal comm.), PC analysis of the disdrometer data 

reveals leading modes of variability in the gamma distribution parameters that suggest 

convective and stratiform regimes of rainfall, colored in Fig. 3.3. Given the different radiometric 

characteristics of stratiform and convective DSDs as diagnosed by the RT model, the analysis 

here and the retrieval described later delineate between the two. This functions as a way to 

simplify the problem without treating all DSDs as the same, in line with there being limited 
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signal to solve for the DSD but some information related to the DSD existing in the passive 

measurements. In this formulation, the forward model parameter error stemming from an 

assumed drop distribution is defined as: 

sconv(n) = stddev(TB[n,DSDconv] – TB[n,DSDactual])   (Eq. 3.4) 

sstrat(n) = stddev(TB[n,DSDstrat]  – TB[n,DSDactual])   (Eq. 3.5) 

Fig. 3.4 shows the correlation between Tb at GMI frequencies and three of the gamma 

DSD parameters (µ, D0, Nw) as well as RWC and rain rate, broken up into stratiform and 

convective regimes as shown in Fig. 3.3. The correlation between TB and these parameters 

confirms what precipitation retrievals have leveraged for decades, namely that RWC is tightly 

tied to emission at lower frequencies while both scattering and emission influence the higher 

frequencies. The strong positive correlations between low frequency TB and RWC reveal why it 

makes more sense to retrieve RWC than any of the DSD parameters, which exhibit weaker 

correlations that are more channel dependent. The strong differences in scattering and emission 

signals from the two DSD types are enumerated via a simple model in Table 3.1.  

 

Table 3.1 Effects on TB at top of atmosphere from cloud and rain water alone. Surface conditions are SST=281 K 
and wind=5 m s-1, with water vapor and temperature profiles representative of such an ocean scene. Liquid water 
path is 100 g m-2, residing between 925-975 hPa, for both rain and cloud water. GMI’s 183 GHz channels are not 

included due to the invariance of water vapor here. All units are DK except for the top row which is in K. 
 
 10V 10H 19V 19H 23V 37V 37H 89V 89H 166V 166H 

Clear Sky [K] 160.16 82.8 178.53 104.79 199.25 204.04 133.86 243.35 192.73 269.36 261.03 

Cloud +0.4 +0.65 +1.02 +1.77 +1.29 +2.73 +5.29 +5.28 +13.09 +1.4 +3.64 

Stratiform rain +0.58 +0.96 +1.73 +3.02 +2.27 +5.02 +10.37 +5.58 +26.11 +0.12 +4.72 

Convective rain +2.1 +3.61 +4.1 +8.3 +4.17 +5.33 +16.37 +2.18 +16.95 +0.29 +2.83 
Stratiform rain 
(emission-only) +0.59 +0.97 +1.8 +3.11 +2.42 +5.9 +11.45 +15.17 +37.65 +3.1 +8.16 

Convective rain 
(emission-only) +2.44 +4.02 +6.34 +10.98 +7.7 +13.67 +26.54 +11.69 +29.0 +1.83 +4.79 

Stratiform rain 
(scattering-only) -0.01 -0.01 -0.07 -0.09 -0.15 -0.88 -1.08 -9.59 -11.54 -2.98 -3.44 

Convective rain 
(scattering-only) -0.34 -0.41 -2.24 -2.68 -3.53 -8.34 -10.17 -9.51 -12.05 -1.54 -1.96 
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Fig. 3.5 translates the results from this experiment into error covariance matrices usable 

by the retrieval. Shown are error covariance matrices calculated for both stratiform and 

convective DSD observations. The assumed DSD parameters are µ=9 and D0=0.75 mm for the 

stratiform case, and µ=-1 and D0=1.8 mm for the convective case. Nw is solved for given µ, D0, 

and RWC. While not the arithmetic means of the observational data, these values are close to the 

medians and yield near-zero differences with respect to rain rate, Nw versus observed Nw, and 

difference of TB at most frequencies when considering the whole distribution of disdrometer 

observations. This is a key point, as assumed DSD parameters should not bias the resultant 

distribution of rain rates. Similarly, the distribution of simulated TBs should not have a strong 

bias or skew, as the variational retrieval assumes Gaussian errors from the forward model 

(Rodgers 2000).   

The result of this analysis is an estimate of forward model error at GMI frequencies 

caused by the assumption of a DSD for rain in each regime. Since this analysis used the observed 

variability of the gamma distribution parameters for given RWC values, the resultant error 

covariance matrices can be scaled as a function of RWC in the retrieval without further 

assumptions. The inclusion of covariances between channels’ errors (off-diagonal elements in 

the matrix) is a key element of this analysis, as many of the errors caused by assuming a DSD are 

highly correlated between channels, especially channels of similar frequency.   

 

3.4 Retrieval description 

 3.4.1 Non-raining algorithm 

The CSU 1DVAR (Duncan and Kummerow 2016) was originally developed as a non-

scattering retrieval for the so-called ‘ocean suite’ parameters over water: columnar water vapor,  
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Figure 3.5 Error covariances due to DSD variability at GMI frequencies. Covariances are expressed in units of K, 

with negative covariances given as – 𝑺𝒚 , to aid interpretation. 
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10m wind speed, cloud liquid water path, and sea surface temperature. It is a variational (optimal 

estimation) algorithm that iterates to find an optimal geophysical state that best matches the 

observed TB vector within the bounds of a priori knowledge of the geophysical state (Rodgers 

2000). This is done via a physical forward model tailored to the radiometric sensitivities of the 

variables being retrieved, coupled to a radiative transfer model. Mathematically, the iterative 

process endeavors to find a state vector (x) that minimizes a cost function (F) and yields a metric 

of fit (c2) to the observed radiances: 

Φ = 𝑦 − 𝑓 𝑥, 𝑏 )𝑆+,- 𝑦 − 𝑓 𝑥, 𝑏 + 𝑥 − 𝑥/ )𝑆/,- 𝑥 − 𝑥/    (Eq. 3.6) 

𝜒K = 𝑦 − 𝑓 𝑥, 𝑏 )𝑆+,- 𝑦 − 𝑓 𝑥, 𝑏    (Eq. 3.7) 

Here y is the observation vector, f is the forward model, b contains all non-retrieved elements of 

the forward model, xa is the a priori state vector, and Sa and Sy represent the error covariance 

matrices of the a priori and observation vectors, respectively. Sy for the non-raining retrieval is 

the same as that given in Fig. 2.1. The cost function balances knowledge of the prior state with 

confidence in the observations to find an optimal retrieved state. 

 The non-raining CSU 1DVAR solves for six parameters: wind speed, liquid water path, 

SST, and coefficients of the first three PCs of water vapor. As described in Section 3.3.2, PCs are 

used to reduce the dimensionality of the water vapor profile. To make the problem more 

Gaussian, LWP is retrieved in log space but with effectively no constraint by the prior. The a 

priori states for SST, wind, and water vapor come from a global model, as do sea level pressure 

and the temperature profile. 

3.4.2 Drizzle 

Conditions in which the non-raining (non-scattering) retrieval converges with a high 

quality of fit (low c2) are not necessarily non-raining for the reasons mentioned in Section 3.3.1. 
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Thus, if retrieved LWP is greater than the drizzle onset threshold (Fig. 3.1), LWP is partitioned 

into cloud and rain water. Not all extra water is partitioned into drizzle, with some of the extra 

water remaining as cloud water as discussed in Wentz and Spencer (1998). Rain water path 

(RWP) is defined below, with LWPdriz determined by SST and TPW state from Fig. 3.1: 

𝑅𝑊𝑃 = 𝜕𝐿𝑊𝑃 ∗ (1 − RSTU
RSTU

)    (Eq. 3.8) 

where  𝜕𝐿𝑊𝑃 = 𝐿𝑊𝑃 − 𝐿𝑊𝑃VWXY   (Eq. 3.9) 

The resultant rain rate is a function of RWP. Because no information exists on the 

distribution of drops or their altitude, a simple regression relationship derived from the 2C-Rain-

Profile dataset is used to calculate a rain rate, linearly related to RWP. This relationship is subset 

by SST so as not to mix regimes. 

The largely non-scattering scenario with drizzle is quite common, especially at high 

latitudes, and forms a majority of all scenes with retrieved rain. Shallow clouds with high liquid 

water contents often converge well in the non-scattering retrieval if there is a lack of significant 

snow or mixed phase hydrometeors present. The high frequency channels on GMI, 166 GHz and 

higher, are sensitive to scattering from frozen hydrometeors. Because this retrieval is for warm 

rain only, a significant departure between observed and simulated TB at 166V, 166H, and 183±7 

GHz is a sign that the warm rain retrieval should not be run. 

 3.4.3  Warm rain 

For cases in which the non-scattering retrieval fails, or cases in which LWP>LWPdriz but 

c2>1.0, indicating a fit to the TBs that exceeds assumed errors, the stratiform retrieval is run 

subsequent to the non-scattering retrieval. The number of retrieved parameters drops from six to 

four: PC1 of RWC, PC1 of PIWC, LWP, and PC1 of water vapor. This is necessary due to the 

limited information content afforded by the TB vector in raining conditions. Wind and SST from 



	

 58	

the non-raining retrieval are held constant; attempting to retrieve wind speed or SST degrades the 

retrieval of the other parameters by being effectively free variables. Even with four variables, the 

a priori errors on LWP and PC1 of water vapor are decreased so as to discourage unphysical 

behavior in the retrieval. Raining scenes typically exhibit around 3 DFS given these four 

retrieved parameters.  

A key element of the raining retrieval is its dynamic observation error covariance matrix. 

In theory, Sy for a raining pixel should contain all the known uncertainties of the forward model, 

forward model parameters, and instrument noise. In practice, this means adding the non-

scattering retrieval’s error covariances with the errors associated with a given RWP. As 

described in Section 3.3.3, the forward model error caused by assuming a drop size distribution 

was calculated earlier and is a function of RWP. Though some care needs to be taken to ensure 

that Sy,non-scat+ Sy,rain(RWP) is in fact a positive definite matrix, this sum of matrices yields the 

observation error covariance matrix used in the iteration. Because RWP is retrieved, the matrix is 

updated with every iteration. While this complicates the iteration process and typically requires 

more iterations, it is based in the physics of the situation—heavier rain begets larger 

uncertainties.  

If the raining retrieval fails for the stratiform case, or if it converges with a poor fit, or if 

simulated TBs at 37 GHz and 89 GHz are far too high (indicating insufficient scattering in the 

forward model), the convective case is run. This is treated the same as the stratiform case—only 

the DSD parameters and observation errors have changed.  

For both the stratiform and convective cases, the resultant rain rate is calculated in the 

same way. As with the drizzle case, surplus LWP is converted to RWP. The majority of the final 

rain rate comes from the calculated DSD and resultant rain rate from RWC in the lowest altitude 
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layers of the forward model. This includes the standard assumption that the drops reach their 

terminal fall velocity. No explicit evaporation model is included due to the lack of true vertical 

information. 

 

3.5 Case studies 

 3.5.1  Comparison to space-borne radars 

 CloudSat’s high sensitivity to light rain rates makes it a useful point of comparison, 

although the orbits of GPM and CloudSat mean that high quality matchups are somewhat limited. 

This section includes one case that contains GMI, DPR, and CloudSat observations in the North 

Atlantic, and one case with GMI and CloudSat off the coast of France. 

