ATMOSPHERIC TRANSPORT OF HYDROGEN SULFIDE FROM PROPOSED GEOTHERMAL POWER PLANT (UNIT 13)

Predictions by Physical Modeling in a Wind Tunnel

by

R. L. Petersen**, J. E. Cermak*, and Samir Ayad**

Prepared for

Aminoil USA, Incorporated Santa Rosa, California

Fluid Dynamics and Diffusion Laboratory Fluid Mechanics and Wind Engineering Program Colorado State University Fort Collins, Colorado 80523

April 1977

CER76-77RLP-JEC-SA51

*Director, Fluid Dynamics & Diffusion Laboratory **Graduate Research Assistant, Department of Civil Engineering FOLIO TAT CG CER 76/77 -51

EXECUTIVE SUMMARY

Tests were conducted in the Colorado State University Environmental Wind Tunnel Facility of the transport and dispersion of the H_2 S plume emanating from a geothermal steam venting located near Anderson Springs, California. The wind tunnel tests were conducted with a terrain modeled to a scale of 1:1920 and also with scale models of a surface release and stack releases of varying exit velocity and height (0 and 30 m). For the surface release exit velocities were varied to simulate a 100 and 21 percent flow of steam to Unit 13. The effects of wind direction and wind speed upon the ground level H_2 S concentrations for, the various source configurations in the vicinity of Anderson Springs and Whispering Pines were established based on a constant source strength of 100 ppm. Data obtained include photographs and motion pictures of smoke plume trajectories and ground level tracer gas concentrations downwind of the source.

The results of the study can be summarized as follows:

• The maximum H₂S concentrations near Anderson Springs were observed to be 1) 49.8 ppb for a surface release, 250° wind direction, 9.4 m/s wind speed and 12.7 m/s exit velocity, 2) 2.2 ppb for a surface stack release, a 230° wind direction and a 9.4 m/s wind speed and 3) 104.2 ppb for a 30m stack release, 250° wind direction, 9.4 m/s wind speed and 20.6 m/s exit velocity.

• The maximum H₂S concentrations near Whispering Pines were observed to be 1) 12.5 ppb for a surface release, 210° wind direction, 6.2 m/s wind speed and 12.7 m/s exit velocity, 2) 9.8 ppb for a surface stack release, a 6.2 m/s wind speed, 210° wind direction and a 111.7

i.

LIBRARIES COLORADO STATE UNIVERSITY m/s exit velocity, and 3) 10.5 ppb for a 30 m stack release, 210° wind direction, 9.4 m/s wind speed and 111.7 m/s exit velocity.

• The use of stacks (30 m or less) and increased exit velocity as a modification to the existing steam venting (surface release) does not reduce the expected maximum H_2S ground level concentration for the wind directions studied. In some cases the modifications would increase concentrations.

• Curves are presented for the surface release which give a range of volume flow rates at given wind speed for which the 30 ppb limit will not be exceeded at locations studied in the wind tunnel. The curves show that 100 percent flow ($816.2 \text{ m}^2/\text{s}$) is allowable for all wind speeds studied with a 210° wind direction. For the 230 and 250° wind directions the allowable flow rates varies with wind speed and is always below 100 percent.

• The added heat due to the steam venting increases plume rise and hence decreases the ground level concentrations. This affect is most noticeable at the low wind speeds.

i i

ACKNOWLEDGMENTS

The support of Aminoil USA, Incorporated in carrying out this study is gratefully acknowledged. Construction of the building model was accomplished by personnel of the Engineering Research Center machine shop. Mr. James A. Garrison supervised construction of the terrain model and photographic recording of the flow visualizations. The authors also acknowledge the assistance of Mrs. Stephanie Allen in typing and organizing this report. The help of the following students throughout the research is appreciated: Mr. Stan Schwartz, Mr. Dave Graham, Mr. Tom Zook, Mr. Chris Leveroni, Mr. Jim DeCino, Mr. John Elmer, and Mr. Herb Riehl.

TABLE OF CONTENTS

CHAPTER		PAGE
	EXECUTIVE SUMMARY	i
	ACKNOWLEDGMENTS	111
	LIST OF TABLES	v
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xix
1.0	INTRODUCTION	1
2.0	SIMULATION OF ATMOSPHERIC MOTION	3
3.0	TEST APPARATUS 	8
	3.1 Wind Tunnels	8
	3.2 Model	0
	3.3 Flow Visualization lechniques	9
	3.4 Gas Tracer Technique	10
	-Analysis of Data	10
	-Errors in Concentration Measurement	
	-Test Results: Concentration Measurements	12
	3.5 Wind Profile Measurements	14
	-Hot Wire Measurements	14
	-Smoke-Wire Wind Profile Visualization	15
4.0	TEST PROGRAM RESULTS - SURFACE RELEASE	17
	4.1Plume Visualization.4.2Concentration Measurements	18 18
5.0	TEST PROGRAM RESULTS - STACK RELEASE	20
	5.1 Plume Visualization.	20
	5.2 Concentration Measurements	20
6.0	TEST PROGRAM RESULTS - SURFACE STACK RELEASE	23
	6.1 Plume Visualization	23 23
7.0	TEST RESULTS - VELOCITY MEASUREMENTS	26
8.0	DISCUSSION AND SUMMARY OF RESULTS	28
	REFERENCES	32
	APPENDIX A	33
	TABLES.	39
		100
	FIGURES	103

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Model and Prototype Dimensional Parameters for Unit 13 - Aminoil	. 31
2.2	Model and Prototype Dimensionless Parameters for Unit 13 - Aminoil	. 32
3.2-1	Prototype Sampling Location Key	. 33
4.1-1	Summary of Photographs Taken for Aminoil Surface Release	. 34
4.2-1	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	. 35
4.2-2	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases.	. 36
4.2-3	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases.	. 37
4.2-4	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	. 38
4.2-5	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases.	. 39
4.2-6	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases.	. 40
4.2-7	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	. 41
4.2-8	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases.	42

TABLE	TITLE	PAGE
4.2-9	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	43
4.2-10	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	44
4.2-11	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	45
4.2-12	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	46
4.2-13	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	47
4.2-14	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	48
4.2-15	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases	. 49 [.]
4.2-16	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	. 50
4.2-17	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	. 51
4.2-18	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	. 52

TADLE	TITLE	FF	IGE
5.1-1	Summary of Photographs Taken for Aminoil Stack Release	•	53
5.2-1	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases	•	54
5.2-2	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases		55
5.2-3	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases		56
5.2-4	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Release		57
5.2-5	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases		58
5.2-6	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases		59
5.2-7	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases.		60
5.2-8	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases		61
5.2-9	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity		62

TABLE	TITLE	PAGE
5.2-10	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases	63
5.2-11	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases	64
5.2 - 12	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases.	65
5.2-13	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases	66
5.2-14	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases	67
5.2-15	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases	68
5.2-16	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases	69
5.2-17	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases	70
5.2-18	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases	71

.

TABLE	TITLE	PAGE
5.2-19	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases.	. 72
5.2-20	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases.	. 73
5.2-21	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Stack Releases.	. 74
5.2-22	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases.	. 75
5.2-23	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases.	. 76
5.2-24	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Stack Releases	. 77
5.2-25	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases.	. 78
5.2-26	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases.	. 79
5.2-27	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Stack Releases	. 80

TABLE	TITLE	PAGE
6.1-1	Summary of Photographs Taken for Aminoil Surface	. 81
6.2-1	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Surface Stack Releases	, 82
6.2-2	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Surface Stack Releases	. 83
6.2-3	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Surface Stack Releases	. 84
6.2-4	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Surface Stack Releases	. 85
6.2-5	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Surface Stack Releases	. 86
6.2-6	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Surface Stack Releases	. 87
6.2-7	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity Aminoil Surface Stack Releases	. 88
6.2-8	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity Aminoil Surface Stack Releases	. 89
6.2-9	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity Aminoil Surface Stack Releases	. 90

TABLE TITLE PAGE 7-1 The Wind Velocity (m/s) at Aminoil Test Site and the Meteorological Station for Three Heights 91 Above the Ground Level. Summary of H₂S Concentrations for the Proposed Geothermal Plant Site (Unit 13) 8-1 92

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Map Showing Geyser Geothermal Area and Location of Proposed Aminoil Power Plant	95
1.2	Wind Rose from Meteorological Station Located near Proposed Sites	96
1.25	Wind Rose from Meteorological Station #2	97
2.1	Reynolds Number at which Flow Becomes Independent of Reynolds Number for Prescribed Relative Roughness	98
3.1-1	Environmental Wind Tunnel; Fluid Dynamics and Diffusion Laboratory, Colorado State University	99
3.2-1	Photograph of model stacks and area source	100
3.2-2	Photograph of terrain model in the Environmental Wind Tunnel	100
3.2-3	Base map for the 250° Wind Direction	101
3.2-4	Base map for the 230° Wind Direction	102
3.2-5	Base map for the 210° Wind Direction	103
3.3-1	Schematic of Plume Visualization Equipment	104
3.4-1	Schematic of Tracer Gas Sampling System	105
3.5-1	Laboratory Experimental Arrangement for obtaining Turbulent Intensities and Mean Wind Velocities Over the Terrain	106
3.5-2	The Smoke-Wire used to Visualize Wind Profiles Over the Terrain	107
4.1-1	Surface Release Plume Visualization for a 12.7 m/s Exit Velocity, 250° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	108
4.1-2	Surface Release Plume Visualization for a 12.7 m/s Exit Velocity, 210° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	109
4.2-1	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Release	110

FIGURE	TITLE	PAGE
4.2-2	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 6.2 m/s wind speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	111
4.2-3	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	112
4.2-4	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 3.2 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	113
4.2-5	Isopleths of H_S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	114
4.2-6	Isopleths of H_S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	115
4.2-7	Isopleths of H_S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	116
4.2-8	Isopleths of H_S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	117
4.2-9	Isopleths of H_S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	118
4.2-10	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	119
4.2-11	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	120
4.2-12	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 9 ² 4 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	121
4.2-13	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	122

FIGURE	TITLE	PAGE
4.2-14	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	123
4.2-15	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit VelocityAminoil Surface Releases	124
4.2-16	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	125
4.2-17	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	126
4.2-18	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9 ² 4 m/s Wind Speed and a 12.7 m/s Exit VelocityAminoil Surface Releases	127
5.1-1	Stack Release Plume Visualization for a 20.6 m/s Exit Velocity, 250° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	128
5.1-2	Stack Release Plume Visualization for a 63.1 m/s Exit Velocity, 250° Wind Direction, and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	129
5.1-3	Stack Release Plume Visualization for a lll.7 m/s Exit Velocity, 250° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	130
5.1-4	Stack Release Plume Visualization for a 20.6 m/s Exit Velocity, 230° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	131
5.1-5	Stack Release Plume Visualization for a 63.1 m/s Exit Velocity, 230° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	132
5.1-6	Stack Release Plume Visualization for a lll.7 m/s Exit Velocity, 230° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	133
5.1-7	Stack Release Plume Visualization for a 20.6 m/s Exit Velocity, 210° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	134

FIGURE	TITLE	PAGE
5.1-8	Stack Release Plume Visualization for a 63.1 m/s Exit Velocity, 210° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s; c) 9.4 m/s	135
5.1-9	Stack Release Plume Visualization for a 111.7 m/s Exit Velocity, 210° Wind Direction and Wind Speeds of a) 3.1 m/s; b) 6.2 m/s	136
5.2-1	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Stack Release	137
5.2-2	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Stack Release	138
5.2-3	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Stack Release	139
5.2-4	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 3 ² 1 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Stack Release	140
5.2-5	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind Speed and 63.1 m/s Exit VelocityAminoil Stack Release	141
5.2-6	lsopleths of H ₂ S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Stack Release	142
5.2-7	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	143
5.2-8	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	144
5.2-9	Isopleths of H ₂ S Concentrations for a 250° Wind Direction, a 9 ² 4 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	145
5.2-10	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Stack Release	146

FIGURE	TITLE		PAGE
5.2-11	lsopleths of H ₂ S Concentrations for a Direction, a 6.2 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 20.6 m/s	147
5.2-12	Isopleths of H ₂ S Concentrations for a Direction, a 9.4 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 20.6 m/s	148
5.2-13	Isopleths of H ₂ S Concentrations for a Direction, a 3.1 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 63.1 m/s	149
5.2-14	Isopleths of H ₂ S Concentrations for a Direction, a 6.2 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 63.1 m/s	150
5.2-15	Isopleths of H ₂ S Concentrations for a Direction, a 9.4 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 63.1 m/s	151
5.2-16	Isopleths of H ₂ S Concentrations for a Direction, a 3.1 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 111.7 m/s 	152
5.2-17	Isopleths of H ₂ S Concentrations for a Direction, a 6.2 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 111.7 m/s 	153
5.2-18	Isopleths of H ₂ S Concentrations for a Direction, a 9.4 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	230° Wind 111.7 m/s 	154
5.2-19	Isopleths of H ₂ S Concentrations for a Direction, a 3.1 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	210° Wind 20.6 m/s	155
5.2-20	Isopleths of H ₂ S Concentrations for a Direction, a 6.2 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	210° Wind 20.6 m/s	156
5.2-21	lsopleths of H ₂ S Concentrations for a Direction, a 9.4 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	210° Wind 20.6 m/s	157
5.2-22	Isopleths of H ₂ S Concentrations for a Direction, a 3.1 m/s Wind Speed and a Exit VelocityAminoil Stack Release.	210° Wind 63.1 m/s	158

FIGURE	TITLE	PAGE
5.2-23	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Stack Release	159
5.2-24	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9 ² 4 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Stack Release	160
5.2-25	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	161
5.2-26	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	162
5.2-27	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Stack Release	163
6.1-1	Surface Stack Release Plume Visualization for a 230° Wind Direction, 9.4 m/s Wind Speed and Exit Velocities of a) 20.6 m/s; b) 63.1 m/s; c) 111.7 m/s	164
6.1-2	Surface Stack Release Plume Visualization for a 230° Wind Direction, 9.4 m/s Wind Speed and Exit Velocities of a) 20.6 m/s; b) 63.1 m/s; c) 111.7 m/s	165
6.1-3	Surface Stack Release Plume Visualization for a 210° Wind Direciton, 6.2 m/s Wind Speed and Exit Velocitites of a) 20.6 m/s; b) 63.1 m/s; c) 111.7 m/s	166
6.2-1	lsopleths of H_S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Surface Releases	167
6.2-2	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Surface Releases	168

FIGURE	TITLE	PAGE
6.2-3	Isopleths of H ₂ S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Surface Stack Releases	. 169
6.2-4	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Surface Stack Releases	. 170
6.2-5	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Surface Stack Releases	. 171
6.2-6	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Surface Stack Releases	. 172
6.2-7	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit VelocityAminoil Surface Stack Releases	. 173
6.2-8	lsopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit VelocityAminoil Surface Stack Releases	. 174
6.2-9	Isopleths of H ₂ S Concentrations for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit VelocityAminoil Surface Stack Releases	. 175
7.1	Turbulent Intensity at Aminoil Test Site (Unit 13) and Meteorological Station	176
7.2	Comparison of Mean Wind Tunnel Velocity Profiles at the Aminoil Test Site and the Meteorological Station	. 177
7.3	Comparison of the Power Laws fitted for the Mean Wind Velocity at the Meteorological Station and the Aminoil Test Site	. 178
7.4	Constant Velocity Lines over the Terrain	179
7.5	Smoke Wire Velocity Profiles (.05-Second Intervals) taken at Three Terrain Heights in the Anderson Ridge Vicinity a) 975 m; b) 792 m; c) 719 m	180

LIST OF SYMBOLS

Symbol	Definition	
D	Stack Diameter	(L)
De	Hydraulic Diameter	(L)
E	Gas Chromatagraph Response	(mvs)
Fr	Froude Number $\frac{v^2}{g(\frac{\Delta\rho}{\rho_a})}$ D	° (-)
g	Gravitational Constant	(L/T ²)
h	Stack Height	
н	Effective Ridge Height	(L)
k	von Karman Constant	(-)
К	Concentration Isopleth	(-)
L	Characteristic Length	
l	Building Length	(L)
р	Pressure	(M/T ² /L)
Q	Source Strength	(M/T)
r ²	Correlation Coefficient	(L)
R	Exhaust Velocity Ratio V _s /V _a	(-)
R _c	Cold Resistance	(Ω)
Re	Reynolds Number VL	(-)
Rn	Hot Resistance	(Ω)
U _*	Friction Velocity	(L/T)
V	Mean Velocity	(L/T)
W	Building Width	(L)
x,y,z	General Coordinates - Downwind, Lateral, Upwind	(L)
z	Surface Roughness Parameter	(L)

LIST OF SYMBOLS (continued)

Symbol	Definition	
х	Local Concentration	(M/L ³ or ppm)
τ	Sampling Time	(T)
θ	Azimuth Angle of Upwind Direction Measured from Plant North	(-)
σ	Standard Deviation of Either Plume Dispersion or Wind Angle Fluctuations	(L), (-)
Λ	Volumetric Flow	(L ³ /t)
ν	Kinematic Viscosity	(L ³ /T)
δ	Boundary Layer Thickness	(L)
γ	Density Ratio	м(т ² L ²)
ρ	Density	(m/l ³)
Ω	Angular Velocity	(1/T)
μ	Dynamic Viscosity	M/(TL)
ΔΓ	Specific Weight Difference	M/(TL)

Subscripts

- a Free Stream
- s Stack
- m Model
- p Prototype
- max Maximum

1.0 INTRODUCTION

The purpose of this study was to determine the transport characteristics of hydrogen sulfide released in plumes emanating from steam releases at a proposed new geothermal power plant (Unit 13). The location of Unit 13 is shown in Figure 1.1 in relation to Anderson Springs and Whispering Pines.

