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ABSTRACT OF DISSERTATION 

 

NONLINEAR SPIN WAVE INSTABILITY PROCESSES IN MANGANESE  

SUBSTITUTED ZINC Y-TYPE HEXAGONAL FERRITES 

The large magnetocrystalline anisotropy observed in hexagonal ferrites makes these 

materials ideally suited for high frequency millimeter-wave applications.  However, the 

large microwave losses observed at low-power levels and the high-power handling 

capabilities of hexagonal ferrites need to be addressed prior to their wide acceptance in 

real devices.  In order to address the above issues, measurements and analyses of the 

microwave field amplitude ( crith ) required to parametrically excite nonlinear spin wave 

amplitude growth were performed on single crystal easy plane disks of Mn substituted Zn 

Y-type hexagonal ferrites at 9 GHz and room temperatures.  Plots of the crith  dependence 

on the static magnetic field, termed “butterfly curves,” were obtained and analyzed for 

the resonance saturation (RA), subsidiary absorption (SA), and parallel pumping (PP) 

configurations. 

In order to obtain the butterfly curve data and perform the analyses: (1) a state-of-the-

art computer-controlled high-power microwave spectrometer was constructed, (2) the 

classical spin wave instability theory, originally developed by Suhl and Schloemann, was 

extended, and (3) instability measurements were performed on multiple Zn Y-type 

hexagonal ferrites samples for several pumping configurations and static field settings.  

The measurements and analyses performed here constitute the first time RS, SA, and PP 

spin wave instability butterfly curve analysis have all been performed in planar hexagonal 

ferrite samples.  This work also corresponds to the first time that resonance saturation 
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measurements and analyses were performed for static magnetic fields both at and in the 

vicinity of the ferromagnetic resonant field in a hexagonal ferrite. 

The data obtained as part of this work show that the microwave field amplitude 

required to parametrically excite nonlinear spin wave amplitude growth in hexagonal 

ferrites is similar to polycrystalline cubic ferrites, which are currently in use in 

microwave devices.  Follow-up measurements, motivated by this work, revealed that crith  

can be varied by manipulating the sample dimensions.  The analyses performed here 

indicate that two-magnon scattering is likely not the dominant source of the large low-

power microwave losses observed in these hexagonal ferrites; rather that these losses may 

be an intrinsic property of the material.  The theoretical work performed here identified a 

sign problem with the anti-Larmor uniform mode complex damping terms in several past 

publications and provides an improved methodology of treating the uniform mode anti-

Larmor complex frequency damping.  

 Richard G. Cox 

 Department of Physics 

 Colorado State University 

 Fort Collins, CO 80523 

 Summer 2010 
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CHAPTER 1 

INTRODUCTION 

 

An introduction to this study of nonlinear spin wave instability processes in Mn 

substituted Zn Y-type hexagonal ferrites is presented here.  The chapter addresses the 

motivation, objectives, scope, and organization of this thesis. 

1.1 MOTIVATION 

There is a critical need to extend the operational frequency of conventional ferrite 

based microwave devices to the millimeter wave frequency regime.  However, to operate 

these devices at millimeter wave frequencies requires such large external magnetic 

biasing fields that the devices become impractical.  The large magnetocrystalline 

anisotropy associated with hexagonal ferrites offers a potential solution to the large 

external magnetic field requirements for high frequency operation (Patton [1988]; 

Vittoria [1980];  Rodrigue [1963]).  However, the large microwave losses observed at 

low-power levels and the high-power handling capabilities of hexagonal ferrites need to 

be addressed prior to a wide acceptance of these materials in real devices. 

The low-power microwave losses exhibited by hexagonal ferrites are typically about 

ten to twenty times larger than those observed in conventional cubic ferrites (Hurben et 

al. [1997]).  The majority of the work performed to date on hexagonal ferrites has 

focused on the determination of whether the large low-power losses are due to extrinsic 

or intrinsic processes.  Extrinsic loss processes involve microstructural defects and 
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inhomogeneities, which can be either minimized or eliminated.  Intrinsic loss processes 

are fundamental to the material and cannot be further reduced (Sparks [1964]; Patton 

[1975]).  The two most common experimental methods used to characterize the low-

power microwave losses in hexagonal ferrite have been ferromagnetic resonance (FMR) 

and effective linewidth (ELW) analysis.  The FMR analysis has indicated that there are 

appreciable microstructural defects present in hexagonal ferrites (Hurben et al. [1997]), 

while the ELW analysis suggest that a significant portion of the losses are due to 

intrinsic processes (McKinstry [1991]; Truedson et al. [1994]).   

The high-power microwave handling capabilities of hexagonal ferrites has received 

relatively little attention.  As the microwave power is increased in a microwave device an 

onset of nonlinear effects, which significantly degrade the device’s performance, are 

often observed.  The onset of these nonlinear effects typically occur at a specific power 

level and usually corresponds to the parametric excitation of specific spin wave modes in 

the ferrite material (Suhl [1957]; Milano and Schloemann [1961]).  The threshold power 

level required for parametric spin wave mode excitation is directly related to the 

relaxation rate of the excited spin wave modes.  Therefore, by measuring the threshold 

power, one can determine both the practical power limits and gain insight into the 

fundamental loss mechanisms of the ferrite material. 

The specific spin wave modes that are parametrically excited at high-power levels 

can be directly affected by the experimental conditions.  Therefore, one can influence 

which spin waves are excited at the nonlinear threshold and in turn study the relaxation 

processes of those particular spin wave modes.  The typical approach is to measure the 

critical microwave threshold field amplitude crit( )h  required to produce the onset of 

nonlinear spin wave growth as a function of the static magnetic field ext( )H  for a fixed 

microwave frequency and a given microwave, static magnetic field, and ferrite sample 

orientation.  Historically, plots of crith  versus extH  are termed “butterfly curves.”  

Theoretical analyses of the measured butterfly curves are then performed to determine: 
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(1) which of the available spin wave modes are excited at the threshold field and (2) the 

relaxation rate of these critical modes.  To date, such high-power instability butterfly 

curve measurements and analyses have yet to be performed in detail on hexagonal 

ferrites. 

1.2 THESIS OBJECTIVES 

The focus of this thesis work is the characterization of the nonlinear instability 

thresholds in hexagonal ferrites in order to determine whether the large low-power losses 

exhibited by hexagonal ferrites are due to intrinsic or extrinsic damping processes, and in 

turn obtain the high-power handling capability of the material.  In order to achieve the 

above objectives: (1) a state-of-the-art high-power microwave spectrometer was 

designed, built, and automated, (2) the classical spin wave instability theory originally 

developed by Suhl and Schloemann was extended, and (3) spin wave instability 

measurements and analyses were performed on Zn Y-type hexagonal ferrites for several 

pumping configurations and frequencies.  

1.3 ORGANIZATION AND SCOPE OF STUDY 

Chapter 2 provides introductory background information on microwave magnetic 

ferrite materials.  The key concepts of anisotropy, uniform mode precession, spin wave 

propagation, relaxation, and nonlinear spin wave instability processes are reviewed.  This 

is followed by detailed discussions of the following three most commonly studied spin 

wave instability processes: (1) resonance saturation, (2) subsidiary absorption, and (3) 

parallel pumping. 

Chapter 3 discusses the classical bulk spin wave instability theory, which was 

originally developed by Suhl (Suhl [1957]) and Schloemann (Schloemann et al. [1960]), 

and the extensions that were made to it as part of this work.  It will be shown that the 

theory was extended to cover (1) uniaxial anisotropy, (2) a generalized microwave 
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magnetic pump field orientation, and (3) resonance saturation processes for static 

magnetic fields not only equal to, but away from the ferromagnetic resonance field.  The 

chapter will also show that several previous publications, which extended Suhl’s and 

Schloemann’s theory to include anti-Larmor precessional rotation, contain a sign 

problem with their uniform mode anti-Larmor complex frequency damping terms.  It 

will be shown that while the sign issue did not have a significant effect on the parallel 

pumping and the subsidiary absorption analyses given in those papers, it does have a 

notable effect on resonance saturation threshold field calculations in the limit of large 

shape and magnetocrystalline anisotropy.  This is one of the specific cases of interest for 

this study.  A solution for the above sign issue is also provided in the chapter. 

Chapter 4 discusses the high-power microwave spectrometer, which was designed, 

built, and automated as part of this thesis work.  It will be shown that the high-power 

microwave spectrometer was based upon the systems described by Green, Kohane, and 

Patton, but built with modern electronics and computer automation (Green and Kohane 

[1964]; Patton and Green [1971]).  The earlier systems had limited frequency and pulse 

width capabilities and were operated in a highly manual fashion.  The spectrometer built 

as part of this study is capable of generating high-power microwave pulses over a wide 

range of frequencies, with long pulse widths, is automated and highly versatile.  The 

system can be used to perform not only high-power microwave measurements, such as 

parallel pumping, subsidiary absorption, and resonance saturation instability 

measurements, but can also be utilized to characterize low-power ferromagnetic 

resonance, effective linewidth, and dielectric loss measurements. 

Chapter 5 discusses the measurement and analysis results.  First an overview is given 

of the Zn Y-type hexagonal ferrite disc shaped samples used for this work and then the 

parallel pumping, subsidiary absorption, and resonance saturation instability 

measurements and analyses are reviewed.  The chapter shows that the calculated parallel 

pumping and subsidiary absorption spin wave linewidths were significantly higher than 
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expected, and that these results led to further work performed primarily by Alex Nazarov 

who was able to determine that the large first order spin wave linewidths obtained as part 

of this thesis work were related to sample size effects (Nazarov et al. [2002]).  This 

important finding may be useful in controlling the maximum power handling capability 

of real devices. 

Chapter 6 summarizes the thesis research and discusses its significance.  It is argued 

that the results obtained here indicate that the large microwave losses exhibited by single 

crystal hexagonal ferrites are likely an intrinsic property of the material.  It is 

hypothesized that the strong spin-lattice coupling that occurs in these materials is the 

source of the losses.  In other words, it will be suggested that the strong spin-orbit 

coupling, which is the source of the large magnetic crystalline anisotropy fields in 

hexagonal ferrites that makes these materials so attractive for high-frequency 

applications, may also be the source of the large low-power microwave losses that 

inhibits their full utilization in real devices.  The chapter also provides suggestions for 

future work. 

Appendix A reviews the passive waveguide components that are utilized in the high-

power microwave spectrometer discussed in Chapter 4.  Here the basics of (i) rectangular 

waveguides, (ii) directional couplers, and (iii) microwave cavities are addressed.  

Derivations of equations that describe the microwave field amplitude inside rectangular 

and cylindrical reflection type microwave cavities are also provided. 

Appendix B reviews the LabVIEW control programs that were developed to calibrate 

and operate the high-power microwave spectrometer.  First, the calibration programs are 

reviewed and then the measurement programs, which were developed to obtain the spin 

wave instability butterfly curve data, are discussed. 
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CHAPTER 2  

OVERVIEW OF MICROWAVE FERRITES 

This chapter provides background information on the static, linear, and nonlinear 

dynamic magnetic properties of microwave ferrites.  The emphasis is primarily on 

physical concepts.  Details that are given in later chapters or are covered in the suggested 

references are intentionally omitted.  The chapter is divided into the following three 

sections: 

1. The first section provides a brief review of the basic classifications, composition, 

and static magnetic properties of microwave ferrites, and includes a discussion on 

anisotropy. 

2. The second section reviews the linear dynamic magnetic processes, which occur 

in microwave ferrites.  Here ferromagnetic resonance (FMR), uniform mode 

precession, spin waves, and relaxation are addressed. 

3. The final section reviews the resonance saturation, subsidiary absorption, and 

parallel pumping nonlinear instability processes, which occur in ferrites at high 

microwave power levels.  A brief review of previous spin wave instability work is 

also given. 

2.1 STATIC PROPERTIES 

This section provides a brief review of the basic composition, classifications, and static 

magnetic properties of microwave ferrites.  It also includes a discussion of anisotropy.  
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The next section then provides a brief review of the linear dynamic properties of ferrite 

materials. 

2.1.1 Composition and Classification  

Microwave ferrites are iron oxide magnetic insulators, which fall into the ferrimagnetic 

classification of magnetic materials.  They are ideally suited for microwave applications 

because their relatively high resistivity leads to minimal eddy current losses.  Ferrites are 

typically categorized by crystal structure into the following three groups: (1) spinel, (2) 

garnet, and (3) hexagonal (von Aulock [1965]).  The spinels and garnets have 

complicated cubic structures and a general chemical formula of 2 4Fe OMe  and 

3 5 12Fe OMe , respectively, where Me  is a 3D or 4F transitional metal.  The hexagonal 

ferrites have a hexagonal crystal structure and are typically designated by different 

capital letters (M, W, Y, etc.) depending upon the relative amounts of Fe, Ba, and Me  

that are present (von Aulock [1965]).  The most commonly studied cubic ferrite is 

yttrium iron garnet (Sparks [1964]).  It has a composition of 3 5 12Y Fe O  and will be 

referred to here as YIG.  The two most frequently studied hexagonal ferrites are zinc Y-

type ( 2 2 12 22Ba Zn Fe O ) and barium M-type ( 12 19BaFe O ), which have planar and uniaxial 

anisotropy, respectively.  The theoretical work performed here is applicable to both 

uniaxial and planar type hexagonal ferrites, while the experimental work is focused on 

the Zn Y-type ferrites, with easy-plane anisotropy.  For more details on the structure and 

composition of the various ferrite types see Smit and Wijn [1959] and von Aulock  

[1965]. 

Strong bonds occur between the composite metal cations and oxygen anions in 

ferrites.  The metal cations and oxygen anions are formed when each oxygen atom 

acquires two metal valence electrons to fill their 2p shells.  The main source of the 

magnetic moments in ferrites is usually the unpaired spin of the 3d shell electrons in 
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Fe3+ ions.  These iron ions are usually centered in neighboring tetrahedral and 

octahedral formations of the oxygen atoms.  In spinels and garnets, the iron moments at 

the tetrahedral and octahedral sites are coupled anti-parallel via the oxygen atoms, 

whereas in hexagonal ferrites both parallel and anti-parallel coupling occurs between the 

two sites (Wittenauer [2005]).  This coupling via oxygen atoms is commonly referred to 

as super-exchange coupling (Smit and Wijn [1959]).  Even though the spins are coupled 

in an anti-parallel fashion, an imbalance in the net spins at the tetrahedral and octahedral 

lattice sites results in ferrites having a net saturation magnetization 4
s

Mπ , which is in 

the 1-to-5 kGauss range.  This value is significantly lower than the saturation 

magnetization values of 10-to-25 kGauss which are observed in standard ferromagnets 

that have purely parallel spin coupling.  

Figure 2.1 summarizes the various magnetic classifications of materials and the 

electron spin interaction/coupling that leads to these classifications.  Electron spin and 

lattice coupling, which leads to crystalline anisotropy, is not shown in the figure.  For 

ferromagnets and anti-ferromagnets the exchange coupling causes neighboring spins to 

be aligned parallel and anti-parallel, respectively.  Anti-ferromagnets can be considered a 

special case of ferrimagnets in which the oppositely aligned magnetic moments are of 

equal magnitude.  Ferrites are in the ferrimagnetic classification of magnetic materials.  

For most cases and in this study in particular, ferrimagnets are regarded as ferromagnetic 

dielectrics.  There is a special case, however, known as exchange resonance in which the 

dynamic response of ferrimagnets differs from that of ferromagnets, which is not 

considered here; see von Aulock [1965] for more details. 

2.1.2 Magnetic Anisotropy 

The last static magnetic property of ferrites to be discussed here is anisotropy.  Because 

of the important role that anisotropy plays in both the linear and nonlinear dynamic 
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processes within ferrites it will be discussed in some detail here and then more 

extensively in Chapter 3. 

Magnetic anisotropy corresponds to there being a preferential magnetization 

direction within a given sample and is typically separated into the following two 

categories: (1) shape anisotropy and (2) crystalline anisotropy.  Shape anisotropy is due 

to the dipole fields that arise between the bounding surfaces of a magnetized sample.  

These dipole fields, which are commonly referred to as demagnetizing fields, depend on 

sample geometry and the magnitude and orientation of the magnetization vector.  

 

Figure 2.1.  Flowchart of the magnetic classifications of materials, after Stancil [1993].  
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Different shaped samples of the same exact ferromagnetic material can have different 

demagnetizing fields.  For example, a uniformly magnetized spherical sample has a 

demagnetizing field of s 34 /π− M , where 
s

M  is the saturation magnetization of the 

sample.  Whereas when the same material is fashioned into a thin film, the corresponding 

demagnetizing field is 4π−
n

M , where 
n

M  is the component of the magnetization 

oriented normal to the disc plane.  Therefore, if the saturation magnetization is aligned 

into the film plane the demagnetizing field is zero, and if saturation magnetization is 

aligned out of the plane the demagnetizing field has a magnitude of s4 Mπ−  and points 

in the opposite direction of the saturation magnetization direction.  Exact expressions for 

the demagnetizing fields can be calculated using Maxwell’s equations (Jackson [1975]) 

for a general shaped sample or more simply from Osborn’s tensor equations for 

ellipsoidal shaped samples (Osborn [1945]).  The Osborn equations will be discussed in 

detail in Chapter 3.  

Crystalline anisotropy is primarily due to electron spin-orbit-lattice coupling and is 

usually characterized by a free energy expression that corresponds to the amount of 

energy required to overcome the spin orbit coupling (Chikazumi [1994]; (Cullity 

[1972]).  First principle calculations of the free energy expression are very difficult if not 

impossible to perform, so phenomenological equations based upon crystalline 

symmetries are typically utilized.  The energy expression is typically quantified by 

relating it to an effective magnetic anisotropy field (
A

H ).  To do this: (1) the Zeeman 

energy relation (
A

U = − ⋅
A

M H ) is rewritten as 
A

U= −
A M

H ∇∇∇∇ , where 
M

∇∇∇∇  is the gradient 

with respect to the magnetization components, and (2) the magnitude of 
A

H  is then 

determined via magnetic hysteresis measurements (Cullity [1972]).  The remainder of 

this section will show how the above approach is used to model uniaxial and planar 

anisotropy in hexagonal ferrites. 

The preferential magnetization direction of uniaxial and planar hexagonal ferrites is 

parallel to and perpendicular to the hexagonal crystal c-axis, respectively (Smit and Wijn 
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[1959]); (von Aulock [1965]).  These preferential directions may be modeled with the 

following free energy per unit volume expression 

2

0 1

ˆ
.

A

s

U K K
M

 ⋅
= −  

 

AM u
 (2.1) 

Here the 0K  and 1K  are constants for a particular material expressed in ergs/cm
3
 and ˆ

A
u  

is the unit vector in the crystalline c-axis direction (Cullity [1972]).  The 0K  term in Eq. 

(2.1) is usually ignored since we are mostly interested in the change of the energy as M  

rotates from the c-axis.  The sign of the second term ( 1K ) determines whether Eq. (2.1) 

describes uniaxial or planar anisotropy.  A positive 1K  corresponds to the energy being 

minimized when the magnetization vector is parallel to the c-axis, i.e., uniaxial 

anisotropy, and a negative 1K  corresponds to the energy being minimized when the 

magnetization vector is in the x-y plane, i.e., planar anisotropy.   

As discussed above, the explicit magnetic field anisotropy expression is obtained by 

performing the following gradient operation on the free energy expression 

(
A

U= −
A M

H ∇∇∇∇ ).  Applying this gradient operation on Eq. (2.1) yields 

ˆ
ˆ ,A

s

H
M

 ⋅
=  

 

A
A A

M u
H u  (2.2) 

where 12
A s

H K M= .  The magnitude of both the shape and the crystalline anisotropy 

(
A

H ) can be obtained from vibrating sample magnetometery (VSM) measurements. 

Figure 2.2 shows VSM hysteresis data which were obtained on a Zn Y-type 

hexagonal ferrite sample as part of this study.  The sample was thin disc shaped with the 

crystalline easy anisotropy plane in the disc plane.  The vertical axis of the plot 

corresponds to the magnitude of the component of the magnetization, which is aligned 
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parallel to the applied magnetic field direction, and the horizontal axis corresponds to the 

magnitude of the applied field.  The solid circles and open squares correspond to the 

magnetization data that were obtained with the external magnetic field applied parallel 

and normal to the disc plane, respectively.  As can be seen in the figure, a significantly 

larger external magnetic field was required to saturate the magnetization out of the disc 

plane than in-plane.  The difference of approximately 10 kGauss in the field 

requirements to saturate the magnetization for the two different orientations is due to 

both shape and crystalline anisotropy. 

 

Figure. 2.2.  Plots of magnetic hysteresis data that were obtained on a Zn Y-type 

hexagonal ferrite thin disc with planar anisotropy.  The disc and the crystalline anisotropy 

planes are coplanar.  The solid circles and open squares correspond to the data obtained 

with the external magnetic field applied in and out of the disc plane, respectively. 
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The expressions for the static magnetic fields required to saturate the magnetization 

in the in-plane (
in

sat
H ) and out-of-plane (

out

sat
H ) directions for the sample shown in Fig. 

2.2 may be written as  

4

4 ,

in

sat s in

out

sat s out A

H M N

H M N H

π

π

=

= +

 (2.3) 

where 
out

N  and 
in

N  are the Osborn demagnetization coefficients for the out-of-plane and 

in-plane directions, respectively.  These coefficients are calculated based upon the 

sample dimensions (assuming ellipsoidal in shape) and will be discussed in more detail 

in the following chapter.  For the sample shown in Figure 2.2, 
in

N  and 
out

N  equaled 0.15 

and 0.70, respectively, and as can be seen in Fig. 2.2, 4 = 2.9 kG
s

Mπ  and 

out

sat
H = 10.1 kOe .  Substituting these parameters into Eq. (2.3) yields 9 kOe.AH ≈  As 

discussed previously, the sign of 
A

H  depends on whether one is addressing uniaxial or 

planar type crystalline anisotropy and the manner in which the free energy expression is 

defined.  For the Zn Y-type sample shown here which had planar anisotropy, and the free 

energy expression given in Eq. (2.1), a negative sign is used in the calculations. 

Figure 2.3 summarizes typical anisotropy and saturation magnetization values of 

YIG, Ba M-type, and Zn Y-type hexagonal ferrites.  As is seen in the figure, the garnets 

have an effective cubic anisotropy field that is quite small, on the order of 50 Oe or so.  

For materials with cubic lattice structure, direction cosines relative to the principal axies 

are typically used to describe the free energy expression.  See Cullity [1972] for more 

details.  For hexagonal ferrites, the expression given in Eq. (2.1) is often used.  The 

effective uniaxial and planar anisotropy fields of Ba M-type and Zn Y-type hexagonal 

ferrites are approximately 20 kOe and 10 kOe, respectively.  As was mentioned 
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previously these large anisotropy fields are what make the hexagonal ferrites so 

attractive for high frequency microwave applications. 

It is important to realize that the anisotropy field expressions discussed above are not 

actual Maxwellian fields, rather they are effective field equations based upon 

phenomenological free energy expressions.  While these expressions vary from paper to 

paper, as long as the approach used to calculate the fields are self-consistent with the 

specific free energy expression used, then the FMR resonance frequency and other 

 

 

 

Figure. 2.3.  Composition, saturation magnetization (4πMs), and effective magnetic 

anisotropy field  (HA) of (a) YIG,  (b) Ba M-type, and  (c) Zn Y-type hexagonal ferrites. 



2. BACKGROUND 

15 

physically measurable quantities predicted by the theory are independent of the form of 

free energy used (Hurben [1996]). 

2.2 LINEAR SPIN WAVE PROCESSES 

The previous section focused primarily on the static magnetic properties of ferrite 

materials.  This section addresses their linear dynamic magnetic properties.  Here 

ferromagnetic resonance (FMR), uniform mode, spin waves, and relaxation are 

addressed.  In order to introduce these concepts, the physics of a single dipole moment in 

the presence of a homogenous static magnetic field is first discussed.   

2.2.1 Free Precession 

When a magnetic dipole moment (µ ) that is in a uniform static magnetic field (
ext

H ) 

region is misaligned with 
ext

H , a net torque ( τ ) given as 

= ×
ext

µ Hτ  (2.4) 

is exerted on µ .  The time dependent response of the magnetic moment to this torque 

depends upon the particle’s angular momentum and the relaxation rate of the 

precessional response.  The relationship between a particles dipole moment and its 

angular moment is often expressed as  

,γ=µ J  (2.5) 

where γ , which is referred to as the gyromagnetic ratio, is given by 

.
2

q
g

m
γ =  (2.6) 



2. BACKGROUND 

16 

Here m  is the mass, q  is the charge of the particle, and g is the so-called Lende splitting 

factor.  The exact value of the splitting factor depends upon the type of particle of 

interest and on the form of the angular momentum that is present.  For electrons with 

purely orbital angular momentum 1g = , purely spin angular momentum 2g = , and 

when electrons have both orbital and spin angular momentum g  is typically greater than 

2 (Chikazumi [1994]).   

For most ferrites, the constituent electrons have purely spin angular momentum 

2g =  and the resulting gyromagnetic ratio corresponds to 2 2.8 (GHz kOe)γ π = − .  

This value of γ  is fundamental to the applicability of ferrite materials at microwave 

frequencies.  Protons have much larger mass than electrons and therefore a significantly 

smaller gyromagnetic ratio (few kHz/kOe), and in turn are more suited for studies in the 

kHz frequency range.  The sign of the gyromagnetic ratio depends on the sign of the 

charged particle; for protons it is positive and for electrons it is negative. 

The governing equation of motion which describes the precessional motion of the 

dipole moment about the uniform field can be obtained by (1) applying the fact that the 

net torque is equal to the time rate of change of the angular momentum ( t= ∂ ∂τ J ) and 

(2) substituting the equations for τ  and J , given in Eq. (2.4) and Eq. (2.5), respectively, 

into the t= ∂ ∂τ J  relationship.  Upon doing so, one obtains the so-called “torque 

equation of motion” which may be written as 

( ) .
t

γ
∂

= ×
∂

ext

µ
µ H  (2.7) 

This equation describes the dynamic response of a magnetic moment in the presence of a 

uniform magnetic field and in the absence of damping.  It will be shown below that the 

anisotropy fields (both shape and crystalline), which occur in a bulk ferromagnetic 

sample, lead to modifications of Eq. (2.7).   
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The frequency of the precession, which can be readily obtained from Eq. (2.7), can 

be written as  

.extHω γ=  (2.8) 

As was mentioned previously, the value of 2.8 GHz/kOe for the electron’s gyromagnetic 

ratio makes the electron precessional response ideally suited for studies and applications 

in the microwave frequency range.  Also note that the natural frequency of the 

precessional motion is linearly dependent upon the external magnetic field strength.  This 

is the reason behind the large static field requirements for high frequency operation of 

conventional ferrite devices.   

Figure 2.4 shows the precessional response of an electron in a uniform static field 

(
ext

H ).  As is shown in the figure, the electron’s magnetic moment is aligned in the 

opposite direction of its angular momentum (J).  This results in the rotational motion of 

the magnetic moment being in the counter clockwise direction (as viewed from the 

positive z-axis) about the static magnetic field.  An analogous classical system to the 

single magnetic moment in region of uniform magnetic field is a spinning top in a 

gravitational field.  If the top is slightly perturbed from the vertical direction, it precesses 

about the vertical direction and then over a period of time frictional forces eventually 

damp out the precession.  As with the spinning top, an electron’s magnetic moment 

experience damping, which decreases its precessional angle and eventually cause the 

moment to align with the static field.  The mechanisms that are responsible for such 

damping in ferrite materials will be discussed in section 2.2.4. 

2.2.2 Ferromagnetic Resonance  

The experimental analysis of magnetic dipole moments precessing about an externally 

applied static magnetic field typically fall into one of the following three categories: 
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(1) nuclear magnetic resonance (NMR), (2) electron paramagnetic resonance (EPR), and 

(3) ferromagnetic resonance (FMR).  Nuclear magnetic resonance measurements are 

performed on the nuclear magnetic moments of diamagnetic materials, which have 

significantly smaller gyromagnetic ratios than electrons, and therefore usually involve 

radio frequencies in the kHz range.  When these nuclear magnetic resonance 

measurements are used for medical diagnostics they are euphemistically referred to as 

Magnetic Resonance Imaging (MRI).  EPR measurements are performed on the electron 

magnetic moments of paramagnetic materials and are frequently used for chemical 

composition analysis.  As with EPR, FMR measurements are also performed on electron 

magnetic moments but in ferri/ferromagnetic samples in which exchange coupling 

between the magnetic moments is present.  The exchange coupling leads to the samples 

achieving a net spin alignment at considerably smaller static fields than in EPR 

 
 

Figure. 2.4.  Sketch of an electron’s magnetic moment (µµµµ) precessing about an externally 

applied static magnetic field (Hext).   
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experiments, and the resultant static dipole fields make the FMR resonance equations 

more complicated than for EPR.  The exchange coupling also leads to the rich 

phenomena of spin waves.  This section reviews FMR experiments and the next section 

addresses spin waves. 

In a typical FMR measurement, a large static magnetic field )
ext

( H  and a small 

amplitude linearly polarized microwave magnetic pump field )
p

(h  are applied to a 

ferromagnetic sample of interest.  The 
ext

H  field is usually of significant strength to 

saturate all the domains in the material and along with the internal anisotropy fields set 

the static equilibrium direction of the magnetic moments.  The microwave field, which is 

typically applied orthogonally to 
ext

H , drives the precession of the magnetic moments 

about the static field at the frequency 
p

f .  The measurement of the FMR response is 

usually performed in one of two ways: either (1) the magnitude of the static field 
ext

H  is 

kept constant and the sample absorption is measured as a function of microwave pump 

frequency 
p

f , or (2) 
p

f  is kept fixed and the sample absorption is measured as a 

function of 
ext

H .  The second method, which will be referred to here as the field swept 

method, is typically used in order to avoid frequency dependent transmission line effects 

that complicate the analysis. 

Figure 2.5 shows the relative orientation of the magnetization vector ( M ), the total 

static effective magnetic field (
eff

H ), and the microwave magnetic field (
p

h ) for a 

typical FMR experiment. It also shows a sketch of a typical field swept FMR resonance 

profile of normalized absorbed microwave power versus static magnetic field strength.  

Here instead of a single magnetic moment and an external applied field as shown in 

Fig. 2.4, we have a net magnetization M  vector that precesses about an effective static 

magnetic field.  The net magnetization is the sum of individual magnetic moments 
i
µ  in 

the sample divided by the sample volume ,V  and may be written i
i

.V∑µ=M   The 

total effective field is the net internal static magnetic field acting on the magnetization 
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vector, and is comprised of the external applied static magnetic field, and the internal 

demagnetizing and effective crystalline anisotropy magnetic fields.  

The two key parameters that are obtained from a FMR resonance profile are the FMR 

resonance field 
FMR

( )H  and linewidth 
FMR

( ).H∆  The 
FMR

H  field is the external field 

required to achieve maximum absorption and corresponds to the static field at which the 

natural resonance frequency of the precessing magnetization equals the applied 

 

Figure. 2.5.  Upper sketch shows the typical orientation of the effective static (Heff ) and 

microwave magnetic (hp) fields used in an FMR experiment.  Lower sketch shows a 

ferromagnetic resonance profile, of absorbed power versus applied external magnetic 

field. 
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microwave field frequency.  The 
FMR

H∆  parameter is the width of the resonance profile 

at half peak height and is directly related to the relaxation rate of the precessing 

magnetization vector.  This linewidth not only has practical importance for device 

applications, it is also of fundamental importance as it depends upon the relaxation 

mechanisms that are present in the ferromagnetic material. 

The FMR resonance field and linewidth depend on the microwave frequency used.  

For an operating frequency of 60 GHz, 
FMR

H  and 
FMR

H∆  for highly polished single-

crystal YIG samples and Ba M-type hexagonal ferrite samples are as follows.  YIG has a 

FMR resonance field of about 20 kOe and has a FMR linewidth of about 0.5 Oe, whereas 

for Ba-M, 
FMR

2 kOeH ≈  and 
FMR

30 OeH∆ ≈ (Hurben [1996]; Wittenauer et al. [1993]).  

The large reduction in the resonance field for Ba-M compared to YIG is due to 

crystalline anisotropy and is the reason why hexagonal ferrites are so potentially useful 

for high frequency applications.  The increased linewidth observed in Ba-M compared to 

YIG is what hinders the full device utilization of the material.  As was mentioned 

previously, the determination of whether these large losses are due to extrinsic or 

intrinsic relaxation processes is a key goal of this work. 

2.2.3 Uniform Mode and Spin Waves 

The first FMR measurements were originally performed by Griffiths in the late 1940’s 

(Griffiths [1946]).  About two years later, an accepted theory that explained the 

measured FMR resonance fields and linewidths was developed by Kittel and Herring 

(Kittel [1947]; Herring and Kittel [1951]).  Initially 
FMR

H was modeled with Eq. (2.8) by 

treating the splitting factor ( g ) as a fitting term.  However, this methodology was 

quickly abandoned after it was shown that different g  values were required to fit the 

different FMR resonance fields measured on different shaped samples made of the same 

material (Kittel [1947]). 
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In order to properly model the resonance field, Kittel along with Herring made the 

following two modifications to Eq. (2.7): (1) they included a more sophisticated form of 

the magnetic moment vector, in which µ  was replaced with the total magnetization 

vector ,Μ  and (2) they replaced 
ext

H  with an effective internal field 
eff

H  which 

included the dipole-dipole and the exchange fields.  They then proceeded to explain the 

measured FMR resonance linewidths via the so-called uniform mode spin wave 

scattering theory.  They argued that in an FMR experiment certain modes, termed 

uniform modes, are excited by the microwave field and that the scattering of these 

uniform modes into other so-called spin wave modes was the key source of the observed 

FMR linewidths. 

Kittel’s spin wave theory, typically referred to as the “bulk spin wave theory,” was 

based upon a modified view of Bloch’s earlier work on spin waves (Kittel [1947]; 

Herring and Kittel [1951]).  In Bloch’s work, spin waves were treated quantum 

mechanically as a progressive variation of the relative phase of precessing dipoles in 

which the exchange energy is minimized (Bloch [1946]).  In Kittel’s work, spin waves 

were treated classically as spatial disturbances of continuous magnetization rather than as 

the discrete spin moments in the lattice.  The classical theory assumes that the wave 

number of the spin waves is much larger than both the wave number of light at the same 

frequency and the reciprocal of the sample dimensions.  Therefore, both electromagnetic 

and sample boundary effects were ignored.   

Figure 2.6 shows illustrations of the uniform and spin wave modes.  The uniform 

mode, which may be considered a spin wave with infinite wavelength, corresponds to all 

the spins throughout the sample precessing in phase.  The two traveling waves shown in 

the figure correspond to spin waves traveling parallel and perpendicular to the static 

magnetic field direction.  The direction of travel corresponds to the direction in which 

phase variation of the precessing dipole moments occurs. 
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In Kittel’s and Herring’s theory, the total magnetization vector ( ( , )tM r ) is written in 

terms of a large static component, equal to the saturation magnetization (
s

M ) of the 

material, and a small dynamic component ( ( , )tm r ) as 

ˆ( , ) ( , ) .
s

t M t= +M r z m r  (2.9) 

 

Figure. 2.6.  Schematic illustrations of (a) the uniform mode, and spin waves 

propagating (b) parallel and (c) perpendicular to the effective static magnetic field 

direction after [Patton, 1975]. 
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Here ẑ  is the unit vector in the z-direction which corresponds to the static equilibrium 

direction of the magnetization vector.  The small dynamic magnetization term is then 

written as a Fourier series, 

0

( , ) ( ) ( ) ,i

k

t t t e−

≠

= +∑
.k r

o k
m r m m  (2.10) 

where ( )t
o

m  and ( )t
k

m  are the harmonic time dependent amplitudes of the uniform 

mode and spin wave modes with a wave vector of 0 and k  respectively.  The ( )t
o

m  

term, which describes the in-phase spatially uniform component of the dynamic 

response, is the main mode excited by the microwave field in an FMR experiment.  The 

( )t
k

m  modes, in contrast, describe the time dependent spatially distributed spin wave 

modes.  As was mentioned previously, the scattering of the uniform mode into spin 

waves is one of the key relaxation mechanisms of the uniform mode and will be 

discussed in more detail in the next subsection.  

The torque equation of motion used by Kittel to describe the dynamic response of the 

magnetic moments is typically written as 

( , )
( , ) ( , ) .

t
t t

t
γ

∂
= − ×

∂
eff

M r
M r H r  (2.11) 

 where 

.= + + + +
eff ext p demag dipole A

H H h H H H  (2.12) 

Here, the 
ext

H  and ph ( )t  terms are the externally applied static and microwave magnetic 

fields, respectively, and the demagH , ,dipoleH  and AH  terms are the internal 

demagnetizing, dipole, and crystalline anisotropy magnetic fields (not included in 
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Kittel’s initial theory), respectively.  The analytic expressions of these fields will be 

given in the next chapter.  Note that the internal fields depend upon ( , )tM r  and in turn 

lead to the torque equation being nonlinear in ( )
o

m t , ( , )
k

m tr , and ( )ph t .  In Kittel’s 

theory all nonlinear terms are discarded.   

Equation (2.11) does not include any relaxation terms, and damping was initially 

treated in the linear theory by forcing the FMR and spin wave frequency terms to be 

complex.  Thereafter, Kittel, Bloch, Bloombergen, Landau and Lifshitz, Gilbert, and 

others added different phenomenological damping terms to Eq. (2.11) in order to model 

different relaxation mechanisms.  Some of these relaxation mechanisms will be 

discussed in the next section, and the various phenomenological damping expressions 

will be discussed in more detail in the following chapter. 

Once the nonlinear terms in Eq. (2.11) are discarded, the equation is then separated 

into two linear first order differential equations, one in terms of ( )t
o

m  and the other in 

terms of ( )t
k

m .  These equations are then solved separately for the uniform mode 

resonance frequency (
FMR

ω ) and spin wave dispersion relation ( ).
k

ω k   These 

expressions may be written for an isotropic thin film sample magnetized in-plane as 

( ) ( )4 ,
FMR ext ext s

H H Mω γ π= +  (2.13) 

 and 

( )( )2 2 24 sin ,
k ext ext s k

H Dk H Dk Mω γ π θ= + + +  (2.14) 

where D  is the so-called exchange constant, which for YIG is equal to 

9 2 2
5.4 10 Oe cm / rad

−
⋅ ⋅  (Kittel [1947]; Herring and Kittel [1951]), and 

k
θ  is the polar 

angle, which describes the angle between the spin wave propagation direction and the z-
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axis.  See Fig. 2.7 for more details.  The differences between the FMR resonance 

frequency expression given in Eq. (2.13) and the one given in Eq. (2.8) is due to the 

demagnetizing field which arises from the dipole field of bounded media.  The remainder 

of this section will review the 
FMR

ω  and ( )
k

ω k  expressions in a qualitative manner.  

Detailed calculations are provided in Chapter 3 and can be found in several 

comprehensive books (Lax and Button [1962]; Sparks [1964]). 

Figure 2.7 shows a sketch of the spin wave dispersion curves for an isotropic bulk 

sample.  The upper and lower curves correspond to the spin wave dispersion curves for 

spin waves with spin wave polar propagation angles 
k

θ  of 0°  and 90° , respectively.  

The spin wave band, also referred to as the spin wave manifold, consists of the region 

between these curves.  The circle shown on the frequency axis corresponds to the 

uniform mode resonant frequency.  The relative positioning of 
FMR

ω  within the band is 

dependent upon the static field orientation and sample geometry.  For an isotropic thin 

film sample magnetized in-plane, 
FMR

ω  lies at the top of the manifold.  For a thin film 

magnetized out-of the film plane, 
FMR

ω  lies at the bottom of the manifold, and for an 

isotropic spherically shaped sample, 
FMR

ω  usually lies in between the lower and upper 

branches of the manifold.  This relative positioning of the FMR resonance frequency 

within the spin wave manifold plays an important role in the scattering of the uniform 

mode into spin waves, and will be discussed in more detail in next section. 

The basic features of the spin wave manifold shown in Fig. 2.7 can be qualitatively 

explained by energy considerations.  The net energy of the magnetic moments is 

comprised of the Zeeman energies from the interaction of the (1) static magnetic field 

and the saturation magnetization, (2) dipole-dipole fields, (3) localized exchange, and (4) 

anisotropy fields.  The static Zeeman energy ( ⋅ ext
M H ) causes the relative frequency 

position of the whole manifold to be dependent upon the applied static field.  An 

increased static field shifts the whole spin wave manifold up in frequency. 
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The dipole-dipole interactions are the source of the spin wave energy dependence on 

the propagation direction of the spin waves.  Spin waves that propagate parallel to the 

effective static field have no net dipole field and therefore have lower energy, whereas 

 

Figure. 2.7.  Sketches of the spin wave polar coordinate system and isotropic dispersion 

manifold.  The spin wave manifold is comprised of the region between the upper (θk = 

90
o
) and lower (θk = 0

o
) bands.  The solid circle corresponds to the uniform mode 

resonance frequency (ωFMR).  The diagram also depicts the energy contributions of the 

exchange, dipole-dipole, and Zeeman energies to the dispersion manifold.   



2. BACKGROUND 

28 

the that propagate perpendicular to the effective static field experience a maximum “self” 

dipole field and have the highest energy.  The exchange energy causes the spin wave 

frequency to be dependent upon the wave number.  This energy is related to the cosine of 

the angular ( δ ) deviation of neighboring spins.  The small angle approximation 

21
2

cos( ) 1δ δ≈ −  combined with the fact that the angular deviation of the neighboring 

spins is inversely proportional to the wavelength of the spin waves leads to the frequency 

dependence upon the square of the wave number. 