Fig. 3.6 compares the CSU 1DVAR, GPROF, DPR, and CloudSat rain rates for a 

coincident overpass a few hundred kilometers west of Ireland on June 1st 2015. The figure’s 

projection orients the CloudSat ribbon horizontally, with CloudSat reflectivities shown at the top 

of the figure. GPROF and DPR underestimate rainfall whereas the CSU 1DVAR estimates are 

closer in magnitude to CloudSat, as seen in the line plot within Fig. 3.6. DPR misses the majority 

of the raining pixels seen by CloudSat, as the reflectivites are generally below DPR’s detection 

threshold. From 48°N to 51.5°N, the CloudSat 2C-Rain-Profile product has a mean rain rate of 

1.43 mm hr-1 whereas GPROF and DPR NS measure 0.58 mm hr-1 and 0.09mm hr-1, respectively. 

The CSU 1DVAR mean for the same pixels is 1.95 mm hr-1, though there are a few pixels that 

failed to converge. This is an encouraging result, showing that warm rain from the variational 

algorithm is of the same order as that from CloudSat. 
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Figure 3.6. GMI and CloudSat rain rates for an overpass in the North Atlantic, June 1st 2015. The top panel shows 
CloudSat reflectivities with a gray line indicating the freezing level. The second panel indicates rainfall rates from 

the four products along the CloudSat ribbon. The bottom three panels show estimated rain rates compared with 
CloudSat, where black indicates no CloudSat rain and gray indicates snow or mixed phase precipitation present. 
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The freezing level is denoted by a grey line in the top panel of Fig. 3.6, calculated from 

ancillary data. It is above most of the cloud tops seen by CloudSat, indicating that most of the 

clouds are probably liquid. The CSU 1DVAR converges for many of these pixels, excepting a 

few near 52°N and 50°N, where CloudSat shows stronger convection and more cloud above the 

freezing level. The GPM and CloudSat overpasses were 10.5 minutes apart, which may explain 

some incongruity in the pixels that converged, especially with regard to convective clouds. 

 Fig. 3.7 provides a closer look of a raining system in the Atlantic, a scene from March 

30th 2016 off the coast of France. In this figure, CloudSat reflectivities show a complex scene 

with multiple cloud layers and cloud depths ranging from 1km to 8km. The second panel holds 

profile retrieval results from 2C-Rain-Profile, color coded to differentiate between liquid and ice 

portions of the cloud, and showing significant rainwater content near the surface that translates 

into rain rates of about 4 mm hr-1. This is in contrast to the GPROF rain rates, which are all less 

than 0.5 mm hr-1. As with the previous case, this is not surprising because GPROF’s a priori 

database is based upon DPR and most of the CloudSat reflectivities seen from 46°N to 47°N in 

Fig. 3.7 are too small to be seen by DPR. This raining system is on the edge of the GMI swath, 

so no direct DPR data are available. 

 The CSU 1DVAR mostly performs well in this scene. On the right of the figure where 

the clouds are shallow and mostly liquid, it retrieves rain rates on the order of CloudSat and 

much higher than GPROF. As the cloud deepens and non-liquid hydrometeors dominate, it fails 

to converge—the forward model is insufficient due to the transition away from warm rain, and 

the retrieval performs as it should. In fact, the apparent overestimation of rain rates on the right 

side of the figure may be due to CloudSat missing some rainwater; GMI senses total columnar 



	

 62	

liquid, whereas CloudSat is mostly blind in the lowest kilometer of the atmosphere and thus may 

be missing some near surface rainwater. 

 

Figure 3.7 Shallow rain and mixed phase cloud off the coast of France, March 30th 2016. The top panel is CloudSat 
reflectivities while the second panel shows 2C-Rain-Profile RWC and PIWC retrievals from the same scene. The 

bottom two panels contrast CloudSat rain rates with those of the CSU 1DVAR and GPROF.  
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However, on the northern edge of the retrieved rain band in Fig. 3.7, there is a transition 

zone with low retrieved rain rates in an area with moderate CloudSat rainfall. This violates the 

forward model, but not strongly enough to cause non-convergence. Instead, the scattering signal 

of mixed phase hydrometeors appears to cancel out the rain drops’ emission, and the algorithm 

reaches convergence with limited rainfall, albeit with a fairly poor fit to the TBs. As with the 

previous case, about 9 minutes elapsed between the overpasses, so the characteristics of the 

clouds and precipitation may have evolved. These discrepancies at the edges of the rain band 

signal some limitations of the algorithm and its discrete methodology. 

Moving beyond a single case study, two months of the 1DVAR retrieval were compared 

against DPR rain estimates to assess the representativeness of the two cases analyzed above. 

Focusing on warm season high latitude precipitation, February 2015 and July 2014 were 

analyzed for the Southern and Northern hemispheres, respectively. Only pixels within the DPR 

Ku-band swath and outside the Tropics (defined as 30°N-30°S) were considered, and DPR pixels 

were averaged into the GMI 23 GHz FOV via a spatial weighting. The results of this experiment 

are shown in Table 3.2.  

 
Table 3.2 Frequency of raining pixels observed by CSU 1DVAR and DPR Ku-band averaged to the same GMI 

footprint. All values are given as a percent of all oceanic pixels run by both retrievals in a month that meet the given 
rain rate cutoff. ‘Both’ includes pixels where RRKu > cutoff and either RR1DVAR > cutoff or the 1DVAR did not 

converge. 
 

 Cutoff 
[mm hr-1] Ku rain 1DVAR 

rain Ku only 1DVAR 
only Both Either 1DVAR 

missed 
Southern 

Hemisphere 
0.05 10.6% 14.9% 8.1% 10.3% 6.2% 23.0% 2.5% 
0.50 3.5% 10.5% 2.7% 6.8% 3.1% 13.3% 0.08% 

Northern 
Hemisphere 

0.05 8.1% 16.6% 5.2% 11.4% 6.4% 21.9% 1.0% 
0.50 3.2% 11.4% 2.4% 7.5% 3.0% 14.0% 0.03% 

 

The results in Table 3.2 are broken up by hemisphere, with percentages of all ocean 

pixels with rain rates above two cutoff values shown. Cutoffs were necessary as many pixels 
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display positive, near-zero rain rates from DPR averaging. In both hemispheres and with both 

rain rate cutoffs, the 1DVAR retrieves rainfall in a significant percentage of pixels where DPR 

sees no precipitation, approximately 7% of total pixels at a 0.5 mm hr-1 rain rate threshold. Pixels 

counted as ‘1DVAR missed’ are a subset of ‘Ku only’ raining pixels, counting only if reasonable 

convergence (c2<2) was reached, screening out scenes that deviated strongly from the forward 

model. The 1DVAR misses a relatively small percentage of definite raining cases from DPR and 

effectively none at the higher threshold, an encouraging result that echoes Fig. 2.8. Without 

ascribing truth to either sensor or trying to screen for precipitation type or environment (i.e. 

warm rain), this analysis points to a complementary relationship between the two sensors’ 

precipitation detection abilities; it does however appear that the 1DVAR sees precipitation too 

frequently, as Ku-band radar should see most rain rates greater than 0.5 mm hr-1. It should be 

noted that these precipitation frequencies may not match those of other studies, as GPM’s orbit 

weights this analysis to pixels near 65°N and 65°S.  

3.5.2  Comparison to ground radar 

 In this section two GPM overpasses of the PAIH ground radar are examined. Due to 

GPM’s orbit and the radar’s location south of Alaska, it is an ideal location for comparisons 

between high latitude oceanic GPM observations and a polarimetric ground radar. For this 

analysis, the focus is on precipitation away from the coastline, as the passive signal from land 

nearby is a contaminating factor in precipitation retrievals; indeed, the CSU 1DVAR does not 

run if nearby pixels contain land contamination. 

 The first case, shown in Fig. 3.8, is from an overpass on July 12th 2015 with scattered 

showers visible from PAIH. DPR does a fairly good job of seeing these showers, although it 
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misses some of the lightest raining pixels observed by PAIH. GPROF picks up the strongest area 

of rain but underestimates the rain rate relative to PAIH and misses the weaker showers. 

 

Figure 3.8 Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from July 12th 
2015. The left column contains CSU 1DVAR retrievals of rain rate, cloud liquid water path, and quality of fit (c2). 

The right column has rain rates from GPROF, DPR, and the ground radar. 
 

 This scene proves challenging for the CSU 1DVAR as well. This region is covered with 

retrieved liquid cloud, including some pixels above the drizzle onset threshold given in Fig. 3.1 

that fit the forward model well. Contrasting these pixels with PAIH, some are not raining to the 

surface while others are below the drizzle threshold but do indeed seem to be raining. The few 

pixels raining hardest according to PAIH, DPR, and GPROF do not converge in the iteration, in 

line with significant mixed phase or frozen hydrometeors present and echo top heights of 3 km to 
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5 km observed by DPR. So while this scene is nearly ideal for the CSU 1DVAR rain retrieval, in 

that it rarely violates the forward model, the assumption of a drizzle onset threshold proves to be 

too simplistic to accurately capture drizzling versus non-drizzling liquid clouds in this scene. 

 

Figure 3.9 Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from June 
29th 2015. The left column contains CSU 1DVAR retrievals of rain rate, cloud liquid water path, and quality of fit 

(c2). The right column has rain rates from GPROF, DPR, and the ground radar. 
 

 Fig. 3.9 shows a second ground radar matchup with GPM, from June 29th 2015. A 

stronger band of rain is identified consistently by DPR and GPROF, and they agree on the 

general magnitude of precipitation, but PAIH is slightly higher. The CSU 1DVAR gets the right 

general shape of this rain band but mostly overestimates the rain rates compared to the other 
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estimates. Examination of the fit metric, c2, shows that much of this band had relatively poor fits 

to the observations. 

 Further analysis of the DPR and PAIH data in Fig. 3.9 shows that the forward model 

assumptions were violated for many of these raining pixels. DPR retrieved echo top heights of 

1.5 km to 4.0 km and bright bands evident in most pixels between 1.6 km and 1.8 km. The 

existence of these bright bands picked up by DPR demonstrates that there were significant areas 

of mixed phase hydrometeors present, something not in the forward model. Additionally, most of 

the raining pixels in the figure reached convergence with the non-scattering forward model but 

not with the warm rain turned on, so the solution is effectively heavy drizzle but with a poor fit 

to the observations. This type of mischaracterization is due to the highly limited forward model, 

but also points to the utility of c2 as a marker of trustworthiness for the retrieved parameters.   

 

3.6 Conclusions 

 There are advantages and disadvantages to the variational approach when it comes to 

precipitation retrieval. As shown in the comparisons against radar estimates, the retrieval 

described here compares favorably in some cases and fails to converge in others, sometimes for 

observations mere tens of kilometers apart. This is a function of the simple forward model’s 

ability or inability to adequately represent all radiometrically significant atmospheric constituents 

that are associated with oceanic rainfall. However, the simplicity of the forward model is dictated 

by the limited information content from the observed TB vector. This is the fundamental catch-22 

of precipitation retrieval with limited information. 

 Ultimately, this study demonstrates two main points. First, that explicit forward modeling 

of warm rain in a passive-only variational algorithm can indeed work if constructed and 
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constrained properly. Second, observed microwave radiances can be matched well to modeled 

radiances in raining scenes if DSD variability is taken into account. It is worth stressing that 

algorithms which do not account for the forward model error of DSD variability, which often 

assume uncorrelated channel errors or simply account for sensor noise (e.g. Iturbide-Sanchez et 

al. 2011), are certainly overfitting to the measured TBs. 