Using a 1:1920 scale model of the source and surrounding topography in a wind tunnel capable of simulating the appropriate meteorological conditions, downwind ground-level H_2S concentrations were measured by sampling concentrations of a tracer gas (propane) released from the model. Overall plume geometry was obtained by photographing the plumes made visible by releasing smoke (titanium tetrachloride) from the modeled source. Source geometry corresponded to 1) a ground level release over a 2.4 m x 244 m area (hereafter referred to as "surface release"), 2) a circular ground level release with varying exit velocity (referred to as "surface stack release") and 3) a 30.5 m stack release with varying exit velocity (referred to as "stack release").

The primary focus of this study was on H₂S concentrations in the vicinity of Anderson Springs and Whispering Pines for neutral thermal stratification. Accordingly, studies of the upper-level winds were confined to three directions: 210°, 230°, and 250° azimuth. Figure 1.2 shows the wind rose which was obtained from a meteorological tower in the vicinity of the sites under study (see Figure 1.1 for relative location). Information from the meteorological station indicated that winds in the sector 210° to 250° occur approximately 40 percent of the time. Wind speeds of 3.1, 6.2, and 9.4 m/s were modeled to obtain representative concentrations under beneficial and adverse plume rise conditions.

A secondary objective was to relate wind speed at the proposed Unit 13 site to that at the meteorological station in the area and the upper-level (ambient) wind speed in the wind tunnel.

Included in this report are a brief description of the similarity requirements for atmospheric motion, and explanation of test methodology and procedures, results of plume visualization and concentration measurements, results of wind flow measurements, and a summary of the results.

This report is supplemented by a motion picture (in color) which shows plume behavior for the various wind speed and wind direction test scenarios. Black and white photographs as well as slides of each plume visualization further illustrate the material presented.

2

2.0 SIMULATION OF ATMOSPHERIC MOTION

The use of wind tunnels for model tests of gas diffusion by the atmosphere is based upon the concept that nondimensional concentration coefficients will be the same at corresponding points in the model and the prototype and will not be a function of the length scale ratio. Concentration coefficients will only be independent of scale if the wind tunnel boundary layer is made similar to the atmospheric boundary layer by satisfying certain similarity criteria. These criteria are obtained by inspectional analysis of physical statements for conservation of mass, momentum, and energy. Detailed discussions have been given by Halitsky (1963), Martin (1965), and Cermak, et al. (1966). Basically, the model laws may be divided into requirements for geometric, dynamic, thermic, and kinematic similarity. In addition, similarity of upwind flow characteristics and ground boundary conditions must be achieved.

For this study, geometric similarity was satisfied by an undistorted model of length ratio 1:1920. This scale was chosen to facilitate ease of measurements and to provide a representative upwind fetch.

When interest is focused on the vertical motion of plumes of heated gases emitted from stacks into a thermally neutral atmosphere, the following variables are of primary significance:

 $p_{a} = \text{density of ambient air}$ $\Delta \Gamma = (\rho_{a} - \rho_{s})g - \text{difference in specific weight of ambient air and source exhaust}$ $\Omega = \text{local angular velocity component of earth}$ $\mu_{a} = \text{dynamic viscosity of ambient air}$ $V_{a} = \text{speed of ambient wind at meteorological tower height (10 m)}$

 V_{e} = speed of gas emission

h = stack height

H = local difference in elevation of topography

D = stack diameter

 $\boldsymbol{\delta}_{\text{s}}\text{=}$ thickness of planetary boundary layer

z_= roughness heights for upwind surface

Grouping the independent variables into dimensionless parameters with ρ_a , V_a and H as reference variables yields the following parameters upon which the quantities of interest must depend:

$$\frac{V_{a}}{H\Omega}, \frac{\delta_{a}}{H}, \frac{z_{o}}{H}, \frac{D}{H}, \frac{V_{a}\rho_{a}H}{\mu_{a}}, \frac{V_{s}}{V_{a}}, \frac{V_{a}^{2}}{g\gamma D}, \gamma$$

where $\gamma = \frac{\rho_a - \rho_s}{\rho_a}$.

Tables 2.1 and 2.2 summarize the pertinent dimensional and dimensionless parameters which were modeled in this study. The source volumetric emission rates and gas densities represent cooling tower source parameters and not a super heated steam. Appendix A includes a comparison of model test results using source parameters for superheated steam and those conditions given in Tables 2.1 and 2.2 (cooling tower parameters). The appendix shows that the ground level concentrations are less for the superheated steam release.

The laboratory boundary layer thickness $\frac{a}{H}$ was estimated to be nearly equal for model and prototype. Near equality (within a factor of two) of the surface parameter $\frac{z_o}{H}$ for model and prototype was achieved through geometrical scaling of the source and upwind roughness. The source parameter $\frac{D}{H}$ was equal for model and prototype.

The magnitude of the roughness parameter, z_o, for the model was calculated by using the logarithmic wind equation:

 $\frac{V}{U^*} = \frac{1}{\kappa} \ln \left(\frac{z}{z_0}\right)$

The wind speed at heights 1.27 cm and 2.54 cm above the model terrain were substituted into the equation. With the resulting two equations, z_0 (and U*) was calculated. The magnitude of z_0 for the prototype was estimated by reference to a plot of z_0 versus terrain type present in Cermak (1975).

Dynamic similarity is achieved in a strict sense if the Reynolds number, $\frac{\rho_a V_a H}{\mu_a}$, and Rossby number, $\frac{V_a}{H\Omega}$, for the model are equal to their counterparts in the atmosphere. The model Rossby number cannot be made equal to the atmospheric value. However, over the short distances considered (up to 5000m), the Coriolis acceleration has little influence upon the flow. Accordingly, the standard practice is to relax the requirement of equal Rossby numbers (Cermak, 1971).

Kinematic similarity requires the scaled equivalence of streamline movement of air over prototype and model. It has been shown in Halitsky, et al. (1963) that flow around geometrically similar sharp-edged buildings at ambient temperatures in a neutrally stratified atmosphere should be dynamically and kinematically similar when the approaching flow is kinematically similar. This approach depends upon producing flows in which the flow characteristics become independent of Reynolds number if a lower limit of the Reynolds number is exceeded. For example, the resistance coefficient for flow in a sufficiently rough pipe, as shown in Schlichting (1960, p. 521), is constant for a Reynolds number larger than 2 x 10⁴. This implies that surface or drag forces are directly proportional to the mean flow speed squared. In turn, this condition is the necessary condition for mean turbulence statistics such as root-meansquare value and correlation coefficient of the turbulence velocity components to be equal for the model and the prototype flow.

5

Equality of the parameter $\frac{V_a^2}{g\gamma D}$ for model and prototype in essence determines the relationship between the atmospheric wind speed and the model wind speed once the geometric scale has been selected (1:1920 in this case). Often this criteria results in $(V_a)_m$ being too small to satisfy the minimum Reynolds number requirement. When this happens, the density ratio for the model $(\gamma)_m$ can be made larger than $(\gamma)_p$ to compensate for the effect of small geometric scale. However, this relaxes the equality of the density difference ratio for model and prototype. This equality ensures that the initial plume behavior where acceleration of the source gases is maximum will be modeled correctly. However, for this study, near field plume behavior is not important and relaxation of the density ratio equality is justified.

Using a wind speed of $(V_a)_p$ of 3.1 m/s at the meteorological tower height (10 m), a scale of 1:1920, and a density ratio of $\frac{\gamma_m}{\gamma_p} = 7.9$, the Froude number equality gives

$$\frac{(v_a)_m^2}{(v_a)_p^2} = \frac{1}{1920} \frac{(\gamma)_m}{(\gamma)_p}$$
 or

 $(V_a)_m = (\frac{1}{43.8}) (7.9)^{1/2} (3.1) = 0.20 \text{ m/s}.$

The corresponding representative model velocity at a height of .46 m (878 m prototype) is 0.34 m/s. Using this velocity as the freestream velocity and a distance of 13.6 m from the beginning of the wind tunnel to the test site, the Reynolds number becomes

$$Re_{L} = \frac{0.34 \times 13.6}{15 \times 10^{-6}} = 3.1 \times 10^{5}.$$

Referring to Figure 2.1 from Cermak (1975) it can be seen that for a Reynolds number of 3.1 x 10^5 the surface length-roughness length ratio L/K_s must be less than 250 for the flow to be independent of Reynolds number. Thus K_s, the roughness length, must be greater than $\frac{13.6}{250}$ or 0.054 m. Taking the ridge height as the roughness height, K_s, results in K_s = 0.06 m, which is nearly equal to the critical value of 0.054. Consequently, the flow over the test section is Reynolds number independent.

The method used to increase the Reynolds number such that the flow was independent of Re was to increase the specific weight difference between model and prototype. Since $\frac{(\gamma)_m}{(\gamma)_p} = 7.9$ represented the maximum specific weight difference practically attainable, the greatest increase in the local Reynolds number was achieved using this difference. Since the minimum Reynolds number for the cases studied was 3.1×10^5 , similarity of concentration distributions over the topographic surface can be assured for all wind speeds studied.

To summarize, the following scaling criteria were applied for the neutral boundary layer situation:

1. $Fr = \frac{V_a}{g\gamma D}$; $(Fr)_m = (Fr)_p$, 2. $R = \frac{V_s}{V_a}$; $R_m = R_p$,

L/K_s > 250 (implies Reynolds number independence),

4. $(z_0)_m = (z_0)_p$,

5. Similar geometric dimensions,

6. Similar velocity and turbulence profiles upwind.

7

3.0 TEST APPARATUS

3.1 Wind Tunnels

The Environmental Wind Tunnel (EWT) shown in Figure 3.1 was used for this neutral flow study. This wind tunnel, especially designed to study atmospheric flow phenomena, incorporates special features such as adjustable ceiling, rotating turntables, transparent boundary walls, and a long test section to permit adequate reproduction of micrometeorological behavior. Mean wind speeds of 0.06 to 37 m/second (0.14 to 80 miles/hour) in the EWT can be obtained. In the EWT, boundary layers four feet thick over the downstream 12.2 meters can be obtained with the use of vortex generators at the test section entrance. The flexible test section roof on the EWT is adjustable in height to permit the longitudinal pressure gradient to be set at zero.

3.2 Model

The source was modeled to a scale of 1:1920. Four different source models were constructed: a 0.13 by 1.3 cm area source (2.44 by 24.4 m prototype) and three stacks of height 1.59 cm (30.5 m prototype) with diameters of 0.16 cm, 0.21 cm, and 0.37 cm. <u>Surface stack releases</u> were simulated by burying the stack in the styrofoam so that the stack top was flush with the surface. In this manner three gas release modes were studied: 1) surface release, 2) stack release and 3) surface stack release. The relevant building dimensions are given in Table 2.1 and a photograph of the models is shown in Figure 3.2-1.

Topography was modeled to the same scale by cutting styrofoam sheets of 0.6 cm and 1.27 cm thicknesses to match contour lines of a topographic map enlarged to the 1:1920 scale. The topography for the 210° wind direction is shown mounted in the wind tunnel in Figure 3.2-2. Sections of modeled topography for the three wind directions were constructed for regions upwind and downwind of the topography mounted on the 3.66-meter diameter turntable. In this way, rectangular regions could be fitted into the wind tunnel test section.

An array of sampling tubes was inserted into the model terrain to give a minimum of 34 representative sampling locations for each wind direction. The sampling locations for each wind direction are shown in Figures 3.2-3, 3.2-4, and 3.2-5 and enumerated in Table 3.2-1.

Metered quantities of gas were allowed to flow from the modeled source to simulate the exit velocity. The exit velocities simulated were 2.5 and 12.7 m/s (100 and 21% volume flow) for the area source and 20.6, 63.1, and 111.7 m/s (100% flow) for the three stacks. Helium, compressed air, and propane (the tracer) were mixed to give the highest practical specific weight. Fischer-Porter flow rotor settings were adjusted for pressure, temperature, and molecular weight effects as necessary. When a visible plume was required, the gas was bubbled through titanium tetrachloride before emmission.

3.3 Flow Visualization Techniques

Smoke was used to define plume behavior from the geothermal power plant complex. The smoke was produced by passing the air mixture through a container of titanium tetrachloride located outside the wind tunnel and transported through the tunnel wall by means of a tygon tube terminating at the source structure inlet. A schematic of the process is shown in Figure 3.3-1.

The plume was illuminated with arc-lamp beams and a visible record was obtained by means of pictures taken with a Speed Graphic camera.

9

Additional still pictures were obtained with a Hasselblad camera. Stills were taken with a camera speed of one second to identify mean plume boundaries. A series of color motion pictures were also taken with a Bolex motion picture camera.

3.4 Gas Tracer Technique

After the desired tunnel speed was obtained, a mixture of propane, helium, and air of predetermined concentration was released from the source tower at the required rate. Samples of air were withdrawn from the sample points and analyzed. The flow rate of propane mixture was controlled by a pressure regulator at the supply cylinder outlet and monitored by a Fischer and Porter precision flow meter. The sampling system is shown in Figure 3.4-1.

-Analysis of Data-

Propane is an exellent tracer gas in wind tunnel dispersion studies. It is a gas that is readily obtainable and of which concentration measurements are easily obtained using gas chromatography techniques.

The procedure for analyzing the samples was as follows:

- A sample volume drawn from the wind tunnel of 2 cc was introduced into the Flame Ionization Detector.
- The output from the electrometer (in millivolt seconds) was integrated and then the readings were recorded for each sample.
- 3. These readings were transformed into propane concentration values by the following steps:

 $\chi(ppm) = C(ppm/mvs)E(mvs)$

where C was determined from a calibration gas of known concentration C = (ppm/mvs) calibration gas. The values of the concentration parameter initially determined apply to the model and it is desirable to express these values in terms of the field. At the present time, there is no set procedure for accomplishing this transformation. The simplest and most straightforward procedure is to make this transformation using the scaling factor of the model. Since

one can write

$$\frac{\chi V}{Q} |_{p} (m^{-2}) = \frac{1}{1920^2} \frac{\chi V}{Q} |_{m} (m^{-2}).$$

The sample scaling of the concentration parameter from model to field appears to give reasonable results. All data reported herein are in terms of the dimensionless value, $K = \frac{\chi V_a D^2}{Q}$ and in terms of H₂S concentration $\chi_p(H_2S) = \left(\frac{1}{1920}\right) \left(\frac{\chi V}{Q}\right)_m \left(\frac{Q}{V}\right)_p$.

-Errors in Concentration Measurement-

Each sample, as it passes through the flame ionization detector, is separated from its neighbors by a period during which nitrogen flows. During this time, the detector is at its baseline, or zero level. When the sample passes through the detector, the output rises to a value equal to the baseline plus a level proportional to the amount of tracer gas flowing through the detector. The baseline signal is set to zero and monitored for drift. Since the chromatograph used in this study features a temperature control on the flame and electrometer, there is very low drift. The integrator circuit is designed for linear response over the range considered. A total system error can be evaluated by considering the standard deviation found for a set of measurements where a precalibrated gas mixture is monitored. For a gas of ~ 100 ppm propane \pm 1 ppm, the average standard deviation from the electrometer was two percent. Since the source gas was premixed to the appropriate molecular weight and repetitive measurements were made of its source strength, the confidence in source strength concentration is similar. The flow rate of the source gas was monitored by Fischer-Porter flowmeters which are expected to be accurate to two per cent, including calibration and scale fraction error. The wind tunnel velocity was constant to \pm 10 per cent at such low settings. Hence, the cumulative confidence in the measured values of $\frac{\chi V}{Q}$ will be a standard deviation of about \pm 11 per cent, whereas the worst cumulative scenario suggests an error of no more than \pm 20 per cent.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentrations of hydrocarbons in the air within the wind tunnel. Background concentrations were measured and subtracted from all measurements quoted herein; however, a lower limit of 1 to 2 ppm of propane is available as a result of background methane levels plus previous propane releases. An upper limit for propane with the instrument used is 10 per cent propane by volume. A recent report on the flame ionization detector for sampling gases in atmospheric wind tunnels prepared by Dear and Robins (1974) arrives at similar figures.

-Test Results: Concentration Measurements-

Since the conventional point-source diffusion equations cannot be used for predicting diffusion near objects which cause the wind to be nonuniform and nonhomogeneous in velocity and turbulence, it is necessary to calculate gaseous concentrations on the basis of experimental data.

12

It is convenient to report dilution results in terms of a nondimensional factor independent of model to prototype scale.

In Cermak et al. (1966) and Halitsky (1963), the problem of similarity for diffusing plumes is discussed in detail. Considering this, the concentration measurements were transformed to K-isopleths by the formula

$$\kappa = \left(\frac{\chi V_a d^2}{Q}\right)_m$$

where

 χ_m = sample concentration (ppm)

 $D_m = cell diameter (m)$

 $V_{a_{m}}$ = mean wind velocity at the meteorological station height (m/s)

 $Q_m = gas source release rate (ppm m³/s)$

Thereafter prototype H_2S concentrations were calculated assuming a 100 ppm H_2S prototype source strength with the following relation

$$x_{p} = \frac{K \Lambda 10^{5}}{V_{a_{p}} D_{p}^{2}}$$

where

 Λ = Prototype volume flow rate (172.3 and 816.2 m³/s)

 $\chi_p = H_2 S$ concentration (ppb)

When interpreting model diffusion measurements, it is important to remember that there can be considerable difference between the instantaneous concentration in a plume and the average concentration due to horizontal meandering. In the wind tunnel, a plume does not generally meander due to the absence of large-scale eddies. Thus, it is found that field measurements of peak concentrations which effectively elimate horizontal meandering should correlate with the wind tunnel data (Hino, 1968). In order to compare downwind measurements of dispersion to predict average field concentrations, it is necessary to use data on peak-to-mean concentration ratios as gathered by Singer, et al. (1953, 1963). Their data is correlated in terms of the gustiness categories suggested by Pasquill for a variety of terrain conditions. It is possible to determine the frequency of different gustiness categories for a specific site. Direct use of wind tunnel data at points removed from the building cavity region may underestimate the dilution capacity of a site by a factor of four unless these adjustments are considered (Martin, 1965).