It is important to keep in mind that the Kittel’s theory ignores all spin wave 

interactions with the sample boundaries.  The validity of this approximation depends on 

the sample size, the wavelength, and the relaxation rate of the spin waves.  If one is 

considering a “large” sample, small wavelengths, and or “large” damping rates, then the 

spin wave interaction with sample boundaries can be ignored and the above theory is 

applicable.  When these conditions are not satisfied, a spin wave theory, which takes the 

sample surfaces into account, must be used.  For “long” wavelength spin wave modes in 

thin film ferromagnetic samples, the magnetostatic mode theory originally developed by 

Damon and Eshbach (Damon and Eshbach [1961]) is applicable.  In this theory, the spin 

wave wavelength is considered long enough so that exchange interactions are ignored.  

For a discussion regarding extensions of this theory, in which exchange interactions are 

included see Kalinikos [1980].  Patton [1988]; and Hurben and Patton [1996]) also 

provide an excellent review of these theories.  The single crystal Zn Y-type hexagonal 

ferrite samples used for this study were of large enough size and had significantly large 

enough relaxation rates that the bulk spin wave theory was considered applicable. 

2.2.4 Relaxation 

The microwave energy that is coupled to the uniform mode in a FMR experiment 

ultimately ends up in the lattice, and results in a net temperature rise of the sample 

(Sparks [1964]).   
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Figure 2.8 summarizes the transfer of energy from the uniform mode to the lattice.  

As in seen in the figure, this can occur via multiple relaxation processes that may or may 

not involve degenerate spin waves.  These relaxation processes are typically categorized 

as either intrinsic or extrinsic processes (Sparks [1964]).  The intrinsic relaxation 

processes are considered fundamental to the material and cannot be eliminated.  The 

non-intrinsic processes are due to surface defects, impurities, and inhomogeneties, all of 

which usually involve degenerate spin wave modes, and in some instances may be 

significantly reduced by process changes such as improved sample polishing techniques, 

purer starting materials, better thermal annealing, etc. 

 
 

 

 

Figure. 2.8. Block diagram that depicts the possible ferromagnetic relaxation paths that 

are present in a ferrite material, after Sparks [1964].  The solid black arrow indicates the 

2-magnon extrinsic relaxation. 
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Yttrium Iron Garnet (YIG), which in single crystal form has the lowest losses of all 

the ferrites, has been instrumental to the understanding of relaxation processes in ferrite 

materials.  Many experiments have been performed in which various relaxation 

mechanisms have been selectively introduced to pure YIG.  These experiments on YIG 

have been so useful in providing both physical understanding and experimental 

signatures of the various loss mechanisms that Kittel is known to have said that YIG is to 

ferromagnetic resonance research as what the fruit fly is to genetics research 

(Sparks [1964]).  See Patton [1975]; Patton [1984]; Sparks [1964]; and Lax and Button 

[1962] for comprehensive reviews of the various relaxation mechanisms and experiments 

that have been studied in YIG and other ferrites. 

One intrinsic loss mechanism that is pertinent to hexagonal ferrites is valence-

exchange or charge transfer relaxation mechanism (Sparks [1964]).  This process which 

corresponds to electron hopping between Fe
2+

 (ferrous) and Fe
3+

 (ferric) ions on 

equivalent crystal lattice sites can yield a significant contribution to the overall 

conductivity of the material.  This electron hopping is typically eliminated by the 

substitution of Mn (Smit and Wijn [1959]); (Savage et al. [1965]).  It should be noted 

that the material used in this study had such Mn substitution and, therefore, valence-

exchange losses are not considered to be the major source of the large losses exhibited by 

the material. 

One of the most significant non-intrinsic loss mechanisms is the so-called two-

magnon scattering process.  This relaxation process corresponds to a single uniform 

mode magnon ( 0=k ) being scattered into a single ( 0≠k ) spin wave magnon of 

equivalent energy.  Note that such a scattering process cannot conserve the wave vector 

(momentum).  Therefore, there must be a “third” party that conserves the momentum.  

This “third” party is a sample defect (pit, grain boundary, etc.).  The first experimental 

studies of the two-magnon scattering were performed on YIG samples with varying 

amounts of surface roughness in which it was clearly shown that the FMR linewidth 
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tracked the amount of surface polishing.  As the quality of the surfaces increased, the 

linewidths decreased accordingly (LeCraw et al. [1958]).  Such two-magnon losses are a 

major contributor to the overall losses in polycrystalline samples. 

Relaxation is typically addressed in the classical linear uniform mode and spin wave 

theories by adding a phenomenological damping term to Eq. (2.11).  The two most 

commonly used phenomenological damping terms are the Landau-Lifshitz (LL) (Landau 

and Lifshitz [1935]) and the Block-Bloembergen (BB) (Bloch [1946]; Bloembergen 

[1956]) damping terms.  The LL form of the equation of motion conserves the 

magnetization vector and is often used to describe intrinsic relaxation processes (Hurben 

[1996]).  The BB equation of motion does not conserve the magnetization vector (M 

decreases as it relaxes to static equilibrium position) and has been successful in 

describing 2-magnon (non-intrinsic) processes.  In contrast, for the nonlinear spin wave 

instability analysis relaxation is typically modeled by forcing the FMR and spin wave 

frequencies to be complex.  All three approaches will be discussed in detail in Chapter 3. 

The majority of the previous experimental and theoretical research performed at the 

Colorado State University Magnetics Laboratory regarding the relaxation processes in 

hexagonal ferrites has involved angle dependent two-magnon (Hurben [1996]) and 

effective linewidth (McKinstry [1991]) loss analysis.  Hurben’s analysis suggests that 

two-magnon damping processes are present in hexagonal ferrites.  The effective 

linewidth analyses show that there are also a significant amount of intrinsic losses 

present in these materials.  One of the goals of this work is to perform nonlinear spin 

wave instability measurements on hexagonal ferrites in order to provide further evidence 

concerning the nature of these losses.  The connection between the non-linear instability 

thresholds and the relaxation mechanisms that are present in a ferrite material is a key 

topic of the next section. 
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2.3 NONLINEAR SPIN WAVE PROCESSES 

The previous section discussed linear dynamic magnetic processes, which occur in 

ferrites at low-microwave power levels.  This section addresses nonlinear dynamic 

processes that occur at high-power levels.  First, a high-power FMR response curve is 

given, and then the nonlinear instability processes that are responsible for the observed 

high-power FMR response are reviewed.  This is followed by discussion of the critical 

microwave field amplitude (
crit

h ) required to excite nonlinear spin wave amplitude 

growth, and a typical butterfly curve plot of 
crit

h  versus 
ext

H  is also given.  The section 

concludes with a brief review of the spin wave instability theory and previous nonlinear 

instability work.  Detailed derivations of the threshold fields are provided in the next 

chapter. 

2.3.1 High-Power FMR Measurements 

The first high-power nonlinear FMR resonance measurements were performed by 

Damon [1953]; Bloembergen and Wang [1954].  Figure 2.9 shows similar high-power 

FMR data, measured as part of this work, which demonstrates the nonlinear effects.  The 

data were obtained on the Zn Y-type hexagonal ferrite disc-shaped sample addressed 

previously in Fig. 2.2.  The FMR data shown in Fig. 2.9 were obtained with the static 

and microwave magnetic fields applied orthogonally within the disk plane.  The solid 

and open circles show the FMR response at low and high power levels, as indicated.  At 

high power levels, two new effects are observed.  One effect is the broadened and 

decreased peak height of the FMR resonance profile.  This occurs at a much lower power 

level than what is expected from a nonlinear theory that only includes uniform mode 

terms, and is typically referred to as either "premature saturation” or “resonance 

saturation” (Schloemann [1959]).  The second high-power effect is the substantial 

increase in sample absorption over a wide static field region below the FMR resonance 
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field.  This effect is typically referred to as “subsidiary absorption.”  A high-power 

microwave field that is applied orthogonally to the equilibrium saturation magnetization 

direction drives the above two effects.  When a microwave field is applied parallel to the 

saturation magnetization direction, a third nonlinear effect called parallel pumping also 

occurs at high-power levels.  The parallel pumping effect is similar to subsidiary 

absorption in that it also corresponds to an increased absorption region over a static field 

range that is below the FMR resonance field. 

In most cases, the above nonlinear effects are detrimental to microwave ferrite device 

performance.  For example, resonance saturation can lead to a significant widening in the 

frequency range of a bandpass filter, which is based upon a narrow FMR resonance 

linewidth of a ferrite material.  The onset of parallel pumping and subsidiary absorption 

 

Figure. 2.9.  FMR data obtained at low (solid circles) and high (open circles) microwave 

power levels as indicated.  The data were obtained on an in-plane magnetized Mn 

substituted Zn Y-type easy plane disk at 9 GHz.  The high-power effects observed at 

magnetic fields near the FMR resonance field are termed resonance saturation (RS) 

effects and those far below the FMR resonance are termed subsidiary absorption (SA). 
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nonlinear processes can lead to significant unwanted insertion losses of circulators, phase 

shifters, and isolators which are operated at static fields in the subsidiary absorption 

regions.  There are a few cases, however, in which nonlinear instability processes can be 

useful for device operation.  Two examples are high-power limiters and parametric 

amplifiers.  A high-power limiter is used to protect down-line devices from excessively 

high microwave power levels.  These devices usually involve ferrites that are biased in 

the subsidiary absorption regime.  At low power levels, the sample losses and 

corresponding device insertion losses are low.  Then once the incident power is increased 

above a certain threshold power level, the sample losses increase rapidly and in turn 

provide protection for down-line devices.  Parametric amplifiers are based upon the fact 

that as microwave power is increased slightly above the threshold point, certain critical 

spin wave modes are excited at half the frequency of the applied pump field.  These 

critical modes will be discussed in more detail in the next section.  For more details on 

ferrite devices see (Adam et al. [1991]; Lax and Button [1962]; Schloemann [1959]; and 

Pucel [1957]). 

2.3.2 Butterfly Curve Measurements 

The onset of the nonlinear resonance saturation, subsidiary absorption, and parallel 

pumping processes occurs at specific threshold power levels.  That is, for a given static 

magnetic field, the change from the low to high-power response takes place abruptly at a 

specific threshold microwave power level.  For incident power levels below this 

threshold, the sample loss scales linearly with the incident power.  Above the threshold, 

the response is highly nonlinear.  The change in the sample loss at the threshold point 

can consist of either a sudden increase or a decrease in the absorbed power, depending 

upon the external static field setting and which process is being studied. 
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Figure 2.10 shows the experimental threshold field signatures of the various 

instability processes.  Graphs (a) and (b) are parallel pumping and subsidiary absorption 

threshold data, respectively.  The data were measured with 
ext

H  set to significantly 

lower values than the FMR resonance field, 
FMR

.H  Graphs (c) and (d) illustrate 

resonance saturation threshold data obtained with 
ext FMR

H H=  and 
ext FMR

20Oe,H H= +  

respectively.  The low-power FMR resonance linewidth of the sample was about 20 Oe.  

The estimated critical microwave threshold field amplitude (
crit

h ) is indicated in each 

graph.  Graphs (a) and (b) show that in the subsidiary loss regime, the loss increases 

abruptly as the microwave field is increased above 
crit

h .  Graphs (c) and (d) show that in 

the FMR regime, the loss can either increase or decrease abruptly as the microwave field 

 

Figure. 2.10.  Plots of normalized microwave absorption versus microwave field 

amplitude.  The data were normalized to the microwave power that was incident on the 

sample and were obtained on an Mn substituted Zn Y-type hexagonal ferrite easy-plane 

disk at 9 GHz for the RS, SA, and PP pumping configurations.  The arrows indicate the 

microwave threshold field, hcrit, required to excite nonlinear spin wave amplitude 

growth. 
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amplitude is increased above 
crit

h , depending on the setting of 
ext

.H   Precisely at 

resonance, a decrease in the absorption is observed.  For a static field slightly off 

resonance on the order of the linewidth or so an increase is observed.  The dependence of 

crit
h  upon 

ext
,H  which is summarized by a so-called butterfly curve plot, is the topic of 

the next subsection. 

The above nonlinear effects are due to the parametric excitation of spin waves.  The 

microwave energy is coupled into the available spin wave modes indirectly either 

through the uniform mode or through the wobble in the z-component of the 

magnetization for parallel pumping.  At low-power levels, the excited spin waves lose 

this energy through normal relaxation processes.  Then as the microwave power is 

increased to high enough values, the spin waves suddenly become excited above thermal 

levels at a specific critical threshold power level.  The transition from linear to nonlinear 

response corresponds to the point at which the amount of power coupled into the spin 

waves exactly matches the spin wave relaxation rate.  The particular mode that is excited 

at the lowest power level is referred to as the critical mode.  In the transverse pumping 

processes (resonance saturation and subsidiary absorption), the microwave field couples 

into the critical modes indirectly via the uniform mode, whereas in the parallel pumping 

process, the coupling occurs via the wobble in the z-component of the magnetization.  

For the resonance saturation process, the critical spin wave mode frequency (
crit

ω ) equals 

the microwave pump frequency (
p

ω ), whereas for the subsidiary absorption and parallel 

pumping process / 2
crit p

ω ω= . 

Figure 2.11 summarizes the coupling methods and critical modes excited in the three 

instability processes.  The wavy line in the figure represents a microwave photon, and 

the open and solid circles represent uniform mode and spin waves (magnons), 

respectively.  For resonance saturation, two microwave photons excite two uniform 

mode ( 0k ≈ ) magnons at pω .  These uniform mode magnons then excite two oppositely 

directed spin wave magnons at pk
ω ω= .  For the subsidiary absorption and parallel 
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pumping processes, one microwave photon creates two magnons at / 2
k p

ω ω=  with 

opposite k  values.  This occurs indirectly through a 0k ≈  magnon for the subsidiary 

absorption process and directly for the parallel pumping process.  As can be seen in 

 

Figure. 2.11.  Summary of the photon and magnon interactions which occur in the (a) 

resonance saturation, (b) subsidiary absorption, and (c) parallel pumping instability 

processes.  The diagrams show schematic spin wave dispersion bands for an isotropic 

material.  The open and solid circles indicate the uniform and spin wave mode 

magnons, respectively.  The wavy arrows indicate the microwave photon. 
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Fig. 2.11, all three nonlinear instability scattering processes conserve both energy and 

momentum. 

The wave number and propagation direction of the critical modes depends upon 

several factors such as the pumping configuration, operating frequency, sample 

geometry, anisotropy, static field setting, and the spin wave relaxation.  The critical 

modes shown in Fig. 2.11 correspond to an isotropic bulk media in which the spin wave 

relaxation is independent of the wave vector.  For this case, the polar propagation angle 

of the critical modes for resonance saturation, subsidiary absorption, and parallel 

pumping are 0 ,
k

θ = °  45 ,
k

θ ≈ °  and 90 ,
k

θ = °  respectively.  The details of how the 

critical modes are calculated will be discussed briefly in the next section of this chapter 

and in detail in Chapter 3. 

In most cases the subsidiary absorption region occurs for static fields that are 

significantly lower than the FMR resonance field.  However, under certain circumstances 

(at low frequencies and for highly anisotropy samples) pω  and 2pω  both lie within the 

manifold region for the same 
ext

H .  When this condition is satisfied, it is referred to as 

coincidence and corresponds to a significant reduction in the threshold field.  See 

(Suhl [1957]; Schloemann [1959]; and Spencer et al. [1958]) for details on coincidence 

measurements.  For this work, the coincidence condition was not satisfied, and the 

subsidiary absorption and resonance saturation processes were excited in an independent 

fashion and thereby treated separately. 

A butterfly curve summarizes the threshold field dependence on the static field for a 

fixed microwave frequency.  It is determined by acquiring sample loss versus microwave 

field amplitude data ( )ph , similar to the data shown Fig. 2.10, for multiple static fields 

( ).
ext

H  Each loss versus ph  plot obtained at fixed 
ext

H  and 
p

ω , is analyzed for its 

corresponding microwave threshold field 
crit

h  value, and the butterfly curve is then 

obtained by plotting 
crit

h  versus 
ext

H . 
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Figure 2.12 shows a parallel pumping butterfly curve plot of 
crit

h  versus 
ext

H .  The 

data were obtained at 8.93 GHz with the static and microwave field applied parallel to 

each other in the film plane of a YIG sample.  The data were obtained as part of 

qualifying the high-power microwave spectrometer which was developed as part of this 

work and is discussed in detail in Chapter 4. 

The lower sketches in Fig. 2.12 show the spin wave manifold for three different field 

settings as indicated in the figure.  Note that for 940 Oe
ext

H <  the critical modes can 

have polar angle ranging from 
o

90  to 
o

0 .  For 940 Oe,
ext

H >  the maximum possible 

spin wave polar angle decreases with increasing static magnetic field strength. For 

1440 Oe,
ext

H =  only spin wave with 
o

k
= 0θ  is available for coupling, and for 

1440 Oe,
ext

H >  no spin waves are available for nonlinear excitation.  

The elegant shape of the threshold field versus static field curve shown in Fig. 2.12 is 

similar to the shape of butterfly wings, hence the name “butterfly curve” coined by the 

early researchers to describe such plots.  This terminology is now used to describe all 

crit
h  versus 

ext
H  plots regardless of their shapes.  As has been mentioned previously, the 

butterfly curve delineates the linear from the nonlinear regimes for different static field 

values and a fixed microwave frequency.  For microwave field amplitudes below the 

butterfly curve line, the sample losses scale linearly with the microwave field amplitude, 

but above the threshold field the response is highly nonlinear.  Such a plot not only 

provides a direct summary of a given material’s high-power handling capabilities, it is 

also useful for determining which spin wave modes are excited at the threshold field and 

the relaxation rates of those modes.  The methods used to obtain the critical modes and 

their corresponding relaxation rates from the analysis of butterfly curve data is discussed 

in the next section. 
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2.3.3 Spin Wave Instability Theory 

The first successful theoretical treatment of the resonance saturation and subsidiary 

absorption instability processes was performed by Suhl [1957].  Approximately three 

years later Schloemann successfully predicted the parallel pumping instability process 

(Schloemann et al. [1960]).  Schloemann along with Bady were also the first researchers 

to extend Suhl’s original theory to include anisotropy (Schloemann et al. [1963]).  This 

 

Figure. 2.12.  Top plot show parallel pump butterfly curve data and fit, obtained on a 

YIG thick film at 8.93 GHz.  The lower sketches show the relative position of the spin 

wave manifold for three different static fields as indicated.  The horizontal dotted line 

corresponds to the frequency of the critical modes. 
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section provides a brief introduction to Suhl’s and Scloemann’s spin wave instability 

theories.  The nonlinear torque equation of motion and the resulting expression for the 

dynamic spin wave magnetization is discussed.  Then the coupling coefficient ( )pk
G h  

and spin wave linewidth 
k

H∆  concepts are introduced, and an expression for 
crit

h  is 

given.  This is followed by a review of how the 
crit

h  and 
k

H∆  expressions are used to 

calculate a butterfly curve and in turn determine the critical modes and the relaxation rate 

of these modes.  The focus will primarily be on parallel pumping processes in isotropic 

media.  Detailed derivations are provided in Chapter 3. 

As was the case for the linear uniform mode and spin wave theories, the nonlinear 

spin wave theory is also based upon the torque equation of motion.  This equation, which 

is given in Eq. (2.11), is expanded to various orders of nonlinearity depending upon the 

instability process that is of interest (parallel pumping, subsidiary absorption, or 

resonance saturation).  After expanding the torque equation to the appropriate order of 

nonlinear terms, a perturbative approach is used to solve the nonlinear differential 

equations.  First, a solution to the linearized equation of motion is obtained, and then the 

nonlinear terms are treated as a small perturbation on the linear response.  This is a 

reasonable approach because the theory is only interested in modeling the transition 

point from the linear to nonlinear and not the response above it.   

The details of the methods used to choose the appropriate order of nonlinearity and 

the analytic approach used to solve the reduced nonlinear equations is given in Chapter 

3.  The remainder of this section will review the expressions obtained by Schloemann for 

the parallel pumping instability process in isotropic samples (Schloemann et al. [1960]), 

and provide example butterfly curve analysis.   

2.3.4 Parallel Pumping in Isotropic Samples 

As was mentioned previously, Schloemann was the first to solve the nonlinear torque 

equation of motion for the parallel pumping process.  Schloemman’s expression for the 
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threshold field required to excite nonlinear spin wave amplitude growth for the parallel 

pumping instability process may be written as 

crit

2

k k

,
4 sin

p

crit k

s k

h H
M

ω

γ π θ

 
= ∆  
  =

 (2.15) 

where 
k

θ  is the polar angle that describes the spin wave propagation direction and 
k

H∆  

is the so-called spin wave linewidth.  It is important to note that 
k

H∆  is not an actual 

measured resonance linewidth; rather it is the relaxation rate, 
k

η , of the critical spin 

wave modes expressed in magnetic field units in order to provide a quick comparison to 

measured FMR linewidths.  For the parallel pumping in an isotropic sphere-shaped 

sample, 2 / .k kH η γ∆ =   The critk k=  term at the end of the equation signifies that the 

critical mode is the spin wave mode that minimizes the 
crit

h  expression in Eq. (2.15). 

The crith  expression given in Eq. (2.15) is used in combination with the measured 

butterfly curve and the spin wave dispersion relation to determine the critical modes and 

the corresponding spin wave linewidths of these modes.  The procedure is as follows.  

The threshold field is calculated by minimizing the 
crit

h  expression for a specific 
ext

H  

field value.  The minimization is carried out over all the available spin wave states in 

which / 2pk
ω ω= .  The range of such states is defined through the spin wave dispersion 

relation (k),
k

ω  discussed in the previous section, and given in Eq. (2.14).  The above 

procedure is repeated for each of the 
ext

H  field values of interest, and the calculated 

butterfly curve is then matched to the measured data by adjusting 
k

H∆ .  Initially a 

constant 
k

H∆  value is used, and then in order to better fit the butterfly curve wave 

vector dependent terms are incorporated to the 
k

H∆  expression as needed.  These added 

terms can effect which spin waves are the critical modes, so the minimization procedure 

is repeated each time 
k

H∆  is changed.  This iterative process is repeated until good 

agreement is obtained between the calculated and measured butterfly curves. 
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Figure 2.13 summarizes numerical parallel pumping butterfly curve calculations, 

which were obtained from Eq. (2.15).  The upper plot in Fig. 2.13 shows the calculated 

crit
h  versus 

ext
H  results along with the measured parallel pumping butterfly curve data 

that were originally shown in Fig. 2.12.  The dashed line was obtained with  

 

Figure. 2.13.  Top plot show parallel pump butterfly curve data and calculated 

threshold.  The data (open circles) were obtained on YIG thick film at 8.93 GHz.  The 

lower plot summarizes the critical mode wave number and polar angle dependence upon 

static field for both spin wave linewidths. 
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0.49 Oe
k

H∆ =    (2.16) 

and the solid line was obtained with a spin wave linewidth equal to 

7 2x0.49 Oe 7.7 10 0.03sin (2 ) .
k k

H k θ∆ = + +   (2.17) 

The lower plot in Fig. 2.13 shows the critical mode wave number and polar angle 

dependence upon the static magnetic field.  The same exact critical modes were obtained 

for both spin wave linewidth expressions.  For 940 Oe,
ext

H <  the polar angle of the 

critical mode equals 90 degrees, and the wave number decreases with increasing fields.  

For 940 Oe,
ext

H >  spin waves with polar angles of 90 degrees are no longer available 

and the critical modes correspond to the maximum allowed polar angle that is available 

at the given field of interest.  This corresponds to spin waves with a wave number of 

zero. 

Figure 2.14 shows a sketch of the locations of the parallel pump critical modes 

within the spin wave manifold.  The thick solid line represents the location of the critical 

modes within the manifold for different static field values.  It should be realized that the 

spin wave manifold shifts up in frequency with increasing static field values as shown in 

the lower plots of Fig. 2.12, this shift is not shown in the sketch in Fig. 2.14.  Such 

sketches will be shown in both the theory and the results chapters as they provide a quick 

summary of the critical mode location within the manifold.  

The theory is successful in not only fitting the actual butterfly curve data but also in 

correctly predicting which spin wave modes are excited at the threshold field.  The 

critical mode predictions have been verified with Brillouin Light Scattering (BLS) 

measurement techniques.  For detailed discussion of the BLS measurement technique see 

Wilber et al. [1984]; and Sandercock and Wettling [1979].  Such BLS measurements of 

critical modes in isotropic materials have been performed for parallel pump instability 
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Figure. 2.14.  Sketch of the critical mode location within the spin wave manifold for the 

PP butterfly curve shown in Fig. 2.13.  Note that while the manifold is shown as 

stationary, it actually moves up with increasing static field as shown in Fig. 3.12. 

processes (Wilber et al. [1984]; Kabos et al. [1997]), subsidiary absorption processes 

(Wiese et al. [1995]), and resonance saturation (Kabos et al. [1996]).  In the majority of 

the cases, excellent agreement is obtained between the predicted and measured critical 

modes.  Such measurements have yet to be performed in detail on hexagonal ferrites. 

2.3.5 Previous Spin Wave Linewidth Analyses 

As was discussed above, nonlinear instability measurements and butterfly curve analysis 

provides a means, albeit indirect, of obtaining the relaxation rate dependence on wave 

number for certain specific spin wave modes.  Therefore, a combined FMR and spin 

wave instability study can yield a considerable amount of information regarding the 

fundamental relaxation mechanisms that are present in a given material.   

The majority of the previous spin wave linewidth 
k

H∆  studies have focused on 

isotropic or weakly anisotropic materials.  As may be expected the material of choice has 

been YIG.  The 
k

H∆  dependences upon surface roughness, sample geometry, operating 

frequency, temperature, impurity content, weak cubic crystalline anisotropy fields, grain 

size, porosity, and small static field limits in which the sample is only partially 

magnetized have all been studied. 
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For a comprehensive review of the previous spin wave linewidth work see (Patton 

[1975]; Patton [1988]; Chen and Patton [1994]; Lax and Button [1962]; and Sparks 

[1964]).  Recently, it has been determined that parallel pumping and subsidiary 

absorption measurements performed above the threshold field in single-crystal YIG are 

an excellent method of studying chaotic systems.  For a good review of these chaos 

studies see Wigen [1994].   

In summary, butterfly curve measurements and analyses have been studied 

extensively for parallel pumping and subsidiary absorption, but most of this work has 

been for isotropic polycrystalline ferrites or cubic single crystal materials with low 

anisotropy.  For resonance saturation, the focus has also been on low anisotropy 

materials and only on the threshold response precisely at the FMR peak.  The findings 

show that the spin wave linewidth is a good indication of the intrinsic relaxation rates of 

a given sample.  Until now, comparatively little work has been performed on hexagonal 

ferrites. 
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CHAPTER 3  

SPIN WAVE INSTABILITY THEORY 

This chapter reviews the classical spin wave instability theory originally developed 

by Suhl and Schloemann and discusses the extensions that were made to it as part of this 

work.  It will be shown that when the original theory is extended to include shape and 

crystalline anisotropy, the uniform mode anti-Larmor processional term can no longer be 

neglected.  Also, in several previous publications in which damping was modeled by 

forcing the uniform mode frequency to be complex, the wrong sign was utilized for the 

complex anti-Larmor damping term.  This chapter will show that while it is appropriate 

for the complex damping term to be added to the Larmor processional frequency, it 

should be subtracted from the anti-Larmor processional frequency. 

The chapter is organized in the following manner: 

1. In the first section, a general overview of the instability theory originally 

developed by Suhl and Schloemann is given.  The key assumptions and basic 

procedures are reviewed. 

2. In the second section, the complex phasor variables, effective magnetic field 

expressions, and the reduced equation of motion are introduced. 

3. In section three, the linear uniform mode solutions to the reduced equation of 

motion are obtained, and the significance of the sign choice used to model the 

anti-Larmor damping term is discussed.  This section also provides comparative 
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results obtained from Landau-Lifshitz and Bloch-Bloembergen equations of 

motion. 

4. Section four addresses the linear spin wave theory.  The spin wave dispersion 

relationship and the so-called spin wave manifold are reviewed, and the effects 

that anisotropy has on them are discussed. 

5. Section five addresses the nonlinear spin wave theory.  Steady state solutions of 

the nonlinear equations are obtained and the analytical threshold field equations 

for parallel pumping, subsidiary absorption, and resonance saturation processes 

are derived. 

6. In the sixth section, example numerical threshold field results for specific limiting 

cases are given, and the effects of modeling with a negative versus a positive 

complex anti-Larmor damping term are reviewed.  It will be shown that for the 

majority of the past publications, which focused on first order instability 

processes, modeling with the incorrect damping sign had a negligible effect.  

However, the sign of the anti-Larmor damping term does play a significant role 

for second order instability calculations in the limit of highly anisotropic media.  

This is a key case of interest for this study. 

3.1 GENERAL OVERVIEW 

The classical nonlinear spin wave instability theory was originally developed by 

Suhl [1957] to describe the resonance saturation and subsidiary absorption effects 

observed by Bloembergen and Wang [1954] and Damon [1951].  Then in the mid 

1960’s, Schloemann [1960] extended Suhl’s initial work to include parallel pumping, 

and in so doing predicted the parallel pumping spin wave instability process prior to its 

first experimental observation in ferrites.  

Since its inception, the classical nonlinear spin wave instability theory has been 

highly successful in describing the instability processes in bulk microwave magnetic 
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materials.  According to the theory, the instability effects are the result of two competing 

processes: damping and parametric excitation.  At low microwave power levels, an 

insignificant amount of power is coupled into spin waves and their amplitudes stay at 

thermal equilibrium levels.  Then as the microwave power is increased, a critical power 

level is eventually reached at which certain spin waves, termed critical modes, are 

parametrically excited above their thermal levels.  The microwave field parametrically 

excites these critical modes either via the oscillating z-component of the magnetization 

vector for parallel pumping, or via the uniform mode for the subsidiary absorption and 

resonance saturation instability processes.  (See Chapter 2 for an overview of the parallel 

pumping, subsidiary absorption, and resonance saturation instability processes.) The end 

result of the theoretical calculations are: (1) analytic expressions for the threshold field 

required to excite nonlinear spin wave amplitude growth, (2) a determination of which 

spin waves are excited at the threshold point, and (3) the calculated relaxation rate of 

those spin waves. 

In the course of this work, two main extensions were made to the classical spin wave 

instability theory.  A generalized microwave field expression was utilized, and the 

resonance saturation instability calculations included static magnetic fields not only at 

the FMR resonance field but off it as well.  Past calculations dealing with anisotropic 

samples utilized a microwave field that was oriented along a single principal axis, and 

the second order theoretical calculations focused only on the threshold response at the 

FMR peak (Schloemann et al. [1963]).  The extensions that were made to the theory will 

be discussed in more detail shortly.   

The remainder of this section will review the coordinate system that is utilized for the 

analysis presented here.  The next sections then summarize the key assumptions that are 

made in the theory and provide a roadmap of the calculation procedure. 

Figure 3.1 shows the Cartesian coordinate system which is used throughout this 

chapter to describe (a) the magnetization vector and the sample geometry, and (b) the 
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relative orientation of the applied magnetic fields and hexagonal c-axis.  The sample is 

assumed to be ellipsoidal-shaped with principal axes along the coordinate axes.  The 

x-axis corresponds to the crystalline c-axis of the hexagonal samples.  It is the easy and 

hard directions for samples with uniaxial and easy-plane anisotropy, respectively.  

 

Figure. 3.1.  Rectangular coordinate system that describes: (a) the precessional motion of 

the magnetization vector M(r,t) about the static equilibrium z-direction and (b) the 

orientation of the external static (Hext) and microwave (hp) magnetic fields relative to the 

hexagonal anisotropy plane.  In the theoretical treatment given here, the z-axis 

corresponds to the applied Hext direction, and a generalized microwave field expression 

is utilized. 
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Therefore, the y-z plane corresponds to the hard and the easy anisotropy planes for 

samples with uniaxial and planar anisotropy, respectively.  The y-axis corresponds to the 

applied microwave field ( )
p

h  direction for the perpendicular pumping configuration, 

which is shown in the figure.  For the theoretical development performed here, a general 

microwave magnetic field expression will be utilized.  The z-axis is the direction of 

applied static field ( )
ext

H  and corresponds to the static equilibrium direction of the 

magnetization vector ( M ).  The sample and coordinate orientation used here was chosen 

to provide ease of comparison between the extended theory developed as part of this 

work and Schloemann’s earlier work (Schloemann et al.  [1963]).   

3.1.1 Key Assumptions  

There are five key assumptions that are made in the spin wave instability theory.  

These assumptions, all of which concern the magnetization vector ( , )tM r  are as 

follows:  

(1) The static magnetization is assumed to be aligned along the z-axis such that 

in the absence of microwave driving field ˆ( , )
s

t M=M r z .  This is a valid 

assumption as the exchange coupling in ferrites cause the magnetic moments to be 

aligned within domains, and the externally applied magnetic fields used here are of 

sufficient strength to align the domains in a single direction.  The field required to 

obtain alignment is determined theoretically from demagnetizing and anisotropy 

field calculations (Osborn [1945]) and verified experimentally via vibrating 

sample magnetometry (VSM) measurements.   

(2) The dynamic components of the magnetization vector are assumed to be 

much smaller than 
s

M . This assumption corresponds to ,x ys z
M m m>> >> .  In 

the linear theory, the dynamic ( , )xm tr  and ( , )ym tr  components are kept to linear 

order and the dynamic z-component is discarded.  In the nonlinear theory, the 

dynamic ( , )xm tr  and ( , )ym tr  components are kept to second order and ( , )zm tr  
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is written as a truncated Taylor series in terms of the x and y dynamic components.   

The Taylor series expansion and higher order truncation are appropriate for the 

instability calculations since the analysis focuses on modeling the initial onset of 

the nonlinear response.  When dealing with highly nonlinear excitations, which 

occur for microwave field amplitudes above the threshold point, higher order terms 

that are not considered here should be included. 

(3) The sample is assumed to have infinite dimensions.  This assumption 

significantly simplifies the analysis because the dynamic magnetization response 

at the sample boundaries is ignored.  Instead, periodic boundary conditions are 

utilized, and the dynamic components of ( , )tM r  are expanded as a spatial Fourier 

series.  The validity of the infinite sample size assumption depends upon the 

wavelength (
k

λ ) of the spin waves, the sample size, and the magnitude of the spin 

wave damping.  The assumption is usually valid for most polycrystalline isotropic 

and highly anisotropic single-crystal samples because of the large damping rates 

that are typically present.  For samples where edge effects cannot be ignored, 

either the “magnetostatic mode” or “dipole exchange mode” theories must be used.  

See Kalinikos [1980], Patton [1988] and Hurben and Patton [1996] for a 

discussion of these theories. 

(4) The microwave field is assumed to be uniform throughout the sample, 

directly exciting the uniform mode response and parametrically exciting the 

spin waves.  This assumption corresponds to the microwave field exciting the 

uniform mode term at low power.  Therefore, 
p

h  is only associated with the 

uniform mode equations not those pertaining to the spin wave modes.  Then at 

high-power levels; the microwave field is assumed to indirectly excite certain spin 

wave modes either through the uniform mode response for resonance saturation 

and subsidiary absorption processes, or through the variation in the z-component of 

the spin waves for the parallel pumping process.  The uniform microwave field 
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assumption is valid as long as the sample size is relatively small compared to the 

wavelength of the microwave field.  This is the case for the samples studied here. 

(5) Electromagnetic propagation is assumed to be negligible.  This final 

assumption is often referred to as the “magnetostatic approximation” and 

corresponds to the velocity of spin waves being significantly smaller than the 

velocity of electromagnetic waves in the medium.  This assumption greatly 

simplifies the analytic calculation of the spin wave magnetic dipole fields derived 

from Maxwell’s equations.  The validity of assumption (5) depends upon the 

conductivity of the material of interest.  For non-metallic samples, which is the 

case of interest for this work, the spin wave group velocity (
k

kω∂ ∂ ) is far from 

the “light line” and the assumption is quite valid.  For a discussion of 

electromagnetic propagation effects see Patton [1976]. 

The above assumptions and the corresponding mathematical analysis presented in the 

following sections are validated in part by how well the theoretical butterfly curves 

match the measured response, and also by the good agreement observed between the 

theoretical predicted critical modes and the measured spin wave vector and frequencies 

obtained by Brillion Light Scattering (BLS) measurements.  See [Wilber et. al., 1984] 

for a discussion of these measurements. 

3.2 EQUATION OF MOTION 

In Suhl’s and Schloemann’s formalism, the dynamic response of the magnetization 

vector is modeled with the torque equation.  This equation, which was derived in 

Chapter 2 for a single dipole moment, may be written for a bulk sample as 

eff

( , )
( , ) ( , ) .

t
t t

t
γ

∂
= − ×

∂

M r
M r H r  (3.1) 
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Here ( , )tM r  is the magnetization vector, and corresponds to the sum of the dipole 

moments in the sample per unit volume, γ  is the gyromagnetic ratio, and eff ( , )tH r  is 

the total effective magnetic field present in the sample. The magnetization vector may be 

written as 

ˆ( , ) ( , )
s

t M t= +M r z m r  (3.2) 

where 
s

M  is the static saturation magnetization and ( , )tm r  is the dynamic response.   

It is worth noting that the internal magnetic fields depend upon ( , ) ,tM r  and thus cause 

the torque equation to be nonlinear in terms of ( , )tm r .   

Equation (3.1) can be rewritten in terms of rectangular coordinates as three first order 

coupled nonlinear differential equations in the following manner 

eff eff( , ) ( , ) ( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ( , ) ( , ) ,  

and

( , ) ( , ) ( , ) ( , ) ( , ) .

yz

x y z

x z

y z eff x eff

y x

z x eff y eff

m t m t H t M t H t

m t M t H t m t H t

m t m t H t m t H t

γ

γ

γ

 = − − 

 = − − 

 = − − 

r r r r r

r r r r r

r r r r r

ɺ

ɺ

ɺ

 (3.3) 

Here  

( , ) ( , )
z s z

t tM M m= +r r , (3.4) 

where ( , )
z

tm r  is a very small dynamic component that can be expressed in terms of 

the dynamic ( , )
x

tm r  and ( , )
y

tm r  components.  This is done by requiring that 

( , ) st M=M r  and solving for ( , )
z

tm r .  As was discussed above (assumption #2) this 

solution is then expressed as a truncated Taylor series, which maybe written as   
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2 2( , ) ( , )
( , ) ~ .

2

x y

z

s

m t m t
m t

M

+
−

r r
r  (3.5) 

Therefore, the ( , )
z

tm rɺ  deferential equation given in Eq. (3.3) is redundant, and the 

equation of motion can be completely described (to second order) by the first two 

coupled differential equations for ( , )
x

tm rɺ  and ( , ) ,
y

tm rɺ  and the ( , )
z

tm r  expression given 

in Eq. (3.5).    

As was stated in assumption #3, periodic boundary conditions are applied to the 

dynamic magnetization vector ( , )tm r  and it can be written as a Fourier series in the 

following manner 

o

0

( , ) ( ) ( ) .i

k

k

t t t e
≠

= +∑ .k rm r m m  (3.6) 

Here o ( )tm  is the uniform mode response and ( )
k

tm  is the spin wave mode 

amplitude with wave vector k.  The relative magnitude of the saturation magnetization, 

uniform mode, and spin wave amplitude is o k( ) ( , ) .sM t t>> >>m m r   Requiring the 

magnetization vector to be real, i.e., that *( , ) ( , ) ,t t=M r M r  results in the following 

criteria for the uniform mode and spin wave amplitude terms 

*

o o

*

( ) ( ) and

( ) ( ) . 
k k

t t

t t−

=

=

m m

m m
 (3.7) 

Furthermore, these modes are orthogonal such that 

3 [ ( ) ]

k,k

1
e i

d r
V

δ′− ⋅
′=∫

k k r  (3.8) 
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where V is the sample volume, and k,kδ ′  is the Kronecker delta function.  Equations 

(3.7) and (3.8) are used to simplify the nonlinear spin wave equation of motion, and will 

be discussed in more detail shortly. 

In order to simplify the math and make the analysis more intuitive, Suhl and 

Schloemann rewrite the uniform mode and spin wave amplitude in terms of 

dimensionless complex phasor variables ( )
o

tα  and ( )
k

tα .  These phasor variables, are 

given as 

( ) i ( )
( )  

and

( ) i ( )
( ) .

ox oy

o

s

kx ky

k

s

m t m t
t

M

m t m t
t

M

α

α

+
=

+
=

 (3.9) 

The requirement on the dynamic components given in Eq. (3.7) results in a third 

expression  

*
( ) i ( )

( )  .
kx ky

k

s

m t m t
t

M
α−

−
=  (3.10) 

The utilization of these three expressions allows for the rotational response of the 

dynamic components to be clearly identified, and the two coupled nonlinear differential 

equations given in Eq. (3.3) to be expressed as a single differential equation.  To do this 

the ( , )
x

m tr  and ( , )
y

m tr  terms are rewritten in terms of the ( )
o

tα  and ( )
k

tα  in the 

following manner  
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( ){ }

( ){ }

* *

0

* *

0

+

-

( , ) + +
2

and

( , ) - + .
2i

is
x o o k k

k

is
y o o k k

k

M
m t e

M
m t e

α α α α

α α α α

−
≠

−
≠

⋅

⋅

 
=  

 

 
=  

 

∑

∑

k r

k r

r

r

 (3.11) 

The dynamic z component of the magnetization vector ( ( , )
z

tm r ) is also expressed in 

terms of the phasor variables by combining equations (3.5) and (3.11). This results in the 

following expression  

( ){ }* * *

0

+( , ) +
2

is
z o o o k o k

k

M
m t eα α α α α α−

≠

⋅ 
≈ −  

 
∑ k r

r  (3.12) 

Note that in order to make the above expressions less cumbersome, the explicit time 

dependence of the ( )
o

tα  and ( )
k

tα  terms was not shown, this notation will be used 

below where appropriate.   