 This study has shown that DSD effects on forward model error can be dealt with, but the 

other impediments of partitioning liquid water path and the lack of vertical information are the 

main cause of errors with respect to radar rainfall estimates. A globally-derived drizzle onset 

threshold can cause high and low biases side by side (Figs. 3.8 and 3.9), as the TBs cannot 

necessarily convey information on cloud lifecycle stage, microphysics, or environmental regime 

that will affect whether or not a cloud is raining. Similarly, because GMI lacks profile 

information, there is no evaporation model as in Lebsock and L’Ecuyer (2011), nor a physical 

model for drizzle rate, and thus very light rain rates are likely underrepresented by the algorithm 

presented. These aspects could conceivably be improved by more extensive use of ancillary data.  

 It is implicit in the approach presented that the retrieval of rainfall should be done in 

multiple steps. Boukabara et al. (2011) include large hydrometeors in the forward model only 

after non-convergence of the non-raining retrieval, then perform post-processing to calculate a 

regression-based rain rate (Iturbide-Sanchez et al. 2011) without rerunning the variational 

scheme. The approach given here differs in that two DSD assumptions are possible for rain in the 

atmospheric column, whereas Boukabara et al. (2011) does not allow for DSD variability. The 

reason for the multistep approach presented can be reduced to the importance of the a priori state 

and first guess in an under-constrained retrieval.  
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The algorithm requires tight constraints on some parameters and a reasonable first guess 

to converge on a sensible and physical solution. In fact, the raining retrieval is more likely to 

converge if using the RWP from the GPROF retrieval rather than the mean RWP from analysis 

of CloudSat data. Additionally, the variational framework requires smooth movement of the 

retrieved variables while iterating, and therefore abrupt changes to the DSD assumption function 

better with a multistep framework. If rain water content were allowed in the first pass of the 

retrieval, alongside the non-raining variables, it would jeopardize their retrieval due to the 

limited information content of the TB vector.  

Assimilation of satellite radiances is typically done with prescribed and uncorrelated 

errors, although there has been movement towards including correlated observation errors 

(Bormann et al. 2011; Bormann et al. 2015). Satellite radiances which diverge too much from 

those of the background state are not assimilated. To avoid the issues associated with forward 

model uncertainties in precipitation, all-sky schemes may boost assumed channel variances, but 

this also blunts the potential information content gained. Fig. 3.10 shows observed minus 

simulated radiances for two GMI channels, with little difference between raining and non-raining 

cloudy pixels. This level of agreement would likely have a positive impact on all-sky radiance 

assimilation schemes. Results given here on the effects of DSD variability on forward model 

errors may be of interest to the data assimilation community as a way to wring more information 

out of TBs from existing sensors in all-sky conditions. 

 Furthermore, dynamic adjustment of observation errors (Sy) based on the retrieved 

scene’s characteristics is not commonly done in either retrievals or DA schemes. A proxy for 

cloud amount is used to determine errors by Lean et al. (2017), a scheme akin to a dynamic error 

assignment though not specific to DSD assumptions. Interestingly, the largest errors described in 
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Lean et al. (2017) are at the 19H and 37H channels for GMI, in line with the results of Fig. 3.4 

for large RWC. The errors assumed here are, however, multiple times smaller and thus should 

retain more information content that would otherwise be discarded by many DA schemes.  

 

 

Figure 3.10 The same scene as Fig. 3.7, showing the difference of observations and simulated radiances, 
specifically at 37V (left) and 89H (middle) channels, and quality of fit c2 (right). 

 

 The feasibility of a more global version of this retrieval is an open question. The method 

given in Section 3.3.3 for determining forward model error from assuming a DSD for rain is 

applicable to any disdrometer dataset, and expanding that analysis to locations that are 

representative of other oceanic rainfall regimes seems a natural next step. With more disdrometer 

data from research vessels, a fuller characterization of DSD variability for various environments 

could yield greater constraints for both passive and active rainfall algorithms. The difficulty 

would lie in determining which rainfall regime to assume, or adjusting that assumption to one 

more suitable in the case of non-convergence. 

Characterization of mixed phase and frozen hydrometeors in the forward model is 

perhaps the most difficult aspect of developing a global variational retrieval of precipitation. 

Mixed phase and frozen hydrometeors have highly variable physical and radiometric 

characteristics (Skofronick-Jackson et al. 2013; Gong and Wu 2017), making the representation 

of rain DSDs seem simple in contrast. Ancillary data can inform as to the freezing level and 
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near-surface dewpoint, or on bulk characteristics such as stability or convective potential, but no 

environmental variable can reliably yield information on rimed particles or supercooled water 

drops due to their spatiotemporal heterogeneity. And while hydrometeor profiles may be 

constrained by coincident active measurements, a passive-only algorithm has to make myriad 

assumptions. Furthermore, proper treatment of forward model errors from mixed phase and 

frozen hydrometeors is in no way a simple proposition.  

For the stated reasons, a Bayesian retrieval such as GPROF still has advantages over a 

variational scheme for operational global products. A blended Bayesian/variational approach is 

conjectured to be preferable for current generation radiometers, as warm rain is handled better 

with a variational algorithm while anything beyond is better handled by a Bayesian algorithm. 

Hyperspectral passive microwave sensors could provide better observational constraint for a 

variational algorithm in the future (Birman et al. 2017), but current sensors’ information content 

dictates that sensing precipitation from a passive satellite platform requires many compromises 

yet.  
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CHAPTER 4 
 
 
 

AN INTEGRATED EXAMINATION OF THE AMSR2 PRODUCTS OVER OCEAN 2 

 
 
 

4.1 Introduction 

Passive microwave radiometry is sensitive to many constituents of Earth’s atmosphere 

and surface, making such measurements very desirable for research and data assimilation alike. 

Sea ice concentration, sea surface temperature, cloud water content, precipitation, soil moisture, 

snow water content, and water vapor are a few of the global measurements that passive 

microwave satellite instruments such as the Advanced Microwave Scanning Radiometer-2 

(AMSR2) provide for the Earth sciences community. This is a great strength but also a challenge 

to invert the observations to retrieve specific geophysical quantities of interest.  

 The numerous sensitivities of passive microwave radiometry have been known for 

decades (Staelin 1969) and exploited in earnest via satellite platforms since the late 1970s (Njoku 

1982). Observations by microwave imagers and sounders have proven increasingly important for 

numerical weather prediction (Anderson et al. 1994; English et al. 2000; Geer et al. 2010) as well 

as research purposes. The Special Sensor Microwave Imager (SSMI) series of sensors ushered in 

a new era of remote sensing of cloud water, precipitation, water vapor, sea ice, and ocean winds 

but lacked lower frequency channels suited more for other surface measurements (Hollinger et al. 

1990). 

Launched in 2002, the Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E) aboard NASA’s Aqua satellite (Parkinson 2003) featured higher 

2. Previously published in modified form as Duncan et al. (in review) 
	



	

 73	

spatial resolution than SSMI and frequencies ranging from 6.925 to 89.0 GHz. With its low 

frequency channels sensitive to soil moisture and sea surface temperature (SST) as well as higher 

frequency channels sensitive to emission and scattering from hydrometeors, AMSR-E provided a 

vehicle ideally suited to studying the hydrologic cycle, complemented by other sensors in the A-

Train constellation (L’Ecuyer and Jiang 2010). A follow-on sensor, AMSR2 aboard the Global 

Change Observation Mission Water-1 (GCOM-W1) satellite, extends the data record of AMSR-

E but features slightly greater spatial resolution and two further low frequency channels for 

improved noise mitigation over land (Imaoka et al. 2010). GCOM-W1 was launched on May 17th 

2012 by the Japanese Aerospace Exploration Agency (JAXA) and joined the A-Train on June 

29th 2012.   

  A radiometer measures a set of brightness temperatures (TBs) for a given scene. To 

decipher what the satellite sensor sees—to determine what contributes to the TB vector from the 

observed scene—is accomplished through the retrieval algorithm. Each science discipline 

typically developed its own algorithms independently of other disciplines; this occurred for 

historical reasons as well as physical ones. For instance, inversion of the TB vector to yield a rain 

rate or atmospheric profile is very different from determining where the sea ice edge is located. 

Each discipline contends with its own signal to noise ratio (SNR) and often with a different 

channel subset. The U.S. AMSR-E Science Team had five separate retrieval algorithms, none of 

which interacted despite having many of the same sensitivities (Comiso et al. 2003; Kelly et al. 

2003; Njoku et al. 2003; Wentz and Meissner 2000; Wilheit et al. 2003). This has understandably 

led to somewhat divergent efforts. 

 Due to the numerous sensitivities of passive microwave frequencies, the standard AMSR-

E retrieval algorithms used screening criteria and ancillary data to make the respective inversion 



	

 74	

problems tractable. However, with an integrated retrieval of all geophysical quantities of interest, 

the need for screening and ancillary information is more limited, making an integrated algorithm 

attractive. The integrated approach removes the possibility of contradictory retrievals and helps 

to limit the number of ambiguous retrievals. This approach is however a compromise of sorts, in 

that an ideal retrieval would simultaneously retrieve all variables via physical radiative transfer 

modeling of all radiatively significant species. This has been attempted by others (Boukabara et 

al. 2011), but current limitations of modeling hydrometeors and surface emissivities at 

microwave frequencies dictate a more piecemeal approach for the time being. 

The remainder of this paper is split into two main parts. The first part gives details of the 

integrated approach for AMSR2 retrievals. The second part focuses on science objectives over 

ocean surfaces, namely retrieving light precipitation and detecting the sea ice edge, which have 

historically been difficult to accurately retrieve. 

 

4.2 Data 

The AMSR2 sensor aboard JAXA’s GCOM-W1 satellite is a conically-scanning 

radiometer with frequencies from 6.925 GHz to 89.0 GHz (Imaoka et al. 2010). Its 2.0 m 

reflector dish enables greater spatial resolution than its predecessor, AMSR-E, which had a 1.6 m 

reflector. As a microwave imager, it provides excellent spatial coverage of the Earth within its 

1450 km swath. GCOM-W1 is in a sun-synchronous orbit at a nominal inclination of 98.2° and 

altitude of 700 km, crossing the equator at approximately 13:30 local time on ascending orbits as 

a member of the A-Train constellation.  

The input data common to all the science algorithms discussed are the AMSR2 L1R 

dataset (Maeda et al. 2016). The L1R product contains brightness temperatures, geolocation 
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information, and land percentage within the satellite’s field of view (FOV), among other fields. 

Crucially, L1R provides TBs already co-registered and convolved to the FOV of choice using the 

well-established Backus-Gilbert method (Backus and Gilbert 1970). It should be noted that TBs 

are never de-convolved in L1R, in that the original spatial resolution of each frequency is never 

artificially enhanced, a process that inherently adds noise. Thus, for instance, TBs convolved to 

the 10 GHz resolution means that TBs are averaged into the 10 GHz FOV from 18 GHz to 89 

GHz, but the 6.9 GHz and 7.3 GHz channels remain at their native resolution. These differences 

are key, as the native resolutions of AMSR2 vary significantly by frequency, as seen in Table 4.1. 

The use of convolved TBs is important for physical retrievals of spatially heterogeneous fields 

such as precipitation, cloud water, or sea ice (e.g. Rapp et al. 2009). 

 

Table 4.1 AMSR2 sensor characteristics. All frequencies include both vertically and horizontally polarized 
channels, and 89 GHz has A and B scans. For which algorithms use each channel, O = ocean suite, P = precipitation, 

I = sea ice, and an asterisk signals that only the V-pol channel is used. 