To estimate the equivalent prototype sampling time another dimensionless variable was derived by including time as one of the pertinent parameters. The relationship then exists

$$\left(\frac{\tau U}{L}\right)_{m} = \left(\frac{\tau U}{L}\right)_{p}$$

or,

$$\tau_{p} = \tau_{m} \left(\frac{P}{L}\right) \left(\frac{m}{U}\right)$$

Since the model sampling time was approximately 30 s, then

$$\tau_{\rm p} = \frac{30}{60} \left(\frac{1920}{1}\right) \left(\frac{7.2}{1920}\right)^{1/2} = 59 \text{ min.}$$

Since the prototype sampling time of interest is one hour, the data presented herein have not been corrected for sampling time.

3.5 Wind Profile Measurements

-Hot Wire Measurements-

Velocity measurements over the terrain model at various locations were obtained using hot wire anemometry techniques.

A constant temperature TSI hot wire anemometer* was used for measuring both the root-mean-square value and the mean of the wind speed in the wind tunnel model. Calibration over the model was carried out in small calibrated flow chambers. The calibration measurements were correlated to King's law and put in the following form:

$$\frac{E^2}{R_h(R_h-R_c)} = A + BU^n$$

where

R_h = hot resistance of the wire
R_c = cold resistance of the wire
E = the output signal of the wire (millivolts)
U = the velocity sensed (meters/second)
n, A and B = the constants of King's law

Although the power n was found to be close to 0.5 over the velocity range 1.8 m/s to 15.2 m/s, it was found to be equal to 0.6634 at the low velocity range 0.03 m/s to 1.2 m/s. The Kings's law constants are thus

A = 0.266955 B = 0.036573

n = 0.6694

To obtain the velocity measurements, a calibrated carriage was used, together with a digital voltameter. In this manner, the location of the hot-wire probe over the terrain could be adjusted from outside the tunnel.

Detailed discussion on hot wire anemometry can be found in textbooks. Only those concepts that are essential to our measurements are presented here.
-Smoke-Wire Wind Profile Visualization-

The smoke-wire system was used to visualize instantaneous wind profiles. The smoke-wire probe (shown in Figure 3.5-2) is a tubular frame on which a nichrome wire 0.05 cm in diameter and approximately 66 cm long (1267 m-prototype) is held in a vertical position on insulated contacts. The wire, of about 325 ohm-per-foot resistance, is coated with a light oil, which, when heated, will rapidly evaporate and form a line of smoke which moves with the air stream and traces the velocity profiles instantaneously. The heating of the nichrome wire is accomplished by discharging a capacitor through it; the pulse of current from the capacitor (two micro-Farad) causes rapid heating of the wire and vaporization of the oil. The trigger control circuit is adjusted to 1000 volts. The electronic pulse is also used to start a time counter.

The visualizations presented herein were taken with a 0.5-second delay; the smoke wire probe was located at three different positions (denoted by S, A and M in Figure 32.3) at simulated elevations of 720, 793, and 976 m, MSL.

4.0 TEST PROGRAM RESULTS - SURFACE RELEASE

4.1 Plume Visualization

The test results consist of photographs and movies showing the surface release plume behavior for different wind directions and speeds. Of particular interest is the plume transport and dispersion in the vicinity of Anderson Springs and Whispering Pines.

The sequence of photographs in Figure 4.1-1 and 4.1-2 show plume behavior for the 250° and 210° wind directions, a 12.7 m/s exit velocity, and wind speeds of 3.1, 6.2, and 9.4 m/s for each direction. Photographs for the other cases studied are not presented because the smoke was not visible in the pictures. The plume behavior for each direction is generally the same. For the light wind speed cases (3.1 m/s) the plume tends to achieve more rise. However, as the wind speed increases, the plume altitude decreases, and for the high wind speed cases, the plume tends to follow along the terrain confluences.

Although the figures do not show the plume transport clearly, visual observations indicate the plume was transported over Anderson Springs for the 250° wind direction and over Whispering Pines for the 210° wind direction.

Complete sets of still photographs supplement this report. Color motion pictures have been arranged into titled sequences and the sets available are given by run number in Table 4.1-1.

4.2 Concentration Measurements

The diffusion of gaseous effluent emitted from the model surface release was studied for three wind directions (250°, 230°, and 210°

azimuth), three wind speeds for each direction (3.1, 6.2, and 9.4 m/s), and two exit velocities (2.5 and 12.7 m/s) for each wind speed. Propane concentrations at ground level were measured at distances from 1200 to 4000 meters downwind.

For each wind direction studied, thirty-four gas samples were collected at ground level. The sampling arrays for the three wind directions are shown in Figures 3.2-3, 3.2-4, and 3.2-5. The prototype locations for all sampling points are summarized in Table 3.2-1 with north and east as positive directions. The zero coordinate is the center of the terrain which was mounted on the turntable. This point is represented by the base of the wind direction arrow in all figures.

All concentration data have been reported as H_2^S concentrations and as dimensionless coefficients as explained in Section 3.4.

The results for wind directions and speeds studied are presented in Tables 4.2-1 through 4.2-18. Sample locations in the tables are defined in Table 3.2-1 and Figures 3.2-3, 3.2-4, and 3.2-5.

In order to visually and quantitatively assess the effect of wind direction and wind speed on ground level concentration patterns, Figures 4.2-1 through 4.2-18 were prepared. These figures show isopleths of H_2S concentration for the wind directions and speeds studied. These figures show an increase in maximum ground level concentration with increased wind speed for the case with an 12.7 m/s exit velocity. The case with the 2.5 m/s exit velocity shows generally little change in maximum value with wind speed.

The highest H_2S concentration near Anderson Springs of 49.8 ppb was observed to occur with a 250° wind direction at 9.4 m/s. Figure 4.2-6 shows the isopleth pattern for this case. At this speed and

direction, it is evident that the plume is mixed rapidly to the ground after emission and follows the terrain confluences down through Anderson Springs. The highest H_2S concentration near Whispering Pines of 12.5 ppb was observed to occur with a 210° wind direction and 6.2 m/s wind speed. The isopleth patterns for this case are shown in Figure 4.2-17.

5.0 TEST PROGRAM RESULTS - STACK RELEASE

5.1 Plume Visualization

The tests results consist of photographs and movies showing stack release plume behavior for different wind directions and speeds. Three 1.6 cm stacks (30.5 m prototype) of different diameters were used to simulate exit velocities of 20.6, 63.1, and 111.7 m/s. Of particular interest was the plume transport and dispersion in the vicinities of Anderson Springs and Whispering Pines.

The sequence of photographs in Figure 5.1-1 through 5.1-9 show plume behavior for the 250°, 230°, and 210° wind direction, wind speeds of 3.1, 6.2, and 9.4 m/s for each direction, and exit velocities of 20.6, 63.1, and 111.7 m/s. The plume behavior for each direction is generally the same. For the light wind speed cases (3.1 m/s), the plume tends to rise over the underlying terrain. However, as the wind speed increases, the plume altitude decreases and for the high wind speed case tends to follow along the terrain confluences. Because of low model volume flow rates, plume behavior is not completely visible in the photographs. However, visual observations during the study confirm the above results.

The plume was observed to be transported over Anderson Springs for the 250° wind direction and over Whispering Pines for the 210° wind direction.

Complete sets of still photographs supplement this report. Color motion pictures have been arranged into titled sequences and the sets available are summarized by run number in Table 5.1-1.

5.2 Concentration Measurements

The diffusion of gaseous effluent emitted from the three stacks was studied for three wind directions (250°, 230°, and 210° azimuth),

three wind speeds for each direction (3.1, 6.2, and 9.4 m/s), and three exit velocities for each speed (20.6, 63.1, and 111.7 m/s). Propane concentrations were measured at distances from 1200 to 4000 meters downwind.

For each wind direction studied, thirty-four gas samples were collected at ground level. The sampling arrays for the three wind directions are shown in Figure 3.2-3, 3.2-4, and 3.2-5. The prototype locations for all sampling points are summarized in Table 3.2-1 with north and east as positive directions. The zero coordinate is the center of the terrain which was mounted on the turntable. This point is represented by the base of the wind direction arrow in all figures.

All concentration data have been reported as H₂S concentrations and as dimensionless concentration coefficients as explained in Section 3.4.

The results for the wind directions and speeds studied are presented in Tables 5.2-1 through 5.2-27. Sample locations in the tables are defined in Table 3.2-1 and Figures 3.2-3, 3.2-4, and 3.2-5.

In order to visually and quantitatively assess the effect of wind direction and wind speed on ground level concentration patterns, Figures 5.2-1 through 5.2-27 were prepared. These figures show isopleths of H_2S concentration for the wind directions, wind speeds, and exit velocities studied. These figures clearly show the increase in maximum ground level concentration with increased wind speed. Also shown is the decrease in maximum ground level value with increasing stack exit velocity. For all cases, the concentrations were low (> 2 ppb) for the light wind speed case.

The highest H_2^S concentration near Anderson Springs of 104.2 ppb was observed to occur with a 250° wind direction at 9.4 m/s with a 20.6 m/s exit velocity. Figure 5.2-3 shows the isopleth pattern for this case. At

this speed and direction, it is evident that the plume is mixed rapidly to the ground after emission and follows the terrain confluences down through Anderson Springs.

The highest H_2^S concentration near Whispering Pines of 12.4 ppb was observed to occur with a 210° wind direction at 6.2 m/s with an exit velocity of 111.7 m/s.

6.0 TEST PROGRAM RESULTS - SURFACE STACK RELEASE

6.1 Plume Visualization

The test results consist of photographs and movies showing the surface stack release plume behavior for different wind directions and speeds. Three exit speeds (20.6, 63.1, and 111.7 m/s) for the surface stack release were studied. Of particular interest was the plume transport and dispersion in the vicinity of Anderson Springs and Whispering Pines.

The sequence of photographs in Figures 6.1-1, 6.1-2, and 6.1-3 shows plume behavior for the 230° and 210° wind directions at speeds of 6.2 and 9.4 m/s for each direction with exit velocities of 20.6, 63.1, and 111.7 m/s. Only the higher wind speed cases were considered to offer a general comparison between changes in stack height (i.e. between 0 and 30.5 m prototype).

From the figures, it appears that increased exit velocities do not significantly increase the effective plume altitude. This is probably due to the fact that the plume is released at ground level within a small canyon and by the time the plume reaches the canyon top, it has lost much of its momentum.

Complete sets of still photographs supplement this report. Color motion pictures have been arranged into titled sequences and the sets available are summarized by run number in Table 6.1-1.

6.2 Concentration Measurements

The diffusion of gaseous effluent emitted from three surface stack releases were studied for two wind directions (230° and 210° azimuth), and two wind speeds (6.2 and 9.4 m/s) for the 210° direction and one wind speed (9.4 m/s) for the 230° direction.

The surface stack releases differ from the surface release in that the effluent is emitted through a circular tube of varying diameter to simulate varying exit velocity. Propane concentrations at ground level were measured at distances from 1200 to 4000 meters downwind.

For each wind direction studied, thirty-four gas samples were collected at ground level. The sampling arrays for the two wind directions are shown in Figures 3.2-4 and 3.2-5. The prototype locations for all sampling points are summarized in Table 3.2-1 with north and east as positive directions. The zero coordinate is the center of the terrain which was mounted on the turntable. This point is represented by the base of the north arrow in all figures.

All concentration data have been reported as H_2^S concentrations and as dimensionless coefficients as explained in Section 3.4.

The results for the wind directions and speeds studied are presented in Tables 6.2-1 through 6.2-9. Sample locations in the tabels are defined in Table 3.2-1 and Figures 3.2-4 and 3.2-5.

In order to visually and quantitatively assess the effect of wind direction and wind speed on ground level concentration patterns, Figures 6.2-1 through 6.2-9 were prepared. These figures show isopleths of H_2S concentration for the wind directions and speeds studied. For the 230° wind direction (9.4 m/s wind speed), these figures show a decrease in maximum concentration with increased exit velocity. For the 210° wind direction (6.2 and 9.4 m/s), the isopleth patterns appear to be rather insensitive to wind speed and exit velocity, although the peak concentrations appear to be closer to the high wind speed case (9.4 m/s).

The maximum H_2^S concentration (for the wind directions considered) near Anderson Springs of 2.2 ppb was observed to occur with a 230° wind direction at 9.4 m/s. Figure 6.2-2 shows the isopleth pattern for this case. At this speed and direction, it is evident that the plume is mixed rapidly to the ground after emission and follows the terrain confluences down close to Anderson Springs.

The highest H_2S concentration near Whispering Pines of 9.8 ppb was observed to occur with a 210° wind direction at 6.2 m/s.

7.0 TEST RESULTS - VELOCITY MEASUREMENTS

This section discusses the results of the velocity measurements. Techniques for data collection are described in Section 3.5. Both the mean value and the root mean square of wind speed were measured in the wind tunnel.

The turbulence intensities $\left(\frac{V_{rms}}{V}\right)$ are plotted versus height

in Figure 7-1 for the meteorological station and the Aminoil test site (Site 4). As a general trend, the turbulence intensity is higher near the ground. The values of the root mean square of the velocity appear to be about 1.5 times higher at the Aminoil test site than at the meteorological station from the surface to 772 m over the terrain (0.23 m model). At higher levels, the effect of the terrain appears to be negligible and the two sites have nearly the same root mean square value of wind velocity. The two sites have nearly the same turbulence intensity above 0.23 m from the ground (this corresponds to 442 m from the ground in the prototype). It is clear in Figure 7-1 that the Aminoil test site possesses higher turbulence intensity from the ground up to 0.23 m.

Figure 7-2 shows the mean wind velocity profiles at the Aminoil test site and the meteorological station. The mean velocity at the low levels ($z \leq 0.17$ m model or 326 m prototype) appears to have higher values at the meteorological station than at Site 4. Table 7-1 enumerates the mean wind speed at the two sites for various levels relatively close to the ground. The wind speeds at meteorological tower height (10 m prototype) are also listed.

Figure 7-3 illustrates the power law fit to the following equation for the three locations:

$$\frac{V}{V_g} = \left(\frac{z}{z_g}\right)^{1/1}$$

The plots show the following values for $(\frac{1}{n})$:

 $\frac{1}{n} \approx 0.12$ Meteorological Station $\frac{1}{n} \approx .158$ Aminoil Site (Site 4)

Figure 7-4 (showing constant velocity lines over the terrain) illustrates the acceleration of the velocity on the top and downwind side of the ridge. Also evident is the general down-motion which greatly affects plume transport.

The smoke wire visualization at three different levels on the downwind side of the ridge are shown in Figure 7-5 for **a** low wind velocity of 0.13 m/s in the model (corresponding to 2.15 m/s in the prototype). The three profiles in each photograph represent three intervals of time (each is 0.5 seconds long). The higher intensities of turbulence and irregular velocity profiles at the low levels with respect to the terrain are evident. It is also clear that the turbulence is three-dimensional and has a vertical fluctuating component.

8.0 DISCUSSION AND SUMMARY OF RESULTS

The primary purpose of this study is to define the H_2^S concentration levels through wind tunnel modeling in the vicinity of Anderson Springs and Whispering Pines which are expected to result from the steam venting of Unit 13 assuming a 100 ppm H_2^S source strength. Other source strengths may be considered by simply multiplying the results presented here by the new source strength divided by 100 ppm. The overall maximum concentrations and maxima near Anderson Springs or Whispering Pines are summarized in Table 8.1 for each case studied.

One general point that is obvious from the table is the change in location of maximum concentration with ambient wind speed. This result indirectly shows the influence of the wind speed on plume rise since different plume trajectories would result in a change of location of the maximum concentration. The maximum values presented in the table should not be viewed as the highest possible values for the given simulated conditions. The wind tunnel sampling grid did not cover locations close or very far from the plant site. Hence the values in the table should be considered as the highest values observed within the wind tunnel sampling grid. The implications of the results presented in Table 8.1 will now be discussed in more detail.

<u>Surface release</u> - For the 100 percent volume flow cases (12.7 m/s exit velocity) maximum ground level concentrations increase with increasing wind speed. The rate of increase is slowest between 6.2 and 9.4 m/s wind speeds. The maximum ground level concentrations for the 21 percent volume flow (2.5 m/s exit velocity) cases decrease with wind speed. In order to interpolate between wind speeds and volume flow rates further analysis of the surface release test data was undertaken.