 After rewriting the torque equation given in Eq. (3.3) in terms of the above uniform 

mode and spin wave phasor variables, one obtains the following expression for the 

equation of motion  

0 0

( , ) ( , ) ( , )
( , )

+ i + i +i i z x yz
o k o k eff eff eff

k k s

e t t t
M t

H H iH
M

α α γ α α γ
≠ ≠

⋅ ⋅ 
 = −   

 
∑ ∑k r k r

r r r
r

ɺ ɺ  (3.13) 

and its adjoint (not shown).  The exact expressions for the effective magnetic fields 

will be given in the next section.  In the meantime it is worth noting that this equation 

does not include damping.  Suhl and Schloemann include damping in their models via 

the introduction of complex frequency terms.  This will be discussed in more detail in the 

linear uniform mode section of this chapter. 
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3.2.1 Effective Magnetic Field Expressions 

The total effective magnetic field expression in Eq. (3.1) may be written as 

eff ext p dip ex A( , ) ( ) ( , ) ( , ) ( , ).t t t t t= + + + +H r H h H r h r h r  (3.14) 

Here extH  and p ( )th  are the static and microwave magnetic fields, respectively, 

applied externally to the sample.  The dip ( , ) ,tH r  ex ( , ) ,th r  and A ( , )th r terms are the 

internal magnetic fields, which arise due to dipole-dipole interactions, exchange 

coupling, and magnetocrystalline anisotropy, respectively.  The expressions given in this 

section for the effective fields will be combined into the working equations for 

( , ) ( , )x y

eff effH t iH t+r r  and ( , )z

effH tr , which are required to solve the equation of motion 

given in Eq. (3.13)Detailed derivations of the individual fields are not shown here, rather 

references are provided.   

In order to keep the size of the equations that are to follow more manageable, the 

explicit time and spatial functional dependences “ ( )t ” and “ ( , )tr ” will not always be 

shown.  Instead, capitalized letters will be used to represent the static terms and lower 

case letters will be used to denote time dependent terms.  This notation will be utilized 

from here on except for when it is necessary to show the time and spatial dependencies 

explicitly to eliminate confusion. 

The external applied static and microwave fields may be written as  

ext
ˆ

ext
H=H z  (3.15) 

and 

p
ˆ ˆ ˆ( ) cos( ) cos( ) cos( )

p x p x p y p y p z p
t h a t h a t h a tω δ ω δ ω= + + + +h x y z  (3.16) 
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respectively.  Here the microwave magnetic field is expressed with arbitrary phase 

and direction.  The , ,x y za  terms are the relative amplitude of the various components, the 

x
δ  and yδ  terms are the relative phase terms of the x and y components, respectively.  

For example, to express a linearly polarized field applied in the y direction (field 

orientation used to obtain the subsidiary absorption data shown here) one sets 1ya =  and 

, , , 0
x z x y

a a δ δ = . 

The dipole field expressions are derived from Maxwell’s equations, and can be 

written in terms of spatially uniform and nonuniform components.  The spatially uniform 

dipole fields, which are often referred to as demagnetizing fields, depend upon the 

sample shape and orientation of the applied magnetic fields.  For an ellipsoidal shaped 

sample, in which the external ph  and extH  magnetic fields are applied along the 

principal axes, these demagnetizing fields can be written as  

( )

demag

demag

ˆ-4 ,

ˆ ˆ ˆ-4 .

s z

x ox y oy z oz

M N

N m N m N m

π

π

=

= + +

H z

h x y z

 (3.17) 

Here ,xN  ,yN  and zN  are the so-called Osborn demagnetizing constants for the 

principal x, y, and z axes of the sample, respectively, and their sum is unity (Osborn 

[1945]).   

The spatially dependent dipole fields are derived from Maxwell’s equations by 

making the so-called magnetostatic approximation (assumption (5) given above), and 

may be written as 

k
dip 2

0

( , )
( , ) 4 .

i

k

t
t e

k
π

≠

⋅⋅ 
= −  

 
∑ k rk m r

h r k  (3.18) 



3. THEORY 

60 

Where k  is the wave vector of a given spin wave mode.  See Appendix A in (Chen 

and Patton [1994]) for a full derivation.  The dipole field expression, given in Eq. (3.18), 

can be written in terms of the complex uniform mode ( )
o

tα  and the spin wave ( , )
k

tα r  

phasor variables as 

( ){ ( ) }* * *

dip

0

4
+ sin + cos

2
k ki i is

k k k o k o k k

k

M
e e e

k

φ φπ
α α θ α α α α θ−

− −
≠

⋅−  = − 
∑ k rk

h  (3.19) 

Here the 
k

θ  and 
k

φ  terms are the polar and azimuthal angles of the spherical 

coordinate system, respectively, which describe the spin wave wave-vector k 

propagation direction.  See diagram (a) in Fig. 3.7 for a sketch of the spherical 

coordinate system that is used here. 

The next effective magnetic field of interest is the exchange field; this field is 

quantum mechanical in nature and is typically determined from an exchange energy 

expression.  The expression used in this work was first derived by Herring and Kittel 

[1951] and is given as  

{ }2

exchange k

0

( , ) ( , ) .
i

ks

D
t k t e

M ≠

⋅= − ∑ k r
h r m r  (3.20) 

Here D is the so-called exchange constant.  There is some evidence that the exchange 

constants for hexagonal ferrites are anisotropic and vary with the spin wave propagation 

direction (Mita and Shinizu [1973]).  These effects, which require D to be a tensor 

quantity, are not considered here.  Rather, D is assumed to be a constant and the yttrium 

iron garnet value of 
9 2

5.4x10 Oecm
−

 is used.  For a discussion of effect different D 

values on spin wave dispersion see Nazarov, et al. [2003]. 

The last internal magnetic field to be discussed here is the anisotropy field.  As with 

the exchange field, this field is not a Maxwellian field.  As was discussed in detail in 
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Chapter 2 the anisotropy field can be determined from an empirical free energy 

expression.  For the coordinate system (hexagonal c-axis along the x-axis) shown in 

Fig. 3.1, the free energy 
A

U  can be expressed as 

2

( , )
,

x

A o u

s

m t
U U K

M

 
= −  

 

r
 (3.21) 

where the sign of 
u

K  determines whether the anisotropy is uniaxial or planar.  A 

negative 
u

K  corresponds to planar anisotropy with preferential plane in the y-z plane 

(since energy is minimized by ( , ) 0xm t =r ), whereas a positive 
u

K  corresponds to a 

sample with uniaxial anisotropy and easy direction for the magnetization along the x-

axis.   

The above energy equation is converted to a magnetic field expression by rewriting 

AM H
A

U •= −  as A MH
A

U= −∇∇∇∇ .  Applying this gradient operation with respect to the 

magnetization components on Eq. (3.21) results in the following anisotropy field 

expression 

A
ˆ( , ) ( , )A

x

s

H
t m t

M
=h r r x  (3.22) 

where 2
A u s

H K M= .  This anisotropy field expression models both uniaxial and 

planar anisotropy depending on the sign of 
u

K . 

In summary, the total effective magnetic field inside an ellipsoidal shaped hexagonal 

ferrite sample with crystalline c-axis along the x-direction, and the external static field 

applied along the z-axis may be written as 

( ) ( )
( )

eff
ˆ ˆ

ˆ .

x x x x x y y y x

p demag dip ex A p demag dip ex

z z z z

ext demag p demag ex

h h h h h h h h h

H H h h h

= + + + + + + + + +

+ + + +

H x y

z
 (3.23) 
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In order to obtain the two desired effective magnetic fields expressions 

( , ) ( , )x y

eff effH t iH t+r r  and ( , )z

effH tr , which are required to solve the equation of motion, 

the x and y field components in Eq. (3.14) are combined in the appropriate manner, and 

the dynamic magnetization terms ( , )
x

m tr , ( , )ym tr , and ( , )
z

m tr  are rewritten in terms 

of the complex phasor variables ( )
o

tα  and ( )
k

tα .  Upon doing this, the following 

expression for ( , ) ( , )x y

eff effH t iH t+r r  is obtained 

( ){ }

( ){ }

* *

1 2 3 4

0

* *

5

0

+ + + + +

.

x y i

eff eff c o o k k

k

i

o k o k

k

H iH h H H H H e

H e

α α α α

α α α α

−
≠

−
≠

⋅

⋅

=

+ +

∑

∑

k r

k r

 (3.24) 

 where 

( )

( )

1

2

2 2

3

22
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5
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(

(
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/ 2 4 /2) ,

/ 2 4 /2) ,

/ 2 4 /2)sin ( ) ,

/ 2 4 /2)sin ( ) ,  

and
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k

k

x y

x y

c p p

A s

A s y x

A s k

i

A s k

i

s k k
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h h ih

H H M

H H M N N

H H M Dk

H H M e

H M e

φ

φ

π

π

π θ

π θ

π θ θ

= − +

= +

= + −

= − −

= −

=

 (3.25) 

The subscript “c” in ch  is to remind the reader that this is a complex field expression for 

the microwave pumping field.  The ( , )z

effH tr  expression maybe written as 

{ } { }* * * * *

int 1 1 2 3

0 0

+ + + + ,
z z i i

eff p z k z k z o o z o k o k

k k

H H h H H e H H eα α α α α α α α− −
≠ ≠

⋅ ⋅= + +∑ ∑k r k r (3.26) 
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where the static coefficients are given as 

( )

int

1

2

2 2

3

4 ,

(4 /2)cos sin ,

(4 /2) ,  

and

(4 /2)cos ( / 2) .

k

ext s z

i

z s k k

z s z

z s k

H H M N

H M e

H M N

H M D k

φ

π

π θ θ

π

π θ

−

= −

= −

=

= +

 (3.27) 

3.2.2 Reduced Equation of Motion 

As was discussed previously, an analytic solution to the full equation of motion given 

in Eq. (3.3) which includes all possible orders of nonlinearity in ( , ) ,
x

m tr  ( , ) ,ym tr  and 

( , )
z

m tr  is not the goal of this work.  Rather, we are interested in determining the 

solution to a reduced form of the equation of motion that includes only the relevant order 

of nonlinearity. 

The reduced equation of motion is obtained by substituting the effective field 

expressions for 
x y

eff effH iH+  and 
z

effH  given in Eqs. (3.24) and (3.26), respectively, into 

Eq. (3.13) and then discarding all 
k

α  terms of second and higher order and all 
o

α , 
p

h , 

and 
p

h
o

α  terms of third and higher order.  After a fairly tedious amount of algebraic 

analysis, one obtains the following reduced equations of motion for the uniform and the 

spin wave modes  

o o o o c

* * * * *

o o o o

* ** * * *

1

i

and

1

i

c

k kk k k k

k kk k k k

A B h

B A h

A c B d

B d A c

α α
γ

α α

α α

α α− −− − − −

       
= −       − − −       

 + +   
=     

− − − −    

ɺ

ɺ

ɺ

ɺ

 (3.28) 
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respectively.  The working equations for the various terms in Eq. (3.28) are as follows.  

The time independent oA , oB , 
k

A , and 
k

B  terms may be written as 

( )

( )

o int 1

o 2

int 3

4

,

,

,

and

.

k

k

A H H

B H

A H H

B H

γ

γ

γ

γ

= −

= −

= −

= −

 (3.29) 

The oA  and oB  terms are both real, so the complex conjugation will be dropped in future 

equations.  The time dependent ( )
k

c t  and ( )
k

d t  terms, which cause Eq. (3.28) to be 

nonlinear, may be written as 

( )
2

* * *2
11 12 21

* 2

11 21 22

2
( ) + + + +

and

( )

z

k p o o o o o

k o o o o

H
c t h C C C

d t D D D

γ α α α α α

α α α αγ

 
=   

= + +  

 (3.30) 

 where 

( )

( )

11 1
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2 3 1 321

*

11 1 5
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22 3 1

,
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/ 2 ,
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/ 2 .
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= −
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 (3.31) 
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A significant portion of the classical micromagnetic spin wave theory can be derived 

from Eq. (3.28).  This equation will be used here to model: (1) the linear uniform mode 

FMR response, (2) the linear spin wave dispersion relation, and (3) the nonlinear spin 

wave instability thresholds for parallel pumping, subsidiary absorption, and resonance 

saturation instability processes.  Note that Eq. (3.28) does not include damping.  In order 

to do so, Suhl and Schloemann force the uniform mode and spin wave frequencies to be 

complex; this will be discussed in more detail in the following sections. 

3.3 LINEAR UNIFORM MODE ANALYSIS 

This section addresses the linear uniform mode theory.  First, the uniform mode 

resonance frequency is obtained and the so-called stiffness fields, which provide physical 

insight into the resonance frequency, are introduced.  Then the steady state uniform 

mode solutions are obtained, and several published methods of adding damping to these 

solutions via complex frequencies are reviewed.  The third subsection shows that in 

several of the past publications the incorrect damping sign was utilized for the anti-

Larmor uniform mode complex frequency damping terms.  The fourth subsection then 

provides a direct comparison between the uniform mode solutions obtained using 

complex frequency damping terms with solutions obtained from the Landau-Lifshitz and 

Bloch-Bloembergen equations of motion, which contain damping from the onset.  The 

last subsection analyzes the conditions under which using the wrong anti-Larmor 

complex damping sign have the largest effect on the linear uniform mode amplitude 

response.  The corresponding effects on the instability threshold fields will be discussed 

in section 3.6 of this chapter. 

3.3.1 Resonance Frequency 

The linear uniform mode equation of motion in Eq. (3.28), may be written as 
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* * *
.

o o o o c

o o o o c
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 (3.32) 

The two coupled first order differential equations in Eq. (3.32) can be readily combined 

into a single second order differential equation for ( )
o

tα  that is written as  

2
2

2

( )
( ) ( ) .o

o

t
t F t

t

α
λ α

∂
+ =

∂
 (3.33) 

Equation (3.33) is the governing equation of an undamped driven harmonic oscillator, 

where λ  is the resonance frequency and ( )F t  is the effective driving term.  The working 

equations for these terms are 

2 2 2

*

c

,

and

( ) ( ) ( ) .

o o

o c o c

A B

F t ih A h t B h t

λ

γ

= −

 = − + − 
ɺ

 (3.34) 

The 
o

A  and 
o

B  terms are obtained from Eq. (3.29) as 

( )

( )

int / 2 4 ( ) / 2

and

/ 2 4 ( ) / 2 .

o A s x y

o A s y x

A H H M N N

B H M N N

γ π

γ π

= − + +

= − + −

 (3.35) 

Therefore, the uniform mode resonance frequency ( oω ) expression given by λ  in 

Eq. (3.34) may be written as  

2

int int4 4 .o s x A s yH M N H H M Nω γ π π   = + − +     (3.36) 
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This expression corresponds to the FMR resonance frequency 
FMR

ω  discussed in 

Chapter 2.  This expression is highly successful at modeling the measured FMR 

resonance frequencies in hexagonal ferrites.  For some examples of this, see Hurben  

[1996]. 

In order to provide physical insight into the resonance frequency expression 

Eq. (3.36) is often rewritten in terms of “stiffness” fields as 

ox oyo
.H Hω γ=  (3.37) 

Here the oxH  and oyH  terms are the net static magnetic fields that exert a torque on the 

magnetization vector as it is tilted away from the equilibrium z-direction into the z-x and 

z-y planes, respectively.  See Fig. 3.1 for a diagram of the coordinate system and static 

equilibrium direction.  From an inspection of Eq.(3.36) and Eq. (3.37), one can see that 

the stiffness fields can be written as  

ox int

int

4 ,   

and

4 .

s x A

oy s y

H H M N H

H H M N

π

π

= + −

= +

 (3.38) 

First consider the oxH  stiffness field term.  As can be seen in Eq. (3.38), there are 

three different torque sources exerted on the magnetization vector as it is tilted away 

from the z-axis into the z-x plane: (1) the internal field int 4
ext s z

H H M Nπ= − , which 

resists the rotation away from the z-axis, (2) the demagnetizing field 4
s x

M Nπ , which 

resists the tilt of the magnetization into the x-axis direction, and (3) the anisotropy field 

A
H , which either acts to pull the magnetization vector towards the x-axis (for uniaxial 

case) or resists the tilt into the x-axis (for easy-plane case, 0
A

H < ).   
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Now consider the oyH  demagnetizing field.  As can be seen in Eq. (3.38), the oyH  

stiffness field has only two torque sources that correspond to the internal applied static 

field and the y-component of the demagnetizing field.  Both torque fields try to keep the 

magnetization vector aligned along the z-axis. 

Figure 3.2 summarizes the oxH  and oyH  stiffness fields for four different 

configurations: (a) isotropic sphere, (b) isotropic thin film magnetized perpendicular to 

the film plane, (c) isotropic thin film magnetized parallel to the film plane, and (d) an 

anisotropic thin film magnetized parallel to the film plane.  For the isotropic sphere, 

there is only a single torque source acting on the uniform mode magnetization vector, the 

external static magnetic field ( )
ext

H , which exerts the same amount of torque on the 

magnetization whether it is tilted away from the z-axis into the z-x or z-y planes.  For this 

case, ox oy extH H Hγ= = .   

For the isotropic thin film, cases (b) and (c) shown in Fig. 3.2, there are two sources 

of torque: the external magnetic field and the internal demagnetizing field.  For a static 

field applied out of the disc plane, case (b), the demagnetizing field applies the same 

amount of torque on the magnetization whether it is tilted into the x or y directions, and 

as with the isotropic sphere 
ox oy

H H= .  But for this case, the stiffness fields include the 

demagnetization field such that 
ox oy

4
ext s

H H H Mπ= = − .  For the isotropic thin film 

with in-plane magnetization, case (c), the demagnetizing field only exerts a torque when 

the magnetization is tilted out of the sample plane into the x-direction, and in turn, 

ox oy
H H> . 

The above differences in the stiffness fields for cases (a), (b), and (c) have a real 

measurable effect on the FMR resonance frequency.  For the same exact thin isotropic 

ferrite disk sample a different resonance frequency is observed depending upon whether 

the sample is magnetized in or out of the disk plane.  When the sample is magnetized in 

the disk plane versus out of the plane, a higher FMR resonance is measured that is equal 

to o ( 4 )ext ext sH H Mω γ π= +  versus o ( 4 )ext sH Mω γ π= − , respectively.  Furthermore, 
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Figure. 3.2.  Uniform mode stiffness field equations for several sample 

geometries, orientations, and anisotropy types.  For each configuration, the z-

axis corresponds to the static equilibrium direction of the magnetization 

vector. 
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if the same material is shaped as a sphere, we then obtain an FMR resonance frequency 

( o extHω γ= ) that is between the in plan and out of plane magnetized disk sample.  

The addition of anisotropy adds further complications; this is addressed in case (d) in 

Fig. 3.2.  This case corresponds to a thin disk shaped sample with easy-plane anisotropy.  

The easy-plane is coplanar with the disc plane (sample geometry extensively studied as 

part of this work).  For this configuration, we now have three sources of torque: the 

external, demagnetizing, and anisotropy fields.  All three of these magnetic field sources 

work together to resist a tilt of the magnetization vector away from the z-axis toward the 

x-axis.  However, only the external field acts to resist the tilt from the z-axis to the y-

direction.  This results in 
ox oy

H H>> , and in turn 
o

ω  is significantly larger than what is 

observed for the isotropic sample, case (c).  This is why such samples with high 

anisotropy values are favorable for high frequency applications.  It is important to note 

that in order to obtain the above benefit of increased resonance frequency, one has to 

apply the external magnetic field in the appropriate direction relative to the 

magnetocrystalline anisotropy direction.  If the same sample discussed in case (d) is 

magnetized out of the disc plane, then the torque from the effective anisotropy field 

would oppose the torque from the externally applied field, resulting in a significant 

lowering of the resonance frequency.  

The stiffness field expressions given in Eq. (3.38) and Fig. 3.2 are only valid if the 

static field is applied along a principle axis of an ellipsoidal shaped sample with the 

anisotropy orientation shown in Fig. 3.1.  For a more generalized stiffness field analysis, 

in which the static field is not restricted to being aligned along one of the principle axes, 

see Hurben and Patton [1988] and McKinstry et al. [1985]. 

In order to simplify the dynamic magnetization expressions that are to follow, it is 

convenient to rewrite the stiffness fields in frequency units.  The resulting stiffness 
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frequencies are obtained by multiplying each stiffness field by γ , and may be written as 

ox ox

oy oy

   

and

.

H

H

ω γ

ω γ

=

=

 (3.39) 

This in turn results in the following uniform mode resonance frequency expression  

ox oyo ox oy
.H Hω γ ω ω= =  (3.40) 

It can be shown that the stiffness frequencies can be used to determine the ellipticity 

of the uniform mode precessional cone.  The ellipticity of the uniform mode processional 

cone, which is defined as the magnitude of ratio of the dynamic oxm  and oym  

components of the magnetization, may be written as 

oyox

oy ox

.
m

ellipticity
m

ω

ω
= =  (3.41) 

See Appendix B in Chen and Patton [1994] for a full derivation of the above expression.  

Based upon Eq. (3.41), if oy oxω ω=  then ,ox oym m=  and the uniform mode precessional 

cone is circular.  This is the case for the both the isotropic sphere and the out-of-plane 

magnetized isotropic thin film shown in Figure 3.2.  However, for the in-plane 

magnetized isotropic and anisotropic thin films shown in the bottom of Fig 3.2, there is 

more torque exerted on oxm  than on oym , causing oxm  to be smaller than oym  (especially 

for the anisotropic case).  The important role that ellipticity plays in nonlinear instability 

processes will be discussed in detail below. 
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3.3.2 Steady State Solutions 

We will now turn our attention to the steady state uniform mode solution of Eq. (3.33) 

which can be obtained with a trial solution of the form 

( ) exp( ) exp( ).p po
t A i t B i tα ω ω= + −   Substituting this trial solution into Eq. (3.33) and 

solving for the A  and B constants yields  

( ) ,
2

p pi t i to

o L AL

h
t q e q e

ω ωγ
α

− = +   (3.42) 

where 
o

h  is the magnitude of an externally applied microwave field applied in x-y plane, 

and pω  is the angular frequency of the pumping field.  The 
L

q  and 
AL

q  terms are 

referred to as the Larmor and anti-Larmor uniform mode coefficients, respectively.  

Equation  (3.42) separates the time dependent uniform mode response into two circularly 

polarized components which precess in opposite directions.  The exp( )
L p

q i tω  term 

corresponds to the Larmor precession, and the exp( )
AL p

q i tω−  term corresponds to the 

anti-Larmor precession.   

Figure 3.3 shows a sketch of the Larmor and anti-Larmor precession as viewed from 

the positive z-axis.  As can be seen in the figure, the Larmor precession corresponds to a 

counter clockwise rotation and the anti-Larmor precession corresponds a clockwise 

rotation of the magnetization.  The amplitude of the anti-Larmor response is shown to be 

smaller than the Larmor response.  It will be shown explicitly below that the relative 

magnitude of the two terms is directly related to the ellipticity of the uniform mode 

precession; a purely circular uniform mode precession response (zero ellipticity) 

corresponds to the anti-Larmor response being zero or negligible compared to the 

Larmor response. 
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Equation (3.42) predicts that the uniform mode amplitude is linearly dependent on 

the microwave field amplitude.  This linear response is only true for low-power 

microwave levels.  As the microwave power is increased, the nonlinear uniform mode 

terms (not modeled here) eventually become significant.  Before this occurs, however, 

the spin wave instability threshold is reached and the microwave field energy is coupled 

from the uniform mode into the critical spin wave modes.  This will be discussed in 

detail in the nonlinear section of this chapter. 

The 
L

q  and 
AL

q  terms in Eq. (3.42) may be written as 

( ) ( )

( ) ( )

oy ox

2 2

o

oy ox

2 2

o

,  

and

.

yx

yx

ii

p x p y

L

p

ii

p x p y

AL

p

a e i a e
q

a e i a e
q

δδ

δδ

ω ω ω ω

ω ω

ω ω ω ω

ω ω

−−

+ + +
=

−

− + −
=

−

 (3.43) 

Here, the 
ox

ω  and 
oy

ω  terms are the stiffness frequencies, which were defined in the 

previous section, and the ,x y
a  and ,x y

δ  terms correspond to the relative phase and 

orientation of a microwave field applied in the x-y plane.  See Eq.  (3.16) for details. 

 

Figure. 3.3.  Top view sketch of the precession cones of the Larmor, Anti-Larmor, and 

resulting uniform mode amplitude response.   



3. THEORY 

74 

An inspection of Eq. (3.43) reveals that the uniform mode response given in 

Eq. (3.42) becomes infinite when the resonance condition ( opω ω= ) is satisfied.  This 

non-physical result occurs because damping was not included in the original equation of 

motion.  This is remedied by the addition of phenomenological complex frequency 

damping terms.  The exact method of doing this has varied depending upon the 

complexity of the uniform mode solution.  We will review three different complex 

frequency techniques that have been utilized by Suhl [1957], Patton [1969], and 

Schloemann et al. [1963].  The reasons for doing this are threefold: (1) to show the 

complications that arise when ox oyω ω≠ (i.e., elliptical uniform precession), (2) to 

highlight the different approaches used by Patton and Schloemann to address these 

complications, and (3) to provide working steady state uniform mode equations that 

include damping, which will be utilized in later sections.   

In the first published theoretical paper regarding spin wave instability processes, Suhl 

[1957] addressed the simplest microwave field and sample geometry possible: a 

microwave field with circular polarization in the Larmor direction of the form 

exp( )po
h i tω  applied to an isotropic sphere.  For this case, ox oy oω ω ω= =  and the Larmor 

and anti-Larmor coefficients given in Eq. (3.43) reduce to 

o

1
 

and

0,

L

p

AL

q

q

ω ω
=

−

=

 (3.44) 

respectively.  Suhl then added damping to the above 
L

q  term by replacing oω  with a 

complex frequency term 
o

Ω , which is given as 

o o ,
o

iω ηΩ = +  (3.45)  
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where 
o

η  is the relaxation rate of the uniform mode response.  This term is related to the 

measured uniform FMR linewidth via the following relationship 

o FMRo FMR
1 2 .

ext
H Hη ω= ∂ ∂ ∆  (3.46) 

The uniform mode resonance frequency equation for an isotropic sphere is 
o extHω γ= , 

which results in the following relationship for the relaxation rate 

o FMR
2 .Hη γ= ∆  (3.47) 

Substituting the above ,
L

q  
o
,Ω  and 

o
η  expressions into Eq. (3.42) yields Suhl’s 

expression for the steady state uniform mode response which may be written as 

FMRo

1
( ) .

2 2

pi to

o

p

h
t e

i H

ωγ
α

ω ω γ

 
=  

− + ∆  
 (3.48) 

As can be seen from Eq. (3.48), the uniform mode amplitude is now well behaved at the 

resonance condition p o
ω ω= .   

Patton extended Suhl’s treatment to address a more generalized microwave field and 

sample geometry (Patton [1969]).  He utilized a microwave field expression of the form  

p
ˆ ˆcos( ) x cos( ) yh ( ) x yx p y po

a t a tt h ω δ ω δ + + +=     (3.49) 

applied to an isotropic sample of general ellipsoidal shape.  For this case, Patton obtained 

the following Larmor (
L

q ) and anti-Larmor (
AL

q ) uniform mode coefficients  
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( ) ( )

( ) ( )

oy ox

2

ox oy

oy ox

2

ox oy

   

and

,

yx

yx

ii

p x p y

L

p

ii

p x p y

AL

p

a e i a e
q

a e i a e
q

δδ

δδ

ω ω ω ω

ω ω ω

ω ω ω ω

ω ω ω

−−

+ + +
=

−

− + −
=

−

 (3.50) 

respectively.  This is the same solution as was obtained previously and given in 

Eq. (3.42) and Eq. (3.43), in which ox oyω ω  is used explicitly in the denominator instead 

of 2

oω .  See Patton [1969] for the exact equations used for the stiffness frequency terms.  

Notice that unlike the uniform mode coefficients obtained by Suhl for the isotropic 

sphere case given in Eq. (3.44), the uniform mode coefficients obtained by Patton for the 

more general case, which are given in Eq. (3.50) have a nonzero anti-Larmor coefficient 

and contain stiffness frequency terms in both the numerator and the denominator. 

In order to model damping for this more generalized case, Patton replaced both the 

resonance frequency and its constituent stiffness frequencies with complex terms in the 

following manner 

o o o

ox ox ox

oy oy oy

,

,  

and

.

o

o

o

i

iq

iq

ω ω η

ω ω

ω ω

→ Ω = +

→ Ω = +

→ Ω = +

 (3.51) 

As with Suhl, Patton related the uniform mode relaxation rate (
o

η ) to the measured FMR 

linewidth via Eq. (3.46).  He then obtained a working expression for the stiffness 

frequency damping term 
o

q  by requiring 
o ox oy

Ω = Ω Ω .  This can be written as 
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( )( )ox oy ox oy .
o o o

i iq iqω ω η ω ω+ = + +  (3.52) 

Since ox oy and 
o

q ω ω<< , the square root on the right side of Eq. (3.52) was then 

rewritten as a truncated Taylor series as 

ox oy

ox oy ox oy

ox oy

1 .
2

o
o

q
i i

ω ω
ω ω η ω ω

ω ω

  +
+ = +      

 (3.53) 

Solving this for 
o

q  results in 

ox oy o

ox oy ox oy

2 2
.

o o o
q

ω ω ω
η η

ω ω ω ω
= =

+ +
 (3.54) 

Note that in the limit of a circularly polarized field applied to a spherically shaped 

sample, the above stiffness frequencies and damping rate reduce to ox oy oω ω ω= =  and 

o
,

o
q η=  respectively, and Patton’s expressions are in exact agreement with Suhl’s. 

Schloemann extended Suhl’s initial analysis to include anisotropy (Schloemann et al. 

[1963]).  In his work, he utilized a linearly polarized microwave field of the form 

o
ˆcos( )

p
h tω y  applied to a thin film sample with planar anisotropy (same field and 

sample configuration as shown in Fig. 3.2(d)).  For this case, he obtained the following 

Larmor and anti-Larmor uniform mode coefficients  

ox

2

ox oy

ox

2

ox oy

,  

and

.

p

L

p

p

AL

p

q

q

ω ω

ω ω ω

ω ω

ω ω ω

+
=

−

−
=

−

 (3.55) 
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See Schloemann et al. [1963] for the exact stiffness frequency expressions.  As with 

Patton, Schloemann’s uniform mode coefficients contain a nonzero anti-Larmor term as 

well as stiffness frequency terms in the numerator.  Instead of making these stiffness 

frequency terms complex, Schloemann instead transformed the above equation into a 

different coordinate frame in which the uniform mode was nearly circularly polarized. 

The transformation was performed by requiring *( ) ( ) ( ) ,
o o o

t t tα β β= + Λ  and resulted 

in the following transformed uniform mode equation 

( ) o o

1 1
( ) ,

2 1

p pi t i to

o

p p

h
t e e

ω ωγ
β

ω ω ω ω

− 
= + 

− Λ − +  
 (3.56) 

where ( )( )
1

ox oy o ox oy2ω ω ω ω ω
−

Λ = − + − − .  Schloemann then added uniform mode 

damping into the theory by replacing 
o o o

iω ω η→ + .  Thereafter, he rewrote his 

nonlinear spin wave equation of motion in terms of 
o

β  instead of 
o

α  in order to obtain 

the desired threshold field equations. 

3.3.3 Anti-Larmor CF Sign Problem 

This subsection will show that there is a sign issue present in both Patton’s [1969] and 

Schloemann’s [1963] methods of adding damping to the anti-Larmor coefficients of the 

uniform mode expression, which were discussed in the previous section.  In order to 

identify the sign problem, both the transient as well as the steady state response will be 

analyzed here.   

A general uniform mode solution that includes both the transient and the steady state 

solutions may be written as 

o o( ) .p pi t i ti t i t

o L AL L AL
t A e A e B e B e

ω ωω ωα
−−= + + +  (3.57) 
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The first two terms in Eq. (3.57) are transient terms and the second two are the steady 

state terms.  It is clear that in order to damp out the transient terms, one can replace the 

resonant frequency oω  with a complex term 
o

Ω .  But, note that the sign of the complex 

component ( oo
iω ηΩ = ± ) depends on the sign of the oi tω term in the exponents of the 

transient terms.  In Patton’s and Schloemann’s work discussed in the previous section 

both the positive (Larmor) and negative (anti-Larmor) exponential terms were treated 

with the same complex frequency sign.  This corresponds to an anti-Larmor transient 

response that grows (not decays) exponentially with time ( )o oi te ω η− + . 

For clarity, the corrected form of the uniform mode solution, which has the proper 

complex frequency damping signs, and is utilized in this work, can be written as   

2
( ) .p pi t i to

o L AL

h
t q e q e

ω ωγ
α

− = +   (3.58) 

 where  

( ) ( )

( ) ( )
( )

o

o

2 2

* *

2
* 2

and

.

yx

yx

ii

oy p x ox p y

L

p

ii

oy p x ox p y

AL

p

a e i a e
q

a e i a e
q

δδ

δδ

ω ω

ω

ω ω

ω

−−

Ω + + Ω +
=

Ω −

Ω − + Ω −
=

Ω −

 (3.59) 

The above complex frequencies terms are oo o
iω ηΩ = + , oxox o

iqωΩ = + , and 

oyoy o
iqωΩ = + , where the relationship between 

o
q , 

o
η , and FMRH∆  are given in 

Eq. (3.46) and Eq. (3.54), respectively.  
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3.3.4 Landau-Lifshitz & Bloch-Bloembergen  

While it is obvious that the sign of the anti-Larmor complex damping term has a 

significant effect on the transient response, it is not yet clear how significant the sign of 

the anti-Larmor term is for the steady state solution.  In order to address the significance 

of the sign, this section will compare the steady state uniform mode solutions obtained 

from the torque equation of motion using complex frequency (CF) damping terms with 

those solutions obtained from the Landau-Lifshitz (LL) and Bloch-Bloembergen (BB) 

uniform mode equations of motion, which contain damping from the onset, and hence do 

not require complex frequencies.  It will be shown that the anti-Larmor uniform mode 

coefficient (
AL

q ) obtained with the corrected CF technique is in good agreement with 

those obtained from the LL and the BB equations of motion.  It will also be shown that 

there is a noticeable sign difference in the 
AL

q  expression obtained with the original CF 

technique, which had the sign problem, compared to the LL and BB solutions. 

For the comparison performed here, the hexagonal thin film sample geometry and 

static field orientation shown in Fig. 3.2(d) and a linearly polarized microwave field of 

the form ˆh ( ) cos( ) y
p o p

t h tω=  are utilized. 

The Landau-Lifshitz and Bloch-Bloembergen equations of motion can be written as  

( , )
( , ) ( , ) ,

t
t t

t
γ

∂
= − × −

∂
eff

M r
M r H r DampingTerm  (3.60) 

where the (LL) and (BB) phenomenological damping terms and are given as 
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( )

( )

effM and

1
ˆ ˆ ,

T

s

x y

M

m m

γ
α= × ×

= +

LL

BB

DampingTerm M H

DampingTerm x y

  (3.61) 

respectively.  Here, α  is the dimensionless LL damping term, and 1 T  is the BB 

relaxation rate.  Upon inspection of the above damping terms, one can see that the LL 

damping term is used to describe processes that conserve ( , )tM r , whereas BB models 

damping processes that result in a decrease in ( , )tM r .   

Figure 3.4 shows a sketch of the relaxation paths of the magnetization vector (in the 

absence of a microwave-pumping field) described by the LL and BB damping models.  

Upon inspection of Eq. (3.61), one can see that the LL damping equation models 

damping mechanisms, which scale with the uniform mode processional frequency (since 

~×
eff

M H Mɺ , as shown in Eq. (3.60)).  Whereas the BB damping equation models 

damping processes, which are constant with frequency.  For more details on these two 

damping types see Lax and Button [1962], Patton [1975], and Sparks [1964]. 

The uniform mode steady state solutions to the LL and BB equations can be obtained 

with the same procedure as described previously, i.e., (i) a complex uniform mode 

response term ( )
o

tα  is introduced, (ii) all nonlinear ( )
o

tα  and spin wave terms are 

neglected, and (iii) the resulting two first order coupled differential equations are 

combined into a single second order differential equation for ( )
o

tα .  Note that care must 

be taken to not confuse the above LL α  damping and the uniform mode ( )
o

tα  terms.  

After performing the above steps on equations (3.60) and (3.61) one obtains the 

following governing equation of a damped driven harmonic oscillator   

2
2

2

( ) ( )
2 ( ) ( ) ,o o

o

t t
t F t

t t

α α
η λ α

∂ ∂
+ + =

∂ ∂
 (3.62) 
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where η  is the damping rate, λ  is the resonance frequency, and ( )F t  is the effective 

driving function.   

The damping terms for the LL and BB equations of motion are 

( )ox oyLL

BB

( / 2)

and 

1/ T,

η α ω ω

η

= +

=

 (3.63) 

 

Figure. 3.4.  Sketch of the free decay of the magnetization (M) vector in the absence of a 

microwave pump field.  The relaxation response is shown for damping processes that (a) 

conserve (LL) and (b) do not conserve (BB) the length of M, after [Hurben, 1996]. 
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respectively, and the forcing terms for the two processes are 

( )

( )

oxLL

oxBB

1 ( ) ( )

and 

( ) 1 T ( ) .

y y

y y

F i h t i h t

F h t i h t

γ α ω

γ ω

 = + + 

 = + + 

ɺ

ɺ

 (3.64) 

The Larmor (
L

q ) and anti-Larmor (
AL

q ) uniform mode coefficients for the LL and BB 

equations of motion can be determined by substituting / 2 e e( )( + )
p p

o L AL

i t i t

o
h q q

ω ω
γα

−
=  

into Eq.(3.62) and solving for 
L

q  and 
AL

q .   

Table 3.1 summarizes the steady state uniform mode coefficients 
L

q  and 
AL

q  which 

are obtained with the four different damping models.  The first column describes which 

type of damping is being analyzed.  The CF-1 method corresponds to the complex 

frequency technique that used the wrong sign for the anti-Larmor complex frequency 

term, i.e., where oo o
iω ηΩ = +  is used for both Larmor and anti-Larmor coefficients.  

The CF-2 method corresponds to the corrected complex frequency technique where the 

complex conjugate 
*

o o o
iω ηΩ = −  is used for 

AL
q .  The damping methods labeled LL 

and BB correspond to solutions obtained with the Landau-Lifshitz and Bloch-

Bloembergen equations of motion, respectively.  The second and third columns are the 

L
q  and 

AL
q  expressions, and the last column is 

AL
q  at resonance ( o p

ω ω= ). 

An inspection of Table 3.1 reveals the following three key findings: (1) the complex 

frequency method used by Patton to model uniform mode damping results in very 

similar uniform mode coefficient equations as the LL and BB equations of motions, (2) 

the original complex frequency model utilized by Patton leads to a notable sign 

difference in the steady state anti-Larmor coefficients compared to the LL and BB 

results, and (3) the modified complex frequency approach, in which the anti-Larmor 

damping is modeled with the negative damping sign, is in excellent agreement with the 



3. THEORY 

84 

LL and BB results.  These findings provide considerable credibility to Patton’s method 

of making the stiffness frequencies complex and show that the sign of the damping term 

used for the anti-Larmor complex frequency effects both the uniform mode transient and 

steady state solutions. 

3.3.5 Impact of the CF Sign Issue 

The impact of using with the wrong anti-Larmor complex frequency (CF) sign on the 

steady state uniform mode response depends upon the relative magnitude of the anti-

Larmor ALq  and Larmor Lq coefficients.  This section will show that the ratio of 

ALq / Lq  depends upon: (1) the sample and static magnetic field geometry, (2) the 

magnitude and orientation of the anisotropy, and (3) the operating frequency. 

Damping 

Method 
( )L
q

Larmor Term
 

( )AL
q

Anti - Larmor Term
 

( )pAL o
q ω ω=

Anti - Larmor Term 
at  FMR Resonance
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( )

( ) ( )

o
ox

ox oy

2 2

o o

2

2

p

p

i

i

ηω
ω ω

ω ω

ηω ω ω

+ −
+

− +
 

( )

( ) ( )
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ox

ox oy

2 2

o o

2

2

p

p

i

i

ηω
ω ω

ω ω

ηω ω ω

− −
+

− +
 

ox o

o ox oy
2

iω ω

ηω ω ω

 −
+ + 

+ 
 

CF-2 

( )

( ) ( )

o

o o

ox

ox oy

2 2

2

2

p

p

i

i

ηω
ω ω

ω ω

ηω ω ω

+ −
+

− +
 

( )

( ) ( )

o
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ox oy

2 2

o o

2

2

p

p

i

i

ηω
ω ω

ω ω

ηω ω ω

− +
+

− −
 

ox o

o ox oy
2

iω ω

ηω ω ω

 −
− + 

+ 
 

LL 
( )

( ) ( )

ox

ox oy

2 2

o

2

2
LL

LL p

p

p p

i

i

η ω
ω ω

ω ω

ηω ω ω

+ −
+

− +
 

( )

( ) ( )

ox

ox oy

2 2

o

2

2
LL

LL p

p

p p

i

i

η ω
ω ω

ω ω

ηω ω ω

− +
+

− −
 

ox o

ox oy2
LL p

iω ω

η ω ω ω

 −
− +   + 

 

BB 

( )
( ) ( )

ox

2 2

o
2

BB

BB

p

p p

i

i

ω ω η

ηω ω ω

+ +

− +
 

( )
( ) ( )

ox

2 2

o
2

BB

BB

p

p p

i

i

ηω ω

ηω ω ω

− +

− −
 

ox o

o o
2 2

BB

iω ω

η ω ω

 −
− + 
 

 

Table 3.1.  Summary of the Larmor (
L

q ) and anti-Larmor (
AL

q ) uniform mode 

coefficients obtained from the torque equation of motion using the published complex 

frequency technique (CF-1), corrected complex frequency technique (CF-2), Landau 

Lifshitz equation of motion (LL), and Bloch Bloembergen equation of motion (BB).  