 

 In lieu of each algorithm using its own land mask, the integrated algorithms use the L1R 

land percentage field at the FOV size of choice. The only exception is a mask of Antarctic 

coastlines, for which more up-to-date maps are used. For the ancillary data used by the ocean 

suite and precipitation algorithms, see Duncan and Kummerow (2016) and Kummerow et al. 

(2015), respectively. 

  In addition to AMSR2 data, this study also uses CloudSat data products. CloudSat is a 

nadir-pointing radar operating at 94 GHz, a frequency suited to cloud and light precipitation 

	
Frequency [GHz] 6.925 7.3 10.65 18.7 23.8 36.5 89.0  

FOV [km] 62 x 35 58 x 34 42 x 24 22 x 14 26 x 15 12 x 7 5 x 3 

NEDT [K] 0.34 0.43 0.70 0.70 0.60 0.70 1.2 

Algorithm(s) O* - O, P O, P, I O, P*, I* O, P, I* O, P, I 
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detection (Stephens et al. 2002). Due to CloudSat’s position in the A-Train constellation closely 

following GCOM-W1, CloudSat observations occur a few minutes later, near the center of the 

AMSR2 swath. In this study we use the CloudSat 2C-Rain-Profile (Lebsock and L’Ecuyer 2011) 

and 2C-Snow-Profile (www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-snow-profile) 

products. 

4.3 The Individual retrieval algorithms 

The following are very brief descriptions of the three individual algorithms for AMSR2 

that are discussed in this study: precipitation, sea ice, and ocean suite. For further information 

and technical details, see the referenced publications.  

4.3.1  Precipitation 

The precipitation algorithm for AMSR2 is the latest available version of the Goddard 

Profiling algorithm (GPROF; Kummerow et al. 2015), GPROF2014v2, the same algorithm used 

operationally for the Global Precipitation Measurement (GPM) mission (Hou et al. 2014). 

GPROF performs a Bayesian inversion, meaning that it calculates a Bayesian average 

precipitation rate by assuming that precipitation in the past has the same radiometric 

characteristics that it does now. For this to work, GPROF relies upon a massive a priori database 

of TBs and hydrometeor profiles from coincident radiometer and radar observations made by the 

GPM core satellite. The inversion is then simply a weighted average of hydrometeor profiles, 

and associated precipitation rates, from pixels that had a TB vector similar to that observed by 

AMSR2. This is shown in Eq. 4.1 as the expected value (E) of rain rate x given measurement y, 

forward model f(x), and observation error covariance matrix Sy.  

𝐸 𝑥 = 	 𝑥X𝑒,\.](+,^(_`))
abcde(+,^ _` )X 𝑒,\.](+,^(_`))abc

de(+,^ _` )X  (Eq. 4.1) 
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The database is stratified by water vapor and skin temperature to make the prior more 

representative and to further constrain the retrieval. The weighting includes the distance between 

the observed TB vector and profiles in the a priori database as well as the inverse of the channel 

uncertainties—effectively sensor noise plus an estimate of forward model error. GPROF 

currently uses nine AMSR2 channels in the Bayesian inversion (channels that approximate those 

on the GPM core satellite): 10V/H, 18V/H, 23V, 36V/H, and 89V/H. 

4.3.2  Sea ice 

Sea ice concentration (SIC) from AMSR2 is computed by the NASA Team 2 (NT2) 

algorithm, effectively unchanged from the operational algorithm used for AMSR-E (Comiso et al. 

2003), except for adjustment of TBs to maintain consistency with the original AMSR-E 

coefficients (see Meier and Ivanoff (in review) for details). Presence of sea ice on ocean surfaces 

presents a warm and unpolarized signal against the comparatively cold and polarized ocean 

background due to ice’s higher emissivity. NT2 exploits the differential emission signals of V 

and H polarizations, with presence of sea ice increasing H-pol TBs more than V-pol. This is done 

via the so-called polarization ratio (PR) and spectral gradient ratio (GR), shown in Eq. 4.2 and 

Eq 4.3 respectively, with n denoting frequency and p polarization. 

𝑃𝑅 𝜐 = (𝑇h,i 𝜐 − 𝑇h,j 𝜐 ) (𝑇h,i 𝜐 + 𝑇h,j 𝜐 )  (Eq. 4.2) 

𝐺𝑅l 𝜐-, 𝜐K = (𝑇h,l 𝜐- − 𝑇h,l 𝜐K ) (𝑇h,l 𝜐- + 𝑇h,l 𝜐K )  (Eq. 4.3) 

These equations account implicitly for the effect of sea ice temperature on the emission 

signal but can be sensitive to contamination by weather signals such as precipitation, thick 

clouds, or high wind speeds (Meier et al. 2015). For this reason, an iterative approach is used to 

match the observations with a lookup table of modeled values derived from a radiative transfer 
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model for 12 different atmospheres (Markus and Cavalieri 2009). The NT2 sea ice algorithm 

uses six of the AMSR2 channels: 18V/H, 23V, 36V, 89V/H. 

4.3.3  Ocean suite 

The “ocean suite” constitutes a group of parameters that are readily retrievable over water 

surfaces in the absence of significant precipitation. These include total precipitable water (TPW), 

wind speed, SST, and cloud liquid water path (LWP). The presence of hydrometeors larger than 

cloud drops causes scattering, which is difficult to model accurately at microwave frequencies. 

Thus the ocean suite parameters are successfully retrieved in non-precipitating scenes only. The 

ocean suite algorithm for AMSR2 is the Colorado State University 1-dimensional variational 

algorithm, or CSU 1DVAR (Duncan and Kummerow 2016). The variational approach, also 

known as optimal estimation, blends prior knowledge, observations, and the uncertainties in both 

to retrieve an optimal solution (Rodgers 2000). The 1DVAR determines a state vector x that 

minimizes the cost function F and yields fit metric c2: 

Φ = 𝑦 − 𝑓 𝑥, 𝑏 )𝑆+,- 𝑦 − 𝑓 𝑥, 𝑏 + 𝑥 − 𝑥/ )𝑆/,- 𝑥 − 𝑥/   (Eq. 4.4) 

𝜒K = 𝑦 − 𝑓 𝑥, 𝑏 )𝑆+,- 𝑦 − 𝑓 𝑥, 𝑏  (Eq. 4.5) 

where y is the observed TB vector, f is the forward model, b includes assumed elements of the 

forward model, xa is the a priori state vector, and Sy and Sa are the observational and a priori 

error covariance matrices, respectively.   

The CSU 1DVAR uses the Community Radiative Transfer Model (CRTM v2.2.3) and 

FAST microwave Emissivity Model (FASTEM-6) to forward model the atmospheric and ocean 

surface state, iterating to find an optimal geophysical state that best matches the observed TB 

vector from AMSR2 (Liu and Weng 2013; Kazumori and English 2015). Unlike many 

variational retrievals that assume non-correlated observation errors, the CSU 1DVAR takes co-
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varying forward model errors into account, as seen in Fig. 4.1. Prior information comes from 

reanalysis. For the variational inversion the CSU 1DVAR currently uses eleven AMSR2 

channels: 6V, 10V/H, 18V/H, 23V/H, 36V/H, 89V/H. 

 

 

Figure 4.1 Observation error covariance matrix (left) and associated correlations (right) for the AMSR2 ocean suite 
algorithm, CSU 1DVAR. 

 

4.4 The Integrated retrievals 

 4.4.1  First pass 

The guiding philosophy for integrating the retrievals was to modify historical retrievals as 

little as possible, keeping the code modular so as to accommodate updates to the algorithms 

quickly and easily. This was achieved by converting the individual algorithms to callable 

subroutines for the integrated algorithm. The algorithms are all run using L1R TBs convolved to 

the 18/23 GHz FOV unless otherwise stated. 

 Precipitation is run first, as neither sea ice nor ocean suite can accurately retrieve in 

pixels with significant precipitation present. Surface types are initially assigned according to 

classes developed for the operational GPM algorithm (Kummerow et al. 2015), but can be 

supplanted and GPROF rerun if the other algorithms disagree with that surface type. Observed 



	

 80	

pixels that exhibit precipitation rates greater than 2 mm hr-1 with probabilities of precipitation 

greater than 50% are not run by sea ice.  

 Ocean suite runs next. Ocean suite is very sensitive to contamination by land or sea ice 

due to the accuracy expected from the forward model; a sea ice or land intrusion of 1 to 2% may 

be noticeable in the retrieval, with even side-lobe emission signals outside the pixel’s nominal 

FOV (defined by half power beam-width, see Fig. 4 in Draper et al. (2015)) significant near the 

sea ice edge and coastal regions. For instance, a 2% sea ice concentration produces approximate 

jumps in the 6V and 10H channels of +2 K and +3 K compared to open ocean, well within the 

sensitivity of the algorithm. Because of this, ocean suite uses a very conservative screen for 

pixels with land nearby. The algorithm runs for all pixels that meet the criteria for being land-

free.  

 Sea ice is run last. The original screens for contamination by weather signals (Comiso et 

al. 2003) are replaced with retrieved precipitation and cloud values from the other algorithms. 

The sea ice algorithm is run for pixels with SST below 278 K and 275 K in the Northern and 

Southern hemispheres, respectively, if the percentage of land within the FOV is below 50%. 

These SST data come from the ocean suite algorithm or its a priori if convergence was not 

achieved. 

 4.4.2  Consistency checks 

Once the three algorithms have been run—largely without modification—initial 

inconsistencies are examined (Fig. 4.2). Checks are performed to see if there are any physical 

inconsistencies, such as nonzero SIC and a converged ocean suite retrieval, or precipitation- and 

ice-free pixels where ocean suite did not converge. 
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Figure 4.2 Flow chart for processing the integrated retrievals. 
 

 The precipitation algorithm is rerun for pixels where the surface classification differs 

from that of the initial run. This could be due to the sea ice algorithm giving a different sea ice 

edge than the operational GPM scheme, or if ocean suite converged for a pixel that was not 

defined as open ocean previously. Because retrieved precipitation is used as a screen for the sea 

ice algorithm, and retrieved precipitation is dependent upon the surface type defined, the sea ice 

algorithm is rerun or results re-screened depending on the new precipitation results. This step 

ensures better physical consistency of the retrieval results, an improvement on each algorithm 

being run individually.  

 4.4.3  Ambiguous areas 

Beyond the simpler checks for consistency, there are necessarily gray areas where the 

algorithms disagree but are not contradictory. For instance, due to the CSU 1DVAR’s use of the 

6V and 10V/H channels, it is sensitive to sea ice outside the nominal 18 GHz FOV used by the 

First	pass
•Precipitation
•Ocean	suite
•Sea	ice

Re-run	for	
consistency

•Re-run	precipitation	if	surface	
class	changed
•Re-run	or	re-screen	sea	ice	if	
precipitation	changed

Output	common	
file

•Check	for	
consistency,	flag	
accordingly
•Output	file	
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sea ice algorithm. Since the 6 GHz FOV is significantly larger than the 18 GHz FOV (see Table 

4.1), there will necessarily be disagreement between the ocean suite and sea ice algorithms as to 

the location of the sea ice edge. The sea ice algorithm is generally limited to SIC³15% and can 

therefore sometimes underestimate sea ice extent when compared to other satellite products 

(Meier et al. 2015), whereas the CSU 1DVAR is sensitive to SIC of around 1% to 3%. These 

ambiguous pixels between definite sea ice and definite open ocean are flagged. This topic is 

examined further in Section 4.6.  