Dimensional analysis and plume rise theory leads to the following relation:

$$\frac{\chi V_a D^2}{\Lambda} = f\left(\frac{g\Lambda}{V_a^3}\right)$$

Using regression analysis the following equation was found to fit the experimental data:

$$an \frac{X V_a D^2}{\Lambda} = A' \left(\frac{g\Lambda}{V_a}\right)^{n'}$$

where A' and n' were different for each wind direction studied and 2.03 < $\frac{g\Lambda}{V_a^3}$ < 56. If χ is set equal to 30 ppb, then a new relation between Λ and V_a is determined which gives the maximum allowable volume flow for a fixed wind speed. The equation is:

$$\Lambda^{-n} + \frac{V_{a}^{-3n} \ln \Lambda}{B} = \frac{V_{a}^{-3n}}{B} [7.47 + \ln V_{a}]$$

where n' and B are given in the following Table:

<u>n'</u>	В
0.08	3.52
0.07	3.25
0.04	2.62
	<u>n'</u> 0.08 0.07 0.04

The above equation was solved numerically and the results are plotted in Figure 8.1. The two nearly vertical curves represent the cut-off lines for which the regression analysis does not apply. The lines labeled with the wind direction represent solutions to the above equation. For a given wind speed the volume flow must be less than the value on the solid line so that $\chi < 30$ ppb for any location studied in the wind tunnel. As can be seen in the figure for the 210° wind direction the plant can operate at 100 percent flow for all applicable wind speeds. For 250 and 230° wind direction the allowable volume flow is below 100 percent for all indicated wind speeds.

Stack releases - This series of tests was conducted to assess the effect of increased stack height (30 m) and increased exit velocity for a 100 percent flow upon ground level concentrations. From Table 8.1 it is evident that the maximum concentration increases with wind speed for a fixed exit velocity. For a 3.1 m/s wind speed the maximum concentrations decrease with increasing exit velocity for all wind directions studied. As the wind velocity increases, the effect of exit velocity on ground level concentrations is not as apparent. For the 6.2 and 9.4 m/s cases the maximum concentrations decrease when the exit velocity changes from 20.6 to 63.1 m/s and increase when the exit velocity changes from 63.1 to 111.7 m/s. This result may indicate a change in dispersion characteristics of the plume with extremely high exit velocities. Upon comparing these results with the surface release results it appears that the highest values occur with the stack release. This is probably due to the fact that the surface release is spread more in the horizontal due to the irregular flow field in the canyon where the surface release point is located. The stack on the other hand releases the effluent above the canyon and hence the initial mixing is less.

<u>Surface Stack Releases</u> - These tests were similar in scope to the stack release tests except the stack height was zero and only a limited number of wind tunnel tests were run. The results in Table 8.1 show a general decrease in concentration with increased exit velocity. The exceptions to the rule are explained by the fact that the sampling grid was finite and true maximum values may have occurred in between

grid points. Overall, the values compare closely with corresponding stack release values.

In summary the following conclusion may be drawn from this study:

- With the exception of the 2.5 m/s exit velocity cases (surface release) the maximum ground level impact was observed to occur most frequently with 9.4 m/s wind velocity regardless of wind direction or source configuration. For the 2.5 m/s exit velocity cases (surface release) the maximum concentrations occurred with a 3.1 m/s wind velocity.
- The maximum concentrations for the stack release and a 3.1 m/s wind velocity are less than the maxima for the corresponding surface release cases. However for the 9.4 m/s cases the maxima for the corresponding stack, surface stack and surface release tests were not significantly different.
- The maximum concentration near Anderson Springs was observed to be 104 ppb with a 250° wind direction, 9.4 m/s wind velocity and 20.6 m/s exist velocity from a 30 m stack release.
- The maximum concentration near Whispering Pines was observed to be 12.5 ppb with a 210° wind direction, 6.2 m/s wind velocity and a 12.7 m/s exit velocity from a surface release.
- The results show that the use of stacks (30m or less) and/or increased exit velocity will not significantly reduce and in fact may increase the expected maximum H₂S concentration levels for Unit 13. The 30m stack would reduce the concentration levels under light winds (3.1 m/s). However the maximum concentration levels occurred under the strong wind conditions.

REFERENCES

- Cermak, J. E. and J. Peterka, "Simulation of Wind Fields Over Point Arguello, California, by Wind-Tunnel Flow Over a Topographical model," Final Report, U.S. Navy Contract N126(61756)34361 A(PMR), Colorado State University, CER65Jec-JAP64, December 1966.
- Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Jl., Vol. 9, No. 9, pp. 1746-1754, September, 1971.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," 1974 Freeman Scholar Lecture, <u>ASME Journal of Fluids Engineering</u>, Vol. 97, Series 1, No. 1, March 1975, CEP 74-75JEC7.
- Halitsky, J., J. Golden, P. Halpern, and P. Wu, "Wind Tunnel Tests of Gas Diffusion From a Leak in the Shell of a Nuclear Power Reactor and From a Nearby Stack," Geophysical Sciences Laboratory Report No. 63-2, New York University, April 1963.
- Halitsky, J., "Gas Diffusion Near Buildings," Geophysical Sciences Laboratory Report No. 63-3, New York University, February 1963.
- Hino, M., "Maximum Ground-Level Concentration and Sampling Time," Atmospheric Environment, Vol. 2, pp. 149-165, 1968.
- Martin, J. E., "The Correlation of Wind Tunnel and Field Measurements of Gas Diffusion Using Kr-85 as a Tracer," Ph.D. Thesis, MMPP 272, University of Michigan, June 1965.
- Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, 1960.
- Singer, I. A., I. Kazukiko and G. D. Roman, "Peak to Mean Pollutant Concentration Ratios for Various Terrain and Vegetative Cover," Journal of APCA, Vol. 13, No. 1, p. 40, 1963.
- Singer, I. A. and M. E. Smith, "The Relation of Gustiness to Other Meteorological Parameters," Journal of Meteorology, Vol. 10, No. 2, 1953.

¢

APPENDIX A

ADDITIONAL WIND TUNNEL TESTS

Additional Wind Tunnel Tests

Since the wind tunnel tests were carried out with cooling tower source parameters, additional experiments were conducted to assess the effect of added buoyancy due to steam venting on the test results. The additional tests were carried out using the surface release test conditions described in Tables 2.1 and 2.2 and the steam venting conditions described in Table A-1. Consequently, identical wind and exit velocities were simulated and the gas density was varied.

Since the steam vented plume from Unit 13 is less de ise than the cooling tower plume, one would intuitively expect the concentration levels from the steam venting to be less than those using the cooling tower source parameters. Figures A-1, A-2 and A-3 substantiate this hypothesis. Each figure shows a plot of the H₂S concentrations observed for the same simulated wind and exit velocity using the steam venting versus cooling tower source parameters. As can be seen from the figures, the steam venting would have resulted in lower concentrations. The figures also show that at the lighter wind speeds (3.4 and 6.5 m/s) the reduction in ground level concentrations due to the added buoyancy for the steam venting ranged from 65 to 72 percent. For the higher wind (9.4 m/s) this factor was less (36 percent), which can be explained by the fact that as the wind increases to a critical value the added rise due to buoyancy is diminished. The critical wind speed is when downwash first occurs and for this study appears to be between 6.5 and 9.8 m/s.

-	Parameter	Prototype	Mode 1
-			
Α.	Surface Release		
	l. length (L)	24.4 m	1.27 cm
	2 width (w)	2.4 m	0.13 cm
	3 exit vehocity	2.5, 12.7 m/s	0.068, 0.34 m/s
	4. volumetric emission	148.6, 743.0 m ³ /s	1.09×10 ⁻⁶ , 5.46×10 ⁻⁶ m ³ /s
	5. hydraulic diameter (D_e^*)	8.62 m	0.419 cm
в.	Exit Temperature	427.6 ⁰ K	293 ⁰ K
с.	Gas Density	0.46 kg/m ³	0.22 kg/m ³
D.	Ambient Density	1.12 kg/m ³	1.02 kg/m ³
E.	Ambient Pressure	900 mb	850 mb
F.	Ambient Temperature	283°K	293 ⁰ К
G.	Wind Speed at Meteorological Tower Height	3.4, 6.5, 9.8	0.09, 0.17, 0.26 m/s
н.	z _o /H	4.8×10^{-3}	3.6×10^{-3}
۱.	D _e /H	8.62	0.082
J.	$R = \frac{U_s}{U_a}$	3.74, 1.95, 1.28	3.78, 2.00, 1.30
к.	$Fr = \frac{\rho_a U_a}{g(\rho_a - \rho_s)} D_e^*$	0.23, 0.85, 1.97	0.24, 0.84, 1.97
L.	$\gamma = \frac{\rho_a - \rho_s^*}{\rho_a}$	0.59	0.78

Table A-1 Model and Prototype Parameters for Unit 13 -Aminoil Surface Release (Steam Venting)

*Hydraulic Diameter = $\frac{\ell_W}{2(1+w)} = 8.62$

Figure A-1 H₂S Concentrations Using the Steam Venting Versus Cooling Tower Source Parameters and an Ambient Wind Speed of 3.4 m/s

Figure A-1 H₂S Concentrations Using the Steam Venting Versus Cooling Tower Source Parameters and an Ambient Wind Speed of 6.5 m/s

Figure A-3 H₂S Concentrations Using Steam Venting Versus Incorrect Cooling Tower Source Parameters and an Ambient Wind Speed of 9.8 m/s

TABLES

Table 2.1 Model and Prototype Dimensional Parameters for Unit 13 -

Aminoil

-	Parameter	Prototype	Model
Α.	Surface Release		
	l. length(%)	24.4 m	1.27 cm
	2. width (w)	2.4 m	0.13 cm
	3. exit velocity (m/s)	2.5, 12.7	0.17, 0.79
	4. volumetric emission (A)	172.3, 816.2 m ³ /s	2.8×10^{-6} $1.2 \times 10^{-5} \text{ m}^{3/\text{s}}$
	5. equivalent diameter (D_e)	8.62 m	0.44) cm
Β.	Stack & Surface Stack Relea	se	
	l. height (h)	30.5, 0 m	1.59 [°] m
	2. diameter (D)	7.1, 4.06, 3.05	0.37, 0.21, 0.16
	3. exit velocity (V _c)	20.6, 63.1, 111.7	1.32, 4.05, 7.16 m/s
	4. volumetric emission (A)	816.2 m ³ /s	1.3 x 10 ⁻⁵ m ³ /s
c.	Exit Temperature (T_)	319 ⁰ К	293 ⁰ К
D.	Gas Density (p_)	.97 Kg/m ³	0.21 Kg/m ³
Ε.	Ambient Density (ρ_)	1.08 Kg/m ³	1.02 Kg/m ³
F.	Ambient Pressure (P _a)	900 mb	850 mb
G.	Ambient Temperature	293 ⁰ К	293 ⁰ К
Н.	Wind Speed at Meteorologica Tower Height (V _a)	1 3.1, 6.2, 9.4 m/s	0.2, 0.4, 0.6 m/s
۱.	Wind Speed at Reference Height (V _r)	5.3, 10.8, 16.1 m/s	0.34, 0.69, 1.03 m/s
J.	Reference Height Above Met Station (Z _r)	878 m	0.46 m
К.	Ridge Height Elevation (H)	105 m	0.055 m
L.	Surface Roughness (Z _O)	0.5 m	0.02 m

Parometer	Prototype	Model
а _о Н	4.8×10^{-3}	3.6×10^{-3}
P	8.2×10^{-2}	8.2×10^{-2}
+	0.29	0.29
$R \approx \frac{U_s}{U_a}$	1.4, 2.0, 4.1	1.4, 2.0, 4.0
$Fr = \frac{\rho_a U_a^2}{g(\rho_a - \rho_s)D}$	1.1, 4.6, 10.5	1.1, 4.6, 10.5
$\gamma = \frac{\rho_a^{-\rho}s}{\rho_a}$.10	. 79

I

Aminoil

Table 3.2-1 Prototype Sampling Location Key

Location #	x (m)	у (m)	z (m, MSL)	Location #	к (m)	У (m)	z (m, MSL)
1	-132.88	810.77	597.4	39	2029.97	804.67	402.3
2	195.07	804.67	524.3	40	2103.12	548.64	390.1
3	512.06	640.08	49 9 .9	43	2151.89	292.61	487.7
4	755.09	304.8	609.6	42	2157.98	-201.17	499.9
5	816.86	-30.48	621.8	43	1194.82	2682.24	585.2
6	682.75	420.62	560.8	44	1450.85	2554.	536.4
7	-79.25	1286.26	597.4	45	1694.69	2401.8	499.9
8	109.73	1280.16	548.6	46	1914.14	2218.9	499.9
9	304.8	1255.78	517.44	47	2109.22	2036.1	463.3
10	487.68	1188.72	463.3	48	2304.29	1816.6	426.7
31	664.46	1097.28	451.1	49	2462.78	1591.1	402.3
12	816.86	987.55	426.7	50	2596.9	1353.3	402.3
13	999.74	816.86	438.9	51	2718.82	1060.7	402.3
14	1103.38	646.18	451.1	52	2810.26	780.3	451.1
15	1188.72	475.49	536.4	53	2877.31	530.4	560.8
16	1249.68	280.42	621.8	54	2926.08	-97.5	621.8
17	1280.16	85.34	548.6	56	-97.54	1755.6	597.4
18	1243.58	-298.7	463.3	57	-499.87	1676.4	609.6
19	304.8	1731.26	, 548.6	58	391.38	2170.2	633.9
20	524.26	1676.4	560.8	59	97.5	2182.4	646.2
21	707.14	1609.34	573	60	-396.2	2158.0	682.8
22	935.74	1493.52	536.4	61	938.8	2779.8	573.0
23	1097.28	137.16	499.9	62	658.4	2865.1	597.4
24	1243.84	1243.58	487.7	63	60.96	2926.1	719.3
25	1402.08	1054.61	426.7	64	670.56	3596.6	670.6
26	1536.19	847.34	390.1	70	-670.56	2072.6	737.6
27	1627.63	646.18	438.9	. 71	-1798.3	2255.5	722.4
28	1694.69	402.34	438.9	73	-487.68	2804.2	725.4
29	1743.46	170.69	438.9	74	914.4	2804.2	749.8
30	1725.17	-268.22	499.9	75	61.0	4389.1	731.5
31	573.02	2115.31	609.6	76	487.7	4937.8	792.5
32	804.67	2029.97	560.8	77	121.9	3657.6	765.0
33	1024.13	1926.34	524.3				
34	1243.58	1786.13	512.1				
35	1444.75	1633.73	475.5				
36	1597.15	1475.23	463.3				
37	1767.84	1267.97	426.7	Met Station	-2011.7	786.4	1005.8
38	1914.14	1024.13	402.3				

* All locations are with respect to the point represented by the base of the month arrow in Figure 1.1-

Run #	Photo #	Wind Direction	Wind Speed (m/s)	Exit Velocity (m/s)
		250	2.1	2.5
1		250	3.1	2.5
2	6	250	0.2	2.5
3	п	250	9.4	2.5
4	2	250	3.1	12.7
5	7	250	6.2	12.7
6	12	250	9.4	12.7
7	1A	230	3.1	2.5
8	2A	230	3.1	12.7
9	6A	230	6.2	2.5
10	7A	230	6.2	12.7
11	11A	230	9.4	2.5
12	12A .	230	9.4	12.7
13	19A	210	3.1	2.5
14	20A	210	6.2	2.5
15	21A	210	9.4	2.5
16	22A	210	3.1	12.7
17	23A	210	6.2	12.7
18	24A	210	9.4	12.7

Table 4.1-1 Summary of Photographs Taken for Aminoil Surface Release

Table 4.2-1 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

LOCATION NO. 27 89 10 11 12 13 14 19 20 22 23 24 25 26 31 32 73 4 35 36 37 38 43 445 46 47 48	NON DIMENSIONAL COEFF(K) 1121F-03 1525F-03 A970F-05 1345F-04 4036F-04 4036F-04 2422F-03 6727F-05 6727F-05 8970F-05 1345F-04 8970F-05 1121F-04 3364F-04 3364F-04 3364F-04 8970F-05 1345E-04 2242F-05 1345F-04 8970F-05 1345F-04 6727F-05 1242F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04 1345F-04	H2S CONCENTRATION (PPB) 8.3854 11.4041 .670A 1.0062 3.0187 18.1125 18.1125 18.1125 18.1125 .5031 .6708 .5031 .3354
48 49 50	4485E-05 1121E-04	• 3354 • 8385

Table 4.2-2	Hydrogen Sulfide Concentrations and Nondimensional
	Concentration Coefficient for a 250° Wind Direction,
	a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity
	Aminoil Surface Releases

1794F - 04 2242F - 04 7624F - 04 8970E - 05 2691F - 04 4485F - 05 2691F - 04 4933F - 04 1525F - 03 5382E - 04 4485F - 05 3588F - 04 2691F - 04	6708 8385 2.8510 3354 1.0062 1.0062 1.0062 1.0062 1.8448 5.7021 2.0125 .1677 1.3417 1.0062 1.1740
4485F-05 3588F-04 2691F-04 3139F-04 1794F-04 8970F-05 0 2242F-04	1.3417 1.0062 1.1740 .6708 .3354 0.0000 .8385
	1794F-04 2242F-04 7624F-04 8970E-05 2691F-04 4485F-05 2691F-04 4933F-04 1525F-03 5382E-04 4485F-05 3588F-04 2691F-04 1794F-04 8970F-05 0 2242F-04

	a 9.4 m/s Wind Speed and a 2.5 Aminoil Surface Releases	m/s Exit Velocity
LOCATION N 2 7 8 9 10 112 14 9 10 112 14 9 10 112 123 14 9 10 112 123 14 9 10 123 14 9 10 123 14 9 10 123 14 9 10 123 123 14 9 10 123 14 9 10 123 14 9 10 123 123 14 9 10 123 123 14 9 10 123 123 14 123 14 123 14 123 14 123 14 123 14 13 14 15 15 15 15 15 15 15 15 15 15	0. NON DIMENSIONAL COEFF(K) 2826F = 03 6526F = 03 2491F = 04 8746F = 04 8746F = 04 8746F = 03 4306F = 03 6727F = 05 1345F = 04 6727F = 05 1345F = 04 6727F = 05 1345F = 04 6727F = 04 8073F = 04 8073F = 04 8073F = 04 8073F = 04 8073F = 04 8073F = 04 8036F = 04 3364F = 04	H25 CONCENTRATION(PPB) 6.9689 16.0946 .6637 .6637 .1570 .1570 .1570 .1659 .3318 .4978 .6637 .6637 .6637 .1659 .3318 1.9911 1.65928 .4978 .8296 .8296 .8296 .1659 .8296 .8296 .8296 .8296 .8296 .8296

Table 4.2-3 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction

.