Note that for CF-1, the damping term in the numerator of 
AL

q  is positive; while for CF-2, 

LL, and BB it is negative. 
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Figure 3.5 shows plots of the Larmor and anti-Larmor uniform mode coefficients 

versus the external magnetic field for four different cases: (i) isotropic sphere, (ii) 

isotropic thin-film, (iii) anisotropic thin film, and (iv) anisotropic sphere.  The plots in 

Fig. 3.5 were calculated with the CF-2 corrected complex frequency expressions given in 

Table 3.1, using saturation magnetization ( 4
s

Mπ ) and FMR linewidth (
FMR

H∆ ) of 2850 

Gauss and 10 Oe, respectively.  An anisotropy field of 9.5 kOeAH =  was used for the 

anisotropic samples.  The above saturation magnetization, FMR linewidth, and 

anisotropy values are typical for Mn-doped Zn Y-type hexagonal single crystal samples 

studied here.  The numeric results shown in the upper three plots were calculated with a 

microwave pump frequency of 10 GHz, and a value of 30 GHz was used for the fourth 

plot.  The units of the vertical axes are 1/GHz.  The solid and dotted lines in the plots 

correspond to Lq  and ALq , respectively.  

As can be seen in the figure, ALq / Lq  is the largest for the anisotropic sample 

geometry (c).  However, anisotropy alone is not the reason for this, as can be seen in 

plot  (d) which also has anisotropy but ALq = 0.  Rather ALq / Lq  is a maximum when 

the stiffness fields 
ox

H  and 
oy

H  are very different, and the uniform mode is highly 

elliptical.  See Fig. 3.2 for a summary of the stiffness fields for the cases (a) through (c) 

shown in Figure 3.5.  The stiffness fields for Fig. 3.5(d) are equal to 

ox oy ext AH H H H= = + .  This results in the FMR resonance frequency being the largest 

of all the other cases shown in the figure.  Hence 30 GHz
p

ω =  was used for plot(d) and 

0ALq = . 

The relative magnitude of ALq  and Lq  not only depends upon sample geometry, 

anisotropy, and static field orientation but also upon the operating frequency of the 

applied microwave field.  To show this, we will now focus on the uniform mode 

coefficients at resonance ( )o pω ω=  for case Fig. 3.5(c) at different operating 

frequencies.  
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Figure. 3.5.  Magnitude plots of Larmor (solid line) and anti-Larmor (dotted line) 

uniform mode coefficients versus external static magnetic field.  Calculations were 

performed with the CF-2 expressions given in Table 3.1, using sample parameter values 

of  10Oe,FMRH∆ =  4 2.85kOe,sMπ =  2.8 GHz/kOe,γ =  and the field and sample 

geometry as shown.  A pump frequency of 10 GHz was used for the plots (a)-(c), and 30 

GHz was used for plot (c). 
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Figure 3.6 shows a plot of the relative magnitude of ALq / ALq  versus the microwave 

frequency.  The calculations were performed with ext FMRH H=  such that o pω ω=  for all 

frequency points.  The sample parameters and orientation shown in Fig 3.5 (c) were 

utilized.  One can clearly see that as the frequency is increased, the relative magnitude of 

the anti-Larmor coefficient decreases significantly compared to the Larmor coefficient.  

Therefore, the effects of utilizing the wrong sign are the largest at the lower operating 

frequencies. 

In summary, the effects of using the incorrect anti-Larmor complex frequency 

damping sign on the calculated uniform mode response increase with the ellipticity of the 

uniform mode precession cone.  This ellipticity is the largest for samples with high 

anisotropy, under the appropriate static field and sample orientation, at low operating 

frequencies.  Such a condition will be addressed in Section 3.6 of this chapter.  It will be 

shown there, that the incorrect anti-Larmor damping sign has a notable effect on the 

calculated resonance saturation instability threshold fields. 

 

 

 

Figure. 3.6.  Plot of ratio ( ALq / Lq ) versus operating frequency.  The calculations were 

performed with the sample parameters, geometry, and field orientation given in 

Fig.3.5(c).  For each frequency point, the ratio was calculated with 
ext FMR

H H= .   
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3.4 LINEAR SPIN WAVE ANALYSIS 

In this section, the linear spin wave dispersion relation ( )
k

ω k  and the spin wave 

eigen vectors are obtained from a simplified version of the reduced equation of motion.  

As with the linear uniform mode analysis, stiffness fields will be introduced in order to 

help with understanding the physics of the dispersion relationship.  Then the so-called 

spin wave manifold, which graphically summarizes the 
k

ω  dependence upon ,
ext

H  ,k  

and 
A

H  is introduced and the effects of anisotropy upon the manifold are discussed.  

Lastly, the linear spin wave eigen vectors are used to construct a transformation matrix, 

which is utilized in the next section to transform the nonlinear spin wave differential 

equations into a more readily solvable form. 

Prior to proceeding with the linear spin wave theory analysis, we will briefly review 

the physical model of spin waves in bulk ferromagnetic materials.  As was discussed in 

Chapter 2, a ferromagnetic sample can be considered to be a periodic array of individual 

exchange coupled dipole moments or spins, where the net magnetization is the volume 

average of these individual moments.  A spin wave corresponds to a propagating plane 

wave of the dynamic magnetization in which all the dipole moments precess with the 

same frequency throughout the sample but with a different phase from point to point 

along the propagation direction.  In the bulk spin wave theory, which is being addressed 

here, all spin wave interactions with the sample boundaries are ignored. 

Figure 3.7 shows an illustration of the spherical coordinate system which is utilized 

here to describe the spin wave propagation direction and shows a schematic diagram of 

the precessing dipole moments for spin waves traveling parallel and perpendicular to the 

static equilibrium direction. 
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3.4.1 Spin Wave Frequency 

The linear spin wave equation of motion is obtained by neglecting the nonlinear terms in 

the reduced equation of motion given in Eq. (3.25).  This results in two linear coupled 

differential equations for ( )
k

tα  and 
*
( )

k
tα− , which may be written in matrix form as 

* * *

0
.

0

k k k k

k k k k

A B
i

B At

α α

α α− −

       ∂
− =       − −∂       

 (3.65) 

 
 

Figure. 3.7.  Illustrations of the (a) spherical coordinate system used to describe spin 

wave propagation direction, and the constituent dipole moments for spin waves traveling 

(b) parallel and (c) perpendicular to the external static magnetic field direction. 
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These equations can be readily uncoupled into the following second order linear 

differential equation 

2
2

2

( )
( ) 0.k

k k

t
t

t

α
ω α

∂
+ =

∂
 (3.66) 

This equation corresponds to the governing equation of an undamped undriven harmonic 

oscillator, where 
k

ω  is the natural frequency of the oscillator.  No driving terms appear 

in Eq. (3.66) because based upon assumption (4) discussed in Section 4.1 the linear 

microwave field terms in the reduced equation of motion (Eq. (3.28)) were associated 

with the linear uniform mode equation.  It can be readily shown that when Eq. (3.65) is 

converted into the form of Eq. (3.66), one obtains the following 
k

ω  equation 

2 22
.

k k k
A Bω = −  (3.67) 

The 
k

A  and 
k

B  terms, which were defined previously in Eq. (3.29), can be written as 

2 2

int

22

1 1

2 2

1 1

2 2

4 sin ,

and

4 sin e .k

k s k A

i

k s k A

A H M Dk H

B M H
φ

γ π θ

γ π θ

 
= + + − 

 

 
= − 

 

 (3.68) 

The intH  term in Eq. (3.68) is the internal static field given as int 4
ext s z

H H M Nπ= − , the 

D  term is the exchange constant, and 
A

H  is the anisotropy field. 

As with the uniform mode analysis, the spin wave frequency can be rewritten in 

terms of stiffness fields and provide physical insight into the spin wave dispersion 

relationship.  These stiffness fields are defined with the following relationship: 
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22
kx ky ,

k
H Hω γ=  (3.69) 

where 
kx

H  and kyH  correspond to static magnetic fields which apply a torque upon the 

dipole moments as they rotate away from the equilibrium direction (z-axis) into the z-x 

and z-y planes, respectively.  From an inspection of Eqs. (3.67) and (3.69) one can see 

that the spin wave stiffness fields may be written as  

( )

( )

kx

ky

/

and

/ .

k k

k k

H A B

H A B

γ

γ

= +

= −

 (3.70) 

Table 3.2 summarizes the stiffness fields for spin waves propagating in the principal 

x, y and z directions in both isotropic and anisotropic samples.  The first column, titled 

A
H , identifies what type of anisotropy is present.  Values of 0,

A
H =  0,

A
H <  and 

A
H  , kk

θ φ        
kx

H         
ky

H  

0  
NA0,  

2

intH Dk+  
2

intH Dk+  

0  2
, 0

π
 

2

int 4
s

H Dk Mπ+ +  
2

intH Dk+  

0  2 2
,

π π
 2

intH Dk+  
2

int 4
s

H Dk Mπ+ +  

0<  
NA0,  

2

int AH Dk H+ +  
2

intH Dk+  

0<  2
, 0

π
 

2

int 4 s AH Dk M Hπ+ + +  
2

intH Dk+  

0<  2 2
,

π π
 2

int AH Dk H+ +  
2

int 4
s

H Dk Mπ+ +  

0>  
NA0,  

2

int AH Dk H+ −  
2

intH Dk+  

Table 3.2.  Summary of the spin wave kxH  and kyH  stiffness fields for different spin 

wave propagation directions and anisotropies.   Anisotropy values of 0,
A

H =  

0,
A

H < and 0
A

H = correspond to isotropic, y-z easy-plane anisotropy, and x-axis 

uniaxial anisotropy, respectively.  
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0
A

H >  correspond to a samples that have no anisotropy, planar anisotropy with easy 

plane in the y-z plane, and uniaxial anisotropy with easy direction in the x-direction, 

respectively.  The second column in Table 3.2 identifies the spin wave propagation 

direction ( ),k kθ φ , and the third and forth columns correspond to the 
kx

H  and kyH  

stiffness fields.  The fields were determined from relationships given in Eqs. (3.70) and 

(3.68) and the sample and field orientation shown in Fig. 3.1 and Fig. 3.7.  Unlike for the 

uniform mode case, the spin wave stiffness fields are not highly dependent on the sample 

geometry.  This is as one would expect because spin wave sample boundary effects are 

ignored here. 

First consider the stiffness fields for the isotropic case ( 0)
A

H =  given in Table 3.2.  

For spin waves traveling parallel to the static equilibrium direction ( 0
k

θ = ) there are two 

torque sources, one due to the internal static field intH  and the other from the exchange 

field 
2

Dk .  Both of these magnetic fields work to resist the tilt of the precessing dipole 

moments from the z-axis and result in the same amount of torque being applied to the 

precessing dipole moments regardless if they are tilted from the z-axis into the z-x or the 

z-y planes.  Therefore, 
2

intkx kyH H H Dk= = + .  For spin waves traveling perpendicular 

to the static equilibrium direction ( = / 2
k

θ π ) a third torque source due to the self dipole-

dipole interactions of the precessing dipole moments is present.  This dipole field applies 

a torque that is in the opposite to the spin wave propagation direction.  The magnitude of 

the torque field is the same regardless of if the spin waves are propagating in the x or the 

y direction, but its association with kxH  or kyH  depends on whether the spin waves are 

traveling in the x or y directions, respectively.  The spin wave frequency is the 

combination of the two stiffness fields kx ky| | ,
k

H Hω γ=  so for the isotropic sample 
k

ω  

is the same regardless if the spin waves are propagating in the x or the y directions.  In 

other words, 
k

ω  is independent of 
k

φ  for an isotropic sample. 

Now consider the stiffness fields for the anisotropic sample ( 0)
A

H ≠  given in 

Table 3.2.  For this case, a fourth torque field due to the anisotropy field is now present.  
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For the planar anisotropy ( 0)
A

H <  case, the anisotropy field applies a torque such as to 

oppose a tilt of a dipole moment from the z to the x direction.  This field acts in a very 

similar fashion as intH  but is only present in 
kx

H , and not in 
ky

H .  For the uniaxial 

anisotropy ( 0)
A

H >  case, the x-axis is the easy-direction, and the anisotropy field now 

works against extH , trying to rotate the dipole moments away from the z-axis into the x 

direction.  Note that for both the planar and uniaxial cases, the product of 
kx

H  and 
ky

H  is 

not the same for spin wave propagating in the x and y directions, i.e., the spin wave 

frequency is now dependent upon 
k

φ .  This dependence will be discussed in more detail 

shortly.  Prior to this, we will first discuss the relationship between the stiffness fields 

and the ellipticity of spin wave precessing dipole moments. 

As with the uniform mode, the ellipticity of the precessing dipole moments are 

directly related to the stiffness fields.  If kx kyH H= , then the dipole moments experience 

the same amount of torque whether they are tilted away from the z-axis to the x or y 

directions.  Therefore, kx kym m= and the precessional cones are circular.  If kx kyH H> , 

then the dipole moments experiences more torque when they are tilted into the x-

direction than when they are tilted into the y direction, kx kym m< , and the elliptical 

precessional cones are elliptical.   

Figure 3.8 summarizes the ellipticity of the spin wave dipole precessional cones for 

several propagation directions in an isotropic and an anisotropic sample.  Diagram (a) in 

the figure illustrates the orientation of the precessional cones.  The cones are viewed 

from the positive z-axis, and rotate in the counter-clockwise Larmor direction.  The 

lower diagrams in the figure show the relative magnitude and phase of the precessing 

dipole moments for spin waves traveling in the x and y directions for both (b) isotropic 

and (c) planar anisotropic samples.  See Table 3.2 for the explicit kxH  and 
ky

H  equations 

for the above cases. 

First consider the isotropic case shown in Fig. 3.8(b).  As is seen in Table 3.2, a spin 

wave traveling along the x-axis ( , / 2,0)k k
θ φ π=  has kx kyH H>  and therefore ,kx kym m<   
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whereas a spin wave traveling along the y-axis ( , / 2, / 2k k
θ φ π π= ) has kx kym m> .  For 

both propagation directions, the precession cones are elliptical, with the minor axis 

aligned in the propagation direction.  For spin waves traveling in the z-axis direction 

( 0kθ = ), kx kyH H=  and precessional cones are circular (not shown in the figure). 

 

Figure. 3.8.  Top view of the precessing dipole moments that comprise spin waves 

propagating in the x ( , / 2,0)k k
θ φ π= and y ( , / 2, / 2)k k

θ φ π π= directions, for the sample 

and field geometry shown in Fig. 3.5(c).  The self dipole-dipole fields act to minimize 

the dynamic component of the magnetization that is parallel to the propagation direction, 

and the anisotropy field acts to minimize the dynamic component that is aligned in the 

hard-direction. 



3. THEORY 

95 

Now consider the precessional cones for the planar anisotropy case shown in Fig. 3.8 

(c).  As can be seen in Table 3.2, if | | 4
A s

H Mπ>  then kx kyH H>  for spin waves 

traveling in the x, y, and z directions.  For spin waves traveling in the x direction, the 

effect of the anisotropy reinforces the dipole-dipole induced preference for alignment 

along the y-axis and therefore kx kym m<< .  For spin waves traveling along the y 

direction, the torque field from the anisotropy field counteracts the effect of the dipole-

dipole interactions, and kx kym m< .  Finally consider the precessional cones for spin 

waves traveling in the z-axis for the anisotropic sample (case not shown in Fig. 3.8).  For 

this case, there is no longer any dipole field present to increase or decrease the effect of 

| |
A

H , so an elliptical precession is obtained which has a relative ellipticity that is 

between the two cases shown in Fig. 3.8(c). 

The above discussions regarding the spin wave frequency, stiffness fields, and 

ellipticity have been limited to spin waves propagating only along the principle x, y, or z 

coordinate axis.  Attention will now given to a general spin wave dispersion relation for 

spin wave propagating in an arbitrary direction.  This relation is obtained by substituting 

the 
k

A  and 
k

B  expressions given in Eq. (3.65) into Eq. (3.64) and may be written as 

( ) ( )
2

2 2 2 2 2

2
+ + +4 sin( ) - - 4 sin( ) sin( ) .k

int int s k A A s k k
H Dk H Dk M H H M

ω
π θ π θ φ

γ
=  (3.71) 

In the limit of zero anisotropy, Eq. (3.71) reduces to the well-known isotropic bulk spin 

wave dispersion relation first developed by Kittel [1947] and Herring and Kittel [1951].  

Upon inspection of Eq. (3.71), one can see that anisotropy has the following two main 

effects on the spin wave manifold: (1) it acts as an added internal field which either 

boosts or opposes the applied external magnetic field depending on whether the 

anisotropy is planar (negative sign) or uniaxial (positive sign), respectively, and (2) it 

introduces a dependence upon the azimuthal angle .
k

φ  
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Figure 3.9 shows a three-dimensional sketch of the spin wave dispersion relationship.  

The plot is for an anisotropic sample with planar anisotropy in the y-z plane (orientation 

shown in Fig. 3.5(c)).  The spin wave band, which is commonly referred to as the spin 

wave manifold, consists of the region between the lower and upper planes.  The upper 

and lower bounding planes correspond to spin wave polar propagation angles / 2
k

θ π=  

and 0,
k

θ =  respectively.   

As was discussed in Chapter 2, the spin wave manifold can be understood physically 

via energy considerations.  The Zeeman energy from the static field causes the whole 

manifold to move up with increasing external magnetic field strength.  The exchange 

 

 

 

Figure 3.9.  Three-dimensional sketch of the spin wave dispersion manifold for an easy-

plane anisotropic sample with static field and anisotropy orientation shown in Fig. 

3.5(c).  The upper and lower shaded surfaces in the sketch correspond to spin wave 

propagation directions normal and parallel to the z-axis, respectively. The orientation of 

the k axis was chosen such as to provide the best perspective of the manifold, after 

Hurben [1996]. 
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energy is the source of the k
2
 dependence, and the self dipole-dipole energy is the source 

of the 
k

θ  dependence.  The magneto crystalline anisotropy leads to the 
k

φ dependence, 

and it is also the cause of the warping of the manifold along the 
k

φ  axis shown in the 

sketch.  The reason the spin waves traveling along the y-direction have the highest 

energy is that they have the largest dipole-dipole energy.  As can be seen in Fig. 3.8(c), 

anisotropy acts to reduce the ellipticity of these spin wave as compared to those traveling 

in the x-direction, this in turn results in higher dipole-dipole energy.  For a more detailed 

discussion on the effects of anisotropy on spin wave dispersion and the effects of 

applying the external static magnetic field off the principle axis, see Hurben [1996]. 

Figure 3.10 shows a representative set of spin wave dispersion curves for a thin Zn 

Y-type hexagonal ferrite disk.  The graph shows the spin wave frequency as a function of 

the wave number k for the three principal dispersion branches.  The solid circle at about 

9 GHz on the vertical axis and the dashed line, which crosses the two lower curves, 

indicate the FMR frequency.  As is seen in the figure, anisotropy leads to a warping in 

 

 

 

Figure. 3.10.  Plot of calculated spin wave frequency versus wave number for the 

different spin wave propagation directions given in the plot.  The curves were calculated 

using the Zn Y-type hexagonal ferrite sample parameters given in the text, a static field 

of 500 Oe, and the orientation shown in Fig 3.5(c).  The solid circle and the horizontal 

dashed line indicate the ferromagnetic resonance frequency. 
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the manifold at about 8 GHz.  These numeric results were calculated with standard 

values associated with the Zn Y-type hexagonal ferrite disc used here, in which 

4 2.85kG,
s

Mπ =  1,xN =  0,y zN N= =  2.8GHz/kOe,γ =  9 25.4 10 Oe / cm ,D −= ⋅  and 

9.5kOe
A

H = −  (negative sign corresponds to planar anisotropy).  A static field of 850 

Oe and the sample and external field orientation shown in Fig. 3.5(c) were utilized. 

3.4.2 Steady State Solutions  

The historical approach to obtain the steady state spin wave solutions (eigen vectors) 

has been to perform a Holstein-Primakoff transformation on Eq. (3.72) using preselected 

hyperbolic trigonometric functions (Suhl [1957]).  This approach is overly cumbersome, 

involving an unnecessarily large amount of algebraic manipulations, especially when 

anisotropy is included in the theory.  A much simpler approach is to just solve the linear 

spin wave equation of motion for the eigen vectors with standard linear algebra 

techniques and then construct the transformation matrix from these vectors (Schloemann 

et al. [1963]).  This is the approach utilized here.  To do so we can rewrite Eq. (3.63) in 

matrix form as 

k kv viA
t

∂
=

∂

�� �
 (3.72) 

 where 

k *

*

v

and  

.

k

k

k k

k k

A B
A

B A

α

α−

 
=  
 

 
=  − − 

�

�

 (3.73) 
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The eigen values (spin wave frequencies) are obtained by the matrix 

operation 0
k

A Iω− =
� �

, where I
�

 is the identity matrix, and the eigen vectors are obtained 

by requiring ( )k- I v = 0A ω
� � �

.  Upon doing this, one finds that the eigen vectors are  

*

1
   and   

1

Γ   
= =   Γ   

+ -
v v  (3.74) 

 where  

( ) */ .k k kA BωΓ = −  (3.75) 

The inverse transformation matrix is then 

-1

*

1
T = .

1

Γ   
=   Γ   

+ -
v v

�
 (3.76) 

The transformation matrix is then determined by requiring that -1T T =1
� �

 and solving for 

T
�

.  This results in the following expression  

2 *

11
T .

11

−Γ 
=  −Γ− Γ  

�
 (3.77) 

When one applies the transformation matrix on the linear spin wave equation given in 

Eq. (3.72), it diagonalizes the A
�

 matrix and yields the spin wave dispersion frequency.  

This is done in the following manner: 
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k k

k k

-1

k k

k k

* *

v I v

T v I v

T v T T T v

b B b

0
.

0

k k k

k k k

iA
t

iA
t

i A
t

i
t

i
t

β ω β

β ω β− −

∂
=

∂

∂ 
= 

∂ 

∂
=

∂

∂
=

∂

     ∂
=     −∂      

��� �

��� � �

�� � � �� �

���� �

 (3.78) 

3.5 NONLINEAR SPIN WAVE ANALYSIS 

Now that the linear uniform mode and spin wave mode solutions have been obtained, 

we are now ready to solve the nonlinear spin wave equation of motion given in 

Eq. (3.25).  To do so, we will first transform this equation into a more readily solvable 

form.  This transformed nonlinear spin wave equation is simplified by neglecting the 

nonrelevant frequency modulation and coupling coefficient terms.  Complex frequency 

damping is then added to the simplified transformed nonlinear spin wave equations, and 

analytic solutions are obtained.  These steady state solutions are then analyzed to 

determine the microwave threshold field amplitude, termed 
crit

h , required to excite 

nonlinear spin wave amplitude growth of the critical modes.  Thereafter, example 

resonance saturation butterfly curve plots calculated with the above hcrit expression and 

typical Zn Y-type hexagonal ferrite sample parameters are provided. 

3.5.1 Nonlinear Instability Solutions  

The nonlinear spin wave equation of motion, which is obtained from the reduced 

equation of motion given in Eq. (3.25) by discarding the linear uniform mode and linear 

microwave field terms, may be written in matrix form as 
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* * * * *

( ) ( )
.

( ) ( )

k k k k k k

k k k k k k

A c t B d t
i

B d t A c tt

α α

α α− −

+ +     ∂
=     − − − −∂      

 (3.79) 

Here the 
k

A  and 
k

B  terms are time independent and describe the spin wave frequency 

via 
22 2

k k k
A Bω = − .  The time dependent ( )

k
c t  and ( )

k
d t  depend on the uniform mode 

( )
o

tα  and the z-component of the microwave magnetic field ( )pzh t , and ( ).
c

h t   See 

Eq. (3.30) for the explicit expressions for ( )
k

c t  and ( )
k

d t . 

The nonlinear spin wave equation of motion given in Eq. (3.79) can be rewritten in a 

more readily solvable form via a linear transformation using the matrix T
�

 obtained in the 

previous section.  Upon do so, we obtain the following transformed equation: 

nl nl nl
b b ,

t
i B

∂

∂
=

� ��
 (3.80) 

 where 

2 *nl k *

1 -1

- 11-

( )
b T v ,

( )

k

k

t

t

α

α−

Γ

ΓΓ

  
= =   

   

� � �
  (3.81) 

 and 

-1

nl

2 *

nl

nl * * * *

T T

1 - 11

- 1 11-

( ) ( )
.

( ) ( )

k k k k

k k k k

A

A

A

B

c t B d t
B

B d t c t

Γ Γ

−Γ ΓΓ

=

+ +    
=     − − −    

�� ��

�  (3.82) 

The transformed nonlinear spin wave equation given in Eq. (3.80) can be written in 

matrix form as  



3. THEORY 

102 

* * * *

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )

k k k k k

k k k k k

t F t G t t
i

t G t F t tt

β ω β

β ω β− −

+     ∂
=     − − −∂      

 (3.83) 

 where  

( )2

2

* 2 *

2 * * *

1

1

1 | |

1 | |

( ) ( )+ ( ) + ( )+ ( )

and

( ) ( )+ ( )+ ( )+ ( ) .

k k k k k

k k k k k

G t c t c t d t d t

F t c t c t d t d t

− Γ

− Γ

 = Γ Γ 

 = Γ Γ Γ
 

 (3.84) 

In this transformed form, we can readily identify the time dependent nonlinear ( )
k

G t  and 

( )
k

F t  terms from the linear spin wave dispersion frequency 
k

ω .   

Equation (3.83) is actually a modified form of the nonlinear Mathieu’s Equation.  

(See Landau and Lifshitz [1984] for details).  An exact analytic solution of Eq. (3.83) is 

not easily, if at all, obtainable.  In order to obtain a closed form solution, the following 

assumption regarding ( )
k

F t  is applied:  it is asserted that ( )
k

F t  leads only to a 

modulation of 
k

ω  and does not play a role in nonlinear spin wave amplitude growth.  

Therefore, since we are only interested in determining the microwave field strength 

required to initiate the nonlinear spin wave amplitude growth, and not the modulated 

frequency of those nonlinearly excited critical modes, ( )
k

F t can be neglected.  See Suhl 

[1953] and Schloemann [1959] for more detailed discussions.   

Thus the transformed nonlinear spin wave equation of motion given in Eq. (3.83) is 

rewritten in a simplified and analytically solvable form as 

* * *

( ) ( ) ( )
.

( ) ( ) ( )

k k k k

k k k k

t G t t
i

t G t tt

β ω β

β ω β− −

     ∂
=     − −∂      

 (3.85) 



3. THEORY 

103 

The ( )
k

G t  term in Eq. (3.85) models the effective parametric coupling rate of the 

microwave field energy into the various spin wave modes.  The explicit relationship 

between ( )
k

G t  and the z-component of the microwave field ( )pzh t  and the uniform mode 

amplitude ( )
o

tα  is obtained by substituting the ( )
k

c t  and ( )
k

d t  expressions given in 

Eq. (3.27) into the ( )
k

G t  expression in Eq. (3.84) and may be written as 

22 ***
11 12 21 22 23( )      k pz o o o o o ozG t g h g g g g gγ α α α α α α= + + + + +  (3.86) 

 where  

( )

( )

( )

*

*

*

*

*

*

*

11 11 12 11

* 2 *

12 11 12 11

*

21 22 2

* 2 *

22 21 21 21 21

2 *

23 22 2

1

1

1

21

1

1

21

2

1
,

,

,

,

,   

and

.

z
g

g C C D

g C C D

g D H

g C C D D

g D H

γ

γ

γ

γ

γ

− ΓΓ

− ΓΓ

− ΓΓ

− ΓΓ

− ΓΓ

Γ

− ΓΓ
=

 = Γ + + 

 = Γ + + Γ 

 
= + Γ  

 = Γ + + + Γ 

 
= Γ + Γ  

 (3.87) 

The microwave field and the uniform mode amplitude terms in Eq. (3.86) can be written 

as  

( )( )

( )( )

( ) / 2  

and

( ) / 2 ,

pz oz

o o L AL

p p

p p

i t i t

i t i t

h t h e e

t h q e q e

ω ω

ω ω
α γ

−

−

= +

= +

 (3.88) 
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where 
oz

h  and 
o

h  are the magnitude of the microwave field components applied parallel 

and perpendicular to static equilibrium direction of the magnetization vector (z-axis), 

respectively.  From an inspection of the previous three equations, one can see that ( )
k

G t  

may be written in terms of the microwave frequency harmonics as 

2
( )

2

( ) .
n

k k

n

pin t
G t G e

ω

=−

= ∑  (3.89) 

The different harmonic components of ( )
k

G t  correspond to different scattering processes 

that may lead to nonlinear spin wave amplitude growth. 

First consider the constant term 
( )0

k

n
G

=
 in Eq. (3.89).  Inspection of Eq. (3.83) 

reveals that this constant term can be taken into account by a linear transformation and 

does not play a role in the spin wave amplitude growth.  It will therefore be ignored here.  

Next consider the negative ( 0n < ) terms in Eq. (3.89).  It can be shown that if a spin 

wave amplitude solution with a positive exponent of the form exp( ) 
k

i tω+ is used (the 

type of solution addressed here), then the scattering terms with the negative exponents 

( )0 exp( )pk

n
G i n tω<

−  in Eq.(3.89) require significantly higher microwave field 

amplitudes to excite nonlinear spin wave growth than the positive exponential 

( )0 exp( )pk

n
G i n tω>

 terms (see Eq. (3.94) below for details).  Therefore, the 0n < terms 

in Eq. (3.89) can also be neglected. 

Now consider the positive ( 0n > ) terms in Eq. (3.89).  As was discussed in 

Chapter 2, the experimental conditions can be established such that the first and second 

order nonlinear instability processes are independently excited.  The first and second 

order instability processes correspond to spin waves with frequency harmonics of 

exp( )pi tω  and exp( 2 ),pi tω  respectively.  Therefore, the 1n =  and 2n =  
( )n

k
G terms can 

be treated independently to model the first and second order nonlinear instability process.   
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In summary, of all the harmonic terms in Eq.(3.89), we only need to address the 

(1) exp( )pkG i tω  and 
(2)

exp( 2 )pk
G i tω  terms in a separate fashion here.  See Suhl [1953] 

and Schloemann [1959] for more detailed discussions.  The explicit 
(1)

k
G  and 

(2)

k
G  

scattering coefficients are obtained by substituting the ( )pzh t  and ( )
o

tα  expressions 

given in Eq. (3.88) into Eq. (3.86) and collecting all like exp( )pi tω  and exp(2 )pi tω  

terms, respectively.  These coefficients may be written as 

( ) ( )

( )

o(1) oz *
11 12

2

(2) 2 * 2*
21 22 23

2 2

2

, 

and

.o

k z L AL

k L L AL AL

h h

h

G g g q g q

G g q g q q g q

γ γ

γ

= + +

 
= + + 
 

 (3.90) 

Prior to solving the simplified transformed nonlinear spin wave equation of motion, 

given in Eq. (3.85), we first need to include damping.  This is done by the complex 

frequency technique in which the spin wave frequency is replaced with the following 

complex frequency 

,
k k k k

iω ω η→ Ω = +  (3.91) 

where 
k

η  is the relaxation rate of a specific spin wave mode.  Note that the complex 

frequency damping term in Eq. (3.91) is added to, not subtracted from, the spin wave 

frequency because we are addressing exponential solutions of the form exp( ),
k

i tω+  not 

exp( ).
k

i tω−   Substituting 
( )

exp( )
n

k k
G in tω  for ( )

k
G t  and 

k
Ω  for 

k
ω  into Eq. (3.85) 

yields the following final form of the simplified transformed nonlinear spin wave 

equation of motion 

( )

* *
( )* *

.

n

k kk k

n
k kk k

p

p

in t

in t

G
i

t G

e

e

ω

ω

β β

β β
− −

−

Ω∂
=

∂ − −Ω

    
    
     

 (3.92) 
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These two equations can be readily decoupled into a single second order differential 

equation, written as  

( ) ( )22 ( )
- -2 - + 0n

k kk k p k p k k
Gin nβ η ω β ω βΩ+ + Ω =ɺɺ ɺ  . (3.93) 

Note that we now have a second order differential equation with constant coefficients, 

whose solution may be written as 

( )( ) ( )
( ) exp ,

n n

k k k
t b i tβ ω κ = +   (3.94) 

 where 

( ) ( )
22

( ) ( )
2 .

n n

k k k pG nη ω ωκ = − + − −  (3.95) 

From an examination of the steady state solution to the transformed reduced nonlinear 

spin wave equation of motion given in Eq.(3.94), it can be easily seen that ( )
k

tβ  grows 

exponentially with time when 
( )

0
nκ > .  Therefore, from an inspection of Eq. (3.95), we 

know that nonlinear spin wave amplitude growth occurs when the magnitude of the 

coupling coefficient satisfies the following criteria 

( )
22

( ) 2
2 .

k k k p

n
G nη ω ω> + −  (3.96) 

The spin wave modes that first experience nonlinear amplitude growth, termed critical 

modes, are the ones that have the minimum (n)

k
G  required to cause (n) 0.κ >   Inspection 

of Eq. (3.96) reveals that the minimum (n)

k
G  required to cause nonlinear spin wave 

growth occurs when 
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2 .pk nω ω=  (3.97) 

Therefore, the critical modes for the first order parallel pumping and subsidiary 

absorption instability processes ( 1n = ) must have 2pk
ω ω= , and the critical modes for 

the second order resonance saturation process ( )2n =  must have pk
ω ω= .  These critical 

mode frequency requirements have been verified multiple times via Brillouin Light 

Scattering (BLS) measurements and are a good indication of the validity of Suhl’s and 

Schloemann’s nonlinear spin wave instability theories.  See Wilber et al. [1984] and 

Kabos et al. [1997] for details on the BLS measurements. 

After applying the critical mode frequency requirement given in Eq. (3.97) to Eq. 

(3.96), the magnitude of the coupling coefficient required for nonlinear spin wave 

amplitude growth can now be written as  

( )
.k

crit

n

k
G η≥  (3.98) 

The subscript in Eq. (3.98) is written as 
crit

k  as a reminder that we are referring to the 

coupling coefficient associated with the critical spin wave modes, in which 2pk nω ω= .  

For ease of comparison with the FMR linewidth it is convenient to express the spin wave 

relaxation rate 
k

η  in terms in the same units (Oe), and 
k

η  is rewritten as the so-called 

spin wave linewidth 
k

H∆  as 2k kHη γ= ∆ .  Therefore, the instability threshold 

condition ( )

crit

n

k k
G η≥  discussed above is rewritten in terms of the spin wave linewidth as 

( )
.

2crit

n k
k

H
G

γ ∆
≥

| |
 (3.99) 

3.5.2 Threshold Field Equations 

We are now ready to determine the working equations for the first and second order 

spin wave instability threshold fields ( crith ) which are the minimum microwave field 
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amplitudes required to excite nonlinear spin wave amplitude growth.  To do this we 

substitute the 
(1)

k
G  and 

(2)

k
G  coefficients given in Eq. (3.90) into Eq. (3.99) and solve 

for the microwave field amplitude. 

Upon performing the above steps, we obtain the following working equations for the 

parallel pumping (PP), subsidiary absorption (SA), and resonance saturation (RS) critical 

threshold field amplitudes as 

( )

( )

( )

crit

crit

crit

(PP)

crit PP

(SA)

crit SA

(RS)

crit RS

2,

2 ,

,

= 
,

=  
and,

2
=  

,

k p

k p

k p

k

k

k

k

k

k

H
h

g

H
h

g

H
h

g

ω ω

ω ω

ω ωγ

= =

= =

= =

∆

∆

∆

k k

k k

k k

 (3.100) 

respectively, where 

( )

( )

( ) ( )

PP

SA *

11 12

2RS 2 * *

21 22 22

,

,  and

.

zk

L ALk

L L AL ALk

gg

g q g qg

g q g q q g qg

=

= +

= + +

 (3.101) 

See Eq. (3.87) for the 
z

g  and ijg  terms. 

The expressions in Eq. (3.100) are the working threshold field equations which are 

required in order to perform numeric butterfly curve calculations of crith  versus ext .H   

These expressions can be used to calculate parallel pumping, subsidiary absorption, and 
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resonance saturation instability butterfly curves for samples with planar and uniaxial 

anisotropy, obtained with the field and sample orientation shown in Fig. 3.1.  These 

threshold field expressions contain three extensions over previously published work.  

They allow for the butterfly curve calculations to be performed in anisotropic samples 

using: (1) a generalized microwave field expression, (2) static external magnetic fields 

not only equal to but also away from the FMR resonance field for resonance saturation 

instability process, and (3) corrected anti-Larmor uniform mode coefficients obtained 

with a corrected model of the complex damping frequency.   

In order to gain confidence in the threshold field expressions given in Eq. (3.100), it 

will now be shown that they reduce to the same expressions as those originally derived 

by Suhl [1953] and Schloemann [1959] in the limit of zero anisotropy and specific 

sample and field geometries.   In order to reduce the threshold field equations given in 

Eq.(3.100) into the well established forms that are found in the literature for certain 

specific limits, it is helpful to notice that the ( )*1 1− ΓΓ  term, which occurs frequently in 

Eq. (3.87), can be rewritten in terms of just 
k

A  and 
k

ω .  By applying the following two 

relationships 
22 2

k k k
A Bω = −  and ( ) * ,k k kA BωΓ = −  which were originally given in 

Eq. (3.64) and Eq. (3.75), respectively, the ( )*1 1− ΓΓ  expression can be rewritten as 

( ) ( )*1 1 2 .
k k k

Aω ω− ΓΓ = +  (3.102) 

Now consider the parallel pumping processes.  For this case the microwave field and 

the coupling coefficient can be written as  

( )
*

PP 2

1

ˆcos( )

and

.

o p

k
zk

k

h t

B
gg

ω

ω

Γ

− ΓΓ

=

= = = −

ph z

 (3.103) 
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respectively.  Applying the expressions given in Eq. (3.103) into Eq. (3.100) results in 

the following expression for the threshold field 

( )PP

crit 22
= 

4 sin ( ) .k

p k

i

s k A

H
h

M e H
φ

ω

γ π θ

∆

−
crit

k = k
 (3.104) 

In the limit of 0
A

H = , we obtain the exact solution originally derived by 

Schloemann [1959].  For the case of planar anisotropy ( 0
A

H < ), Eq. (3.104) is also in 

agreement with Schloemann’s later results (Schloemann et al. [1963]).   

From inspection of the threshold field given in Eq. (3.104), it can be seen that 
A

H  

has a very significant effect on the threshold field.  Note that depending upon the spin 

wave linewidth, Eq. (3.104) can yield an extremely small threshold which can lead to 

very limited power handling capabilities for microwave devices with highly anisotropic 

materials.  The underlying physics for why 
A

H  reduces the threshold field has to do with 

ellipticity.  As was discussed in Chapter 2, for parallel pumping processes, the 

microwave field couples into the wobble of ( , )
z

m r t .  The magnitude of the ( , )
z

m r t  

wobble is directly related to the ellipticity of the precessing dipole moments that make 

up the spin waves.  If 0
A

H < , both the dipole-dipole and the anisotropy fields work 

together to significantly increase the ellipticity of the precessional cones and, thus, 

reduce the threshold field required to drive the nonlinear spin wave amplitude growth. 

Now consider the subsidiary absorption and resonance saturation threshold fields for 

an isotropic sphere in which 0,
A

H =  , , =1/ 3,
x y z

N  and ˆcos( ) .
o p

h tω=
p

h y   This 

corresponds to the limiting case initially treated by Suhl [1953].  In this case, the 

subsidiary absorption threshold in Eq. (3.100) reduces to   
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( )SA

crit = 
sin( )cos( ) ,

p k

s k k

H
h

M

ω

γ π θ θ

∆

4
crit

k = k
 (3.105) 

and the resonance saturation expression for the limiting case in which 
ext FMR

H H=  

(i.e.,  )po
ω ω=  reduces to 

( )RS

crit = 
4 .

k
FMR

s

H
h H

Mπ

∆
∆

crit
k = k

 (3.106) 

Equations (3.105) and (3.106) are in exact agreement with the subsidiary absorption 

equation ( )Eq. (31)  and the resonance saturation equation ( )Eq. (37)  of Suhl’s original 

paper (Suhl [1953]). 

3.5.3 RS Butterfly Curve Calculations 

A full review of all the possible spin wave instability calculations that can be obtained 

from the instability equations given in Eq. (3.100) is beyond the scope of this work.  

Chen and Patton [1991] review threshold processes for the subsidiary loss region in 

isotropic ferrites.  Schloemann et al. [1963] discuss threshold processes for both the 

subsidiary loss and FMR regions for easy plane hexagonal ferrites.  The theoretical 

treatment in Schloemann et al. [1963] does not consider resonance saturation processes 

that occur for static magnetic fields unequal to the FMR resonance field.  As was 

mentioned previously, the analysis performed here extends the nonlinear theory to 

include the field regime around the FMR point.  To the best of this author’s knowledge, 

off-resonance second order spin wave instability calculations have only been performed 

once before for isotropic samples (Kabos et al. [1997]) but not for anisotropic ones.  This 

section will review how the resonance saturation butterfly curves are calculated and 
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summarize the key effects that crystalline anisotropy has upon them.  All the numerical 

solutions shown here are obtained with the corrected version (CF-2) of the uniform mode 

complex damping term, which are given in Table 3.1. 