Even when uncontaminated by sea ice or nearby land, open ocean pixels can result in 

disagreements between the ocean suite and precipitation algorithms. This is often due to light or 

frozen precipitation, but can be caused by radio frequency interference (RFI) or other factors not 

included in the retrievals’ forward model. RFI typically affects the lower frequencies most 

(Zabolotskikh et al. 2015), causing some pixels near a populated coastline to fail for the ocean 

retrieval. GPROF over ocean is typically unaffected by RFI due to larger assumed errors for low 

frequencies, as is NT2 since RFI is rare near the poles. The CSU 1DVAR is very sensitive to RFI 

because of its small assumed errors at 6V and 10V/H (Fig. 4.1), however any significant RFI will 

cause the cost function to spike and result in a failed retrieval. RFI is consequently not a main 

driver of discrepancies found in the integrated retrievals.  

Detection of light rainfall is problematic from a satellite platform due to the smooth 

continuum consisting of liquid cloud, drizzle, and rain. If drizzle droplets are sufficiently small, 

they produce negligible scattering and are almost indistinguishable from cloud drops at AMSR2 

frequencies. This continuum of warm cloud to drizzle is largely linear in TB space with 

increasing water content, making it difficult to determine areas of light precipitation definitively. 

The current version of GPROF is based upon observations from the GPM space-borne radar, the 
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Dual-frequency Precipitation Radar (DPR; Hou et al. 2014). Any precipitation below the 

sensitivity limits of DPR, approximately 0.2 to 0.5 mm hr-1 depending on regime, is therefore not 

included in the a priori database of GPROF. In contrast, the CSU 1DVAR will readily ascribe 

light drizzle to cloud liquid water if the liquid water path is not constrained. These issues are 

further explored in the following section.  

Detection of snowfall is even more difficult for a sensor like AMSR2, as the scattering 

signal from frozen hydrometeors can be small (Bennartz and Bauer 2003; Skofronick-Jackson et 

al. 2013) and highly dependent on ice particle type and distribution (Bennartz and Petty 2001). In 

addition, supercooled water can suppress the scattering signal from frozen hydrometeors. These 

properties are useful for seeing through most ice clouds, but make snow detection difficult.  

Precipitation detection is important for the integrated retrieval as both ocean suite and sea 

ice retrievals are compromised by certain precipitation intensities, though each has different 

sensitivity to precipitation. Even heavier precipitation presents difficulty, as it manifests 

differently in the precipitation and ocean suite algorithms depending on regime. From the 

continuum of increasing precipitation rate and probability from the Bayesian averaging of 

GPROF, and decreasing quality-of-fit (increasing c2) values from the ocean suite algorithm, 

there is no ideal method to demarcate which pixels are precipitating or not. For this reason, these 

diagnostic variables are output and some degree of interpretation is left to the user. 

 

4.5 High latitude precipitation 

Tropical precipitation has received a lot of attention from the satellite remote sensing 

community due to the fact that a large majority of global precipitation falls in the Tropics 

(Kummerow et al. 2000). However, as work continues to better characterize precipitation around 
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the globe, light rain, mixed phase precipitation, and snowfall at high latitudes are gaining 

attention (Hou et al. 2014; Behrangi et al. 2016). Remote sensing of precipitation at high 

latitudes is a great challenge for passive (Munchak and Skofronick-Jackson 2013) and active 

(Kulie and Bennartz 2009) sensors alike, even given the observational advances brought by the 

launch of the GPM core satellite in February 2014 (Skofronick-Jackson et al. 2017). The 

following two case studies demonstrate the research utility of integrated AMSR2 retrievals over 

the ocean as related to precipitation at high latitudes. 

4.5.1 Shallow rain 

The first case study is of light rainfall from warm, shallow clouds near the Faroe Islands 

in the north Atlantic on June 27th 2015. Shallow, warm rainfall is challenging to sense from a 

satellite platform but also problematic for models (King et al. 2015), and thus worthy of 

investigation here. Fig. 4.3 shows shallow rain near the Faroe Islands as seen from CloudSat and 

AMSR2. The CloudSat curtain image from the 2C-Rain-Profile product exhibits liquid clouds 

with tops near 2 km. The rain rates retrieved by CloudSat should be detectable from GPROF, and 

indeed GPROF does detect rain in the two areas where CloudSat sees >1 mm hr-1 rain rates. 

However, GPROF underestimates these rain rates by approximately 50% to 80%. This is 

symptomatic of Version 4 GPM products, in that they significantly underestimate precipitation at 

high latitudes due to an excessive reliance on DPR precipitation, which misses much of this 

precipitation (Skofronick-Jackson et al. 2017).  
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Figure 4.3 Warm rain near the Faroe Islands, June 27th, 2015. The colors denote surface rain rates as estimated 
by the precipitation algorithm for AMSR2 and the CloudSat 2C-Rain-Profile algorithm. The associated 

CloudSat profile of rain water content (RWC) is shown in the top right. 
 

Fig. 4.4 shows the perspective from ocean suite, with observed and simulated TB 

matching reasonably well. These TB residuals are scaled by the diagonal elements from Fig. 4.1 

to better convey fit relative to assumed forward model error. Apart from an area of heavier 

precipitation on the west side of the figure, simulated and observed TB are within about 2s of 

assumed errors. The quality of forward model fit in areas shown to be raining from CloudSat 

demonstrates that the drop sizes are small enough to be largely non-scattering. The viability of 

retrieving precipitation from non-scattering drizzle such as this with the variational retrieval is 

discussed later in Section 4.7. 
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Figure 4.4 Ocean suite TB residuals (observed minus simulated TB) for the eleven AMSR2 channels used in the 
retrieval for the warm rain case, June 27th, 2015. Values are scaled by the assumed forward model uncertainty, seen 

in Fig. 4.1. 
 

Compared to the following case from the Southern Ocean, this scene near the Faroe 

Islands is relatively uncomplicated. With SST around 280 K, wind speeds of 4 to 10 m s-1, and 

the islands themselves accounted for, the scene should not be a tough task for either retrieval. 

However, although the shallow rainfall is detected by the precipitation algorithm, it is 

underestimated relative to CloudSat. One possible reason for this is that the model-derived TPW 

field used within GPROF to subset the a priori is 3 to 7 mm lower than retrieved by ocean suite 

(not shown). Ocean suite TPW may be biased high due to the clouds present, but a low-biased 

TPW used by GPROF could explain some of the rainfall underestimation (Kummerow et al. 

2015). Another possible reason is that some of the profiles included in the Bayesian average 

were below the DPR detectability limit, bringing the average down.  

For this scene, the integrated perspective shows that GPROF is largely successful in 

detecting precipitation but its estimate is biased low relative to CloudSat. The CSU 1DVAR 
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retrieves thick, largely non-scattering clouds because it does not partition columnar liquid water 

into cloud and drizzle. To improve rain rate estimates from GPROF, a more accurate TPW value 

could be used, especially for cases in which retrieved TPW exceeds that of a saturated column. 

This could apply even for shallow rain that DPR may struggle to detect or differentiate from 

ground clutter. The integrated retrievals show that future improvements for detection and 

estimation of warm rain at high latitudes may be aided by running a variational retrieval in 

tandem with GPROF, an idea explored in Section 4.7.  

4.5.2 Snow 

The second case study is from an overpass of a Southern Hemisphere extratropical 

cyclone on Oct 31st 2014 near the South Georgia and Sandwich Islands. This case presents a 

frontal system occurring near the CloudSat-observed southern hemisphere precipitation 

maximum around 55°S, a region in which observational precipitation datasets and reanalyses 

alike have marked disagreements (Behrangi et al. 2016). Containing high wind speeds, the 

Antarctic sea ice edge, and precipitation in multiple phases, this region offers a complex case to 

analyze with the integrated retrievals.  

Fig. 4.5 shows the ocean suite retrievals and precipitation retrievals, along with the 

CloudSat intersect and sea ice boundary. The vertical cross-section from the 2C-Snow-Profile 

product (Fig. 4.6) shows that there are many CloudSat pixels whose total IWP is 0.5 kg m-2 or 

more, values that are at least theoretically visible from an AMSR2-like sensor (Skofronick-

Jackson et al. 2013), depending on predominant ice habit. GPROF completely misses the 

snowfall seen by CloudSat, which exceeds 1 mm hr-1 in some areas. CloudSat determines pixels 

further north in the transect to be either mixed phase or non-precipitating, whereas GPROF 

assigns light snowfall albeit with middling probabilities of precipitation.  
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Figure 4.5 Snow and mixed-phase precipitation near South Georgia and the Sandwich Islands in the South Atlantic, 
Oct. 31st, 2014. Panels show: snow rate from AMSR2 and CloudSat (top left), probability of precipitation from 

GPROF (top right), wind speed with SIC contoured at 20% intervals (bottom left), ocean suite quality of fit (bottom 
right). 

Figure 4.6 Profile data from CloudSat 2B-GEOPROF and 2C-Snow-Profile products. Top panel shows radar 
reflectivity and bottom panel shows snow water content (SWC). 

 
 

 
The ocean suite retrieval finds high wind speeds of 20 to 30 m s-1 on the north side of the 

cyclone and converges fairly well throughout the scene, apart from an area of heavier 

precipitation north of the Sandwich Islands. This is a difficult scene for ocean suite to parse, 
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evidenced by what appears to be a spatial artifact just north of South Georgia Island where a 

sharp change in the a priori is manifest. The gray pixels on the west of the figure were not run by 

ocean suite due to standard sun glint screening. Fig. 4.7 shows TB residuals scaled by assumed 

forward model errors. Low simulated TB at low frequencies in the vicinity of high winds points 

to an emissivity model bias that could be corrected. Significantly, the snow band observed by 

CloudSat appears only in the 89V TB residual and not very strongly—it is similar in magnitude 

to low frequency emissivity model errors, underscoring the difficulty of snowfall retrieval with 

AMSR2. 

 

Figure 4.7 Ocean suite TB residuals, observed minus simulated TB, for AMSR2 channels used in the retrieval for the 
snow case, Oct. 31st, 2014. Values are scaled by the assumed forward model uncertainty, seen in Fig. 4.1. 

 

It appears that GPROF is aliasing high wind speeds on the north side of the cyclone to a 

precipitation signal and missing a significant snow band on the south of the cyclone. The latter is 

an area where CloudSat is confident in retrieving snowfall whereas the northern part of the 

cyclone is a region where CloudSat sees no definite precipitation and ocean suite converges 
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fairly well, although CloudSat does not converge due to it being a mixed-phase regime. The 

snow on the south side of the cyclone missed by GPROF is, however, consistent with theory in 

that it is near the edge of detectability at AMSR2’s high frequency channels for a deep, synoptic 

cloud system (Skofronick-Jackson et al. 2013).  

Interestingly, GPROF’s probability of precipitation field is at its minimum in the region 

CloudSat shows it snowing hardest. The nature of GPROF’s Bayesian averaging explains both 

why the snow signal is given such a low probability of precipitation and why a high wind speed 

might be associated with precipitation. A large majority of snowing scenes at high latitudes are 

missed by DPR (Munchak and Skofronick-Jackson 2013), the sensor providing GPROF’s a 

priori database of hydrometeor profiles, and GPROF currently contains no on/off precipitation 

determination (Kummerow et al. 2015). So, it is unsurprising that the result yields a low 

probability of precipitation and consequently miniscule snowfall rates due to the averaging.  