Tubio		Concentration Coef a 3.1 m/s Wind Spe Aminoil Surface Re	ficient for a 250° ed and a 12.7 m/s E leases	Wind Direction, xit Velocity
LOCATION 127 89 10 11 123 149 222 233 234 256 123 233 234 256 123 233 234 256 123 233 234 256 233 234 256 233 234 256 233 234 256 233 234 256 257 257 257 257 257 257 257 257	N0.	NON DIMENSIONAL 489 472 376 183 124 101 631 308 868 183 1240 280 376 376 376 376 376 376 376 376 376 376	COEFF(K) H2S 5F-04 5F-04 5F-05 5F-04 4F-05 5F-04 4F-04 0F-05 5F-04 4F-04 0F-05 5F	CONCENTRATION (PPB) 17.3413 16.7256 1.3339 .6499 4.4123 3.5914 22.3692 10.9110 .3078 .6499 .6499 .9919 .9919 1.3339 3.0441 2.0180 1.1629 1.3339 1.4287 1.366 2.7021 1.3339 .6499 .6499 .6499 .6499 .6499 .6499 .6499 .6499 .6478

Table 4.2-4 Hydrogen Sulfide Concentrations and Nondimensional

	Concentration Coefficient for a a 6.2 m/s Wind Speed and a 12.7 Aminoil Surface Releases	250° Wind Birection, 'm/s Exit V locity
LOCATION NO. 12 7 8 9 10 11 12 22 22 22 22 22 22 22 22	NON DIMENSIONAL COEFF(K) 1477F-03 1448F-03 A303F-04 7531F-04 3398F-03 1564F-03 2259F-03 1525F-03 5793F-05 7724F-05 5793F-05	H25 CONCENTRATION (PPB) 76, 658 5, 526 14, 7076 13, 3394 60, 1985 27, 7050 40, 0183 27, 0209 1, 0261 6841 1, 3681 1,

Table 4.2-5 Hydrogen Sulfide Concentrations and Nondimensional

Table 4.2.6 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

LOCATION NO. 2 7 8 9 10 11 12	NON DIMENSIONAL COEFF(K) .4342E-03 .5222F-03 .2781F-04 .4229F-04 .1477F-03 .1214E-03 .4263F-03 .4122E-03 .1448F-05	H2S CONCENTRATION (PPB) 50.7259 61.0132 3.2486 4.9406 17.2583 14.1789 49.8122 48.1541 .1692 0.0000
149 20 21 22 23	5793E-05 2896E-05 5793E-05 5793E-05 2896E-05	6768 3384 6768 6768 3384
24 25 26 31 32	.8747E-04 .8284F-04 .1448E-05 .2896E-05	10.2196 9.6782 .1692 .3384
335 335 336 337 38 337 38 333 445 45 45 467 489	1970E-04 6430E-04 5445E-04 1159E-04 2636E-04 1634E-03 4605E-04 5213E-04 5213E-04 4460E-04 4460E-04 4450E-04 4171E-04 4345E-05	2 3011 7 5124 6 3619 1 3536 3 0794 19 0857 5 3805 6 0912 5 2113 4 3315 4 8729 5076

Table 4.2-7 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

LOCATION 127 890 101 1137 550 905 551 1037 557 557 557 557 557 557 557 5	NO. NO	N DIMENSIONAL COEFF(K) •5380F-05 •1883F-04 •3331F-03 •2654F-03 •1354F-03 •9057F-04 •1031F-04 •26977F-05 •6277F-05 •1529F-05 •1529F-05 •1529F-05 •1480F-04 •4932F-05 •1793F-05 •7622F-05 •1793F-05 •8967F-05 •8967F-05 •8967F-05 •8967F-05 •8967F-05 •4484F-06 •3138F-05 •4484F-05 •2690F-05 •2690F-05 •2690F-05 •2690F-05	H25	CONCENTRATION (PPB) 4024 1.4083 24.9136 19.8504 10.1264 6.7733 .7712 .7042 11.4341 .6036 1.3748 1.1065 .3688 .0335 .3688 .1341 1.9113 .5365 .5700 .1341 .0671 .7377 .2012 .0335 .2347 .0335 .2347 .0335 .2347 .2012
64		•1121F-04	a algen an radiance	.8383

Table 4.2-8 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

LOCATION NO. 1 7 7 9 10 11 13 57 56 19 20 21 22 23 25 60 58 31 32 33 34 35 7 63 62	NON DIMENSIONAL COEFF(K) 3587F-05 3138F-04 3605F-03 2331F-03 7891F-04 6905F-04 4484F-05 2690F-05 1255F-04 3228F-04 1103F-03 2618E-03 5291F-04 1255F-04 1255F-04 3228F-04 1255F-04 325F-04 325F-04 325F-04 325F-04 3268F-05 4484F-05 3587F-34 2690F-05 4484F-05 4484F-05 4484F-05 8967F-06 8967F-06 8967F-05	H2S CONCENTRATION (PPR) 1341 11736 134795 8.7181 2.9507 2.5819 1677 1006 4694 1.2071 4.1243 9.7911 1.9783 4694 2682 1677 0.0000 .3688 .2682 1.3412 1.0059 .1677 .1677 .1677 .1677 .1006		
61 43 45 46 47 49 64	.3587F-05 .2511F-04 .2690F-05 .8967F-05 .2690E-05 .1076F-04	.1341 .9389 .1006 .3353 .1006 .4024		
	a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity Aminoil Surface Releases			
---	---	---	--	--
LOCATION NO. 2 7 89 10 11 13 556 90 22 23 559 551 90 22 23 559 551 90 22 23 556 551 90 22 23 556 551 33 33 34 556 551 33 33 34 556 551 33 33 34 556 551 33 33 35 562 551 35 562 551 556 557 557 557 557 557 557 557	NON DIMENSIONAL COEFF(K) 4119F-05 1922F-04 4847F-03 3968F-03 2005F-03 1098F-03 1098F-03 2746F-05 0 2197F-04 1661F-03 2444F-03 1002F-03 3844F-04 2883F-04 2746F-05 1373F-05 3707F-04 1510F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-04 2197F-04 1510F-04 2197F-04 1510F-04 2197F-	H25 CONCENTRATION(PPB) 1016 4741 11.9539 9.7866 4.9441 2.7091 4402 0677 0.0000 55418 4.0975 6.0277 2.4720 9482 7111 0677 4064 0339 04402 0677 4064 8805 0677		

Table 4.2-9 Hydrogen Sulfide Condentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction

.

52

Table 4.2-10 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

LOCATION 1 2 7 8 9 10 11 157 56 9 20 223 260 58 37 323 34 35 62 4 56 58 37 56 58 57 58 58 57 56 58 57 56 58 57 56 58 57 56 58 57 56 57 57 56 57 57 56 57 57 56 57 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57	NO. NON	DIMENSIONAL COEFF(K) 1158F-05 6080F-05 4980F-04 4131F-04 1786F-04 1834F-05 5791F-06 5791F-06 2220E-05 7625F-05 1322F-04 6467E-05 1737F-05 1062F-05 1255F-05 1255F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1834F-05 1930F-06	H25	CONCENTRATION (PPB) •4103 2.1542 17.6436 14.6346 6.3257 3.8638 •6497 •2052 •2052 •7864 2.7012 10.9076 4.6844 2.2909 •6155 •3761 •4103 •4445 1.1284 •6497 •6497 •6497 •3077 •2735 •4103 •0684 0.0000
63 62 61 45 45 47 49 64		.1930F-06 0. 1930F-06 .5694E-05 .3861E-06 .2413F-05 .5791F-06 .6756E-06		0684 00000 0000 0684 20174 1368 8548 2052 2394

Table 4	.2-11 Hydrogen S Concentrat a 6.2 m/s Aminoil Su	ulfide Concentrations ion Coefficient for a Wind Speed and a 12.7 rface Releases	and Nondimensional 230° Wind Direction, m/s Exit Velocity
LOCATION NO 2 7 8 9 10 11 13 556 10 11 13 556 10 22 23 556 581 22 23 556 581 333 357 566 581 333 357 566 581 333 357 566 581 333 357 667 567 567 567 567 567 567 5	D. NON DIMEN	SIONAL COEFF(K) 7142F-05 1141F-03 1141F-03 3783F-04 2394F-04 1544F-05 9652F-05 8879F-05 1023F-04 1621F-04 1622F-03 1622F-05 7721F-06 5548F-05 8879F-05 2895F-05 2702F-05 2316F-05 1737F-05 2316F-05 1930F-05	H2S CONCENTRATION (PPB) 0.0000 1.2651 20.2080 20.9261 6.7018 4.2399 .2735 .1710 1.8122 27.6621 2.8727 1.8806 .6497 .1368 .2735 .1710 .9916 1.2309 1.5729 .5129 .3077 .4787 .4103 .3419 1.9832 .6497 2.0516 .2052 .0342 .2394 .7864

Tabl	e 4.2-12	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 9.4 m/s Wind Speed and a 12.7 Aminoil Surface Releases	and Nondimensional 230° Wind Direction, m/s Exit Velocity
LOCATION 12789 101113769 1012769 1012789 10127769 10127769 10127769 10222226558 1233455732666435664464 444964	NO.	NON DIMENSIONAL COEFF(K) 4528F-05 1479E-04 3601F-03 3601F-03 3607F-03 1841F-03 9750E-04 2415F-04 2415F-04 1721E-04 1941F-03 6037F-06 3351F-04 2626F-04 3320F-05 87415F-05 1509F-05 5131F-05 6037F-06 1509F-05 5131F-05 6037F-06 1509F-05 5131F-05 6037F-06 1509F-05 513F-05 1992F-04 3924F-05 5735F-05 4528F-05 6037F-05 1298F-04 3924F-05 5735F-05 4528F-05 5037F-05 3834F-04	H2S CONCENTRATION (PPB) 5290 1.7281 42.0734 42.1439 21.5128 11.3912 2.8213 .2469 .5643 2.0102 0.0000 22.6766 .0705 3.9146 3.0682 .3879 .4585 .2821 .9522 .1763 .5995 .0705 .1763 .2621 2.3276 1.6928 .4585 .4585 .2821 2.3276 1.6928 .4585 .4585 .2821 .26701 .5290 .7053 1.5165 .2821 4.4789

Table 4.2-13Hydrogen Sulfide Concentrations and Nondimensional
Concentration Coefficient for a 210° Wind Direction,
a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity--
Aminoil Surface ReleasesLOCATION NO.NON DIMENSIONAL COEFF(K)H25 CONCENTRATION (PPR)
.2572
.2675F-05
.2000
.2286
.2000
.2286
.2000
.2286
.2000
.2286
.2286
.1143
.2286
.2286
.2286
.1960F-03
.146594
.5715

8	. 20/21-02	.2000
9	-3057F-05	.2286
10	.26755-05	.2000
11	-1528F-05	.1143
13	-3057F-05	.2286
57	1960E-03	14.6594
54	76425-05	5715
10	20215-05	2020
17	• JOC 1 F - 11 J	• CC70
20	• 3 3 4 4 F = U 3	• + 0 0 1
51	• 64951 - 05	• 485#
55	•4967F-05	.3715
25	.80245-05	.6001
70	.4279E-04	3.2005
71	.9552F-05	.7144
60	.1456F-03	10.8874
59	2675F-05	.2000
58	45858-05	3429
31	76428-05	5715
32	87881-05	6572
23	53495-05	4001
35	1337F-04	1.0002
73	76425-06	0572
76	0	0 0000
43	22165-04	1 6574
03	11095-04	1.0074
26	• 1 1 1 2 1 2 2	• 0 6 0 /
21	• 4767F=00	• 3464
43	· /042F=05	• 2 (1 2
44	• 1910F = 07	•1429
41	• 4203F = 05	• 3143
64	·3821F=05	.2858
75	• 2522F-04	1.8860
76	.1796F-04	1.3431
77	.1528E-05	.1143

Table 4.2-14	Hydrogen Sulfide Concentrations and Nondimensional
	Concentration Coefficient for a 210° Wind Direction,
	a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity
	Aminoil Surface Releases

LOCATION NO. 7 8 9 10 11 13 57 56 19 20 21 22 25 70 71 60 59 58 31 32 33 35 73	NON DIMENSIONAL COEFF(K) 6113F-05 0 7642F-05 1223F-04 3821F-05 9170F-05 8865F-04 5349E-05 6113F-05 1223F-04 1299F-54 1452F-04 1528F-04 1528F-03 3439F-03 1405F-04 1528F-64 1910F-04 1528F-64 1910F-04 1528F-64 1970F-04 1576F-04 1670F-04 1578F-64 1970F-04 1578F-64 1970F-04 1578F-64 1970F-04 1578F-64 1970F-04 1578F-64 1970F-04	H2S CONCENTRATION (PPB) 2286 0.0000 2858 4572 1429 3429 3.3148 2286 4572 4458 5429 4286 57152 1.2859 5.0579 6001 4001 5715 7144 6287 8858 5144
56 31 32 335 73 74 63 62 61 43 44 47 64 75 76 77	1070F-04 1528F-04 1410F-04 1481F-04 2369F-04 1376F-04 6878F-05 3362F-04 1223F-04 1405F-04 1405F-04 1410F-04 1299F-04 6113F-05 3210F-04 9629F-04 2827E-04	4001 5715 7144 6287 8858 5144 2572 1 2573 4572 6001 6001 7144 4858 2286 1 2002 3 6005 1 0573

Table 4.2-15 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wild Direction, a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

.

LOCATION NO. 7 8 9 10 11 13 57 56 19 22 27 71 60 59 8 33 33 35 73 66 71 66 75 76 76	NON DIMENSIONAL CONFE(K) 8024F + 05 1146F + 04 0 45+5F + 05 1146F + 04 0 8024F + 05 1536F + 03 1146F + 04 6878F - 05 9170F + 05 1376F - 04 146F - 04 12834F - 04 2281F + 03 1146F - 04 2281F - 03 1146F - 04 2263F - 04 2263F - 04 8024F - 05 3897E - 04 8024F - 05 3897E - 04 8024F - 05 1834F - 04 2522F - 04 8024F - 05 1834F - 04 2573F - 04 275F - 04	H25 CONCENTRATION (PPB) 1979 0.0000 1131 2H27 0.0000 1979 3.7884 2827 1696 22462 3393 2627 3675 2.8555 5089 5.6261 2827 4523 5089 5.6261 2937 4523 5089 5.6261 2979 4523 5089 5.6264 1979 4523 5654 1979 4523 6228 5377 5654 1414 6785 1.3005
76 77 77	-2731-04 -52736-04 -91706-05	1.3005

Table 4.2.16 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

.