As was stated previously, a butterfly curve plot summarizes the microwave threshold 

field amplitude (
crit

h ) dependence upon the externally applied static magnetic field 

(
ext

H ).  Typically 
crit

h  versus 
ext

H  data are first obtained for a specific sample 

orientation, applied field geometry, and microwave frequency.  Then the spin wave 

linewidth (
k

H∆ ) is used as a fitting parameter to match the calculated butterfly curve 

data.  The spin wave linewidth that gives the best fit is then assumed to be the intrinsic 

relaxation rate (expressed in field linewidth units) of the sample.  Many different trial 

k
H∆  functions have been used in the past for parallel pumping and subsidiary absorption 

calculations.  (See Sections 5 and 6 of Chen and Patton [1994] for more details.)  In 

contrast, the limited number of resonance saturation calculations performed to date have 

primarily utilized the simplest possible form in which 
k

H A∆ = .  The resonance 

saturation calculations given in this section are performed with the following two forms 

of the spin wave linewidth: (1) 
k

H A∆ =  and (2) 
k

H A Bk∆ = + . 

Prior to performing the spin wave instability calculations one must establish: (1) the 

sample geometry and orientation of the static and microwave magnetic fields, (2) the 

static and linear dynamic magnetic sample parameters, and (3) the microwave operating 

frequency and static field ranges.  The sample geometry and orientation are usually set 

by the experimental setup. The required static magnetic sample parameters are the 

saturation magnetization ( )4 ,sMπ  anisotropy field ( ) ,AH  and the demagnetizing 

constants ( , ,x y z
N ).  The required dynamic sample parameters are the gyromagnetic ratio 

( ),γ  the exchange constant ( ),D  and the FMR linewidth (
FMR

H∆ ).  All of the above 

parameters, except for D, were determined from FMR and Vibrating Sample 

Magnetometry (VSM) measurements for the samples studied here.  Details are provided 

in Chapter 5. 
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Figure 3.11 summarizes the sample and field geometry as well as the sample 

parameters that are utilized in this and the next subsection.  As is shown in the figure, the 

sample is a thin disk-shaped ellipsoid.  The static and microwave fields are both applied 

in the disk plane and are orthogonal to one another.  The sample parameters used for the 

calculations are provided in the table in the figure.  Note that calculations are to be 

performed for two different anisotropy cases: (1) an isotropic case, in which 0
A

H = , and 

(2) an easy-plane anisotropy case, in which 9.5kOe
A

H = −  and the easy-plane is aligned 

in the disk plane.  The above parameters are typical for the single crystal Zn Y-type 

 

Figure. 3.11.  (a) Sketch of the sample, field, and coordinate geometry, and (b) table of 

sample parameters, which are used to perform the spin wave manifold and resonance 

saturation calculations given in this section.  Analysis is performed for isotropic and 

planar anisotropy. 
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hexagonal ferrite samples studied here. The operating frequency and static field ranges to 

be analyzed are as follows.  A microwave frequency of 10 GHz is used, and the static 

field is scanned from ( 100 Oe
FMR

H − ) to ( 100 Oe
FMR

H + ) with a static field step size of 

5 Oe.  The 
FMR

H  values for the isotropic and anisotropic cases are 2,420 Oe, and 958 Oe, 

respectively.  At each static field setting, the spin wave modes that are available for 

excitation are determined by calculating which spin wave modes satisfy 

( , , , ) / 2pk ext k k
H k nω θ φ ω= .  For the calculations performed in this section, n = 2, since 

we are addressing second order instability resonance saturation process.  Once the 

available spin wave modes are determined, the critical mode is obtained (
crit

θ , 
crit

φ , 
crit

k ) 

as the specific spin wave mode that yields the minimum calculated threshold field.  The 

above procedure is repeated for all the static fields of interest, and the resulting 
crit

h  and 

crit
k  values are plotted versus 

ext
H . 

Figure 3.12 shows two dimensional spin wave dispersion plots which were calculated 

with the dispersion relationship given in Eq. (3.71), using the sample parameters and 

geometry shown in Fig. 3.11, and the different static field values noted in Fig. 3.12.  Fig. 

3.12 shows plots for (a) an isotropic 0
A

H =  sample and (b) an anisotropic 

9.5kOe
A

H = −  sample.  For each anisotropy type, three specific spin wave branches 

which correspond to spin wave modes propagating along the x, y, and z axis are shown.  

Note that for the isotropic sample, spin waves propagating along the x and y directions 

have the same exact spin wave dispersion curve, but for the anisotropic sample they are 

not degenerate.  For more details on these modes, see the previous linear spin wave 

analysis section of this chapter.  The dotted line in the figures corresponds to the 10 GHz 

frequency of the microwave field, and the solid dot corresponds to the FMR resonance 

frequency, which was calculated using Eq. (3.33). 
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Figure 3.13 shows three-dimensional sketches of the spin wave manifold that are 

representative of the two dimensional spin wave plots shown in Fig. 3.12(b).  These 

sketches provide insight into how the strength of the static field affects the availability of 

spin waves for excitation (i.e., ones that satisfy the 10 GHzpk
ω ω= =  criteria).  The 

wave number contour plots, shown in Fig. 3.13(b), summarize the wave number (k), 

polar (
k

θ ) and azimuthal (
k

φ ) angles of the available spin wave modes for the three 

different field settings.  As is seen in the figure, the available spin wave modes change 

considerably with the different static field settings.  As the static field is increased from 

 

Figure. 3.12.  Spin wave manifold plots calculated for (a) isotropic, and (b) anisotropic 

sample, with the parameters and sample and field geometry given in Fig. 3.11, and 

different static fields given in the plots.  The solid circles and the horizontal dotted line 

correspond to the FMR resonance and microwave pump frequencies, respectively. 
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500 to 1188 Oe, the maximum allowed wave number decreases from 3.25-to-1.25 

5(10 / cm),  and the maximum azimuthal propagation direction decreases from 90 to 

about 38 degrees. 

A Fortran based executable application was developed in order to perform the 

numeric calculations.  The sample parameters, geometry, field ranges, microwave 

frequency, spin wave linewidth settings, and instability process of interest are specified 

by a user modifiable configuration file which is read upon the execution of the 

 

 

 

Figure. 3.13.  (a) Three dimensional sketches of spin wave manifold plots for different 

static field values shown.  (b) Contour plots of wave number versus θk and φk, obtained 

for spin waves which satisfy ωk=ωp=10 GHz.  Calculations performed with sample 

parameters and geometry shown in Fig. 3.11.  Units of contours are 
5

10 /cm. 
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application.  The program then determines which spin wave modes are available for 

excitation (similar to what is shown in Figure 3.13(b)) and then searches for the 

minimum crit ( , , )
crit crit crit

h kθ φ from these available states for each static field setting.  Two 

different minimization algorithms are selectable in the configuration file.  The first 

approach is a simple brute force method in which crit ( , , )
k k

h kθ φ  is found as the minimum 

threshold field from an array of threshold fields which are calculated over a grid of the 

available 
k

θ  and 
k

φ , and k values.  The 
k

θ  and 
k

φ  grid step size is set by the user in the 

configuration file.  The second option is Brent’s method of finding a global minimum, 

which was obtained from the Numerical Recipes software library (see Press et al. [1992] 

for details). 

The Fortran program determines the crit ( , , )
crit crit crit

h kθ φ  values for each 
ext

H  setting 

and saves the threshold fields and critical mode information to an output text file.  

Typically, the above minimization procedure is rerun with different trial forms of the 

spin wave linewidth until a good agreement is obtained between the calculated and the 

measured butterfly curve data.  However, for the analysis performed here, we will 

consider just two different spin wave linewidths, without regards to measured data.  Real 

measured data and resulting spin wave linewidths are given in Chapter 5. 

Figures 3.14 and 3.15 summarize the resonance saturation butterfly curve threshold 

field and critical mode calculations performed for an isotropic and a planar anisotropic 

sample, respectively.  The solid circles and the open squares in the plots are the results 

obtained with a constant spin wave linewidth 10 Oe
k

H∆ =  and wave number dependent 

form of 
-5

10 Oe (5 10 Oe/cm) ,
k

H k∆ = + ⋅  respectively.   

First consider the resonance saturation threshold field results for Figures 3.14 and 

3.15.  For both the isotropic and anisotropic samples, the resonance saturation 
crit

h  

versus 
ext

H  butterfly curves are approximately “V” shaped with the minimum value 

centered at the resonance 
FMR

H  field.  This shape is what one would expect since the 

applied microwave field couples into the uniform mode most effectively at the resonance 
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     HA = 0 

 

Figure. 3.14.  Resonance saturation butterfly curve and associated critical modes, 

calculated for isotropic ( = 0)
A

H  thin film with constant (solid circles) and wave number 

dependent (open squares) spin wave linewidths, as shown in the plots.   

condition and less so as 
ext

H  moves away from 
FMR

H .  The introduction of the k-

dependent spin wave linewidth results in the butterfly curves being asymmetric, such  
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      HA = -9.5 kOe 

 

Figure. 3.15.  Similar graphs as shown in Fig. 3.14, but for a sample with a planar 

anisotropy of = 9500 Oe
A

H − . The calculations were performed, with a frequency of 10 

GHz, and the sample parameters and orientation given in Fig 3.11. 
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that 
crit

h  increases more rapidly as 
ext

H  moves away from 
FMR

H  for <
ext FMR

H H  than it 

does for >
ext FMR

H H .  The source of this asymmetric “V” shape will be discussed in more 

detail shortly.  Anisotropy affects the RS butterfly curves in two significant ways: (1) it 

lead to a net decrease in the threshold field of about 65% at the resonance condition and 

(2) it altered the location of the critical modes within the spin wave manifold.   

The reduction in the threshold fields could result in hexagonal ferrite based 

microwave devices having reduced power-handling capabilities compared to 

conventional devices.  This will be discussed in more detail in Chapter 5.  The effect of 

anisotropy upon the critical modes is the main topic of the remainder of this subsection.  

Now consider the resonance saturation critical modes results given in the lower plots 

of Fig. 3.14 and Fig. 3.15.  As can be seen in the plots, when 10 Oe
k

H∆ = , the critical 

modes for both the isotropic and anisotropic samples correspond to the spin wave mode 

with the minimum available polar angle 0
crit

θ = .  In both these cases, spin waves 

propagating along the z-axis are excited when the threshold field condition is satisfied.  

The differences in the critical mode wave numbers for isotropic and anisotropic samples 

are due to the different shapes of the ( , 0, )
k ext k p

H kω θ ω= =  spin wave branch for 

isotropic versus the anisotropic sample.  Now consider the critical modes for the wave 

number dependent spin wave linewidth.  For both anisotropy types, the spin waves with 

the lowest threshold correspond to the spin wave branch with the lowest possible wave 

number (k=0).  For the isotropic sample, this mode corresponds to 90
o

crit
θ =  when 

ext FMR
H H<  and max( )

crit k
θ θ=  when 

ext FMR
H H> .  For the anisotropic sample, k =0 

spin wave modes are available for all static fields analyzed.  

Figure 3.16 provides sketches of the critical mode locations within the spin wave 

manifold for the different spin wave linewidth and anisotropy cases considered in 

Fig. 3.14 and Fig. 3.15.  Here, the thick solid line represents the critical modes and the 

solid dot corresponds to the FMR resonance frequency.  The sketches show that when 

k
H∆  shifts from a constant to being k-dependent, the critical modes shifts from being the 
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spin wave modes with the lowest possible 
k

θ  value to being the spin wave modes with 

the lowest possible k  value.  

Table 3.3 summarizes the above calculated resonance saturation butterfly curves.  

The first and second column specify 
A

H  and .
k

H∆  The third column, labeled 
min

,
crit

h  

corresponds to ( = )
crit ext FMR

h H H , and the fourth and fifth columns specify the slope of 

the ( )
crit ext

h H  curves for <
ext FMR

H H  and >
ext FMR

H H , respectively.  The last column 

summarizes the critical mode position within the spin wave manifold.  As can be seen in 

the table, while 
A

H  leads to a reduction in 
min

crit
h  of about 60-70%, it also reduces the 

impact of the -dependentk  spin wave linewidth term upon the slope of the ( )
crit ext

h H  

curves, especially for <
ext FMR

H H .  For the isotropic sample, the k -dependent wave 

linewidth term leads to a 45% increase in the slope of the ( )
crit ext

h H  response but only 

about an 11% increase in the anisotropic sample.  These differences are directly related 

to the differing shapes of the =0k  spin wave bands for the two sample types. 

 

Figure. 3.16.  Sketches of the critical mode locations for the RS butterfly curves given 

in Figs. 3.14 and 3.15.  The thick solid lines correspond to the critical mode locations 

within the manifolds.  Note that while these manifolds are shown as stationary, they 

actually shift up with the external field as is shown in Fig. 3.12. 
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3.6 IMPACT OF CF SIGN ISSUE ON THRESHOLD FIELDS 

It was shown in Section 3.3 of this chapter that uniform mode damping was incorrectly 

modeled in several past publications when the wrong sign was utilized for the complex 

damping terms of the anti-Larmor uniform mode coefficient.  This section will first show 

that the sign issue, which was present in the previous publications, had a negligible effect 

on the calculated first order butterfly curves presented in those papers.  Then it will show 

that the sign issue does play a large role for resonance saturation calculations in 

anisotropic samples especially at low frequencies.  This is one of the cases of interest for 

this thesis work. 

3.6.1 Effect on SA Threshold Fields 

Figure 3.17 shows the same subsidiary absorption butterfly curves that are given in 

Fig. 3 of Patton’s paper (Patton [1969]), which corresponded to the first paper in which 

the complex frequency (CF) method with the sign issue was introduced.  The curves of 

(kOe)

AH
 

(Oe)

k
H∆

 
min

(Oe)

crit
h

 
/

<

crit ext

ext FMR

h H

H H

∆ ∆
 

/

>

crit ext

ext FMR

h H

H H

∆ ∆
 

 

Critical Modes 

 

 

0 10  0.52 -0.10 0.10 min kθ , max k  

0 5
10 10 k

−+  0.70 -0.19 0.16 min k , max kθ  

-9.5 10  0.37 -0.074 0.072 min kθ  

-9.5 5
10 10 k

−+  0.42 -0.093 0.075 min k , max kθ  

Table 3.3.  Summary of the resonance saturation threshold fields and critical modes 

given in Fig 3.12 and 3.13.  The 
min

crit
h  term corresponds to ( = ).

crit ext FMR
h H H   The 

/
crit ext

h H∆ ∆  columns specify the slope of the threshold field versus static field response 

for the two legs of the “V”-shaped butterfly curves. 
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Fig. 3.17 were recalculated using the linear uniform mode solutions obtained with: (1) 

the uncorrected uniform mode CF-1 complex frequency solutions, (2) the corrected CF-2 

complex frequency solutions, (3) the Landau-Lifshitz uniform mode solutions, and (4) 

the Bloch-Bloembergen solutions.  All of these solutions are given in Table 3.1.  The end 

result is that all four uniform mode solutions yielded the same results which are in exact 

agreement with Patton’s earlier work.  The reason the sign issue did not have any effect 

on the subsidiary absorption butterfly curves is because the subsidiary absorption 

instability processes are measured with the applied static field far enough below the 

resonance field such that the sign of the anti-Larmor damping term has a negligible 

contribution.  For this reason, it is likely that all first order instability analyses (not 

 

Figure. 3.17.  Plots of first order normalized subsidiary absorption threshold field versus 

normalized external static magnetic field, after Fig. 3 of Patton  [1969].  Curves were 

calculated for an isotropic spherical sample using two different circularly polarized 

microwave fields, one with Larmor-oriented precession and the other with purely anti-

Larmor orientation.  Both fields were applied perpendicular to static field direction.  

Same exact plots were obtained for all four forms of the uniform mode solutions given in 

Table 3.1.  
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including coincidence condition) will be unaffected by the sign issue in the anti-Larmor 

complex frequency damping term. 

3.6.2 Effect on RS Threshold Fields 

We will now address the effects of the anti-Larmor uniform mode complex damping 

sign upon the resonance saturation threshold field calculations.  Similar resonance 

saturation threshold field calculations as were originally given in the previous section 

will be performed, but instead of analyzing the full resonance saturation butterfly curve 

we will focus only on the static fields which satisfy the FMR resonance condition for 

varying operating frequencies (i.e., focus on the minimum of threshold field of the 

butterfly curve).  For each operating frequency, the static field is set to the resonance 

condition such that ( )
ext FMR p

H H ω= .  To the best of the author’s knowledge, such 

curves have never been previously calculated using uniform mode solutions that have the 

damping sign issue.  

Figure 3.18 shows plots of the calculated resonance saturation threshold field versus 

resonance frequency.  The threshold fields were calculated with the RS 
crit

h  expression 

given in Eq. (3.100) using the Zn Y-type hexagonal ferrite sample parameters, geometry, 

and pumping configuration given in Fig. 3.11.  The threshold fields were normalized to 

the Suhl second order threshold field given in Eq. (3.106).  These calculations were 

performed with two different uniform mode expressions.  The solid circles, labeled CF-1 

in the figure, correspond to the results obtained with the uniform mode expression that 

had the anti-Larmor complex damping sign problem, and the open squares, labeled CF-2, 

correspond to the results obtained with the corrected version.  See Table 3.1 for the CF-1 

and CF-2 expressions. 

As is seen in Fig. 3.18, the sign of the uniform mode complex frequency anti-Larmor 

damping term has a significant effect on the calculated resonance saturation threshold 

fields.  The difference in the normalized threshold fields obtained with CF-1 versus those 

obtained with CF-2 is most significant at the lower frequencies because the anti-Larmor 
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complex term has a more significant role in the total uniform mode response under those 

conditions.  This frequency dependence was discussed in Section 3.3; see Figures 3.5 

and 3.6 for details.  

The resonance saturation critical modes, which correspond to the threshold fields 

given in Fig. 3.18, are as follows.  For the calculations obtained with the wrong damping 

sign, the 
o

0
crit

θ =  for all frequencies.  However, for the calculations obtained with the 

corrected damping sign, 
crit

θ  varies with frequency.  For frequencies below 20 GHz, 

o
0

crit
θ =  and for frequencies above this 

o
90

crit
θ =  and 

o
0

crit
φ = .  The peak in the 

normalized threshold versus frequency plot given in Fig. 3.18, which occurs at 20 GHz, 

corresponds to transition in the critical mode from 
o

0
crit

θ =  to 
o o

( , ) (90 ,0 )
crit crit

θ φ = . 

It is worth noting that the resonance saturation calculations shown in Fig. 3.18 were 

also performed with the Landau-Lifshitz (LL) and the Bloch-Bloembergen (BB) uniform 

mode expressions given in Table 3.1.  The resultant normalized threshold fields obtained 

from both the LL and BB uniform mode solutions were in excellent agreement with the 

values determined with the uniform mode solution that had the corrected complex 

damping sign (CF-2).   

In summary, the sign of the uniform mode anti-Larmor complex damping term only 

plays an important role in the nonlinear threshold field calculations for a few specific 

conditions.  The main condition, in which the sign has a significant effect, is second 

order spin wave instability processes in highly anisotropic materials.  Such instability 

conditions have not been studied in detail.  The majority of the instability work 

performed to date has focused primarily on first order processes.  The little amount of 

second order stability analyses that have been done has focused mainly on isotropic 

materials.  To the best of the author’s knowledge, only one paper has addressed second 

order processes in hexagonal ferrites.  This work, which was published by Schloemann 

[1963] also contained the sign issue, but was not affected because Schloemann utilized a 

transformed reference frame such that the uniform mode response was basically circular 

and the anti-Larmor term was negligible.  So while the sign problem with the anti-



3. THEORY 

126 

Larmor uniform mode complex frequency damping term has persisted in the spin wave 

instability literature for about thirty years, it has not significantly impacted the calculated 

threshold fields presented in the literature.  However, as can be seen in Fig. 3.18, future 

researchers should be aware of the possible effects of the sign problem with the anti 

Larmor uniform mode damping term and fully understand the conditions under which it 

significantly affects the calculated threshold fields.   

 

Figure. 3.18.  Plots of the normalized resonance saturation threshold field versus FMR 

resonance frequency.  The curves were calculated with uniform mode expressions that 

had incorrect (solid circles) and corrected (open squares) complex anti-Larmor damping 

signs; these expressions are given as CF-1 and CF-2, respectively, in Table 3.1.  Note 

that the sign of the anti-Larmor complex frequency damping term has a significant effect 

on the results. 
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CHAPTER 4  

HIGH-POWER MICROWAVE SPECTROMETER 

A state-of-the-art high-power microwave spectrometer was designed, built, and 

automated as part of this study.  The key components of the system were obtained with 

funds provided by the Office of Naval Research and through a generous equipment grant 

from Raytheon.  This chapter provides an overview of the key features of the 

spectrometer, then discusses system calibration and operation, and provides example 

data.  The chapter concludes with a section on measurement subtleties.  Details on the 

passive waveguide components and automation programs are provided in Appendices A 

and B, respectively.  

This chapter is arranged as follows: 

1. The first section gives a general overview of the system. 

2. Section two reviews the components used and the methods employed to generate 

and control the high-power microwave pulses and the static magnetic biasing 

field. 

3. Section three addresses system calibration.  

4. Section four reviews the system utilization and provides example high-power 

threshold field data. 

5. The fifth and final section addresses measurement subtleties.  Important 

measurement considerations regarding cavity loading, pulse width, and duty 

cycles are reviewed. 
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4.1 SYSTEM OVERVIEW 

In order to measure spin wave instability thresholds, one must: (i) generate and 

control large-amplitude microwave and static magnetic fields, (ii) apply these fields to 

and set their relative orientation within a given sample, and (iii) measure the power 

absorbed by the sample as a function of these fields. 

Figure 4.1 shows a sketch of the high-power microwave spectrometer that was built 

to perform the above tasks.  The spectrometer can be separated into the following three 

subsystems based upon functionality: (1) generation and control of high-power 

microwave pulses, (2) measurement of the microwave power that is incident upon and 

 

 
 

Figure. 4.1.  Diagram of the high-power microwave spectrometer, which was designed, 

built, and automated as part of this thesis work. 
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reflected by the microwave cavity (reference and reflection waveguide arms), and (3) 

application and orientation of the microwave and static magnetic fields on the sample.  A 

thorough discussion of these three subsystems will be provided in sections two, three, 

and four of this chapter.  The rest of this section provides a cursory overview of the 

spectrometer. 

The high-power microwave pulses are produced with a voltage pulse generator, 

synthesized microwave generator, and a traveling wave tube (TWT) amplifier.  The 

high- power pulses are fed into the spectrometer through an isolator, a low-pass filter, 

and a precision variable attenuator.  The isolator protects the high-power source from 

back reflections caused by down-line load mismatches, the low-pass filter reduces 

troublesome high-frequency harmonics, and the attenuator is used to set the operating 

power levels in the spectrometer.  A small portion of the power leaving the attenuator is 

immediately coupled into the reference arm of the spectrometer and the remainder is 

directed to the reflection type microwave cavity.  A significant percentage of the 

reflected power from the cavity is directed into the reflection arm of the spectrometer. 

The reference and reflection arms of the spectrometer are used to monitor the amount 

of power that is incident upon and reflected by the microwave cavity, respectively.  The 

cavity is used to (i) orient the microwave magnetic field within the sample, (ii) enhance 

the amplitude of this field, and (iii) increase the sensitivity of the spectrometer.  The 

cavity is located between the pole pieces of an electromagnet.  The electromagnet 

provides the large static magnetic biasing field that saturates and aligns the magnetic 

moments within the sample in the desired direction.   

Table 4.1 summarizes the model number, manufacturer, and primary function of the 

key components of the spectrometer.  Rectangular waveguides are used throughout the 

spectrometer because of their high-power handling capabilities, low insertion losses, and 

well-defined TE10 modes.  These benefits come at a cost, however, both figuratively and 

literally.  The main drawback of rectangular waveguides is their limited bandwidth 
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which requires that several bands of waveguides be used in order to operate over a wide 

frequency range.  Presently, the high-power microwave spectrometer shown in Fig. 4.1 

can be operated in the X and Ku waveguide bands.  There is also another magnetron 

based high-power source (not shown in Fig. 4.1) that is compatible with the system and 

operates in the C and Ka bands.  This means that there are four versions of all the 

waveguide components (waveguide straights and bends, isolators, precision attenuators, 

and filters) shown in the figure.  The frequency range for each of these bands is given in 

Table A.1 of Appendix A. 

Device Manufacturer Model Function (Specification) 

Synthesized 

Sweeper 
Hewlett Packard HP83640A Microwave generator   (0.01- 40 GHz) 

TWT 
Applied Systems 

Engineering 
174X-Ku 

Microwave amplifier  (8-18 GHz, 2.2 kW 

peak power) 

Pulse Generator Wavetek 81 
Drive and trigger TWT and digital 

oscilloscope, respectively. 

Power Meter Hewlett Packard HP436A 
Convert power head output voltage into 

average microwave power 

Power Meter Head Hewlett Packard HP8481A 
Convert incident microwave signal into 

output voltage (0.01-18 GHz) 

Crystal Detector Hewlett Packard HP8474D 
Convert input microwave signal into 

output voltage (0.01-40 GHz) 

Digital 

Oscilloscope 
Tektronix TDS-410A 

Display and measure crystal detector 

output voltages 

Magnet Power 

Supply 
Harvey Wells HS-1050 

Current supply for electromagnet (imax = 

50Amps, Vmax=100 Volts) 

Electromagnet Harvey Wells 8-521; 12” 
Provide static magnetic field (Hmax ~ 23 

kOe) 

Gauss meter F.W. Bell 9900 Measure magnetic field of electromagnet 

Waveguide 

components 

Hewlett Packard, 

Narda, and Raytheon 
______ 

Filters, isolators, precision variable 

attenuators, directional couplers, and 

rectangular waveguides. 

 

Table 4.1. Summary of the manufacturer, model number, and function of the key 

waveguide components used in the high-power microwave spectrometer.  There are four 

different versions of above components, which operate in the C, X, Ku, and Ka 

waveguide bands, available for the spectrometer. 
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4.2 MAGNETIC FIELD GENERATION 

This section focuses on the components used to generate the high-power microwave and 

the static magnetic fields.  The next section focuses on system calibration.  

4.2.1 High-Power Microwave Field 

Microwave instability measurements are typically performed in a pulsed mode in 

order to avoid overheating the sample and damaging sensitive subcomponents.  

Historically, magnetrons have been the source of choice for such measurements (White 

et al. [1992]).  The main benefits of magnetrons are their high peak power capability, 

exceptional durability, and relative affordability.  The main drawbacks of such sources 

are their narrow frequency bandwidths, short pulse widths, poor frequency stability, and 

incompatibility with computer interfacing.  In order to overcome the above 

shortcomings, a traveling wavetube (TWT) amplifier based high-power source was 

utilized. 

Until recently, traveling wave tube (TWT) amplifiers only operated in continuous 

wave (CW) mode and at moderate power levels (few Watts).  However, TWT amplifiers 

which operate solely in pulsed mode and with respectable peak power capabilities (few 

kWatts) are now being manufactured.  These amplifiers have large pulse widths 

(hundreds of µs vs. a few µs for magnetrons), wide bandwidth (tens of GHz vs. a few 

MHz for magnetrons), high-frequency stability (set by microwave source, typically in the 

tenths of Hz range versus kHz for magnetrons), but have less peak power capabilities 

than magnetrons (few kW vs. MW).  The main drawbacks of these sources are their 

limited tube lifetime (5-10 years vs. 20-30 years for magnetrons) and high cost (~$60k 

vs. $20k for magnetrons).  The TWT amplifier purchased for this system has a maximum 

pulse width, duty-cycle, and peak power of about 100 µs, 4%, and 2.2 kW, respectively, 

and operates in the 8-18 GHz frequency range. 
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The high-power microwave pulse generation is accomplished with a Hewlett Packard 

synthesized sweeper (highly stable and accurate microwave source), a Wavetek voltage 

pulse generator, and the Applied Systems Engineering TWT amplifier.  See Table 4.1 for 

manufacturer information on these components.  The microwave generator provides a 

low-power 0 dBm (1mW) continuous wave signal that is amplified by the TWT.  The 

pulse generator provides 5 V square pulses which trigger the TWT for the desired pulse 

widths and duty cycles.  It also provides a trigger signal to the oscilloscope in order to set 

the acquisition timing required to monitor the reflected microwave pulses from the cavity 

(see Fig. 4.1 for details). 

In order to minimize signal noise, the TWT amplifier is operated at maximum gain, 

and the power of the microwave signals within the spectrometer is set via the high-power 

precision variable attenuator shown in Fig 4.1.  The precision variable attenuator has a 

maximum attenuation factor of about 50 dB and a frequency range similar to the 

bandwidth of the waveguide in use.  In earlier designs of such spectrometers, the 

attenuators were controlled manually, whereas the attenuators shown in Fig. 4.1 are 

computer controlled via the use of stepper motors.  The isolator that is located 

immediately after the high-power source protects the TWT from possible back 

reflections caused by down-line load mismatches.  Typical isolator insertion losses in the 

forward and reverse directions are about –1 dB and –40 dB, respectively. 

One feature of TWT amplifiers, which is often unknown or ignored, is their tendency 

to amplify subharmonics of the low-power input frequency to relatively large levels.  As 

will be discussed in more detail in the next section, these amplified harmonic signals can 

lead to significant measurement errors.  Therefore, the low-pass filter shown in Fig. 4.1 

is placed after the amplifier. 

Figure 4.2 shows the TWT output frequency spectrum data obtained at an operational 

frequency of 9 GHz.  The frequency spectrum data were obtained with a spectrum 

analyzer attached at the crystal detector position of the spectrometer shown in Fig. 4.1.  
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The solid and dotted lines correspond to the measurement being performed with and 

without the low-pass filter, respectively. 

4.2.2 Static Magnetic Field 

The static magnetic field is generated with a conventional 12-inch Harvey Wells 

electromagnet.  The Harvey Wells power supply provides a maximum DC current of 50 

Amps to the two coils of the electromagnet.  The two sets of coils are connected in 

parallel, have a net resistance of 2 Ohms, and are water-cooled.  The magnetic field 

strength is determined not only by the amount of current supplied to the coils but also by 

the diameter and separation of the electromagnet pole pieces.  Several pole pieces, with 

varying pole face diameters and pole gap separations, are available for the 

electromagnet.  The largest diameter pole pieces have the largest gap separation and 

 

Figure. 4.2.  Spectrum analyzer data of the TWT output pulse.  The data were obtained 

with and without the use of a 14 GHz low pass filter.  The operating frequency, pulse 

width, and the repetition rate of the microwave pulses were set to 9 GHz, 10µs , and 1 

kHz, respectively.   The TWT amplifier has a maximum pulse width (τ ), duty cycle 

( / Tτ ), and peak power of 100 µs , 4%, and 2.0 kW, respectively.   
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produce the lowest amplitude static magnetic fields with the best uniformity across the 

gap.  The pole pieces with the smallest pole face diameters have the smallest pole gap 

separation and produce the largest amplitude fields with the least uniformity.  A 

maximum static magnetic field of about 23 kOe is obtained with the pole pieces that 

have a 2.63-inch pole face diameter and a 1.5-inch pole gap separation. 

Figure 4.3 shows magnetic field calibration data for three different pole 

configurations.  The upper graph in the figure shows a plot of the normal component of 

 

 

          

Figure. 4.3.  Upper graph is a plot of the electromagnet static magnetic field versus DC 

operating current obtained for three different pole pieces, as indicated. The lower graph 

is a plot of the field strength versus the distance between pole pieces, obtained with the 

smallest available pole pieces and at a maximum DC current of 50 A.  This corresponds 
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the static magnetic field relative to the pole faces versus DC current.  The data were 

obtained with a Bell Gaussmeter Hall probe (described in Table 4.1) located at the center 

position between the pole pieces.  The lower graph shows the uniformity of the field 

along the central axis for the smallest pole pieces (worst uniformity case).  As can be 

seen in the lower plot, the magnetic field is largest near the pole face and is at a 

minimum at the center point between the two pole pieces, approximately 160 Oe lower 

then it is at the pole face.  In order to maximize field uniformity, whenever possible the 

larger diameter pole pieces are used.  The large diameter pole pieces also have the added 

benefit of having large pole gaps that facilitates the insertion and orientation of the 

microwave cavity. 

Once a given pole piece configuration is set, the magnitude of the static magnetic 

field is controlled either manually or via the computer.  The computer control is 

performed by applying a DC voltage from a D/A card to a BNC connector on the front 

panel of the electromagnet.  A 0-10 volt input signal at the BNC input corresponds to the 

0-50 Amp range of the electromagnet power supply.  For more details on the computer 

control software, which was developed as part of this thesis work, see Appendix B. 

The relative orientation of the static magnetic field, sample, and microwave field is 

set by the (1) orientation of the waveguide/cavity within the pole pieces of the 

electromagnet, (2) location of the sample within waveguide/cavity, and (3) by the 

rotation of the base of the electromagnet. 

Figure 4.4 shows a 3-D side and a 2-D top view of a typical sample and static 

magnetic field geometry used for this study.  As shown in the figure, the sample is 

placed near the end wall of the microwave cavity which is centered within the 

electromagnet pole pieces.  The vectors indicate the static external magnetic field ( extH ) 

and the microwave pump field (
p

h ).  The angle between 
ext

H  and 
p

h , shown as pθ  in 

the figure, can be changed from 
o

0  to 
o

360  by rotating the electromagnet.  This angle 

was set to 
o

0  for the parallel pumping measurements, 
o

90  for the subsidiary absorption 
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and FMR measurements, and at intermediate values for the resonance absorption 

measurements.  A more detailed description of the angles employed for the resonance 

saturation measurements are given in Chapter 5. 

4.3 SYSTEM CALIBRATION 

For most low-power microwave measurements, only the relative change in the 

microwave power due to sample absorption needs to be measured, and careful calibration 

of the microwave power throughout the waveguide spectrometer is not required.  

 

Figure. 4.4.  Sketch a) shows 3D drawing of the microwave cavity centered within the 

electromagnet pole pieces.  Sketch b) shows a 2D top view of the orientation of the 

external static field Hext and the microwave pump field hp at the end wall of the cavity.  

The angle θp is set via a rotation of the base of the electromagnet. 
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However, in order to perform high-power nonlinear threshold field measurements one 

must know the microwave power at the sample location in order to calculate the 

microwave field amplitude.  Also, for most low-power measurements, microwave 

cavities are not utilized, the microwave frequency is kept at a fixed setting, so frequency 

dependent waveguide losses can be ignored.  However, when performing high-power 

measurements which involve microwave cavities, the operating frequency often needs to 

be adjusted in order to match the changes in the cavity resonance frequency caused by 

sample effects primarily near FMR resonance.  This section reviews the methods used to 

calibrate the microwave losses in the reflection and reference waveguide arms of the 

high-power microwave spectrometer, and concludes with the calibration equations that 

are used to calculate the microwave field amplitude at the sample position inside the 

cavity. 

Figure 4.5 shows a schematic diagram of the high-power microwave spectrometer.  

As is shown in the figure, the reference and reflection arms are coupled to the main line 

 

Figure. 4.5.  Schematic diagram of the reference and reflection arms of the high-power 

spectrometer, originally shown in Fig. 4.1.  
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of the spectrometer by a 20 dB and a 3 dB directional coupler, respectively.  The 

precision variable attenuators, shown as variable resistors in the diagram, are used to 

protect the sensitive detection components from excessive power levels.  The reference 

and reflection waveguide arms of the spectrometer are used to monitor the peak 

microwave power that is incident upon and reflected by the microwave cavity, 

respectively.  These arms were assembled in a similar fashion as discussed in Patton and 

Kohane [1972]; and Green and Kohane [1964], but with two important differences: (1) 

the incorporation of an isolator located between the two directional couplers and (2) the 

elimination of the shorting switch prior to the cavity.  The inclusion of the isolator 

minimized troublesome leakage signals, which occur in the directional couplers, and the 

elimination of the shorting switch reduced the error associated with frequency-dependent 

standing wave mode patterns.  This will be discussed in more detail in Section 4.3.1. 

4.3.1 Waveguide Calibration 

The relationship between the microwave power that is incident upon ( )
inc

P  and 

reflected from ( )
ref

P  the microwave cavity, and the microwave power at the power meter 

( )
mtr

P  and crystal detector ( )
crys

P  locations in the microwave spectrometer may be 

expressed as 

( )

10

( )

10

( ) 10 ,

( ) 10

mtr

crys

PMA WGC f

inc mtr

CDA WGC f

ref crys

P f P

P f P

+ 
 
 

+ 
 
 

=

=

 (4.1) 

respectively.  Where the PMA and CDA terms are the power meter and the crystal 

detector variable attenuator settings expressed in dBs, respectively.  The ( )
mtr

WGC f  and 

( )
crys

WGC f  terms are the frequency-dependent waveguide calibrated losses between the 

power meter and the crystal detector locations and the cavity location in the 
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spectrometer, respectively.  The methods used to convert the crystal detector output 

voltage to power as well as calibrate the waveguide losses in the spectrometer will now 

be reviewed. 

Figure 4.6 shows example crystal detector calibration data.  These data were obtained 

at 9 GHz for the crystal detector with and without a 390 Ω  load resistor attached in 

parallel to the crystal detector.  The upper plot in the figure shows output pulse profiles.  

 

 

 

Figure. 4.6.  The upper plot shows the crystal detector output obtained with (solid line) 

and without (dotted line) a 390Ω load resistor.  The lower plot shows the output voltage 

response to the input power.  The independent variable (input power) is plotted relative 

to the dependent variable (voltage) for fitting purposes. 
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As is seen in the figure, the load resistor increased the rise time and decreased the 

sensitivity of the crystal detector.  All the measurements reported here were performed 

with the 390 Ω  resistor attached to the crystal detector in order to maximize the rise time 

sensitivity.  Rise time and pulse width considerations are discussed in more detail in the 

last section of this chapter.  The lower graph in Fig. 4.6 shows the average input power 

versus output voltage of the crystal detector with (solid circles) and without (open 

circles) the 390 Ω  load resistor.  The solid line is a second order polynomial fit.  The 

fitting parameters are saved in a calibration file and the automation program 

automatically converts output crystal detector voltage to input power.  See Appendix B 

for a discussion of the automation programs and calibration files. 

We will now discuss the waveguide calibration measurements.  When calibrating the 

power differences between different locations in the high-power microwave 

spectrometer, it is important to realize that the net standing wave pattern is related to the 

combined mismatches that occur throughout the system.  These mismatches occur at 

bends, flanges, and transitions from waveguides to waveguide components.  Therefore, 

replacing individual components or slightly changing the length of any section in the 

spectrometer can have a dramatic affect on the standing wave pattern and in turn the 

waveguide power loss calibration coefficients.  Thus, the system must be calibrated as a 

whole, rather than simply adding up the insertion losses of the individual components. 

The waveguide calibration measurements are performed with a highly sensitive 

Microwave Transition Analyzer (MTA).  The MTA controls a synthesized microwave 

generator and in turn acts as both a source and a detector.  It sends out a well-defined 

continuous wave (CW) signal over a specified frequency range and power level, and then 

measures the power incident upon its sensor at each frequency step.  In order to calibrate 

the spectrometer, the MTA output signal is inserted into the microwave spectrometer at 

the TWT output location (the TWT is disconnected from system).  The MTA sensor 

input is connected to specific locations of interest in the spectrometer.  The points of 
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interest for this study correspond to the power meter, microwave cavity, and crystal 

detector locations.   

The waveguide calibration constant for the reference arm, referred to as ( )
mtr

WGC f , 

is determined by first measuring the power versus frequency response at the power meter 

location and then again at the cavity location.  The data at the power meter location are 

obtained with the input to the MTA placed at the power meter head location ion the 

system, the power meter attenuator (PMA) set to zero, and a shorting plate located at the 

cavity iris.  The data at the cavity iris location are obtained with the cavity removed from 

the system.  For each connection, the MTA output is swept over the same frequency 

range, and the calibration constant corresponds to the ratio of the two data sets.  The 

waveguide calibration coefficient for the reflection arm, referred to ( )
crys

WGC f , is 

obtained in a similar fashion.  

Figure 4.7 shows plots of ( )
mtr

WGC f  and ( )
crys

WGC f  calibration data versus 

frequency, which were obtained from the X-band waveguide version of the microwave 

spectrometer.  The dotted and solid lines in the upper plot are the results for the reference 

arm calibration measurements performed with and without the isolator located between 

the two directional couplers in the main line, respectively.  As is seen in the graph, the 

isolator significantly reduced the unwanted reverse traveling leakage signal.  This 

isolator was always used in the system and the reference arm calibration data were 

therefore considered to be frequency independent.   

The lower plot in the figure shows the results for the reflection arm calibration 

measurements.  Note that it was not possible to use an isolator to minimize the leakage 

into the reflection arm since bi-directional flow is required.  Therefore, a “lookup” 

calibration chart was employed which contained the frequency dependent calibration 

data for this arm.  The lower plot in Fig. 4.7 shows the effect of varying the shorting 

plate position.  Here, one observes how the interference pattern in the reflection arm, 

which results from the directional coupler leakage and directed signals (See Appendix A 



4. SPECTROMETER 

142 

for more details), differs as the relative phase of the two signals changes.  This is the 

motivation for eliminating the shorting switch used in previous systems.  Note that 

unless the distance between the shorting switch and the cavity location is exactly at an 

integer multiple of the operational wavelength, using the shorting switch could result in 

miscalibration. 