The relationship between high wind speeds and precipitation from GPROF may come 

from two effects. GPROF searches the a priori database for all profiles within the model-derived 

TPW/SST regime and then weights these profiles by the TB vector alone. This weighting 

implicitly includes a large range of wind speeds, as the profiles originally come from 

observations by the GPM core satellite that necessarily include a range of wind speeds. 

Therefore, since the database is unaware of wind speeds and resultant ocean emissivities, the 

best-matching profiles may be profiles containing a mixture of liquid water emission and 

scattering from snow, not inconsistent with a mixed phase cloud and high wind speeds. Secondly, 

if many profiles in the database were cases in which high wind speeds were coincident with 

precipitation seen by DPR, the simple correlation will be manifest in the result since GPROF 

does not account for wind speeds explicitly. This represents a clear case in which the integrated 
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retrievals could benefit one retrieval specifically, as there is potentially useful information 

available that is not currently used.  

A key finding here is that GPROF lacks sensitivity in certain regimes, but there remains 

information content in the TB vector that can be utilized. Although the scattering characteristics 

of precipitating ice vary widely by species (Skofronick-Jackson et al. 2013) and are difficult to 

forward model with fidelity (Bennartz and Petty 2001), the observed TB vector’s departure from 

an emitting/absorbing atmosphere is notable and could plausibly be brought to bear for improved 

precipitation retrievals. Certainly, accounting for surface emissivity changes due to wind speed 

could improve the Bayesian average, as could the inclusion of hydrometeor profiles such as 

those observed by CloudSat that exist below DPR’s sensitivity limit. 

 

4.6 Sea ice edge 

Passive microwave measurements have been a critical component of sea ice monitoring 

efforts for nearly four decades (Comiso and Nishio 2008). Polar regions can have very persistent 

cloud cover, with average cloud fraction of about 74% over the Arctic ocean (Chernokulsky and 

Mokhov 2012), rendering microwave imagery invaluable for detecting sea ice extent in the 

Arctic and Antarctic, complementary to infrared and visible polar-orbiting satellite sensors.  

The large footprint of passive microwave sensors can smear out significant areas of sea 

ice or miss smaller areas of open ocean (Meier et al. 2015). AMSR2 features lower frequency 

channels and a higher effective spatial resolution than most microwave imagers, making it a 

good testbed for research on improved methods for sea ice edge detection. The two cases that 

follow exemplify difficulties in sea ice edge detection from a microwave sensor which benefit 

from integrated retrievals and independent observations to better understand the full picture.  
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4.6.1 Sea of Okhotsk 

Fig. 4.8 shows a visible image from the Japanese Meteorological Agency’s Himawari-8 

geostationary satellite (Bessho et al. 2016) from March 29th, 2016 at 2:50Z, near the island of 

Hokkaido. This image presents a compelling case for an integrated retrieval, containing swirls of 

sea ice in the Sea of Okhotsk and clouds at various levels. Fig. 4.9 shows approximately the 

same domain as seen from AMSR2, which passed over between 2:43Z and 2:48Z, with SIC, c2 

from ocean suite, and outlines of retrieved liquid clouds shown. This figure contains pixel-level 

retrievals averaged together on a 0.15° grid to aid interpretation, as AMSR2 observations are 

dense near the swath’s edge. 

 
Figure 4.8 Visible image from the Himawari-8 geostationary satellite sensor, March 29th, 2016 at 2:50Z. Image 

courtesy of JMA/NOAA/CIRA. 
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As seen in Fig. 4.9, the sea ice and ocean suite retrievals effectively parse the emission 

signals from sea ice, liquid clouds, and areas with clear sky or thin ice clouds. Some areas near 

the ice edge with no ocean suite convergence or high c2 values deserve a closer look, as some of 

these appear to be swirls of sea ice in the Himawari-8 image. There was no significant 

precipitation in this scene from GPROF, hence the focus on sea ice edge alone.  

 
 

Figure 4.9  AMSR2 overpass of approximately the same region shown in Fig. 4.8, the Sea of Okhotsk on March 
29th, 2016 at 0245Z. Ocean suite c2 is shown in green, SIC is shown in blue, and liquid clouds are shown in white 

contours. 
 

In an attempt to resolve the sea ice edge more accurately, the 1DVAR is run again, but 

this time with no 6 GHz or 10 GHz channels and SST now fixed in the iteration. This limits the 

impact of emission signals from outside the nominal 18/23 GHz FOV and should yield better 

agreement with the sea ice algorithm. We then zoom in to the swirls of sea ice northeast of 
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Hokkaido. These pixel-level retrievals and the corresponding zoomed-in Himawari-8 image are 

given together in Fig. 4.10.  

 

Figure 4.10 A zoomed in view of Figs. 4.8 and 4.9, centered on a sea ice gyre northeast of Hokkaido. The top panel 
is the zoomed in Himawari-8 image. The bottom panel shows SIC and ocean suite c2 at the AMSR2 pixel level. 

Gray pixels signify pixels where ocean suite was not run due to land contamination. 
 

The close-up view of sea ice and ocean suite retrievals northeast of Hokkaido (Fig. 4.10) 

makes it clear that the lower spatial resolution of the low frequency channels is not the cause for 

discrepancy, but instead sensitivity to low sea ice concentrations is to blame. This is not an 

unknown cause for error in standard sea ice retrievals (Meier and Ivanoff (in review)) due to 

their being tuned to match validation data, and the need to have a cutoff at some concentration. 

Since passive microwave sea ice algorithms are primarily concerned with the large signal of ice 
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extent in the Arctic or Antarctic, the fact that low concentrations near Hokkaido, Japan are 

missed is not unexpected. This is a good example of the high sensitivity exhibited by the CSU 

1DVAR to an inhomogeneous ocean scene. So despite resulting in a gray area of uncertain sea 

ice concentration, such scenes of marginal sea ice are still better depicted by the integrated 

algorithm than if using one algorithm by itself. 

4.6.2 2012 Arctic ice loss 

The rapid loss of Arctic sea ice over the past few decades is a strong manifestation of 

climate change and a positive feedback on the climate system (Flanner et al. 2011). Arctic sea ice 

minima typically occur in September each year and are closely watched for purposes of climate 

monitoring. Local weather can play a key role in these events, perhaps mostly dramatically in the 

two lowest minima recorded to date, those of 2007 and 2012, an increasing consequence of 

thinner ice comprising more of the total area of sea ice (Kay et al. 2008; Parkinson and Comiso 

2013). The causes and monitoring of these minima are of interest for operational and research 

purposes, as such events may become more common in the future as multiyear ice rapidly 

declines (Comiso 2012).  

Prior to the 2012 minimum, early August witnessed the rapid loss of about 4x105 km2 of 

sea ice, an area roughly the size of California. Along with the abundance of thin, first-year ice, 

the 2012 Arctic sea ice minimum was affected by an early August storm that brought warm, 

moist air and strong winds (Parkinson and Comiso 2013). With such an event, thick cloud cover 

and precipitation make it difficult to assess the extent of sea ice, and indeed there were large 

discrepancies between estimates from AMSR2 and those from other datasets (Meier et al. 2015). 

The integrated AMSR2 retrieval provides a unique view of such complex events, as it captures 

the interplay of precipitation, clouds, winds, and sea ice.  
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Integrated AMSR2 retrievals from August 16th 2012 are shown in Fig. 4.11. This date 

was chosen as indicative of the period of large-scale breakup of sea ice extent north of the 

Chukchi Sea (between Russia and Alaska), and because it was a period of extreme disagreement 

in sea ice extent between AMSR2 and the operational Multisensor Analyzed Sea Ice Extent 

(MASIE) product (nsidc.org/data/masie), as shown by Meier et al. (2015). The integrated 

retrieval sheds some light on this complex scene that includes precipitation, high winds, and an 

unclear sea ice edge. A strong cyclone in the bottom of the figure, north of Alaska, brings rain 

and warm air deep into the Arctic, speeding up the sea ice breakup. This is the area of interest, 

and one where the integrated retrievals can be of use.   

 

Figure 4.11 Polar projection view of all AMSR2 pixels from August 16th, 2012. Panels show: wind speed (top left), 
6V TB residual from ocean suite (top right), surface precipitation rate (bottom left), and SIC (bottom right). For the 

top panels, gray signifies pixels with no convergence below c2 = 10 for ocean suite. For sea ice, gray signifies pixels 
not run due to atmospheric contamination. 
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GPROF finds significant precipitation north of Alaska in an area deemed to be ice-free. 

However, examination of the 6V TB residual from ocean suite within the precipitating area 

exhibits a +5 K signal in some pixels (Fig. 4.11), indicating that low sea ice concentrations are 

likely present, as the 6V channel is largely unaffected by precipitation. Contrast in the clarity of 

the sea ice edge is stark—it is very well defined north of Eurasia but messy north of the Chukchi 

Sea—and demonstrates the utility in using 6.925 GHz for sensing sea ice. It should be noted that 

the high wind speeds found in marginal sea ice cases, as in Fig. 4.11 or the ice edge in Fig. 4.5, 

are almost certainly mistaken, as the signal from low SIC is hard to distinguish from high wind 

speeds because both preferentially increase emission in the H-pol channels. 

The integrated retrievals ultimately reveal a middle ground of ice extent that falls 

between the discordant NT2 and MASIE estimates as investigated by Meier et al. (2015). Rather 

than being ice-free or remaining ice-covered, the largescale breakup is ongoing, with high wind 

speeds, TPW, columnar liquid water, and areas with likely ice concentrations below the NT2 

algorithm’s sensitivity threshold. This more nuanced view of a particularly complex scene is 

afforded by leveraging AMSR2’s multispectral information content and all algorithms’ strengths. 

Further exploration of this scene’s areas of marginal ice is given in the following section. 

 

4.7 Discussion 

An integrated approach has been presented for the AMSR2 sensor over ocean. It brings 

together three separate retrieval algorithms—precipitation, sea ice, and ocean suite—to provide a 

powerful product with more information and fewer discrepancies than any one individually. Four 

case studies have been discussed that demonstrate benefits of this approach but also challenges 

for microwave remote sensing that require further work and investigation. This analysis focused 
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on high latitude precipitation and sea ice extent, subjects of interest for global modeling and 

climate monitoring in which microwave observations necessarily play a key role.  

In each case presented, the integrated retrieval yields information potentially valuable for 

physical interpretation. Ambiguous scenes with light drizzle or marginal sea ice concentrations 

are not definitively resolved by the three algorithms, and snowfall remains difficult to detect. 

Whereas in some instances the analysis may point toward improved methods for future algorithm 

development, other instances demonstrate real physical limits to microwave remote sensing with 

the AMSR2 frequencies.  

Improved screening for precipitation aids the sea ice algorithm, and ocean suite can 

override erroneous retrievals that mistake cloud or wind emission signals for emission by sea ice. 

However, marginal cases of sea ice remain a gray area, and not one easily remedied. A few 

retrieval alternatives exist for this scenario. One approach could involve forward modeling 

marginal ice concentrations via CRTM; however, the variability in ice emissivity is difficult to 

model, and the signal is hard to distinguish from that of high wind speeds. Another alternative is 

direct retrieval of emissivity and then backing out the SIC as in (Kongoli et al. 2011), though 

even that approach has a lower limit of 12% SIC and thus would not solve the problems 

encountered here. Lastly, we could use TB residuals at low frequencies from ocean suite to flag 

for probable marginal ice, an idea explored in this section. The explicit forward modeling of 

radiation by the CSU 1DVAR is a potential asset for detecting both marginal sea ice and light 

precipitation. Using the cases presented in Sections 4.5.1 and 4.6.2, we explore solutions to these 

problems next. 
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4.7.1 Shallow warm rain 

To better detect light rainfall from a passive sensor, it helps to leverage information from 

an active instrument such as CloudSat. This was done in two ways: determining likely LWP 

thresholds for drizzle onset, and deriving a mean relationship between rain water path (RWP) 

and surface rain rate.  