Table	4.2-17	Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 12.7 m/s Exit Velocity Aminoil Surface Releases	
LOCATION 89 101 1376 101 1376 101 1376 100 11376 100 11376 100 11376 100 11376 100 11376 100 11376 100 11376 100 113776 100 113776 100 113776 100 113776 100 113776 100 113776 100 11377777777777777777777777777777777	NO.	NON DIMENSIONAL COEFF(K) H2S CONCENTRATION(PPB) 6580F-06 1166 9870F-06 1457 6580F-06 1457 6580F-06 00000 3290F-06 1166 9870F-06 1166 9870F-06 1166 9870F-06 2331 1316F-05 2331 1316F-05 2331 1481F-05 2331 1481F-05 2623 1310F-05 2623 1310F-05 2623 1310F-05 2623 1495F-06 374 8225F-06 374 8225F-06 1457 3200F-05 6411 2303F-05 6411 2303F-05 6411 2303F-05 6411 2303F-05 5537 1810F-05 5537 3290F-05 5537 3290F-0	

Table 4.2-18 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

LOCATION 7 8 9 10 11 13 556 120 222 56 120 222 56 120 222 56 120 222 57 160 58 133 53 7 7 66 58 133 57 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO. NON	DIMENSTONAL 0 2468 2468 2961 2961 2961 2961 2961 2961 2961 2961	COEFF(K) H29 -06 -06 -06 -06 -06 -06 -06 -06	5 CONCENTRATION (PPB) 9.0000 0288 0288 0287 3460 2883 0577 15.4528 1153 1730 1730 3171 3460 3.8920 6054 24.0153 1441 2883 4324 3748 7784 8649 6343 2883 40650 4613 6631 3748 1.0379 5189 7496 2.6812 4.3533 4901
--	---------	--	--	--

Run #	Photo #	Wind Direction	Wind Speed (m/s)	Exit Velocity (m/s)
1	3	250°	3.1	20.6
2	8	250°	6.2	20.6
3	13	250°	9.4	20.6
4	4	250°	3.1	63.1
5	9	250°	6.2	63.1
6	14	250°	9.4	63.1
7	5	250°	3.1	111.7
8	10	250°	6.2	111.7
9	15	250°	9.4	111.7
10	3A	230°	3.1	20.6
11	4A	230°	3.1	63.1
12	5A	230°	3.1	111.7
13	8A	230°	6.2	20.6
14	9A	230°	6.2	63.1
15	10A	230°	6.2	111.7
16	13A	230°	9.4	20.6
17	14A	230°	9.4	63.1
18	15A	230°	9.4	111.7
19	31A	210°	3.1	20.6
20	32A	210°	6.2	20.6
21	33A	210°	9.4	20.6
22	34A	210°	3.1	63.1
23	35A	210°	6.2	63.1
24	36A	210°	9.4	63.1
25	37A	210°	3.1	111.7
26	38A	210°	6.2	111.7
27	39A	210°	9.4	111.7

Table 5.1-1 Summary of Photographs Taken for Aminoil Stack Release

Table 5.2-1 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Releases

LOCATION NO. 2 7 8 9 10 11 12 13 14 19 20 21 22 23 24 25 26 31 32 33 4 35 36 37	NON DIMENSIONAL COEFF(K) 2657F-05 1328F-05 8956F-06 9299F-05 1771F-05 1240F-04 1771F-05 8856F-06 1771F-05 1328F-05	H25 CONCENTRATION (PPB) 1.3861 .6931 .4620 0.0000 4.8514 .9241 .64686 .9241 .6931 .6931 1.1551 .9241 .6932 .6931 .6932
38 43 45 46 47 48 49	-2657F-05 -1328F-05 0- 0- 0-	1.3861 .6931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

	Table (5.2-2	Hydrogen Su Concentrat a 6.2 m/s M Aminoil Sta	ulfide Cor ion Coeffi ∦ind Speed ack Releas	ncentrations icient for a 1 and a 20.6 ses	and 1 250° m/s l	Nondimensional Wind Direction, Exit Velocity
L 111111122222233333334444444444444444444	ATION N	ΥΩ .	NON DIMEN	SINTERPOLATION SINTER	COEFF(K) 00544400000000000000000000000000000000	Η25	CONCENTRATION (PPB) 1.8482 3.4653 18.2506 11.5510 59.67955 11.5510 6.0065 .8317 .9241 .9221 .92538 .900000 .900000 .900000 .9000000 .90000000000
49				11 e			0.0000

Table 5.2-3 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Releases

LOCATION 12 7 89 10 11 12 14 90 22 22 23 45 61 23 33 35 56 7 88 445 647 89 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 33 35 56 7 88 34 56 7 88 7 84 56 7 88 7 84 56 7 8 8 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	NO. NON	DIMENSIONAL COEFF(K) 5091F-03 3558F-03 7136F-04 2752F-04 766F-03 2713F-03 2713F-03 2713F-03 2713F-03 2516F-03 3774F-03 2556F-04 5497F-05 5497F-05 1022F-03 2162E-04 8845F-05 3149E-04 3149E-04 3149E-04 3752F-04 4128F-04 3742F-04 3752F-04 3742F-04 3757F-04 3757F-04 3757F-05 3757F-0	H2S CONCENTRATION (PPB) 87.5902 61.2117 12.2761 4.7346 13.1893 18.7693 46.6697 43.2878 64.9317 4.3964 4.3964 4.3964 4.3964 4.3964 1.1837 1.0146 17.5857 3.7200 4.3964 1.5218 5.4110 20.6293 5.9183 4.7346 12.8511 8.1165 7.1019 5.7492 6.5946 5.0728 15.8947 104.1613 1.0146
---	---------	--	---

Table 5.2-4	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 3.1 m/s Wind Speed and a 63.1 Aminoil Stack Releases	and Nondimensional 250° Wind Direction, m/s Exit Velocity
LOCATION NO. 1 27 8 9 10 11 12 13 14 19 20 221 223 225 231 332 333 345 37 38 43 445 445 445 445 445 447 48 49	NON DJMENSIONAL COEFF(K) 2953F-06 5706F-06 1141F-05 8559F-06 2568F-05 1426F-05 1426F-05 1426F-06 2453F-06 271325-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 2853F-06 1569F-05 2455F-05 2453F-06 0 2353F-06 1569F-06 0 1426F-05 1426F-05	H2S CONCENTRATION (PPR) .4620 .9241 0.0000 .4620 1.8482 1.3561 4.1584 2.3102 .2310 .4620 .6931 .9241 .4420 .6931 0.0000 .6931 0.0000 .4620 .9241 .4420 .9241 .4420 .9241 .4420 .9241 .4420 .9241 .4620 .9241 .3861 .3.9273 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .4620 .9241 .3861 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.937 .3.9378 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9273 .3.9378 .3.93788 .3.92738 .3.92788 .3.92788 .3.92788 .3.92788 .3.93788 .3.937888 .3.9378888888888888888888888888888888888

Table 5.2-5	Hydrogen Sulfide Concentrations and Nondimensional
	Concentration Coefficient for a 250° Wind Direction,
	a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity
	Aminoil Stack Releases

LOCATION NO. NON 2 7 8 10 11 12 13 14 19 20 21 22 23 24 25 26	DIMENSIONAL COEFF(K) 2453F-05 2853F-05 3423F-05 3423F-04 1027F-04 1027F-04 1598F-04 6847F-05 1141F-05 1141F-05 1141F-05 1141F-05 1141F-05 1141F-05 5706F-06 8559F-06	H2S CONCENTRATION (PPB) 2.3102 2.3102 6.9306 2.7722 20.3297 .8.3167 12.9371 5.5445 .9241
32 33 34 35 36 37	.2282F-05 1/12E-05 1555F-04 1141F-05 .1141E-05	1.9482 1.3661 13.3991 .9241 .9241
-38. 43 44 45 46	0. 0. 5706F-06 2853E-06	0.0000 0.0000 4420 .2310
47 48 49	.8559E-06 0.	0.0000

	a 9.4 m/s Wind Speed and a 63.1 Aminoil Stack Releases	l m/s Exit Velocity
LOCATION NO. 12 7 8 9 10 11 12 13 14 19 20 22 23 23 23 33 34 35 36 37 38 44 45 46 46 48 49	NON DIMENSIONAL COEFF(K) 1615E=04 8991F=04 2849F=05 4749F=04 1266F=04 1266F=04 1266F=04 1266F=05 12849F=05 12849F=05 12849F=05 12849F=05 12849F=05 12866F=05 15886F=05 15886F=05 15886F=05 127538F=06 15888F=04 15888F=04 15883F=05 1588555555555555555555555555555555555	H2S CONCENTRATION (PPB) 8.6237 48.0224 1.5218 2.5364 13.6965 6.7637 39.3987 2.4688 1.5218 1.5218 1.5218 1.5218 1.5218 1.5218 1.5218 1.5218 1.5218 2.4688 6.764 1.5218 1.5218 2.4688 6.764 1.5228 5.5801 1.1837 18.7693 14.0929 .8455 .1691 1.0146 .8455 1.4837

Table 5.2-6 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Releases

68

Table 5.2-7 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 250° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Releases

LOCATION NO.	NON DIMENSIONAL COEFF (K)	H25 CONCENTRATION (PPB)
1	0.02015-07	2310
5	8281F-07	.2310
B	8241F-07	.2310
9	-24H4F-06	.6931
10	.1656F-06	
11	.4968F=05	1 3861
12	16565-06	4620
13	1656E-06	4620
19	.1656F-96	.4620
20	• 3312F-06	.9241
21	• 3712F-06	9241
22	1656F-06	4620
24	1656F-06	.4620
25	.1656F-06	.4620
26	-1656F-06	+4620
31	• 8281F -07	- 2310
32	16565-06	4620
33	3312F-06	.9241
35	.3312F-06	.9241
36	.4968F-06	1.3861
37	•3312E-06	.9241
38		d an
43	4140F-06	1,1551
45	.1656F-06	•4620
46	14545-04	4430
41	• 1070F = 10	0.0000
49	8281F-07	.2310

	Concentration Coefficient for a 250° a 6.2 m/s Wind Speed and a 111.7 m/s Aminoil Stack Releases	Wind Direction, Exit Velocity
LOCATION NO. 2 7 8 9 10 11 12 23 14 19 22 22 23 23 23 23 23 23 23 23	NON DIMENSIONAL COEFF(K) H2S 5962F - 05 3643F - 05 6624F - 06 2319F - 05 6293F - 05 6956F - 05 3312F - 06 7312F - 06 8281E - 06 9937F - 06 2981E - 06 3312F - 06 3312F - 06 9937F - 06 1656F - 05 4306F - 05 4637F - 05 6624F - 06 1557F - 06 1987F - 06 3312F - 06	CONCENTRATION (PPB) 8.3167 5.0824 .9241 3.2343 8.7788 9.2408 9.7028 4.6204 1.3861 .9241 .4620 2.5412 0.0000 1.1551 0.0000 1.1551 0.0000 .4620 2.3102 6.0065 6.4686 .9241 21.7159 2.7722 1.3861 1.3861 1.3861

Table 5.2-8 Hydrogen Sulfide Concentrations and Nondimensional

Ta	JIC J.2 J	Concentration Coefficient for a 9.4 m/s Wind Speed and a 111 Aminoil Stack Releases	a 250° 1.7 m/s	Wind Direction, Exit Velocity
LOCATIO 7891112349012234561234567883456788345678833333333333333333333333333333333333	N NO.	NON DIMENSIONAL COEFF(K) 2733F - 04 5167F - 04 9142F - 04 1267F - 04 3950F - 04 4347F - 04 6682F - 04 6682F - 04 3031F - 04 3031F - 04 3473F - 05 1930F - 05 2981F - 05 1987F - 05 1987F - 05 1987F - 05 1987F - 05 3975F - 05	H2S	CONCENTRATION (PPE) 25.1418 47.5409 84.1109 11.6567 36.3414 18.2850 39.9984 61.4832 6.3997 6.6283 23.5419 27.8846 3.1999 17.8278 1.3714 2.7427 2.7427 1.8285 20.1135 1.3714 9.1425 15.5422 4.5712 3.6570 26.9703 5.9426 0.0000 9.5996 5.4855 4.5712

Hydrogen Sulfide Concentrations and Nondimensional Table 5 2-9

T	able 5.2-1	0 Hydro Conce a 3.1 Aminoi	ogen Sulfic entration (m/s Wind S il Stack Re	le Concentra Coefficient Speed and a Pleases	tions and for a 230 20.6 m/s	Nondimensional "Wind Direction, Exit Velocity	
L 12789011376901235098123457321356794	ON NO.	NON DI	MENSI0893 1119 119 119 119 119 119 119 119 119	L95069067855589012291292724 0665544F C96544556665455566666667 665565 FEFFFFFFFFFFFFFFFFFFFF C9654455666545556666667 665565 FEFFFFFFF C965445566545556666667 665565 FFFF C965445566555559901292724 06656565 FFF C9655655559901292724 066565554 FFF C9555559901292724 066565555 FFF C9555559901292724 0665555 FFF C955555555555555555555555555555	Η25	CONCENTRATION (PF 3077 9574 6.1547 6.1589 3.0774 2.8380 4787 1710 2394 4103 2.8722 5.051 1.1626 1.2309 2052 1368 3077 6839 7522 3761 2052 1710 1710 2052 2052 1710 2052 20	

,

Table 5.2-11 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Releases

LOCATION NO.	NON DIMENSIONAL COEFF(K)	H25 CONCENTRATION (PPB)
127 89 1011376990122350981233457 3333333333333333333333333333333333	5193F-05 8117F-04 5780F-04 1735F-04 9566E-05 1367F-05 1367F-05 65599F-05 2583F-04 4318F-04 1015F-03 1503F-05 5466F-06 1367F-06 1307F-05 6833F-05 1093F-05 6833F-06 1093F-05 8199F-06	$ \begin{array}{c} 1 \cdot 3546 \\ 21 \cdot 1738 \\ 15 \cdot 0783 \\ 4 \cdot 5271 \\ 2 \cdot 4952 \\ 3565 \\ 3565 \\ 1 \cdot 7110 \\ 6 \cdot 7371 \\ 11 \cdot 2642 \\ 26 \cdot 4850 \\ 3921 \\ 1 \cdot 1407 \\ 1426 \\ 0 \cdot 0000 \\ 0713 \\ 0356 \\ 3921 \\ 3208 \\ 4634 \\ 2852 \\ 1782 \\ 2852 \\ 2139 \\ \end{array} $
63 62 61 45 45 45 45 45 45 45 45 45 45 45 45 45	.8199F-06 .2596F-05 .2050F-05 .8336E-05 .1230F-05 .3416F-05 .6833E-06 .8199F-06	2139 6773 5347 2.1744 3208 8912 1782 2139

Table 5.2-12	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 9.4 m/s Wind Speed and a 20.6 Aminoil Stack Releases	and Nondimensional 230° Wind Direction, m/s Exit Velocity
LOCATION NO. 1 7 8 9 10 11 13 57 56 19 20 221 223 223 223 223 223 223 223	NON DIMENSIONAL CGE+F(K) 9438F+05 3264F-04 2438F+05 3264F-04 $2418F-054573F-049713F-049241F+0645309F-051628F-051628F-0516848F-041317F-042343F-052163F-052163F-052163F-052163F-052163F-052163F-051022F-054522F-051022F-051022F-051022F-051022F-051022F-051022F-051022F-051022F-051022F-051022F-051020F-055309F-055309F-055309F-05$	H2S CONCENTRATION (PPR) 1.623H 5.6156 41.675 16.7116 7.7807 1.5900 1.0487 .7104 2.6046 .9717 .9767 .9767 .9767 .97767 .97767 .9777 .9767 .9777 .9767 .9777 .9767 .9777 .9767 .97781 .6457 .5766 .3721 .6425 .7104 .6825 .7104 .6825 .9134 .7442 1.4208 .2030 .9134

Table 5.2-13	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 3.1 m/s Wind Speed and a 63.1 Aminoil Stack Releases	and Nondimensional 230° Wind Direction, m/s Exit Velocity
LOCATION NO. 1 2 7 8 9 10 11 13 57 56 19 221 222 225 60 58 31 322 33	NON DIMENSIONAL COEFF(K) 1056F-06 3167F-06 185kF-05 1304F-05 5067F-06 1267F-06 1267F-06 1267F-06 1056F-06 3378F-06 4434F-05 4011F-06 2534F-06 1478F-05 4011F-06 1699E-06 2534F-06 1699E-06	H2S CONCENTRATION (PPB) .1710 .5129 3.0090 2.1200 .8206 .5129 .2052 .2052 .2052 .1710 .5471 .7181 2.3935 .6497 .5471 .4103 .3419 .2735 .0342 .3419 1.0600 .7864
34 35 37 63 62 61 43 45 46 47 49 64	.6334F-07 .2534F-06 .2745F-06 .1699E-06 .8445F-07 .3800E-06 .8445E-07 .3800E-06 .8445E-07	.1026 .4103 .4445 .2735 .1368 0.0000 .1026 .6155 .1368 0.0000 .1710

	Table 5.2-14	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 6.2 m/s Wind Speed and a 63.1 Aminoil Stack Releases	and Nondimensional 230° Wind Direction, m/s Exit Velocity
LO(2789 101 137	CATION NO.	NON DIMENSIONAL COEFF(K) .2111E-06 .4223F-06 .6080F-05 .1790F-04 .5278F-05 .3378F-05 .6334F-06	H25 CONCENTRATION(PPB) .1710 .3419 4.9238 14.4978 4.2741 2.7354 .5124 0.0000
56901222		5489F-06 3125F-05 2322F-05 6334F-06	44465 2.5303 1.5806 .5129
222655 3333336664 4444 6		.4223F-06 2111F-06 .4223F-06 .2111F-06 .2111F-06 .22555-06 .23555-06 .5334F-06 .5334F-06 .1522F-06 .2449F-05 .4223F-06 .2449F-06 .5334F-06 .5067F-06 .1056F-05	- 3419 - 1710 - 3419 - 1710 - 1710 - 1026 - 2394 0.0000 0.0000 - 1710 - 4787 - 5129 - 4445 1.2651 - 3419 1.98322 - 5129 - 7864 - 4103 - 8548

	Concentration Coefficient for a a 9.4 m/s Wind Speed and a 63.1 Aminoil Stack Releases	m/s Exit Velocity
LOCATION NO. 12 7 8 9 10 11 13 57 56 19 20 21 22 23 25 60 58 31	NON DIMENSIONAL COEFF(K) .7924F-06 .8584F-05 .8194F-04 .7336E-04 .3579F-04 .1809E-04 .4358E-05 .3962E-06 .7263F-06 .4820F-05 .1010F-04 .4662F-04 .4662F-04 .5018F-05 .5943F-06 .1321F-05 .7263F-06 .2377F-05	H2S CONCENTRATION (PPB) 4232 4.5847 43.7662 39.1815 19.1146 9.6631 2.3276 2116 .3879 2.5745 5.3956 74.8984 3.2093 4.5494 2.6803 .3174 .7053 .3879 1.2696
123345 3375 3375 3376 66 435 66 44 44 44 44 44 44 44 44 44 44 44 44	.1255F-65 .1519F-05 .5282F-06 .9904F-06 .3904F-06 .2377E-05 .2377E-05 .2047F-05 .1056F-05 .1519F-05 .5282E-06 .1981E-05	.6701 .8111 .2821 .5290 1.2696 .3879 1.0933 .5643 .8111 .2821

Table 5.2-15 Hydrogen Sulfide Concentrations and Nondimensional

Table 5.2-16 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Releases

LOCATION NO.	NON DIMENSIONAL COEFF (K) H2	S CONCENTRATION (PPB)
2	-6128F-07-	1710-
7	+6005E-06	1.6755
8	.3064E-06	•8548
.2	• J / 16F = 06	• 4787
11		
13	12265-06	- 3419
<u>57</u>	1593F+06	4445
56_	_1593E-06	
19	•3432F→06	.9574
50	•7721F-06	2.1542
22	23205-06	+ 1 H 6 4 - 6 4 0 7
53	22066-06	
25	2206F-06	6155
60	.8579F-07	2394
59	<u>1961E=06</u>	
58	•9805F=07	+2735
32	- 39725 TUD 23245 = 0.6	1.0942
35	23291-06	6497
34	-2206F-06	6155
35	.1716F-06	4787
37	+1593F-06	4445
63	<u>9805E=0/</u> _	.27.35.
62 41	▲ J 105F = 05	.30//
43	98055-07	2735
45	1716F-06	4787
46	.1348E−06	.3761
47	+1103E-06	.3077
49	•9805F-07	.2735.
D 4.		