 

Figure. 4.7.  Plots of waveguide loss calibration data versus operating frequency.  The 

upper graph shows the improvements obtained by placing an isolator directly after the 

reference arm directional coupler.  The lower graph shows the effect of varying the 

shorting plate location.   
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4.3.2 Cavity Calibration 

The final calibration step to be discussed here concerns the microwave magnetic field 

amplitude inside the reflection type microwave cavity.  The method used to calculate this 

field is based on the following three publications: (Green and Kohane [1964]; Patton and 

Green [1971]; and Patton and Kohane [1972]).  While the procedure is relatively 

straightforward, following the exact calculations throughout the above referenced papers 

can be difficult.  Difficulties arise because: (i) the Green & Kohane paper inaccurately 

depict the location in the cavity where oh  is calculated in their paper, (ii) the original 

publication uses MKS units, whereas the later ones use a mixture of CGS and MKS 

units, and (iii) different definitions are applied to the same symbols in the above 

publications.  Therefore, in order to clarify the above problems, detailed derivations of 

the microwave field equations for rectangular and cylindrical cavities are provided in 

Appendix A.  This subsection only provides the final formulae. 

Both rectangular and cylindrical shaped reflection type microwave cavities were 

constructed for the high-power microwave spectrometer.  See Figs. A.2 and A.7 in 

Appendix A for sketches of the magnetic field mode patterns in these two types of 

cavities.  For the under-coupled 101TE  rectangular cavities used in this study, the samples 

were located near the center of the cavity end-wall (this location will be referred to here 

as rectr ), and for the 011TE  cylindrical cavity, the samples were located in the center of the 

cavity along the central axis of the cylinder ( cylr ).  The above two locations correspond 

to regions of maximum microwave magnetic field uniformity and amplitude and zero 

electric field. 

The time averaged microwave magnetic field amplitude at location “r” inside an 

under-coupled reflection type microwave cavity may be is written in terms of measurable 

cavity parameters and the power incident upon the cavity ( incP ) as  
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( )res L

inc 3

c res

80 1 Q
( )[Oe] P [W] .

V [mm ] [GHz] ( )
o

m

h r
f g r

− ρ
=  (4.2) 

Here, resρ  is the voltage reflection coefficient of the cavity at resonance, 
L

Q  is the loaded 

Q of the cavity, resf  is the cavity resonance frequency, cV  is the cavity volume, and 

( )
m

g r  is a dimensionless factor that relates the stored energy in the cavity to the 

microwave field amplitude at a specific location r  within the cavity.  All the 

measurements performed for this work were obtained with the microwave frequency set 

equal to the cavity resonance frequency. 

The voltage reflection coefficient ρ  is related to the linear reflection coefficient 

( )
ref inc

P PΓ =  according to /2010ρ Γ= .  The ( )
m

g r  parameter for locations rectr  and cylr  

in a TE10q rectangular and TE01q cylindrical cavity may be written as 

2

rect
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4
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d
g r r
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respectively.  In Eq. (4.3), the d and a parameters are the length and height of the 

rectangular type cavity, respectively.  See Appendix A for more details.  The oJ ( )r  

function in Eq. (4.4) is the zeroth order Bessel function and the ο1ρɺ  term is the first root 

of oJ ( )rɺ , such that o ( )J 0ο1
ρ =ɺɺ , and equals 3.832 (Spiegel [1994]). 

The loaded cavity Q (QL), resonance frequency ( resf ), and resonance reflection 

coefficient ( )
res

Γ  are determined from the analysis of reflected power versus frequency 
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sweep data.  The data are obtained from the cavity with and without a short placed at the 

cavity iris hole location.  The exact procedure is explained in detail by McKinstry and 

Patton [1989].   

Based on the above equations the microwave magnetic field calibration ratios 

2

inc( ) /
o

h Pr  of the empty X-band TE101 rectangular and the TE011 cylindrical cavities, 

which were built as part of this study, are as follows.  The rectangular cavity which has 

2,100
L

Q = , 17dBΓ = − , and res 8.93 GHzf =  has a calibration ratio 

2 2

inc( ) / 5.1 Oe /W.
o rect

h r r P= =   The cylindrical TE011, which has 12,400,
L

Q =  

20dB,Γ = −  and res 8.99 GHz,f =  has a ratio 2 2

inc( ) / 14.1 Oe /W .o cylh r r P= =   Therefore, 

one obtains about three times as large of a microwave field for the same power in the 

cylindrical cavity than in the rectangular cavity.  See Appendix A for a detailed 

discussion on cavity resonance modes, coupling factors, Q choice, construction methods, 

and calculation details. 

4.4 SYSTEM UTILIZATION 

The microwave pulse width, duty-cycle, frequency, and amplitude as well as the 

static magnetic field settings of the microwave spectrometer are all computer-controlled.  

Therefore, the spectrometer can be used to perform “stand-alone” low and high-power 

microwave loss measurements with minimal user input.  This section will briefly review 

the hardware and software employed to automate the system, provide recommendations 

on system utilization, and conclude with example data.  

4.4.1 Automation  

Three different controller cards are used to interface a personal computer (PC) to the 

high-power microwave spectrometer.  These include: (1) a general-purpose interface bus 

(GPIB) card, (2) a SMC800 stepper motor controller (SMC) card, and (3) a digital-to-

analog converter (DAC) card.  The GPIB card is inserted in the 16-bit PCI expansion slot 
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on the PC’s motherboard, and allows for direct two-way communication between the 

computer and the GPIB compatible instruments used in the spectrometer.  The SMC card 

connects to the PC’s serial printer port and allows the computer to control the stepper 

motors attached to the variable attenuators.  Thus, the computer utilizes the SMC card to 

directly control the attenuation setting of all the attenuators and in turn the power levels 

throughout the spectrometer.  The DAC card is inserted into the 16-bit ISA slot on the 

PC’s motherboard, and is used to apply a 0-10V DC signal to the front panel of the 

electromagnet power supply, and in turn control the static magnetic field amplitude 

between the electromagnet pole pieces. 

Figure 4.8 summarizes the computer interface techniques used for the system.  Note 

that the square box labeled “High-Power Microwave Source” in the figure actually 

consists of the Wavetek pulse generator, the HP synthesized sweeper, and the Applied 

Systems Engineering TWT amplifier.  All three of these devices are GPIB compatible.  

National Instruments LabVIEW software was used to automate the high-power 

microwave spectrometer.  LabVIEW is a graphical programming language in which 

stand-alone subprograms can be built, independently tested, and combined in a seamless 

fashion to form a complex computer control software package.  Numerous LabVIEW 

programs were developed in the course of this study.  See Appendix B for a review of 

the key calibration and measurement control programs that were written as part of this 

thesis work. 

4.4.2 Butterfly Curve Data Collection 

This section shows how the above system is used to obtain butterfly curve data.  

Here details are given on how (1) the 
p

h  and 
ext

H  vector fields are oriented, (2) the 
p

h  

and 
ext

H  field ranges are chosen, and (3) the instability data are analyzed.  The data 

shown in this section were obtained on a thick YIG film.  The film was grown using 

standard flux techniques by Litton Corporation.  The sample was rectangular in shape 
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(1x3 mm), approximately 20 µm thick, and had an FMR linewidth of about 5 Oe at 8.9 

GHz.  Note that all the measurements to be discussed in this section were performed with 

a reflection-type rectangular microwave cavity which had a resonance frequency of 

about 9 GHz. 

In order to align the microwave and static magnetic fields within the sample to the 

orientation of interest, the following steps are taken.  First, the microwave cavity and the 

 
 

Device Interface Purpose of Communication 

Synthesized Sweeper GPIB Control→ microwave frequency 

Pulse Generator GPIB Control→ pulse width & duty cycle 

TWT Amplifier GPIB Control→ microwave field on/off 

Variable Attenuators Stepper Card Control→ microwave power levels 

Magnet Power Supply DAQ Card Control→ static magnetic field 

Power Meter GPIB Read→ average power 

Gaussmeter GPIB Read→ magnetic field 

Oscilloscope GPIB Read→ crystal detector voltage 

 

Figure. 4.8.  Schematic diagram of the three different methods used to interface the 

computer to the high-power microwave spectrometer, and a summary table that 

summarizes the interface method used for the various devices in the spectrometer. 
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electromagnet pole pieces are arranged such that the microwave and static magnetic 

fields are coplanar with the cavity end-wall (See Fig.  4.4 for details).  The angle pθ  

between the two fields is then set by rotating the base of the electromagnet.  This angle is 

calibrated using the following procedure.  First, the FMR resonance response is 

measured.  Then the magnitude of the static magnetic field is set to the FMR resonance 

field, and the peak FMR absorption is measured for various electromagnet angles.  The 

angle that yields the minimum amount of FMR absorption corresponds to o0pθ = . 

Figure 4.9 shows FMR peak losses versus electromagnet base angle.  As is seen in 

the figure, the peak FMR loss has a clear parabolic dependence on the base angle.  The 

minimum loss, which occurs at about a 10-degree base angle, corresponds to a parallel 

alignment of ph and 
ext

H .  Typically, the above method of alignment is accurate to 

within 0.05 degrees.  Once this angle is determined, the electromagnet is then rotated to 

the proper setting according to the type of instability process of interest.  In this example 

a base angle of o10  and o100  would be used for the parallel o( 0 )pθ =  and the 

perpendicular pumping o( 90 )pθ =  configurations, respectively.   

 

Figure. 4.9.  Plot of FMR loss versus electromagnet base angle.  The minimum loss, 

which occurs at a base angle of about 10 degrees, corresponds to the microwave and 

static magnetic fields being aligned parallel. 
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Once the angle between the 
p

h  and 
ext

H  fields is set, the relative magnitudes of 

these fields, which are required to obtain the butterfly curve data are determined.  This is 

accomplished by measuring the sample loss versus static field at various ph  settings for 

a fixed microwave frequency 
p

ω .   

Figure 4.10 shows example static field scan data obtained on the YIG thick film with 

the parallel pumping field alignment at four different microwave power levels and a 

 

 

 

Figure. 4.10.  Plot of normalized loss versus static magnetic field for various 

microwave field amplitudes as indicated in the figure.  The data were obtained 

on a thick YIG film at 8.9 GHz with the parallel pumping configuration.  The 

first notable sign of a nonlinear response occurs for microwave field amplitude 

of 1.0 Oe.  The lower spin wave dispersion sketches show the relative positions 

of the upper and lower manifold branches for three different static field values 
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frequency of 9 GHz.  From these four scans, one learns a considerable amount of 

information regarding the required 
p

h  and 
ext

H  settings needed to excite the parallel 

pump spin wave instability response.  One determines (1) at what 
ext

H  the minimum 

threshold of the butterfly curve occurs, (2) the appropriate 
ext

H  and ph  field ranges to 

scan in order to excite the nonlinear effects, and (3) the maximum 
ext

H  for which spin 

waves are available for excitation.   

Analysis of the data shown in Fig 4.10 reveals that: (1) the minimum of the butterfly 

curve occurs at 900 Oe
ext

H ≈  for a microwave field amplitude between 0.5 and 1.0 Oe, 

(2) for 200 < < 900 Oe
ext

H  that 1 < < 1.5 Oe,
crit

h  while for  900 Oe
ext

H >  that 

 

Figure. 4.11.  Parallel pumping normalized microwave loss versus pump field 

amplitude, obtained on a thick YIG film at 8.9 GHz, for several different static magnetic 

fields (
ext

H ).  The threshold field (
crit

h ) required to excite the nonlinear effects is given 

in each plot and indicated with the solid arrow.  For 
ext

H > 1100 Oe, the threshold 

response becomes undetectable, so another method shown in Fig. 4.12 is employed. 
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1.5 3 Oe
crit

h< < , and (3) the maximum 
ext

H  field at which spin waves are available for 

excitation is about 1400 Oe as no significant changes in the absorption profiles occur for 

1400 Oe
ext

H >  when the microwave field amplitude is increased from 2.5-to-3.5 Oe. 

The required static field ranges for exciting the nonlinear butterfly curve data can 

also be obtained from the analysis of the spin wave manifold.  The lower plots in Fig. 

4.10 show the spin wave manifold calculation results for three different static field 

settings.  The calculations were performed with saturation magnetization 

4 1750 Gauss
s

Mπ =  and static fields of 500, 925, and 1400 Oe.  The dotted line 

corresponds to 2(2 ) 4.5 GHz
p

ω π = , which corresponds to the frequency of the excited 

spin wave modes.  It is known that minimum of the butterfly curve occurs for the static 

field setting at which o2 ( 90 , 0),p k k kω ω θ= = =  and the maximum static field for which 

spin wave modes are available for excitation occurs for the static at which 

o2 ( 0 , 0)p k k kω ω θ= = = .  From an inspection of field values given in the lower 

manifold plots in Fig. 4.10, one can see that these field values are in reasonable 

agreement with the values obtained from the upper plots in Fig 4.10. 

4.4.3 Example Threshold Field Data  

Once the approximate static and microwave field ranges required to obtain the 

butterfly curve data are determined, the 
crit

h  threshold data can then be obtained either by 

keeping 
ext

H  fixed and measuring the sample absorption versus ph , or by keeping ph  

fixed and measuring sample absorption versus 
ext

H . 

Figure 4.11 shows plots of sample absorption versus microwave field amplitude 

ph data obtained at six different fixed static field settings.  The data were obtained on the 

same YIG sample as discussed in Fig. 4.10.  For most of the plots in Fig. 4.11 there is an 

abrupt and sharp increase in the sample losses, which corresponds to a transition from 

the linear to nonlinear sample response at a specific microwave field, 
crit

h .  From an 

inspection of the plots in Fig. 4.11 one can see that 
crit

h  depends upon the 
ext

H  setting.  
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Furthermore, the abruptness of the linear to nonlinear transition, and therefore the 

accuracy of the threshold field determination, also depends on 
ext

H .  For static fields 

higher than the minimum threshold response (i.e., 
ext

H > 900 as in Fig. 4.10) the 

sharpness of the transition from the linear to the nonlinear reduces as 
ext

H  increases.  In 

order to overcome this, a second sweep method shown in Fig. 4.12 is used. 

Figure 4.12 shows normalized sample loss versus static field data obtained at several 

fixed microwave field amplitude values.  The data were obtained using the sample and 

 

Figure. 4.12.  Parallel pumping microwave loss versus static magnetic field plots 

obtained on thick YIG film at 8.9 GHz.  The plots were obtained with microwave field 

values as shown.  The static field is scanned from high-to-low (linear to nonlinear 

region) in the above plots. 
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parallel pumping orientation as used in Figs. 4.10 and 4.11.  The static field sweeps were 

scanned from the high-to-low 
ext

H  values, which yields a more abrupt change in 

normalized loss response than if one scans from the low-to-high field ranges. 

Inspection of the data shown in Fig. 4.12 shows that there is a clear correlation 

between the static field at which spin waves suddenly become excited and the value of 

the microwave field amplitude used.  The higher the microwave field amplitude, the 

larger the static field at which one observes the transition.  This method of determining 

the threshold field was utilized extensively for the parallel pumping measurements 

obtained on the Zn Y-type hexagonal ferrites samples studied here.  The results of these 

measurements are discussed in Chapter 5. 

Once all the microwave and static field scans are complete, and the 
crit

h  threshold 

fields are determined at each static field setting, one can plot the butterfly curve 
crit

h  

versus 
ext

H  sample response.  See Figure 2.12 in Chapter 2 for a plot of the resultant 

butterfly curve, which summarizes threshold field data shown here.  As was mentioned 

in Chapters 2 and 3, these plots provide a direct summary of the transition regime from 

linear to nonlinear response versus static magnetic field, and, therefore, a direct feedback 

on the material’s high-power handling capabilities.  They also provide a means for 

determining the relaxation rates of the spin wave modes excited at the threshold field. 

During the course of the above measurements, the linear magnetic susceptibility of 

the sample changes with the external static magnetic field, and in turn can alter the cavity 

resonance frequency.  The size of the frequency change depends on the relative sample-

to-cavity volume, and is strongest for the perpendicular pumping processes near FMR 

resonance.  If the effect is large enough, then the operating frequency must be tuned to 

the altered cavity resonance frequency for each static field setting.  This is done 

automatically with the LabVIEW program developed for this study. 
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4.5 MEASUREMENT SUBTLETIES 

This section provides guidance on how to obtain spin wave instability butterfly curve 

data in a reliable manner.  Some of the pitfalls discussed here are quite obvious and are 

included for completeness while others are more subtle and have led to errors in past 

publications (McKinstry and Patton [1989]).  The pitfalls discussed here are grouped into 

two categories: (i) those that lead to errors in the calculation of the microwave magnetic 

field amplitude and (ii) those that lead to a misinterpretation of the threshold response. 

4.5.1 Microwave Field Calculation Errors 

This subsection addresses three concerns regarding the calculation of the cavity 

magnetic field amplitude (
o

h ): (1) proper shorting techniques, (2) correct use of the 

TWT amplifier, and (3) the importance of avoiding cavity overloading. 

The first source of 
p

h  error, which was discussed earlier, is caused by improper 

shorting procedures.  Often a shorting switch, which is located relatively far from the 

cavity location, is used to monitor sample absorption and to calibrate the cavity (Patton 

and Kohane [1972]; Cox et al. [2001]).  As was discussed previously, locating the short 

in this manner can lead to errors in the waveguide calibration factor ( ( )crysWGC f ) and 

the cavity parameters (
L

Q  and 
res

ρ ).  As was shown in Fig. 4.7, varying the shorting 

position can effect the net shorted reflected signal at the crystal detector by as much as 

2dB (20% effect on measured reflected power).  Therefore, care must be taken to locate 

the short at the cavity iris position in the waveguide system. 

A second source of 
p

h  calculation error is related to the improper use of TWT 

amplifiers.  The first issue involves TWT amplifiers that operate only in pulse mode, and 

the second issue is in regards to continuous wave (CW) TWT amplifiers.  As was 

discussed in Section 4.2, pulse-mode TWTs amplify the higher harmonics of the input 

frequency to relatively high levels (see Fig. 4.2 for details).  These higher harmonics are 
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transmitted through the waveguide system to the power meter.  The power meter used for 

the microwave spectrometer reports the average of all the microwave signals that are 

present over its full operational frequency band.  Therefore, the higher TWT harmonics 

can lead to higher measured power than what is actually incident on the sample at the 

cavity resonance frequency, and can in turn, result in miscalculated 
p

h  values.  To avoid 

this, the low-pass filter shown in Figures 4.1 and 4.2 was utilized to eliminate these 

higher harmonic signals. 

The second possible 
p

h  calculation error, which is related to improper TWT usage, 

has to do with continuous wave (CW) TWT amplifiers.  While such amplifiers were not 

used in this study, it is worth pointing out a possible problem concerning their use.  If a 

CW TWT amplifier is used to amplify microwave pulses, then care must be taken to 

avoid false power readings.  The problem arises because all TWT amplifiers have a 

certain amount of positive feedback and, therefore, generate a small but non-negligible 

signal over their entire bandwidth.  For a CW TWT amplifier, this small background 

signal can have a significant contribution to the net measured power if (1) small duty 

cycles/pulse widths are used and if (2) the power meter reports the average reading of all 

the input signals over its entire bandwidth as is the case with the power meter used in 

this study.  As was mentioned previously, only signals at the cavity resonance frequency 

excite the nonlinear sample, so the meter will be yielding a higher than actual power at 

sample position and one will report larger than actual threshold fields.  One method way 

to eliminate this error is to insert a narrow band pass filter centered on the cavity 

operating frequency prior to the reference arm.  A preferred method is to locate a 

microwave switch after the CW TWT to eliminate the background CW signal when the 

pulse signal is not present. 

The third and final source of ph  calibration error to be discussed is related to cavity 

overloading.  A key assumption in the formulation (See Appendix A for details) is that 

the sample has a negligible effect upon the empty cavity response.  Therefore, care must 
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be taken to avoid excessive sample power absorption in the cavity.  The actual amount of 

sample absorption that is tolerable depends upon the value of the empty cavity Q.  The 

larger the Q, the smaller the amount of sample absorption that can be allowed.  For all 

the measurements performed in this study, the loaded Q was never allowed to decrease to 

less than 90% of the empty cavity Q value. 

Cavity overloading is typically not a concern for the first order subsidiary absorption 

and parallel pumping instability measurements because large amounts of sample 

absorption are only observed for microwave magnetic field amplitudes above the 

threshold field.  However, cavity loading is a significant issue for resonance saturation 

measurements in which FMR absorption is usually quite large at low-power levels.  In 

previously performed resonance saturation measurements, cavity-loading issues were 

minimized by using very small samples and low-Q cavities.  However, for the 

measurements performed here, the thresholds were measured not only at resonance but 

also for static magnetic fields away from the resonance field.  If the above methods of 

reducing cavity loading do not provide the sensitivity needed for these off-resonance 

measurements, and therefore a different method was used. 

For the resonance saturation measurements performed in this study, cavity 

overloading was avoided by varying the angle pθ  between the microwave field and static 

magnetic field; see Fig. 4.4 for sketch of this angle.  In a resonance saturation 

experiment, only the transverse microwave field component to the static field drives the 

losses, such that the losses are proportional to 2( sin )poh θ .  Therefore, the total cavity Q 

may be written as 

2
stored

2

lost empty-cav-loss

2  
.

P ( sin )

o

po

U h
Q

U h

π

θ
= ≈

+
 (4.5) 

As is observed in the above relation, when pθ  is decreased, the effect of sample loss 

upon the cavity Q is lessened.  Therefore, pθ  was set to a minimum value when the static 
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field was equal to the FMR resonance field and pθ  was increased as the static field was 

set at values away from the resonance field.  This was done in such a manner that the 

loaded Q of the cavity was never allowed to decrease to more than 10% of its empty 

cavity Q value (Cox et al. [2001]). 

4.5.2 Misinterpretation of Threshold Data 

Mischaracterization of the true onset of the nonlinear instability point can occur due 

sample heating and not properly accounting for the nonlinear response time.  When a 

ferrite sample is heated, its net saturation magnetization decreases and in turn yields an 

absorption response that can be easily mistaken for an instability threshold.  These 

heating related effects have led to the threshold fields being misreported as smaller than 

they actually are (McKinstry and Patton [1989]).  Such overheating related threshold 

field errors can be avoided by decreasing the duty cycle of the microwave pulses while 

maintaining a fixed pulse width.  This method works well for the parallel pumping and 

subsidiary absorption measurements where small amounts of sample absorption occur 

for microwave fields below the threshold value.  However, for the resonance saturation 

measurements, in which large sample absorption occurs at even low-power levels, the 

pulse width as well as the duty cycle is important.  Here it is essential not only to 

maintain small duty cycles but also short pulse widths.  For the resonance saturation 

measurements reported here, a duty cycle of 0.1% and a pulse width of 10 sµ  were 

adequate to avoid overheating the samples. 

Mischaracterization of the threshold field can also occur if the microwave pulse 

width is so short that the time required to excite the nonlinear response of the spin wave 

system is not properly accounted for.  The delay time required for the nonlinear 

instability response to occur depends upon the relaxation rate of the critical modes and 

the relative amount of microwave power that is required to excite the instability process.  

A classical analogy is water overflowing from a bathtub: the rate of incoming water from 
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the faucet corresponds to the rate of microwave energy being coupled into a given spin 

wave mode, and the tub drain corresponds to the relaxation rate of the spin wave modes.  

The initial level of the water in the tub, prior to turning on the faucet, corresponds to the 

preexisting thermal energy in the spin wave modes.  Once the water is turned on, if the 

rate of flow into the tub is less than the drain flow rate, then the tub does not over-flow.  

This corresponds to the linear spin wave excitation regime.  If the flow rate from the 

faucet exceeds the drain rate, then once the water is turned on it fills up the tub, and 

eventually overflows (i.e., nonlinear spin wave amplitude growth).  The delay time 

between the faucet turn on time and water overflow corresponds to the time required to 

excite nonlinear spin wave growth.  A failure to account for this delay time, and thereby 

using too short of a microwave pulse width, will lead to the threshold fields being 

reported as larger than they actually are.   

Figure 4.13 shows data that exhibit the delay time requirements for the nonlinear 

transition response which highlight the necessity for using wide enough microwave pulse 

widths to obtain accurate threshold field data.  The plot shown in Fig. 4.13 shows crystal 

detector output voltage pulses versus time, obtained at four different microwave power 

levels (see Fig. 4.1 for location of crystal detector within microwave spectrometer).  The 

data were obtained on the YIG sample discussed above using the parallel pumping 

configuration.  Each output pulse shown in the figure was obtained at a fixed microwave 

power level.  For the lowest microwave amplitude, 1p
h h=  the amount of reflected 

power is constant over the pulse width of 10 microseconds.  Then for the next highest 

amplitude, 2p
h h= , there is a stair-step in the voltage pulse which occurs at about 

6 secµ .  For the time T < 6 secµ  the difference in the pulse heights for the pulses 

obtained at 1p
h h=  and 2p

h h=  corresponds to a linear increase in sample absorption 

associated with the increased microwave field amplitude.  The increased losses, which 

occur for T > 6 secµ  on the pulse 2p
h h= , correspond to the nonlinear response of the 

spin system. 
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For the pulse at 3p
h h=  shown in Fig. 4.13, one observes two stair-step rise in the 

amplitude of the pulse.  This corresponds to the nonlinear excitation of two different spin 

wave modes.  The first step corresponds to the excitation of the critical mode which has 

either a lower damping rate and/or better coupling to the microwave driving field than 

the secondary mode excited at the later time.  If the microwave power is increased even 

further, these two nonlinearly excited spin wave modes interact and will eventually 

display a chaotic response (period doubling, tripling, etc.).  There is a rich area of 

nonlinear dynamics that are studied using parallel pumping in YIG (Wigen [1994]).  

Such nonlinear responses are not the focus of this work; rather the work addresses the 

transition point from the linear to the nonlinear regime.   

 

Figure 4.13.  Plots of microwave loss versus time.  The data were obtained on a thick 

YIG film at 8.9 GHz, for parallel pumping orientation, at single 
ext

H  value, and four 

different microwave fields.  The stair step jump in the 2h  response data, which occurs at 

about 6 microsec, corresponds to the onset in the nonlinear amplitude growth of the 

critical mode.  The two different steps observed in the 3  h h=  and 4h  plots, correspond 

to the nonlinear excitation of two different spin wave modes. 
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From an inspection of Fig. 4.13, it is clear that if one were to measure the sample loss 

versus ph  with a pulse width of 1 secµ , one would think that 3crit
h h> .  If a microwave 

pulse width of 5 secµ  was used, then the sample loss versus ph  analysis would lead one 

to think that 2 3crit
h h h< > , whereas if a pulse width of 9 secµ  was used, one would 

know that the nonlinear transition occurred for 1 2crit
h h h< < .   

In summary, if a microwave pulse width that is too long is used, sample heating 

will occur and the reported threshold field will be smaller than the actual threshold 

field; if a pulse width that is too short is used, the spin system will not have 

adequate time to respond and the reported threshold field will be larger than the 

actual threshold field.  Therefore, when acquiring instability data on a given sample for 

the first time, the threshold data should be acquired for several pulse widths and duty 

cycles to ensure that the measured threshold is independent of variations in pulse width 

(allowing for nonlinear response time) and duty cycle (not overheating the sample).  For 

the resonance saturation data reported here, a duty cycle of 0.1% and a pulse width of 10 

µs were utilized.  Larger duty cycles or longer pulses resulted in observable heating 

effects.  For the subsidiary absorption and parallel pumping measurements, pulse widths 

of approximately 50 µs and duty cycles of about 0.1% were used.  Shorter pulse widths 

resulted in larger than actual threshold field measurements. 

 



161 

CHAPTER 5 

MEASUREMENT RESULTS AND ANALYSIS 

This chapter discusses the spin wave instability measurements and analyses that were 

performed on single crystal easy-plane Mn substituted Zn Y-type hexagonal ferrite disks 

as part of this thesis work.  It should be noted that the resonance saturation, subsidiary 

absorption, and parallel pumping spin wave instability threshold measurements and 

analyses presented here constitute the first extensive work on butterfly curves for planar 

hexagonal ferrites for all three pumping configurations. 

The presentation of the high-power data and analyses shown here is organized as 

follows: 

1. The first section addresses the sample details. 

2. Section two discusses the resonance saturation butterfly curve measurements and 

analyses. 

3. Sections three and four present the subsidiary absorption and parallel pumping 

measurements and analyses. 

4. Section five summarizes the measured threshold fields and calculated spin wave 

linewidths. 

5. The last section reviews follow-up measurements performed by Alex Nazarov, 

which address questions raised by the parallel pumping data and analyses 

presented here. 
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5.1 OVERVIEW 

The three main measurement and analysis objectives of this thesis work were: (1) to 

obtain spin wave instability threshold data for a range of static magnetic fields and 

microwave pump field configurations; (2) to use these data to construct resonance 

saturation, subsidiary absorption, and parallel pump butterfly curves; and (3) to analyze 

the butterfly curves in order to determine which spin wave modes are excited at the 

instability threshold and the spin wave linewidths of these critical modes.  Prior to 

discussing the results of these objectives, a review of the composition, static magnetic, 

and linear microwave magnetic properties of the single crystal Mn doped Zn Y-type 

hexagonal ferrite samples that were used in this study will be given. 

5.2 HEXAGONAL FERRITE SAMPLE DETAILS 

The single crystal samples were grown at Purdue University using a standard 2BaO-

B2O3 flux technique (Savage and Tauber [1964]; Tauber et al. [1964]; Savage et al. 

[1965]).  A commercial composition analysis of the material gave an Mn concentration 

of 2.6% by weight.  This corresponds to a nominal formula unit of 

2 2-x 12-y x+y 22
Ba Zn Fe Mn O , subject to the condition 0.7.x y+ =   The manganese 

substitution compensated for any residual 
2+

Fe  that may have been present in order to 

maintain a high resistivity material and thereby eliminate the eddy current complications 

in the microwave response that are observed in the nonsubstituted materials (Truedson et 

al. [1994]). 

The particular samples used for the study were obtained from three as grown c-plane 

platelets of the Zn Y-type hexagonal material.  The hexagonal crystal structure of the 

material causes it to be readily cleaved into platelets with the hexagonal crystallographic 

c-axis normal to the platelet plane.  Therefore, the anisotropic easy plane of the Zn Y-

type hexagonal ferrite samples corresponded to the plane of the platelets.  The edges of 
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the platelets were ground with silicon carbide 600 grit paper and polished with 1 µm 

alumina powder.  The extremely smooth flat surfaces of the platelets were left 

untouched.  The final disks were nearly circular and nominally 1 mm in diameter with 

nominal thicknesses of 90 µm, 100 µm, and 200 µm.  These disks, in order of increasing 

thickness, are denoted here as samples S1, S2, and S3.  The thinnest sample, S1, most 

closely resembled a cylindrical disk.  The edges of the other two samples were somewhat 

beveled. 

The sample parameters that are needed to perform threshold calculations are the 

saturation magnetization ( 4
s

Mπ ), anisotropy field (
A

H ), gyromagnetic ratio (γ ), and 

the demagnetizing factors 
, ,

( ).
x y z

N  The measured FMR linewidth FMRH∆  also enters into 

the formulae for resonance saturation processes.  The demagnetizing factors for a disc 

shaped ellipsoid sample with disc plane in y-z coordinate plane can be rewritten as 

( )1 2y z xN N N= = − .  Therefore, there are four sample unknowns 4
s

Mπ , 
A

H , γ , and 

x
N .  These four unknowns are determined from four different equations and associated 

measurements which describe the applied static magnetic fields required to (1) saturate 

the magnetization within the disk plane, (2) saturate the magnetization normal to the disk 

plane, (3) achieve the high field cut off point for the parallel pumping butterfly curve, 

and (4) obtain the low-power FMR peak position. 

The applied static magnetic fields required to saturate the magnetization within and 

normal to the disk plane were measured with a vibrating sample magnetometer (VSM).  

Figure 5.1 shows typical VSM hysteresis plots of magnetization versus static magnetic 

field obtained on sample S3.  The solid circles and open squares correspond to 

measurements performed with the static magnetic field applied within and orthogonal to 

the plane of the disk, respectively.  The large difference in the static magnetic fields 

required to saturate the sample in the two directions is due to the large effective planar 

anisotropy and demagnetizing fields.  The theoretical in-plane and out-of-plane 

saturation fields may be written as 
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sat-in s y
H 4 M Nπ=  (5.1) 

 and 

sat-out .A s xH H 4 M Nπ= +  (5.2) 

The parallel pumping butterfly curve cut off field ( cutH ) corresponds to the static 

field at which the spin wave mode with the lowest frequency is excited.  The equation for 

cutH  is obtained from the spin wave dispersion, given in Eq. (3.68), by setting 
k

ω  to 

/ 2pω , and k  and 
k

θ  to zero.  Upon doing so, one gets the following expression 

 

Figure 5.1.  Magnetization hysteresis data obtained on hexagonal ferrite sample S3.  The 

sample’s easy anisotropy plane was coplanar to the disk plane.  The solid circles and the 

open squares correspond to the data obtained with the external magnetic field applied in 

and out of the disk plane, respectively. 
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( ) ( )( )
2

22 4 4 .
p cut s z cut s z A

H M N H M N Hω γ π π= − − +  (5.3) 

Note that the cutoff field is readily measured as a part of the parallel pumping instability 

butterfly curve measurements.  For examples of this, see the vertical dotted lines in 

Fig. 5.6.  As seen in the figure, sample S3 has 
cut

H  field of about 650 Oe.  

The fourth and final equation and associated measured parameter used to calculate 

the sample parameters is the FMR resonance field.  The expression for the FMR 

resonance field ( FMRH ) for a hexagonal ferrite disk-shaped sample magnetized in-plane 

can be obtained from Eq. (3.33) with oω  set equal to pω .  This results in the following 

expression 

( ) [ ] ( )
2

FMR FMR 4 1 3 .p s z A
H H M N Hω γ π=  + − +    (5.4) 

Table 5.1 summarizes the four measured fields and calculated parameters for each 

sample.  Sample S1 was damaged before the VSM data were acquired.  Therefore for 

 

 

 

Sample Thickness 

(mm) 
sat-inH  

(Oe)
 

sat-outH
 

(kOe)
 

cutH  

 

(Oe)
 

FMRH  

(Oe) 

FMRH∆  

(Oe) 

4
s

Mπ  

 (kG) 

A
H   

(kOe) 

| | 2γ π   

(GHz/kOe) 
z

N  

S1 0.090 --- --- 413 775 16 2.957 -9.500 2.840 0.054 

S2 0.113 230 12.20 502 845 10 2.992 -9.668 2.715 0.077 

S3 0.205 380 11.50 650 900 14 2.855 -9.335 2.720 0.130 

Table 5.1.  Sample parameters for the three Mn substituted Zn Y-type hexagonal ferrite 

disc shaped samples studied here.  The symbolic headers give the static magnetic fields 

required to saturate the sample in the disk plane, sat-inH , and out of the disk plane, sat-outH , 

the parallel pumping butterfly curve cut off field cutH , the ferromagnetic resonance 

(FMR) field FMRH , and the FMR half-power linewidth FMRH∆ .  From the first four 

measured field parameters, the saturation magnetization 4
s

Mπ , the anisotropy field 
A

H , 

the in-plane demagnetizing factor 
z

N , and the electron gyromagnetic ratio γ  were 

calculated. 
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this sample, the demagnetizing factors were estimated from the Osborn analysis, 
A

H  

was set to the average value obtained for S2 and S3, and 4
s

Mπ  and γ  were obtained 

from the FMR field and the butterfly curve cut-off field.  The parameters listed in Table 

5.1 are consistent with literature values (Smit and Wijn [1959]; Savage and Tauber 

[1964]).  Note that cutH  and FMRH  become larger as one moves from sample S1 to 

sample S3.  This is due to the increase in 
z

N  with disk thickness. 

The measured FMR half power linewidths for samples S1, S2, and S3 were 16 Oe, 

10 Oe, and 14 Oe, respectively.  These values are reasonably small for single crystal Zn 

Y-type hexagonal ferrites.  Typical FMR linewidths from the literature are in the 8-30 Oe 

range at 10 GHz.  Savage et al. [1965] reported one sample with a 3.8 Oe linewidth at 9 

GHz, but this appears to be an exception. 

5.3 BUTTERFLY CURVES 

Figure 5.2 shows the general sample and magnetic field orientation that was used to 

obtain all the microwave measurements, at low as well as at high power levels, as a part 

 

 

Figure. 5.2.  Orientation of the sample, static field ( ),
ext

H  and microwave field ( )
p

h

used to obtain the data given in this chapter.  The hexagonal easy-plane corresponded to 

the disk-plane.  The angle ( )
p

θ  between 
ext

H  and 
p

h  was varied for the resonance 

saturation measurements depending on static field setting in order to minimize cavity 

overloading.  For the subsidiary absorption and parallel pumping measurements, 
p

θ was 

fixed to 
o

90  and o0 ,  respectively.  
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of this thesis work.  As is shown in the figure, both the static field and microwave 

magnetic fields were applied in the disk plane which coincided to the crystallographic 

easy anisotropy plane of the Zn Y-type hexagonal ferrite samples.  The angle 
p

θ  

between the in-plane static and microwave fields varied depending upon the 

measurement of interest.  Typically, for resonance saturation measurements this angle is 

set to 90 degrees.  However, in order to reduce cavity loading, small pθ  values were used 

for measurements at and near 
FMR

H .  This angle was then increased in order to achieve 

the higher sensitivities required for the resonance saturation crith  measurements obtained 

at static field settings further away from the FMR field.  For the subsidiary absorption 

and parallel pumping measurements, pθ  remained fixed at 90 and 0 degrees, 

respectively. 

Figure 5.3 shows several spin wave dispersion curves.  The curves were calculated 

using Eq. (3.68), with sample S2 parameters given in Table 5.1, and static fields as 

shown in the figure.  The solid circle corresponds to the FMR resonance frequency, and 

the dotted line is the frequency of the parametrically excited spin waves.  The top three 

curves show the orientation of the dispersion manifold for the parallel pumping butterfly 

curve measurements at three different static  field settings.  The three static fields used in 

calculating the lower three dispersion curves were chosen to show the location of the 

excitation frequency ( / 2)
p

ω  within the manifold for (1) the minimum static field used 

to obtain parallel pumping butterfly curve data, and (2) the static field at which the 

o o
=90 , =0 , =0( ) / 2

k k pk kθ φω ω=  condition is satisfied, and (3) the static field at which 

/ 2pω  matches the minimum frequency of the spin wave manifold.  For more details on 

spin wave dispersion relation see Section 3 of Chapter 3. 

The lower three dispersion curves shown in Fig 5.3 show the shape and orientation of 

the dispersion manifold for the resonance saturation butterfly curve measurements.  The 

three static fields used to calculate these curves were chosen to show the location of the 

excitation frequency ( pω ) within the manifold for the maximum and minimum static 
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magnetic fields that were used to obtain resonance saturation thresholds and for when the 

FMR resonance condition is satisfied.   

Having discussed the sample preparation techniques and the low-power parameters 

of interest, the high-power instability data obtained on these samples will now be 

discussed. 

 

 

Figure 5.3.  Spin wave dispersion curves calculated with the sample S2 parameters, 

given in Table 5.1, for several static fields as indicated.  The upper and lower plots were 

calculated using the static fields for the parallel pumping and resonance saturations field 

ranges. 
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5.3.1 RS Butterfly Curves 

Figure 5.4 shows low-power FMR absorption curves along with resonance saturation 

butterfly curves.  The data were obtained on the Zn Y-type hexagonal c-plane disk 

samples at a nominal operating frequency of 8.93 GHz.  In graph (b) of Fig. 5.4, the 

high-power data for samples S1 and S2 are shown as the solid circles and open squares, 
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Figure 5.4.  Graph (a) shows low-power ferromagnetic resonance absorption curves of 

loss versus static external magnetic field for the three Zn Y-type hexagonal ferrite c-

plane disk samples S1, S2, and S3 as indicated.  Graph (b) shows resonance saturation 

butterfly curves of the spin wave instability threshold microwave field amplitude 
crit

h

versus 
ext

H  for samples S1 and S2.  The operating frequency was 8.93 GHz. 



5. RESULTS 

170 

respectively.  The butterfly curve for sample S3 is not shown because S3 was damaged 

before the resonance saturation measurements were obtained.  For the data shown in 

graph (a), the angle θ  between the in-plane static and microwave fields was set at 8° .  

For the data in (b), this angle was also set at 8°  for the crith  measurements at the FMR 

point.  For crith  measurements away from the FMR field, this angle was increased as 

needed to achieve higher sensitivity, and the angle was set to a maximum of 

approximately 60°  for the extreme end point data in the figure. 

The low-power FMR curves in Fig. 5.4(a) are typical for Zn Y-type c-plane 

hexagonal ferrites.  The difference in the FMR peak positions for the three disks is 

mainly due to the different thicknesses and the corresponding difference in the 

demagnetizing factors.  In addition to the prominent primary FMR absorption peaks, the 

absorption curves also show secondary peaks at higher fields.  These peaks are 

associated with magnetostatic mode (MSM) resonances.  The MSM peak is clearly 

visible in the S2 data and is less pronounced for the S1 data.  The graph does not extend 

far enough to show the MSM peak for S3 that is centered at ext 1070 OeH ≈ . 