Determination of LWP values for drizzle onset was achieved using CloudSat statistics for 

frequency of liquid precipitation after smoothing to approximate a microwave imager footprint 

(Wood 2016). Precipitation frequency in various regimes, broken up by TPW and SST, was 

matched with the probability distribution of LWP as seen by AMSR2, accounting for non-

convergence due to precipitation. From this an appropriate value for drizzle onset was 

calculated—one consistent with CloudSat statistics for each regime. This works best for warm, 

light rain, as large drops or mixed phase drops would cause significant scattering not accounted 

for in the forward model. LWP values for drizzle onset vary from 100 to 240 g m-2 for typical 

TPW/SST regimes encountered. 

To determine a rain rate from a given RWP, assumptions have to be made regarding its 

vertical extent, the drop size distribution, and the fall velocity. Since none of these are known, 

they need to be assumed either explicitly or implicitly. Assuming those parameters implicitly, a 

best-fit relationship between RWP and surface rain rate was calculated from CloudSat data 

(Munchak 2016). 

𝑅𝑅 = 5 ∗ 𝑅𝑊𝑃-.-   (Eq. 4.6) 

This enables us to calculate a rain rate after partitioning total column liquid into cloud 

LWP and rain LWP, a method not uncommon in microwave remote sensing (Wilheit et al. 1977; 

Wentz and Spencer 1998). It is worth emphasizing two things. First, the LWP retrieval assumes 
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non-scattering hydrometeors, so this is only applicable to warm clouds with no large drops 

present. Second, this is akin to an upper bound on drizzle, as the retrieval attributes all water 

above the drizzle threshold to RWP, whereas LWP is typically partitioned into cloud and rain 

gradually above a chosen threshold (Wentz and Spencer 1998).   

We then reexamine the scene near the Faroe Islands discussed in Section 4.5.1. Fig. 4.12 

replaces the GPROF rain rate of Fig. 4.3 with that derived from the CSU 1DVAR and Eq. 4.6. 

The magnitude of these rain rates agrees well with CloudSat in spite of the simplistic 

assumptions. The fact that it does agree well despite being an upper bound estimate is likely due 

to the very shallow nature of the cloud. A thicker cloud with the same RWP, consequently with 

lower rain water content on average, would likely exhibit a lower rain rate and not agree as 

closely with this estimate. 

 

Figure 4.12 Recreating Fig. 4.3, but replacing GPROF rain rates with those calculated from the 1DVAR via Eq. 4.6. 
Gray dots signify pixels whose columnar liquid is greater than or equal to the drizzle threshold as determined from 

CloudSat data, i.e. pixels assumed to be precipitating as per Fig. 3.1. 
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4.7.2 Marginal sea ice 

As shown in Section 4.6, areas of marginal sea ice provide a small but detectable signal 

for passive microwave measurements, especially at low frequencies. However, as with the 

example given above for light precipitation, explicit forward modeling of the atmospheric and 

oceanic state is necessary to effectively diminish the uncertainty and increase the SNR.  

The large-scale breakup of Arctic sea ice, given in Section 4.6.2, exhibited large areas of 

ambiguity north of Alaska where operational and microwave-only estimates diverged. Low 

frequency observations from AMSR2, however, hold information able to elucidate the state 

further. 6.925 GHz is problematic at fine scales due to its very large footprint, but is largely 

insensitive to water vapor, cloud water, and precipitation, making it ideal for sensing the surface 

state. In fact, 6V TB will increase approximately +1 K for 1% of SIC increase in the FOV, and 

10V and 10H will increase 1% and 1.5%, respectively, making concentrations of 2% or greater 

theoretically detectable given the assumed observational uncertainties (Fig. 4.1). We therefore 

define likely marginal sea ice of greater than 3% SIC but less than that detectable by NT2 thus: 

∆𝑇𝑏@i > 3	𝐾;		∆𝑇𝑏-\j > 4.5	𝐾;		 ∆𝑇𝑏-\j − ∆𝑇𝑏-\i ≤ 0	𝐾   (Eq. 4.7) 

where DTB is the TB residual from the ocean suite algorithm, observed minus simulated TB. This 

accounts for significantly increased emission at low frequencies and also the differential 

polarization signal expected from sea ice. As with NT2, possible marginal ice is limited to 

SST<278 K in the Northern Hemisphere.  

For this inequality to be satisfied for an ice-free scene (barring forward model error) SST 

would need to be about 6 K higher than retrieved as well as windier than retrieved; alternately, 

sensor noise at 9s for 6V and 6s at 10H could cause an erroneously labeled marginal ice scene 

(Table 4.1). So despite inexact sensor calibration, absorption errors, and positively correlated 
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emissivity model errors at low frequencies, this is a fairly conservative expression for marginal 

ice, as assumed forward model errors are serr,6v = 0.99 K and serr,10h = 1.00 K. The negative 

difference of 10H and 10V will hold for scenes where the 1DVAR cannot increase H-pol 

emission enough relative to V-pol, a situation indicating likely ice presence. This inequality 

could plausibly be satisfied in very heavy precipitation, but is strongly tied to sea ice at these 

latitudes. 

 

Figure 4.13 As with Fig. 4.11, a near-polar view of Arctic sea ice breakup on Aug. 16th 2012. Panels show: LWP 
(top left), 10H TB residual from ocean suite (top right), surface precipitation rate (bottom left), and SIC (bottom 
right). For the top panels, dark gray signifies pixels with no convergence below c2 = 10 for ocean suite. For all 

panels, light gray shows pixels denoted as marginal sea ice as described by Eq. 4.7. 
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Fig. 4.13 is similar to Fig. 4.11, but with the projection rotated down towards the Chukchi 

Sea in which the sea ice breakup is ongoing. The pixels that satisfy Eq. 4.7 are shown in light 

gray, signaling marginal sea ice. Additionally, the top panels are changed from wind speed and 

D6V to LWP and D10H, respectively, to demonstrate that the resultant marginal ice area is not 

tied to clouds or precipitation. Perhaps unsurprisingly, marginal ice is found near the edge of 

higher SIC areas as determined by NT2. Both behind the cyclone—near Wrangel Island—and 

along the path of the cyclone, marginal ice concentrations are left behind. A trail of marginal ice 

concentrations stretches from Wrangel Island north into the center of the cyclone, covered by 

clouds and precipitation but visible in the lower frequencies of AMSR2.  

Lastly, we test the robustness of the marginal ice signal to assess significance of the 

larger patterns. Most of the marginal ice appears to be small concentrations and sensitive to the 

chosen thresholds. A 33% increase (decrease) in the 6V and 10H thresholds causes 

approximately a 4-fold decrease (increase) in the number of pixels that satisfy the inequality, 

though the spatial patterns largely hold. The marginal ice also changes if maximum allowable 

wind speed in the 1DVAR is lowered, causing an increase of 40% in marginal ice pixels if wind 

speed is limited to 20 m s-1. This happens because the retrieval tends to increase wind speed if 

ice is present due to their similar radiometric effects. This is not a practical limit for the standard 

retrieval, however, since wind speeds greater than 20 m s-1 do exist in nature.  

Due to the large sensitivity of designated marginal ice pixels to the thresholds chosen, 

these results should be interpreted with caution. The average marginal ice pixel exhibits SST 1.5 

K higher than the a priori value and a mean wind speed of 22 m s-1. This indicates that the 

retrieval is working hard to match the TBs, increasing SST and wind speed as much as possible 

but still off by >3 K at low frequencies; conversely, it can indicate that the marginal ice 
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designation is mistaking abnormally warm, windy ocean scenes for sea ice, exacerbated by larger 

than expected forward model errors. Because of these ambiguities, the marginal ice designation 

is better suited as a qualitative tool than a quantitative measurement. 

4.7.3  Conclusions 

These explorations of methods for light precipitation and marginal sea ice detection are 

not yet intended for operational use. They do, however, investigate topics much more suited to 

an integrated retrieval than a simple augmentation of any one individual algorithm. This 

demonstration argues for a more holistic approach to microwave imager retrievals and shows the 

power of AMSR2 for water cycle studies.   

Shallow rain detection and retrieval can be aided by a variational approach to augment 

the Bayesian precipitation algorithm, as shown in Fig. 4.12. Increased sensitivity from direct 

forward modeling of the state effectively diminishes uncertainty and increases the SNR due to 

fewer assumptions being necessary. In contrast, the retrieval of snowfall rates from passive 

microwave measurements will remain a challenging problem because of the lack of significant 

scattering at lower frequencies and the combination of microphysics and radiative transfer 

uncertainty diminishing the SNR.  

Detection of sea ice below the minimum detectable concentrations of NT2 is possible due 

to the higher sensitivity of a variational algorithm. A fairly simple, physically-based heuristic 

was presented that attempted to find areas of marginal sea ice by using low frequency channels 

exclusively. This heuristic can shed light on a complex scene such as sea ice breakup under thick 

cloud cover, though is imperfect and not intended to quantify low concentrations. 

The integrated approach improves the output of each algorithm, but was not a focus of 

the analysis presented. For instance, pixel to pixel sea ice variability is important to capture for 
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using the correct surface type in GPROF, and indeed removes some spatial artifacts from the 

GPROF retrieval because otherwise ancillary data grids for ice are necessary. Since many GPM 

constellation radiometers contain the frequencies used by NT2, it is possible to imagine 

embedding NT2 in the next version of GPROF to improve precipitation estimates in polar 

regions by the GPM constellation.  

Ultimately the integrated retrievals approach will be extended to the AMSR2 land 

algorithms as well, including snow and soil moisture as well as precipitation. This work is 

ongoing, hence the focus on ocean algorithms here. Full reprocessing of a combined AMSR-E 

and AMSR2 data record as AMSR Unified, or AMSRU, featuring integrated retrievals and 

consistent calibration could provide a powerful climate dataset to assess changes over time in the 

global hydrologic cycle. 
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CHAPTER 5 
 
 
 

CONCLUSIONS 
 
 
 

This document centers around a variational retrieval that was developed for microwave 

imagers over ocean. Using this retrieval, information content from passive microwave satellite 

observations was investigated via two state-of-the-art sensors, assessing limitations of the current 

observing system. Forward model errors are posited to have a large impact on retrieval results, 

the conveyed uncertainties of retrieved parameters, and the ultimate utility of the microwave data 

record. To summarize the conclusions of the preceding studies, this final chapter is divided into 

main findings, implications, and future work. 

 

5.1 Main findings 

 Variational retrievals are not new, nor is their application to microwave imagers; each 

chapter of this document cites numerous examples of variational retrievals from the literature, 

studies upon which this dissertation rests. As explained in Chapter 1, a key difference between 

variational methods applied within the satellite data assimilation and retrieval communities lies 

in the assumption of observation errors, especially in areas of cloud and precipitation. Treatment 

of these observation errors is a focal point of Chapters 2 and 3. In reality, it may be impossible to 

quantify all possible errors of an observing system. However, the fullest possible characterization 

of errors will maximize the information content that can be wrung out of an observing system. 