	Concentration Coefficient for a 6.2 m/s Wind Speed and a 111 Aminoil Stack Releases	a 230° .7 m/s	Wind Direction, Exit Velocity	
LOCATION NO. 27 89 10 11 13 57 56 19 20 22 22 22 23 25 60 58 31 32 23 33 4 55 61 43 45 46 47 49 64	NON DIMENSIONAL COEFF(K) 4412F-06 6863F-06 1405F-04 8498F-05 2696F-06 1314F-07 1226F-06 1359F-04 9314F-06 48754F-07 9305E-07 1226F-06 6863F-06 5393F-06 1961F-06 1961F-06 1961F-06 1961F-06 1226F-06 1961F-06 1226F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 126 126F-06 12	H2S	CONCENTRATION (PPB) .6155 .9574 19.5926 11.7282 3.7612 2.5303 .1026 .1710 .2735 2.5303 2.4961 18.9429 1.2993 .6839 .1026 .1368 .1710 .9574 .1368 .1710 .9574 .1368 .17522 .2735 .2735 .2394 .6155 .1710 1.5729 .2735 .4103 .3419 .8206	

Table 5.2-17 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction,

Table 5.2-18	Hydrogen Sulfide Concentrations and Nondimensional
	Concentration Coefficient for a 230° Wind Direction,
	a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity
	Aminoil Stack Releases

	LOCATION NO. 1 7 8 9 10 11 13 57 56 19 20 22 22 22 22 22 22 22 22 23 33 3	NON DIMENSIONAL COE 6884F-06 4130E-05 2574F-04 1656F-04 1656F-04 1656F-05 3939F-05 6119F-06 6884F-05 1568F-05 1568F-05 1568F-05 1568F-05 2295F-06 2295F-06 2295F-06 2295F-06 2295F-06 4207F-06 4207F-06 4207F-06 4207F-06 5354F-06 0 5354F-06 0 8413F-06	FF (K) H2S	CONCENTPATION(PP8) .6334 3.8001 23.6404 15.2367 6.2367 6.2367 .6330 .5630 .5630 .6334 2.6390 1.4426 21.118 .9852 .1407 .2111 .2111 .2111 .3270 .4574 U.000U 0.0000 .3870 .3870 .3870 .3870 .3870 .3877 0.0000 .7741
--	---	---	------------	---

	a 3.1 m/s Wind Speed and a 20.0 Aminoil Stack Releases	6 m/s	Exit Velocity
LOCATION NO. 8 9 10 11 13 57 56 19 20 21	NON DIMENSIONAL COEFF(K) .5450E-07 .1635F-06 .5995F-06 .4360F-06 .5995F-06 .2060F-04 .3325F-05 .6540F-06 .5450E-06 .1036E-05	H2S	CONCENTRATION (PPB) 0.0000 0284 0853 3128 2275 3128 10.7478 1.7344 .3412 .2843 .5402
2250 70 71 60 558 332 335 335 335 73 74	.5450F-07 .1363F-05 .6540E-06 .7794E-05 .1853F-05 .1145E-05 .1853F-05 .1363F-05 .3325E-05 .8175F-06 .1526E-05		.0284 .7108 .3412 4.0659 .6667 .5971 .6255 .9467 .7108 1.7344 .4265 .7961
53 661 44 47 643 75 76 77	.4905E-06 .3915F-06 .7085F-06 .1635E-05 .3815E-06 .6540E-06 .2725E-05 .1199E-05 .4360E-06		-2559 -1990 -3696 -8530 -1990 -3412 1-4217 -6255 -2275

Table 5.2-19 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction

Table 5.2-2	Hydrogen Sulfide Concentr Concentration Coefficient a 6.2 m/s Wind Speed and Aminoil Stack Releases	ations and N for a 210° a 20.6 m/s E	ondimensional Wind Direction, xit Velocity	
LOCATION NO. 7 8 9 10 11 13 57 56 19 20 22 25 70 71 60 59 58 32 58 32 57 56 19 20 22 27 70 71 60 59 58 32 57 57 71 60 59 58 37 37 57 77 71 60 59 58 37 77 77 60 57 77 77 77 77 77 77 77 77 77 77	NON DIMENSIONAL COEFF 3706E-05 3270F-05 2616F-05 34#8F-05 3379F-05 3474F-04 3052F-05 3597E-05 36540F-05 36540F-05 36540F-05 36540F-05 3161F-05 3161F-05 3164F-05 3164F-05 32725F-05 1057F-05 1057F-05 1057F-05 1068E-04 3281F-05 1068E-04 3281F-05		CONCENTRATION 9667 8530 6824 0.000 9099 9383 7393 1.0236 1706 9049 9.4683 10.4350 7108 8246 9099 1.3079 1.2226 .7961 1.1089 2.7560 1.1089 2.7580 1.1089 2.75867 .9099 55687 .9099 .5687 .9099 .5687 .2665 8.5584 2.6443	

.

	Concentration Coefficient for a 9.4 m/s Wind Speed and a 20. Aminoil Stack Releases	a 210° Wind Direction, 6 m/s Exit Velocity
LOCATION NO. 7 8 9 10 11 13 57 56 19 20 21 22 57 70 71 60 59 58 31 32 35 73 74 63 62 61 43 44 47 64 75 76 77	NON DIMENSIONAL COEFF(K) 1962F-05 1635F-05 1962F-06 1962F-05 1962F-05 2943F-05 2943F-05 3270F-05 3270F-05 3123E-04 3761F-05 3673E-04 4742F-05 2943F-05 2943F-05 5559F-05 2943F-05 5559F-05 2371F-04 5069F-05 52371F-04 5069F-05 52371F-04 5069F-05 52371F-04 5237F-05 1308F-04 1243F-04	H25 CONCENTRATION (PPB) 3376 2813 1407 1407 3376 18.1724 5064 4501 5626 8158 0.0000 4792 5.3730 6470 14.8530 8158 5064 6199 5064 6199 5064 6470 14.8530 8158 5064 6479 5064 6035 2020

Table 5.2-21 Hydrogen Sulfide Concentrations and Nondimensional

Table 5.2-22	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 3.1 m/s Wind Speed and a 63.1 Aminoil Stack Releases	and Nondimensional 210° Wind Direction, m/s Exit Velocity
LOCATION NO. 7 8 10 11 13 57 56 19 20 21 22 25 70 71 60 59 58 31 32 33 55 73 74 63 62 61 43 44 44 47 64 75 76 77	NON DIMENSIONAL COEFF(K) .3511F-07 .1229F-06 .1053F-06 .1229F-06 .1229F-06 .1246F-05 .6320F-06 .1756F-06 .2242F-06 .2242F-06 .2458E-06 .2458E-06 .3687F-06 .2458F-06 .4214F-06 .425F-06 .426F-06 .425F-06	H2S CONCENTRATION(PP8) 0569 1990 1706 1990 2459 4834 20188 10236 2843 00000 3696 3412 4549 35971 5971 59667 4549 3981 6824 9952 99952 99952 99952 99959 9099 1706 1706

• •

.

	a 6.2 m/s Wind Speed and a 63.1 Aminoil Stack Releases	m/s Exit Velocity
LOCATION NO. 7 8 9 10 11 13 57 56 19 20 21 22 22 270 71 60 59 8 31 32 33 35 73 74 63 66 61 43 44 47 64 75 76 77	NON DIMENSIONAL COEFF(K) 3998F-06 1090F-06 1090F-06 17269F-07 7342F-05 1890F-05 4725F-06 5452F-06 1272F-05 1272F-05 1090F-06 1454F-06 3998F-06 1454F-06 1381E-05 6179F-06 7269F-06 8359F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06 8559F-06	H2S CONCENTRATION (PPR) 3237 4120 0483 0883 0589 0.0000 5.9450 1.5304 3826 0.0000 4415 2060 9124 1.0301 4.8267 0883 1177 3237 4415 6769 1.1184 5003 5896 8829 5003 5298 6769 1.7659 3.1491 5886

Table 5.2-23 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction

Table 5.2-24	Hydrogen Sulfide Concentrations and Nondimension Concentration Coefficient for a 210° Wind Direct a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocit	al ion, y
	Aminoil Stack Releases	,

LOCATION 7 8 9 10	ND. NON	DIMENSIONAL COEFF(K) .2159F-06 .1943F-05 .1619F-06 0.	H25	CONCENTPATION(PPA) .1153 1.0379 .0865 0.0000
11 13 57 59 20 21		2159F-06 2191F-04 3239F+06 1403E-05 1511F-05		•1153 11•6473 •1730 •0000 •7496 •8072
2250 2250 1098 1235 335 3432 134 66644		2969F-05 1457F-04 1619F-05 2715F-06 2213E-05 1026F-05 2969F-05 37781F-05 9716F-06 9716F-06 9716F-06 5369F-06 53985-07 1511F-15	•	1.5856 7.7841 .8649 14.5014 .0865 1.1820 .5478 1.3836 2.0181 .95189 .5189 3.40901 .3748 .0288 .5072
47 64 75 76 77		1134F-05 1970F-04 3832F-05 6531E-05 0		10.5224 2.0469 3.4884 0.0000

Table 5.2-25 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 3.1 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Releases

LOCATION NO. 78 90 10 11 13 57 56 19 20 21 22 22 25 70 71 60 59 8 31 32 33 35 73	NON DIMENSIONAL COEFF(K) .8356F-07 .2089F=07 .3133F-07 .7311F-07	H25 CONCENTRATION(PPB) 2331 -0583 0874 .2040
	6261E-07. 3969F-06 3342E-06 2611E-06 2611E-06 2617E-06 2716E-06 1253E-06 1253E-06 1253E-06 1253E-06 3133E-06 3447E-06 1462E-06 1358E-06	1748 1073 9325 00000 7285 6994 4662 7576 3497 5828 3.1471 1748 3788 .3497 .5828 3.1471 .1748 .3788 .3497 .5828 .3788
62 61 43 44 47 64 75 76 77	- 1671E-06 - 2420F-06 - 1253F-06 - 1380F-06 - 1253E-06 - 9400F-07 - 5013F-06 - 2089E-06 - 2089E-07	- 4662 7868 3497 - 5245 - 3497 - 2623 1 - 3987 - 5828 - 0583
	Concentration Coefficient for a 2 a 6.2 m/s Wind Speed and a 111.7 Aminoil Stack Releases	10° Wind Direction, m/s Exit Velocity
--	--	---
LOCATION NO.	NON DIMENSIONAL COEFF(K) 2298F-06 .1253F-06 .6267E-07	H25 CONCENTRATION(PPB) .3205 .1748 0.0000 .0874
11 137 556 120 1222 771 558 1222 771 558 1222 771 558 3353 74 323 533 74 323 537 767 77	6267F-07 2757F-05 2089F-06 1044F-06 3342F-06 4178F-06 4178F-06 4178F-05 6016F-05 1295E-05 1671F-06 1880F-06 1880F-06 1880F-06 1880F-06 1880F-06 1880F-06 1880F-06 1880F-06 1885F-06 1855F-	.0874 3.8465 .2914 .1457 .4662 .5828 .4954 .5828 10.4321 1.8067 8.3923 .2331 .2623 .1166 .6119 .4662 1.1365 .2040 .2623 2.7391 .1166 .3788 .1166 .3788 .1166 .3788 .1748 .0583 .1748 .1748 .1748 .1748 .1748 .1748

*

۰.

Table 5.2-26 Hydrogen Sulfide Concentrations and Nondimensional

	a 9.4 m/s Wind Speed and a 11 Aminoil Stack Releases	1.7 m/s Exit Velocity
LOCATION NO. 8 9 10 11 13 57 56 19 20 21 22 270 71 60 59 58 31 32 33 57 56 19 20 21 22 25 70 71 60 59 58 31 32 33 57 73 74 63 662 661 43 44 47 67 77 77 77 77	NON DIMENSIONAL COEFF(K) 3133F-06 4073E-06 9400F-07 9400F-07 0 2820F-06 1354F-04 4700F-06 2193F-066 3447F-066 6893F-066 2052F-04 3760F-066 6267F-066 1347F-055 7834F-066 1535F-055 3760E-066 7520F-066 3133F-066 5953E-055 2507F-066 3133F-066 5953E-066 3102F-066 3102F-055 3760F-	H25 CONCENTRATION (PPB) 2883 3748 0865 0865 0 0000 2595 12.4545 4324 2018 3171 6343 2595 7.3228 2595 18.8836 3460 5766 8937 1.2397 7.207 1.4127 3460 6919 3.5749 2306 8361 2483 5478 2018 3748 2695 1.2397 1.835 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2396 1.2396 1.2483 1.2483 1.2397 1.2

Table 5.2-27 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction

Run	#	Photo #	Wind Direction	Wind Speed (m/s)	Exit Velocity (m/s)
1		16A	230°	9.4	20.6
2		17A	230°	9.4	63.1
3		18A	230°	9.4	111.7
4		25A	210°	9.4	20.6
5		26A	210°	9.4	63.1
6		27A	210°	9.4	111.7
7		28A	210°	6.2	20.6
8		29A	210°	6.2	63.1
9		30A	210°	6.2	111.7

Table 6.1-1 Summary of Photographs Taken for Aminoil Surface Stack Releases Table 6.2-1 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Surface Stack Releases

LOCATION NO. 27 8 9 10 11 13 57 56 19 20 21 22 23 25 60 59 58 31 32 33 34 35	NON DIMENSIONAL COEFF(K) H2S .5931F-05 .3743F-04 .3593F-03 .2317F-03 .1039F-03 .4867F-04 .6749F-05 .1636F-05 .1043F-04 .1554E-04 .1636F-05 .1078F-03 .4295F-05 .1268E-04 .1227F-04 .1841F-05 .6135F-06 .1227F-05 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	CONCENTRATION (PPB) 1.0204 6.4391 61.8224 39.8661 17.8747 8.3743 1.1611 .2815 1.7945 2.6742 .2615 18.5432 .7389 2.1816 2.1112 .3167 .1056 0.0000 .1056 .2111 0.0000 0.0000 0.0000
37 63 61 43 45 46 47 49 64	•4704E-05 •6135F-06 •3886F-05 •6135F-06 •5317E-05 •4704E-05 •7567E-05 •8180E-05	.8093 .1056 .6685 .1056 .9148 0.0000 .8093 1.3019 1.4075

Table 6.2-2	Hydrogen Sulfide Concentrations and Concentration Coefficient for a 230° a 9.4 m/s Wind Speed and a 63.1 m/s Aminoil Surface Stack Releases	Nondimensional Wind Direction, Exit Velocity
LOCATION NO. 1 7 8 9 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 11 15 7 5 10 12 22 22 23 33 4 5 5 6 4 3 5 7 6 4 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	NON DIMENSIONAL COEFF(K) +25 1449E-05 8894E-05 4625E-04 7326E-04 2134E-04 1687E=04 4150E-05 5929E-06 5270E-06 1383E-05 1285E-04 4480E-05 9223E-06 6588E-06 6588E-06 6588E-06 2635E-06 4612E-06 6588E-06 2635E-06 6588E-06 1120E-05	CONCENTRATION (PPB) 7741 4.7502 24.7008 39.1272 11.4004 9.0077 2.2167 .3167 .2815 .7389 3.4834 6.8613 2.3927 .4926 .3519 .3519 .3519 .3519 .3519 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519 .2463 .3519

92

.

.

Table 6.2-3 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

LOCATION NO. NO.	N DIMENSIONAL COEFF(K) H2S .3824E-06 .2065E-05 .7649F-05 .2444E-04	CONCENTRATION (PPB) .3519 1.9001 7.0373 22.4841
8 9 10 11 13 57	6234F-05 6234F-05 2677F-06 3824F-07	5.7354 4.1168 2463 0352
56 19 20 21	2295E=06 2868E=05 2103E=05 6884E=06 2600E=05	2111 2.6390 1.9352 .6334 2.3927
23 25 60 59	• 4207F - 06 • 7649E - 07 • 7649E - 07 • 1530E - 06 • 1147F - 06	3870 0704 0704 1407 1056
31 32 33 34 35	3059F-06 2677F-06 1912E-06 1530F-06 1147E-06	•2815 •2463 •1759 •1407 •1056
37 63 62 61 43	•9561F-06 •7649E-07 •1530F-06 •1147F-06 •3442E-06	.8797 .0704 .1407 .1056 .3167
45 46 47 49 64	• 2617E-05 • 2792E-05 • 4972F-06 • 7649E-07 • 4972E-06	2 • 4030 2 • 5686 • 4574 • 0704 • 4574

Table 6.2-4	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 9.4 m/s Wind Speed and a 20.6 Aminoil Surface Stack Releases	and Nondimensional 210° Wind Direction, m/s Exit Velocity
LOCATION NO. 7 8 9 10 11 13 57 56 19 20 21 22 25 70 71 60 59 58 31 32 335 73 74 63 64 64 75 76 77	NON DIMENSIONAL COEFF(K) 9810F-06 1635F-06 1635F-06 6377F-05 1308F-05 6998F-04 1145F-05 1145F-05 0. 4905F-06 4905F-06 4071F-04 1079F-04 6769F-04 1308F-05 2126E-05 2453F-05 2943F-05 3107F-05 1030F-04 1373F-04 4415F-05 6704F-05 2616F-05 2616F-05 3597E-05 3597E-05	H2S CONCENTRATION (PPB) 0.0000 1688 0281 0281 1.0971 2250 12.0399 0.0000 1969 0.0000 1969 0.0000 0.844 7.0045 1.8566 11.6461 2250 3657 .3094 4220 5064 1.6878 .5345 1.7722 2.3630 .7595 .7877 1.4065 1.1815 .6189

-

94

.