The butterfly curves in Fig. 5.4(b) demonstrate the correlation between the low-

power FMR response and the crith  threshold field behavior.  The minimum thresholds for 

both samples occur at ext FMRH H= .  Within about one linewidth of either side of the 

main FMR peak position, there is little change in crith .  However, as extH  is set further 

away from the peak, the thresholds increase rapidly.  It is important to note the effect of 

the MSM resonances on the crith  response.  The MSM peak in graph (a) for sample S2 is 

centered at about 980 Oe.  At this same point in field, there is a second minimum in the 

crith  data shown in graph (b).  The apparent drop in crith  for fields above about 825 Oe 

for sample S1 may also be due to an MSM effect.  This drop occurs at about the same 

external magnetic field for which the low-power absorption curve turns upward.  The 

MSM peak for sample S1 is much weaker and the high-power data extend only to 

850 Oe. 
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The data in Fig. 5.4(b) represent the first actual measured butterfly curves for 

resonance saturation on hexagonal ferrites to be reported in the literature.  As has been 

mentioned before, all previously reported resonance saturation crith  measurements have 

been limited to the thresholds at ext FMRH H=  only.  As will be discussed below, such 

data give new information on the threshold response and on the spin wave loss processes 

that are not apparent from measurements at the FMR point only.  To the author’s 

knowledge, only one previous study on YIG has examined the field dependence of the 

crith  threshold and provided actual butterfly curve profiles for this dependence (Kabos et 

al. [1996]). 

Qualitatively, the results are as one would expect.  The reduced amplitude for the 

uniform mode response away from resonance results in a decrease in the 
( )RS

k
g  factor 

given in Eq. (3.98) and a corresponding increase in the crith  threshold.  In quantitative 

terms, however, there are two new results from Fig. 5.4(b).  First, there is a rather 

rounded crith  response for fields near resonance.  Second, for fields outside the rounded 

region there is a sharper “V” shaped response with a small but distinct asymmetry in the 

butterfly curve.  Both effects are unexpected.  First consider the rounded crith  response.  

One would expect the increase in crith  as one moves away from the FMR peak position 

in field to mirror the drop in the FMR response.  The data in Fig. 5.4 show that this is not 

the case.  The data show that the threshold seems to respond rather weakly to the drop in 

the FMR amplitude until the static field is off from the FMR field by a linewidth or so.  

Then, and only then, does the threshold increase.  Now consider the asymmetry.  The 

low-power FMR absorption line is essentially symmetric, whereas the threshold field 

data show that this symmetry is not transferred to the resonance saturation butterfly 

curve profile.  Rather, the data show that as the static field is set out of the rounded 

response region, the rate of increase for crith  is greater for fields below resonance than for 

fields above the FMR point. 
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Figure 5.5 shows the resonance saturation butterfly curve data from Fig. 5.4 for 

sample S2 along with computed crith  versus extH  curves and the corresponding critical 

mode k values as a function of field, based on the theory.  In the upper graph of Fig. 5.5, 

the solid circles are the same S2 data as shown before and the dashed and solid lines 

show the calculation results.  The solid curve corresponds to a fixed k-independent 
k

H∆  

 

 

 

Figure 5.5.  Resonance saturation butterfly curve measurements and calculation results 

for sample S2.  The solid circles are the same data as in Fig. 5.4(b).  The solid and 

dashed lines are the computed results for spin wave linewidth 
k

H∆  as shown.  The same 

wave number 
crit

k  versus static field results shown in the lower plot were obtained for 

both forms of 
k

H∆ . 
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value of 7.0 Oe.  The dashed curve in Figure 5.5 was calculated for a k dependent spin 

wave linewidth of the form 
2

sin (2 )
k k

H A B k C θ∆ = + + , with A equal to zero, B equal to 

57.5 10 Oe cm−⋅ ⋅ , and C = 50 Oe.  The second order 
(RS)

crith  equation, given in Eq. (3.97), 

was minimized over all allowed values of 
k

θ  and 
k

φ , and the minimum threshold always 

occurred for 0
k

θ =  regardless of the static field setting for both forms of the spin wave 

linewidth.  This 0
k

θ =  condition is the same as expected from the Suhl theory for 

isotropic materials (Suhl [1957]).  The lower graph in Fig. 5.5 shows the calculated wave 

number of the critical mode excited at various static field settings. 

The computed butterfly curves in Fig. 5.5 provide an indication of some of the 

effects that control the crith  response.  It is to be noted that the 
k

H A∆ =  form of the spin 

wave linewidth replicates the rounded butterfly curve near FMR response quite well, 

while the dashed curve for 
2

sin (2 )
k k

H A B k C θ∆ = + +  models the data away from the 

central FMR region reasonably well.  This may be taken as an indication that there is a 

fundamental change in the form of ( )
k

H∆ k  as one moves from the FMR peak region out 

to the tails of the FMR response.  In the absence of a quantitative theory and the inability 

to actually measure the critical mode with Brilloun Light Scattering (BLS) measurement 

techniques, no effort was made to examine a wider range of ( )
k

H∆ k  functions.   

While it is not clear how or why there is a change in ( )
k

H∆ k  for resonance 

saturation, it is to be noted that similar effects occur for oblique pumping in single 

crystal YIG.  In the case of second order Suhl processes in the vicinity of FMR, this 

transition may be related to some sort of saturation process.  One might speculate that for 

ext
H  close to the FMR resonance condition, the large uniform mode amplitude drives the 

spin waves to very high amplitudes and that this leads to a washing out of the k-

dependence for
k

H∆ .  Further work, both experimental and theoretical, is needed to 

clarify these effects. 
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5.3.2 PP Butterfly Curves 

Figure 5.6 shows parallel pumping butterfly curve results for the three samples as 

indicated.  The symbols and the solid lines show the data and the theoretical fits, 

respectively.  The first order 
(PP)

crith  expression given in Eq. (3.97) was minimized over all 

allowed values of 
k

θ  and ,
k

φ  and the minimum threshold always occurred for the spin 

wave mode with the largest ellipticity.  The critical modes will be discussed in more 

detail shortly.  The vertical dashed lines indicate the cutoff point for each of the 

theoretical curves at ext cutH H= .  The three graphs all show the same two general 

features: (1) the crith  values for a relatively wide range of static fields are all between 

4.5-to-7.5 Oe and (2) there is a cutoff static field at which crith  diverges rapidly.  As will 

be discussed in more detail below, the constant threshold at low field indicates a k 

 

 

 

Figure 5.6.  Parallel pump butterfly curves for samples S1, S2, and S3, as indicated.  The 

data and calculated results are shown by the points and solid lines, respectively.  The 

vertical dashed lines show the cutoff point for first order processes at = 
ext cut

H H . 
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independent spin wave linewidth for parallel pumping.  The cutoff fields correspond to 

the cutH  values in Table 5.1.  The gradual shift in cutH  to higher fields as one moves 

from S1 to S2 to S3 is due to the increase in disk thickness and corresponding in-plane 

demagnetizing factor.  Similar shaped parallel pump butterfly curves obtained on 

hexagonal ferrites have been published in the literature (Green and Healy [1963]).   

The computed butterfly curves in Fig. 5.6 were obtained with the parameters listed in 

Table 5.1 and the 
(PP)

crith  expression given in Eq. (3.97).  A fixed value of the spin wave 

linewidth parameter was used in each case in order to obtain the best match with the 

fixed crith  values at low static fields.  These fitted 
k

H∆  values for samples S1, S2, and 

S3 were 24 Oe, 14 Oe, and 18 Oe, respectively.  The relatively wide range of the low 

field crith  and the corresponding 
k

H∆  values for similar samples match the findings in 

the work cited by Tauber et al. ([1964]).  Note the small but distinct corner in all of the 

computed butterfly curves close to the high field cut off point.  This effect is clearly 

evident from the solid curve for samples S1 and S2, but less apparent for sample S3.  

These corners are due to a combination of effects: (1) a critical mode 
k

φ  value of 0° over 

the entire range of static fields for the parallel pumping response, (2) the extreme warp in 

the 90
k

θ = °  dispersion surface, and (3) the extremely narrow width for the spin wave 

band at 0k =  and 0
k

φ = ° which results from this warp. 

The corner response in the butterfly curves given in Fig. 5.6 and 5.7 contain a second 

effect which is unique to anisotropic samples.  This effect consists of a finite value of 

crith  for the high field corner point at ext cutH H= .  For isotropic ferrites, the spin wave 

precession is strictly circular at this butterfly curve cutoff point.  This leads to a crith  

which increases rapidly as extH  approaches cutH  and diverges to infinity at ext cut .H H=   

For planar ferrites magnetized in the easy plane, the critical mode has elliptical 

polarization even in the ext cutH H=  limit, and this keeps the threshold field finite at 

cutoff.  The theoretical curves in Fig. 5.6 show this finite threshold at cutoff by the 

truncated solid lines at ext cutH H=  and the vertical dashed lines which extend vertically 
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from this point.  The S2 and S3 data in Fig. 5.6 show these effects to varying degrees.  In 

both cases, the experimental butterfly curves exhibit a very rapid divergence at 

ext cutH H=  (see Fig. 2.12 for an example).  While there may be an experimental corner 

effect for these two samples, the resolution in crith  is not sufficient to establish the effect 

unambiguously.  The S2 data show a rapid increase in crith  as one approaches 

ext cutH H= , but there is no evidence of either the corner effect or the finite threshold at 

the cutoff point. 

Figure 5.7 shows the parallel pump butterfly curve data and fit for sample S3 from 

Fig. 5.6 on an expanded scale and an additional graph with details on the critical mode 

behavior as a function of extH .  The left and right vertical axes in the bottom graph show 

the critical mode k and 
k

θ  values, respectively.  The critical mode azimuthal angle 
k

φ  

remains at 0°  for the entire range of fields for the butterfly curve.  The critical mode 

behavior can be divided into two parts, depending upon whether extH  is below or above 

590 Oe.  For external fields below about 590 Oe, the critical mode polar propagation 

angle 
k

θ  is constant at 90°, and there is a smooth and continuous decrease in the critical 

mode k value from about 3×10
5
 1/cm to zero as extH  is increased from 100 to about 590 

Oe.  As discussed above, spin wave ellipticity considerations give the strongest coupling 

for 90
k

θ = °  and 0
k

φ = .  For external fields above 590 Oe , 90
k

θ = °  is no longer 

allowed and the critical mode corresponds to the available mode with the maximum 
k

θ  

and both 
k

φ  and k equal to zero, this results in the smooth drop in 
k

θ  from 90° to zero as 

extH  is increased.  This second region is the origin of the characteristic butterfly curve 

corner close to the high field cut off point in the upper graph of Fig. 5.7 and, as already 

noted, in all three of the theoretical butterfly curves of Fig. 5.6. 

The results raise a number of questions.  One question concerns the characteristic 

corner shapes for the theoretical butterfly curves in Figs. 5.6 and 5.7.  Here the question 

is, “Why are these characteristic corners not consistently resolved in the experiment?”  

From Fig. 5.6, one sees a variety of experimental results.  For sample S1, the increase in  
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crith  as the static field approaches cutH  is gradual and the crith  values fall well above the 

theoretical corner shaped response.  For samples S2 and S3, the increases in crith  at the 

band edge are much sharper, but there is still no clearly resolved corner effect from the 

data.  It may be that the actual critical modes for the range of fields near the corner are 

different than those predicted from bulk instability theory.  It is important to keep in 

mind that the bulk theory gives k = 0 for these critical modes.  In this limit, it is 

 

Figure 5.7.  Parallel pump butterfly curve and critical mode results for sample S3.  The 

upper graph shows the threshold versus field data and the computed butterfly fit from 

Fig. 5.6.  The lower graph shows the critical mode wave number kcrit and polar angle θcrit

versus Hext.  
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necessary to take the sample surface boundary conditions into account, which makes the 

spin wave instability analysis much more complicated, even for isotropic materials, and 

introduces magnetostatic mode considerations into the analysis.  This problem is still 

unresolved.  A second question is, “Why are the parallel pumping spin wave linewidths 

so large?”  This question will be discussed in detail in the final two sections of this 

chapter. 

5.3.3 SA Butterfly Curves 

Figures 5.8 and 5.9 show subsidiary absorption (SA) measurement and calculation 

results.  The figure formats follow those in Figs. 5.6 and 5.7.  Only results for sample S3 

are shown.  As reference points for the discussion below, the parallel pumping butterfly 

curve data from Fig. 5.6 and the FMR data from Fig. 5.4 are also shown.  The vertical 

dashed line in Fig. 5.8 indicates the static field required for magnetic saturation, sat-inH , 

from Table 5.1.  As before, all results are for a nominal operating frequency of 8.93 

GHz.  The subsidiary absorption data were obtained with the angle between the static 

and microwave fields set at 90°.  For the low-power FMR loss profile, this angle was set 

at 8°.  Note that the subsidiary absorption crith  data in both Fig. 5.8 and 5.9 extend to 

field values that are somewhat above the subsidiary loss and first order process cut off 

point at ext cut 650 OeH H= = . 

Figure 5.8 shows that the overall SA response for crith  as a function of extH  is very 

different from the parallel pump butterfly curve response.  Three specific points of 

comparison may be noted.  First, the SA crith  response and the PP response show small 

maxima at about the same field.  This field is slightly below the static field necessary for 

saturating the domains in the sample in 380 OeH = .  

The second point to note is that the SA crith  values are much lower than the parallel 

pumping crith  values in the region between ext sat-inH H=  and ext cutH H= .  The reduction 

in threshold relative to the PP crith  values for these Zn Y-type hexagonal materials may 
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be significant.  For YIG materials, one always finds that the SA threshold at low field is 

above the PP threshold.  Here, the order appears to be reversed.  Fits of the theory to the 

data and the spin wave linewidth implications are considered below. 

The third point to note is that the SA crith  versus extH  response does not follow the 

usual result for conventional low anisotropy polycrystalline ferrite materials.  For such 

samples, one usually finds a threshold which (i) first decreases with increasing field for a 

range of low fields and then (ii) diverges as the external field approaches ext cutH H= .  

 

Figure 5.8.  Subsidiary absorption (SA) and parallel pump (PP) threshold field amplitude 

versus static external magnetic field butterfly curve data, and low-power normalized 

ferromagnetic resonance (FMR) loss profile for Zn Y-type hexagonal ferrite sample S3.  

The vertical long dashed line at = 380 Oe
ext

H corresponds to the field required for 

magnetic saturation, given in Table 5.1.  The angle between the static magnetic field and 

the microwave field was set to 90°, 0°, and 8° for the SA, PP, and FMR measurements, 

respectively.  The PP data are the same as shown in Fig. 5.7.  
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Neither of these standard subsidiary absorption responses are observed here.  The data in 

Fig. 5.8 show a range of fields from about 400 to 700 Oe for which the threshold is more 

or less constant.  There is certainly no divergence in crith  at ext cut 650 OeH H= = .  Then, 

for fields above 700 Oe, crith  decreases.  Except for the initial match with the parallel 

pump threshold at the lowest fields and the initial drop in crith  as the field is increased, 

these data look nothing like the usual subsidiary absorption butterfly curves. 

The different character for the subsidiary absorption response found for the Zn Y-

type hexagonal ferrite disks is related to two anisotropy effects.  First, there is the spin 

wave band shift.  The planar anisotropy shifts the spin wave band up by a significant 

amount.  Second, there is the FMR shift.  The anisotropy shifts the FMR and 

magnetostatic mode resonance fields down so that these resonances are close to or even 

coincide with the subsidiary absorption regime.  These shifts have a major effect on the 

crith  response. 

The shape of the subsidiary absorption crit extvs.h H  response between 400 and 

600 Oe is then due to a combination of factors.  First, there is the 
k

θ  dependence of the 

critical mode coupling factor 
( )SA

k
g  for the zero k or close to zero k, critical modes. 

Second, there is the field dependence of the uniform mode and magnetostatic mode 

responses.  As one moves up in field and down in 
k

θ  for modes at / 2
k p

ω ω=  and 

0k = , the coupling factor decreases.  At the same time, one is moving up the tail of the 

magnetostatic and uniform mode response curve and this increases the net coupling to 

the SA modes.  For samples S1 and S2, the FMR peak and the magnetostatic mode 

resonances occurred at such low static fields that the thresholds could not be uniquely 

associated with the usual subsidiary absorption.  Even for sample S3, the proximity of 

these resonances to cutH  was sufficient to suppress the usual SA threshold divergence at 

ext cutH H= .  For fields above ext cutH H= , it appears that the onset of second order 

processes cause the crith  response to go smoothly from the constant threshold found for 

first order processes to the rapid drop in threshold associated with the resonance 
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saturation butterfly curve response discussed above.  Note that the approach to FMR 

causes the measured second order crith  to drop to values as low as a few tenths Oe.  The 

SA data for fields above cutH  show this same trend.  The drop in crith  is not as sharp as 

one might extrapolate from the RS results in Figs. 5.4 and 5.5.  This is probably due to 

 

Figure 5.9.  Subsidiary absorption (SA) butterfly curve and critical mode results for 

sample S3.  The upper graph shows the SA butterfly curve data (solid circles) and fit 

(solid line).  The dotted line is the low-power FMR response.  The lower graph shows 

the critical mode polar angle versus static field.   



5. RESULTS 

182 

the additional cavity loading effects which come in as one approaches the FMR field 

with the pump angle θ  set at 90°. 

Figure 5.9 shows the crit extvs.h H  data from Fig. 5.8 along with a computed 

subsidiary absorption butterfly curve and details on the critical mode 
k

θ  versus field 

response associated with the computed thresholds.  The critical mode k and 
k

φ  values 

were zero and 90
0
, respectively, over the entire subsidiary absorption region.  The 

calculated butterfly curve and critical modes were obtained for the sample parameters 

indicated above and with a constant spin wave linewidth value of 18 Oe.  The low-power 

FMR response profile is shown, again as a point of reference. The flat portion of the 

theoretical butterfly curve response matches the data for fields between 400 Oe and 600 

Oe.   

5.4 ANALYSIS SUMMARY  

Table 5.2 summarizes the measured FMR linewidths, threshold field values, and 

calculated spin wave linewidths for the three samples.  The butterfly curve minimum 

values are also given.  As was mentioned previously, to the best of the author’s 

knowledge, these data represent the first time the resonance saturation (RS), parallel 

 

Sample FMR 

 

8.93 GHz
o

ω =
 

Resonance 

Saturation

8.93 GHz
k

ω =
 

Parallel  

Pumping 

4.465 GHz
k

ω =  

Subsidiary  

Absorption

4.465 GHz
k

ω =  

 FMR
H∆  crit_min

h  
k

H∆  crit_min
h  

k
H∆  crit_min

h  
k

H∆  

S1 16 0.28 7.0 5.8 24 - - 

S2 10 0.28 7.0 3.6 14 - - 

S3 14 - - 4.8 18 2.0 18 

Table 5.2.  Summary of the minimum resonance saturation, subsidiary absorption, and 

parallel pumping threshold fields and corresponding calculated spin wave linewidths for 

the three Zn Y-type hexagonal samples reviewed in Table 5.1 
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pumping (PP), and subsidiary absorption (SA) butterfly curve measurements and 

analyses have been performed on a single-crystal hexagonal ferrite sample.   

It is significant that for sample S3 both the parallel pumping and subsidiary 

absorption thresholds were fit with the same spin wave linewidth value of 18 Oe
k

H∆ = .  

The consistent fits for the PP and SA crith  values, which differ by a factor of two, 

indicate that the data and analyses are valid and consistent.  There is, however, a clear 

problem between the PP and SA versus the RS spin wave linewidths.  In the RS case, the 

nominal value of 
k

H∆  needed to fit the data is about 7 Oe for the critical modes at the 

pump frequency.  For the PP and SA cases, the critical modes are at half the pump 

frequency, and the fitted spin wave linewidths are a factor of 2-3 larger than the 

resonance saturation values.  Usually the spin wave linewidth scales with frequency so 

one would expect values of about half of those for the resonance saturation, not double.  

The main question is, “Why are these first order spin wave linewidths so large?”  

These samples were made from single crystal platelets with low conductivity.  The 

parallel pump process is expected to yield an intrinsic spin wave linewidth value that is 

independent of inhomogeneous broadening effects, such as two magnon scattering 

processes, and other non-intrinsic processes.  Yet, the measured 
k

H∆  values range from 

14 to 24 Oe.  After the publication of the above results (Cox et al. [2001]), further 

research was performed to address the above question.  The next section discusses the 

new findings. 

5.5 FOLLOW-UP PARALLEL PUMPING WORK  

In order to understand the above spin wave linewidth inconsistencies, more extensive 

parallel pumping instability measurements were performed by Alex Nazarov (Nazarov et 

al. [2002a]).  These measurements revealed that the large first order spin wave 

linewidths described above are related to sample size effects.  This section briefly 

summarizes the additional work.   
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Nazarov’s parallel pump instability measurements were performed on Zn Y-type 

hexagonal ferrite samples that were obtained from the same “batch” as the three samples 

studied in this thesis.  The data were obtained with the high-power system, which was 

developed as part of this work, on thin circular and rectangular shaped samples at both 

9.0 and 16.7 GHz.  Note that the sample numbering given in the figures, table, and text 

of this section are the same as provided in Nazarov’s paper, and care must be taken to 

not confuse with the sample numbering in the previous sections.  See 

(Nazarov, et al. [2002a]) for more details on the samples.  

Figure 5.10 shows parallel pump butterfly curves measured by Nazarov et al. for 

three different configurations at a pumping frequency of 9 GHz.  The S5 slab was 

magnetized along the short and long sides.  The solid arrow indicates the direction of the 

 

 

 

Figure 5.10.  Parallel pumping threshold hcrit as a function of the external field H

obtained by Alex Nazarov  et al. at 9 GHz on two different Zn Y-type hexagonal ferrite 

samples obtained from the same batch processes as samples used in this study.  Note that 

the sample labeled ”S1” in this figure does not correspond to sample S1 that was studied 

as part of this thesis work.  The data show a clear dependence on sample orientation, 

which is not observed at 17 GHz  (Nazarov et al. 2002a]). 
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applied static magnetic field.  The extH  regions where spin wave instability occurs are 

different for the three curves because the samples have different demagnetizing fields.  

In the case of Nazarov’s disk S1, the curve was terminated on the right side when the 

proximity of the FMR position loaded the cavity so much that measurements ceased to 

be reliable. Note that the 
crit

h  response differs significantly for the two orientations of the 

S5 sample, especially for low k values at larger extH  values.  

Table 5.3 summarizes the minimum parallel pumping threshold fields and the 

corresponding calculated spin wave linewidths obtained by Nazarov et al.   The analysis 

shows that the lateral size has a significant effect on the 9 GHz 
k

H∆  values, while it has 

almost no effect on the 16.7 GHz values.  Larger lateral sizes generally corresponded to 

smaller spin wave linewidths.  The smaller lateral sizes yielded 
k

H∆  values that were 

more than half the FMR linewidths.  At 16.7 GHz there were no significant size effects, 

the 
k

H∆  values were about half the 16.7 GHz FMR linewidths, and they were close to 

the 
FMR

H∆  values at 9 GHz.  As can be seen, the data show that the 9 GHz first order 

linewidth inconsistencies observed as part of this thesis are probably due to sample size 

effects.  Nazarov’s results are in reasonable agreement with the resonance saturation 

Sample Shape Thick 

 

 (mm) 

In-plane 

Dia.  

(mm) 

Min. hcrit  

16.7 GHz  

(Oe) 

Min ∆Hk  

8.35 GHz  

(Oe) 

∆H0   

17.5 GHz  

(Oe) 

Min. hcrit  

 9 GHz  

(Oe) 

Min. ∆Hk 

4.5 GHz  

(Oe) 

∆H0   

9.5 GHz  

(Oe) 

S1 disk 0.34 2.39 6.1  12.0 18 1.0 3.0 11 

S2 disk 0.19 2.32 6.5 12.8 20 0.9 2.7 13 

S3 disk 0.14 1.52 6.6 13.0 20 1.8 5.3 13 

S4 disk 0.09 2.32 6.4 12.6 - 1.2 3.5 13 

S5 slab 0.09        

 long   1.62 6.6 13.0 - 2.2 6.4 10 

 short  0.72 6.6 13.0 - 3.5 10.2 - 

S6 slab 0.05        

 long  1.44 - - 15 3.0 8.8 12 

 short  0.64 - - - 3.5 10.2 - 

Table 5.3.  Minimum parallel pump threshold fields and corresponding calculated spin 

wave linewidths obtained by Nazarov et al. for different sample orientations and 

frequencies (Nazarov et al. [2002a]). 



5. RESULTS 

186 

measurements discussed in the previous section.  Therefore, the second order resonance 

saturation linewidths, which were obtained on spin waves excited at about 9 GHz, were 

probably not affected by the sample size effects. 

One possible explanation for the sample size dependence for the parallel pumping 

crit
h  response at 9 GHz is transit time effects.  Such effects have often been used to 

explain the dependence of 
crit

h  on grain size in polycrystalline ferrites (Vrehen et al. 

[1970]).  The basic idea is that some dimension d  in combination with the group 

velocity of the mode determines the transit time of the mode.  If the transit time is less 

than the intrinsic relaxation time then the dimension d  not the intrinsic relaxation time, 

limit the lifetime of the mode.  For more details on the transit time calculations see 

Nazarov et al. [2002].  As is mentioned in the above reference, it may be possible to 

utilize the size effect to control the high power capability of hexagonal ferrite devices. 
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CHAPTER 6   

SUMMARY AND CONCLUSIONS

This chapter summarizes the work that was performed as part of this thesis, discusses its 

implications, and gives suggestions for further work. 

6.1 RESULTS 

In order to measure the high-power handling capabilities of hexagonal ferrites and 

determine whether the large low-power microwave losses exhibited by these materials 

are due to extrinsic or intrinsic relaxation processes, spin wave instability processes were 

characterized in thin film disc shaped samples of Zn Y-type hexagonal ferrites.  To 

accomplish this: (1) a state-of-the-art high-power microwave spectrometer was designed, 

built, and automated, (2) the classical spin wave instability theory, originally developed 

by Suhl and Schloemann, was extended and a sign problem in the anti-Larmor damping 

term discovered in later theoretical treatments was corrected, and (3) parallel pumping, 

subsidiary absorption, and resonance saturation instability butterfly curve measurements 

and analyses were performed on Mn doped Zn Y-type hexagonal ferrites.  The results 

presented here constitute the first time such extensive butterfly curve analyses have been 

performed on hexagonal ferrites.  Furthermore, for the first time, the second order 

resonance saturation measurements were performed in hexagonal ferrites for static 

magnetic fields not only equal to but also in the vicinity of the FMR resonance field. 
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The resonance saturation data were as one would expect, and the analysis showed 

that a spin wave linewidth of about 7 Oe could fit the butterfly curve minimum.  The 

shape of the parallel pumping butterfly curves were in good agreement with previous 

measurements on Zn Y-type hexagonal ferrites, and the analysis showed good fit to the 

data when a constant spin wave linewidth of about 18 Oe was used.  This spin wave 

linewidth also yielded a good match to the subsidiary absorption butterfly curve.  

However, the parallel pumping and subsidiary absorption spin wave linewidth values 

were significantly higher than one would expect.  Further work performed by Nazarov et 

al. showed that the source of these inflated first order spin wave linewidths were due to 

sample size effects.  Because of this and due the large low-power losses exhibited by 

these materials, the microwave power required to excite the nonlinear effects was about 

the same as what is observed in good quality polycrystalline YIG samples.  Therefore, 

the high-power handling capabilities of hexagonal ferrites should not be a major factor in 

device usage. 

6.2 CONCLUSIONS 

Setting aside the parallel pumping spin wave linewidth results, which were inflated 

by the sample shape, it should be noted that other data that were not affected by size 

effects also show significantly larger losses than one would expect for high quality single 

crystal materials.  These data include: (1) the resonance saturation spin wave linewidth 

shown here, (2) the follow-up parallel pumping spin wave linewidth measurements 

performed at 9 and 17 GHz by Nazarov et al. [2002a], (3) previous parallel pumping 

analysis done on hexagonal materials by Green and Healy [1963], and (4) high field 

effective linewidth measurements obtained by McKinstry [1991].  All of the above 

measurements have yielded values that are notably higher than what is seen even in 

polycrystalline YIG samples, where the losses are dominated by extrinsic mechanisms.  
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These measurement results indicate that the large damping that is observed in 

hexagonal ferrites is probably an intrinsic property of the material.  One possible 

intrinsic mechanism for this damping is spin-orbit coupling.  It is likely that the strong 

spin-orbit coupling, which leads to the large anisotropy fields that make hexagonal 

ferrites so attractive for high frequency applications, is the source for the materials large 

losses, which limits its wide utilization. 

In the following section, several follow-up experiments, which may provide further 

insight into the root cause of the large damping, are proposed. 

6.3 FUTURE WORK 

At this time, two pieces of additional follow-up work have been completed: (1) the 

source of the large parallel pumping and subsidiary absorption spin wave linewidths 

observed in this work was determined to be due to lateral sample size effects (Nazarov et 

al. [2002a]), and (2) the nonlinear spin wave instability theory was further extended to 

include an arbitrary orientation of the static magnetic field (Nazarov et al. [2002b]). 

In this section, four additional areas of further work are suggested, which pertain to: 

(1) Brillion Light Scattering (BLS) measurements, (2) parallel pumping instability 

measurements versus temperature, (3) resonance saturation instability measurements 

versus frequency, (4) and the full characterization of samples with varying strengths of 

crystalline anisotropy. 

6.3.1 BLS Measurements 

The Brillion Light Scattering (BLS) measurement technique can be used to directly 

measure the wave vector of the critical spin wave modes.  Previous work performed on 

isotropic samples has confirmed the theoretically predicted propagation directions of the 

critical modes for parallel pumping and subsidiary absorption nonlinear processes 

(Wilber et al. [1984]).  However, such measurements have yet to be performed on 
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hexagonal ferrites.  Two attempts at acquiring BLS data on the critical modes excited by 

parallel pumping in Zn Y-type hexagonal ferrites, first by Pavel Kabos and then by 

Christoph Mathieu and the author were unsuccessful.  In both cases, the researchers were 

not able to detect spin waves at the half pump frequency.  One possible explanation 

could be that the spin-orbit coupling is providing a direct relaxation path that is so 

efficient that the half pump frequency spin waves are not detectable.  More work in this 

area is needed.  It is recommended that focus be placed on detection of both phonons and 

magnons.   

6.3.2 Temperature Dependent PP 

The anisotropy of the Zn Y-type hexagonal ferrites is strongly temperature dependent 

and falls off quickly with increasing temperatures (von Aulock [1965]).  Therefore, 

performing parallel pumping instability measurements as a function of increasing 

external temperature may provide evidence for the root mechanism of the large losses.  

Specifically, if the spin wave linewidth decreases with increasing temperature, one could 

argue that the spin-orbit coupling is the mechanism. 

6.3.3 Frequency Dependent RS 

The normalized resonance saturation threshold field versus microwave frequency 

plots in Figure 3.18, which were obtained with Zn Y-type hexagonal ferrite parameters 

for both the incorrect and corrected sign of the uniform mode anti-Larmor complex 

damping term, showed that the sign of the damping term had a significant effect on the 

calculations.  The curve obtained with the corrected damping sign has a clear peak in the 

normalized threshold response at about 20 GHz, which is not present for the curve 

obtained with the damping error.  The peak is associated with a switch in the critical 

mode polar angle from 0 to 90 degrees.  To the best of this author’s knowledge, an 

experimental study of the above response has never been previously performed.  Such a 
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study could be readily performed with the high-power microwave spectrometer 

developed as part of this thesis work.  These measurements would provide a direct test of 

the theory, and they could also provide insight into whether the damping in hexagonal 

ferrites is frequency dependent as predicted by the Landau-Lifshitz phenomenological 

damping term or frequency independent as predicted by Bloch-Bloembergen 

phenomenological damping. 

6.3.4 Variable Anisotropy Fields  

The system that was developed as part of this thesis work is highly versatile and 

could be utilized to perform a variety of detailed measurements of the linear and 

nonlinear microwave properties on a variety of materials.  This could include, low-power 

frequency and angle dependent FMR linewidth measurements, low and high-power 

microwave dielectric constant measurements, low and high-power high field effective 

linewidth measurements, and detailed butterfly curve measurements.  To the best of the 

author’s knowledge, high-power dielectric and high-power effective linewidth 

measurements have never been performed before on ferrite materials, nor have such 

detailed measurements been performed on a single sample.  These measurements could 

be performed on samples with a range of anisotropy fields, and thereby validate or refute 

the author’s proposal regarding spin-orbit coupling being the source of the large losses.  

The measurements would also provide needed comparisons between the various 

experimental techniques. 
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APPENDIX A  

PASSIVE WAVEGUIDE COMPONENTS  

This appendix reviews the passive waveguide components that are utilized in the high 

power microwave spectrometer that was discussed in Chapter 4.  Here the basics of 

rectangular waveguides, directional couplers, and microwave cavities are addressed.  

Derivations of the microwave magnetic field expression inside rectangular and 

cylindrical reflection type microwave cavities are also provided. 

This appendix is divided into the following four sections: 

1. Section 1 reviews the bandwidths and TE01 mode pattern of rectangular 

microwave waveguides. 

2. Section 2 addresses directional couplers.  The section addresses the importance of 

choosing the appropriate directional coupler as well as minimizing troublesome 

leakage signals that occur in them. 

3. Section 3 focuses on microwave cavities.  Here the cavity Q, coupling 

coefficients, mode patterns, and design equations are reviewed.   

4. In the last section the microwave field expressions, which describe the magnetic 

field amplitudes inside rectangular and cylindrical reflection type microwave 

cavities, are derived.   
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A.1 RECTANGULAR WAVEGUIDES 

As was mentioned in Chapter 4, rectangular waveguides are used in the high power 

microwave spectrometer because of their high-power handling capabilities, low insertion 

losses, and well-defined TE10 modes.  The main drawback of rectangular waveguides is 

their limited bandwidth which requires that several waveguide bands be used in order to 

operate over a wide frequency range.  This section discusses the reasons behind the 

limited bandwidths, gives the recommended operating frequency range of the most 

commonly used waveguide bands, and concludes with a discussion of the mode patterns 

in these guides. 

The operating frequency range of a rectangular waveguide is bound by the cutoff 

frequency at the low-frequency end and the onset of multimode propagation at the high-

frequency end.  The low-end cutoff frequency occurs because there is only a single 

conductor present in rectangular waveguides.  The single conductor only allows for TE 

(transverse electric) and TM (transverse magnetic) wave propagation, not TEM 

propagation as supported by transmission lines with more than one conductor such as 

coaxial cables (Pozar [1998]).  The TE and TM waves propagate at oblique angles 

relative to the central axis of the waveguide, and as the frequency of the waves 

decreases, the propagation angle relative to the central axis of the guide increases.  At the 

low-frequency cutoff point, the propagation angle equals 90
o
 and no energy is 

transmitted down the line (Pozar [1998]).   

The high-frequency limit is imposed on a waveguide band in order to avoid 

multimode propagation.  The upper recommended limit of a waveguide band 

corresponds roughly to the cutoff frequency of the next highest frequency mode (TE11) 

supported by the guide.  Therefore, as long as frequencies below the maximum specified 

operating frequency range for a given band, are used, one can be assured of single TE10 
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mode propagation.  The electric and magnetic field patterns of this mode will be 

discussed shortly.  

Table A.1 summarizes the frequency range, cutoff frequency, and the dimensions of 

various rectangular waveguide bands.  The bolded bands (C, X, Ku, and Ka) correspond 

to the waveguide bands that are utilized by the microwave spectrometer. 

Figure A.1 shows a plot of the normalized transmission loss versus frequency data 

obtained on the X-band version of the high-power spectrometer.  The data were obtained 

with a microwave transition analyzer (MTA).  The MTA microwave source, and detector 

were located at the Traveling Wave Tube (TWT) amplifier and cavity positions, 

respectively, of the microwave spectrometer shown in Fig. 4.1.  The plot clearly shows a 

lower cutoff frequency at which none of the input power is transmitted to the cavity 

position; and shows an upper frequency limit at which the transmission characteristics 

 

Table A.1.  Table of standard microwave rectangular waveguide data Pozar [1998].  The 

bold items correspond to the bands presently available for the high power microwave 

spectrometer shown in Fig. 4.1 of Chapter 4. 



A. PASSIVE WAVE GUIDES 

195 

deteriorate due to multi-mode propagation.  The measured low-end cutoff frequency 

agrees well with the specified value shown in the table, whereas the measured upper-end 

frequency at which multimode propagation occurs is slightly lower than the value given 

in the table.  This decrease in the upper frequency limit of about 0.4 GHz compared to 

the value shown in Table A.1 was caused by the reduced bandwidth capabilities of the 

two isolators present in the system. 

Figure A.2 provides a sketch of the electric and magnetic field distributions of the 

main waveguide mode (TE10).  The upper sketch shows a three-dimensional view and the 

lower one shows a top-down two-dimensional view of this mode pattern.  The coordinate 

systems of the sketches were chosen such that the x, y, and z-axes are aligned along the 

width, height, and length of the waveguide, respectively.  Therefore, the net propagation 

direction is along the z-axis.  As  is seen in the figure, the  electric field  (e) is  distributed  

 

Figure A.1.  Plot of normalized waveguide transmission loss versus frequency.  The data 

were obtained on the X-band version of the spectrometer and are in reasonable 

agreement with the recommended X-band operating frequency range given in Table A.1. 
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perpendicular to the propagation direction in the x-y plane.  The magnetic field (h) forms 

an oval-like pattern in the x-z plane of the waveguide.  For the traveling wave case 

shown in the figure, the maxima of the e and h fields occur at the same point along the z-

axis of the waveguide.  However, if the waveguide is shorted, a standing wave pattern 

will develop in which the maxima of the e and h fields are a quarter of a wavelength 

apart.  Typically the shorted waveguide geometry is used for low-power FMR 

measurements and the sample is placed either near the side or end wall of the waveguide 

in the region of uniform h and zero e field.  For microwave cavities, the cavity iris is 

usually located at the end wall of the shorted waveguide section.  This location will be 

discussed in more detail shortly. 

 

Figure A.2.  Three and two-dimensional sketches of the electric (e) and magnetic (h) 

field profiles of the TE10 traveling wave mode in a rectangular waveguide.  Note that for 

a shorted waveguide (not shown), the relative maxima of the fields are shifted by a

quarter of a wavelength, such that maximum h occurs in region where e = 0.   
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A.2 DIRECTIONAL COUPLERS 

Directional couplers are used to couple a percentage of the power flowing in a 

primary waveguide line to a secondary one.  The amount of power coupled from the 

main line to the secondary line is referred to as the coupling value of the directional 

coupler.  The main benefits of couplers are that they are highly linear over a wide power 

range and are readily available with differing coupling values.   The main  drawback of  

directional couplers is that a small portion of a wave traveling in the reverse direction 

relative to the main line of the coupler can be leaked into the secondary line (Pozar 

[1998]).  If the leakage power is of significant magnitude compared to the forward 

coupled signal, then significant difficulties in calibrating the microwave power flow in 

the main line can arise because the interference of the coupled and leaked signal will be 

strongly dependent upon sample absorption and the operating frequency (see Fig. 4.7(a) 

for details).  The amount of unwanted leakage is characterized by the directivity of the 

coupler and will be discussed in more detail shortly. 

Figure A.3 shows two and three-dimensional diagrams of a directional coupler 

(Poole [1967]).  As is seen in the figure, a directional coupler is made up of four ports.  

Two ports are for the primary line, a third port is for power flow into a secondary line, 

and the forth port is terminated with a matched load.  Holes in the primary line provide 

the means in which the electric field of the traveling TE10 mode (shown in Fig. A.2) is 

coupled from the primary to the secondary line.  The amount of power that is coupled 

from the main line is the same regardless of which direction the microwaves are 

traveling in the primary line.  What occurs to this coupled power depends on the flow 

direction of the microwave signal.  If the flow is in the forward direction (middle 

diagram of Fig. A.3), the power is coupled into the secondary waveguide arm.  However, 

if the flow is in the reverse direction (lower diagram), the power is coupled into the 

matched load.  How well the load impedance is matched to the impedance of the primary  
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and secondary lines has a significant effect upon the performance of the device and will 

be discussed in more detail shortly.  The amount of input power 
in

P  that is coupled from 

the main line into the secondary line 
coupled

P  may be expressed as 

( )10

coupled in
dcP 10 P ,

Γ
=  (A.1) 

where dcΓ , which is referred to as the coupling value, is a negative quantity given in 

dBs.  Note that Eq. (A.1) is valid regardless of the direction of flow in the primary line.  

 

Figure. A.3.  Upper diagram shows a three-dimensional view of a directional coupler.  

The middle and lower diagrams show the response of a directional coupler to microwave 

signals that are traveling in the forward and the reverse directions relative to the coupler, 

respectively. 
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Commercially available directional couplers typically have coupler values of -3, -10, -20, 

or -30 dB.  For the -30  dB couplers, approximately 0.1% of the forward/reverse 

traveling input power is coupled into the secondary-line/absorber-load and the remaining 

99.9% of the power remains in the primary line.  The -3 dB  couplers have about 50% of 

the power in the primary line coupled to the secondary-line/absorber-load. 

The criteria used to determine what coupling value to use for the two directional 

couplers in the high-power microwave spectrometer, which was shown in Figure 4.1, are 

as follows.  For the reference arm coupler, the criterion is relatively simple.  Here it is 

preferable to couple as little power from the main line as possible in order to maximize 

the power incident upon the cavity.  The minimum power requirement is set by the 

sensitivity of the power meter.  For the power meter used in this work, the minimum 

average power needed for accurate measurements is approximately 1µW.  The high-

power microwave spectrometer is typically operated at small duty-cycles of about 

0.01%, so while the peak power in the main line can be a few kWatts, this corresponds to 

an average power of only a few mW.  Therefore, at the highest operating power levels, at 

least 0.1% of this average power must be coupled to the reference arm.  The system is 

currently optimized for measuring thresholds on samples that have moderate threshold 

power levels, so about 1% of the power is needed to be coupled into the reference arm.  