Unrealistic assumed errors constitute wasted information or an over-fit to the measurements. 
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This is not a concept exclusive to satellite meteorology, but it has historically been neglected in 

this field. 

 Section 2.2.3 developed a methodology for quantifying covarying forward model errors 

for microwave imagers. This methodology is not perfect and neglects certain sources of error 

while possibly overestimating others. It could be augmented to be situation-dependent or account 

for spatial inhomogeneity, for instance. The methodology is novel in its attempt to quantify 

forward model error as fully as possible, including forward model parameter error. As in 

Bettenhausen et al. (2006), inclusion of off-diagonal observation error terms was concluded to 

improve the channel weighting and in turn improve the retrievals in areas of otherwise 

ambiguous state vector signals. This was examined in Section 2.5.1 and is in line with 

conclusions on correlated forward model error in DA schemes (Bormann et al. 2011). 

 Retrieval of non-scattering ocean scenes was shown to be successful with the variational 

algorithm presented in Chapter 2, simulating radiances with fidelity and validating well against 

other datasets. This demonstrated that a retrieval with a fully physical forward model could 

compete with a benchmark product (Hilburn and Wentz 2008) with no tuning required. It 

outperforms other published variational imager retrievals (Elsaesser and Kummerow 2008; 

Boukabara et al. 2010) as well as the reanalysis a priori (Table 2.2). While the CSU 1DVAR 

does not yet outperform the so-called Wentz products, its full description of posterior errors and 

fit to the TB vector provide valuable information to users. 

 As outlined in Sections 1.4, 2.6, 3.6, and 4.5, variational retrievals must be guided by the 

limitations imposed by a finite number of channels with non-independent information. The 

information content contained in a given TB vector places a hard limit on what can realistically 

be retrieved. While ancillary data can offer useful constraints in some circumstances, there is no 
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substitute for more spectral information. In the case of raining scenes, for instance, a typical 

imager’s information content limitations dictate that only 3 or 4 variables can be retrieved, 

necessitating assumptions about the drop size distribution and vertical profile (Section 3.3). 

Again in this regard the variational framework is helpful, guiding algorithm development 

through use of the A-matrix as discussed in Sections 3.3.2 and the Appendix. For this reason, 

retrieval of precipitation other than warm rain is deemed too underconstrained for a passive-only 

variational algorithm with current sensors’ limitations.  

 Despite these stated caveats about limited information content and retrieved parameters, 

Chapters 3 and 4 highlighted cases in which the variational retrieval outperforms other 

operational algorithms or proves valuable for interpreting a complex scene. Chapter 4 contends 

that the higher effective signal to noise ratio (SNR) afforded by explicit forward modeling can be 

leveraged to shed light on regions of marginal sea ice, warm rain, and falling snow. The same 

argument is used in Chapter 3 to argue for the CSU 1DVAR’s higher sensitivity to warm rain 

when compared to GPROF. These cases exemplify the thesis that a more holistic treatment of 

observation errors leads to extracting more information from the microwave data record.  

 

5.2 Implications 

 The topic of sensor calibration, mentioned in Chapter 2 and briefly in Chapter 4, was not 

a focus of the work presented. However, calibration is crucial for all retrievals and especially so 

for variational methods, as inconsistent calibration between channels will lead to biases or non-

convergence. One side effect of the GPM mission’s reliance on a constellation of radiometers is 

that relative and absolute calibration of microwave imagers have received increased attention 

from researchers (Draper et al. 2015; Berg et al. 2016). That work on sensor calibration 
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underpins the work presented throughout this document, in that no tuning of Level 1 data was 

required to provide either good validation statistics or Gaussian TB residuals (Figure 2.2). As 

intercalibration of GPM constellation radiometers improves, robust climate trend analysis from 

GPM- and TRMM-era sensors should be increasingly possible, meaning that long term analyses 

of parameters derived by the CSU 1DVAR should be stable.  

 In a reciprocal manner, a variational retrieval such as the CSU 1DVAR can be used in 

studies to improve both relative and absolute sensor calibration due to its physical forward model. 

While not included in this document, such work has been ongoing and should inform future 

intercalibration efforts. In addition, scene-dependent biases such as those from an emissivity 

model can be mitigated via iterative analyses of TB residuals from the retrieval. This has already 

been done in the form of an emissivity model correction based on wind speed, and applied to a 

recent research version of the CSU 1DVAR. The potential thus exists to use the work herein to 

improve the calibration of GPM constellation radiometers, or assess and mitigate forward model 

biases in future versions of the algorithm. 

 Crosstalk errors are also related to discussion of the viability of climate trend analysis 

from the passive microwave data record, as any aliasing of radiometric signals from one 

parameter to another could affect such an analysis. Chapter 2 investigated crosstalk errors and 

concluded that a fuller representation of observation errors and a priori covariances could 

improve this long-standing problem in satellite retrievals. In particular, the description of 

posterior errors afforded by a variational retrieval, and these errors’ covariance, allows for 

quantitative assessment of crosstalk. While crosstalk errors can be addressed as a post hoc 

correction (Elsaesser et al. in review), better treatment of crosstalk in the retrieval itself should 

lead to better downstream products. 
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 Treatment of correlated errors for satellite radiances has shown promise in operational 

DA schemes (Weston et al. 2014; Bormann et al. 2015). It is argued in this work that 

assimilation of passive microwave radiances in cloudy or precipitating scenes, known as all-sky 

conditions, could benefit from the type of error covariance analysis presented in Chapters 2 and 3. 

This is consistent with the literature and the shared mathematics of OE and DA as discussed in 

Section 1.2, but was outside the scope of the work presented here and is therefore an unexplored 

implication of this work.  

   

5.3 Future work 

 Chapters 2 and 3 used data from the GMI sensor while Chapter 4 focused on operational 

products from the US AMSR2 team. A few elements of future work are related to these two 

missions. 

As mentioned in Section 4.7.3, a unified AMSR product called AMSRU is forthcoming 

that will provide a consistent, intercalibrated record from the AMSR-E and AMSR2 sensors. 

This provides an opportunity to run the CSU 1DVAR for the 15+ year record and analyze any 

trends over this time period. The integrated approach outlined in Chapter 4 can also be 

implemented in an extended form, including the land algorithms, for a data product that can be 

applied in global water cycle studies. Any such analysis could leverage the CSU 1DVAR’s 

posterior error estimates and changes in TB residuals to assess the significance of any trends that 

are present. 

As with the integrated algorithms presented in Chapter 4, the development process that 

led to Chapter 3’s warm rain retrieval included a phase in which GPROF and the CSU 1DVAR 

were run side by side. The blended Bayesian/variational approach to precipitation retrieval 
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(Section 3.6) could thus potentially improve the GPM constellation’s representation of drizzle at 

high latitudes (Table 3.2), a known problem despite the advances realized from DPR 

(Skofronick-Jackson in press). While it would be difficult to apply operationally to all 

constellation radiometers due to their varying channel suites, it may provide a way to maximize 

the information content gleaned from GMI-like sensors.  
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APPENDIX 

 

 Whether or not the gamma DSD parameters (Section 3.3.3) are retrievable from a passive 

microwave platform is central to the algorithmic assumptions made in Chapter 3 for variational 

warm rain retrieval. Fig. 3.4 demonstrates that RWC is more strongly tied to observed radiance 

variations. The argument is thus that, with limited information and a limited number of 

retrievable parameters, there simply is not enough information content to retrieve the rain DSD 

in addition to other significant parameters. The binary stratiform/convective DSD switch in the 

algorithm described within Chapter 3 is built on this idea. 

 To test retrieving the DSD, an experiment was performed in which the gamma 

parameters µ and D0 were added to the retrieved state vector. This was done for the case shown 

in Figs. 3.7 and 3.10, shallow rainfall near France on March 30th 2016. RWC is already a 

retrieved parameter via the first principal component of RWP, and so the gamma DSD is fully 

described by retrieval of µ and D0, as Nw can be solved for given the other three parameters (Eq. 

4 in Bringi et al. 2003). In the iteration µ and D0 are allowed to vary from -2 to 10 and 0.4 mm to 

2.5 mm, respectively. The a priori standard deviations were derived from the same in-situ 

disdrometer data used in Chapter 3, with a priori values of 1 for µ and 1.5 mm for D0. The 

number of retrieved parameters was increased to 6 in the warm rain retrieval, simply adding 

these two DSD parameters to the state vector. 

  Fig. A.1 shows the resultant rain rates and c2 for the original retrieval (with fixed DSD) 

and the DSD-varying version. The main characteristics of the scene do not change from one 

retrieval to the other despite adding two retrieved parameters. The number of pixels that reach 

convergence barely changes, and the resultant rain rates are similar if not almost identical. From 
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this set of plots one might conclude that adding DSD parameters to the state vector is neither 

harmful nor particularly helpful as the fit to observed radiances barely shifts for pixels where the 

warm rain retrieval is run and has little effect on rain rates. 

 

Figure A.1 Rain rates (top) and c2 (bottom) from the warm rain retrieval, standard version (left) and with DSD 
parameters retrieved (right), for the same case given in Figs. 3.7 and 3.10. 

 

 Fig A.2 plots the trace of the A-matrix, degrees of freedom for signal (DFS), for the 

original and DSD-varying retrievals. For a more just comparison, the standard retrieval in this 

case was run with four retrieved variables in the non-scattering case (i.e. first PC of water vapor 

only); this is why pixels in the upper left of the first panel have lower DFS in a non-raining 

region. Pixels for which the scattering retrieval was not run—a majority of the raining points—

exhibit relative homogeneity with DFS varying around 3.0 to 3.6. Pixels with the scattering 
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retrieval turned on, however, exhibit large DFS variations, from around 2.5 in the standard 

retrieval to nearly 4.5 in the DSD-varying retrieval.     

 

Figure A.2 Degrees of freedom for signal (DFS) from the warm rain retrieval, standard version (left) and with DSD 
parameters retrieved (right), for the same case given in Figs. 3.7 and 3.10. On bottom, retrieved DSD parameters for 

pixels where warm rain retrieval was run and converged. 
 

What causes this stark difference in DFS seen in Fig. A.2 for pixels run through the 

scattering retrieval, and are the retrieved DSD parameters physically reasonable? Examination of 

the lower panels of Fig. A.2 shows µ values with a mean of 0.8 and fairly small variability; for 

D0 the mean is 2.2 mm, also with little variability. Both parameters’ standard deviations are less 

than those prescribed in Sa while µ is near its prior and D0 is larger than its prior on average. 

These results do not seem especially physical. For one thing, values of D0 above 2mm constitute 
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a small fraction of the more convective DSDs from in-situ observations (Fig. 3.3). Secondly, 

while the DSD of a raining volume can change on small spatial scales, it is unlikely for the 

shallow drizzling areas that converged acceptably with the non-scattering algorithm to be 

speckled with pixels containing convective-looking rain DSDs. Thus while it appears that the 

addition of DSD parameters to the state vector is allowing more DFS to be utilized in some cases, 

caution should be exercised as these results deserve some skepticism.  

To conclude this experiment with retrieving the DSD in raining areas, it is determined 

that DSD retrieval requires further constraint but some signal to retrieve it does indeed exist 

within the observation vector. For very few pixels does the A-matrix yield values near 1 

regarding µ and D0, and the sum of the two is typically less than 1 as well. This indicates that 

while some signal exists regarding the distribution of drops within a rain volume, at most one 

parameter should be retrieved that can describe the distribution. Even then, further constraint 

seems necessary to get physically reasonable values from a passive-only retrieval.  