Table 6.2-5	Hydrogen Sulfide Concentrations and Nondimensional
	Concentration Coefficient for a 210° Wind Direction,
	a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity
	Aminoil Surface Stack Releases

LOCATION NO. 8 9 10 11 13 57 56 19 20 21 225 70 71 60 59 58 31 32 35 73 73 74 63 62	NON DIMENSIONAL COEFF(K) 1001F-05 5267F-06 6320F-06 4214F-06 7900F-06 1643F-04 4214F-06 5267F-06 1211F-05 1053F-06 8954F-06 7374E-05 1333F-04 5267E-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 1211E-05 5267F-06 5267F-06 5267E-06	H2S CONCENTRATION (PPB) 5345 2813 3376 2250 4220 8.7768 2250 1125 2813 6470 0563 4782 3.9383 5907 7.1171 2813 6470 1.1252
43 44 47 64 75 76 77	.2423F-05 .2107F-06 .5267F-07 .2633F-06 .1685F-05 .3213E-05 .9480F-06	1.2940 .1125 .0281 .1407 .9002 1.7160

Table 6.2-6 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

	LOCATION NO. 7 8 9 10 11 13 57 56 19 22 22 27 71 69 8 33 33 55 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	NON DIMENSIONAL COEFF(K) 45866+06 5809F-06 4586F-06 6726F-06 1529F-06 1529F-06 1223F-06 48692F-06 3344F-06 86592F-06 3344F-06 86592F-06 1611F-04 7032E-06 7338E-06 1101F-05 6115F-06 5809F-06 1529F-06 1529F-06 5809E-06 5809F-0	H2S CONCENTRATION (PPB) 4220 5345 4220 6189 0.0000 1407 13.9810 5345 1125 1125 1125 125 125 125 125
--	---	--	--

Table 6.2-7	Hydrogen Sulfide Concentrations and Nodimensional
	Concentration Coefficient for a 210° Wind Direction,
	a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity
	Aminoil Surface Stack Releases

LOCATION NO. 8 9 10 11 13 57 56 19 20 21 225 70 71 609 58 31 32 33 33 33 33 33 33 33 33 33	NON DIMENSIONAL COEFF(K) .3052F-05 .2071F-05 .1635F-05 .7530F-06 .1090E-06 .2899F-04 .1526F-05 .1417F-05 .1417F-05 .1308F-05 .3379E-05 .3379E-05 .3815F-05 .2180E-05 .2180E-05 .3052F-05 .3052F-05 .3161F-05	H2S CONCENTRATION (PPB) .7961 .5402 .4265 .1990 .0284 .0299 .0284 .0299 .02772 .0599 .027961 .7108 .8246
35 73 63 62 61 44 47 64 75 76 77	.1853F-05 .3161E-05 .1079F-04 .6540E-06 .7630F-06 .7630F-06 .1526F-05 0. .7303E-05 .1875F-04 .3161F-05	.4834 .8246 2.8149 .1706 .1990 .1706 .1990 .3981 0.0000 1.9050 4.8905 .8246

Table 6.2-8	Hydrogen Sulfide Concentrations Concentration Coefficient for a a 6.2 m/s Wind Speed and a 63.1 Aminoil Surface Stack Releases	and Nondimensional 210° Wind Direction, m/s Exit Velocity
LOCATION NO. 7 8 9 10 11 13 57 56 19 20 21 22 225 70 71 60 59 58 31 32 23 35 73 74 63 62 61 43 44 47 64 75 76 77	NON DIMENSIONAL COEFF(K) 7725F-06 9129F-06 9129F-06 9129F-06 9454F-06 8427F-06 8427F-06 5618F-06 8778F-06 5618F-06 1229F-05 125267F-06 3160F-06 5969F-06 5969F-06 5969F-06 1405F-05 8427F-06 5969F-06 1405F-05 8427F-06 7023F-06 8427F-06 8427F-06 5969F-06 1766F-06 8427F-06 8427F-06 5969F-06 59726F-05 59	H2S CONCENTRATION (PPB) 6255 7393 3412 7393 7677 6824 5.4876 7108 4549 6540 9383 4265 17.8561 2.1894 6.0563 4265 2559 4834 5571 4834 1.1373 6824 6824 6824 5575

Table 6.2-9 Hydrogen Sulfide Concentrations and Nondimensional Concentration Coefficient for a 210° Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

LOCATION NO.	NON DIMENSIONAL COFFF(K)	H25 CONCENTRATION(PPR)
7	•4077F-06	.5687
8	•4484F-06	.6255
9	•3261F-06	.4549
10	•6115F-07	.0853
11 13 57 56 19 20	1223F-06 3771F-05 2446F-06 1019F-06	1706 5.2601 3412 0.0000 1422
21	- 3873 - 06	0.0000
225	- 1631F - 06	2275
70	- 9050E - 05	12.6243
71	- 6522F - 06	9099
60	- 5014F - 05	6.9946
59 58 32 32 35	.6319F-06 .7949F-06 .7542F-06 .8561F-05 .8357F-06 .9488F-06	•8814 1•1089 1•0520 1•1942 1•1658 1•3932
73	.6115F-06	8530
74	.6726F-06	9383
63	.9376E-06	1.3079
62	.3873E-06	5402
61	.4484F-06	6255
43	.5911F-06	8246
44	.3261F-06	4549
47 64 75 76 77	.5707E-06 .8561E-06 .7032E-05 .9376E-06	•7.961 1.1942 9.8095 1.3079

Height Z	Aminoi	l Test Site	Meterological Station		
Prototype	Model m/s	Prototype m/s	Model m/s	Prototype m/s	
Z = 10 m	0.67	10.93	0.73	11.95	
Z = 20 m	0.76	12.4	0.86	14.0	
Z = 40 m	0.85	13.87	0.92	15.2	

Table 7-1 The Wind Velocity (m/s) at Aminoil Test Site and the Meteorological Station for Three Heights Above Ground Level

Wind Speed Description m/s	Nt-d	Wind Speed Wind m/s Direction	Exit Velocity m/s	Maximum		Highest near Anderson Springs or Whispering Pines	
	Wind Speed m/s			X MAX (ppb)	Location	X MAX (ppb)	Location
Surface	3.1	250	2.5	18.1	12	18.1	12
Release	3.1	250	12.7	22.4	11	22.4	11
	3.1	230	2.5	24.9	7	0.8	64
	3.1	230	12.7	17.6	7	0.9	47
	3.1	210	2.5	14.7	57	1.9	75
	3.1	210	12.7	12.5	60	2.9	75
	6.2	250	2.5	15.6	11	15.6	-11
	6.2	250	12.7	60.2	9	40.0	11
	6.2	230	2.5	13.5	7	0.4	64
	6.2	230	12.7	27.7	20	0.8	64
	6.2	210	2.5	5.7	70	3.6	76
	6.2	210	12.7	20.4	60	12.5	76
	9.4	250	2.5	16.1	2	10.6	12
	9.4	250	12.7	61.0	2	49.8	11
	9.4	230	2.5	12.0	7	2.4	45
	9.4	230	12.7	42.1	8	4.5	64
*	9.4	210	2.5	5.6	60	1.3	76
	9.4	210	12.7	24.0	60	4.4	76
Surface	6.2	210	20.6	17.1	70	4.9	76
Stack	6.2	210	63.1	17.9	70	7.9	76
Release	6.2	210	111.7	12.6	70	9.8	76
	9.4	210	20.6	12.0	57	1.4	75
	9.4	210	63.1	8.8	57	1.7	76
	9.4	210	111.7	14.8	60	3.9	76
	9.4	230	20.6	61.8	7	1.2	11
	9.4	230	63.1	39.1	8	2.2	11
	9.4	230	111.7	22.5	8	0.5	64

Table 8.1 Summary of H_2S Concentrations for the Proposed Geothermal Plant Site (Unit 13)

Wind Speed Description m/s	Wed	nd ed Wind s Direction	Exit Velocity m/s	Maximum		Highest near Anderson or Whispering Pines	
	Wind Speed m/s			Х МАХ (ррb)	Location	Х МАХ (ррь)	Location
Stack (30m)	3.1	250	20.6	6.5	11	6.5	11
Release	3.1	250	63 1	L 2	11	6.5 4.2	11
	3.1	250	111 7	1 4	11	14	11
	3.1	230	20.6	6.2	8	1.4	47
	3.1	230	63.1	3.0	° 7	0.4	37
	3.1	230	111.7	2.2	20	0.6	25
	3.1	210	20.6	10.8	57	0.6	76
	3.1	210	63.1	2.0	57	0.5	13
	3.1	210	111.7	3.1	60	0.8	25
	6.2	250	20.6	58.7	9	11.6	.1
	6.2	250	63.1	20.3	9	12.9	· 1
	6.2	250	111.7	21.7	37	21.7	3,
	6.2	230	20.6	26.5	20	0.9	47
	6.2	230	63.1	14.5	8	0.8	64
	6.2	230	111.7	19.6	7	0.8	\$
	6.2	210	20.6	10.4	60	8.6	, ن
	6.2	210	63.1	6.0	57	3.2	76
	6.2	210	111.7	12.4	76	12.4	76
	9.4	250	20.6	104.2	48	104.2	48
	9.4	250	63.1	48.0	2	39.4	11
	9.4	250	111.7	84.1	7	61.5	12
	9.4	230	20.6	41.6	7	1.8	37
	9.4	2 30	63.1	43.8	7	2.3	11
	9.4	230	111.7	23.7	7	3.8	2
	9.4	210	20.6	18.2	57	2.3	76
	9.4	210	63.1	14.5	60	10.5	64
	9.4	210	111.7	18.9	60	3.5	76

Table 8.1 (continued)

Figure 1.1 Map Showing Geyser Geothermal Area and Location of Proposed Aminoil Power Plant

Figure 1.2 Wind Rose from Meteorological Station Located near Proposed Sites

Figure 1.2b Wind Rose from Meteorological Station #2

Figure 2.1 Reynolds Number at which Flow Becomes Independent of Reynolds Number for Prescribed Relative Roughness

Figure 3.1-1 Environmental Wind Tunnel; Fluid Dynamics and Diffusion Laboratory, Colorado State University

Figure 3.2-1 Photograph of Model Stacks and Area Source

Figure 3.2-2 Photograph of Terrain Model in the Environmental Wind Tunnel

Figure 3.2-3 Basemap for the 250° Wind Direction

Figure 3.2-4 Basemap for the 230° Wind Direction

Figure 3.2-5 Basemap for the 210° Wind Direction

Figure 3.3-1 Schematic of Plume Visualization Equipment

Figure 3.4-1 Schematic of Tracer Gas Sampling System

Figure 3.5-1 Laboratory Experimental Arrangement for Obtaining Turbulent Intensities and Mean Wind Velocities over the Terrain

Figure 3.5-2 The Smoke-Wire Used to Visualize Wind Profiles over the Terrain

b) 6.2 m/s

a) 3.1 m/s

c) 9.4 m/s

Figure 4.1-1 Surface release plume visualization for a 12.7 m/s exit velocity, 250° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

a) 3.1 m/s

b) 6.2 m/s

c) 9.4 m/s

Figure 4.1-2 Surface release plume visualization for a 12.7 m/s exit velocity, 210° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

Figure 4.2-1 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-2 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-3 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-4 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 3.2 m/s Wind²Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-5 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind²Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-6 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind²Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-7 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-8 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-9 Isopleths of H₂S Concentrations for a 230^O Wind Direction, a 9.4 m/s Wind²Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-10 Isopleths of H₂S Concentrations for a 230^O Wind Direction a 3.1 m/s Wind²Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-11 Isopleths of H₂S Concentrations for a 230⁰ Wind Direction, a 6.2 m/s Wind²Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-12 Isopleths of H₂S Concentrations for a 230^O Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-13 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 3.1 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-14 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 6.2 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-15 Isopleths of H₂S Concentrations for a 210^o Wind Direction a 9.4 m/s Wind Speed and a 2.5 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-16 Isopleths of H₂S Concentrations for a 210^o Wind Direction a 3.1 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Figure 4.2-17 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction a 6.2 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases

Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 9.4 m/s Wind Speed and a 12.7 m/s Exit Velocity--Aminoil Surface Releases Figure 4.2-18

b) 6.2 m/s

c) 9.4 m/s

Figure 5.1-1 Stack release plume visualization for a 20.6 m/s exit velocity, 250° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

c) 9.4 m/s

Figure 5.1-2 Stack release plume visualization for a 63.1 m/s exit velocity, 250° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

a) 3.1 m/s

c) 9.4 m/s

Figure 5.1-3 Stack release plume visualization for a 111.7 m/s exit velocity, 250° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s. Tapana A.

c) 9.4 m/s

b) 6.2 m/s

Figure 5.1-4 Stack release plume visualization for a 20.6 m/s exit velocity, 230° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

a) 3.1 m/s

c) 9.4 m/s

Figure 5.1-5 Stack release plume visualization for a 63.1 m/s exit velocity, 230° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

c) 9.4 m/s

Figure 5.1-6 Stack release plume visualization for 111.7 m/s exit velocity, 230° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

c) 9.4 m/s

Figure 5.1-7 Stack release plume visualization for a 20.6 m/s exit velocity, 210° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

c) 9.4 m/s

Figure 5.1-8 Stack release plume visualization for a 63.1 m/s exit velocity, 210° wind direction and wind speeds of a) 3.1 m/s, b) 6.2 m/s, and c) 9.4 m/s.

b) 6.2 m/s

Figure 5.1-9 Stack release plume visulization for a 111.7 m/s exit velocity, 210° wind direction and wind speeds of a) 3.1 m/s and b) 6.2 m/s.

Figure 5.2-1 Isopleths of H₂S Concentrations for a 250^O Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-2 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-3 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-4 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-5 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

1.50

Figure 5.2-6 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-7 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 3.1 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-8 Isopleths of H₂S Concentrations for a 250° Wind Direction, a 6.2 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Isopleths of H_2S Concentrations for a 250° Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release Figure 5.2-9

Figure 5.2-10 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-11 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-12 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-13 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-14 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-15 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-16 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 3.1 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-17 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 6.2 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-18 Isopleths of H₂S Concentrations for a 230° Wind Direction, a 9.4 m/s Wind²Speed and a II1.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-19 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 3.1 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-20 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 6.2 m/s Wind²Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-21 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-22 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 3.1 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-23 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-24 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 9.4 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-25 Isopleths of H₂S Concentrations for a 210^o Wind Direction, a 3.1 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-26 Isopleths of H₂S Concentrations for a 210^o Wind Direction, a 6.2 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

Figure 5.2-27 Isopleths of H₂S Concentrations for a 210° Wind Direction, a 9.4 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Stack Release

b) 63.1 m/s

a) 20.6 m/s

c) 111.7 m/s

Figure 6.1-1 Surface stack release plume visualization for a 230° wind direction, 9.4 m/s wind speed and exit velocities of a) 20.6 m/s, b) 63.1 m/s, and c) 111.7 m/s.

a) 20.6 m/s

c) 111.7 m/s

Figure 6.1-2 Surface stack release plume visualization for a 210° wind direction, 9.4 m/s wind speed and exit velocities of a) 20.6 m/s, b) 63.1 m/s, and c) 111.7 m/s.

a) 20.6 m/s

c) 111.7 m/s

Figure 6.1-3 Surface stack release plume visualization for a 210° wind direction, 6.2 m/s wind speed and exit velocities of a) 20.6 m/s, b) 63.1, and c) 111.7 m/s.

Figure 6.2-1 Isopleths of H₂S Concentrations for a 230^O Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Surface Releases

Figure 6.2-2 Isopleths of H₂S Concentrations for a 230^O Wind Direction, a 9.4 m/s Wind Speed and a 63.1 m/s Exit Velocity--Aminoil Surface Releases

-12

Figure 6.2-3 Isopleths of H₂S Concentrations for a 230^O Wind Direction, a 9.4 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-4 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 9.4 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-5 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 9.4 m/s Wind²Speed and a 63.1 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-6 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 9.4 m/s Wind²Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-7 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 6.2 m/s Wind Speed and a 20.6 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-8 Isopleths of H₂S Concentrations for a 210⁰ Wind Direction, a 6.2 m/s Wind Speed and a 63.1 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 6.2-9 Isopleths of H₂S Concentrations for a 210^O Wind Direction, a 6.2 m/s Wind Speed and a 111.7 m/s Exit Velocity--Aminoil Surface Stack Releases

Figure 7.1 Turbulent Intensity at Aminoil Test Site (Unit 13) and Meteorological Station

Figure 7.2 Comparison of Mean Wind Tunnel Velocity Profiles at the Aminoil Test Site and the Meteorological Station

-

Figure 7.3 Comparison of the Power Laws fitted for the Mean Wind Velocity at the Meteorological Station and the Aminoil Test Site.

Smoke Wire Velocity Figure 7.5 Profiles (.05-second intervals) taken at three terrain heights in the Anderson Ridge Vicinity a) 975 m; b) 792 m; c) 719 m a Ь

1.4

1.1

C

Figure 8.1 Graph Showing Allowable Operating Levels for Unit 13 Stream Venting and 210, 230 and 250° Wind Directions Based on Wind Tunnel Results

515 43CSU SBF

5794

3/01