Therefore, the -20dB coupler value shown in Fig. 4.1 is used.  If a sample, which 

requires notably smaller or larger amounts of power to exhibit nonlinear spin wave 

growth is studied, then this coupler is replaced with a -3dB or -30dB directional coupler, 

respectively. 

When choosing the coupling value for the reflection arm directional coupler the 

following two competing requirements must be taken into account: (1) the need to 

minimize the amount of forward flowing power (traveling from the TWT towards the 

microwave cavity) that is coupled from the main line to the matched load and just 

“thrown away”, versus (2) the need to maximize the amount of reverse flowing power 
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(microwave signal traveling from cavity towards the TWT) that is coupled to the 

reflection arm of the spectrometer in order to provide the maximum signal strength to the 

crystal detector.  The crystal detector has a minimum operating power of about 0.25 µW.   

To best handle these two competing needs, different directional coupler values are used 

depending upon the operating power levels.  When samples with nonlinear instability 

thresholds in the low to medium spectrometer operational power levels are studied, a 

-3dB  directional coupler is utilized.  This corresponds to 50% of the TWT output power 

being “thrown away” and 50% of the reflected signal from the cavity being coupled into 

the reflection arm of the spectrometer.  When samples that have very large threshold 

power requirements are studied a -10 dB directional coupler is used, and only 10% of the 

incident and reflected signals are coupled to the matched load and crystal detector, 

respectively.  Note that the above issue of wasted power could be avoided by replacing 

the reflection arm directional coupler with a circulator that has high-power handling 

capabilities.  Such a device was not on hand for the power levels used in this study. 

It is not possible to perfectly match the impedance of all four ports of a directional 

coupler.  Therefore, some unwanted “leakage” occurs from one port to the other.  See 

Fig. 4.7 for a plot that shows the detrimental effects of this leakage signal.  The leakage 

into the absorber port of a directional coupler has no detrimental effects and may be 

ignored.  The leakage of signal from the matched load to the secondary line causes 

considerable problems and must not be ignored.  The parameter that quantifies the 

amount of unwanted leakage is referred to as the directivity, 
directivity

Γ , of the coupler 

(Pozar [1998]).  The larger the directivity, the smaller the amount of leakage that occurs.  

The exact relationship between the input power (
in

P ), the directivity (
directivity

Γ ), and the 

amount of power leaked (
leak

P ) can be written as, 

10

directivity

leak in
.P 10 P

− Γ

=  (A.2) 
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Standard directional couplers have a directivity of approximately -35 dB.  However, 

special high directivity couplers are available with directivities of about -50 dB.  Such 

high directivity directional couplers are used in the high-power spectrometer discussed 

here.  But, even so, there are still leakage signals present that must be eliminated or 

otherwise accounted for in order to avoid miscalculation of the microwave field power at 

the sample location and in turn misreporting the microwave threshold field amplitude.  

See the discussion regarding system calibration in Section 4.3 for more details.  

A.3 MICROWAVE CAVITIES 

Microwave cavities play an essential role in the high-power microwave spectrometer: 

they (1) enhance the amplitude of the microwave magnetic field, (2) provide a means of 

supplying a uniform linearly polarized magnetic field to the sample, and (3) increase the 

sensitivity of the spectrometer to small amounts of sample absorption.  Because of the 

important role microwave cavities play in the spectrometer, this section will discuss 

them in detail.  First, the key differences between the reflection and transmission type 

microwave cavities are reviewed.  Next, the importance of choosing the correct cavity Q 

based upon the amount of sample losses is reviewed.  This is followed by a discussion of 

the microwave-coupling iris and the methods that were used to design and construct the 

rectangular and cylindrical microwave cavities used in this study.  This appendix 

concludes with a derivation of the formulas used to calculate the microwave magnetic 

field amplitude at various locations in rectangular and cylindrical cavities. 

A.3.1 Reflection and Transmission Cavities 

Figure A.4 shows sketches of the frequency dependent response of transmission and 

reflection type microwave cavities.  As is seen in the figure, at cavity resonance the 

maximum amount  of  power  is  transmitted  through  the  transmission  cavity,  and  the  
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minimum amount is reflected from the reflection cavity.  Therefore, for low-power 

measurements in which the incident power levels are far below the maximum power 

handling capabilities of sensitive detection equipment, transmission cavities are used.  

 

Figure A.4.  The top and bottom sketches show the frequency response of transmission 

and reflection type cavities, respectively.   
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However, for high-power measurements in which the operating powers usually far 

exceed the maximum limits of the detection equipment, reflection type cavities are used.  

The remainder of this section will focus on reflection type cavities. 

A.3.2 Cavity Q 

The relative increase in system sensitivity and amplification of the microwave field 

amplitude attained by a microwave cavity can be quantified by the so-called quality  

factor, or Q value of the cavity.   

The Q parameter may be expressed as 

stored

lost

2  
,

U
Q

U

π
=  (A.3) 

where storedU  and lostU  are the average amounts of energy stored and lost in the 

cavity per cycle, respectively (Green and Kohane [1964]).  If the frequency dependent 

response of a cavity is lorentzian shaped, then the above relationship may also be 

expressed as 

res  
,

f
Q

f
=

∆
 (A.4) 

where resf  is the resonance frequency and f∆  is the width of the resonance profile at 

half its maximum height.  Therefore, based on the above relationships, the larger the 

cavity losses, the smaller its Q and the wider its resonance width f∆ . 

Eddy current ohmic losses in the cavity’s inner walls are the main source of loss in 

an empty cavity.  These ohmic losses depend upon the conductivity and geometry of the 

cavity.  This dependence on cavity geometry arises because the current densities in the 

inner walls are directly related to the smoothness of the walls.  For instance, much larger 
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densities occur at the sharp corners of rectangular shaped cavities than in the rounded 

walls of cylindrical cavities.  This results in rectangular cavities having Q values of about 

ten to one hundred times smaller than those of cylindrical cavities. 

It is important to note that large Q values are not always beneficial.  The optimal 

cavity Q is directly related to the amount of sample absorption that is present.  When 

small amounts of sample absorption occur, cavities with large Q’s are required.  

However, when large sample absorption occurs, cavities with smaller Q values should be 

used in order to avoid saturating the cavity response.  Therefore, when high field 

effective linewidth measurements are performed in which sample losses are extremely 

small cylindrical cavities with Q’s of about 25,000 are used, whereas for FMR 

experiments where sample losses are at a maximum, rectangular cavities with Q values 

of about 1000 are used (Truedson et al. [1994]); (McKinstry [1991]).  The importance of 

balancing cavity Q and sample loss, is the reason for building both cylindrical and 

rectangular cavities for the high-power microwave spectrometer. 

A.3.3 Coupling Iris 

The microwave signal in the waveguide is coupled into the microwave cavity via a 

coupling iris.  The location and size of the iris determines (1) whether the coupling 

occurs via the electric, magnetic, or both field components of the microwave signal, (2) 

the value of the cavity Q, and (3) the method in which the power reflected from the 

cavity responds to sample absorption.  For the cavities built in this study, the iris is 

located to promote the maximum coupling of the magnetic field component of the 10TE  

rectangular waveguide mode to the cavity resonant mode of interest.  For the rectangular 

type cavities, the iris is located at the center of the end-wall of the cavity, while for the 

cylindrical cavities it is located at the center of the sidewall.  For both cavity types, the 

iris is located in the center of the end-wall of the rectangular waveguide.  These locations 
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and the magnetic field patterns of the cavity modes will be discussed in more detail 

shortly. 

The reflected power versus sample absorption response of reflection type microwave 

cavities is strongly dependent upon the coupling iris size.  To understand this, one needs 

to realize that the net reflected signal from the cavity is the linear superposition of two 

out-of-phase reflected signals; one is reflected from the iris plate and the other is 

reflected from the cavity end-wall.  At resonance, the phase difference between these two 

signals is at 180 degrees because (1) the cavity length is equal to an integer multiple of 

half the wavelength of the operating signal, and (2) the different boundary conditions 

experienced at the iris plate (open) and the end wall (short).  

Figure A.5 shows a sketch of the two reflected signals and a plot of the reflected 

power versus sample loss.  The relative amplitude of the two reflected signals depends 

upon both the size of the iris hole and the amount of sample absorption present.  First 

consider the empty cavity case.  For small irises, the reflected signal from the iris plate 

has the larger amplitude and the cavity is referred to as being under-coupled.  Then as 

the iris is enlarged, a certain “medium” iris hole size is obtained, the two signals have 

equal amplitude, and zero net power is reflected from the cavity.  The cavity is then 

referred to as being critically-coupled.  If the iris hole is larger than this, the reflected 

signal from the cavity end wall is dominant and the cavity is then referred to as being 

over-coupled (Poole [1967]). 

The effect of sample losses on the net reflected power from a reflection type 

microwave cavity depends on whether the cavity is under, critically, or over coupled.  

The lower drawing in Figure A.5 is a sketch of the reflected power dependence on 

sample absorption for the three coupling types.  The solid, dotted, and dashed lines 

correspond to the under-coupled, critically-coupled, and over-coupled cases, 

respectively.  As is seen in the graph, the reflected signal from an under-coupled cavity 

starts at a non-zero value and increases with sample absorption.  The critically-coupled  
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cavity has a similar dependence except it starts with a zero value.  The over-coupled 

cavity response is the most complicated.  For this coupling type, the reflected power 

starts at a non-zero value, and it initially decreases with increasing sample absorption 

until the net reflected signal equals zero.  Then with further sample losses, the reflected 

power increases.  While upon first impression, these responses may appear to be 

counterintuitive, they can actually be easily understood when one realizes that (1) the net 

reflected signal is actually comprised of two reflected signals (one from the iris plate and 

the other from the cavity end-wall) and (2) the sample losses, to first order, only affect 

the reflected signal from the cavity end-wall. 

 

Figure A.5.  Upper sketch shows the two component signals that combine to make up the 

total reflected microwave signal from a reflection type microwave cavity.  The solid and 

dotted lines correspond to the microwave signals that are reflected from the coupling iris 

plate and then end-wall, respectively.  The size of the coupling iris determines whether 

the cavity is under, critically or over coupled.  The lower sketch shows the net reflected 

power versus sample loss for an under-coupled, critically-coupled, and over-coupled 

cavity.  Under-coupled cavities were used for this study.  
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Of the three reflection cavity types described above, the under-coupled cavity is 

preferred.  The over-coupled is not desired because of the complicated response to 

sample absorption, and the critically-coupled cavity does not reflect enough power back 

to meet the minimum power specification of the crystal detector.  The exact size of the 

iris hole used for each cavity was determined experimentally using an iterative technique 

which will be discussed in the next section. 

A.3.4 Cavity Fabrication 

This subsection briefly reviews how the under-coupled reflection-type microwave 

cavities used for this study were designed and built.  The design equations were obtained 

from Pozar [1998] and Jackson [1975].  The techniques employed were based on the 

excellent description of microwave cavities provided by Poole (Poole [1967]) and 

systematic trial-and-error.  Each cavity was designed for a specific resonance mode and a 

particular resonance frequency. 

The two main criteria used in choosing the cavity resonant mode were: (1) it had to 

have a large uniform magnetic field region and (2) the resonance frequency of the main 

mode needed to be separated from its adjacent resonant mode by a relatively large 

amount.  For the rectangular cavities, the TE101 and TE102 modes were selected, while the 

TE011 mode was utilized for the cylindrical cavities. 

A microwave cavity is operated at a single frequency corresponding to the particular 

resonant mode of interest.  Therefore, four different rectangular cavities with resonance 

frequencies of about 9, 12, 15, and 18 GHz were built for the high-power microwave 

spectrometer.  Only one cylindrical cavity, which had a resonance frequency of about 10 

GHz, was constructed.  The remainder of this subsection will describe the design 

equations and fabrication methods used to construct the cavities.   

The resonance frequency for a rectangular microwave cavity may be written as:  
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2 2 2

rct-cav ,
a b d2
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µε
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π      
 (A.5) 

where c  is the speed of light in a vacuum, and µ  and ε  are the relative permeability 

and permittivity, respectively, of the material filling the cavity.  Here, MKS units are 

employed, and values of 1 are used for µ  and ε .  The m, n, and q terms are the number 

of integer multiplies of half wavelengths that subtend the three-principle axes of the 

rectangular cavity.  The a, b, and d parameters in Eq. (A.5) are the dimensions of the 

rectangular cavity along those three axes. 

The rectangular cavities were made from preexisting rectangular waveguides.  

Therefore, the a and b terms were set by the dimensions of the particular waveguide band 

used.  See Table A.1 for these dimensions in the several different waveguide bands.  The 

length of the cavity, d, was then determined for a particular resonant mode (m, n, q) and 

frequency using Eq. (A.5).  Rewriting Eq.(A.5) for the TE10q mode in terms of d yields 

the following relationship for length of the cavity: 

2 2

rct-cav

d .

2

a

q

f

c

π
=

π π   
−   
  

 (A.6) 

This equation was used to determine the exact length of all the rectangular cavities built 

for this study.  For example, a rectangular cavity made from X-band waveguide 

(a = 2.29cm) with a TE102 resonance mode frequency of 10 GHz has an approximate 

length of d = 3.9 cm.   

The cylindrical cavities were made from hollow cylindrical tubing, the end caps were 

machined from copper stock, and then rectangular waveguides were soldered in place.  

The dimensions of the cylindrical cavity required to obtain the desired resonance 
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frequency and mode pattern were determined as follows.  The resonance frequency for a 

cylindrical microwave cavity may be written as:  

2 2

cyl-cav .
R d2

nmc q
f

ρ

µε

π   
= +   

π   

ɺ
 (A.7) 

Here the 
nm

ρɺ  term is the m
th

 root of nJ ( )rɺ , where nJ ( )rɺ  is the first derivative of the n
th

 

order Bessel function nJ ( )r  (Poole [1967]); (Pozar [1998]).  The R term in the equation 

is the radius of the cylinder.  The TE011 cylindrical resonant mode was chosen, and the 

length of the cavity (d) and radius (R) were determined such as to avoid proximity to 

other possible cavity modes.  A graphical method, which is described in detail by Poole 

[1967] and Pozar [1998], was used to select d and R.  For a cylindrical radius of 2.5 cm 

and a TE011 resonance mode frequency of 10 GHz, 01 3.832,
nm

ρ ρ= =ɺ ɺ  and an 

approximate cylinder length of 2.20 cm is calculated from Eq. (A.7). 

Figure A.6 shows sketches of which summarize how the cavities were assembled.  

Once the cavities were built, the iris was then enlarged to the appropriate size.  The goal 

is to approach the critical coupled point, yet remain under-coupled.  This was 

accomplished by using an iterative process in which the diameter was increase slightly 

and the cavity response was measured.  This process was continued until only about 1% 

of the power was reflected at resonance while taking care to keep the cavity under-

coupled.  

A.4 MAGNETIC FIELD EXPRESSIONS 

The derivation of the formulas used to calculate the magnetic field amplitude in a 

reflection type microwave cavity is based upon the work in the following three 

publications: Green and Kohane [1964]; Patton and Green [1971]; and Patton and 

Kohane [1972].  These references will be referred to as R-1, R-2, and R-3 (according to  
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publication date), respectively, throughout the following text.  While the procedure is 

relatively straightforward, trying to follow the exact calculations throughout the above 

referenced papers can be difficult.  Difficulties arise because: (1) the first publication R-1 

inaccurately depicts the position in the cavity where oh  is calculated, (2) the R-1 

publication uses MKS units, whereas R-2 and R-3 use a mixture of CGS and MKS units, 

and (3) while the same symbols are used in the three papers, different definitions are 

applied to these symbols in R-1 compared to R-2 and R-3.  Therefore, in order to clarify 

the procedure, this section provides the analysis in detail.  MKS units are used 

throughout the calculations. 

 

Figure A.6.  Sketches of rectangular and the cylindrical cavities assymblies.  The 

"bodies" of the rectangular and cylindrical cavities were made from rectangular 

waveguides and a tube of oxygen free copper (OFC), respectively.  
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The analysis procedure is based upon the work provided R-1.  First, two different 

expressions are obtained for the time-averaged microwave energy stored in a microwave 

cavity.  The first expression is written in terms of the microwave magnetic field 

amplitude and the second in terms of measurable cavity Q parameters.  Then, these two 

equations are equated and an explicit relationship for the magnetic field amplitude is 

obtained.  The above formalism is done for the empty cavity case, and it is then assumed 

that the sample losses are small enough that this expression is valid for the sample-

loaded cavity. 

A.4.1 Energy 

The time averaged energy, U , stored in the electric ( , ),te r  and magnetic ( , )th r  field 

expressions of an electromagnetic wave may be written as 

( )2 231
4

U ( , ) ( , ) ,d r t tε µ= +∫∫∫ e r h r  (A.8) 

where the triple integral is performed over a volume of space that has a permeability and 

permittivity of µ  and ,ε  respectively.  For the problem of interest, the integral is 

performed over the volume ( cV ) of an empty cavity, and the same amount of average 

energy is assumed to be stored in ( , )te r  and ( , )th r .  Therefore, Eq. (A.8) is rewritten as 

( )
c

231
o2

V

U ( , ) .d r tµ= ∫∫∫ h r  (A.9) 

The magnetic field is calculated for a specific location (
o

r ) inside the cavity.  This 

field amplitude at location 
o

r  will be written as ( )h
o

r  here.  The general complex 

expression for the magnetic field at all points in the cavity can be written as 
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( , ) ( ) ( ) exp(i ) ,pt h tω= oh r r h rɶ  (A.10) 

where 
p

ω  is the angular frequency of the microwave field.  Using this form of the 

magnetic field, Eq. (A.9) can be rewritten as 

21
o c2

U ( ) .mV g hµ= or  (A.11) 

Here 
m

g  is a unitless constant that relates the stored energy to a particular mode pattern 

and the geometry of the cavity, and is given as 

( )2
3

c

1
( ) .

m
g d r

V
= ∫∫∫ h rɶ  (A.12) 

Note that these expressions for U  and 
m

g  are the same as in R-1.  Whereas, in R-2 and 

R-3 the factor of 1 2  in Eq. (A.11) is not present in the U  expression, instead it is 

contained in the 
m

g  expression.  This becomes apparent only after the expressions in R-2 

and R-3 are converted from CGS to MKS units. 

A.4.2 Cavity Q 

A second expression for U  may be written in terms of measurable cavity Q parameters 

as 

incU P ,Q= ɶ  (A.13) 

where incP  is the incident microwave power upon the cavity and Qɶ is the conversion 

parameter that relates this incident power to the amount of energy stored within the 
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cavity (Slater [1950]).  Different forms of this term are used in R-1 and R-3.  In R-1, it is 

written as 

2

L

res iris

4  
,

Q
Q

Q
=

ω
ɶ  (A.14) 

while in R-3, it is written as 

( )res L

res

2 1  
.

Q
Q

− ρ
=

ω
ɶ  (A.15) 

The LQ  and irisQ  terms in the above expressions are the Q  values associated with the 

total loaded cavity and the iris plate, respectively.  The resω  and resρ  parameters are the 

cavity angular frequency and voltage reflection coefficient, respectively.  The voltage 

reflection coefficient is given as Γ , where Γ  is the cavity reflection coefficient and 

equals the ratio of the reflected power to the incident power.  The relationship between 

the above Q  parameters and the voltage reflection coefficient may be written as 

( )L res iris

1

2
1 .Q Q= − ρ  (A.16) 

Equating equations (A.11) and (A.13) results in the following relationship for the 

microwave field amplitude at a specific point ( r ) within the cavity 

inc  

o c

2
( ) P .

m

Q
h r

V gµ
=

ɶ

 (A.17) 

All of the terms in Eq.(A.17) except 
m

g  can be determined experimentally from cavity 

reflected power versus frequency data (see McKinstry and Patton [1989] for details).  
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The specific 
m

g  calculations for the TE10q and TE01q modes in a rectangular and a 

cylindrical cavity, respectively, will now be addressed. 

A.4.3 Calculation of mg  

Based upon Eq. (A.12), the 
m

g  expressions for a rectangular and cylindrical cavity may 

be written as 

{ }
( ) { }

a b d
2 2 2

o o o

1

abd
rec d d d ( , , ) ( , , ) ( , , )

m x y z
g x y z h x y z h x y z h x y z= + +∫ ∫ ∫ ɶ ɶ ɶ  (A.18) 

and 

{ }
( ) { }

2 Rd
2 2 2

m r z2 o o o

1

R
g cyl d d d ( , , ) ( , , ) ( , , ) ,

d
z r r h r z h r z h r zφ φ φ φ

π

φ= + +
π ∫ ∫ ∫ ɶ ɶ ɶ  (A.19) 

respectively.  Here, a and b are the width and height of the rectangular cavity, 

respectively, R is the radius of the cylindrical cavity, and d is the length of both cavities.  

The magnetic fields are written in terms of their amplitude at the location where the 

sample is to be placed in the cavity.  For the TE10q resonate modes in the rectangular 

cavity the samples are typically placed near the center of the end wall of the cavity at 

location ( , , ) (a 2, b 2,0)
rec

r x y z= = .  Whereas for the TE01q mode in the cylindrical 

cavity, the sample is placed in the very center of the cavity and / 2
z

r d= . 

Explicit expressions for the magnetic fields inside the rectangular and cylindrical 

cavities are determined with Maxwell’s equations and by applying boundary conditions 

(metal walls are assumed to have infinite conductivity).  See Jackson [1975] and Pozar 

[1998] for more details.  The magnetic fields for the TE10q mode in a rectangular cavity 

and TE01q in a cylindrical cavity may be written as, 
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( ) ( ) ( ) ( )rect

10q

d

aa ad d
ˆ ˆ( ) ( ) sin cos - cos sinrct q

q q
h r x z x z

π ππ π 
=  

 

rect

10qh r x z  (A.20) 

 and 

( ) ( ) ( ) ( ){ }cyl

01q o oR

a
Rd dd

ˆ ˆ( ) ( ) J cos J sin ,
cyl

q q q
h r r z r zο1 ο1

ο1

ρ ρπ π π
ρ

= +cyl

01q
h r r z

ɺ ɺ

ɺ

ɺ  (A.21) 

respectively.  Here, oJ ( )r  is the zeroth order Bessel function and oJ ( )rɺ  is the first 

derivative of this function.  As was mentioned previously the ο1ρɺ  term is the first root of 

oJ ( )rɺ , such that o ( )J 0,ο1
ρ =ɺɺ  where 01 3.832.ρ =ɺ   The magnetic fields given by Eq. (A.21) 

for the TE01q cylindrical cavity are sketched in Figure A.7.  The field pattern for a 

rectangular cavity is similar to what is shown in Fig. A.2. 

 

 

Figure A.7.  Three-dimensional sketch of the electric and magnetic fields that comprise 

the TE011 cylindrical cavity resonance mode.  The high power instability measurements 

are obtained with the sample is placed along the central axis of the cavity in the region 

of uniform magnetic field. 
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The 
m

g  expressions for the rectangular and cylindrical cavity are obtained by 

substituting the expressions given in Eqs. (A.20) and (A.21) into Eqs. (A.18) and (A.19), 

respectively, and solving the integrals.  The resulting solutions for the rectangular and 

cylindrical cavities may be written as  

{ }q10

2

rect 1

4

d
TE 1

a
mg

q

  
= +  

   
 (A.22) 

 and 

{ } { }q01

2

2cyl

o

1
)

2

R
TE J 1 ,

d
m

q
g ο1

ο1

ρ(
ρ

  π
 = +  
   

ɺ

ɺ
 (A.23) 

respectively. 

A.4.4 Summary and Comparisons 

In summary, the microwave magnetic field amplitude o(r )h  at a specific location or  

in a microwave cavity may be written in terms of unitless Qɶ  and 
m

g  parameters.  These 

Qɶ  and 
m

g  terms relate the stored energy in the cavity to measurable cavity parameters 

and calculable cavity mode functions, respectively.  The expressions given here for these 

terms will now be compared with those in references R-1, R-2, and R-3. 

In publication R-1, an explicit equation for o(r )h  at the endplate of a TE10q 

rectangular cavity is given.  In order to compare the results presented here with the R-1 

results, the Qɶ  expression given in Eq. (A.14) and the { }q10

rect
TE

m
g  term given in 

Eq. (A.22) are substituted into Eq. (A.17).  This yields the following expression for the 

microwave field amplitude at the center of the cavity endplate 

2

L inc  

2

c res iris

2

a 32 P
( , ,0) .

d
V 1

a
o

Q
h y

Q
q

µ ω

=
  

+  
   

 (A.24) 
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Upon comparison of Eq. (A.24) with the corresponding equation in R-1, one 

observes differences in the denominators; specifically the squared term in the 

denominator of Eq. (A.24) is inverted in the corresponding R-1 equation.  It was 

determined after careful analysis that this discrepancy is due to an error in R-1.  While it 

is stated that the microwave field amplitude equation given in R-1 corresponds to the 

magnetic field amplitude at the cavity endplate, it actually corresponds to the amplitude 

at the sidewall of the cavity.  As is seen in Eq. (A.20), the ratio of the sidewall and end-

wall cavity field amplitudes equals d aq .  Therefore, if the result in R-1 is multiplied by 

( )
2

a d ,q  it agrees exactly with Eq. (A.24). 

We will now turn our focus on comparing the results obtained here with those given 

in publications R-2 and R-3, which contain terms expressed in both MKS and CGS units.  

In order to compare the results presented here with those in R-2 and R-3, the Qɶ  

expression given in Eq. (A.15) is substituted into Eq. (A.17) and the following unit 

conversions are performed: 
2

N A4
o

µ −7= π⋅10 , 3A m 4 10 Oe−
= π⋅ , 

res res
2 fω = π , where 

res
f  is expressed in GHz, and 

c
V  is expressed in 3mm .  Upon doing this, one obtains the 

following expression 

( )res L

inc 3

c res

80 1
( )[Oe] P [W] .

[mm ] [GHz] ( )
m

Q
h r

V f g r

− ρ
=  (A.25) 

While the field expression given in reference R-2 has a factor of 40 in the numerator 

instead of value of 80 given in the above expression, the two expressions are actually in 

agreement.  Upon comparing the 
m

g  terms for the rectangular and cylindrical cavities 

given here with the results in R-2 and R-3, one finds that the R-2 and R-3 values are in 

exact agreement to within a factor of ½.  This ½ factor is due to the different definitions 

used for U  and 
m

g  in R-2 and R-3 than the definitions used here and in R-1.  

Therefore, taking this difference into account, one sees that the results presented here are 

in exact agreement with those in R-2 and R-3. 
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APPENDIX B 

AUTOMATION PROGRAMS 

This appendix reviews the software programs that were developed to operate the 

high-power microwave spectrometer discussed in Chapter 4 in an automated fashion.  

This appendix will first review the calibration programs and then address the 

measurement programs.  The goal is to provide a quick overview of the key programs 

that are available for use with the high power microwave spectrometer.  For more details 

see the user manual that was written as part of this thesis work entitled “User Manual for 

the High Power Microwave Spectrometer.” 

B.1 CALIBRATION PROGRAMS  

Table B.1 summarizes the LabVIEW calibration programs that were developed to 

calibrate the (1) the crystal detector, (2) the waveguide losses, (3) the cavity parameters, 

and (4) the control voltage to the electromagnet power supply.  The LabVIEW program 

entitled .CrystalDetCalib vi  was developed to calibrate the crystal detector.  The program 

obtains crystal detector output voltage versus microwave power data, which are then fit 

to a third order polynomial.  The fitting parameters are stored in ConvertVcrystoPcrys.vi. 

Two different LabVIEW programs were developed to perform waveguide calibration 

measurements.  The first one, entitled .PwrmtrWgdCalib vi  is used to calibrate the 

frequency dependent power differences between the power meter and cavity locations in 

the high-power spectrometer.  The second program, termed .CrysdtcrWgdCalib vi  is used 
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to measure the relative power differences between the cavity and the crystal detector 

locations.  The data are stored in calibration files, titled PmtrCavWgdLoss.dat and 

CavCrysWgdLoss.dat.  The measurement programs then use these calibration files to 

convert the measured power at the power meter and crystal detector locations into the 

power incident upon and reflected by the cavity, respectively. 

The LabVIEW program titled _ . .MTA Main vi  was developed to calibrate the 

microwave cavity.  The program acquires reflection coefficient versus frequency data 

with and without a short placed in front of the cavity position in the high-power 

microwave spectrometer.  A MathCAD program, called ReflCavityCalib.mcd can then be 

used to analyze the raw data.  The analysis yields the cavity resonance frequency, 

resonance reflection coefficient, and loaded QL.  These values are then used in 

 

LabVIEW Program Calibration Type Required Analysis Calibration Files 

CrystalDetCalib.vi 

Calibrates crystal 
detector output 
voltage versus 
input power 

User must fit data to the 
following polynomial: 

2 3

1 2 3
(v) v v v

in o
P a a a a= + + +
 

Calibration constants 
stored in: 
ConvertVcrystoPcrys.vi 

PwrmtrWgdCalib.vi 
 

Calibrates 
waveguide losses 
between power 
meter & cavity iris. 

NA 
Data stored in  
PmtrCavWgdLoss.dat  

CrysdtcrWgdCalib.vi 
 

Calibrates 
waveguide losses 
between cavity & 
crystal detector 

NA 
Data stored in text file: 
CavCrysWgdLoss.dat  

MTAMain.vi 

Calibrate cavity Q, 
resonance 
frequency & 
reflection 
coefficient 

User must analyze data with 
the MathCAD program 
“ReflCavityCalib.mcd” 

Calibration 
constant cav inco

h C P=  
entered when prompted 

HvsVltCalib.vi 
Calibrate 
electromagnet 
control voltage. 

User must fit data to the 
following polynomial 

2 3

1 2 3
(v) v v v

in o
P a a a a= + + +
 

Calibration constants 
stored in  
CalcVout(Hext).vi 

Table B.1:  Summary of the LabVIEW calibration programs and the corresponding 

analysis that must be performed in order to calibrate the high power microwave 

spectrometer. 
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combination with Eqs. (A.22) and to calculate the cavity calibration constant 
cav

C , where 

cav incoh C P= . 

The LabVIEW program titled HvsVltCalib.vi was developed to measure the 

electromagnet magnetic DC field versus power supply control voltage (0-to-10V).  The 

data are fit to a third order polynomial, and the fitting constants are entered into the 

LabVIEW program titled, CalcVout(Hext).vi.  These fitting parameters vary with pole 

piece geometry, and care must be taken to make sure that the correct calibration 

constants match the particular pole pieces used for a given experiment.  The intercept 

point of the calibration data (field value obtained 0 Volts) and the resulting fitting 

constants depend upon the remnant magnetization of the pole pieces and the temperature 

LabVIEW Program Summary of Key Features 

FMRShrtdWvguideLowPower.vi Acquires FMR reflection coefficient versus Hext data 

on a sample mounted in a shorted waveguide. 

FMRCavityLowPower.vi 

Similar program as above, but has the added feature 

of cavity resonance tuning.  The microwave 

frequency is reset to the cavity resonance value for 

each static field value.  Acquires all the data at single 

fixed power level. 

FMRCavityHighPower.vi 

Similar as above, but data obtained at different 

microwave power levels.  The user enters the desired 

microwave scan ranges, and FMR data are obtained 

at various power levels. 

Vreflcoeff_vs_ho(single rf-scan).vi 

Used to obtain cavity reflection coefficient versus rf 

at a single static magnetic field value.  The user must 

properly set the protection attenuators at the 

appropriate values for the given scan range of the 

main attenuator. 

ButterflyCurve.vi  
 

Performs similar measurement as 

Vreflcoeff_vs_ho(single rf-scan).vi, but for various 

static magnetic field values, and will full automation 

of the three attenuators. 

Table B.2.  Summary of the LabVIEW measurement programs developed to perform 

FMR and butterfly curve instability measurements. 
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of the coil windings.  Therefore, to set the static magnetic main biasing field to a high 

degree of accuracy, a feedback correction method is used when necessary.  This method 

will be discussed briefly below. 

B.2 MEASUREMENT PROGRAMS 

Table B.2 summarizes some of the key measurement programs that were developed 

to perform low and high power microwave measurements in a automated fashion.  This 

section will focus on the program entitled ButterflyCurve.vi which was developed to 

obtain spin wave instability butterfly curve data.  

 Figure B.1 shows a flow chart of the ButterflyCurve.vi measurement program.  The 

objective of this program is to obtain sample loss versus microwave field amplitude (
o

h ) 

data at various static magnetic field (
ext

H ) values.  As is seen in Fig. B.1 this done in 

three main phases.  The details of each phase are discussed below 

B.2.1 Phase-1 of ButterflyCurve.vi 

In the first phase of the ButterflyCurve.vi a series of screens are displayed in which: 

(1) an overview of the program is provided to the user (2) the user is prompted to 

perform the necessary manual settings, and (3) required input parameters are obtained 

from the user. 

Figure B.2 shows the first introductory screen that appears upon execution of the 

program.  The screen reminds the user of the general initial spectrometer settings that 

must be set prior to running the program.  As is seen in Fig. B.2, the user must manually: 

(1) set 
o

h  and 
ext

H  to the proper alignment, (2) powered on and allowed for the required 

warm up time of all the devices, (3) set the attenuators to the proper default settings, and 

(4) have the microwave operating frequency near the microwave cavity resonance 

frequency.  The procedures used to align 
o

h  and 
ext

H  are discussed in Chapter 4.  The 

required default attenuator settings correspond to a general “safe” starting point in which  
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Figure B.1.  Flow chart for the LabVIEW program titled ButterflyCurve.vi.  This 

program was developed to perform spin wave instability measurements in a stand-alone 
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the main attenuator (MA), the crystal detector attenuator (CDA), and the power meter 

attenuator (PMA) are set to 50 dB, 0 dB, and 0 dB, respectively.  See Fig. 4.1 in Chapter 

4 for a sketch of the location of these attenuators within the high-power spectrometer.   

After the user verifies that the above initial starting criteria are met, the program then 

acquires the necessary measurement parameters from the user.   

Figure B.3 shows the first of three LabVIEW prompt screens that obtain these 

parameters.  As is seen in the figure, the user must enter the output data filename, the 

static magnetic scan field range and step size, the number of static magnetic field scan 

ranges, the microwave pulse-width and duty-cycle, and the cavity calibration constant.  

The scan range option allows the user to employ different microwave magnetic field 

amplitude start, step, and stop values for different static magnetic field ranges.  As is 

 

Figure B.2.  First prompt screen of the ButterflyCurve.vi LabVIEW program.  This 

introductory screen prompts the user to insure that the required initial system settings 

are established prior to continuing the program.  
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seen in the figure, the user is able to select up to four different 
ext

H  ranges.  After 

entering the above scan range selections, another prompt window appears in order to 

obtain the required microwave field amplitude scan settings from the user.  The format of 

this screen depends on the number of 
ext

H  ranges selected by the user.   

Figure B.4 shows two different possible prompt windows.  The left image in Figure 

B.4 is displayed if the user requested two 
ext

H  scan ranges, and the one on the right 

appears if the user asked for three 
ext

H  scan ranges.  The corresponding prompt screens 

for user inputs of one and four scan ranges are not shown.  

After the above inputs are obtained, the program determines a rough estimate of the 

variable attenuator settings required to set 
o start

h h= , and prompts the user to manually 

set the attenuators to these starting values.  After the user informs the program that the 

attenuators have been set to the above-specified values, the program checks to see that 

the power levels are within acceptable limit.  If the power levels at the crystal detector 

and power meter are within acceptable limits, the program proceeds to phase-II, if not 

the program immediately shuts the system down and displays a warning message. 

Figure B.3.  Second prompt screen of the ButterflyCurve.vi program, which acquires the 

filename, static field scan range, microwave pulse width and frequency, and cavity 

calibration setting from the user. 
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B.2.2 Phase-2 of ButterflyCurve.vi 

In Phase-II of ButterflyCurve.vi the static magnetic field, microwave frequency, and 

microwave magnetic field amplitude are set to the appropriate starting values. The three 

subprograms that perform these initializations will now be discussed. 

The subprogram that sets the 
ext

H  to its initial value, termed HextSetLoop.vi 

proceeds in the following manner.  First the DC control voltage required by the 

electromagnet to set 
ext start

H H=  value is calculated.  This calculation is performed by 

the CalcVout(Hext).vi.  As was stated previously, prior to running the ButterflyCurve.vi 

the user must insure that the correct calibration constants are being applied for the given 

pole piece configuration in use.  The control voltage is applied to the electromagnet 

power supply via the DAQ card discussed in Section 4.4 of Chapter 4, and the static field 

is allowed to stabilize and then compared to the desired setting.  If necessary, a 

Figure B.4.  Third prompt screen of the ButterflyCurve.vi LabVIEW program, which 

obtains the microwave field amplitude scan range settings.  The images on the left and 

right correspond to what is shown if the user selected a static field scan range setting of 

two or three, respectively, from the prompt window shown in Fig. B.3. 
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correction voltage is applied to the electromagnet power supply.  The above technique 

typically results in an 
ext

H  setting that is within 1 Oe of 
start

H . 

The microwave measurements are performed with the operating frequency set to the 

cavity resonance frequency cav-resf .  This frequency can depend on 
ext

H , so each time 

ext
H  is changed the operating frequency is retuned to cav-res .f   The LabVIEW subprogram 

called FindCvtResFreq.vi is utilized to perform this task.  The basic procedure is as 

follows.  First a narrow frequency scan is performed about the user supplied operating 

frequency obtained in Phase-1 of .Butterfly Curve vi .  Then the .Find cvty res freq vi  

program analyzes the reflected power versus frequency data, checks to make sure it is 

parabolic, and resets the operating frequency to the minimum of the response curve.  If 

the acquired data does not contain a clearly defined symmetric response about a 

minimum, the data are reacquired over a wider frequency range.  This is continued until 

an absolute minimum is obtained.  For most parallel pumping and subsidiary absorption 

butterfly curve measurements the cavity resonance frequency is typically determined in 

one frequency scan.  However, it can take up to three scans for resonance saturation 

which are obtained in the vicinity of FMR resonance. 

The scan widths and number of data points obtained per scan depend upon the cavity 

of interest. Cavities with a large Q require smaller scan widths than cavities with small Q 

values.  The scan widths and number of scan points should be set prior to the running the 

ButterflyCurve.vi program.  These settings are stored in the LabVIEW subprogram 

entitled CavityScanSettings.vi.  Once these values are set for a given cavity, they should 

only be changed when another cavity with a significantly different Q value is utilized. 

Once the static magnetic field and the microwave frequency are set, the variable 

attenuators are then automatically adjusted to their appropriate starting values.  As was 

discussed in Chapter 4, the stepper motors, which are attached the variable attenuators, 

are used to set the attenuators.  The stepper motor controller card provides the necessary 

drive voltages to turn the stepper motors.  The computer communicates with the 
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controller card via DOS executable C++ compiled programs.  These programs are called 

and run from LabVIEW to set the attenuation of variable attenuators as needed. 

The LabVIEW subprogram, titled “Set_MA,CDA,& PMAtoStartPos.vi” sets the 

attenuators into their starting positions.  The procedure is as follows.  The main 

attenuator is gradually decreased (increases operating power in the system), while the 

microwave power levels at the power meter and the crystal detector is monitored.  If the 

power at the power meter or the crystal detector approaches their maximum operating 

limits, then their attenuators are increased until the power is lowered to acceptable 

values.  Then the main attenuator is decreased further until the desired starting 

microwave magnetic field amplitude inside the cavity is obtained. 

After 
o

h  is set to 
start

h , final adjustments are made to the crystal detector and power 

meter attenuators. The attenuators are set such that the minimum power levels needed for 

accurate measurements are incident upon the detectors.  This provides the maximum 

power range for a given scan, and most often the protection attenuators do not have to be 

readjusted during the scans performed in Phase-3 of ButterflyCurve.vi.  Note that the 

operating power ranges of the power meter and crystal detector are set in the 

PMA_AllowedRanges.vi and the CDA_AllowedRanges.vi subprograms, respectively. 

B.2.3 Phase-3 of ButterflyCurve.vi 

In the third and final phase of ButterflyCurve.vi, the microwave field scans are 

performed at various static magnetic fields.  During the 
o

h  scans, the power levels at the 

power meter and the crystal detector are constantly monitored and the attenuators are 

automatically adjusted as necessary.  After each microwave field scan, the reflection 

coefficient versus 
o

h  data are stored to a new data file.  The data filename is comprised 

of the user supplied filename entered in Phase-I and the static field at which the scan was 

performed.  The data files are stored in the “D:\buttefly-curve-data” directory of the PC.  
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After the scans are performed the attenuators are reset to their initial general settings and 

the instruments are placed into “standby mode. 

Figure B.5 shows example microwave field scan data that were obtained during 

Phase-3 of the ButterflyCurve.vi program.  Note that in this case the user-entered 

filename was “test”, the microwave field was scanned from 2 to 8 Oe.  The 
o

h  scans 

were done at 
ext

H  values of 1000 Oe, 1100 Oe, 1200 Oe, ... , and 2000 Oe.  The data 

shown in the figure corresponds to sample loss versus microwave magnetic field 

amplitude for the last static magnetic field setting of 2000 Oe.  Therefore, the data file 

was named “test_2000.dat”.   

Note that the LabVIEW program titled “FMR_cavity-High-power.vi” works in a 

similar fashion as ButterflyCurve.vi.  But, 
ext

H  is scanned for fixed 
o

h  values rather than 

o
h  scanned for fixed 

ext
H .  The usefulness of scanning one field versus the other is 

discussed in the operation section of Chapter 4. 

 

Figure B.5.  Results of microwave field scan obtained during stage-3 of the 

ButterflyCurve.vi program.  The plot of cavity reflection coefficient (proportional to 

sample loss) versus microwave field shows a clear transition from no sample loss (linear 

region) to notable sample losses. 
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